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Abstract 

Holocene variations in atmospheric circulation in the North Atlantic region have been 

reconstructed, based on three individual lake sediment studies from sites along the 

coast of Norway and Svalbard. This thesis contributes with new palaeoclimatic 

reconstructions revealing variability in wind and precipitation patterns in the 

northeastern North Atlantic. 

In Paper I, we present a new record of Holocene glacier variability of Ålfotbreen ice 

cap in western Norway. By applying a novel approach of calibrating lake sediments 

with instrumental glacier mass-balance measurements we are able to extend glacier 

mass-balance variability as reflected in equilibrium-line altitude (ELA) changes for 

the last 1400 years. Our data suggest that deglaciation of Ålfotbreen occurred ~9700 

cal yr BP, and the ice cap was subsequently absent or very small until a short-lived 

glacier event is seen in the lake sediments ~8200 cal yr BP. The ice cap was most 

likely completely melted until a new glacier event occurred around ~5300 cal yr BP. 

Ålfotbreen was thereafter absent (or very small) until the onset of the Neoglacial 

period ~1400 cal yr BP. The Little Ice Age (LIA) ~650-50 cal yr BP was the largest 

glacier advance of Ålfotbreen since deglaciation, with a maximum extent at ~400-200 

cal yr BP, when the ELA was lowered approximately 200 m relative to today. The 

late onset of the Neoglacial at Ålfotbreen is suggested to be a result of its low altitude 

relative to the regional ELA. Further, we apply a known relationship between 

summer temperature and ELA variations at 10 glaciers in Norway (including 

Ålfotbreen) to reconstruct winter precipitation during the last 1400 years.  

In Paper II, we present a lake record from lake Hakluytvatnet at Amsterdamøya 

island, the northwesternmost island on Svalbard. The lake sediment archive reveals 

large environmental changes that have taken place at Hakluytvatnet since the Late 

Glacial, as detected by multi-proxy analyses including physical sediment properties 

and diatom analysis. A robust chronology has been established for the lake sediment 

core through 28 AMS radiocarbon (14C) ages, and this gives an exceptionally well-

constrained age control for a lake at this latitude (79.5°N) that is not varved. The 
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sedimentary archive recorded the last ~13,000 years of climate change, and is the first 

lake record going back to the Late Glacial at this site. Our findings indicate that a 

local glacier was present during the Younger Dryas (YD), and we estimate YD 

equilibrium-line altitude (ELA) lowering. Further, we construct a new time-series 

reflecting precipitation-based detrital sediments entering Hakluytvatnet (i.e., runoff) 

covering the period from ~5000-1300 cal yr BP. We discuss our runoff record and the 

internal productivity of the lake towards a record of varying sea ice extent in the 

Fram Strait acting as a moisture source area for Hakluytvatnet. 

In Paper III, a late-Holocene record of storminess in Arctic Norway is reconstructed 

from aeolian sediment input into the coastal lake Måvatnet, Andøya island. The study 

site is situated at the extreme west coast of Arctic Norway; a sensitive location for 

changes in North Atlantic westerly winds. Through a novel approach, combining 

monitoring of wind-blown lake sedimentation in sediment traps with multi-proxy 

analyses of lake sediments we quantify the input of wind-blown sand from a west-

facing beach acting as source area into lake Måvatnet during the late-Holocene. We 

further assess the validity of this record to represent variations in the strength of the 

westerlies (i.e., storminess). The high-resolution record reveals an abrupt increase in 

storminess synchronously with the onset of the Little Ice Age (LIA), ca. 600 cal yr 

BP, coeval with increased winter precipitation at Ålfotbreen (Paper I) and a 

strengthening of the persistent low-pressure west of Iceland (Icelandic Low) that 

exerts a strong effect on North Atlantic storm tracks. Further, the timing of the onset 

of the LIA along the coast of Norway appears to be linked to the dynamics of the 

large-scale atmospheric circulation systems in the North Atlantic. 
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Outline 

This thesis consists of an introduction and three individual papers. In the introduction, 

I present a short overview of the scientific background and the main research 

objectives of the study. The study areas and the methodological approaches are 

thereafter presented. The three papers are introduced, and the palaeoclimatic 

implications that can be drawn from the results are discussed and I assess potential 

future research that can build on the findings from this thesis. 

The second part contains the three papers that form the Ph.D. thesis. In Paper I, a new 

record of Holocene glacier variability of the ice cap Ålfotbreen in western Norway is 

presented. Further, a novel approach coupling lake sediments with instrumental 

glacier mass-balance measurements allows for calibration of our lake record that is 

used to extend glacier mass balance variability reflected in equilibrium-line altitude 

(ELA) changes back in time. Finally, we apply a known relationship between summer 

temperature and ELA variations at 10 glaciers in Norway (including Ålfotbreen) to 

reconstruct winter precipitation during the last 1400 years. In Paper II, we perform 

multi-proxy analyses of lake sediments to reconstruct climate at Amsterdamøya, 

Svalbard. The robustly dated high-Arctic record reveals the large environmental 

changes impacting lake sedimentation that have taken place since the Late Glacial. 

Further, we construct a new time-series reflecting precipitation-based sedimentation 

(i.e., runoff) covering the last ~5000 years, and we discuss our record towards a sea 

ice extent record. In Paper III, we quantify the input of wind-blown sand from a 

beach into a lake during the late-Holocene at Andøya, Arctic Norway, and assess the 

validity of this record to represent variations in storminess. Through a novel 

approach, combining monitoring of wind-blown lake sedimentation in sediment traps 

with multi-proxy analyses of the lake sediments, we are able to construct a storminess 

record that indicates a strengthened wind climate in northern Norway at the onset of 

the Little Ice Age (LIA, 600 years ago), coeval with the onset of increased winter 

precipitation at Ålfotbreen. 
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Introduction 

Only palaeoclimatic reconstructions offer the possibility to extend earth system 

observations beyond the instrumental time period. Such reconstructions are especially 

important in the Arctic (defined here as north of 60°N) because the rate of on-going 

change is unprecedented within Common Era observations, and the changes we see 

today are urgently needed to be put into a longer time perspective. Our knowledge of 

natural climate variability in the Arctic is limited due to the scarcity of data and the 

relatively short period of observation. Projected anthropogenic forcing on climate 

(IPCC, 2013) will be superimposed on these natural variations, which might result in 

fundamental changes to internal climate feedback mechanisms, influencing the timing 

and amplitude of future climate. This leads to a critical emerging question in the 

scientific community: how will the effects of global warming be manifested in the 

Arctic? To make meaningful climate projections at the regional scale and to evaluate 

model simulations of future climate, we need a longer perspective than the short 

instrumental period provides. Palaeoclimate data yield a longer-term perspective on 

climate system variability, and on the interaction between climate systems and 

associated feedbacks that further modify the forcing (Bradley, 2000). New 

methodologies and improved techniques allow for high-resolution palaeoclimate 

reconstructions, and this thesis aims to employ both recently developed and 

traditional lake sediment techniques to produce high-resolution time-series of past 

changes in climate. The novel palaeoclimate records are thereafter assessed in a 

palaeoclimatic context, and the implications and contributions from this thesis are 

synthesized. Finally, a proposal for future research building on this thesis is outlined. 
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Research objectives 

In light of the introduction to the significance of palaeoclimatic research, the 

scientific rationale behind this PhD thesis can be formulated in the following research 

question: 

To what extent can analyses of physical and geochemical lake sediment properties 

be used to quantify earth surface processes such as wind, runoff and glacier 

activity, and how it is possible to upscale these processes to large-scale 

atmospheric variability in the North Atlantic region? 

This main research question is thereafter approached at three distinct study sites, 

applying both comparable and alternative methods where the common denominator is 

the focus on investigating and detecting atmospheric circulation variability as 

reflected in lake sediments. Thus, the objectives of this thesis are:  

 Apply quantitative glacier reconstructions and winter precipitation 

reconstructions from the maritime ice cap Ålfotbreen in western Norway as a 

proxy for winter hydroclimate 

 Resolve which sedimentary properties can be used as a proxy for runoff in a 

high-Arctic lake catchment on Svalbard through a multi-proxy approach 

 Investigate the relationship between grain-size distribution and aeolian 

transport in an Arctic lake in Northern Norway 

 Decipher the natural variability and rate of change in the strength and spatial 

patterns of the westerlies in Arctic Norway and Svalbard during the late-

Holocene 

 

 



 14 

Background 

The northeastern (NE) North Atlantic region is a key area in climate research, as the 

dynamic properties of the prevailing atmospheric and oceanic systems can change in 

a rapid pace, both spatially and temporally, and have done so in the past (e.g. Bianchi 

and McCave, 1999). This thesis is based on work from three sites chosen on a south-

north transect across coastal Norway and Svalbard to explore past atmospheric 

circulation changes and hydroclimate variability as recorded in lake sediments. The 

three study sites are targeted on the basis of their potential to record past changes in 

atmospheric circulation patterns reflected in precipitation- and wind-induced 

sedimentation to the lakes. A common focus of the three papers has been to 

understand the impact of changing atmospheric circulation on earth surface processes 

and their sedimentary signature in the lake sediments. 

Large-scale implications of projected climate warming (IPCC, 2013) can only be 

assessed when considering complex teleconnection patterns that are affecting the 

climate system, and to infer future climate change we rely on climate models that 

build on palaeoclimate data and instrumental data. Data on past variability of 

atmospheric circulation patterns are urgently needed in global climate models, as the 

future warmer climate will likely affect precipitation patterns and storm tracks (IPCC, 

2013), which in turn will impact human societies manifested in e.g. increasing 

numbers of floods and droughts. Globally, there are numerous palaeoclimate 

reconstructions produced, encompassing various proxies in records from e.g. ice 

cores, peat bogs, marine sediments, tree-rings, speleothems, and lake sediments; all of 

which can be used to improve our knowledge on past natural climate variability and 

enhance the robustness of future projections in climate models. However, seasonal 

reconstructions from various proxies in palaeoclimate archives is not straight-

forward. Reconstructions of summer season climate (e.g. July temperature from 

pollen or chironomids) are copious due to the biological and faunal productivity 

seasons occurring mostly during spring/summer. Winter season climate 

reconstructions are subsequently limited in numbers, although a few direct winter 

season proxies are recognized, such as isotopes reflecting permafrost variability (e.g. 
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Meyer et al., 2015), and glacier reconstructions from glaciers reflecting mainly winter 

season signal as well as winter precipitation reconstructions (Dahl and Nesje, 1996; 

Nesje et al., 2001; Nesje and Matthews, 2012). As this thesis focuses on proxies 

mostly reflecting winter season climate, it therefore opts to offer a seasonal 

contribution to the endeavour of the palaeoclimate community.  

 

Late Glacial and Holocene climate in the northeastern North Atlantic – a 

climatic and chronological framework 

The last remnants of the northern hemisphere (NH) ice-sheets disintegrated after the 

Last Glacial Maximum (LGM, ~20 ka), and the Younger Dryas (YD: 12.9-11.7 ka; 

Rasmussen et al., 2006) marked the final readvance of the Scandinavian Ice Sheet 

before complete deglaciation. NH summer season solar insolation was at its 

maximum during the early Holocene (Berger and Loutre, 1991), and the early 

Holocene climate was punctuated by cooling induced by meltwater pulses from 

remnants of the decaying ice sheets, leading to unstable climate in the North Atlantic 

(Fleitmann et al., 2008; Kleiven et al., 2008). The succeeding warmer period termed 

the Holocene Thermal Maximum (HTM) was especially pronounced in the high-

Arctic (Renssen et al., 2009), and might therefore serve as an important reference 

period for future warmer climate and the consequence for high-Arctic and polar areas 

reflected in e.g. diminishing sea-ice, vegetation changes, and glacier melt. The mid- 

to late-Holocene climate in the NE North Atlantic can be explained in the context of a 

decreasing trend of summer insolation forcing a summer season cooling (Vinther et 

al., 2006), superimposed by mechanisms and feedback processes such as solar 

activity and volcanic forcing further modulating the climate (Wanner et al., 2008). 

Around 4 ka, the NH cooling led to a weaker meridional overturning circulation and 

the southward displacement of the Intertropical Convergence Zone (ITCZ) (Haug et 

al., 2001; Mayewski et al., 2004); intensifying the westerlies over the North Atlantic 

which is illustrated by increased glacier activity in the region (i.e. the 'Neoglacial'; 

e.g. Nesje, 2009; Solomina et al., 2015). In Scandinavia, numerous glacier 

reconstructions reveal a consistent pattern, with larger glacier activity since the onset 
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of the Neoglacial and the glacier reconstructions point to a combination between 

external forcing factors (i.e., solar insolation) and regional weather modes as the 

dominant control of glacier activity (Nesje, 2009). The transition from the warmer 

HTM into the colder and wetter late Holocene occurred in concert with an increased 

dominance of Atlantic water along the western coast of Norway (Risebrobakken et 

al., 2003). The Little Ice Age (LIA) (~600-100 cal yr BP) was a relatively cold period 

with glacier advances at several sites globally (Grove, 2001; Matthews and Briffa, 

2005) and intensification of NE North Atlantic wind climate (Lamb, 1979). However, 

the climate dynamics explaining the LIA are not yet fully understood and neither is 

the full extent spatially or temporally (e.g. Bradley and Jones, 1993; Nesje and Dahl, 

2003; Mann et al., 2009). This thesis aims to provide insight into the timing of the 

LIA at two sites in Norway as well as the palaeoclimatic inferences that can be drawn 

from the reconstructions, thereby presenting a framework for future studies to 

investigate the LIA in a context of storminess and glacier advances imposed by 

variations in westerly winds along the coast of Norway. 
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Study area 

The three lakes investigated are all situated in the northeastern sector of the North 

Atlantic, covering almost twenty degrees of latitude from 61°-79°N (Fig. 1). The 

coastal setting implies that the climate at all sites is strongly affected by the relatively 

warm North Atlantic Current (NAC), the northern continuation of the Gulf Stream; 

and their downwind position of the associated westerly winds that transport warmer 

air masses northwards. The study areas are consequently characterised by relatively 

warm winters despite their high-latitude location. 

 

Figure 1: Overview of study sites (black asterisks) in the northeastern North 
Atlantic region (bathymetric data: ETOPO1 Global Relief Model, NOAA). 
Warmer Atlantic currents in red, colder Arctic waters in blue. Dashed purple 
arrow illustrates westerly winds; orange ‘L’ denotes position of the persistent 
low-pressure system west of Iceland (Icelandic Low) that exerts a strong effect 
on North Atlantic storm tracks. 
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Atmospheric circulation in the northeastern North Atlantic 

The Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO) constitute the 

most prominent modes of winter climate variability in the northern hemisphere 

(Wanner et al., 2001), transporting atmospheric masses from the mid-latitudes to 

high-latitudes in the North Atlantic with a shared winter storm track between the NE 

North Atlantic and the Arctic (Rogers and McHugh, 2002). The AO/NAO modes are 

quantified by variations in the sea level pressure gradient, which is reflected in the 

strength and position of the westerly winds. The bimodal pattern of the AO 

constitutes the shifting state of the annular pattern of higher air-pressure over the NH 

polar region where the associated temperature and polar jet stream shift concurrent 

with air pressure oscillations. During positive AO (AO+), the pattern of the AO is 

sustained annular in shape by a strong high-pressure system preserved by strong 

upper-stratospheric level winds manifested in the jet stream marking the transition 

between Arctic and warmer air masses south of the Arctic and the outer extent of the 

AO, thereby allowing warmer air masses from the south to reach further north. 

During a negative phase of the AO (AO-), a weaker high-pressure system over the 

polar region allows for cold polar air to penetrate further south, and induces a more 

‘wobbly’ extent of the jet stream, which is also weakened, allowing for cold polar air 

masses to reach further south. Analogous to the AO, the North Atlantic Oscillation is 

considered the dominant winter-season mode of atmospheric variability in the North 

Atlantic (e.g. Marshall et al., 2001; Pinto and Raible, 2012), responsible for the 

meridional atmospheric heat transport from the tropics to the Arctic latitudes (Fig. 2). 

The NAO is often defined as an index based on mean sea level pressure (SLP) 

differences between Stykkisholmur, Iceland, where a persistent low-pressure system 

(Icelandic Low, Fig. 1) is situated, and a high-pressure system situated at the Azores 

(Azores High). Though, the position of the NAO centres of action may shift over 

space and time (Pinto and Raible, 2012). The difference in SLP between these two 

indexed sites tend to vary as such that when the low-pressure outside Iceland is lower 

than average, the high-pressure system at the Azores is higher than average, and vice 

versa; if the Icelandic Low is less pronounced, the Azores High is lower than average. 

This implies that the meridional pressure gradient is larger when the index is high 
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(positive NAO; NAO+), thereby transporting warmer air accompanied by stronger 

meridional (westerly) winds and steering winter storms and precipitation to northern 

Europe (Fig. 2A), and simultaneously resulting in sunny, dry conditions in mid- and 

southern Europe. The wintertime westerlies over southern Norway are closely linked 

with the NAO (e.g. Nordli et al., 2005) and a positive NAO often leads to high 

accumulation of mass in Norwegian glaciers (Hurrell, 1995). As the AO/NAO are 

most pronounced during winter, we opt to test if our winter season reconstructions 

reflect variability in North Atlantic atmospheric modes and in particular the NAO 

which may further reflect the westerly winds that hold a key position in modulating 

the amount of precipitation that reaches the coast of Norway and Svalbard. A 

potential for detecting changes in the position and strength of the westerlies (e.g. 

Bakke et al., 2008) lies in investigating the south-north transect presented in the three 

papers. 

 

Figure 2: This figure adapted from Pinto and Raible (2012) and Wanner et al. 
(2001) illustrates schematically the states of the NAO and the implications for 
North Atlantic climate following the interplay between the two states: A) 
positive NAO (NAO+), B) negative NAO (NAO-). 
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Methodological approach 

Lakes act as archives for recording climate variations by continuously recording 

authochthonous (internally produced) and allochthonous (from outside the lake) 

sediment accumulation. There are several processes affecting lake sedimentation, and 

in order to utilize lake sediments as climate archives we must evaluate and fingerprint 

different sedimentary sources to assess climatic impact as well as local catchment 

processes affecting sediment accumulation. In this thesis, a combined approach based 

on geomorphological mapping of the catchment areas with lake sediment analysis 

allow for robust inferences on how climate variability has affected sediment 

accumulation in the lakes. Geomorphological mapping allows for inferences on 

modern catchment sedimentation processes (e.g. Bakke et al., 2005a; Berntsson et al., 

2015) and can be particularly helpful when combining with lake sediment analyses to 

avoid misinterpretation (Ballantyne, 2002). By performing a combined echo sounding 

and ground-penetrating radar (GPR) survey of the lake bathymetry and sediment 

thickness prior to coring at all sites, we attempted to detect suitable coring sites that 

held relatively thick sedimentary sequences (i.e., higher sediment accumulation rates 

allowing for high-resolution analysis), and without mass-movement deposits 

protruding into the coring site thereby perturbing the stratigraphic resolution. This 

approach has been followed at all coring sites and is suggested to be applied as a 

standard method before coring lake sediments. Coring a combination of longer piston 

cores (Nesje, 1992) and shorter gravity cores (HTH/UWITEC) enable a continuous 

sedimentary archive to be extracted, including the sediment-water interface 

containing modern sediment accumulation that can be age-determined by e.g. 210Pb 

dating for calibration with instrumental data such as glacier mass-balance 

measurements. The short core(s) can thereafter tentatively be coupled with the longer 

piston core(s) and the sedimentary record can thus be extended.  
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Analyses of lake sediments 

The interplay between autochthonous and allochthonous sediments and their relative 

contribution to lake sediment accumulation vary over time and space, and 

disentangling these factors are crucial in order to make robust palaeoenvironmental 

interpretations. A range of laboratory methods were applied at all three sites, and are 

briefly explained below. The site-specific applications of the different proxies 

employed are thereafter described as the lake settings are contrasting and distinct 

proxies had to be applied to infer palaeoclimate from the individual sites. 

Magnetic properties may inform on changes in detrital sediment in-wash from the 

catchment, and are therefore widely applied in lake sediment studies (Thompson et 

al., 1975; Snowball et al., 1999). Various processes transporting minerogenic input to 

a lake basin are responsible for bringing different types of allochthonous sediments 

into a lake, and distinct magnetic signatures can be detected when combining lake 

sediments with sediment soil samples from the various sources in a catchment to infer 

relative contribution to detrital input variability back in time (Vasskog et al., 2012; 

Wittmeier et al., 2015). X-ray fluorescence scanning (XRF) using an ITRAX scanner 

(Croudace et al., 2006) enables rapid, non-destructive qualitative geochemical 

profiling, and provides high-resolution elemental results that are frequently applied in 

lake sediment studies (Croudace and Rothwell, 2015). In all three papers, we have 

applied high-resolution XRF scanning as a tool for inferring variability in 

sedimentary input to the lake sediments (Davies et al., 2015). Weight loss-on-ignition 

(LOI,%), dry bulk density (DBD, g/cm3), and water content (WC,%) (Dean, 1974; 

Heiri et al., 2001) comprise frequently applied physical sediment parameters that 

have been analysed at all sites. LOI acts as an indicator of organic content, whereas 

DBD reflects the mass of dry solids in a given bulk volume (Brady and Weil, 1996). 

As DBD reflects detrital input it has been found to show a close relationship with e.g. 

glacier equilibrium-line changes as increased glacier erosion during periods with 

larger glacier extent enhances glacigenic sediment in-wash to lake sediment 

accumulation (e.g. Bakke et al., 2005a; Bakke et al., 2010). Relative changes in grain-

size distribution (GSD) may reveal changes in catchment processes that have been 
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induced by earth surface processes, and GSD changes can allow for identification of 

the relative contribution of different sediment sources in a catchment and how they 

have varied over time. Further, grain-size analysis can be used to validate e.g. a 

detrital signal from DBD and can identify whether a large discrepancy in DBD, LOI 

or other physical parameters originate from mass-wasting deposits (see below). 

Recent studies also point out the possibility of high-resolution grain-size analysis in 

combination with modelling to infer process-specific variability in catchments 

(Dietze et al., 2012). To further differentiate between the various sedimentary impacts 

on lake sedimentation, and to explore the multivariate datasets consisting of large 

amounts of qualitative and quantitative data we employed Principal Component 

Analysis as a statistical tool.  

Episodic sediment input complicate continuously deposited sediments and may 

perturb sediment accumulation rates (Rubensdotter and Rosqvist, 2009). These short 

lived ‘event’ layers can results from several processes such as floods (Støren et al., 

2010; Schillereff et al., 2014), avalanches (Nesje et al., 2007), debris flows and other 

gravitational processes (Sletten et al., 2003), or as a combination of several processes 

(Nesje et al., 1995; Vasskog et al., 2011). Identification of these short-lived events in 

the sedimentary sequence may further enable climatic interpretation (Støren et al., 

2012; Støren and Paasche, 2014). In all three papers, we have aimed at detecting any 

visible event layers and subsequently omitted them from age-depth models. We 

examined various statistical approaches (e.g. Støren et al., 2010) and geochemical 

ratios (e.g. Vasskog et al., 2011; Wittmeier et al., 2015) but found no significant 

universal proxy that could be applied to detect event layers at all sites, and we 

therefore visually inspected the cores and critically evaluated any inferred event layer 

before omitting from age-depth modelling. A final, important remark regarding use of 

lake sediments as palaeoenvironmental archives include a thorough assessment of 

potential anthropogenic influence on lake sedimentation that may cause 

misinterpretation of the sediment record (Augustsson et al., 2013), and we have 

aimed at identifying any possible human-induced sedimentary source of error. 
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Finally, to contextualize and compare our findings with other records a chronological 

framework must be established. Chronological control is arguably the most important 

parameter when constructing palaeoclimate time-series, and in this thesis a particular 

focus has been on constructing robust chronological age-depth relationships and 

evaluating model output. By omitting event layers and unreliable radiocarbon ages 

we have aimed at constructing as robust age-depth relationships as possible. The age-

models applied are chosen based on the prior knowledge from individual 14C 

radiocarbon ages and 210Pb ages obtained, and from several runs and subsequent 

validations of the age-model output.  

Assessing the uncertainties and potential pitfalls in lake sediment analyses, a 

combination of geomorphological mapping and thorough pre-coring analyses are 

suggested to ensure suitable coring sites for high-resolution continuous lake sediment 

studies. Further, a comprehensive understanding of past and modern sedimentation 

processes affecting lake sedimentation is essential for elucidating climatically forced 

versus local catchment impact on lake sedimentation. Figure 4 shows a selection of 

catchment processes affecting lake sedimentation, and highlights the importance of 

careful selection of coring locations prior to palaeoclimatic inferences. 

 

Figure 3: Conceptual figure showing selected catchment processes affecting 
lake sedimentation. 
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Utilizing distal glacier-fed lake sediments for quantitative reconstructions 

of glacier fluctuations and winter precipitation 

Glaciers are sensitive indicators of climate change; however, as they integrate both 

ablation-season (summer) temperature and accumulation-season (winter) 

precipitation signals, the very nature of glaciers makes it difficult to separate between 

the main controlling factors in records of past glacier activity. Distal glacier-fed lakes 

act as traps for glacially eroded sediments that are transported by glacial meltwater 

streams down-valley, and by quantifying the influx of glacial sediment to these lakes 

it is possible to reconstruct continuous changes in upstream glacial erosion and hence 

glacier size through time. Pioneering work on distal glacier-fed lake sediments 

introduced the methodology where LOI was used as an inverse indicator for glacier 

activity (Karlén, 1976). This methodology, however, encounters the problem that 

there will always be some part of the minerogenic sediments that does not originate 

from glacial erosion (Jansson et al., 2005). Consequently, novel proxies and 

methodologies have been developed and applied to glacier-fed lake sediments in 

order to better quantify the actual contribution from upstream glacial erosion to the 

lake sediments (e.g. Karlén, 1981; Nesje et al., 1991; Dahl and Nesje, 1992; Karlén 

and Matthews, 1992; Dahl and Nesje, 1994; Leemann and Niessen, 1994; Nesje et al., 

1995; Matthews et al., 2000; Nesje et al., 2000; Nesje et al., 2001; Dahl et al., 2003; 

Lie et al., 2004; Rosqvist et al., 2004; Bakke et al., 2005a; Bakke et al., 2005b; 

Osborn et al., 2007; Shakesby et al., 2007; Bakke et al., 2010; Vasskog et al., 2012; 

Bakke et al., 2013; Røthe et al., 2015; Wittmeier et al., 2015). Some of these records 

present only relative changes in glacial input to the lakes, but in cases where dated 

moraine ridges are available to reconstruct the glacier extent at specific points in 

time, lake records can be calibrated to produce continuous reconstructions of changes 

in equilibrium-line altitude (ELA) (e.g. Nesje et al., 2001; Dahl et al., 2003; Bakke et 

al., 2010; Røthe et al., 2015).  

Lake Grøndalsvatnet (Paper I) is a distal glacier-fed lake in western Norway, and has 

previously been investigated by Nesje et al. (1995). However, their coring location 

situated in front of a colluvial fan was not optimal due to numerous mass movement 
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deposits found in the core that obstructed continuous glacier sediment accumulation. 

A vital part of this project was therefore to carefully select coring sites in order to 

avoid obtaining cores containing event layers by performing a thorough GPR survey 

of the lake bathymetry and sediment thickness prior to coring. The age of the 

moraines situated in front of Ålfotbreen ice cap representing previous larger glacier 

extents are unknown, and we therefore tentatively applied the mass-balance 

measurements going back to CE1963 to calibrate with our proxy record for glacier 

eroded-material (high-resolution XRF titanium count rates). If an independent record 

of summer temperature is available, estimates of past winter precipitation can be 

extracted from continuous ELA reconstructions (e.g. Dahl and Nesje, 1996; Bjune et 

al., 2005) through the so-called ‘Liestøl equation’ described by O. Liestøl in Sissons 

(1979); a mathematical expression based on the empirical relationship between 

annual precipitation and summer temperature at the ELA of ten Norwegian glaciers 

(including Ålfotbreen; Fig. 4). The ‘Liestøl equation’ was therefore applied in Paper I 

by implementing our ELA reconstruction covering the last ~1400 years with a 

temperature reconstruction from Mann et al. (2009) that we calibrated with 

instrumental summer temperatures from Bergen, Norway. Our novel approach of 

calculating ELA and winter precipitation is suggested to be applied at other sites 

where lack of (dated) moraines complicates the accurate timing and extent of past 

glacier advances, although this requires instrumental measurements of ELA. 
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Figure 4: The exponential relationship between temperature and precipitation at the 
ELA of 10 glaciers in Norway. This relationship implies that if the former ELA is 
known, it is possible to calculate how the other parameters have fluctuated, and is 
applied in Paper I. Figure adapted from Bakke (2004), based on Liestøl in: Sissons 
(1979). 

 

Reconstructing precipitation-induced detrital sedimentation (runoff) in 

lake sediments 

Lake Hakluytvatnet, Amsterdamøya island (Svalbard), was cored in an attempt of 

reconstructing precipitation-induced runoff to the (presently) non-glaciated catchment 

(Paper II). By high-resolution grain-size analysis, we aimed at identifying the 

sediment reaching lake Hakluytvatnet as runoff; i.e. precipitation-induced detrital 

input. The lack of glacier-meltwater entering the lake over (at least) the last 5000 

years along with geomorphic mapping of the flat valley bed implies that the dominant 

source for minerogenic input to lake Hakluytvatnet over the last 5000 years was silt-

sized sediment originating from precipitation and/or spring melt from the catchment. 
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Multi-proxy analysis of the lake sediments including diatom and high-resolution 

geochemical XRF scanning further revealed the large environmental shifts that have 

taken place since the Late Glacial at Amsterdamøya island, which in turn strongly 

affected lake sedimentation. Also, the strikingly high organic content of the sediment 

representing ~5000-1300 cal yr BP at this latitude (79.5°N) was explored in an 

attempt of constructing a high-resolution radiocarbon chronology of the lake 

sediment fill and the results indicate that high-resolution age-depth relationships are 

possible even in non-varved high-Arctic lakes by careful selection of sites. Thus, we 

were able to construct a new high-resolution time-series of inferred precipitation-

induced detrital in-wash to the lake. 

 

Fingerprinting the aeolian member of lake sedimentation 

In Paper III, we present a novel methodological approach employing sediment trap 

monitoring and lake sediment analyses of Måvatnet lake, Andøya (Arctic Norway) in 

order to identify the aeolian component of lake sedimentation as a proxy for past 

extreme wind activity (i.e., storminess). Understanding the surrounding catchment 

processes in conjunction with sea-level changes is a vital part of explaining past 

sediment accumulation in Måvatnet. Utilizing sediment traps as a methodological 

approach to detect aeolian sedimentation is examined in several studies (e.g. 

Lancaster, 2002), and a few studies have combined sediment trap monitoring with 

sediment core studies (and hydrological data) (e.g. Schillereff et al., 2015). Studies 

from peat bogs in southwest Sweden have used grain-size analysis for aeolian 

sediment fingerprinting, and suggest increased sand content in peat cores as a proxy 

for increased wind activity (Björck and Clemmensen, 2004; de Jong et al., 2006; de 

Jong et al., 2007; de Jong et al., 2009). At Måvatnet we attempted a similar approach 

using grain-size distribution as a proxy for aeolian sedimentation in the lake. We 

further statistically determined higher-resolution geochemical (XRF) proxies that 

reflected the aeolian grain-size member and could thus produce a high-resolution 

storminess record covering the late-Holocene.  
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Paper I – Glacier reconstruction (western Norway)  

Glaciers and small ice caps respond rapidly to climate perturbations (mainly winter 

precipitation, and summer temperature), and the mass-balance of glaciers located in 

western Norway is governed mainly by winter precipitation (Pw). Records of past Pw 

can offer important insight into long-term changes in atmospheric circulation, but few 

proxies are able to accurately capture winter climate variations in Scandinavia. 

Reconstructions of equilibrium-line-altitude (ELA) variations from glaciers that are 

sensitive to changes in Pw therefore provide a unique opportunity to quantify past 

winter climate in this region. Here we present a new, Holocene glacier activity 

reconstruction for the maritime ice cap Ålfotbreen in western Norway, based on 

investigations of distal glacier-fed lake sediments and modern mass balance 

measurements (1963-2010). Several lake sediment cores have been subject to a suite 

of laboratory analyses, including measurements of physical parameters such as dry 

bulk density (DBD) and loss-on-ignition (LOI), geochemistry (XRF), surface 

magnetic susceptibility (MS), and grain-size distribution, to identify glacial 

sedimentation in the lake. Both radiocarbon (AMS 14C) and 210Pb dating was applied 

to establish age-depth relationships in the sediment cores. A novel approach was used 

to calibrate the sedimentary record against a simple ELA model, which allowed 

reconstruction of continuous ELA changes for Ålfotbreen during the Neoglacial 

(when Ålfotbreen was present, i.e. the last ~1400 years). Furthermore, the resulting 

ELA variations were combined with an independent summer temperature record to 

calculate Neoglacial Pw using the ‘Liestøl’-equation. The resulting Pw record is of 

higher resolution than previous reconstructions from glaciers in Norway and shows 

the potential of glacier records to provide high-resolution data reflecting past 

variations in hydroclimate. Complete deglaciation of Ålfotbreen occurred ~9700 cal 

yr BP, and the ice cap was subsequently absent or very small until a short-lived 

glacier event is seen in the lake sediments ~8200 cal yr BP. The ice cap was most 

likely completely melted until a new glacier event occurred around ~5300 cal yr BP, 

coeval with the onset of the Neoglacial at several other glaciers in southwestern 

Norway. Ålfotbreen was thereafter absent (or very small) until the onset of the 
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Neoglacial period ~1400 cal yr BP. The ‘Little Ice Age’ (LIA) ~650-50 cal yr BP was 

the largest glacier advance of Ålfotbreen since deglaciation, with a maximum extent 

at ~400-200 cal yr BP, when the ELA was lowered approximately 200 m relative to 

today. The late onset of the Neoglacial at Ålfotbreen is suggested to be a result of its 

low altitude relative to the regional ELA. A synthesis of Neoglacial ELA fluctuations 

along the coast of Norway indicates a time-transgressive trend in the maximum extent 

of the LIA, which apparently seems to have occurred progressively later as we move 

northwards. We suggest that this trend is likely due to regional winter precipitation 

differences along the coast of Norway. 

 

 

Figure 5: Reconstructed ELA and winter precipitation (% of present, inverted) 
from Ålfotbreen (Paper I). Note the co-variance of the two parameters, 
reflecting the close relationship between winter precipitation and annual 
glacier mass balance (R2 = 0.71) (glacier mass balance data: Kjøllmoen, 2011). 
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Paper II – Runoff reconstruction (northwest Svalbard)  

Robust records of past climatic changes are sparse and poorly resolved in the Arctic 

due to low organic production that restricts the use of radiocarbon dating and 

challenging logistics that make data collection difficult. Here, we present a new lake 

record from lake Hakluytvatnet at Amsterdamøya island (79.5°N), the 

northwesternmost island on Svalbard. Multi-proxy analyses of lake sediments in 

combination with geomorphological mapping reveal large environmental shifts that 

have taken place at Amsterdamøya since the Late Glacial. A robust chronology has 

been established for the lake sediment core through 28 AMS radiocarbon (14C) ages, 

and this gives an exceptionally well-constrained age control for a lake at this latitude. 

The sedimentary archive recorded the last ~13,000 years of climate change, and is the 

first lake record going back to the Late Glacial at this site. Our findings indicate that a 

local glacier was present during the Younger Dryas (YD), and we estimate YD 

equilibrium-line altitude (ELA) lowering. Further, the Holocene was a period with 

large changes in the Hakluytvatnet catchment, and the onset of the Neoglacial (ca. 5 

ka) marks the start of modern-day conditions in the catchment. The Neoglacial is 

characterized by fluctuations in the minerogenic input to the lake as well as internal 

productivity, and we suggest that these fluctuations are driven by atmospherically 

forced precipitation changes as well as sea ice extent modulating the amount of 

moisture that can reach Hakluytvatnet. 
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Figure 6: Reconstructed runoff from lake Hakluytvatnet (Paper II) from 
~5000-1300 cal yr BP. The runoff record reflects precipitation-induced detrital 
sediment in-wash to Hakluytvatnet, and is based on standardized and 
detrended 90 percentile grain-size distribution (GSD90). Grey vertical bars 
denote periods with relatively large runoff. 
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Paper III – Storminess reconstruction (Arctic Norway)  

A novel record of storminess in Arctic Norway is reconstructed from aeolian 

sediment input into the coastal lake Måvatnet, Andøya island. The study site is 

situated at the extreme west coast of Arctic Norway; a sensitive location for changes 

in North Atlantic westerly winds. We have combined sediment trap monitoring with a 

multi-proxy lake sediment study for detecting the aeolian member deposited in the 

lake. The high-resolution record reveals an abrupt increase in storminess 

synchronously with the onset of the Little Ice Age (LIA), ca. 600 cal yr BP, coeval 

with increased winter precipitation in western Norway and a strengthening of the 

persistent low-pressure west of Iceland (Icelandic Low) that exerts a strong effect on 

North Atlantic storm tracks. Further, the timing of the LIA onset along the coast of 

Norway appears to be linked to the dynamics of the large-scale atmospheric 

circulation systems in the North Atlantic, and we propose that the position of the 

Intertropical Convergence Zone (ITCZ) holds the key to explaining LIA precipitation 

patterns along the coast of Norway, reflected in the strength and position of the 

westerlies. 
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Figure 7:  A) Reconstructed winter precipitation, western Norway (Paper I), B) 
Reconstructed strength of the Icelandic Low (Meeker and Mayewski, 2002), 
and C) Måvatnet storminess record (Paper III). The LIA (600-100 cal yr BP) 
highlighted in yellow vertical bar; Medieval Climate Anomaly (MCA) (1000-
700 cal yr BP) in pink.  
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Synthesis and future perspectives 

This thesis has focused on using lake sediment archives for reconstruction of past 

variability in North Atlantic atmospheric circulation as reflected in wind and 

precipitation changes. A large toolbox is applied to separate between distinct 

catchment processes affecting lake sedimentation, and inferences on climatically-

forced sedimentation are drawn. A thorough assessment of site selection and 

preliminary bathymetric investigations combined with geomorphological mapping is 

recommended, as understanding catchment processes affecting lake sediment 

accumulation is vital for palaeoclimatic interpretations.  

Because changes in naturally-occurring climate modes such as the NAO impact 

weather and climate over large parts of the globe (Hurrell and Deser, 2010), it is 

important to reconstruct past fluctuations to assess potential influence on future 

climate. As winter precipitation along the western coast of Norway is strongly related 

to the North Atlantic westerlies (Nordli et al., 2005), the ELA variations at Ålfotbreen 

(Paper I) have most likely been influenced by the spatial and temporal variability of 

the wintertime westerlies in the past. The wintertime westerlies over southern 

Norway are closely linked with the NAO (e.g. Nordli et al., 2005), and it is therefore 

possible that our record of past winter precipitation also contains a signal related to 

past variations in the NAO. If new data sets of similar resolution become available 

from other sites along the Norwegian coast in the future, it will be possible to 

reconstruct spatiotemporal patterns of winter precipitation, which may help to 

elucidate past changes in atmospheric circulation patterns (e.g. the NAO) and the 

strength and position of the wintertime westerlies over Norway. In particular, the 

coastal area of Norway is situated in an area sensitive to changes in the NAO and is 

suggested especially important by Lehner et al. (2012) (Fig. 8). The results from 

papers I and III suggest that the strength of the westerlies (i.e., the main source for 

winter precipitation and strong winds) increased during the LIA (Fig. 7), coeval with 

a strengthened Icelandic Low (Meeker and Mayewski, 2002). Thus, there seems to be 

a potential in these records to reflect changes in atmospheric circulation driven by 

changes in the pressure gradient.  
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Figure 8: This figure from Lehner et al. (2012) highlights the sensitivity of the 
study sites from papers I and III (yellow asterisks) to the NAO. 

 

Further, an interesting find from Paper I is that we originally wanted to test if a 

reconstruction of winter precipitation would co-vary with ELA variations. As is 

visible in Figure 5, we therefore suggest that when reconstructing winter precipitation 

at Ålfotbreen there is no need to go via the ‘Liestøl equation’ and we further 

tentatively propose that modern mass-balance measurements coupled with ELA 

reconstructions of Ålfotbreen reflect past winter precipitation variability. This 

assumption could further be explored at similar sites along the coast of Norway. 

An intriguing future study proposed as an extension of this thesis is investigating the 

proposed south-north time-transgressive nature of the LIA in Scandinavia (Paper I). 

This would acquire new high-resolution glacier reconstructions as well as winter 

precipitation and storminess reconstructions to capture the full atmospheric effect. 

Including high-resolution tree-ring records might further help to decipher a potential 

seasonal signal in the storminess record, as most tree-ring records transfer a summer 

signal (Briffa et al., 1990). As the storm tracks are projected to shift poleward in near-

future climate (Zhang et al., 2004; Yin, 2005), accompanying surface wind stress and 

precipitation (mostly during NH winter rather than summer) will further act to 

modulate the normally dry Arctic climate at e.g. Svalbard. At the time of writing, I 
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am awaiting core material from the last 1300 years from Hakluytvatnet to be analysed 

for grain-size distribution which will further allow a full late-Holocene south-north 

transect of the three lake studies and might reveal the timing of the LIA at 

Hakluytvatnet. Further, a comprehensive study of the timing of the LIA in a global 

context is proposed, incorporating records from marine and terrestrial sites to 

investigate the potential link with the position of the Intertropical Convergence Zone 

as suggested in Paper III. A compilation of the three late-Holocene records reflecting 

atmospheric circulation variability along the coast of Norway and Svalbard is 

intended. 
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a b s t r a c t

Glaciers and small ice caps respond rapidly to climate perturbations (mainly winter precipitation, and
summer temperature), and the mass-balance of glaciers located inwestern Norway is governedmainly by
winter precipitation (Pw). Records of past Pw can offer important insight into long-term changes in at-
mospheric circulation, but few proxies are able to accurately capture winter climate variations in Scandi-
navia. Reconstructions of equilibrium-line-altitude (ELA) variations from glaciers that are sensitive to
changes in Pw therefore provide a unique opportunity to quantify past winter climate in this region. Here
we present a new, Holocene glacier activity reconstruction for the maritime ice cap Ålfotbreen in western
Norway, based on investigations of distal glacier-fed lake sediments and modern mass balance measure-
ments (1963e2010). Several lake sediment cores have been subject to a suite of laboratory analyses,
including measurements of physical parameters such as dry bulk density (DBD) and loss-on-ignition (LOI),
geochemistry (XRF), surface magnetic susceptibility (MS), and grain size distribution, to identify glacial
sedimentation in the lake. Both radiocarbon (AMS 14C) and 210Pbdatingwere applied to establish age-depth
relationships in the sediment cores. A novel approachwas used to calibrate the sedimentary record against
a simple ELA model, which allowed reconstruction of continuous ELA changes for Ålfotbreen during the
Neoglacial (when Ålfotbreen was present, i.e. the last ~1400 years). Furthermore, the resulting ELA varia-
tions were combined with an independent summer temperature record to calculate Neoglacial Pw using
the ‘Liestøl equation’. The resulting Pw record is of higher resolution than previous reconstructions from
glaciers inNorwayand shows the potential of glacier records toprovidehigh-resolution data reflecting past
variations in hydroclimate. Complete deglaciation of the Ålfotbreen occurred ~9700 cal yr BP, and the ice
cap was subsequently absent or very small until a short-lived glacier event is seen in the lake sediments
~8200 cal yr BP. The ice cap was most likely completely melted until a new glacier event occurred around
~5300 cal yr BP, coeval with the onset of the Neoglacial at several other glaciers in southwestern Norway.
Ålfotbreenwas thereafter absent (or very small) until the onset of theNeoglacial period ~1400 cal yr BP. The
‘Little Ice Age’ (LIA) ~650e50 cal yr BPwas the largest glacier advance of Ålfotbreen since deglaciation,with
a maximum extent at ~400e200 cal yr BP, when the ELA was lowered approximately 200 m relative to
today. The late onset of the Neoglacial at Ålfotbreen is suggested to be a result of its low altitude relative
to the regional ELA. A synthesis of Neoglacial ELA fluctuations along the coast of Norway indicates a time-
transgressive trend in the maximum extent of the LIA, which apparently seems to have occurred
progressively later as we move northwards. We suggest that this trend is likely due to regional winter
precipitation differences along the coast of Norway.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In order to create robust projections of future climate change, it
is of great importance to understand past natural climate vari-
ability, as this may help to discern the relative importance of
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natural and anthropogenic forcing on the climate system (Masson-
Delmotte et al., 2013). Glaciers and ice caps are excellent climate
indicators, as they respond to changes in temperature and precip-
itation; and thus, records of past glacier fluctuations can give in-
formation about past climate variability (Oerlemans, 2005).
Presently, the annual mass-balance of small plateau glaciers located
at the coast of south-western Norway is controlled mainly by
winter accumulation, and mass-balance measurements from this
area are therefore useful tools for exploring past variations in
winter precipitation (Marzeion and Nesje, 2012). Glacier mass-
balance data are, however, generally scarce; in some cases
discontinuous; and extend only a few decades back in time. In order
to expand records of glacier variability and associated winter pre-
cipitation beyond the instrumental record we therefore utilize
natural archives, such as continuous sedimentary records from
distal glacier-fed lakes.

Distal glacier-fed lakes act as traps for glacially eroded sedi-
ments that are transported by glacial meltwater streams down-
valley, and by quantifying the influx of glacial sediment to
these lakes it is possible to reconstruct continuous changes in
upstream glacial erosion and hence glacier size through time.
A large number of distal glacier-fed lakes have been investigated
throughout Scandinavia, together providing an extensive over-
view of past glacier variability in this region (Karl�en, 1976,
1981; Nesje et al., 1991; Dahl and Nesje, 1992; Karl�en and
Matthews, 1992; Dahl and Nesje, 1994; Matthews et al.,
2000; Nesje et al., 2000b, 2001; Lie et al., 2004; Rosqvist
et al., 2004; Bakke et al., 2005; Shakesby et al., 2007; Bakke
et al., 2010; Vasskog et al., 2012; Bakke et al., 2013; Røthe et al.,
2015; Wittmeier et al., 2015).

Some of these records present only relative changes in glacial
input to the lakes, but in cases where dated moraine ridges are
available to reconstruct the glacier extent at specific points in
time, lake records can be calibrated to produce continuous re-
constructions of changes in equilibrium-line altitude (ELA) (e.g.
Nesje et al., 2001; Dahl et al., 2003; Bakke et al., 2010; Røthe
et al., 2015). If an independent record of summer temperature
is available, estimates of past winter precipitation can be
extracted from continuous ELA reconstructions (e.g. Dahl and
Nesje, 1996; Bjune et al., 2005) through the so-called ‘Liestøl
equation’ described by O. Liestøl in Sissons (1979); a mathe-
matical expression based on the empirical relationship between
annual precipitation and summer temperature at the ELA of ten
Norwegian glaciers.

Ålfotbreen is the westernmost ice cap in Norway, and the
extreme maritime nature of this plateau glacier makes it a partic-
ularly interesting target for high-resolution reconstructions of past
glacier fluctuations. FromCE1963-2010, changes in the annualmass
balance of Ålfotbreen have been mainly governed by the amount of
winter accumulation (R2 ¼ 0.71) (data from: Kjøllmoen, 2011), but
the relative importance of winter accumulation vs. summer abla-
tion might be different when longer timescales are considered
(Trachsel and Nesje, 2015). Long-term ELA reconstructions are
therefore valuable tools for evaluating long-term natural variability
of past winter climate. Here we present (1) a relative glacier fluc-
tuation reconstruction of the Ålfotbreen ice cap during the Holo-
cene; (2) a high-resolution reconstruction of Neoglacial ELA
variations; (3) a constraint on the timing of the ‘Little Ice Age’ (LIA)
maximum; and (4) reconstructed Neoglacial winter precipitation
for the study area. Finally, we discuss the climatic implications of
our findings in relation to other palaeoclimatic records in the North
Atlantic region, including glacier records and winter precipitation
reconstructions from other parts of Scandinavia, as well as possible
forcing mechanisms that could explain the observed glacier
variability.

2. Study area

2.1. Glacier, climate and bedrock

The Ålfotbreen plateau glacier (here defined as encompassing
the two separate ice caps ‘Ålfotbreen’ and ‘Blåbreen’ with sur-
rounding ice patches) covers an area of 15.5 km2 (Andreassen et al.,
2012), where the majority of the glaciated area is constrained to a
limited altitude interval near the maximum elevation (Kjøllmoen,
2011; Andreassen et al., 2012). The glacier covers ~2.5 km2 (~6%)
of the total catchment area (41.5 km2) of the downstream glacier-
fed lake Grøndalsvatnet (see Section 2.2 below). Ålfotbreen (‘Å’ in
Fig. 1C) and Blåbreen (‘B’ in Fig. 1C) are separated by a steep cliff in
the area's tilted sedimentary Devonian bedrock (Bryhni and Lutro,
2000). Because of the distinct steps in the landscape, alongwith the
narrow hypsometry of Ålfotbreen (altitude range <600 m), the ice
cap does not feature very prominent outlet glaciers. Two adjacent
north-facing outlet glaciers named Ålfotbreen (4.0 km2; not to be
confused with the ice cap itself) and Hansebreen (2.8 km2) have
been subject to mass-balance studies since CE1963 and CE1986,
respectively (Kjøllmoen, 2011). During recent years the annual ELA
has been raised above the highest elevation of the ice cap (>1382m
a.s.l.) several times (Kjøllmoen, 2011). See Fig. 1 for an overview of
the study area, and Fig. 2 for an overview of the narrow hypsometry
of the two outlet glaciers mentioned above. From here on, the term
‘Ålfotbreen’ includes both outlet glaciers mentioned above, the two
ice caps Blåbreen and Ålfotbreen as well as the surrounding ice
patches, unless stated otherwise.

Relative to area, Ålfotbreen has the largest annual mass turnover
of the monitored glaciers in Norway, with the highest recorded
values for both winter accumulation and summer ablation
(Kjøllmoen, 2011). For Ålfotbreen, winter accumulation is consid-
ered more important in determining its net mass balance than
summer ablation (Nesje, 2005), and a large gain in mass between
CE1989-95 was mainly caused by high winter balance (Andreassen
et al., 2005). Despite the large mass turnover, Ålfotbreen is ranked
as the most vulnerable glacier in Norway, mainly due to its narrow
hypsometric distribution above the steady-state ELA (~200 m,
Fig. 2), and it might therefore be one of the first glaciers to disap-
pear completely in a warmer future climate (Nesje et al., 2008;
Andreassen et al., 2012). Inferences about past extent and fluctua-
tions of Ålfotbreen have previously been published by Nesje et al.
(1995) and Sønstegaard et al. (1999); however, neither of these
studies obtained a complete Holocene glacial history. Nesje et al.
(1995) focused on the late-Holocene glacier history and avalanche
activity, whereas Sønstegaard et al. (1999) were targeting the
deglaciation history of the area. As an isolated ice cap from themain
Scandinavian ice sheet during the Younger Dryas (YD), Ålfotbreen
obtained its maximum YD extent just before the deposition of the
Vedde Ash Bed (Sønstegaard et al., 1999). The further history of
deglaciation and Holocene glacier variations has so far been poorly
constrained for Ålfotbreen (Nesje, 2009).

The present climate of the study area is maritime with a mean
CE1961-1990 summer temperature (Ts; 1 May-30 September) of
12.12 �C (climate station 58070 Sandane, ca. 30 km east of
Ålfotbreen; 51 m a.s.l.). Mean CE1961-1990 winter precipitation
(Pw; 1 October e 30 April) at the 57680 Eikefjord climate station
(ca. 20 km south-southwest of Ålfotbreen; 30 m a.s.l.) is 1677 mm
(eKlima.no); and snow accumulations of up to 8e10 m during
winter are not unusual at the top of Ålfotbreen (Andreassen et al.,
2012).

2.2. Catchment lakes and geomorphological setting

Lake Grøndalsvatnet (~0.27 km2; N 61�410, E05�340) is located
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Fig. 1. Overview of the study area. A) Study site location in Scandinavia; B) Bathymetrical map of Grøndalsvatnet, showing coring sites and GPR profiles (water depth in m). Green
asterisk marks coring location from Nesje et al. (1995). Grey asterisk marks coring location for GRØP-112 (not analysed, see Section 4.1); C) Geomorphological map of the catchment
area with coring sites marked in red; black solid line outlines the catchment limit. Upper left shows the area surrounding the ice cap. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Hypsometry of two outlet glaciers from Ålfotbreen ice cap: Ålfotbreen and Hansebreen. Stippled line represents calculated steady-state ELA (~1180 m.a.s.l.) for Ålfotbreen (for
the monitoring period CE1963-2010).
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south of Ålfotbreen, at an elevation of 107 m a.s.l. Deep glacial
troughs and steep cliffs characterize the surrounding catchment
topography. The catchment is dominated by exposed bedrock, with
unconsolidated sedimentary deposits being limited mainly to the
large inlet delta in the northern end of the lake, a distinct colluvial
fan along its western shore, and a moraine ridge close to the outlet
(Fig. 1). Vegetation cover is relatively dense across most of the
colluvial fan, the moraine ridge, and the remaining till cover, up to
an altitude of about 500e600 m a.s.l., whereas the inlet delta is
covered by farmland. The main inlet is a river transporting melt-
water from Ålfotbreen into the lake across the delta, although the
meltwater needs to pass through the upstream lake Svarte-
dalsvatnet (356 m a.s.l.) before reaching Grøndalsvatnet. This
setting allows only relatively fine-grained glacial sediments to
continue downstream to Grøndalsvatnet. Lake Støylsvatnet
(~0.18 km2; N 61�420, E05�340) is also situated upstream from
Grøndalsvatnet at an elevation of 345m a.s.l., but this lake is part of
a different catchment area and the lake is not fed by glacial melt-
water from Ålfotbreen at present. A small river presently drains
from Støylsvatnet into Grøndalsvatnet across the western end of
the inlet delta. Apart from this, only three smaller creeks drain into
the lake, all of which are orders of magnitude smaller than themain
inlet. Støylsvatnet has probably received glacial meltwater from
Ålfotbreen in the past when the ice cap covered a larger area, and
Støylsvatnet was therefore targeted as a potential ‘threshold lake’
(e.g. Dahl et al., 2003; Briner et al., 2010) to constrain the timing of
particularly large glacier advances; e.g. during the ‘Little Ice Age’
(LIA). A soft sediment map for Grøndalsvatnet is shown in
Supplementary Fig. S1, and a bathymetrical map of Støylsvatnet in
Supplementary Fig. S2.

3. Methods

A combination of geomorphological field mapping, studies of
aerial photographs and available online data on superficial deposits
from the Geological Survey of Norway (ngu.no) and the Norwegian
Mapping Authority (norgeskart.no) form the basis for the data
presented in the geomorphological map of the area (Fig. 1). The
reconstruction of Holocene glacier fluctuations at Ålfotbreen is
based on a range of different laboratory analyses (see below) per-
formed on the sediment cores obtained from the distal glacier-fed
lake Grøndalsvatnet and the ‘threshold lake’ Støylsvatnet. The term
‘threshold lake’ is adapted from Briner et al. (2010) as a lake where
the catchment area has been partly covered by advancing ice during
certain periods, so that the non-glacial lake undergoes a trans-
formation to a glacier-fed lake (without the lake basin being
overridden by ice). As a result, the lake sediment fill consist of
organic-rich sediments during periods where ice extent is rela-
tively small (e.g. before the LIA), and minerogenic-rich sediments
during periods of relatively large ice extent (e.g. during the LIA)
(Briner et al., 2010). A robust chronology has been established for
the cores through AMS radiocarbon (14C) dating of terrestrial
macrofossils in combination with lead (210Pb) ages obtained on the
most recent sediments.

3.1. Geophysical survey and lake sediment coring

Prior to lake coring, combined echo sounding and ground
penetrating radar (GPR) surveys of Lake Grøndalsvatnet were
conducted in May 2012 to determine suitable coring sites. GPR
profiles were collected using a RAMAC GPR from Malå with a
25 MHz RTA antenna in order to map the soft sediment thickness,
whereas the bathymetry was measured with an echo sounder
(Fig. 1 and S1). Three cores; GRØP-112 (239 cm); GRØP-212
(243 cm); and GRØP-312 (212.5 cm), were retrieved from a raft

using a modified piston corer with a 110 mm diameter core tube
(Nesje, 1992). The uppermost ~10 cm of GRØP-312 were lost during
coring. In order to recover the sediment-water interface, two short
HTH (Renberg-type) gravity cores, GRØS-112 and GRØS-212, were
collected adjacent to the GRØP-112 and GRØP-212 coring sites,
respectively. In order to avoid disturbances from colluvial activity,
mass-movement on the delta front, and any possible long-term
effects of delta progradation, the main cores (GRØP-212/GRØS-
212) were retrieved in a backwater area close to the lake outlet
(Fig. 1).

In June 2014, the threshold lake Støylsvatnet was cored to
investigate recent glacier fluctuations in the area using 210Pb dates
for age estimation. Prior to coring, an echo sounder combined with
the ‘Dr Depth’ software was used to record the bathymetry of the
lake (Fig. S2). Two short cores; STØS-114 (30 cm) and STØS-214
(32 cm), were both collected using a UWITEC gravity coring device.

3.2. Laboratory analyses

The sediment cores were split lengthwise in the laboratory and
one half of each core was stored for reference. Core surfaces were
then carefully cleaned and photographed. Lithofacies and sedi-
mentological structures and textures were described in detail
before scanning and sub-sampling was initiated.

Geochemical data and radiographic images were obtained using
an ITRAX x-ray fluorescence (XRF) Scanner (Croudace et al., 2006)
in EARTHLAB, Department of Earth Science, University of Bergen. A
molybdenum (Mo) x-ray tube was used for radiographic mea-
surements, whereas XRF analyses were performed applying a
chromium (Cr) tube, with a down-core resolution of 500 mm. Power
settings of 30 kV and 35 mA were used with a 10 s counting time.
Down-core variations in surface magnetic susceptibility (MS) were
measured on the split cores at 0.2 cm resolution using a Bartington
MS2E point sensor.

Standard procedures for estimating weight loss-on-ignition
(LOI, %), dry bulk density (DBD, g/cm3) and water content (WC,
%) were followed (Dean, 1974; Heiri et al., 2001), and the cores
were sampled for this purpose every 0.5 cm (GRØP-212; n ¼ 486,
GRØP-312; n ¼ 425, GRØS-212; n ¼ 59, STØS-214; n ¼ 64) using a
syringe for fixed volume extraction (1 cm3). The samples were
weighed and dried overnight at 105 �C before being weighed
again for DBD andWC. Following subsequent ignition at 550 �C for
one hour, the samples were cooled in a desiccator and reweighed
for LOI.

Samples from minerogenic sections of GRØP-212 (n ¼ 38)
were analysed for grain-size distribution. 6e8 g samples (wet
weight) were extracted and stirred for two days in a 5% H2O2
aqueous solution in order to remove possible organic bindings
between grains. The samples were then stirred in a 0.05% Calgon
(sodium hexametaphosphate) solution overnight. Finally, the
material <63 mm was analysed using a Micromeritics Sedigraph
5100 and Mastertech 5.1 auto sampler. Each sample was analysed
several times (five or six) and all of the runs were averaged in
order to obtain the final grain-size distribution. The grain-size
data were processed using the Gradistat v.8.0 software (Blott
and Pye, 2001).

3.3. Chronology

A total of n ¼ 20 samples of wet sediments with an average
weight of 8 g were extracted every cm from the top 20 cm of GRØS-
212. The samples were freeze-dried and submitted for 210Pb dating
(as well as measuring of 226Ra, 137Cs and 241Am by direct gamma
assay) at the Environmental Radioactivity Research Centre, Uni-
versity of Liverpool. The same procedure of freeze-drying was
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followed for the upper 12 cm of STØS-214, but here the sampling
was done every 0.5 cm (n ¼ 24). 210Pb ages obtained for GRØS-212
and STØS-214 are shown in Supplementary Tables S1 and S2,
respectively.

A total of n ¼ 20 terrestrial macrofossil samples (e.g. leaves,
twigs, fruits, and seeds) were extracted from GRØP-212 and GRØP-
312 and submitted for accelerator mass spectrometry (AMS)
radiocarbon dating at the Poznan Radiocarbon Laboratory in Poland
(Table 1). 1-cm sediment slices were extracted at selected depths
and wet-sieved, after which plant macrofossils were handpicked
and identified using a stereo microscope. Macrofossils were dried
overnight at 50 �C and placed in sterilized glass vials before sub-
mission to AMS dating. At the radiocarbon laboratory, macrofossils
were chemically prepared with acid-alkali-acid in a three-step
treatment (http://www.radiocarbon.pl/).

Age-depth models were constructed using the ‘clam’ source
code from Blaauw (2010), applied in the open-source statistical
software ‘R’ (R Development Core Team, 2012). Radiocarbon ages
are reported in calibrated radiocarbon years before present (cal yr
BP; BP ¼ 1950) and Common Era (CE). Several samples contained
less than 1 mg of carbon (Poz-54061; Poz-54062; Poz-54066; Poz-
54068; Poz-54070; Poz-54074; see Table 1) and a number of these
were not included for modelling of the age-depth relationship (see
Section 4.4).

3.4. Principal Component Analysis

The multivariate sedimentary data sets from GRØP-212 and
GRØP-312 were explored using Principal Component Analysis
(PCA) in order to detect patterns of shared variability between the
measured proxies (e.g. Syms, 2008). Because PCA assumes line-
arity between the analysed variables (e.g. Bakke et al., 2013), the
relationship between all variables in the dataset were examined
individually using biplots and regression analysis to see whether
any data transformation was needed before running the PCA. A
logarithmic relationship was found between LOI and the other
data, and LOI was therefore Log-transformed before analysis. The
entire dataset was then standardized before running the PCA in
the software Canoco for Windows (v. 4.5) (Lep�s and �Smilauer,
2003).

In total, 11 variables were included in the PCA from both cores

GRØP-212 and GRØP-312. In addition to the physical proxies DBD,
LogLOI, andMS, geochemical elements that are commonly sensitive
to changes in detrital input (Si, Ti, K, and Ca; e.g. Bakke et al. (2010)),
redox processes (Fe and Mn; e.g. Naeher et al. (2013)), and grain-
size (Rb and Sr; e.g. Vasskog et al. (2012)) were added into the
analysis.

3.5. Instrumental meteorological data and mass-balance modelling

In order to reconstruct continuous ELA changes from distal
glacier-fed lake sediments, the sediment parameters need to be
calibrated against periods when the ELA is known or can be infer-
red. This calibration is commonly obtained using moraine ridges of
known age (Dahl et al., 2003; Bakke et al., 2010), but this approach
cannot be applied here as there are no observed distinct late-
Holocene/LIA moraine ridges around Ålfotbreen. However, ELA
measurements are available for Ålfotbreen (the outlet glacier) be-
tween CE1963 and CE2010 (Kjøllmoen, 2011), and this record can
be extended by modelling the ELA using instrumental meteoro-
logical data. Nordli et al. (2005) applied a stepwise multiple
regression and found that a combination of two atmospheric
indices; the wintertime westerly geostrophic wind component
(uw) and the summertime southerly shear vorticity (xvs), was able
to predict the ELA at Ålfotbreen with relatively high precision
(Pearson's correlation coefficient, r ¼ 0.72). These indices can be
calculated from mean sea-level pressure (MSLP) data that are
available back to CE1781 for northern Europe (Jones et al., 1999).
However, some of the summertime MSLP data used in calculation
of the shear vorticity index are not considered to be robust beyond
CE1850 (Jones et al., 1999), and this index does not seem to capture
long-term trends in summer temperature very well. However, over
decadal timescales, summer temperatures along the west coast of
Norway are strongly correlated with North Atlantic sea surface
temperatures (r ¼ 0.88) (Supplementary Fig. S3), and we therefore
tested a reconstruction of the Atlantic Multidecadal Oscillation
(AMO) (Mann et al., 2009) as an alternative predictor of summer
ablation in our ELA model, and this resulted in a better fit (r ¼ 0.77,
R2 ¼ 0.59) with measured ELA than the model from Nordli et al.
(2005). Thus, the ELA model employed here uses wintertime
geostrophic wind (uw) (Nordli et al., 2005) and AMO temperature
anomalies (Mann et al., 2009) as predictors, and is expressed as:

Table 1
Radiocarbon dates obtained for GRØP-212 and GRØP-312. Calibrated ages obtained using ‘clam’ (Blaauw, 2010). Samples marked* were rejected for the age-depth modelling in
‘clam’.

Core Lab.no Depth (cm) Material 14C age ±2 sigma (cal yr BP) d13C (‰) Remark

GRØP-212 Poz-54060 10e11 Terrestrial plant remains 90 ± 35 BP 15-268* �26.6
GRØP-212 Poz-54061 13e14 Terrestrial plant remains 105 ± 30 BP 14-268* �29.2 TOC, 0.7mgC
GRØP-212 Poz-54062 25e26 Terrestrial plant remains 115.12 ± 0.42 pMC (-43)-8* �32.4 TOC, 0.4mgC
GRØP-212 Poz-54063 30e31 Terrestrial plant remains 540 ± 30 BP 514e633 �28.1
GRØP-212 Poz-54064 45e46 Terrestrial plant remains 1840 ± 30 BP 1709e1864* �23.6
GRØP-212 Poz-54066 50e51 Terrestrial plant remains 1580 ± 40 BP 1389e1551 �32.7 0.3mgC
GRØP-212 Poz-54067 80e81 Terrestrial plant remains 2540 ± 40 BP 2491e2751 �25.3
GRØP-212 Poz-54068 110e111 Terrestrial plant remains 2600 ± 40 BP 2512-2786* �33.2 TOC, 0.4mgC
GRØP-212 Poz-61506 114e115 Terrestrial plant remains 3925 ± 35 BP 4245e4498 �25.8
GRØP-212 Poz-54070 132e133 Terrestrial plant remains >0 BP Too small
GRØP-212 Poz-54071 150e151 Terrestrial plant remains 5910 ± 40 BP 6654e6845 �24.7
GRØP-212 Poz-61505 180e181 Terrestrial plant remains 7740 ± 40 BP 8433e8590 �28.7
GRØP-212 Poz-54072 185e186 Terrestrial plant remains 8030 ± 50 BP 8663e9030* �30.2
GRØP-212 Poz-54073 230e231 Terrestrial plant remains 8720 ± 50 BP 9550e9887 �29.8
GRØP-312 Poz-54074 10e11 Terrestrial plant remains 55 ± 35 BP (-5)-259* �28.3 0.8mgC
GRØP-312 Poz-54075 30e31 Terrestrial plant remains 345 ± 30 BP 314e483 �24.3
GRØP-312 Poz-54076 35e36 Terrestrial plant remains 460 ± 30 BP 485e537 �26.2
GRØP-312 Poz-54077 47e48 Terrestrial plant remains 845 ± 35 BP 686e899 �25.4
GRØP-312 Poz-54078 88e89 Terrestrial plant remains 1570 ± 30 BP 1397e1533 �29.9
GRØP-312 Poz-54080 156e157 Terrestrial plant remains 2295 ± 30 BP 2183e2354 �24.8
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ELA ¼ ð � 29�uwÞ þ ð226�AMOÞ þ 1360ðm a:s:l:Þ
�
R2

¼ 0:59; p<0:003
�

(1)

3.6. Quantifying winter precipitation

We use the approach presented by Dahl and Nesje (1996) for
reconstructing winter precipitation (Pw), which is based on the
close empirical relationship between mean ablation-season (1 May
to 30 September) temperature (Ts) and Pw at the ELA of Norwegian
glaciers; i.e. the ‘Liestøl equation’ (Sissons, 1979; Sutherland, 1984;
Ballantyne, 1989). This relationship is expressed by the regression
equation:

Pw ¼ 0:915 e0:339Ts
�
R2 ¼ 0:989; p<0:0001

�
(2)

where Pw is meters of water equivalents and Ts is the mean abla-
tion season (summer) temperature at the ELA in �C. This implies
that if the mean summer temperature at the ELA is measured/
reconstructed, the mean winter precipitation can be calculated.
Using an environmental lapse rate of 0.65 �C/100 m as in
Sutherland (1984) and Oerlemans (1992), this gives a mean sum-
mer temperature (Ts) of 4.77 �C at the present steady-state ELA of
Ålfotbreen at 1182 m a.s.l. (obtained through linear regression of
net mass balance against measured ELAs for the period CE1963-
2010, c.f. Fig. 2). Using Eq. (2), we find that the Pw required to
balance summer ablation at the steady-state ELA is ~4.61 m. This
procedure can be used to reconstruct past Pw at the ELA by
combining a continuous ELA reconstruction with an independent
temperature record (e.g. Dahl and Nesje, 1996; Bjune et al., 2005).
Finally, winter precipitation can be calculated for a fixed altitude
(e.g. sea level) by accounting for fluctuations in the ELA using the
observed exponential increase in Pw with altitude of 8%/100 m in
southern Norway (Haakensen, 1989).

4. Results

4.1. Lithostratigraphy

Core GRØP-112 (N61.68948 E5.56832; water depth: 39 m) was
retrieved from the middle part of the Grøndalsvatnet basin, cor-
responding to the approximate location of the core studied byNesje
et al. (1995) (Fig. 1). Like Nesje et al. we found that the lacustrine
stratigraphy at this site is dominated by rapidly deposited layers
(e.g. avalanche-, flood- or debris-flow deposits); most likely intro-
duced to the basin from a large alluvial fanwest of the lake; and the
corewas therefore not considered for further analyses. Cores GRØP-
212 (N61.68665 E5.57280; water depth: 12 m) and GRØP-312
(N61.68543 E5.56881; water depth: 5 m) were collected from the
south-eastern parts of the lake, where the risk of disturbances from
floods and colluvial events was considered to be lower and the
distance to the main inlet is larger. The description of lithostratig-
raphy (below) refers to GRØP-212, because a hiatus in GRØP-312
indicates that this core is missing a large part of the lower sedi-
ments (i.e. lithostratigraphic units B; C; D; and parts of unit E; see
below). The lithostratigraphic division of the core into nine units, A-
I, is based on visual logging. A correlation was made between all
cores based on XRF Ti count rates (Fig. 3), as this parameter dis-
tinguishes well the different sedimentary units.

Unit A (206e243 cm) consists of grey clayey- and silty-, highly-
minerogenic sediments. The unit is massive and comprises varying

grain sizes ranging from clay to fine sand. Thin (<0.5 cm) horizons
with visible plant remains are relatively frequent, and a prominent
horizon was sampled for radiocarbon dating (Poz-54073). DBD
values are generally very high; decreasing upwards in the unit from
1.47 to 0.47 g/cm3 and averaging at 0.98 g/cm3. The opposite trend
is observed for LOI, which increases from values around 5% in the
lower part up to more than 9% in the topmost part of unit A,
reflecting an increase in organic content.

Unit B (187e206 cm) consists of very dark greyish brown silty
gyttja with lighter-coloured laminations that gradually becomes
weaker upwards. DBD is relatively stable (around 0.5 g/cm3),
whereas LOI shows greater variability and an increasing trend
(from ~7 to ~12%). An erosional contact marks the transition to unit
C.

Unit C (178e187 cm) consists of greyish brown, chaotic, clayey-
and silty minerogenic sediments in the lower part, and contains
angular clasts up to ~0.5 cm diameter. The lower section of the unit
(181e187 cm) is massive and can be distinguished both visually and
in X-ray images (cf. Fig. 4). From 180 to 181 cm the sediments
consist of laminated greyish-brown, silty gyttja, and from 178 to
180 cm it is characterized by a very dark brown, highly organic
horizon rich in terrestrial plant remains. Unit C has a distinct
development from highly minerogenic in the lower part
(DBD ¼ ~1.0 g/cm3; LOI ¼ ~4%) to highly organic in the upper part
(DBD ¼ ~0.4 g/cm3; LOI ¼ ~22%). The lower section of the unit
(181e187 cm) is interpreted to have been deposited rapidly. The
erosional contact at the base, the stirred appearance of the sedi-
ments, and the angular morphology of the grains suggest that this
may be an avalanche deposit. The upper section of the unit,
178e180 cm, is interpreted to represent a flood event delivering
organic detritus from the catchment area to the lake.

Unit D (172e178 cm) consists of very dark, greyish-brown silty
gyttja with lighter-coloured laminations. The unit is characterised
by a peak in all parameters except LOI, which decreases to a min-
imum of ~8% in this unit. X-ray images show that the sediments are
relatively dense, which is also reflected in relatively high DBD
values (~0.5e0.7 g/cm3). The percentage of fine silt shows a distinct
peak, rising from ~20 to 40% before decreasing again towards the
top of the unit.

Unit E (40.5e172 cm) consists of very dark brown to olive brown
gyttja with lighter-coloured laminations. The section from 120 to
130 cm has a lighter colour with more frequent laminations, and X-
ray imagery shows that the sediments in that section are relatively
dense compared to the sediments above and below. DBD values
remain low and stable throughout the unit; with values averaging
~0.4 g/cm3. LOI shows greater variability than DBD throughout unit
E, fluctuating between ~12 and 21%, with the trend gently
increasing. A dark brown horizon consisting mainly of plant re-
mains is observed from 43.5 to 46 cm depth, and this section is
interpreted to represent a flood event.

Unit F (27e40.5 cm) consists of dark, greyish-brown silty gyttja,
and is largely a transitional unit from organic sediments at the base
to more minerogenic sediments in the top. DBD increases from ~0.4
to a maximum of ~0.6 g/cm3 through the unit, reflecting an
increasing density that can also be seen in the radiographic images,
while LOI decreases from ~13 to ~6%. Lighter-coloured laminations
also increase in frequency upwards.

Unit G (22e27 cm) consists of olive brown silty gyttja that is
slightly more organic than the underlying unit. DBD drops to an
average of ~0.5 g/cm3 and LOI increases to an average of ~9%.

Unit H (6e22 cm) consists of greyish brown, slightly organic,
clayey silt. Several distinct peaks in DBD of up to ~1.0 g/cm3 can be
seen, and together with a colour change of the sediment this in-
dicates a shift in the depositional environment. LOI shows an
opposite pattern of DBD, with values averaging at 5%. A dark,
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organic-rich horizon with LOI up to ~9% is seen from 8 to 10.5 cm,
which consists predominantly of plant remains. This is interpreted
to represent a layer of instantaneous deposition, most likely a flood
event.

Unit I (0e6 cm) consists of very dark, greyish-brown silty gyttja.
DBD lowers to an average value of ~0.5 g/cm3, and LOI increases to
~7% on average.

In previous studies (e.g. Nesje et al., 2007; Vasskog et al.,
2011), river flood deposits have been characterised by their
brown colour, high-organic content, and large amount of
terrestrial plant macrofossils, whereas horizons containing clasts
>1 mm are interpreted as snow-avalanche deposits. Based on
these criteria, the specific horizons �1 cm that have been inter-
preted as layers representing flood events and avalanche de-
posits (i.e. ‘instantaneous’ deposition, see Fig. 4) were omitted
from the age-depth relationship modelling and further discus-
sion of the results.

4.2. Magnetic susceptibility

In general, MS values in GRØP-212, GRØP-312, GRØS-212 and
STØS-214 are quite low; on average 9; 8; 13 and 3 (Si 10�5),
respectively. Because the bedrock in the catchment area consists of
sandstones and conglomerates it contains a large proportion of the
diamagnetic mineral quartz (SiO2), which will return a net negative
magnetic moment when subjected to a magnetic field (Sandgren
and Snowball, 2001). This might explain the relatively low surface
MS signal in the cores; but nevertheless, the main trends in MS
seem to co-vary with the other indicators of detrital input (e.g. DBD
and XRF Ti count rates, see Fig. 4A and B).

4.3. Geochemistry

Most of the geochemical elements included in this study show
similar trends to that of Ti. Notable exceptions are the redox-
sensitive elements Fe and Mn, which reflect a different pattern of
variability than the other geochemical proxies in unit E of GRØP-
212. On the other hand, Fe co-varies with the other geochemical
proxies in GRØP-312, whereas Mn differs strongly throughout most
of that core (see Section 4.5 for a closer description). See Fig. 4 for a
compilation of selected physical and geochemical variables from
cores GRØP-212 and GRØP-312, where event layers are highlighted
in brown.

4.4. Age-depth relationships

Chronologies have been established for both piston cores from
Grøndalsvatnet (GRØP-212 and GRØP-312) based on AMS radio-
carbon ages and 210Pb ages transferred from GRØS-212 through
visual correlation based on the measured physical and geochemical
proxies (see Table 1 for radiocarbon ages; Table S1 for 210Pb ages).
Age-depth relationships produced in ‘clam’ (v. 2.2; Blaauw (2010)),
using the IntCal13 calibration curve from Reimer et al. (2013), are
shown for cores GRØP-212 and GRØP-312 in Fig. 5A and B,
respectively. Ages are not extrapolated beyond the lowermost
dated depths (GRØP-212: 230.5 cm; GRØP-312: 156.5 cm). Outliers
that showed inverted or future ages were omitted from the age-
depth relationships and are shown in red in the figures. In
Fig. 5C, the 210Pb age profile for GRØS-212 is shownwith a dark grey
shading marking a ± 8.5 year uncertainty, which is added here
because 137Cs peaks indicates that up to ~1 cm of the uppermost

Fig. 3. Schematic 3D profile of the catchment area for Støylsvatnet and Grøndalsvatnet with visual correlation of the cores based on XRF Ti count rates (kcps) in combination with
210Pb and 14C ages and visual structures. Blue lines mark the correlation between Ti peaks in STØS-214 and GRØS-212. Note hiatus in GRØP-312 marked in purple (158 cm depth).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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sediment may have been lost during coring (1 cm ¼ ~17 years),
while the additional light grey shading marks the regular labora-
tory uncertainty of the 210Pb measurements. An independent age-
depth relationship was also constructed for STØS-214 using 210Pb
(Fig. S4, see Table S2 for 210Pb ages). A composite age-model for
GRØS-212 was constructed, where ages below the 210Pb dates were
obtained by tuning the GRØS-212 Ti record against the radiocarbon
dated GRØP-212 (Fig. 5D). This age-depth relationship is the one
used for calibrating the lake sediment data against the ELA-model
and in the reconstructions of Neoglacial ELA and winter precipi-
tation (see Sections 4.7 And 4.8).

4.5. Principal Component Analysis

For both GRØP-212 and GRØP-312 the PCA returned only one
significant Principal Component (PC) axis that explains 88 and 83%,
respectively, of the total variance in the datasets (Supplementary
Table S3). In both cores the first PC axis captures well the vari-
ability of LogLOI, DBD, MS, Ti, K, Ca, Si, Rb, and Sr (Fig. 6). These
variables are all strongly correlated, with LOI being inversely
correlated to the others. Fe and Mn show a somewhat different
pattern of variability than the other geochemical proxies in GRØP-

212, and this difference is captured by the second PC axis (Table S3).
While the second PC axis is not significant in this analysis, this does
not necessarily mean that the PCA2 signal is not related to an un-
derlying causal process. It does, however, indicate that this signal is
much weaker than the main pattern of variability in the dataset
(represented by PC axis 1), and that Fe and Mn are also strongly
affected by this main signal as reflected in their relatively high
scores along PC axis 1 (Table S3). In GRØP-312, which covers a
shorter time period than GRØP-212 (c.f. Section 4.4), Fe has a very
similar variability to that of all the other geochemical proxies,
whereas Mn differs strongly with most of its variability captured by
PC axis 2. Down-core PCA1 scores for GRØP-212 and GRØP-312 are
shown compared to standardized values of all analysed variables in
Fig. 6.

4.6. Grain-size analyses

Grain-size analyses were performed for selected intervals of
GRØP-212 based on time periods of specific interest (and minero-
genic content), which included the Neoglacial period and the ‘8.2 ka
BP Event’/Finse Event. Additionally, the high organic content in unit
Emakes it less suitable for grain-size analyses, as this makes it more

Fig. 4. Selected sediment variables from A) GRØP-212; and B) GRØP-312. Line-scan images, radiographic images and lithostratigraphy are shown to the left. Event layers are marked
in brown. All data smoothed to 0.5 cm except grain size data from GRØP-212 (2-cm resolution). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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challenging to remove all organic material during pre-treatment.
Grain-size variations can indicate changes in the amount of
glacially eroded rock flour washed into the lake, and in particular,
silt fractions can indicate abrasive glacier activity of temperate
glaciers (Matthews and Karl�en, 1992; Matthews et al., 2000; Nesje
et al., 2001; Lie et al., 2004). Of the different grain-size classes, fine
silt was found to have the highest co-variance with other indicators
of detrital input in GRØP-212 (Fig. 4A).

4.7. Calibration of lake record against instrumental data and
equilibrium-line altitude reconstructions

We determined the onset of the local Neoglacial based on var-
iations along PC axis 1 in core GRØP-212 where the trend turns
towards increased glacial input at 1400 cal yr BP, and reflects
maximum Neoglacial expansion during the LIA (CE1300-1900). In
order to reconstruct ELA variations from the lake sediment record,
it needs to be calibrated against periods of known or inferred ELA

variations. Because moraines are lacking around Ålfotbreen, we
applied an ELA model driven by AMO temperature anomalies
(Mann et al., 2009) and an index of wintertime westerly
geostrophic winds (Nordli et al., 2005) (c.f. Section 3.5). The ELA
model could be extended to CE1781 using these data and applied to
calibrate the dated lake sediment record covering the same period.
In order to get as high temporal resolution as possible, it was
desirable to use the ITRAX XRF data for this purpose, and from the
PCA it is evident that the elements Ti, Si, K, and Ca all reflect detrital
input to the lake, and during the Neoglacial this is inferred to have
been driven mainly by glacier activity. Because Ti is insensitive to
redox processes (e.g. Croudace et al., 2006) and has previously been
shown as a good indicator of glacier erosion (Bakke et al., 2009;
Wittmeier et al., 2015), we have used Ti count rates as a glacier
proxy, and for the purpose of calibration against modelled ELA, we
used the most robustly dated Ti record from GRØS-212. It is ex-
pected that the glacier signal captured in the sediments of a distal
glacier-fed lake will appear smoothed and lagging behind changes

Fig. 5. A) Age-depth relationship and sedimentation rate for GRØP-212. Green line is the best estimate smooth spline model age; grey shading marks the 95% (2s) confidence
interval. Blue shaded areas show probability density functions of the calibrated radiocarbon dates. Red shaded areas mark inferred outliers. Horizontal brown layers mark event
layer depths. B) Age-depth relationship and sedimentation rate for GRØP-312 (same colour coding as for A). Note the large difference in sedimentation rate compared with GRØP-
212. C) 210Pb age profile for GRØS-212. D) Composite age-depth relationship for GRØS-212, based on 210Pb ages and 137Cs ages from GRØS-212, with the lowermost part tuned to the
14C-based GRØP-212 age-depth relationship. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in the upstream glacier's ELA due to the response time of the glacier
itself and dynamics of the downstream sedimentary system. We
performed an autocorrelation between modelled ELA changes and
the lake Ti record using Analyseries (Paillard et al., 1996), and ob-
tained the best fit when a lag of 14 years is introduced in the lake
record. This lag is within the 210Pb dating uncertainty (Fig. 5C)
before ~ CE1930, whereas in themost recent part of the Ti record an
actual lag (i.e. outside the 210Pb uncertainty range) of up to 4.5 years
is required to obtain themaximum fit with the ELAmodel (Fig. 7). A
simple linear regression model was constructed between modelled
ELA changes and the Ti record from the GRØS-212 core (Fig. 7).
Below the lowermost 210Pb-date in GRØS-212 we tuned the age-
model to the 14C-dated GRØP-212 using the Ti record, and thus
extended the ELA reconstruction to the base of GRØS-212 (Fig. 5D).
Beyond this point we applied the same regression model to Ti
counts fromGRØP-212, although this makes the ELA reconstruction
less reliable for this interval because the variability in Ti-counts is
slightly different in GRØP-212 than in GRØS-212.

4.8. Winter precipitation reconstructions

In order to reconstruct winter precipitation from our recon-
structed ELA record, an independent record of summer tempera-
ture is needed (c.f. Liestøl in: Sissons, 1979). For this purpose we
have calibrated the AMO reconstruction from Mann et al. (2009)
against the instrumental summer temperature record in Bergen

(using linear regression; R2 ¼ 0.78) and adjusted it for the slight
difference in summer temperature (0.15 �C, based on the CE1961-
1990 normal period) between Bergen and Sandane (located
30 km east of Ålfotbreen) (Fig. S3). This gives a reconstruction of
representative summer temperature for Sandane (Fig. 8 A), which
can be used to calculate corresponding temperatures at the
changing elevation of the reconstructed ELA of Ålfotbreen (Fig. 8 B)
using a lapse rate of 0.65 �C/100 m. Based on the ‘Liestøl equation’
(eq. (2)), we can then reconstruct winter precipitation (Pw) at the
ELA for the entire interval covered by the ELA reconstruction, and
finally, the Pw can be adjusted from the variable ELA to a fixed
altitude, in this case sea level, using a precipitation reduction of 8%/
100 m (c.f. Section 3.6). The reconstructed Pw at sea level is shown
in percentage of the modern value (1.7 m water equivalents) in
Fig. 8C. Note that both our ELA reconstruction and the temperature
record based on the Mann et al. (2009) AMO reconstruction were
resampled to a common temporal resolution of 10 years before
being used in reconstruction of Pw. While the original AMO
reconstruction is available in annual resolution, it does include
proxy records that are not annually resolved and the authors of that
study state that variability below decadal scales may not neces-
sarily reflect a meaningful climate signal (Mann et al., 2009).
Similarly, we assume that due to the response time of the glacier
and downstream sedimentary system, the Ti record from
Grøndalsvatnet is probably not able to resolve glacier fluctuations
below decadal scales.

Fig. 6. A) Standardized sediment variables and PCA1 scores for GRØP-212. B) Standardized sediment variables and PCA1 scores for GRØP-312. A) and B): LOI is log-transformed and
inverted, Mn is inverted. Note how Fe and Mn deviate from the general pattern of variability during certain time periods, and the different age scales between A and B.
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The central estimates of our reconstructed winter precipitation
(Fig. 8C) vary between approximately 55% and 150% of present-day
values. Note that the width of the 95% and 68% confidence bands
vary between 15% and 115%, and 7%e60%, respectively (see Section
5.3 for discussion of uncertainties). This range of variability in
decadal-scale precipitation over the last ~1400 years does not seem
unlikely; as a comparison the 10-year average precipitation in
Bergen increased from 85% to 125% of the CE1961-1990mean in the
period between CE1960 and CE1995 (data: Norwegian Meteoro-
logical Institute; eklima.met.no).

5. Discussion

The main objective of this study has been to reconstruct Holo-
cene glacier fluctuations and convert sediment parameters into a
quantitative ELA reconstruction that could be further used to
calculate past winter precipitation at the Ålfotbreen ice cap. In the
following discussion we first assess the utilization of lake sedi-
ments for this purpose, and the methodologies applied are evalu-
ated. Second, the results are discussed; first in a broad, Holocene
climatic context; and thereafter in the context of Neoglacial ELA
variations and winter precipitation. Finally, the results are dis-
cussed and compared with relevant climate records from the North
Atlantic region, and implications regarding climatic forcing of the
Ålfotbreen record are assessed.

5.1. Interpretation and application of lake sediments

While lake sediments are valuable palaeoclimatic archives, it is
important to be aware of potential sources of error when inter-
preting these records in a climatic context (Nesje et al., 2004).
Instantaneously deposited layers are important to exclude from
age-depth modelling, as they might produce erroneous ages and
perturb the accumulation rates that result from the age-depth

relationship (Rubensdotter and Rosqvist, 2009). As discussed in
Section 4.1, we omitted all identified event layers before age-depth
relationships were established. Additionally, another possible
source of error when studying lake sediments; and in particular
proglacial lake sediments, is reworking of older glacigenic sedi-
ments (Ballantyne, 2002; Carrivick and Tweed, 2013). However, for
small catchments this ‘paraglacial’ effect will bemost significant for
a relatively short time period after deglaciation. Provenance studies
also indicate that magnetic and geochemical properties of older
glacial deposits change over time due to weathering and soil for-
mation (e.g. Vasskog et al., 2012; Wittmeier et al., 2015). Due to the
resistant, acidic bedrock in the area (sandstones/conglomerates)
superficial deposits are scarce and covered by vegetation in the few
places where it is found (mainly the inlet delta and the colluvial
fan), meaning that there is generally very little unconsolidated
material of non-glacial origin available for erosion in the catchment
of Grøndalsvatnet. Input of glacial sediments should therefore, due
to the highly effective nature of glacial erosion, be able to dominate
the minerogenic sedimentation budget in Grøndalsvatnet when
Ålfotbreen is present. Human activities could possibly cause a bias
in minerogenic sedimentation, e.g. due to forest clearance and
establishment of farmland (e.g. Augustsson et al., 2013). Such ef-
fects are difficult to quantify, however, and here we attempt to take
such potential biases into account by including a wide confidence
range in our final results, as discussed further in Sections 5.2.2 and
5.2.3.

The high correspondence between most of the geochemical
elements and the common indicators of detrital input; LogLOI
(inverse), MS, and DBD; indicates that the main signal recorded by
PC axis 1 in the cores from Grøndalsvatnet reflects the balance
between minerogenic and organic content (and water content) in
the sediment. This balance is mainly controlled by detrital input
from the catchment on one side, and a combination of input of
organic detritus from the catchment and organic productivity

Fig. 7. Measured (orange) and modelled (purple) ELA of Ålfotbreen plotted against variations in Ti count rates from the GRØS-212 core (brown). Ti is plotted with a 14-year lag,
which gave the best fit against the ELA model. Red points represent 210Pb-dated levels in the core with error bars showing the minimum lag needed to obtain the optimal fit after
accounting for uncertainties in the 210Pb dating. A linear regression between Ti counts and modelled ELA is shown in the inset figure with 95% confidence bands shaded blue. This
regression model was used to reconstruct ELA changes further back in time (Figs. 8 and 10) using the Ti record from GRØS-212 and GRØP-212 (see Section 4.7 for details). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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within the lake itself on the other. These factors may vary inde-
pendently over time due to e.g. changes in climate and vegetation
(input of organic detritus), lake trophic state (internal organic
production), or sediment availability (detrital input). The only ele-
ments showing signals significantly different from the one
captured by PCA1 are Fe andMn, and this may be explained by their
susceptibility to redox processes, both in the catchment or within
the lake (Davison, 1993; Naeher et al., 2013). Because of the sparse
sedimentary cover in the catchment area, we argue that when the
Ålfotbreen ice cap is present, it will probably provide a significant
part of the minerogenic input to Grøndalsvatnet through glacial
erosion and downstream transport of the resulting glacial flour. Fe
and Mn has a higher co-variability with the other parameters from
10,000e7500 cal yr BP and after 1400 cal yr BP in GRØP-212 (Fig. 6).
A possible interpretation of this pattern is that increased input of
minerogenic material from the glacier will also overprint the effect
of redox processes on the deposition of Fe and Mnwhen the glacier
is present.

In all, we conclude that the PCA1 signal reflects detrital input to
Grøndalsvatnet, and may thus also give an indication of when the
Ålfotbreen glacier has been present in the catchment (Fig. 6).
Following deglaciation (~10,100e~9700 cal yr BP) we observe
distinct phases of increased PCA1 values centred around 8200 cal yr
BP and 5300 cal yr BP, in addition to the period from ~1400 cal yr BP

(CE550) until present. The distinct reversal of the PCA1 trend at
~1400 cal yr BP is interpreted as the onset of the Neoglacial period
in the study area, after which the glacier has most likely existed
continuously until the present. It is not possible to determine for
certain from our data whether the glacier was completely melted
away during the periods of reduced minerogenic input or just
strongly reduced in size (see Section 5.2.1). Furthermore, from
relative variations in the sedimentary signal within the Neoglacial,
we conclude that the LIA lasted from ~650 cal yr BP (CE1300) until
~50 cal yr BP (CE1900) at Ålfotbreen, with a pronounced glacial
maximum between ~400 and 200 cal yr BP (CE1550-1750).

From the age-depth relationships (Fig. 5), and correlation be-
tween the cores (Fig. 3), it is apparent that GRØP-212 and GRØP-312
have quite large differences (one order of magnitude) in sediment
accumulation rates. The main sedimentary signal recorded by the
two cores are very similar over the past ~2300 years (Fig. 6);
however, the lower-resolution data from the GRØP-212 coring site
was preferred for the further analysis because it covers a longer
continuous time period (without any hiatus), and because the 210Pb
dating of the upper part of the record allows calibration against
instrumental data at this coring site (Section 4.7). By correlating
variations in XRF Ti counts, we found that the lowermost 210Pb date
from GRØS-212 corresponds to the very top of GRØP-212, where
some sediment was lost during coring. The obtained 210Pb dates

Fig. 8. A) Reconstructed Sandane Ts at sea level, adjusted from the regression between Bergen temperatures and the AMO; B) Reconstructed ELA for Ålfotbreen; C) Reconstructed
winter precipitation adjusted to sea level. All plots shaded with 95% confidence bands (until start of instrumental period). Winter precipitation is also shown with 68% confidence
band.
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from the Støylsvatnet core (STØS-214) do not cover the LIA, but the
near linear sedimentation rate determined for the upper 6.5 cm
may be extrapolated with some confidence down to the strong
increase in Ti counts at ~12 cm. Below this level the peaks in Ti
counts indicate an increased detrital input and thus most probably
increased sedimentation rates, and these peaks have been corre-
lated to the Ti record in GRØS-212 and GRØP-212 (Fig. 3). We infer
that the small ice patch southwest of Blåbreen that currently drains
into Svartedalsvatnet must have expanded into the catchment of
Støylsvatnet (Fig. 1) at the time represented by these Ti-peaks, and
conclude that it was probably retreating from its maximum LIA
position at 12 cm depth in the STØS-214 core, which corresponds to
approximately CE1720 (Supplementary Fig. S4B).

5.2. Holocene glacier fluctuations at Ålfotbreen

5.2.1. Glacier fluctuations in the early to mid-Holocene
Fig. 9 shows the reconstructed relative Holocene glacier varia-

tions of Ålfotbreen, as represented by the PCA1 record from core
GRØP-212, compared with relevant proxy records from the North

Atlantic region.
The timing of deglaciation for Ålfotbreen is concurrent with

the end of the ‘Erdalen Event II’ (e.g. Nesje et al., 2008; Nesje,
2009); a period with glacier advance at Jostedalsbreen, inter-
preted as a response to colder temperatures around 9700 cal yr
BP (Dahl et al., 2002). Weakening laminations upwards in Unit
B might reflect a decreasing influx of glacially-eroded sedi-
ments, or reworking of paraglacial sediments following this
glacier event. If the deglaciation of Ålfotbreen occurred after
the ‘Erdalen Event II’, this shows a regional consistency and
coeval glacier retreat in the region encompassing Ålfotbreen
and Jostedalsbreen ice caps. Centred around 8200 cal yr BP,
there is a marked increase in minerogenic input (Fig. 9E);
synchronous with the timing of the ‘8.2 ka BP Event’ recorded
in ice cores from Greenland (Fig. 9A) (Rasmussen et al., 2006;
Vinther et al., 2006), known as the ‘Finse event’ in Norway
(Nesje and Dahl, 1991; Dahl and Nesje, 1994; Nesje et al., 2008;
Nesje, 2009), and a cooling seen in reconstructed July tem-
perature at the nearby Kråkenes site (Fig. 9D; Sylvia M. Peglar
and H.J.B. Birks unpublished data). Hormes et al. (2009) found

Fig. 9. Comparison of reconstructed Holocene glacial activity of E) Ålfotbreen (PCA1; this study) with oxygen isotope records from A) NGRIP (Rasmussen et al., 2006; Vinther et al.,
2006); B) June insolation curve for 60 �N (Berger and Loutre, 1991); C) Foraminiferal SST oxygen isotope records from the Norwegian Margin (Sejrup et al., 2011); and D) Kråkenes
July Temperature (�C) (Sylvia M. Peglar and H.J.B. Birks, unpublished data). Proxy data are plotted according to latitude with increasing latitude upwards. Light blue shaded areas
mark times of possible glacier advances that are discussed in Section 5.2.1, including onset of the Neoglacial at Ålfotbreen. Yellow shaded area marks the Medieval Climatic Anomaly
(MCA; 1000e700 cal yr BP), and darker blue shaded area marks the LIA (600e100 cal yr BP); definitions of MCA and LIA from IPCC (2013) and Solomina et al. (2015). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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three glacial events recorded in Nedre Hervavatnet in Sog-
nefjell, western Norway, at 9200, 8600 and 8200 cal yr BP
superimposed on a long-term glacier retreat between 9700 and
8000 cal yr BP. It seems likely that the increased input of
minerogenic material to Grøndalsvatnet around 8200 cal yr BP
might reflect an advance of the Ålfotbreen glacier initiated by
colder conditions, or possibly the glacier reformed during this
period after having been absent for ~1500 years after deglaci-
ation. See Supplementary Fig. S5 for a comparison of the
Ålfotbreen record with NGRIP oxygen isotopes and LOI (i.e.,
inverted glacier activity) records from Norway from 9500 to
6000 cal yr BP.

From ~8200 to ~5400 cal yr BP, the minerogenic input to
Grøndalsvatnet fluctuates, but it is not possible to conclude
whether this is related to glacier variability or if the glacier had
melted away and the observed fluctuations simply reflect varia-
tions in the influx of paraglacial or non-glacial detrital material and
organic input/internal productivity in the lake. From ~5400 to
5100 cal yr BP, a relatively strong increase in detrital input is
recognized in the record (Fig. 9E), andwe suggest that this reflects a
period of glacier advance for Ålfotbreen. Following the possible
glacier events centred around 8200 and 5300 cal yr BP, the min-
erogenic content of the core decreases until ~1400 cal yr BP. We
suggest that the most likely explanation for the reversal of this
trend around 1400 cal yr BP is due to the glacier reforming at the
onset of the Neoglacial.

5.2.2. Neoglacial and ‘Little Ice Age’ variations in equilibrium-line
altitude

In Fig. 10 we present the reconstructed high-resolution Neo-
glacial ELA variations at Ålfotbreen compared with glacier records
from Norway and Svalbard, in a south-to-north transect and
reconstructed AMO temperature anomalies. Our composite
(GRØS-212 and GRØP-212) reconstructed ELA curve suggests that
Ålfotbreen could have formed around CE750 (1400 cal yr BP)
when the reconstructed ELA is lowered below the top of the
present day glacier, and that it may have reached an extent similar
to today's around CE1125 (825 cal yr BP) (Fig. 10E). During the LIA
maximum (~CE1550-1750), our reconstruction suggests an ELA
lowering of ~200 m relative to the present steady-state ELA at
~1180 m.

Interestingly, we observe that the LIA maximum extent period
of the individual ice caps/glaciers seems to occur progressively later
as we move northwards along the Norwegian coast (indicated by
stippled line in Fig. 10). Potential climatic implications of this are
discussed in Section 5.4.2.

5.3. Past winter precipitation at Ålfotbreen

A proper quantification of the uncertainties in the recon-
structed Pw is hard to obtain. For instance, we do not have any
quantitative measurement errors for the ITRAX XRF data used in
the ELA reconstruction, and there are several potential biases in
our record that are hard to quantify, e.g. the effect of forest
clearance by humans and changes in land use on the delta plain
over the calibration period of our ELA reconstruction, and general
changes in input of non-glacial minerogenic material. Instead of a
quantitative measure of uncertainty, we therefore present the
95% confidence bands in our ELA reconstruction, as calculated for
the linear regression model between Ti counts and modelled ELA
(Fig. 8). Mann et al. (2009) estimated 95% uncertainty intervals
for their AMO reconstruction, and we have transferred these
directly to our reconstructed Sandane temperature record
without adding any additional uncertainty arising from the
regression procedure against the instrumental temperatures

(Supplementary Fig. S3). The final Pw reconstruction is therefore
presented with a light shaded band showing the maximum and
minimum estimates obtained using the 95% uncertainty interval
of the temperature reconstruction and the 95% confidence bands
of the ELA reconstruction, and a darker shading to indicate the
combined 68% confidence bands (Fig. 8). From CE1860 until
present the AMO values are based on instrumental data and for
this interval we do not use any uncertainty in temperature. We
therefore stress that the final confidence bands shown in Fig. 8C
do not represent quantitative uncertainty estimates, but it gives
some impression of how confident we can be in interpreting
changes in the final reconstructed Pw at different times.
Regarding age uncertainties, the age control of the youngest
(younger than ~ CE1850) time period is based on 210Pb ages
which yield an uncertainty of ~±10 years. Before ~ CE1850, the
radiocarbon age uncertainties are ranging from ±10e100 years,
increasing with age down-core.

5.3.1. Comparing reconstructed winter precipitation at Ålfotbreen
with records from ice caps in SW Norway

The extreme maritime setting of Ålfotbreen makes re-
constructions of past glacier fluctuations and precipitation from
this ice cap interesting with respect to how maritime glaciers will
respond to projected future increases in both summer temperature
and winter precipitation. Precipitation is projected to increase with
global rise in temperatures, but this increase is very unlikely to
compensate for the effect of increasing temperatures on glacier
mass balance (IPCC, 2013). Because ~80% of the net mass balance of
Ålfotbreen is presently controlled by (accumulation-season) pre-
cipitation (Bn/Bw: R2 ¼ 0.76; Nesje et al. (2000a)), it is interesting
to investigate if this relationship holds true also for the past. By
doing a simple regression analysis, we find that the Sandane
summer temperature record (based on AMO temperature anoma-
lies) explains 32% of the variability in our reconstructed ELA record
(R2 ¼ 0.32). By default, the reconstructed Pw record will then
explain the remaining 68% (R2 ¼ 0.68), as it is a direct function of
the summer temperature and ELA (c.f. the ‘Liestøl equation’). It
should be noted that the AMO is used as a predictor in the ELA
model that was used to transform our Ti measurements to ELA.
However, because the transformation is simply linear, it will not
serve to falsely increase the correlation between reconstructed ELA
and the AMO record (i.e. a correlation against uncalibrated Ti
counts will give the same result). Doing a similar analysis of
measured mass-balance and ELA on Ålfotbreen between CE1963
and 2010 we find that ablation-season mass-balance explains ~40%
of variations in the ELA andwinter balance explains ~60%. However,
the relative importance of winter and summer balance might
change over longer timescales (Trachsel and Nesje, 2015), and we
are not able to distinguish any such temporal changes from our
reconstruction.

As shown in Fig. 11A, the latest half of our high-resolution
dataset of reconstructed Pw (CE550-1980) at Ålfotbreen shows
a high degree of similarity with Pw reconstructions at other
(maritime) glaciers in SW Norway. The highest degree of
covariance is found with the Folgefonna record (Bakke et al.,
2005), which is expected, as this record is also highly influ-
enced by maritime conditions and the strength and position of
the westerlies. Due to the higher resolution of our record, it is not
possible to correlate decadal-scale Pw fluctuations with the other
records, but the main trends are similar from ~CE1300 until
present. Before CE1300, there is a large discrepancy in the main
trend of our record compared to the other Pw records. Part of this
difference may be explained by the fact that precipitation re-
constructions based on the ‘Liestøl equation’ are very sensitive to
differences in the temperature records applied, as shown in
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Fig. 10. Neoglacial ELA variations at Ålfotbreen (E; this study) compared with A) ELA variations at Karlbreen, NW Svalbard (Røthe et al., 2015); B) Relative glacier activity at
Langfjordjøkelen, Arctic Norway (Wittmeier et al., 2015); C) ELA variations at Okstindan, Northern Norway (Bakke et al., 2010); D) Relative glacier activity at Jostedalsbreen, Western
Norway (Vasskog et al., 2012); F) ELA variations at Folgefonna, SW Norway (Bakke et al., 2005); and G) Reconstructed AMO temperature anomalies (Mann et al., 2009). Ålfotbreen
ELA variations are shown with 95% confidence bands. Light blue shaded vertical area marks the LIA at Ålfotbreen (~650e50 cal yr BP); yellow shaded vertical area marks the MCA
(~1000e700 cal yr BP) (following definitions in: IPCC, 2013; Solomina et al., 2015). Light grey shaded vertical area marks the maximum LIA extent at Ålfotbreen (~400e200 cal yr
BP). In Supplementary Fig. S6 a similar compilation covering the entire Holocene is shown. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Bjune et al. (2005). The pollen record from Vestre Øykjamyrtjørn,
which was implemented in the studies from Jostedalsbreen,
Folgefonna and Hardangerjøkulen, shows remarkably stable
temperatures over the last 4000 years (Bjune et al., 2005), where
many other Norwegian records reflect a cooling trend similar to
the Kråkenes site (Fig. 9D) and reconstructed AMO (Fig. 10G).
This might explain some of the discrepancy between the pre-
cipitation reconstructions from the other ice caps and Ålfotbreen
before CE1300, although it should also be noted that this is the
most uncertain part of our reconstruction. Our record indicates
Pw values below present levels before ~CE1200, after which they
increase rapidly and remain above present values until near
present (Fig. 11A). Values above 130% of present Pw are found
close to ~CE1350, 1540, between 1650 and 1770, and at ~CE1930.
As winter precipitation along the western coast of Norway is

strongly related to the North Atlantic westerlies (Nordli et al.,
2005), the ELA variations at Ålfotbreen have most likely been
influenced by the spatial and temporal variability of the
wintertime westerlies in the past. The wintertime westerlies over
southern Norway are closely linked with the NAO (e.g. Nordli
et al., 2005), and it is therefore possible that our record of past
Pw also contains a signal related to past variations in the NAO
(see Section 5.4.2). If new data sets of similar resolution become
available from other sites along the Norwegian coast in the
future, it will be possible to reconstruct spatiotemporal patterns
of winter precipitation, which may help to elucidate past changes
in atmospheric circulation patterns (e.g. the NAO) and the
strength and position of the wintertime westerlies over Norway.
See Supplementary Fig. S7 for mass-balance data from Ålfotbreen
compared with the NAO index.

Fig. 11. A) Reconstructed winter precipitation (% of present) from Ålfotbreen compared with reconstructed Pw from Jostedalsbreen (Nesje et al., 2001), Folgefonna (Bakke et al.,
2005), and Hardangerjøkulen (Dahl and Nesje, 1996). Reference line (stippled) marks present winter precipitation (100%). B) Reconstructed winter precipitation from
Ålfotbreen compared with the NAO index from Luterbacher et al. (2001), accounting for a 14-year lag (see Section 4.7). Note change in age scale from A). C) Reconstructed ELA vs.
reconstructed Pw (inverted).
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5.4. Climatic implications and comparison with northern
hemisphere climate records

5.4.1. Deglaciation and early to mid-Holocene glacier fluctuations
at Ålfotbreen

Observed Holocene Northern Hemisphere (NH) glacier trends
with small or absent glaciers in the mid-Holocene and onset of the
Neoglacial between 6000 and 4000 cal yr BP are commonly
attributed to decreasing summer temperatures forced by orbitally-
controlled insolation changes (Mayewski et al., 2004; Solomina
et al., 2015) (Fig. 9B). The resulting NH summer-season cooling
caused a progressive southward shift of the NH summer position of
the Intertropical Convergence Zone (ITCZ) during the mid-to late
Holocene (Haug et al., 2001; Wanner et al., 2008, 2011). In the case
of Ålfotbreen, the relationship between glacier variability and cli-
matic forcing is not straight-forward, and we advocate that
different mechanismsmight have influenced the ice cap at different
times. We propose that the timing of deglaciation at Ålfotbreenwas
a result of the warmer NH summer temperatures driven by
increased summer insolation at that time. We further suggest that
our glacier reconstruction record the ‘8.2 ka BP Event’/Finse Event
(Nesje and Dahl, 1991; Dahl and Nesje, 1994, 1996; Nesje et al.,
2006); a well-established cooling event in the North Atlantic re-
gion which was most likely induced by meltwater pulses (Alley
et al., 1997; Alley and �Agústsd�ottir, 2005; Nesje et al., 2006;
Kobashi et al., 2007; Thomas et al., 2007; Kleiven et al., 2008)
and subsequent decline in North Atlantic Deep Water formation
(Kleiven et al., 2008). It is unclear if the ice cap melted away
completely or if it simply retreated following the glacier advance
centred around 8200 cal yr BP, but from ~5400 to 5100 cal yr BP we
infer a glacier advance at Ålfotbreen. In the Kråkenes temperature
record we also observe the onset of a decreasing temperature trend
around this time (Fig. 9D). The timing of this glacier advance at
Ålfotbreen corresponds well with periods of glacier advance/onset
of the Neoglacial at several other ice caps in Norway; in particular
Folgefonna (Bakke et al., 2005) (Suppl. Fig. S6F) and Jostedalsbreen
[composite record from Nesje et al. (2001) and Vasskog et al.
(2012)] (Suppl. Fig. S6D); two ice caps situated relatively close to
Ålfotbreen that are likely to be influenced by similar atmospheric
and oceanic forcing. We infer that the decreasing NH June insola-
tion acted as the mechanism responsible for this glacier advance in
southern Norway and subsequent onset of the Neoglacial at several
ice caps.

5.4.2. The Neoglacial and the ‘Little Ice Age’ at Ålfotbreen
Both the northern parts of Jostedalsbreen and the Northern

Folgefonna ice cap evidently melted away due to the 1.5e2 �C
warmer summer temperatures that prevailed in the early-to mid-
Holocene subsequent to the Finse Event (Bjune et al., 2005; Nesje
et al., 2008), before reforming at ~6100 cal yr BP (Nesje et al.,
2001) and ~5200 cal yr BP (Bakke et al., 2005), respectively. The
higher elevation could explain an earlier initiation of the Neoglacial
at Jostedalsbreen, whereas Northern Folgefonna seems to have
reformed more-or-less at the same time as the possible glacier
advance at Ålfotbreen between 5100 and 5300 cal yr BP. However,
after 5100 cal yr BP the trend reverses at Ålfotbreen, and it may
have melted completely until ~1400 cal yr BP (Section 5.2.1), while
Jostedalsbreen and Folgefonna on the other hand continued to
grow throughout this period (Fig. S6). This mid-to late-Holocene
reversal at Ålfotbreen is opposite of what we expect as a result from
a gradual summer cooling, which should have induced a response
more similar to what is seen at both Folgefonna and Jostedalsbreen.
Contrary to the increasing terrestrial Neoglacial activity in Scandi-
navia, the mid- and late Holocene was relatively warm in marine
records retrieved outside Norway (Risebrobakken et al., 2003;

Sejrup et al., 2011) (Fig. 9C), and this could have served to further
reduce the accumulation season length on Ålfotbreen.

Maritime glaciers in Norway are strongly influenced by winter
precipitation and the wintertime westerlies (Ballantyne, 1990;
Hurrell, 1995; Nesje et al., 2000a; Bakke et al., 2005; Nordli et al.,
2005), and Ålfotbreen in particular has shown a very high corre-
lation (R2 ¼ 0.51) between winter mass balance and the leading
mode of atmospheric variability in the North Atlantic; the NAO
(Nesje et al., 2000a; Nesje, 2009) (Suppl. Fig. S7). Positive NAO-
mode years are reflected in the glacier mass-balance of
Ålfotbreen as years with a high positive glacier net mass-balance,
whereas negative NAO years are associated with atmospheric
blocking, forcing the humid air masses to the south or north of SW
Norway leading to prevailing colder temperatures and lowerwinter
precipitation on the glaciers in the maritime western Norway.
Hence, NAO fluctuations act as a controlling factor governing the
amounts of accumulation on glaciers in SW Norway and Holocene
glacier records and ELA reconstructions from these glaciers are
considered to contain a signal related to past NAO variations (Nesje
et al., 2000a). Fig. 11B shows a comparison between reconstructed
Pw from Ålfotbreen with the NAO reconstruction from Luterbacher
et al. (2001). We observe that there are similar multidecadal trends
in our dataset and the reconstructed NAO, although around
CE1770-1800 there is a distinct drop in Pwwhile the NAO values are
increasing steadily. Over the last 30 years instrumental NAO mea-
surements are able to explain almost 80% of the variability in the
wintertime westerlies over southern Norway; however, this rela-
tionship has not been constant over time. Between CE1840 and
present there are several 30-year intervals where the NAO explains
less than 35% of observed changes in the westerlies index
(Suppl. Fig. S8), and we cannot rule out that this relationship has
been even weaker in periods beyond the instrumental record. The
opposite trends in the reconstructed Ålfotbreen Pw and the NAO
around CE1770-1800 (Fig. 11B) could therefore indicate a weaker
link between the NAO and wintertime westerlies over Norway in
this period. Another possible explanation is that the distinct
decrease in North Atlantic Ocean temperatures indicated by the
AMO at this time could have served to reduce the moisture avail-
ability, thereby reducing winter accumulation on Ålfotbreen. This
potential influence of ocean temperatures on winter precipitation
is, however, exceedingly difficult to disentangle from the opposite
effect that a colder ocean would have on glacier mass-balance
through reduced ablation during summer.

During the Medieval Climatic Anomaly (MCA) from 1000 to
700 cal yr BP (CE950-1250) (Solomina et al., 2015), the climate in
the North Atlantic region was relatively warm (e.g. Mann et al.,
2009). The ELA of Ålfotbreen shows a steady lowering from the
start of our record at CE550 before stabilizing at a level close to its
present elevation duringmost of theMCA (Fig.10). This implies that
reconstructed Pw increases over the same interval, and it is during
the MCA that our central estimate of Pw first reaches present-day
levels and above (Fig. 11B).

The ‘Little Ice Age’ was a period of glacier advance across the
world, but the mechanisms driving these advances are presently
not fully understood (Broecker, 2000; Nesje and Dahl, 2003;
Solomina et al., 2015). One of the key issues addressed is
defining the exact timing of the LIA, which may vary significantly
from site to site depending on the types of proxy records used (e.g.
glaciers, temperature, or precipitation) and different climatic
settings. The LIA at Ålfotbreen shows a pattern similar to other
glacier records from Norway and Svalbard (Fig. 10) with an onset
~650 cal yr BP (CE1300), lasting until ~50 cal yr BP (CE1900). The
LIA maximum extent of Ålfotbreen occurred between ~400 and
200 cal yr BP (CE1550-1750). In Fig. 10E, our reconstruction shows
an ELA lowering of ~200 m during the LIA relative to the present
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steady-state ELA at ~1180 m. This order of magnitude is similar to
what we find for e.g. Okstindan in Arctic Norway (Bakke et al.,
2010), which showed an ELA lowering of 250 m during the LIA
(Fig. 10C).

An interesting time-transgressive trend in the LIA maximum
can be observed in Fig. 10: The timing of the LIA maximum tends
to occur progressively later as we move northwards (see stippled
line). Because temperatures during the LIA are regionally
consistent for the area of interest (Mann et al., 2009) we suggest
that winter precipitation might be the most important factor
controlling the timing of the LIA maximum for the glaciers in this
south-north transect. We acknowledge that the compiled glacier
reconstructions have significant uncertainties in age control, but
the overall difference in timing from north to south is larger than
what can be explained by age uncertainty alone. We therefore
suggest that the observed progressively later maximum glacier
advances are likely forced by regional differences in winter
precipitation. From observations we know that regional changes
in precipitation in the North Atlantic are strongly linked to the
NAO, but there are still large uncertainties in how the NAO has
behaved in the past (Lehner et al., 2012; Pinto and Raible, 2012).
Proxy reconstructions of the NAO often show widely conflicting
results prior to the instrumental record, with some re-
constructions suggesting a change to a generally more positive
NAO mode during the LIA (e.g. Meeker and Mayewski, 2002),
while others indicate the opposite (e.g. Trouet et al., 2009). One
challenge in this respect is to distinguish between the effects of
strength versus frequency of North Atlantic cyclones on long-
term trends in the reconstructed NAO (e.g. Trouet et al., 2012).
From the connection between winter mass balance on Ålfotbreen
and the NAO, our reconstruction seems to favour a change to-
wards a generally more positive NAO situation during the LIA,
but the question of cyclone frequency versus intensity remains.
New high-resolution precipitation reconstructions along the
coast of Norway might add to our knowledge of past changes in
the NAO (Lehner et al., 2012), and reveal whether the time-
transgressive northward migration of the LIA glacier maximum
is related to this atmospheric circulation feature.

5.5. What does the future hold for Ålfotbreen?

Ålfotbreen might become one of the first glaciers in Norway to
melt completely if the present warming trend continues without
being compensated for by increased accumulation-season pre-
cipitation (Nesje et al., 2008; Andreassen et al., 2012). According
to an energy-balance modelling study, Ålfotbreen is predicted to
respond with an ELA rise of 135 m and a mass balance change
of �1.11 m water equivalents (m.w.e.) per year as a response to a
1 �C increase in temperature (Oerlemans, 1992). Temperature
projections for the future exceed 1.5 �C of warming (relative to
CE1850-1900) by the end of the 21st century (IPCC, 2013), which is
similar in magnitude to peak warming during the Holocene
Thermal Maximum (Sepp€a and Birks, 2001; Davis et al., 2003;
Renssen et al., 2009). As our record shows that Ålfotbreen was
most likely melted away during this period (from 8200 to
~5400 cal yr BP) we infer that Ålfotbreen might melt away
completely within the end of the 21st century. If a positive NAO
mode were to prevail along with cooler summer temperatures for
several years, this could lead to an expansion of the Ålfotbreen ice
cap; however, the current warming trend is expected to continue,
and the future variability of the NAO is not possible to predict. If
the ice cap should melt away completely within the end of the
21st century, as our current best knowledge seems to suggest, this
will be the first time in more than 1400 years that the Ålfotbreen
mountain plateau becomes entirely ice-free.

6. Conclusions

In a future warmer climate, Ålfotbreen is one of the most
vulnerable glaciers in Norway and the ice cap might disappear
completely within few decades due to its narrow hypsometry and
low altitude. Here we have presented and assessed novel data on
past variations of Ålfotbreen, including periods where the glacier
might have been totally melted away.We have focused in particular
on the Neoglacial period with high-resolution reconstructions of
ELA variations and winter precipitation covering the last ~1400
years. Our results can be summarized as follows:

(1) Ålfotbreen retreated/melted away between ca.
10,100e9700 cal yr BP, following deglaciation. The ice cap
reformed and/or experienced a glacier advance during the
‘8.2 ka BP Event’/Finse event (centred ~8200 cal yr BP).
Thereafter, the ice cap probably melted away completely
until a possible new glacier advance is recorded from ca.
5400e5100 cal yr BP. The timing of this advance is approxi-
mately synchronous with other glacier advances in western
Norway at the Jostedalsbreen and Folgefonna ice caps.
Following this glacier event, the ice cap probably melted
away completely again and did not reform until the onset of
the local Neoglacial period at ~1400 cal yr BP. The LIA is
determined to have lasted from ~650 cal yr BP (CE1300) until
~50 cal yr BP (CE1900), with the LIA maximum occurring
from ~400 to 200 cal yr BP (CE1550-1750). The LIAmaximum
was probably the largest glacier extent of Ålfotbreen since
deglaciation.

(2) A regional synthesis of Neoglacial glacier variations is pre-
sented in a south-north transect, showing an apparent time-
transgressive trend of the LIA maximum extents with the
onset of the LIA seemingly starting progressively later as we
move further north. We suggest that this is likely forced by
regional winter precipitation differences along the coast of
Norway.

(3) Our high-resolution precipitation reconstruction, based on
independent Ts and ELA reconstructions, correlateswell with
other Pw reconstructions from SW Norway after CE1300.
Before this (between CE550-1300) the records diverge,
possibly due to differences in the summer temperature re-
cords used when reconstructing Pw through the ‘Liestøl
equation’. Our novel approach of calculating ELA and winter
precipitation could be applied at other sites where lack of
(dated) moraines complicates the accurate timing and extent
of past glacier advances, although this requires instrumental
measurements of ELA.
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Figure S1: Soft sediment distribution map for Grøndalsvatnet. 

 

Figure S2: Bathymetrical map and coring sites at Støylsvatnet (produced using Dr Depth 

Software). 



Table S1: Report on the Radiometric Dating of a Lake Sediment Core from Grøndalsvatnet, 

western Norway (Peter G. Appleby & Gayane T Piliposian, Environmental Radioactivity 

Research Centre, University of Liverpool). Corrected for 137Cs content, assuming a 1 cm 

sediment loss from the top of the core (revised March 2015 by Peter G. Appleby & Gayane T 

Piliposian). 

Depth Chronology Sedimentation Rate 
  Date Age     
cm g cm-2 CE y  g cm-2 y-1 cm y-1  (%) 

0.0 0.0 1994 18 1    
0.5 0.2 1986 26 2 0.030 0.06 6.1 
1.0 0.5 1977 35 2 0.030 0.05 6.1 
1.5 0.8 1967 45 3 0.030 0.05 6.1 
2.0 1.2 1955 57 3 0.030 0.04 6.1 
2.5 1.5 1944 68 4 0.030 0.04 6.1 
3.0 1.9 1931 81 5 0.030 0.04 6.1 
3.5 2.3 1918 94 6 0.030 0.04 6.1 
4.0 2.7 1906 106 6 0.030 0.04 6.1 
4.5 3.1 1893 119 7 0.030 0.04 6.1 
5.0 3.4 1880 132 8 0.030 0.04 6.1 
5.5 3.8 1868 144 9 0.030 0.04 6.1 
6.0 4.2 1856 156 9 0.030 0.04 6.1 

 

 

 

 

 

 



Table S2: Report on the Radiometric Dating of a Lake Sediment Core from Støylsvatnet, 

western Norway (Peter G. Appleby & Gayane T Piliposian, Environmental Radioactivity 

Research Centre, University of Liverpool) 

Depth Chronology Sedimentation Rate 
  Date Age     
cm g cm-2 AD y  g cm-2 y-1 cm y-1  (%) 

0.00 0.00 2014 0 0    
0.25 0.11 2008 6 1 0.016 0.04 7.1 
0.75 0.32 1995 19 2 0.016 0.04 7.1 
1.25 0.53 1982 32 3 0.016 0.04 7.1 
1.75 0.76 1967 47 4 0.016 0.03 7.1 
2.25 1.02 1951 63 5 0.016 0.03 7.1 
2.75 1.26 1937 77 6 0.016 0.04 7.1 
3.25 1.48 1923 91 7 0.016 0.04 7.1 
3.75 1.69 1910 104 8 0.016 0.04 7.1 
4.25 1.88 1899 115 9 0.016 0.04 7.1 
5.25 2.27 1875 139 11 0.016 0.04 7.1 
6.25 2.65 1852 162 12 0.016 0.04 7.1 

 

 

 

 



 

Figure S3: Bergen summer temperature (Ts, 31 yr loess smooth) plotted against AMO 

temperature anomaly (CE1861-2006). Inset top left: Regression model between Bergen 

summer temperature and AMO, R2=0.78 (data points every 10 years). Calculated relationship 

between AMO and the Sandane temperature series:  

Sandane Summer temp = (1,92*AMO)+12,5-0,15;     (S1) 

where 0,15is the temperature difference (°C) between Sandane and Bergen. 

 

 



 

Figure S4: A) 210Pb age profile for STØS-214; B) Age-depth relationship model for STØS-

214 made in ‘clam’, dashed line indicates 12 cm core depth (c.f. section 5.1).Purple marks 

210Pb ages, black line is the best estimate smooth spline model age and grey shading marks 

the 95% (2σ) confidence interval 

 

 

 

 

 

 

 



Table S3: PCA results for GRØP-212 and GRØP-312. 

 

GRØP-212  
PC axis 1 2 3 4 
Variance explained 88% 4% 4% 1% 
 DBD        0.97 0.07 0.10 0.03 
 Log  LOI   -0.97 0.01 -0.14 -0.01 
 MS         0.79 -0.34 0.50 -0.05 
 Si         0.98 0.10 -0.03 0.06 
 Ti         0.98 -0.10 -0.10 0.01 
 Fe         0.82 -0.43 -0.35 0.09 
 K          0.99 0.01 -0.06 0.01 
 Ca         0.99 0.03 -0.06 0.01 
 Mn         -0.90 -0.33 -0.08 -0.17 
 Rb         0.93 0.13 -0.13 -0.30 
 Sr         0.97 0.11 -0.03 -0.04 

     
GRØP-312  
PC axis 1 2 3 4 
Variance explained 83% 10% 3% 2% 
 DBD        0.94 0.20 -0.08 0.06 
 Log  LOI   -0.97 -0.06 0.07 0.02 
 MS         0.86 0.25 -0.38 -0.21 
 Si         0.97 -0.04 0.04 0.15 
 Ti         0.97 -0.15 0.05 0.05 
 Fe         0.97 -0.19 -0.01 -0.01 
 K          0.99 -0.08 0.01 0.07 
 Ca         0.98 -0.08 -0.02 0.11 
 Mn         -0.19 -0.96 -0.16 -0.04 
 Rb         0.89 -0.09 0.30 -0.32 
 Sr         0.96 -0.04 0.10 0.06 

 

 



 

Figure S5: A) Relative glacier activity (PCA1) from GRØP-212 covering the period 6000-

9500 cal yr BP and oxygen isotopic record from NGRIP1 (δ18O, ‰) (Rasmussen et al., 2006; 

Vinther et al., 2006) plotted against weight loss-on-ignition profiles (%) (=inverted glacier 

curves) from: B) Vanndalsvatnet, Spørteggbreen (Nesje et al., 2006); C) Dalsvatnet, 

Smørstabbtindane Massif, Jotunheimen (Matthews et al., 2000); and D) Grøningstølsvatnet, 

Jostedalsbreen (Nesje and Dahl, 2001). All the lake records apparently record the ‘8.2 ka BP 

Event’/Finse Event, with variations in timing of the glacier advances (probably due to slightly 

different time lags (~<30-50 yrs) among the different glaciers in the lake catchments). 



   

Figure S6: Holocene glacier reconstructions: A: Karlbreen, NW Svalbard (Røthe et al., 

2015); B: Langfjordjøkelen, Arctic Norway (Wittmeier et al., 2015); C: Okstindan, N-Norway 

(Bakke et al., 2010); D: Jostedalsbreen ELA record (based on: Nesje et al., 2001; Vasskog et 

al., 2012); E: Ålfotbreen, W-Norway (this study); F: Folgefonna, SW-Norway (Bakke et al., 

2005). Blue shaded areas mark the deglaciation; the ‘8.2 ka Event’/Finse event; the glacier 

advance at Ålfotbreen ~5400-5100 cal yr BP; and the Neoglacial at Ålfotbreen (~1400 cal yr 

BP - present).  



 

Figure S7: Mass balance measurements from Ålfotbreen (mass balance data: NVE) 

(Bw=winter balance; Bs=summer balance; Bn=net mass balance and the NAO index (data: 

http://cru.uea.ac.uk/). 

  

 

Figure S8: 31-year running coefficient of determination (R2) between the NAO index and the 

wintertime westerlies over southern Norway (Allan and Ansell, 2006; Jones et al., 1999). 
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ABSTRACT 

Robust records of past climatic changes are sparse and poorly resolved in the Arctic due to 

low organic production that restricts the use of radiocarbon dating and challenging logistics 

that make data collection difficult. Here, we present a new lake record from lake 

Hakluytvatnet at Amsterdamøya island (79.5°N), the northwesternmost island on Svalbard. 

Multi-proxy analyses of lake sediments in combination with geomorphological mapping 

reveal large environmental shifts that have taken place at Amsterdamøya since the Late 

Glacial. A robust chronology has been established for the lake sediment core through 28 AMS 

radiocarbon (14C) ages, and this gives an exceptionally well-constrained age control for a lake 

at this latitude. The sedimentary archive recorded the last ~13,000 years of climate change, 

and is the first lake record going back to the Late Glacial at this site. Our findings indicate that 

a local glacier was present during the Younger Dryas (YD), and we estimate YD equilibrium-

line altitude (ELA) lowering. Further, the Holocene was a period with large changes in the 

Hakluytvatnet catchment, and the onset of the Neoglacial (ca. 5 ka) marks the start of modern-

day conditions in the catchment. The Neoglacial is characterized by fluctuations in the 

minerogenic input to the lake as well as internal productivity, and we suggest that these 

fluctuations are driven by atmospherically forced precipitation changes as well as sea ice 

extent modulating the amount of moisture that can reach Hakluytvatnet. 
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1. INTRODUCTION 

Palaeoclimatic reconstructions offer the possibility to extend earth system observations 

beyond the instrumental time period. Such reconstructions are especially important in the 

Arctic because the rate of on-going change is unprecedented within Common Era 

observations. However, our knowledge of the natural climate variability in the Arctic is 

limited due to the scarcity of data and the relatively short period of observation. Future 

anthropogenic climate changes will be superimposed on these natural variations, which might 

result in fundamental changes to internal climate feedback mechanisms, influencing the 

timing and amplitude of future climate. This leads to a critical emerging question in the 

scientific community: how will the effects of global warming be manifested in the Arctic? To 

make meaningful climate projections at the regional scale and to evaluate model simulations 

of future climate, we need a longer perspective than the short instrumental period provides. 

Annual precipitation in the Arctic is projected to increase by 20% by the end of the twenty-

first century (ACIA, 2004), among the highest globally, and this is a consistent feature among 

state-of-the-art global climate models (Kattsov et al., 2007). The anticipated climate changes, 

and especially those related to hydrology, will have a large impact on sources and sinks of 

greenhouse gases related to the Arctic tundra (Jørgensen et al., 2015), on local societies in the 

Arctic, and will likely impact lower latitudes through climatic teleconnections (Førland et al., 

2009). However, to better anticipate future changes in the Arctic, a significant improvement 

in our documentation and understanding of the longer-term natural climate variability in this 

region is required. Due primarily to logistical constraints, the region north of 70°N is heavily 

under-sampled with respect to Holocene paleoclimate reconstructions.  

Svalbard, a high-Arctic Norwegian archipelago (74-81°N, 10-35°E), is situated in a 

climatically sensitive site in the northern North Atlantic and is well-positioned to record past 

changes in atmospheric and oceanic circulation patterns of the North Atlantic Arctic. Lake 
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sediments are excellent archives for recording regional climate change, because lakes trap 

detrital and organic material from the catchment, as well as organic material produced within 

the lake. The type of material entering the lake depends on the catchment area surrounding the 

lake basin (Rubensdotter and Rosqvist, 2009), and this in turn depends on a number of 

geological, geomorphological and climatic factors. Sedimentary fingerprinting of the various 

sources contributing to lake sedimentation and their past variations allows for detailed 

palaeoenvironmental reconstructions. 

Here we present new palaeoclimatic data from one of the northernmost lakes in Europe, on 

Amsterdamøya island, NW Svalbard. We demonstrate that the potential for producing robust 

chronologies exists even in these remote polar regions, and that by careful selection of sites 

high-resolution palaeoclimatic reconstruction can be achieved. Here we present: 1) a high 

precision radiocarbon dated sedimentary lake sequence; 2) reconstructed glacier activity and 

detrital sedimentation processes from the Late Glacial until the present; and 3) a multi-proxy 

reconstruction of Neoglacial climate fluctuations at Amsterdamøya based on the runoff and 

productivity signal recorded in the lake sediments. 

 

2. SETTING 

The island of Amsterdamøya (‘øya’=island) (N79°46’, E10°45’) is located at the 

northwesternmost corner of Svalbard in the North Atlantic Ocean, where the distance from 

Amsterdamøya to the shelf break is only 8 km. The West Spitsbergen Current (‘WSC’) 

(Aagaard et al., 1987) is the northernmost limb of the Norwegian Atlantic Current (‘NwAC’), 

bringing warmer Atlantic waters as an extension of the North Atlantic Current (‘NAC’) to the 

NW coast of Svalbard (Fig. 1A). Due to this northward transport of warm water and its 

impact on air masses, the western side of the Svalbard archipelago is dominated by warmer 
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temperatures, more precipitation and less sea ice than the east coast. On the coast of western 

Svalbard (Ny-Ålesund and Isfjord Radio) (Fig. 1A) summer temperature (June, July, August) 

(1961-1990) averages 4°C, and averages range from -12 to -15 °C during the winter months 

(January, February, March; JFM). Winter (JFM) precipitation on Svalbard ranges from 190-

440 mm/year (Førland et al., 2010). The alternating westerlies and the polar-front jet stream 

modulate the present climate on Svalbard and are influenced by the North Atlantic Oscillation 

(NAO) and the Arctic Oscillation (AO). During positive AO (AO+) winters, cyclones reach 

the Barents Sea region thereby bringing more snow to Svalbard; conversely, a negative AO 

(AO-) leads to a tendency toward NE-E winds, cold temperatures, and lower winter 

precipitation (e.g Luks et al., 2011). 

A metamorphosed basement comprised of migmatites, banded gneisses rich in biotite and 

late-tectonic granites of Caledonian age form the bedrock in the area. Small outcrops of 

amphibolite are present on the north side of the catchment, as well as small appearances of 

marble layers on the north and south side of the catchment area (Hjelle and Ohta, 1974; Ohta 

et al., 2007). Amsterdamøya island is characterized by gently sloping plateaus >300 m a.s.l. 

covered by autochthonous block fields. Steep cliffs towards the sea frame the plateaus (Hjelle 

and Ohta, 1974).  

Surface exposure ages on glacial erratics from Amsterdamøya and the neighbouring 

Danskøya islands (Fig. 1B) indicate that the summits in the area have remained ice-free since 

>80 ka BP, although the lower grounds remained glaciated until 18-15,000 years ago 

(Landvik et al., 2003). These more recent ages are further supported by surface exposure ages 

from Hormes et al. (2013), indicating that the NW sector of Svalbard became deglaciated 

between 13,600 and 11,700 years ago after a local ice dome covering the NW Svalbard 

disintegrated. The marine limit (ML) at Amsterdamøya is not constrained, but is probably 

close to present day sea level (Boulton and Rhodes, 1974; Salvigsen, 1979; Landvik et al., 
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1998). There has been little postglacial emergence in the NW part of Svalbard, and neither 

Amsterdamøya nor Danskøya display clear geomorphological evidence of uplift in relation to 

sea level since the ice cover disappeared (Boulton and Rhodes, 1974; Salvigsen, 1977; 

Landvik et al., 1998).  

 

2.1 Lake, catchment, and geomorphological setting  

Our study site, lake Hakluytvatnet (79°46'24"N, 10°44'21"E) (12 m a.s.l.) is a small lake with 

a surface area of ~0.1 km2 (Fig. 1A). The catchment area (~2.2 km2) displays steep cliffs 

incised by two cirque valleys surrounding the flat valley floor. The northwest-facing beach 

sequence framing the lake forms a terrace towards the sea (Fig. 1C), and consists of well-

rounded gravel-and-boulder type beach sediments. Maximum water depth of Hakluytvatnet 

(‘vatnet’=lake) is ~5 m, and the lake is surrounded by ‘northern arctic-tundra zone’-type 

vegetation (Birks et al., 2004). The lake has a pH of 5.9, conductivity values are low and 

filamentous algae are frequent in the lake and in the lake outflow with extensive submerged 

moss growth even at 5 m water depth (Birks et al., 2004). Hydrolab field measurements in 

September 2014 revealed that the lake water had a temperature of 4°C, and that the water was 

well-mixed by wind and showed no stratification. The geometry of the lake basin is shallow, 

and it dips gently towards the deepest part where maximum sediment thickness is ~2.5 m 

(Fig. 1D). At present, there are no glaciers in the catchment; however, two perennial snow 

patches are present on the plateau in the southern part of the catchment serving as the main 

source area for the river feeding Hakluytvatnet (Fig. 1C). 
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Figure 1: A) Svalbard and surrounding surface currents; B) NW corner of Svalbard 
(topographic) with place names: A=Amsterdamøya, D=Danskøya; C) Geomorphological map 
of the study site and catchment area. Orange line denotes inferred former glacier extent (cf. 
section 4.6; D) Bathymetrical map (top) and soft-sediment thickness (below) with coring sites 
and GPR profiles. Base maps: Norwegian Polar Institute. Ocean currents data: Institute of 
Marine Research, Norway.  

 

3. METHODS  

The environmental reconstruction in this study is based upon a combination of 

geomorphological mapping (orthophoto: Norwegian Polar Institute, series S2011_25160), 

field ground-truthing, lake coring, and multi-proxy laboratory analyses. A firm chronology 

has been established for the lake sediments from AMS radiocarbon dating.  
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3.1 Lake coring and laboratory analyses 

Prior to lake coring in late summer 2012, Hakluytvatnet was surveyed using a Ground 

Penetrating Radar (GPR) in order to map the bathymetry and the sediment distribution before 

determining suitable coring sites. GPR profiles were collected using a RAMAC GPR from 

Malå with a 50 MHz RTA antenna (Fig. 1D). In total, 5 cores were extracted; 2 piston cores 

(AMP-112; 170 cm; and AMP-212; 247.5 cm) and 3 gravity cores (AMD-0112; 142 cm; 

AMD-0212; 42 cm; and AMD-0312; 56 cm) (see Fig. 1D for coring locations). AMD-0212 

(core data presented in Balascio et al., this issue) was sampled every 0.5 cm of the top 10 cm 

while in the field to obtain samples for 210Pb dating. During a second field excursion (late 

summer 2014), measurements of the lake water properties (using a Hydrolab multiparameter 

water quality instrument) were made, and more detailed mapping of the catchment area was 

conducted, including extensive GPR surveying of the beach sequence damming the lake.  

The sediment cores AMP-112 and AMP-212 were split lengthwise in the lab and one half of 

each core were stored for reference. During splitting, both core sections of AMP-212 were 

disturbed, and this core was therefore not subject to further analyses. Core AMP-112 was 

carefully cleaned and photographed before lithofacies and sedimentological structures were 

described based on visual inspection.  

For core AMP-112 we measured weight loss-on-ignition (LOI), dry bulk density (DBD) and 

water content (WC) (Dean, 1974; Heiri et al., 2001) every 0.5 cm (n =339) using a syringe for 

fixed volume extraction (1 cm3). This method was applied for the more minerogenic part of 

the core (below 105 cm depth), whereas for the uppermost 105 cm, where abundant aquatic 

mosses made it more difficult to apply the syringe (see section 4.2), samples were extracted 

using a scalpel. The DBD (volume-dependent) measurements for the upper part were 

therefore considered less accurate. Down-core variations in surface magnetic susceptibility 
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(MS) were measured on the split cores at 0.2 cm resolution using a Bartington MS2E point 

sensor.  

Geochemical data and radiographic images of AMP-112 were obtained using an ITRAX X-

ray fluorescence (XRF) scanner (Croudace et al., 2006) at EARTHLAB, University of 

Bergen. A molybdenum (Mo) X-ray tube was used for radiographic measurements, whereas 

XRF analyses were performed applying a chromium (Cr) tube, with a down-core resolution of 

500 μm. XRF power settings of 30kV and 40 mA were used with a 10 s counting time. Due to 

the differences in sediment composition and organic content in the different core sections, we 

applied normalization using the conservative redox-insensitive element aluminium (Al) 

(Thomson et al., 2006; Löwemark et al., 2011) as a supplement to the single elemental count 

rates.  

AMP-112 was sampled every cm down-core (from 3-170 cm depth; n =167) for grain size 

distribution (GSD) analysis (averaged over 5 runs of each sample), using the Mastersizer 

3000 from Malvern Instruments Ltd. connected  to the Hydroseries wet dispersion unit 

allowing for laser diffraction measurement of particle sizes (Ryżak and Bieganowski, 2011). 

Particle absorption index was set to 0.01; particle refractive index to 1.8, and the pump speed 

was 2400 rpm. 60% ultra-sonication was applied for 60 s before analysis for all samples, and 

each measurement was set to 25 s counting time (Sperazza et al., 2004; Ryżak and 

Bieganowski, 2011). 

Six samples were chosen for diatom analysis from 97, 108, 130, 150, 158, and 160.5 cm depth 

in the core to investigate the possible presence of a marine transgressive unit. Diatoms were 

isolated from the sediments using standard oxidative techniques modified from Renberg 

(1990) and mounted on glass coverslips using Naphrax mounting medium. At least 300 

diatom samples were identified from each slide at 1000x under oil immersion and identified 
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using predominantly arctic diatom floras (e.g. Antoniades et al., 2008). Constrained cluster 

analysis (CONISS, broken stick model) performed in the open-source statistical software ‘R’ 

(R Development Core Team, 2012) delineated the significant stratigraphic zones. 

 

3.2 Radiocarbon dating, palaeomagnetic secular variations and age-depth relationship 

The surface top 10 cm including the sediment-water interface in core AMD-0212 were 

extracted in the field for 210Pb dating. Although the resulting analyses were unsuccessful in 

establishing a lead profile for accurate chronological constraint, they revealed lead activity in 

the top demonstrating that the sediments on top of AMD-0212 are modern. For radiocarbon 

dating, a total of 31 plant macrofossil fragment samples were extracted from cores AMD-

0212/AMP-112 (3 of the samples did not contain enough carbon to be dated; see Table 1). An 

age-depth relationship was established using the Bayesian framework calibration software 

code ‘Bacon’ (v. 2.2; Blaauw and Christen, 2011), applied into ‘R’ (v. 3.2.2). Radiocarbon 

ages are reported in calibrated radiocarbon years before present (‘cal yr BP’; BP=1950) 

according to IntCal13 (Reimer et al., 2013).  

We then attempted to further constrain this radiocarbon age-depth relationship by applying a 

palaeomagnetic method known as palaeomagnetic secular variations (PSV) (e.g. Merrill et al., 

1996). As sediment archives can contain continuous information on the fine-scale variations 

of the geomagnetic field, reconstruction of PSV may serve as an independent stratigraphic 

tool in various sediment environments (e.g. Stoner and St-Onge, 2007). A PSV-reconstruction 

was therefore carried out on core AMP-112 among other sediment archives from Svalbard 

(Ólafsdóttir et al., this issue). This allowed for PSV-based synchronization between AMP-112 

and another 14C-dated lacustrine sediment core ‘HAP0212’ from Lake Hajeren, a glacier-fed 

lake ca. 60 km south of Amsterdamøya (van der Bilt et al., 2015). Based on the PSV-
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correlation, a total of 43 radiocarbon dates from both cores were combined to a single 

composite age-model where each radiocarbon date was PSV-correlated within the 2σ 

radiocarbon calibration uncertainty range (with some exceptions, c.f. section 5.1/Ólafsdóttir et 

al., this issue), resulting in a mutual depth scale and age-depth relationship for further proxy 

comparison. Additional details on the PSV-synchronization and construction of the composite 

age model are discussed in Ólafsdóttir et al. (this issue).  

 

Table 1: Radiocarbon ages AMD-0212 and AMP-112. Samples in italics: Could not be dated. 
δ13C values: graphitisation process introduces significant isotopic fractionation. *: Estimate of 
carbon content (50%) from the sample mass. Calibrated applying IntCal13 curve. 
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3.3 Multivariate analysis 

Principal Component Analysis (PCA) was applied in order to explore the multi-proxy dataset 

from Hakluytvatnet, including LOI, variations in the 90th percentile of the grain size 

distribution (GSD90) and 10 geochemical elements (Al, K, Ca, Rb, Ti, Fe, Si, Mg, Mn, Sr) 

obtained from the ITRAX XRF scan. Regression analyses revealed a logarithmic relationship 

between many of the variables, which warranted a log transformation of all data before 

running the PCA, as the analysis assumes linearity between the included variables (e.g. Bakke 

et al., 2013). All of the data were then standardized before running the PCA in Canoco for 

Windows (v. 4.5; Lepš and Šmilauer, 2003).  

 

RESULTS 

4.1 Geomorphic mapping 

An exposed seaward section of the beach sequence damming Hakluytvatnet has previously 

been studied by Landvik et al. (2003) and was interpreted as a succession of marine and 

glacial proximal sediments underlying glaciolacustrine sediments, capped by subglacial till 

containing large angular boulders. The section was dated by Landvik et al. (2003), with 

optically stimulated luminescence (OSL) ages clustering around 50 ka BP in the sub-till 

section, and correlated with the Kapp Ekholm interstadial (Mangerud et al., 1998). Here we 

interpret the topmost part of the ridge (16 m a.s.l.) as a marginal moraine (Fig. 1C). There are 

two outlets from Hakluytvatnet cutting down and through the ridge; in the east and in the 

west. GPR measurements across the ridge showed that the ridge is composed only of 

unconsolidated sediments, meaning that there is no bedrock threshold within the landform 

damming Hakluytvatnet.  
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Ridge-shaped lobate landforms consisting of large angular blocks with only sparse vegetation 

cover are present in large parts of the catchment area. These follow the mountain sides as a 

continuation of talus (Fig. 1C) and terminate in the sea on the north side of the catchment.  

These landforms are interpreted as rock glaciers (e.g. Swett et al., 1980), a feature frequently 

observed in polar regions like Svalbard. The rock glaciers are ice-cored and appear to be 

talus-derived (Shakesby et al., 1987). Two sets of smaller ridges in the southern cirque valley 

are interpreted as two generations of recessional moraines (Fig. 1C). The remainder of the 

valley floor is draped by a thin or discontinuous cover of till. 

 

4.2 Lake core lithostratigraphy 

The AMP-112 core was divided into 5 main stratigraphic units: A, B, C, D and E, based on 

visual logging (Fig. 2). A grain-size distribution (GSD) surface plot (Fig. 3) shows the main 

grain-size mode changing accordingly between the lithostratigraphic units. A cumulative plot 

of the GSD (Fig. 3) highlights the silt-sized grains constituting the background sediment in 

the AMP-112 record; where on average ~80% of the sediment is 63 μm or smaller.  

Unit A (170-159 cm) consists of a grey to olive brown matrix-rich diamict. The unit is 

massive, over-consolidated, and poorly sorted. The organic content (LOI) is low (~5% for 

most of the unit), water content is close to zero (~4 %) whereas the density (DBD) values are 

relatively high (~1.1 g/cm3). The X-ray image (Fig. 2) shows the dense character of the unit, 

reflected by the dark colouring. Geochemical elements reflecting minerogenic content (e.g. 

Ti, Al, Ca, K) hold their highest values throughout the core in unit A. Unit A is the only unit 

where MS shows high amplitude fluctuations from 6 up to 22 (Si 10-5) (MS results not shown 

in Fig. 2 due to near-zero values throughout the rest of the core). Grain sizes range from clay 

to gravel, with clasts >2.5 cm and a matrix dominated by sand (~50%) and silt (~48%) (Fig. 
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3). Sub-rounded to sub-angular clasts >2500 μm are scattered throughout the unit, and these 

large clasts were removed before GSD analysis. Small amounts of terrestrial macrofossils 

were present and 2 samples from unit A were sent for radiocarbon dating (Table 1). From 

159.3-159 cm depth, a pale yellow to grey horizon consisting mainly of clay, silt and very fine 

sand is visually prominent (Fig. 2). This horizon is considered to represent an ‘event’ layer, 

i.e. a layer of instantaneous deposition. The transition between units A to B is sharp.  

Unit B (159-155 cm) consists of olive/dark brown laminated silty sediments, with 

mosses intertwined. Laminations range from <1 mm up to 2 mm. The transitions below and 

above are sharp. The layering of this 4-cm thick section is chaotic, and it contains a mix of 

grain sizes from clay and silt (~72%) to sand (~24%). LOI increases from the low values in 

Unit A to an average of ~12%, whereas DBD decreases to average ~0.7 g/cm3. Because the 

geochemistry (sulphur peak in Fig. 2) indicated that that Unit B potentially represented a 

marine-brackish transition, we performed diatom analyses in order to investigate the potential 

for a marine impact on lake sedimentation. Diatom results (cf. Section 4.3 below) revealed 

that Hakluytvatnet holds a terrestrial and (freshwater) aquatic signal throughout the whole 

record.  

Unit C (155-109 cm) consists of olive brown to very dark greyish brown laminated 

silty gyttja. Laminations are finest in the lowermost part (155-142.5 cm), which is also 

detected in X-ray imagery (Fig. 2). LOI ranges from ~13 to ~35%, with a mean of ~26% and 

a trend of increasing organic content upwards where the highest values are found between 142 

and 119.5 cm. DBD values range from 0.15 to 0.60 g/cm3, with a mean value of ~0.22 g/cm3. 

Grain sizes vary in range from clay to coarse sand (Fig. 3), with most of the sediment being 

silt-sized, on average ~77%. A small, minerogenic light yellowish brown horizon from 142.5-

142 cm with sharp transitions above and below is characterised by a drop in organic content 

and a peak in DBD, which is also reflected in the X-radiographic image. Clay and very fine 
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silt also peaks at this depth, as well as increased Ti count rates indicating more detrital input. 

We consider that this thin layer might represent an instantaneous depositional event; however, 

it is not omitted from age-depth modelling. At 120.5-119.5 cm depth a light-coloured 

minerogenic horizon can be seen, which is characterized by greater clay and silt content 

(~84%) than the section below. Density increases are reflected in both DBD and X-ray 

imagery, and organic content drops to <15%. As with the above-mentioned light-coloured 

horizon at 142.5-142 cm, we acknowledge that this layer might represent an event, however; 

the gradual transitions to this layer indicates that it might represent normal sedimentation, and 

it is therefore not omitted from the age-depth modelling. 

Unit D (109-105 cm) consists of massive, olive brown gyttja silt with an irregular 

transition to Unit C below. LOI averages ~16% and DBD averages 0.34 g/cm3. The higher 

density in this unit compared to unit C below can also be seen in the X-radiographic image. 

The geochemical detrital parameters increase (Ti, Ti/Al) as well as Si/Ti indicating a potential 

increase in lake productivity (Fig. 2). Small amounts of macrofossils are present. GSD (Fig. 

3) shows that this section contains less clay (averaged ~2.9%) than the sections above and 

below, and that it consists mainly of silt (~71%) and sand (~26%), with most of it belonging 

in the range of medium silt to very fine sand.  

Unit E (105-0 cm) consists of organic olive brown and very dark brown gyttja, where 

aquatic mosses are abundant throughout the unit. Weak laminations displaying different 

colouring and minerogenic content than the dominant dark brown organic-rich facies are 

visible, and are also reflected in the varying density seen in the X-ray image (Fig. 2). Water 

content is high (>96% at certain depths) throughout the unit, and some of the geochemical 

minerogenic indicators reflect this by yielding lower count rates in this section (Ti count rates 

in Fig. 2) (Tjallingii et al., 2007). LOI is on average ~29%, ranging from ~16 to ~43%. 

Sediments are predominantly silt-sized, with the highest averaged silt values in the core 
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~80%, ranging from ~65-86%. Sand content is on average ~17%; ranging from ~11-33% with 

most of it ranging from very fine to fine sand. From 66-62 cm depth and from 7-3 cm depth a 

relative increase in grain size is observed (Fig. 3). 

 

Figure 2: Compiled selected sedimentological parameters from AMP-112. Optical line-scan 
image and radiographic image show the sediment colour and density (darker colours represent 
denser sediment), respectively. Lithological log shows unit division (also indicated in 
horizontal light grey bars). All XRF data are smoothed to 0.5 cm resolution. Ti count rates are 
plotted for both the whole core length, and also zoomed in for the upper 105 cm due to change 
in count rates in Unit C (note change in scale). Ti count rates co-vary with Ti/Al ratio. Si/Ti is 
often used as an indicator of biological silica (productivity) (e.g. Balascio et al., 2011; Melles 
et al., 2012), and also co-varies with Ti/Al. Mn/Fe indicates increasingly oxic conditions (e.g 
Naeher et al., 2013) towards the top of the core. Horizons of inferred instantaneously 
deposited sediments (cf. section 4.2) are highlighted with dashed lines. 

 



17 
 

 

 

Figure 3: GSD (volume %) plotted as a surface diagram, with darker blue/purple colour 
where the frequency of particular grain sizes is highest (plotted using software 'EMMAgeo'; 
Dietze and Dietze, 2013). The well-sorted, fine-grained Unit E is easily visually 
distinguishable from the coarser-grained units A-D. Cumulative plot highlights the 
background sediment with silt making up most of the sediment. 90 percentile GSD reveals 
that the volume of Unit A contains coarser-grained particles, and the more similar variance in 
grain sizes throughout units B-E. LOI (%) is plotted on inverted scale, reflecting varying 
organic content throughout the core, co-varying inversely with GSD90 (R=-0.5). Note rapid 
drops in organic content during intervals of larger GSD.  
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4.3 Environmental evolution of Hakluytvatnet- inferences from diatom analyses 

The main findings from the diatom analyses are presented in Fig. 4, and placed in 

environmental context below. 

Two significantly different environments are identified from the diatom analysis: an early 

unstable, silt- and clay-dominated environment (units A-C), and a later, more productive clear 

water lake environment (units D-E). Initially, in samples from Unit A (160.5 cm), the diatom 

flora is characterized by the presence of species of Muelleria, Diadesmis, Luticola which are 

associated with polar subaerial environments, including cryoconite, soils, and microbial mats 

(cf. Johansen, 2010; van de Vijver et al., 2014). Pinnularia spp. and Stauroneis gracilis 

complex = cf. S. gracilis, S. pax, S. vandevijveri) are also present, the latter of which have 

been found in very shallow pools/seepages in elsewhere in the high Arctic (van de Vijver et 

al., 2004). Together, these suggest that Hakluytvatnet was not yet a lake, but a terrestrial 

landscape with a nascent soil and biofilm microbial community. This unit transitions to Unit 

B (sampled at 158 cm), where the soil diatoms have largely disappeared, and are replaced by 

Navicula digitulus, as well as small pioneering Fragilaria s.l. species (Staurosirella pinnata, 

Pseudostaurosira pseudoconstruens), a community characteristic of cold, oligotrophic, 

postglacial lake environments with high sedimentation rates (cf. Perren et al., 2012; Wojtal et 

al., 2014). In two samples from Unit C (150 and 130 cm), small fragilarioids continue to 

dominate (S. pinnata, P. pseudoconstruens, S. exiguiformis) as well as very small Navicula. 

cf. submuralis, suggesting a typically nutrient-poor, high-arctic lake, where suspended 

sediment load still precludes the development of a planktonic diatom community. Samples 

from units D (108 cm) and E (98 cm) record a fundamental shift to a more productive lake 

environment that supports a higher diversity of benthic as well as planktonic taxa (e.g. 

Aulacoseira distans). In these last units, most of the clay is gone, improving the light quality, 

and allowing for colonization and enhanced biological activity in all parts of the lake. This is 
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in agreement with the observed increase in Si/Ti at the transition to Unit E, which also 

suggests an increased production of biogenic silica (Fig 2). 

 

Figure 4: Percent abundance of diatom taxa that indicate environmental evolution of the lake 
and landscape. The two significant zones in the core stratigraphy are highlighted.  

 

4.4 Principal component analysis 

Ordination with PCA returned one significant Principal Component (PC) axis; explaining 

49% of the variability in the dataset from the upper 105 cm of AMP-112. Most of the 

geochemical elements, except Sr and Mg, align closely with PCA1, with Mn correlating 

positively with LOI and the remaining elements correlating inversely with LOI (Si, K, Ca, Ti, 

and Fe). The second PC axis captures mainly the variability of GSD90 and Mg, although this 

axis may not be significant, explaining only 11% of the total variability. This shows that 

variations in grain size are not correlated with general changes in geochemistry, although 

there is a weak inverse correlation with Mg. Visually it is apparent that large GSD 

perturbations often occur at the same time as large fluctuations in the XRF data, but there is 
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no clear relationship in the direction of change, and additionally there is a long-term trend in 

the geochemical elements that is not observed in GSD. A linear detrending of the dataset 

increases the correlation between GSD90 and LOI, whereas it decreases the correlation 

between LOI and the geochemical elements. This could indicate that the long-term trend in 

the XRF-data is driven by LOI and water content through dilution of the XRF signal, which 

means that geochemistry and LOI are not governed by the same process(es) on shorter 

timescales. After detrending, the strongest correlation is found between GSD90 and LOI (R=-

0.50), suggesting some common driver of these signals.   

 

4. 5 Chronology and sedimentation rates 

Compaction during piston coring caused loss of the sediment-water interface in core AMP-

112, and pressed the upper soft sediments together. Intra-basin correlation between the short 

cores (AMD-0212 and AMD-0112) and AMP-112 was done based on XRF Ti count rates in 

order to construct a common depth scale for the cores and produce a composite age-depth 

model. In Fig. 5A the radiocarbon-based AMP-112 age-depth model produced in ‘Bacon’ is 

stippled with the 95% uncertainty range derived from the radiocarbon ages highlighted in 

grey. Also plotted in Fig. 5A is the PSV-synchronized age-depth relationship constructed 

from radiocarbon dates from both Hakluytvatnet and Lake Hajeren along with several PSV-

synchronized tie points between the lakes. The individual control points are colour-coded for 

each source of origin (Fig. 5A).  

Sediment accumulation rate (SAR) at Hakluytvatnet (Fig. 5B) changed significantly 

throughout the core. Periods of non-deposition, or extremely low SAR, <0.01 (cm/yr), are 

found at two intervals; ~12,700 – ~9700 cal yr BP and from ~8400 – ~5300 cal yr BP. 

Between these two periods, a significant increase in SAR (up to ~0.05 cm/yr) is seen around 
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9500 cal yr BP. After 5300 cal yr BP, the SAR gradually increases and varies more frequently 

and with larger amplitudes than in the lower sediment sequence. Several short-lived spikes in 

SAR are found centred at ~4800, ~3800, ~2900, ~1900 and ~350 cal yr BP (Fig. 5B). 

 

Figure 5: A) Age-depth relationship for AMP-112 and AMD-0112. Radiocarbon (‘Bacon’) 
age-model in grey shaded area (95% confidence interval); transparent blue points denote 
individual calibrated 14C ages. ‘Best’ age-depth relationship (red solid line) is based on the 
weighted mean age for each depth. The PSV-corrected age-depth model is marked as a dark 
grey line including colour-coded PSV-derived radiocarbon ages from AMP-112 and AMD-
0212, PSV tie-points (Ólafsdóttir et al., 2016), and radiocarbon ages from HAP0212 (van der 
Bilt et al., 2015). PSV-derived age model is truncated at transition to Unit A (159 cm depth 
AMP-112 depth scale; c.f. sections 4.5/5.2). Depth scales are shown both as the combined 
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depth scale coupling AMD-0212 and AMP-112 (left) and as individual AMP-112 depth scale 
(right) (+23 cm [yellow shaded area] added to AMD-0212; c.f. section 4.5. B) Sediment 
accumulation rate calculated from ‘Bacon’-derived age-depth relationship. Dashed lines 
denote lithological unit divisions of AMP-112 (core top age: ~1150 cal yr BP).  

 

4.6 Equilibrium-line altitude reconstruction 

Modern-day regional equilibrium-line altitude (ELA) is situated above the highest point of the 

catchment area, i.e. above ~400 m a.s.l. (regional ELA overview in: Hagen et al., 2003). We 

estimated the ELA of the glacier that deposited the moraine ridge NW of the lake (Fig. 1C) 

based on a simple cartographic reconstruction of the palaeo-glacier’s hypsometry. Calculating 

palaeo-ELAs can be done in several ways, but due to the few constraints available to define 

the glacier geometry (e.g. lateral moraines), we have chosen to apply the Accumulation Area 

Ratio (AAR) and the Area-Altitude Balance Ratio (AABR) methods (e.g. Benn and 

Lehmkuhl, 2000; Osmaston, 2005). 

The AAR method assumes that the accumulation area constitutes a fixed ratio of the total 

glacier area, and the ratio applied for cirque and valley glaciers (as here) is normally ~0.6 

(Benn and Evans, 1998; Rea, 2009), whereas the AABR method takes into account both 

glacier hypsometry and the difference between the accumulation and ablation gradients (Rea, 

2009). We calculated ELAs for the palaeo-glacier using a range of AAR values between 0.65 

and 0.45, which returned ELAs ranging from 50-180 m a.s.l.; with a mean of 60 and 125 m 

a.s.l. for AAR of 0.6 ±0.5 and 0.5 ±0.5, respectively (Table 2). As such, we find that the 

hypsometry of the palaeo-glacier, which includes a steep and narrow part between 150 and 

250 m a.s.l., makes it very sensitive to small changes in accumulation area within the likely 

AAR range investigated here. The AABR ratios applied are calculated from the regional 

Svalbard range (2.13 ±0.52) from the compilation in Rea (2009) and are also presented in 

Table 2. The palaeo-ELAs calculated applying the AABR method display a narrower range 
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from 150-175 m a.s.l., which is within the wider AAR range. With the limited data available, 

we conclude that the ELA of the Hakluytvatnet palaeo-glacier was situated somewhere 

between 50 – 180 m a.s.l. when the moraine ridge north of Hakluytvatnet was deposited. 

Although there are large uncertainties in our ELA estimate, it highlights that the regional ELA 

does not have to be lowered very much to allow glaciation in the catchment, i.e. in the range 

of 100-200 m (Hagen et al., 2003). 

 

Table 2: ELA’s calculated for the reconstructed palaeo-glacier covering Hakluytvatnet. 

 

 

DISCUSSION 

The main objective of this study has been to reconstruct the Late Glacial and Holocene 

climate history of Amsterdamøya based on sediments deposited in lake Hakluytvatnet. Below 

we discuss the deglaciation history, the large environmental changes observed in the Early- 

and Mid-Holocene, and finally, late Holocene changes in hydroclimate, based on 

interpretations of the lake record. 
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5.1 Chronology 

The results from PSV-synchronizing between the lakes Hakluytvatnet and Hajeren highlight 

the potential of applying this methodology on high-Arctic lakes where robust radiocarbon 

chronologies are usually challenging to construct due to a general lack of organic detritus. 

However, due to two intervals in the core showing relatively large offsets in age between the 

two age-modelling approaches, as well as the large number of radiocarbon ages obtained for 

the Hakluytvatnet lake record (n=28), we have chosen to simply use the ‘Bacon’-derived age-

depth relationship for plotting our lake proxies against age. 

 

5.2 Late Glacial ELA reconstruction 

The massive diamicton constituting Unit A in core AMP-112 from Hakluytvatnet is 

interpreted as a basal till deposited just prior to the final deglaciation of the Hakluytvatnet 

catchment. Two radiocarbon dates within the till, and one directly overlying it, returned 

overlapping ages (see Table 1) centred around 12,800 cal yr BP. From the geomorphological 

mapping our interpretation is that the moraine ridge deposited outside Hakluytvatnet (Fig. 1C) 

was formed by a local cirque glacier occupying the catchment covering the lake, and the basal 

till in AMP-112 is therefore interpreted to be related to this local glacier re-advance and not 

the Barents Sea Ice Sheet (BSIS). During the Last Glacial Maximum (LGM) ice extended to 

the shelf break some 8 km northwest of Amsterdamøya (Ingólfsson and Landvik, 2013), 

leaving most of the Hakluytvatnet catchment covered by a glacier, although the highest areas 

of Amsterdamøya were probably ice-free (Landvik et al., 2003). The Hakluytvatnet catchment 

might therefore have become more-or-less ice-free when the BSIS first retreated from the 

northwest Spitsbergen area around ~13,800 cal yr BP (~12 14C ka BP) (Ingólfsson and 

Landvik, 2013), and from our interpretation a local cirque glacier then formed and advanced 
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across Hakluytvatnet, before finally retreating in the early Younger Dryas (~12,800 cal yr 

BP). This could imply that this glacier advance commenced sometime during the warmer 

Bølling-Allerød period, and that it was initiated by increased precipitation and favourable 

wind conditions in the form of prevailing polar easterlies (Birgel and Hass, 2004). During the 

transition to the colder YD, moisture starvation induced by increased sea-ice cover (e.g. 

Müller et al., 2009) likely caused the demise of the cirque glacier, and the Hakluytvatnet lake 

has not been covered by a glacier ever since. OSL and radiocarbon ages centred around 50 ka 

of the sediment (‘valley-fill’) below the moraine ridge (Landvik et al., 2003) indicate that the 

stratigraphically younger moraine was deposited sometime after 50 ka. Thus, we acknowledge 

that the moraine ridge might be older than the glacier event detected in the sediment core, but 

our interpretation that Unit A is a subglacially deposited diamict implies that the glacier at 

least covered the part of the lake where the core was retrieved and the ridge acts as a 

maximum estimate of the palaeo-glacier extent. As there are no indications of marine 

sedimentation in Hakluytvatnet, sea level must have remained at below the top part of this 

ridge at 16 m a.s.l. ever since deglaciation and it is therefore not necessary to adjust our 

estimated palaeo-ELA due to changes in relative sea level. Relative to the highest point of the 

present-day snowfield (~400 m a.s.l.; Fig. 1C), the reconstructed ELA lowering is on the 

order of ~220 – 350 m (AAR) and from 225 – 250 m (AABR) (Table 2). This is comparable 

with YD ELA lowering in Northern Norway of ~370 m (Rea and Evans, 2007) and a recent 

study from Northern Norway showing 220 and 130 m ELA lowering during the Late Glacial 

and the YD, respectively (Wittmeier et al., submitted).  

Our ELA estimate is the first YD ELA estimate from NW Svalbard, whereas in western 

Svalbard glacier extent has generally been thought to be larger during the LIA than during YD  

(Mangerud and Landvik, 2007). This may reflect that the west coast glaciers were located in 

the precipitation shadow from possible prevailing YD easterlies (Birgel and Hass, 2004), 
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thereby reducing accumulation on these glaciers. The Hakluytvatnet catchment receives 

snowdrift from the plateau, though mostly from snow that accumulates from N-NE winds, 

which could further support the idea that YD atmospheric conditions (e.g. Mayewski et al., 

1993) could support a glacier in the Hakluytvatnet catchment for a short while before it 

started retreating.  

 

5.3 Early and Mid-Holocene depositional environment 

During the early- and mid-Holocene, the depositional environment changed significantly for 

Hakluytvatnet, which can be easily seen from the lithostratigraphy of AMP-112. Large shifts 

in the environment are reflected in changing SAR and geochemical properties, as well as 

environmental shifts detected in diatom assemblages when the lake was transitioning from a 

dry polar soil/biofilm environment to an oligotrophic lake (section 4.3). 

During deposition of Unit B (~12,800 – ~11,900 cal yr BP), the diatom assemblage indicates 

that the sedimentary environment was likely a cold postglacial lake environment (cf. section 

4.3), and this is further supported by low Si/Ti values (Fig. 2), which reflect low production of 

biogenic silica (e.g. Balascio et al., 2011; Melles et al., 2012). Unit C represents the early-

Holocene depositional environment in lake Hakluytvatnet (~11,900 – ~6150 cal yr BP), and is 

clearly distinguishable from Units A and B below. The diatom assemblage is typical of a 

nutrient-poor, high-Arctic lake where not much is living in the photic zone. Unit C is 

suggested to reflect an anoxic depositional environment (as indicated by high sulphur counts 

and low Mn/Fe ratios; Fig. 2) and this might, combined with the nutrient-poor environment 

indicated by the diatom analyses, suggest that the lake was covered by lake ice for a longer 

period of the year than what is presently the case. Freshwater forcing by meltwater pulses 

originating from the decaying ice sheets in the North Atlantic induced enhanced seasonality 
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and unstable climatic conditions during the Early Holocene (e.g. Beck et al., 1997; Stager and 

Mayewski, 1997; Renssen et al., 2002), and we suggest that the more extreme seasonality 

during the Early Holocene (e.g. Haug et al., 2001) could have acted as a driver for 

stratification of the lake during the HTM, with more severe winters inducing a longer ice 

cover season. Additionally, shallowing lake levels could have progressed until the aquatic 

mosses were able to establish on the bed of the succeeding clearer lake waters (~5000 cal yr 

BP), in conjunction with turnover by wind on the smaller surface area of the lake preventing 

any strong stratification ever since. 

Unit D (~6150 – ~5000 cal yr BP) either represents a period of very low sedimentation rate, 

or a hiatus in deposition when the lake might even have disappeared completely as a result of 

the warmer and drier climate of the Mid-Holocene on Svalbard, as is recorded in terrestrial 

(Birks, 1991) and marine records (Salvigsen, 2002). We can only speculate as to why the lake 

dried out, but conclude that there was a large shift in depositional environment at the time of 

Unit D being deposited, which is also reflected in the diatom assemblages with a shift to a 

more diverse lake environment and improved light quality. Increased productivity is also 

reflected in the large increase in Si/Ti (Fig. 2). At this point we make no conclusions about 

what caused this transition, and we have chosen to focus mainly on the last ~5000 years for 

the remainder of this discussion, because it reflects a stable depositional environment in 

Hakluytvatnet, and because this period is particularly interesting with respect to the 

Neoglacial period on Svalbard (e.g. Røthe et al., 2015). Furthermore, our age-model is well 

constrained for this time period. 
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5.4 Neoglacial runoff and productivity changes in Hakluytvatnet 

The late-Holocene part of the sediment record from AMP-112 represented by Unit E covers 

the time period from ~5000 cal yr BP to ~1100 cal yr BP. Based on our geomorphological 

mapping and understanding of active earth surface processes in the catchment, we interpret 

changes in detrital input to Hakluytvatnet during the last 5000 cal yr BP (i.e. the Neoglacial) 

as primarily reflecting precipitation- or meltwater-induced sediment transport from the 

surrounding catchment area, as the flat topography surrounding the lake does not promote 

mass-wasting processes. Changes in grain size (GSD90) might therefore reflect changes in the 

intensity of precipitation events. The fairly strong (negative) correlation (R=-0.5) between 

GSD90 and detrended LOI suggests that periods of more intense precipitation and runoff is 

also an important driver for increased minerogenic sedimentation in the lake. Based on the 

GSD90 record, increased runoff intensity at Hakluytvatnet is observed during four distinct 

intervals: between ~1600 – ~1350 (top of runoff record) cal yr BP; between ~2250 – ~2150 

cal yr BP; between ~3150 – ~3000 cal yr BP; and between ~5000 – ~4800 cal yr BP (grey 

vertical bars in Fig. 6).  

The diatom analysis provides snapshots of detailed environmental information for 

Hakluytvatnet (Fig. 4), and it shows a distinct change to a more productive clear-water 

environment around 5000 cal yr BP. At the same level we observe a strong increase in the 

XRF Si/Ti ratio, which in some cases can act as a proxy for biogenic silica (e.g. Balascio et 

al., 2011; Melles et al., 2012), and thereby reflect internal productivity in the lake. This is 

based on the argument that Ti can only be provided to the lake sediments through detrital 

input while Si can be provided both through detrital input and through diatom growth in the 

lake. Seeing that the sharp increase in Si/Ti around 5000 cal yr BP coincides with a change in 

diatom flora that reflects increased productivity, we suggest that the Si/Ti ratio does reflect 

production of biogenic silica in Hakluytvatnet, thereby providing a high-resolution record of 
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productivity change for the entire Neoglacial period on Svalbard. The highest productivity is 

indicated between 5000-4000 cal yr BP, after which a gradual decrease is seen (Fig. 6). This 

pattern follows the general trend of decreasing insolation at high northern latitudes; however, 

the maritime setting of Hakluytvatnet should also make this site highly sensitive to oceanic 

influence. When initiation of modern oceanographic conditions in the eastern Fram Strait 

occurred ~5200 cal yr BP (Werner et al., 2013) this allowed for the WSC to transport heat and 

moisture up to NW Svalbard. This adjustment in oceanic configuration could explain the 

change in boundary conditions in the Hakluytvatnet catchment around the same time. During 

the Neoglacial, the decreasing trend in summer insolation (Huybers, 2006) (Fig. 6C) is also 

reflected in increasing sea ice extent (Müller et al., 2012) (Fig. 6C). Productivity in 

Hakluytvatnet (Fig. 6B and C) displays similar trends as changes in sea-ice extent in the Fram 

Strait, indicating that the distribution of sea ice greatly impacts lake productivity. Reduced sea 

ice thereby seems to promote lake productivity, reflecting milder and wetter (i.e. more 

maritime) conditions. The Si/Ti record from Hakluytvatnet could therefore provide a high-

resolution record of local sea ice conditions around Amsterdamøya. As sea ice cover is a key 

factor in controlling the moisture availability for Svalbard, particularly for the very 

northernmost coast where Hakluytvatnet is situated, it should also impact runoff from the 

Hakluytvatnet catchment. Looking at the GSD90 record, we observe that there seems to be an 

increase in runoff-induced sedimentation to Hakluytvatnet during periods of decreasing sea 

ice extent, as reflected in higher Si/Ti values (Fig. 6C). We therefore suggest that the runoff 

record reflects the atmospheric moisture supply to the Hakluytvatnet catchment, which is 

highly dependent on the prevailing sea-ice conditions. There might also be a component 

related to atmospheric circulation in the runoff record, reflecting changes in for instance the 

Arctic Oscillation (AO). In instrumental data, a link is seen between increased snow-depth in 

SW Svalbard and a more negative AO index (Luks et al., 2011), making it possible that this 



30 
 

large-scale circulation feature might affect runoff to Hakluytvatnet. Though, variability in sea 

level pressure caused by AO changes might affect sea ice configuration that in turn affect 

moisture supply to the Hakluytvatnet catchment. However, as our runoff record does not 

overlap with instrumental data, we cannot establish a firm connection between atmospheric 

circulation and our lake data. 

 

Figure 6: A) Runoff record from Hakluytvatnet (standardized and detrended GSD90); B) lake 
productivity record (XRF Si/Ti ratios, coupling AMP-0212 and AMP-112 [cf. section 4.5 and 
Fig. 5]); C) total solar insolation (dashed line) at 80°N (Huybers, 2006) and reconstructed sea 
ice variability in the Fram Strait from sea ice biomarker proxy IP25 (sediment core MSM5/5-
712-2) (Müller et al., 2012). Also plotted in C) are Si/Ti XRF ratios as in B) to highlight co-
variance. Grey vertical bars denote periods with relatively large runoff. 
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CONCLUSIONS 

- Fundamental changes in the depositional environment represented by the sediments 

reveal large changes in the hydrology of northwest Svalbard during the Holocene and 

the Hakluytvatnet record gives insight into these large changes 

- We present the first (terrestrial?) evidence for a larger YD glacier extent on Svalbard 

than during the LIA and propose that the glacier extent was governed by favourable 

winds and precipitation before subsequent YD cooling and sea-ice expansion led to 

glacier starvation. The glacier retreated rapidly up-valley 12,800 cal yr BP 

- Between 12,800 – 11,900 cal yr BP dry conditions precluded the formation of a lake 

or cold conditions led to a shallow lake that was frozen to the bottom. Sediment 

accumulated very slowly 

- Between 11,900 – 6150 cal yr BP increased moisture led to a lake in the basin. In-

wash of silt from the catchment made it a murky lake and restricted the growth of 

aquatic mosses 

- Between 6150 – 5000 cal yr BP the lake completely dried up at this time and no 

sediment was deposited, likely as a result of the warm Holocene Thermal Optimum 

- The onset of Neoglacial conditions ~5000 cal yr BP resulted in a positive moisture 

balance for the site and allowed the lake to form. Clear water allowed aquatic moss to 

grow. Punctuated episodes of clastic in-wash point toward rapid snowmelt events or 

high summer precipitation events that carried minerogenic material into the lake 

- The sedimentary signal in the lake since ~5000 cal yr BP reflects extreme runoff from 

the catchment, and we constructed a time-series of runoff at NW Svalbard 

- Further, we have constructed a time-series reflecting productivity that seems highly 

influenced by sea ice variability, thereby showing the potential of applying 
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productivity changes in Hakluytvatnet as a high-resolution proxy for sea ice variability 

at the northwesternmost corner of Svalbard 
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Abstract 

A novel record of storminess in Arctic Norway is reconstructed from aeolian sediment input 

into the coastal lake Måvatnet, Andøya island. The study site is situated at the extreme west 

coast of Arctic Norway; a sensitive location for changes in North Atlantic westerly winds. We 

have combined sediment trap monitoring with a multi-proxy lake sediment study for detecting 

the aeolian member deposited in the lake. The high-resolution record reveals an abrupt 

increase in storminess synchronously with the onset of the Little Ice Age (LIA), ca. 600 cal yr 

BP, coeval with increased winter precipitation in western Norway and a strengthening of the 

persistent low-pressure west of Iceland (Icelandic Low) that exerts a strong effect on North 

Atlantic storm tracks. Further, the timing of the LIA onset along the coast of Norway appears 

to be linked to the dynamics of the large-scale atmospheric circulation systems in the North 

Atlantic, and we propose that the position of the Intertropical Convergence Zone (ITCZ) 

holds the key to explaining LIA precipitation patterns along the coast of Norway, reflected in 

the strength and position of the westerlies. 
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Introduction 

In order to disentangle relative importance between natural and anthropogenic forcing on 

projected climate warming (IPCC, 2013), elucidating the contribution from natural climate 

variability is crucial. As instrumental climate data only extends at most a couple of centuries 

back in time, applying natural archives for palaeoclimatic reconstructions offer the possibility 

to extend earth system observations beyond the instrumental time period and enable a 

perspective on the range of climate variability (e.g. Bradley, 2000). The northeastern (NE) 

North Atlantic is a key area for climate research as the dynamic nature of the prevailing 

atmospheric and oceanic systems found here can change in a rapid pace, both spatially and 

temporally, and have done so in the past (e.g. Bianchi and McCave, 1999). The Arctic 

Oscillation (AO) and the North Atlantic Oscillation (NAO) constitute the most prominent 

modes of winter climate variability in the northern hemisphere (NH) (Wanner et al., 2001), 

transporting atmospheric masses from the mid-latitudes to high-latitudes in the North Atlantic 

with a shared winter storm track between the NE North Atlantic and the Arctic (Rogers and 

McHugh, 2002). The AO/NAO modes are quantified by variations in the sea level pressure 

gradient, which is reflected in the strength and position of the westerly winds. As the storm 

tracks are projected to shift poleward in near-future climate (Yin, 2005), surface wind stress 

and precipitation (mostly during NH winter rather than summer) accompany the storm tracks, 

modulating inter alia precipitation patterns along the coast of Norway. By investigating a site 

with the potential to record high-resolution shifts in extreme wind activity (i.e., storminess) 

we opt to reconstruct the variability of the westerlies at Andøya island, Arctic Norway. A 

beach situated west of the lake constitutes a source area for possible aeolian-transported 

sediments. This setting enables us to test past westerly wind strength variability as the 

northwestern coastal area of Norway is situated directly in an area sensitive to changes in the 

NAO (Lehner et al., 2012), and consequently, the westerlies.   
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Typically, wind-transported (aeolian) sediments fall in the range between the finer silt 

fractions to very fine sand, as these grain-sizes are most readily picked up and transported by 

wind (e.g. Pye, 1987). The potential for reconstructing aeolian activity reflecting atmospheric 

circulation variability has hitherto been shown mostly in ice core dust records and in marine 

sediment archives (e.g. Rea, 1994; Gingele et al., 2007; Steffensen et al., 2008; De Deckker, 

2014; Stuut et al., 2014). Also, peat and mire deposits where the relative fraction of wind-

blown dust is distinguishable from the organic background sediment have been investigated 

for aeolian content (e.g. Björck and Clemmensen, 2004; de Jong et al., 2006; De Jong et al., 

2007; Marx et al., 2011). Lake sediments, offering insight on past climate fluctuations on a 

wide range of age scales and proxies, however, are more sparsely applied as records of past 

aeolian activity although an increasing number of lake studies are published that include 

wind-driven sedimentation events  (e.g. Lewis et al., 2002; An et al., 2012; Dietze et al., 2012; 

Krawiec and Kaufman, 2014).  

Here, we present a late-Holocene lake record from Andøya in Arctic Norway, a sensitive site 

to changes in North Atlantic wind climate (Møller, 1995). The site is in close proximity to a 

west-facing beach, providing abundant source material for aeolian entrainment during 

(westerly) storms. By integrating monitored present-day sedimentation from sediment traps 

with lake sediments for palaeo-aeolian influx, our aim is to reconstruct late-Holocene 

storminess for Andøya. In the following we focus on: 1) Reconstructing storminess at lake 

Måvatnet, Andøya, based on multi-proxy analyses of lake sediments in combination with 

aeolian sediment fingerprinting of sediment trap content; and 2) climatic implications of our 

findings in relation to North Atlantic late Holocene climate. We further assess our storminess 

record as a proxy for variability in the North Atlantic westerlies and propose an age constraint 

for the onset of the Little Ice Age at Andøya. 
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Study area 

Andøya island (‘øya’=island) (69°N, 15°E) is situated in Arctic coastal Norway, and is the 

northernmost island of the Lofoten-Vesterålen Islands (Fig. 1). Alpine mountains characterize 

the islands, and the close proximity to the shelf break (~10 km) (Laberg et al., 2000) 

prevented vertical build-up of ice caps due to the calving effect. Because of this Andøya was 

early deglaciated, and constitutes lake records spanning back to  immediately after the Last 

Glacial Maximum (c. 20 ka) (e.g. Vorren, 1978; Vorren et al., 1988; Alm and Birks, 1991; 

Møller et al., 1992; Alm, 1993; Vorren and Plassen, 2002; Nesje et al., 2007). However, due 

to palaeoclimate studies focusing mainly on deglaciation and Late Glacial ages, the Holocene 

history of Andøya is not constrained equally well (Vorren and Alm, 1999; Vorren et al., 

2007).  

 

Geomorphological setting 

Måvatnet (6 m a.s.l, 69°12.48’N; 15°52.28’E) is a shallow (~1 m deep) lake in the outermost 

part of the Stavedalen valley in the northwest corner of Andøya. The lake is situated on the 

Norwegian strandflat; a relatively flat foreland stretching along large parts of the Norwegian 

coast with an origin linked to glacial erosion in conjunction with marine abrasion and sea 

level changes (e.g. Nansen, 1922; Holtedahl, 1998). The bedrock in the catchment area 

consists of Archean migmatite gneisses and Early Proterozoic gabbro intruded by granites 

(Henningsen and Tveten, 1998). Måvatnet is located approximately 300 m inland of the 

present coastline, at a distance of minimum 300 m from any cliffs framing the valley (Fig. 1). 

The catchment area is characterised by sandy and silty wave-reworked glacial deposits, with 

peat and moss deposits draped over the Stavedalen valley. Though the reworked silts and 

sands are present in all directions in the catchment, they are only presently exposed and 
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accessible for aeolian transport at the beach. West of Måvatnet three undulating terraces mark 

the altitude of former shorelines (at 12; 10 and 8 m a.s.l.). The beach ridge (i.e., old shoreline) 

impounding the lake at maximum 12 m a.s.l. and the relatively younger shoreline levels (10 

and 8 m a.s.l.) are all fluvially incised by a channel of unknown age indicating previous 

exchange with sea water and/or possible drainage of the lake. A presently vegetated (relict) 

dune field west of Måvatnet and north of the channel is suggested to have been more active 

during the Little Ice Age, and it probably acted as a source area for aeolian sediment influx to 

Måvatnet (cf. Discussion below). Also, certain areas in Stavedalen valley were exposed for 

peat cutting in the past with the consequence that some areas of the peat have been drained. 

Our geomorphological mapping around Måvatnet concludes that slope process are not 

affecting the lake sediments and that fluvial processes have restricted effect on the lake 

environment since the competence and the capacity of the small inlets meandering their way 

to the lake indicates that transport of large clasts into the lake is unlikely, i.e.: larger clasts are 

deposited before reaching the lake bed.  

 

Climate 

The climate at Andøya is strongly affected by its downwind position of the westerlies, and it 

is characterised by relatively warm winters despite its geographic location north of the Arctic 

Circle (Fig. 1A). From the meteorological station at Andenes (station no. 87110; Norwegian 

Meteorological Institute; NMI) the normal period (1961-1990) winter temperatures (DJF) 

were -1.8°C, summer temperatures (JJA) 10.2°C, and average precipitation was 1060 mm/yr 

with the majority of precipitation occurring during autumn/winter. Total summer precipitation 

(JJA) for the normal period is 205 mm. Måvatnet is almost every winter covered by snow 

and/or lake ice, however, due to its close proximity to sea (300 m) we expect that the lake is 
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not frozen solid. Wind speed distribution from the closely located Trolltinden station (station 

no. 87120; NMI) covering 2013-2015 (i.e., the monitoring years; comparable to the normal 

for Andøya St.) show that prevailing winds are from the southwest, with largest wind speeds 

predominantly from the west (Fig. 1C). The highest mean maximum gusts (>30 m/s) are 

found from October-March; highlighting the potential of severe winter-storms to facilitate 

(coarser-grained) sediment movement.  

During the sediment-trap monitoring period (08/16/13 – 06/24/15), two ‘extreme weather’ 

events occurred bringing strong winds and precipitation to Andøya (NMI). On 11 March 

2014, extreme weather ‘Kyrre’ brought strong winds and precipitation from the SW to 

northern Norway, with the highest median wind speeds measured at Andøya (Trolltinden 

Station) of 33.1 m/s, and strongest gust of 44.8 m/s, also at the Trolltinden Station. On 7 

February 2015, extreme weather ‘Ole’ brought strong winds from WNW, with highest median 

winds (over 10 minutes) at 24.8 m/s (Andøya St.) and 30.5 m/s (Trolltinden St.), and wind 

gusts were measured at 34.4 and 49.4 m/s, respectively, corresponding to whole gale and 

hurricane strength (NMI).  

 

Methods 

Andøya island was formerly inundated by the sea, and the marine limit (ML) is found 

between 35-40 m a.s.l.  (Vorren, 1978). Piston cores collected in 2007 (MÅP-107: 180 cm; 

MÅP-207: 222.5 cm; and MÅP-307: 177.5 cm; Supplementary Figures 1 and 2) indicate that 

the Tapes Transgression (Vorren and Moe, 1986) mark the last period (~6100 cal yr BP) 

where Måvatnet was inundated by the sea (Supplementary Table 1, Supplementary Figure 3). 

We cannot accurately constrain the maximum transgression level, but infer that maximum 

wave exposure was at least 12 m a.s.l. (cf. max. beach ridge elevation). Following the Tapes 
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maximum at 6100 cal yr BP, a sea level regression of ~4 m (Møller, 1986) is also recorded in 

a lake core from Lofoten, south of Andøya (Balascio et al., 2011) and the relative sea level 

has thereafter dropped until present-day level (Supplementary Figure 3). In this study, we 

wish to focus on the late Holocene part of the lake record and therefore extracted 3 short 

gravity cores using a UWITEC corer in the spring of 2013 (MAD-113: 24.5 cm; MAD-213: 

25 cm; MAD-313: 35 cm), avoiding any marine influence on sedimentary properties. Further, 

the UWITEC coring system allowed the pristine sediment-water interface to be obtained. The 

uppermost 11.5 cm (n=23) of MAD-113 (the core extracted closest to the already 14C-dated 

MÅP-207, Supplementary Table 1) was sampled for 210Pb age profile. Unfortunately, this 

attempt was unsuccessful. In August 2013, three sediment traps (©Reidar Løvlie) each 

consisting of connected PVC tubes capped in the bottom with mooring weights attached were 

deployed in the lake for monitoring sediment influx (Fig. 2). The three sediment traps (ST22, 

ST44, and ST88) were constructed using 3 different tube lengths (22, 44 and 88 cm length, 

respectively). Unfortunately, two of the sediment traps (ST22 and ST88) tore off the weights 

by the time of collection in June 2015, so only the content of ST44 remained in the water and 

could be further analysed. See Figure 3 for bathymetry, coring locations of piston cores, 

gravity cores and location of the sediment traps.  All laboratory work was conducted at 

EARTHLAB, Department of Earth Science, University of Bergen 

 

Sediment traps 

Sediment traps were deployed in Måvatnet for monitoring of present sedimentation. By 

placing the sediment traps directly below the lake level surface (Fig. 2F) we circumvented the 

problem of underflows/ bottom current sedimentation and disturbances such as e.g. event 

layers. Because only 1 of the sediment traps (ST44) survived the monitoring period, we 
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sampled bulk samples from the (surprisingly full) gyttja-filled tubes in ST44, where 

noticeable amounts of minerogenic sediment had accumulated in the lower part of the tubes. 

We assess that any minerogenic content in the tubes must be derived from aeolian 

sedimentation, and attribute the largest grain sizes in the tubes to the extreme weather events 

‘Kyrre’ and ‘Ole’.  

A total of n=5 bulk sediment samples ~0.5 cm3 each from ST44 (tubes 1-5) were heated with 

35% hydrogen peroxide (H2O2) for ~1-4 hours until organic material was dissolved. The 

sediments were thereafter examined for grain-size distribution (GSD) analysis (averaged over 

5 runs of each sample; weighted residual <1% for all samples), using the Mastersizer 3000 

from Malvern Instruments Ltd. connected to the Hydroseries wet dispersion unit allowing for 

laser diffraction measurement of particle sizes (Ryżak and Bieganowski, 2011). Grains >2 

mm were picked out before each sample was decanted into the wet dispersion unit containing 

water with 0.05% Calgon (sodium hexametaphosphate) and analysed for grain-size by 

measuring the scattered laser beam on measured grains. Particle absorption index was set to 

0.01; particle refractive index to 2.0, and the pump speed was 2500 rpm. 60% ultra-sonication 

was applied for 60 s before analysis for all samples, and each measurement was set to 25 s 

counting time (Sperazza et al., 2004; Ryżak and Bieganowski, 2011). The Mie scattering 

model was applied as it offers more accurate data on smaller fractions. Each of the 5 runs was 

visually inspected for consistency. Nomenclature and definitions of grain-sizes used are 

adapted from Blott and Pye (2001). 

 

Lake sediment records 

The sediment cores were split lengthwise in the laboratory and one half of each core was 

stored for reference. Core surfaces were then carefully cleaned and photographed. Lithofacies 
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and sedimentological structures and textures were described in detail before scanning and 

sub-sampling was initiated.  

Geochemical data and radiographic images were obtained using an ITRAX x-ray fluorescence 

(XRF) scanner (Croudace et al., 2006). A molybdenum (Mo) x-ray tube was used for 

radiographic measurements, whereas XRF analyses were performed applying a chromium 

(Cr) tube, with a down-core resolution of 200 μm. Power settings of 30kV and 55 mA were 

used with a 10 s counting time. Down-core variations in surface magnetic susceptibility (MS) 

were measured on the split cores at 0.5 cm resolution using a Bartington MS2E point sensor. 

Standard procedures for estimating weight loss-on-ignition (LOI, %), dry bulk density (DBD, 

g/cm3) and water content (WC, %) were followed (Dean, 1974; Heiri et al., 2001), and MAD-

113 and MAD-313 were sampled for this purpose every 0.5 cm (MAD-113: n=48; MAD-313: 

n=70) using a syringe for fixed volume extraction (1 cm3). The samples were weighed and 

dried overnight at 105°C before being weighed again for DBD and WC. Following 

subsequent ignition at 550°C for one hour, the samples were cooled in a desiccator and 

reweighed for LOI.  

MAD-313, holding the longest core length of the 3 short cores, was sampled every cm down-

core (from 0-35 cm depth; n=35) for GSD analysis. ~0.5 cm3 wet samples were extracted 

from the core and heated with 35% hydrogen peroxide (H2O2) for ~1-4 hours until organic 

material was dissolved. The same procedure as for the sediment trap samples was thereafter 

followed, and the same settings were applied when running the samples in the Mastersizer 

3000.  
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Chronology 

Six samples containing terrestrial plant remains were extracted from MAD-313 and submitted 

for accelerator mass spectrometry (AMS) radiocarbon dating at the Poznan Radiocarbon 

Laboratory in Poland (Table 1). 1-cm sediment slices were extracted at selected depths and 

wet-sieved, after which terrestrial plant macrofossils were handpicked, dried overnight at 

50°C and placed in sterilized glass vials before submission to AMS dating.  

An age-depth relationship was established applying the OxCal (v. 4.2) software (Bronk 

Ramsey, 2008), implementing the radiocarbon calibration curve from IntCal13 (Reimer et al., 

2013). The mathematical framework in OxCal is a Bayesian approach. The deposition process 

in Måvatnet is described as random in terms of a Poisson process where only the order of 

dated events is known. The P_sequence deposition model was therefore applied, allowing for 

fluctuating sediment accumulation rates which was found most likely for the sediments in the 

Måvatnet basin based on lithostratigraphy (see Results below). We allowed the model to 

determine a variable k parameter from (-2) – 2, and set the interpolation rate at 2. 

 

Multivariate analysis 

Principal Component Analysis (PCA) was applied in order to explore the multi-proxy dataset 

from MAD-313, including LOI and DBD, n=9 geochemical elements (Al, Si, K, Ca, Ti, Mn, 

Fe, Rb, Sr) obtained from the ITRAX XRF scan, and GSD data (n=10 grain-size intervals). 

To reduce the effect of the closure problem, the compositional grain-size data were log-ratio 

transformed before being included in the PCA (Aitchison, 1983). All of the data were then 

standardized before running the PCA in Canoco for Windows (v. 4.5; Lepš and Šmilauer, 

2003).  
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Results 

Sediment trap grain-size distribution 

The GSD results from the sediment trap tubes 1-5 are shown in Figure 4. A bimodal 

distribution is observed in all tubes, with the exception of tube no. 4 (Fig. 4D) displaying a 

normal distribution. We attribute this anomaly to sample preparation, where incomplete 

decanting of the sample may have led to the finer fraction being erroneously 

underrepresented. 4 out of 5 of the tubes revealed a strikingly similar bimodal distribution, 

and we therefore argue that the main signal from the sediment trap is bimodal and from here 

on we discuss the sediment trap tubes no. 1, 2, 3, and 5 as representative and omit tube no. 4 

from the dataset as an anomaly. This bimodal distribution is split into two populations, where 

the smallest population holds a mode of ~12.7 μm. The largest population holds a mode 

between 88.1-94.7 μm (Fig. 4A-F). 

 

Lithostratigraphy 

As MAD-313 holds the longest sediment record out of the three UWITEC cores, we discuss 

this record in detail (selected results from MAD-113 and MAD-213 are compiled in 

Supplementary Figure 4). Visual correlation supported by geochemical indices from XRF 

scanning allowed for intra-basin correlation of MAD-113, MAD-213 and MAD-313 

(Supplementary Figure 5), revealing the similar detrital signal in the records. MAD-313 was 

divided into 4 lithostratigraphic units, A-D, based on a combination of visual, physical and 

geochemical properties. A compilation of selected sediment variables are shown in Figure 5 

combined with optical image, radiographic image and unit division of the core as well as 
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depths with their corresponding 14C ages indicated. Grain-size properties are shown in Figure 

6.  

Unit A (35-24 cm) consists of very dark brown gyttja, with silty/sandy lenses 

intertwined. DBD values are relatively low, averaging ~0.29 g/cm3, whereas LOI averages 

~14.5%. X-radiographic image reveals layers of varying density throughout the unit. Detrital 

parameters such as Ti and Si (XRF count rates) show low variability throughout the unit. The 

grain size distribution mode is relatively fine-grained (Fig. 5), with most of the sediment from 

very coarse silt up to medium sand (Fig. 6). 

Unit B (24-20 cm) consists of dark greyish brown gyttja silt and sand, and the unit 

appears massive. Unit B obviously differs from the underlying unit, with higher DBD (on 

average ~0.60 g/cm3) and lower LOI (averaging ~5.1%). The transition between Unit A and 

Unit B appears erosive. Geochemical detrital parameters such as Ti, Si, Ca and K XRF count 

rates all increase (Fig. 5). GSD mode shows a peak in Unit B, with most (>53%) of the 

sediment situated within very fine and fine sand. The massive nature of the unit and the 

properties discussed indicate that this layer is likely deposited instantaneously, i.e. an ‘event’ 

layer and it is therefore omitted during age-depth modelling. 

Unit C (20-11 cm) consists of very dark brown gyttja with small silty/sandy lenses 

interlayered. LOI increases to the highest values in the core (up to >35%), averaging ~22.9%. 

DBD drops to an average of ~0.25 g/cm3. The detrital geochemical parameters (e.g. Si, K) 

decrease. The X-radiographic image shows lighter density of the unit compared to Unit B. 

Grain-sizes show a shift to finer distribution than below (Fig. 6). 

Unit D (11-0 cm) consists of very dark greyish brown gyttja silt, with frequent 

silty/sandy layers detected in the alternating lighter and darker colours of the X-radiographic 

image in Figure 5. A small twig (~3 cm length) was found at 9-10.5 cm depth. LOI averages 
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~9.8% and DBD ~0.47 g/cm3. The unit is characterized by large fluctuations in detrital 

parameters (e.g. DBD, Ti, Si), and possibly represents a shift in depositional environment to 

more frequent detrital sedimentary input and/or more variable internal lake productivity 

(reflected in LOI). The grain-size mode holds the largest values throughout the core. 

 

Statistics 

Principal component analysis returned one significant axis (PC axis 1) capturing ~55% of the 

variance in the dataset. PC axis 1 captures the balance between fine-grained and coarse-

grained sediments and between LOI and DBD. Several of the geochemical elements show 

high scores along PC axis 1, such as Si (0.87) and K (0.93) (Supplementary Table 2), and it is 

therefore possible to apply these elements as high-resolution proxies of changes in grain-size. 

While the individual GSD classes above medium sand shows a somewhat more erratic 

behaviour (Supplementary Figure 6), the total volume % of sand and sediment >125 μm 

correlates well with both Si and K (Supplementary Figure 7), suggesting that these elements 

may reflect influx of coarse-grained sediments to the lake.  

 

Chronology 

The resulting age-depth relationship produced in OxCal (Bronk Ramsey, 2008) for MAD-313 

(Table 1) is shown in Figure 7. Figure 7A shows the original output from OxCal including 

full core length in the age model. Radiocarbon ages directly above and below Unit B (Poz-

74067 and Poz-74068; Table 1) indicate that the unit (which is detected in all three short 

cores; cf. Supplementary Figures 4 and 5) represents a relatively long time period. The 

erosive lower boundary and the massive change in lithological parameters indicate that this 
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unit represents an event layer (marked with red ellipse in Fig. 7A). Subsequently, we omitted 

the unit when constructing the final age-depth relationship but retained the radiocarbon ages 

extracted directly above and below Unit B (Fig. 7B) and denoted the boundary at 20 cm 

(colour change), and subsequently attributed new depths for the radiocarbon ages below this 

point when running the model.  

 

Discussion 

The main object of this study was to identify aeolian sediments transported by extreme winds 

into lake Måvatnet. Our approach has been to investigate aeolian sediments collected in 

sediment traps deployed in the lake and compare the content of the sediment traps with the 

sediments deposited in the lake. Below, we assess the validity of our methodological approach 

and implications of our findings, and further discuss our results in a palaeoclimatic context. 

 

Chronology 

Arguably, the most critical part of establishing proxy records of past climate is the 

interpretation of age-depth relationships. Unfortunately, the attempt on establishing a 210Pb 

profile from the upper section of MAD-113 was unsuccessful, and we could therefore not 

relate modern-day sediment accumulation to instrumental meteorological data. 

Instantaneously deposited layers are important to exclude from age-depth modelling since 

they may yield erroneous ages as well as perturbing accumulation rates (e.g. Rubensdotter and 

Rosqvist, 2009). Based on the radiocarbon ages directly above and below Unit B and the 

lithostratigraphical properties, we consider the sandy, massive sediment as deposited over a 

relatively short period of time and the erosional lower boundary support our interpretation of 
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Unit B as an event layer with a hiatus below. Precipitation-induced flooding in the catchment 

would likely not transport large grain-sizes into the lake because the lake level would rise 

slowly and the small streams and inlets would not increase their competence as the flat valley 

bed implies that larger (eroding) rivers could never form and the energy in the system would 

thus be too low to affect the lake bed. During time of erosion and subsequent deposition of 

Unit B (~1800-900 cal yr BP), the sea level was approximately 2 m higher than present 

(Supplementary Figure 3), and if highest astronomical tide was similar to present (~2.5 m) 

(Tidevannstabeller, 2014), this  implies that sea inundation during a storm surge event 

concurrent with extremely low pressure and higher sea level could reach substantially higher 

levels than mean sea level. The relict channel west of Måvatnet incising the old shoreline 

levels may have been inundated and/or eroded by the former higher sea level and this could 

have disturbed the lake bed. We propose that such an extreme event led sea water into 

Måvatnet via the channel sometime around 900 cal yr BP (top age of Unit B). As the unit 

holds an anomalous sedimentary signature (Fig. 5) present in all three short cores 

(Supplementary Figure 5), we attribute that the most likely explanation based on the 

discussion above is therefore that an extreme storm surge event eroded into the Måvatnet 

basin and subsequently deposited a sandy mass. In the other units of the core(s), the 

fluctuations detected in the sediment parameters reveal inferred similar boundary conditions 

prevailing during sediment accumulation, and we therefore assess that units A, C and D are 

representative of lake sedimentation and further discuss these units in a palaeoclimatic 

context. 
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Utilizing sediment traps to assess wind activity 

In order to identify the sedimentary signature of the wind-transported material we equipped 

lake Måvatnet with three sediment traps. Because two of the sediment traps were expelled 

from the lake at some point during the monitoring period, we cannot assess differences in 

sediment influx at different sites in the lake. But, we argue that the placement of ST44 

directly below the lake surface in order to avoid disturbances in sediment accumulation by 

potential bottom currents/suspended sediments and other processes except wind transport 

allows for an assessment of aeolian sediment influx to Måvatnet. The most probable source of 

the fine-grained component into the sediment traps (as well as background sedimentation in 

the lake sediments) is atmospheric transport of finer silt-sized sediment (i.e., dust) that can be 

transported both over shorter and longer distances in the atmosphere. Large grains could be 

transported into the sediment trap by lake ice entrainment of grains from the lake shore and 

subsequent deposition in the sediment trap after thawing could lead to erroneous inferences. 

However, if this is an important process in the lake we would expect coarser sand and gravel 

with the same properties as present day shoreline around lake Måvatnet to be represented in 

the sediment trap without any sorting (cf. similar GSD in Fig. 4). Because of the finite width 

of the beach (i.e., the source area), the wind direction is an important factor in aeolian 

transport to Måvatnet (e.g. Arens, 1996). As the strongest winds are mainly from the west 

(Fig. 1), the lake is downwind of the source area when the strongest winds prevail. As there 

were two major extreme weather events occurring during monitoring, we attribute the largest 

grain-sizes in the sediment trap to these two events. Though we cannot directly quantify the 

aeolian sediment transport during these two extreme events, they highlight the potential of 

strong winds to entrain and deposit large grain-sizes at the study site; in particular during 

winter storms which facilitate larger grain sizes by niveo-aeolian transport as the snow cover 
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smooths the otherwise irregular surfaces (e.g. Björck and Clemmensen, 2004; de Jong et al., 

2006). 

From the discussion above, we acknowledge that there exists potential sources of error that 

might complicate the identification of the aeolian sediment content from the sediment traps, 

however, we suggest that the majority of the sediment tubes (4 out of 5) do reflect aeolian 

sediment accumulation (in addition to internal lake productivity) and hence underscore the 

potential for using sediment trap monitoring in order to record wind-transported material at 

Andøya. 

 

Extracting an aeolian sediment signal from lake sediments 

Lakes act as sediment traps for all type of sediments delivered from various earth surface 

processes and it is important to be aware of potential sources of error when interpreting 

sediment properties in a climatic context. Impact of human activity around lake Måvatnet is 

visible as the locals have drained and cut peat for heating as well as cattle grazing. However, 

these factors have the potential to mainly influence the organic productivity in and around the 

lake and to less extent affect the inorganic sedimentation. We therefore rule out human impact 

as important for the boundary conditions for lake Måvatnet.  

Historical sources from the Stave farm including Måvatnet assess more impact of aeolian sand 

flux and frost at least during the 1800’s (source: Andøy Historielag). The presently vegetated 

(i.e., relict) dune field west of Måvatnet is inferred to have been more active during the LIA, 

and we tentatively suggest that this was an important source area for sand influx to Måvatnet 

during the LIA with active dune migration. Further, the colder conditions during the LIA 

could serve to facilitate increased niveo-aeolian transport of larger grain sizes. Niveo-aeolian 

processes are established as the main transport mode for grains >125/200 μm to be deposited 



19 
 

in ombrotrophic bogs in SW Sweden (Björck and Clemmensen, 2004; de Jong et al., 2006; De 

Jong et al., 2007). In these studies, where the aeolian fraction is considered relatively easily 

distinguishable, the large grains are assumed to reflect winter season signal. 

Based on the bimodal distribution of grain-sizes in the sediment trap, it was desirable to test if 

the two modes reflected an aeolian sediment signal in the lake sediments that could serve as 

an aeolian proxy. However, when examining all the grain-size intervals (clay-gravel; n=12 

intervals) (Supplementary Figure 6), it is apparent that clay and silt-sized sediment intervals 

all show the same variability, co-varying with the smallest mode extracted from the sediment 

trap GSD (12.7 μm) probably reflecting atmospheric dust deposition into lake Måvatnet. The 

medium silt-sized aeolian sediment from the sediment trap is thus difficult to separate from 

background silt-sized (dust) sedimentation in Måvatnet, and we therefore investigated 

whether the larger mode (centred around 90 μm) (Supplementary Figure 6) could be used to 

represent the aeolian component in the Måvatnet sediment record. This mode seems to 

smooth out the fluctuating signal in the core in this ‘transitional’ grain-size (Supplementary 

Figure 6). Thus, we apply the previously established aeolian sediment influx grain-size >125 

μm (Björck and Clemmensen, 2004; de Jong et al., 2006; De Jong et al., 2007; De Jong et al., 

2009) as a proxy for aeolian sediment influx to Måvatnet. Although we interpret the fraction 

>125 μm to represent aeolian influx, aeolian sediments are likely also present as finer-grained 

material (cf. Fig. 4), however, these sediments can be indistinguishable from the matrix 

sediment (e.g. Lamoureux and Gilbert, 2004). We therefore assess that the fine-grained 

component likely represents continuous background sedimentation originating from 

atmospheric dust deposition. The fine-grained component may also originate from weathered 

clay and silt-sized grains produced by blockfield weathering (Paasche et al., 2006), however, 

it is difficult to explain the abundance of fine-grained material with the slow rates of 

weathering and transport of the weathered material.  
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Thus, we assess that the coarse-grained component (>125 μm and sand fraction) represents 

the extreme wind sediment component, i.e. storminess. As the XRF and DBD results are of 

higher time resolution than the GSD, we opted to test if it was possible to use elemental XRF 

count rates reflecting inorganic sedimentation (e.g. Kylander et al., 2011; Davies et al., 2015) 

as a proxy for the fraction >125μm and the sand fraction. From the PCA results 

(Supplementary Table 2) and correlation of selected parameters indicative of detrital input 

(Supplementary Figure 7), we assess that there is a close relationship and co-variance between 

both K and Si with the physical detrital parameter DBD, as well as a medium-good 

relationship with grains>125 μm and the sand fraction. Thus, we tentatively apply the higher-

resolution Si and K count rates as proxies for aeolian sediment influx (i.e., storminess) to 

Måvatnet. 

 

Måvatnet storminess record in a climatic context 

Our record suggests a significant shift of increased storminess from around 600 cal yr BP 

until present, with more rapid and larger-amplitude fluctuations than seen in the first part of 

the Måvatnet record. Interestingly, this shift in storminess occurs around the onset of the LIA 

(from ~600-100 cal yr BP), and the palaeoclimatic implications of this are discussed below.  

In Figure 8, we compare our storminess record with different proxy records tracking shifts in 

major atmospheric circulation systems. Comparing the Måvatnet record with a reconstruction 

of the Icelandic Low from a compilation of Greenland ice core records (Meeker and 

Mayewski, 2002) (Fig. 8F), the onset of the LIA at Andøya ~600 cal yr BP occurs 

simultaneously as a deepening (strengthening) of the Icelandic Low. This could explain 

increased westerlies reaching Måvatnet by a strengthened south-north pressure gradient, 

thereby forcing increased meridional (westerly) wind strength. Further, reconstructed winter 
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precipitation at the west coast of Norway (Gjerde et al., 2016) shows a similar pattern with a 

relatively abrupt onset of larger fluctuations and more precipitation during the onset of the 

LIA (Fig. 8E). In SW Sweden, reconstructions of storminess from aeolian sediment influx 

into peat bogs in Sweden; the Boarps Mosse (Björck and Clemmensen, 2004) and the Store 

Mosse (de Jong et al., 2006; De Jong et al., 2007) (Fig. 8D and 8C, respectively), also indicate 

an increase in storminess during the LIA; however, in this region the relative importance of 

the westerlies on storm climate remains unclear. Marine sediments from the Cariaco Basin 

(Haug et al., 2001) indicate a southward migration of the Intertropical Convergence Zone 

(ITCZ) during the Holocene as reflected in lower titanium content from less riverine 

terrigenous input (Haug et al., 2001) (Fig. 8B). This southward displacement of the ITCZ is 

detected in several other records, including a lake record from Lake Edward, central 

equatorial Africa (Russell and Johnson, 2007) (Fig. 8A), where the magnesium content in 

calcite is a proxy for drought periods. A shared feature in all of the records discussed above 

reflecting atmospheric circulation patterns is that a major shift started ~600 cal yr BP (AD 

1350) and terminated ~400 years later, at ~100 cal yr BP (AD 1850). This interpretation is 

based on a qualitative evaluation of the presented data.  

Compiling all of the above-discussed proxy series enable us to assess inferences on larger-

scale atmospheric circulation patterns, and, in particular, to focus on the position of the 

westerlies and the relationship between storminess and precipitation. We suggest that the LIA 

represents a period of large reconfiguration of atmospheric circulation patterns, where the 

southward migration of the ITCZ is linked to an increased strength of the westerlies in 

northeastern North Atlantic. Finally, we posit that this time interval (600-100 cal yr BP/AD 

1350-1850) delimits the LIA climate anomaly at our site at Andøya based on our novel 

storminess record from Måvatnet. 
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Conclusions  

- We have reconstructed a novel storminess record from Andøya, Arctic Norway, 

employing a methodological approach combining sediment trap monitoring with 

multi-proxy analyses of lake sediments 

- By detecting the aeolian component, we are able to construct a proxy record reflecting 

wind-transported material into lake Måvatnet 

- We have compared our storminess record with other records reflecting atmospheric 

variability in the North Atlantic as well as records reflecting the position of ITCZ  

- The onset of the Little Ice Age in Måvatnet is remarkably similar to other records from 

the North Atlantic as well as other records in equatorial Africa and offshore 

Venezuela, and we propose that the position of the ITCZ holds the key to explaining 

LIA precipitation patterns along the coast of Norway, reflected in the strength and 

position of the westerlies as a source of moisture 
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Table 1: Radiocarbon ages from MAD-313, calibrated in OxCal (using the IntCal13 calibration 

curve).  

Lab. no. Depth 

(cm) 

Material 14C age Error 

(+/-) 

δ13C ‰  2 sigma cal yr BP Note 

Poz-74065 0.5-1.5 Terrestrial 
plant remains 

75 30 -37.6 25-260 0.3 mgC 

Poz-74066 9.5-10.5 Terrestrial 
plant remains 

445 30 -26 464-534  

Poz-74067 19.5-20.5 Terrestrial 
plant remains 

940 40 -26.1 766-931  

Poz-74068 23.5-24.5 Terrestrial 
plant remains 

1855 30 -19.7 1716-1868  

Poz-74069 29.5-30.5 Terrestrial 
plant remains 

2320 30 -29.4 1622-3140  

Poz-74070 34-35 Terrestrial 
plant remains 

2495 30 -36.1 2466-2732  
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Figure 1: A) Study site in the North Atlantic. B) Zoom-in on the study site in the 

northernmost part of the Lofoten-Vesterålen islands. Climate stations mentioned in the text 

highlighted in asterisks. C) Frequency distribution (%) of wind speed at Trolltinden climate 

station (over the sediment trap monitoring years 2013-2015). D) Orthophoto of study site, 

water lines highlighted in blue. Base maps: Norwegian Mapping Authority. Ocean currents: 

Institute of Marine Research, Bergen, Norway. Meteorological data: NMI. 
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Figure 2: A) Fish-eye view of the catchment area looking northeast, into Stavedalen valley 

(Photo: Roy Samuelsen). B) Panoramic view of study site, looking southwest. Note beach 

sediment source area west (right) of the lake indicated with a red arrow.  C) Flat bed 

surrounding the east side of Lake Måvatnet, looking south. D) Inlet to Måvatnet. E) Sediment 

traps mounted (upside down with yellow bottom caps up) before deployment, mooring 

weights in the front. F) Sediment trap deployed in the lake, bordering the lake water surface. 
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Figure 3: Bathymetry of Måvatnet with coring sites and sediment trap deployment sites 

labelled and colour-coded. Green circles: short ‘MAD’ cores. Red circles: longer piston 

‘MÅP’ cores. ‘ST’: Sediment traps (yellow asterisks). 
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Figure 4: GSD results from sediment trap samples, labelled Tube no. 1-5 (A-E). Red dashed 

lines indicate modes. F) All distributions plotted. A bimodal distribution is observed in all tube 

samples, with the exception of tube no. 4 (normal distribution). Note different y-axis scale in 

D) and F).  
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Figure 5: Selected sediment variables from MAD-313. Optical image and X-radiographic 

image shows sediment colour and density variations. Lithological log shows unit division, and 

units are also indicated in light grey horizontal bars. XRF results are shown in count rates, and 

are smoothed to 0.5 cm resolution (200μm increments shown as light grey). GSD mode (μm) 

is shown to the right. Visually, the minerogenic layers are easily distinguishable and correlate 

with DBD and peaks in geochemical detrital elements (e.g. Ti, Si, Ca, and K). 
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Figure 6: A) From left: GSD surface plot of MAD-313 (averages, n=35); cumulative plot; silt 

interval (2-63 μm); and sand interval (63-2000 μm). Note opposite trends between silt and 

sand. All values plotted as volume %. B) Grain-size frequency diagram of averages from all 

depths. Dashed line highlights median mode. Note normal distribution of the core GSD as 

opposed to the bimodal sediment trap distribution. C) Surface plot made in EMMAgeo 

package (Dietze and Dietze, 2013) implemented in the open-source statistical software R (R 

Development Core Team, 2012). 
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Figure 7: A) Original age-depth relationship for MAD-313. Individual calibrated ages 

distributions shown in grey shaded areas (1 and 2σ; yielding darker and lighter grey shades, 

respectively). Red ellipse denotes Unit B and a change in sediment accumulation rates. B) 

Final age-depth relationship for MAD-113 constructed after omitting Unit B. The depth model 

curves are envelopes for the 1 and 2σ highest probability density ranges. Colour change 

indicates boundary between units C and A. Note reversed age-axis (x-axis) from A); depth 

scale is adjusted.  
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Figure 8: A) %Magnesium from Lake Edward, equatorial Africa (Russell and Johnson, 2007), 

B) %Titanium from the Cariaco Basin, offshore Venezuela (Haug et al., 2001), C) Aeolian 

sediment influx (ASI) at Store Mosse Bog, SW Sweden (De Jong et al., 2007) and D) ASI at 
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Boarps Mosse Bog, SW Sweden (Björck and Clemmensen, 2004) (data is clipped to y-axis 

maximum), E) Reconstructed winter precipitation, western Norway (Gjerde et al., 2016), F) 

Reconstructed strength of the Icelandic Low (Meeker and Mayewski, 2002), and G) Måvatnet 

storminess record (this study). The LIA (~600-100 cal yr BP) highlighted in yellow vertical 

bar; Medieval Climate Anomaly (MCA) (~1000-700 cal yr BP) highlighted in pink. BC/AD 

age scale on top. 
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Laboratory analyses piston cores 

The sediment cores MÅP-107, MÅP-207 and MÅP-307 were split lengthwise in the 

laboratory and one half of each core was stored for reference. Core surfaces were then 

carefully cleaned and photographed. Lithofacies and sedimentological structures and textures 

were described in detail before scanning and sub-sampling was initiated. 

Standard procedures for estimating weight loss-on-ignition (LOI, %), dry bulk density (DBD, 

g/cm3) and water content (WC, %) were followed (Dean, 1974; Heiri et al., 2001), and MÅP-

207was sampled for this purpose every 0.5 cm (n = 443) using a syringe for fixed volume 

extraction (1 cm3). The samples were weighed and dried overnight at 105°C before being 

weighed again for DBD and WC. Following subsequent ignition at 550°C for one hour, the 

samples were cooled in a desiccator and reweighed for LOI. Down-core variations in surface 

magnetic susceptibility (MS) were measured on the split cores at 0.2 cm resolution using a 

Bartington MS2E point sensor. 

Geochemical data and radiographic images were obtained using an ITRAX x-ray fluorescence 

(XRF) Scanner (Croudace et al., 2006) in EARTHLAB, Department of Earth Science, 

University of Bergen. Due to the core halves already being sub-sampled, we extracted core 

material from all core sections using u-channels prior to scanning. A molybdenum (Mo) x-ray 

tube was used for radiographic measurements, whereas XRF analyses were performed 

applying a chromium (Cr) tube, with a down-core resolution of 200 μm. Power settings of 

30kV and 55 mA were used with a 10 s counting time. 



An age-depth relationship was established using the Bayesian framework calibration software 

code ‘Bacon’ (v. 2.2; Blaauw and Christen, 2011), applied into the open-source statistical 

software ‘R’ (v. 3.2.2; R Development Core Team, 2012). Radiocarbon ages are reported in 

calibrated radiocarbon years before present (‘cal yr BP’; BP=1950) according to IntCal13 

(Reimer et al., 2013).  

 

 

Supplementary Figure 1: Selected sediment variables for MÅP-207. XRF count rates 

are smoothed to 0.5 cm resolution. Arrows indicate spikes in Ca at depths with 

abundant shell fragments.  

 

 

 



 

 

 

Supplementary Table 1: Radiocarbon ages MÅP-207. Lowermost 4 ages: marine. 

Lab. no. Depth (cm) Material 14C Age Error (+/-) Note 

Poz-29125 20-21 Terrestrial 

plant remains 

1810 70 0.18 mgC 

Poz-29126 40-41 Terrestrial 

plant remains 

2665 35 0.74 mgC 

Poz-29127 60-61 Terrestrial 

plant remains 

3055 35  

Poz-29128 80-81 Terrestrial 

plant remains 

4010 35  

Poz-29119 100-101 Terrestrial 

plant remains 

5160 50 0.59 mgC 

Poz-29120 140-141 Terrestrial 

plant remains 

6060 30 0.69 mgC 

Poz-29121 160-161 Terrestrial 

plant remains 

6020 70 0.28 mgC 

Poz-29122 180-181 Terrestrial 

plant remains 

6080 40  

Poz-29123 200-201 Terrestrial 

plant remains 

6900 50  

 

 

 

 

 

 

 



 

 

 

Supplementary Figure 2: Age-depth model for MÅP-207 constructed in ‘Bacon’. 

Ages are not extrapolated beyond the lowermost dated depth. As the 4 lowermost 

radiocarbon ages are extracted below shell-bearing layers (i.e., marine), these ages 

were corrected for reservoir effect applying the Marine13 calibration curve (Reimer et 

al., 2013). Individual calibrated 14Cdates in transparent blue, and ‘best’ age-depth 

model (red) is based on the weighted mean age for each depth (grey shaded area 

indicates 95% confidence interval). 

 

 

 

 



 

 

 

Supplementary Figure 3: Top: sea-level displacement curve for Andøya (data 

compiled by: Møller, J. J., & Holmeslet, B. 1998 in software ‘Sealevel32, Sea Level 

change’, v. 3.51). Isolation age of Måvatnet indicated from shell-bearing layers (white 

arrows) reflected in MÅP-207 XRF Ca spikes (below). Blue shaded area denotes time 

of marine inundation. The uppermost shell-bearing layer likely reflects the Tapes 

transgression (Vorren and Moe, 1986), with an estimated age of ~6100 cal yr BP. 

 

 



 

 

Supplementary Figure 4: A) Selected sediment variables from MAD-113. A) 

Selected sediment variables from MAD-213.  



 

Supplementary Figure 5: Correlation of cores MAD-113, MAD-213 and MAD-313 

based on visual and geochemical correlation (redox-insensitive XRF Ti count rates). 

MAD-313 displays the stratigraphically longest record, and is therefore chosen for 

GSD analysis. Further, it is apparent that all the short cores are relatively easily 

correlated, and we therefore assess that MAD-313 comprises the longest sedimentary 

record of sediment accumulation in Måvatnet and also is representative for sediment 

accumulation in Måvatnet. 

 



 

 

Supplementary Table 2: PCA scores MAD-313. 

       

PCA 1 

55.4% 

PCA 2 

16.9% 

PCA 3 

11.9% 

PCA 4 

4.9% 

 LOI  -0.8866 0.0984 -0.2643 -0.2083 

 DBD        0.8785 -0.0142 0.3322 0.1449 

 Al         0.6699 -0.5089 0.1716 -0.1329 

 Si         0.873 -0.2285 0.3686 0.1168 

 K          0.9296 -0.2 0.2149 -0.1073 

 Ca         0.8877 -0.2425 0.2334 0.0931 

 Ti         0.7353 -0.4896 -0.2057 -0.2813 

 Mn         -0.6347 -0.0459 -0.6224 -0.2746 

 Fe         0.6565 -0.3969 -0.4157 -0.4102 

 Rb         0.8053 -0.2732 0.2151 -0.3313 

 Sr         0.8669 -0.024 0.3943 -0.0691 

 Clay       -0.6993 -0.3139 0.3074 -0.259 

 vf silt   -0.853 -0.0899 0.4174 -0.1957 

 f silt    -0.8709 -0.1422 0.4131 -0.1619 

 m silt    -0.8747 -0.2307 0.3908 -0.1265 

 c silt    -0.8198 -0.4754 0.2812 0.0477 

 vc silt   -0.3623 -0.8431 -0.0257 0.1506 

 vf sand   0.5359 -0.4361 -0.6206 0.0025 

 f sand    0.6814 0.6202 -0.235 -0.0718 

 m sand    0.3329 0.8456 0.261 -0.1343 

 c sand    0.1739 0.4954 0.2526 -0.5345 

 

 

 

 

 



 

 

 

 

 

Supplementary Figure 6: Grain size distribution from MAD-313. The modes 

extracted from the sediment trap bimodal distribution are highlighted; 12.7 μm (blue) 

and 86.4 (orange)/98.1 (blue) μm. Very coarse sand and gravel are not plotted (very 

low values). All data plotted as volume %. Note that the majority of the sediment is 

situated within the very coarse silt – fine sand fraction, with very fine sand showing a 

smoothed signal. 

 

 

 



 

 

 

 

 

 

Supplementary Figure 7: Comparison of K and Si XRF count rates, DBD (g/cm3), 

grains>125 μm and sand grains (63-2000 μm) (volume %) from MAD-313.  

 

 

 



 

 

 

 

Supplementary Table 3: Correlation matrix of selected detrital parameters MAD-313. 

  DBD >125 sand Si K 

DBD 1 

>125 0.451935 1 

sand 0.545141 0.879936 1 

Si 0.876854 0.321212 0.473986 1 

K 0.827536 0.397942 0.599034 0.927455 1 
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