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Abstract

A unified black-oil and compositional simulator
has been developed, using an IMPSAT formula-
tion within the framework of the Volume Balance
Method. By new ways of determining explicit equa-
tions and variables, we obtain improved convergence
over the traditional compositional formulations. In
addition, simulator maintenance and development
costs are reduced due to the unified formulation.

Application of the new formulation to simulation
of a multiphase, multicomponent problem is presen-
ted in the paper.

Introduction

Reservoir Simulation in General

All reservoir simulators solve a set of differential
equations. If the reservoir fluids consist of Nc chem-
ical components (methane, ethane, water, etc.), Nc

flow equations must be solved.
Two main types of simulators are currently com-

mercially available: black-oil simulators and com-
positional simulators (e.g., [1]).

In a black-oil formulation, it is assumed that the
hydrocarbon fluids may be sufficiently described by
two components, a (pseudo) oil component and a
(pseudo) gas component.

In a compositional formulation, an arbitrary num-
ber of hydrocarbon components can be included.
This yields a more precise fluid description, but be-
cause of impractically large runtimes with the con-
ventional formulations, black-oil simulators are of-
ten preferred to compositional simulators.

The development of multipurpose/general pur-
pose simulators has for several years been subject
to research (e.g., [2, 3, 4]). However, a success-
ful unified black-oil and compositional simulator has
not yet been presented in literature. This is mainly
due to the lack of an inherent compositional for-
mulation superior to the conventional. Improved
compositional convergence is related to choice and
treatment of variables and equations.

The starting point of any isothermal black-oil or
compositional formulation is the set of Nc compon-
ent conservation equations. These equations may

be used in their conventional form, or in a modified
form, as the Nc primary equations of the model.

With a fully implicit formulation, all the flow
equations are solved implicitly (i.e., simultaneously)
with respect to Nc primary variables. Fully implicit
formulations are unconditionally stable, but require
extensive computational effort. This motivates the
use of approaches that are not fully implicit.

Let Nimpl denote the number of implicit variables,
and let Nexpl denote the number of explicit vari-
ables, so that Nimpl + Nexpl = Nc. By fixing the
explicit variables at the previous timestep, we are
able to form Nimpl equations determining the impli-
cit variables at the new timestep. In the remaining
equations we still fix the values of the explicit vari-
ables in the interblock flow terms, and make use of
the determined values of the implicit variables. The
explicit variables can then be determined one by one
(explicitly).

Explicit treatment of variables may introduce sta-
bility problems that restrict timestep size. The sta-
bility criteria of a formulation depend on the choice
of implicit and explicit variables and equations.

Conventional Formulations

In black-oil formulations where Nc equals Np, the
number of phases, one pressure and Np − 1 satura-
tions are chosen as primary variables. If one of the
hydrocarbon phases (oil or gas) is not present, the
corresponding saturation variable is replaced by the
gas-oil ratio.

Because the number of flow equations is small,
fully implicit black-oil simulations are often feasible.
Alternatively, an IMPES approach is used: pres-
sure is determined implicitly, while saturations are
calculated explicitly. The motivation for treating
pressure implicitly is that pressure changes spread
instantly throughout the reservoir. Since the ther-
modynamic properties of a black-oil system de-
pend only on pressure, the black-oil IMPES pressure
equation is obtained by summing the black-oil con-
servation equations (thus eliminating the saturation
terms from the accumulation term).

In many compositional problems, a fully impli-
cit approach would require too much computational
effort. Therefore, the conventional compositional
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simulator uses an IMPES-like approach, where one
pressure is calculated implicitly, and saturations and
phase compositions are determined explicitly.

The sum of component conservation equations is
not a suitable compositional IMPES pressure equa-
tion, since the thermodynamic properties of the ac-
cumulation terms are not solely dependent on pres-
sure. In [5], Ács, Doleschall and Farkas presented
a Volume Balance Method that correctly eliminates
the saturation/concentration terms from the accu-
mulation term of the pressure equation. The volume
balance pressure equation is formed as a weighted
sum of the component conservation equations, and
is the unique IMPES pressure equation for compos-
itional simulation (e.g., Coats, [6]).

The conventional compositional formulation uses
pressure and component masses as primary vari-
ables, and does not reduce to black-oil IMPES when
used with black-oil fluid properties.

New Compositional Approaches

IMPES is the fastest approach on a per-timestep
basis, but it can have stability problems that restrict
timestep size. This has given rise to the IMPSAT
formulation, which is implicit in both pressure and
saturations.

IMPSAT is motivated by Darcy’s law, which is
basically a relation between pressure and volumes
(saturations). By solving for pressure and satura-
tions implicitly, we obtain a good starting point for
solving the total system consistently. The remain-
ing variables to be determined should have little or
no influence on the volume solution. Consequently,
IMPSAT relaxes the timestep restrictions of the
conventional IMPES approach.

IMPSAT (or IMPSAT-like) approaches reported
in literature, [7, 8, 9, 10], differ in their choices
of pressure and saturation equations, and in their
choice of additional (explicit) primary variables and
equations.

Watts, [7], generalized the Volume Balance
Method of Ács, Doleschall and Farkas, and de-
veloped a set of volume balance saturation equa-
tions, formed as weighted sums of the component
conservation equations. He showed that the volume
balance saturation equations reduce to the conven-
tional black-oil equations when used with black-oil
fluid properties. In Watts’ formulation, all phase
compositions are treated explicitly when determin-
ing pressure and saturations. The following explicit
update of Nc−1 (independent) overall compositions
is based on the Nc original component conserva-
tion equations. Consequently, Np + Nc − 1 para-
meters are determined with only Nc flow equations.
Watts commented that this inherent inconsistency
may lead to inaccuracies.

In [8], Quandalle and Savary presented a consist-
ent IMPSAT approach, addressing the shortcoming

of Watts’ approach. Here Nc − Np additional vari-
ables were introduced, referred to as Ci. These vari-
ables characterize the composition of the oil and gas
phases at thermodynamic equilibrium. Instead of
treating all phase compositions explicitly, only the
Ci are fixed when determining pressure and satur-
ations. The Ci are then determined explicitly by
Nc −Np of the component conservation equations.

The Quandalle and Savary approach provides a
certain adaptivity in the choice of Ci. In oil dom-
inant regions, the Ci are chosen as Nc − Np of the
oil mole fractions, while in gas dominant regions,
the Ci are chosen among the gas mole fractions. In
both cases the mole fractions corresponding to the
lightest and the heaviest component are excluded.
As additional primary equations for determining the
Ci, Quandalle and Savary chose the corresponding
Nc −Np component conservation equations.

Quandalle and Savary’s choice of primary vari-
ables is based on the assumption that the gas satur-
ation is closely related to the amount of the lightest
component, while the oil saturation is related to the
amount of the heaviest component. Consequently,
the mole fractions of the lightest and the heaviest
component should not be treated explicitly when
determining pressure and saturations.

However, the lightest and the heaviest compon-
ent may not always be representative of the gas and
oil phase, respectively. For example, the total hy-
drocarbon composition may be evenly distributed
between the components, and the lightest compon-
ent may not always be the most volatile. The Quan-
dalle and Savary approach is therefore not general.

The approaches of Watts and Quandalle and Sav-
ary are based on the Volume Balance Method.
Branco and Rodŕıguez, [9], and Cao and Aziz, [10],
used reduction of a linearized system of conserva-
tion equations to form pressure and saturation equa-
tions, keeping all phase compositions fixed. Cao
and Aziz reported that the IMPSAT model is sig-
nificantly more stable than the IMPES model, and
in many cases substancially less expensive than the
fully implicit model.

The Main Purpose of Our Work

We use the Volume Balance Method as a framework
for forming a consistent IMPSAT approach. Im-
proved convergence is related to choosing additional
equations that are complementary to the volume
balance equations, and additional variables that are
complementary to pressure and saturations. Com-
pared with the Quandalle and Savary approach, we
introduce a more general and adaptive way of choos-
ing additional equations and variables.

We also emphasize the fact that an IMPSAT ap-
proach within the framework of the Volume Balance
Method provides a basis for a unified black-oil and
compositional simulator.



333

Volume Balance Pressure and
Saturation Equations (VBE)

We start by presenting the pressure and saturation
equations of the Volume Balance Method. The Nc

component conservation equations can be written
on the form

g =
{(

∂ni

∂t
− qi + fi

)
∆t

}
i=1,2,...,Nc

= 0. (1)

Here ni is the amount of component i, qi is the
source of component i, fi is the outflux of com-
ponent i and ∆t is the timestep. Using a control
volume discretization, (1) must hold for each con-
trol volume.

Following Watts, [7], we modify (1) into a set of
Np weighted sums of conservation equations:

WVBE g = 0. (2)

The Np ×Nc weight matrix WVBE is of the form

WVBE =

 (∂VT

∂n1
)p,n(1) . . . ( ∂VT

∂nNc
)p,n(Nc)

(∂V o

∂n1
)p,n(1) . . . ( ∂V o

∂nNc
)p,n(Nc)

(∂V w

∂n1
)p,n(1) . . . ( ∂V w

∂nNc
)p,n(Nc)

 .

(3)
Here (∂VT /∂ni)p,n(i) is referred to as the total par-
tial molar volume, and is a partial derivative of the
total volume VT with respect to the molar amount
of component i, keeping pressure and the other com-
ponent amounts fixed. Similarly, (∂V j/∂ni)p,n(i) is
called the partial molar volume of phase j.

Note that (3) is formed assuming oil and water to
be the primary phases, so j = o, w. Other choices
are obviously possible.

After some rearrangements, Watts obtains a
volume balance pressure equation,(

∂(φV )
∂t − φ(∂VT

∂p )n ∂p
∂t −

∑Nc

i=1(
∂VT

∂ni
)p,n(i)qi

+
∑Nc

i=1(
∂VT

∂ni
)p,n(i)fi

)
∆t = 0, (4)

and volume balance saturation equations,(
∂
∂t (φV Sj)− φ(∂V j

∂p )n ∂p
∂t

−
∑Nc

i=1(
∂V j

∂ni
)p,n(i)qi

+
∑Nc

i=1(
∂V j

∂ni
)p,n(i)fi

)
∆t = 0. (5)

Here φ is the porosity, and V is the size of the control
volume. The saturation equations reduce to the con-
ventional black-oil equations when used with black-
oil fluid properties. Thus, the conventional black-oil
formulation is inherent in the IMPSAT formulation
when using the Volume Balance Method.

Additional Conservation Equa-
tions (ACE)

As stated earlier, we need Nc flow equations to solve
the total compositional problem. To determine the
form of the Nc − Np additional conservation equa-
tions, we generalize the weighting procedure of the
Volume Balance Method. Consequently, instead of
solving (1), we will solve the weighted system

Wg =
[

WVBE

WACE

]
g = 0, (6)

WVBE : Np ×Nc,
WACE : (Nc −Np)×Nc.

(7)

Obviously, to obtain the same solution as with
(1), W has to be non-singular. In addition, we
would like the additional conservation equations
WACEg = 0 to be complementary to the volume
balance equations. This is accomplished by the fol-
lowing procedure.

Let WACE =
[
w1,w2, ...,wNc−Np

]T , where each
wi is a Nc × 1 vector. Consider the following:

• The row space of WVBE is the set of linear com-
binations of the rows of WVBE. The row space
is a subspace of RNc . Since the rows of WVBE

are linearly independent, the dimension of the
row space is Np.

• The nullspace of WVBE is the set of solutions
x to WVBEx = 0. The nullspace is also a sub-
space of RNc .

• The nullspace is the orthogonal complement
of the row space. Its dimension is therefore
Nc −Np.

Obviously, if the rows of WACE are in the row
space of WVBE, the rows of W will not be linearly
independent, and W will be singular. On the other
hand, if the rows of WACE form a basis for the null-
space of WVBE, the rows of W will span RNc and
W will be non-singular.

By a singular value decomposition of WVBE

we may determine an orthonormal basis
{v1,v2, ...,vNc−Np

} for the nullspace of WVBE.
We choose wi = vi.

Consequently, with this choice, we can argue that
the additional conservation equations WACEg = 0
are complementary to the volume balance equations
WVBEg = 0.

The thermodynamic interpretation of WACE is
not yet clear, but its coefficients clearly depend
on the state variables. At present, not knowing
how to differentiate WACE with respect to the
primary variables, our linearized system yields a
quasi-Newton scheme.
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The additional conservation equations are based
on the approximation

∂ni

∂t
' ∂ni

∂p

∆p

∆t
+

∂ni

∂Sp

∆Sp

∆t
+

∂ni

∂xp

∆xp

∆t
(8)

in (1). Here Sp is the vector of primary saturations
(e.g., Sp = {So, Sw}), xp are some Nc − Np addi-
tional primary variables, and ∆u, u ∈ {p,Sp,xp},
is the change un+1 − un in u over the timestep
∆t = tn+1 − tn. All derivatives in (8) are evalu-
ated at time tn+1.

Additional Primary Variables

From Darcy’s law, we know that the determination
of pressure and saturations resolves the main fea-
tures of flow. However, if Nc > Np, the phase com-
positions at equilibrium remain undetermined.

Phase compositions are represented by the mole
fraction of component i in phase h, denoted

ch
i =

nh
i

nh
. (9)

Here nh
i is the amount of component i in phase h,

while nh is the amount of phase h.

General framework

As our additional Nc − Np primary variables, we
introduce a set of primary mole fractions by

(xp)m =
∑

h=o,g

Nhc∑
i=1

ωh
mic

h
i , (10)

where Nhc is the number of hydrocarbon compon-
ents, m ranges from 1 to Nc−Np, and ωh

mi ∈ [−1, 1].
The weights

ωm = [ωo
m1, . . . , ω

o
mNhc

, ωg
m1, . . . , ω

g
mNhc

]T (11)

should be determined so that the primary mole frac-
tions are complementary to pressure and satura-
tions. This implies that the primary mole fractions
can be assumed constant when determining pressure
and saturations, and thereby be treated explicitly.

Stability considerations

The explicit treatment of primary mole fractions
can be viewed as follows. Assume that a fully im-
plicit formulation is formed, based on the variable
set {p,Sp,xp}, where xp = {(xp)1, . . . , (xp)Nc−Np

}.
Using a Newton-Raphson scheme to linearize the
system of equations, we may update the phase com-
positions at the end of each Newton-Raphson itera-
tion step k by

(ch
i )(k) = (ch

i )(k−1) + (∂ch
i

∂p )(k−1)(∆p)(k)

+( ∂ch
i

∂Sp
)(k−1)(∆Sp)(k)

+( ∂ch
i

∂xp
)(k−1)(∆xp)(k). (12)

Here (∆u)(k) denotes the change in the variable u
during iteration step k. As the fully implicit formu-
lation is unconditionally stable, (12) converges to a
value ch

i ∈ [0, 1].
In an IMPSAT formulation, we first perform

(ch
i )(k) = (ch

i )(k−1) + (∂ch
i

∂p )(k−1)(∆p)(k)

+( ∂ch
i

∂Sp
)(k−1)(∆Sp)(k) (13)

during implicit steps, and then

(ch
i )(k) = (ch

i )(k−1) + (
∂ch

i

∂xp
)(k−1)(∆xp)(k) (14)

during explicit steps. Consequently, the term that
accounts for changes in the primary mole fractions
is left out of (13), and we might get (ch

i )(k) /∈ [0, 1]
when using that update. To avoid such instabil-
ities, we must prevent the derivatives ∂ch

i /∂u,
u ∈ {p,Sp,xp}, from growing too large.

We find that

∂ch
i

∂u
=

Nhc∑
k=1

(
δi,k − ch

i

nh

)
∂nh

k

∂u
, (15)

where δi,k is Kronecker’s delta, so it will be suffi-
cient to put restrictions on the derivatives ∂nh

k/∂u.
For notational convenience, we represent these 2Nhc

derivatives by the vector

∂nog

∂u
=
[
∂no

1

∂u
, . . . ,

∂no
Nhc

∂u
,
∂ng

1

∂u
, . . . ,

∂ng
Nhc

∂u

]T

.

(16)
If we have 2Nhc independent relations of the form

G = G(p,no,ng) = 0, (17)

we may differentiate with respect to u to obtain

Nhc∑
k=1

∂G

∂no
k

∂no
k

∂u
+

Nhc∑
k=1

∂G

∂ng
k

∂ng
k

∂u
= −∂G

∂p

∂p

∂u
. (18)

This yields a linear system of equations of the form

A
∂nog

∂u
= bu, (19)

where A is the same, regardless of u.
Consequently,

||∂nog

∂u
|| ≤ ||A−1|| ||bu|| =

||bu||
||A||

cond(A), (20)

where || · || is some norm, and

cond(A) = ||A|| ||A−1|| (21)

is the condition number of A. Assuming that ||bu||
and ||A|| are always of the same size, ||∂nh/∂u|| is
minimal when cond(A) is minimal.
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The properties of A

We use

G =


fo

i − fg
i

pV h − nhRTZh∑
h=o,g

∑Nhc

k=1 ωh
mkch

k − (xp)m

(22)

The relation fo
i − fg

i = 0, i = 1, 2, . . . , Nhc, where
fh

i is the fugacity of component i in phase h, is
the condition for chemical equilibrium. The rela-
tions pV h − nhRTZh = 0 represent the equation of
state; R is the universal gas constant, T is absolute
temperature and Zh is the compressibility factor of
phase h.

We observe that the coefficients ∂G/∂nh
k derived

from the fugacity equalities and the equation of
state relations are independent of our choice of
primary mole fraction weights, ωm. Consequently,
we may write

A =
[

B
C

]
(23)

where the (2Nhc − (Nc −Np))× 2Nhc submatrix B
is independent of ωm.

The coefficients of the (Nc−Np)×2Nhc submatrix
C are derived from the relations

∂(xp)m

∂u
=

∑
h=o,g

Nhc∑
k=1

∂(xp)m

∂nh
k

∂nh
k

∂u

=
{

0 , u ∈ {p,Sp,xp(m)}
1 , u = (xp)m

(24)

where xp(m) contains all primary mole fraction ex-
cept (xp)m. We find that

∂(xp)m

∂nh
k

=
∑

α=o,g

Nhc∑
i=1

ωα
mi

∂cα
i

∂nh
k

=
Nhc∑
i=1

1
nh

(δi,k − ch
i )ωh

mi (25)

so that
C = {cij} (26)

where

cij =


∑Nhc

k=1 ωo
ik(δk,j − co

k)/no, j ∈ Io∑Nhc

k=1 ωg
ik(δk,j−Nhc

− cg
k)/ng, j ∈ Ig

(27)
Here

Io = {1, 2, . . . , Nhc} (28)
Ig = {Nhc + 1, Nhc + 2, . . . , 2Nhc} (29)

Now we use the theory of orthogonal complements
once again. To minimize the condition number of
A, we should choose the coefficients of C so that
they span the nullspace of B. This is obtained if

∂(xp)m

∂nh
k

=
Nhc∑
i=1

1
nh

(
δi,k − ch

i

)
ωh

mi = νh
mk (30)

where νm =
{
νh

mk

}
are basis vectors for the null-

space of B.
Relation (30) yields a linear system of the form

Hωm = bm, (31)

but, unfortunately, since
∑Nhc

i=1 ch
i = 1, H is sin-

gular. This corresponds to a non-reducible total
system of equations, and reflects the fact that an
exact decoupling of pressure and saturations from
the other state variables is physically unreasonable.

Now let the pseudoinverse of H be denoted H+.
An approximate solution ω̂m to Hωm = bm is then
given by ω̂m = H+bm.

It is known that ω̂m is a least-squares solution
of Hωm = bm, not having any components in the
nullspace of H. When ω̂m is inserted into C, the
rows of C approximately span the nullspace of B,
and cond(A) becomes small. We choose to scale ω̂m

so that its largest element is 1 in absolute value.
Consequently, ωh

mi ∈ [−1, 1]. The thermodynamic
interpretation of ω̂m is not yet clear.

As (22) shows, the above procedure is based on
phase equilibrium thermodynamics. If only one hy-
drocarbon phase h is present, the fugacity equalities
do not apply, and Nc − Np = Nhc − 1, the number
of independent mole fractions in the system. Then
all sets of linearly independent weight combinations
ωm are equivalent. Consequently, we may omit the
above procedure, and choose xp as Nhc − 1 of the
mole fractions of phase h.

Sequential Approach

Assume that the primary variables at time tn,
{pn,Sn

p ,xn
p}, have been determined. We seek a solu-

tion of the component conservation equations (1) at
time tn+1, that is,

g(pn+1,Sn+1
p ,xn+1

p ) = 0. (32)

With the IMPSAT formulation, we first solve the
volume balance equations,

WVBEg(p(k),S(k)
p ,x(k−1)

p ) = 0, (33)

and then the additional conservation equations

WACEg(p(k),S(k)
p ,x(k,k−1)

p ) = 0. (34)

Here u(k) is the k-th approximation of un+1, and
we let u(0) = un. The symbol x(k,k−1)

p means that
interblock flow terms are evaluated using x(k−1)

p

(interblock flow terms are not updated during the
explicit iteration). Each step k is referred to as a
sequential step.

At the end of sequential step k, we insert
{p(k),S(k)

p ,x(k)
p } into (32). If the solution is not sat-

isfactory, we proceed with step k + 1.
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Expected Properties

In [10], Cao and Aziz reported that the IMPSAT
formulation is significantly more stable than the
IMPES formulation, and in many cases substan-
cially less expensive than a fully implicit formula-
tion. We expect the presented IMPSAT formulation
to have similar properties, but we do not discuss
stability criteria in this paper. Instead, we focus on
how the choice of explicit variables and equations
affects the computational costs per timestep.

The primary mole fraction weights ωm determine
the properties of the variable set {p,Sp,xp}. If the
primary mole fractions are chosen complementary
to pressure and saturations, xp mainly determines
equilibrium between phases, and not mass transfer
between gridblocks. Likewise, if we choose addi-
tional conservation equations that are complement-
ary to the volume balance equations, the explicit
equations mainly take care of the conservation that
is not resolved by the implicit equations. Recalling
that the implicit equations describe the phase trans-
port governed by Darcy’s law, less effort should be
required to establish the remaining conservation.

In sum, this means that the chances of solving
(32) by a few sequential steps, are increased with
the new approach. Consequently, if we compare
the new approach to the approach of Quandalle and
Savary, a reduction in computational costs can be
expected, especially when the assumption that the
lightest and the heaviest component are represent-
ative of the hydrocarbon phases, does not hold.

Numerical Results

Model Description

We consider a homogenous medium with a poros-
ity of 0.2 and a permeability of 0.1 Darcy. We
use a 10 × 1 × 10 grid, in which each gridblock is
10 × 10 × 10 m3. The hydrocarbon phases consist
of 5 different components; C1, C2, iC4, iC5, C7.
The component properties are given in Table 1. All
thermodynamic calculations are based on the Peng-
Robinson equation of state.

ωi Tci pci Vci Mi

C1 0.008 190.6 46.00 99 16.043
C2 0.098 305.4 48.84 148 30.070
iC4 0.176 408.1 36.48 263 58.124
iC5 0.227 460.4 33.84 306 72.145
C7 0.337 536.5 29.45 476 96.000

Table 1: Acentric factor ωi, critical temperature
Tci (K), critical pressure pci (bars), critical volume
Vci (cm3/mole), molar mass Mi (g/mole).

Hydrocarbons are not allowed to dissolve in the
water phase, and water is not present in the hydro-
carbon phases. The water phase is assumed incom-
pressible.

We set the connate water saturation to Sw
co = 0.1

and assume that the residual oil saturation is zero
(So

r = 0). The relative permeabiities are given by

kg
r = 0.1 ·

(
Sg

1− So
r − Sw

co

)2

, (35)

kw
r = 0.1 ·

(
Sw − Sw

co

1− So
r − Sw

co

)2

(36)

and

ko
r =

Sg · kog
r (So) + (Sw − Sw

co) · kow
r (So)

1− So − Sw
co

, (37)

where

kog
r = 0.1 ·

(
So − So

r

1− So
r − Sw

co

)2

(38)

and

kow
r = 0.1 ·

(
So − So

r

1− So
r − Sw

co

)3

. (39)

Phase viscosities are calculated by the approach of
Lorentz et. al., [11]. Capillary pressure between any
two phases is set to zero, and the reservoir temper-
ature is 353.15 K (80 ◦C). We use no-flux boundary
conditions.

The convergence criteria are as follows. The resid-
ual of the volume balance equations and the residual
of the additional conservation equations are scaled
by the volume of a gridblock, and the 2-norm is re-
quired to be less than 10−6 for convergence. For
each of the component conservation equations we
scale the residual by the amount of the correspond-
ing component, and require the result to be less than
10−5 in 2-norm for convergence.

Test case

We initialize at equilibrium, with a gas-oil contact
40 m from the reservoir top and a water-oil contact
20 m from the reservoir bottom. The pressure at the
gas-oil contact honours a total hydrocarbon compos-
ition of z = [0.2, 0.2, 0.25, 0.2, 0.15]T , i.e., evenly
distributed between the components. Due to the
zero capillary pressure assumption, the hydrostatic
equilibrium is less accurate over the fluid contacts.

An injection well is located at the bottom left
corner block, injecting water at a constant rate of
0.1 % of the total pore volume per day. A producer
is located at the top right corner block. The pressure
at the producer is fixed at the initial pressure, and
everything that flows into the production block is
produced.

We advance simulations to 200 days, with 40
timesteps of 5 days.
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Solution at the end of the simulation

The state of the system at the end of the simulation,
represented by pressure p, water saturation Sw and
the mole fraction of the lightest component (C1)
in oil, is presented in Figure 1. The solutions are
plotted cellwise.
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Figure 1: State at the end of the simulation.

A comparison between the new approach and
the approach of Quandalle and Savary

The test case was run both with the new approach
(abbreaviated NA) and an implementation of the
approach of Quandalle and Savary (abbreaviated
QS).

Figure 2 gives a comparison between the two
approaches. The first plot shows the number of
sequential steps needed for convergence, and the
other plots show the relative reduction of implicit
and explicit steps when using NA.
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Figure 2: A comparison between NA and QS.
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Comments

The simulation results shown in Figure 1 look reas-
onable, and indicate the capabilities of the current
implementation.

The fluid sample used for the test case has an
even distribution of components. Hence, a reduc-
tion in computational costs is expected when using
NA. As Figure 2 shows, the reduction can, at some
stages, be up to about 30 %, which is a considerable
improvement. At other stages, the two approaches
perform equally well.

Simulations run on similar fluid samples show
similar behaviour, suggesting that NA can be sig-
nificantly better than QS.

Conclusions

A new, consistent IMPSAT formulation has been
developed, implemented and tested. The formula-
tion is based on the Volume Balance Method, and
incorporates the conventional black-oil formulation.
Consequently, it may serve as a basis for a unified
black-oil and compositional reservoir simulator.

An IMPSAT formulation is generally more stable
than an IMPES formulation, and requires less com-
putational effort than a fully implicit formulation.

The presented explicit variables and equations
have properties that are complementary to pressure
and saturations and the volume balance equations,
respectively. This may reduce computational costs,
as fewer steps are required to obtain convergence.

The new approach takes local thermodynamics
into account, and is robust, yet effective. It is not
based on any assumptions on the component distri-
bution, and is flexible and adaptive in the sense that
the choice of additional primary variables may vary
in the reservoir.

The calculation of equation and variable weights
introduces an additional computational cost not
present in previously presented IMPSAT formula-
tions. However, the calculations are inexpensive, as
they are non-iterative and operate on matrices of
the same size as the number of components. Con-
sequently, a reduced number of iteration steps with
the new approach yields a total computational gain.

Further Work

The thermodynamic interpretation of the new ex-
plicit variables and equations is not yet clear. This
is an important objective for further research, and
includes finding a relation between the two sets of
weights, and analyzing which set contributes the
most to the improvement in different cases.

We should also investigate the inclusion of an ex-
tra implicit variable in the case of a missing hydro-
carbon phase. Such a variable would correspond

to the gas-oil ratio in black-oil models. Quandalle
and Savary, [8], report the use of a variable Co for
this purpose, chosen as the oil mole fraction of the
lightest component in oil regions, and as the gas
mole fraction of the heaviest component in gas re-
gions. Using experience from the determination of
primary mole fractions, one could possibly determ-
ine an implicit variable with better properties than
Co.

For the presented test case, the new approach is
superior to the approach of Quandalle and Savary.
This will not hold in general. Extensive testing
is needed to establish the differences between the
methods, and to analyze for which cases the new
approach can give a considerable improvement.
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