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Abstract. A new and improved compositional IMPSAT formulation has been
developed. The conventional compositional primary variables, pressure and mole
numbers, are transformed into pressure, volumes and a set of complementary iso-
choric (constant volume) variables. Similarly, the component conservation equations
are transformed into volume balance equations and complementary isochoric conser-
vation equations. Pressure and saturations are treated implicitly, while the isochoric
variables are treated explicitly. The approach is consistent, and yields a minimal
overlap between the implicit volume solution and the explicit constant volume
solution. In addition, a new approximate CFL stability criterion for the IMPSAT for-
mulation is proposed. The new criterion may allow for significantly larger timesteps
than the conventional IMPSAT stability criterion.

Numerical results which support the new formulation are shown.
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mentary isochoric variables and equations, relaxed stability constraints.

1. Introduction

The governing equations of a compositional model are nonlinear and
coupled, both within and between gridblocks. The nonlinearities im-
ply that the equations must be solved iteratively, for instance by the
Newton-Raphson method. The couplings between gridblocks, which are
due to the interblock flow terms, indicate that we should solve all equa-
tions in all gridblocks simultaneously (fully implicitly). Fully implicit
formulations are unconditionally stable, but the computational costs
per timestep often become prohibitively large.

A key to reducing computational costs is to evaluate the interblock
flow terms with values of some of the primary variables from the pre-
vious time level. By such an explicit treatment of variables, the corre-
sponding couplings between gridblocks vanish, and the corresponding
equations can be solved one gridblock at a time (explicitly). The com-
putational costs per timestep are thus reduced, but explicit treatment
of variables introduces stability problems that restrict timestep size.
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The conventional compositional approach is an IMPES approach.
Pressure and component mole numbers are the primary variables, and a
volume balance pressure equation and a set of component conservation
equations are the primary equations. Only pressure is determined im-
plicitly, and all the component mole numbers are treated explicitly. The
motivation for determining pressure implicitly is that pressure changes
spread instantaneously throughout the porous medium. IMPES is the
fastest approach on a per-timestep basis, but the explicit treatment of
mole numbers may introduce severe stability problems.

In an IMPSAT formulation, pressure and saturations are determined
implicitly. As fluid flow in porous media is governed by Darcy’s law,
which is basically a relation in pressure and saturations, an implicit
solve for pressure and saturations resolves the main features of flow.
The chosen additional primary variables should have little influence on
the interblock flow terms, so that explicit treatment of these variables,
with relaxed stability constraints, is feasible. However, a completely
satisfactory set of additional variables and equations for determining
these has not yet been presented in the literature.

The IMPSAT (or IMPSAT-like) approaches that have been reported,
[1–5], mainly differ in their choices of explicit variables and implicit and
explicit equations.

In [1], Watts generalised the Volume Balance Method developed by
Ács, Doleschall and Farkas, [6], and used weighted sums of the compo-
nent conservation equations to form a set of volume balance pressure
and saturation equations. The volume balance equations are conve-
niently solved implicitly for pressure and saturations, and Watts also
showed that the saturation equations reduce to the conventional black-
oil equations when used with black-oil fluid properties. However, Watts
proposed a subsequent explicit update of all the overall mole fractions,
based on the original component conservation equations. Consequently,
the number of primary variables (pressure, saturations and the overall
mole fractions) exceeds the number of primary equations. As Watts
pointed out, this inherent inconsistency may lead to inaccuracies.

Quandalle and Savary, [2], addressed Watts’ shortcoming by intro-
ducing a set of phase mole fractions as additional primary variables,
thereby making the number of primary variables equal to the number
of primary equations. They chose to treat all the phase mole fractions
explicitly, and used a selection of component conservation equations as
explicit equations, thus apparently introducing an overlap between the
implicit and explicit system of equations.

The approaches of Branco and Rodŕıguez, [3], and Cao and Aziz,
[4], are also based on using a set of phase mole fractions as primary
variables. In addition, reduction of the linearised system of component
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conservation equations is used to form implicit and explicit equations.
Consequently, the overlap encountered in the approach of Quandalle
and Savary is removed at the linearised level.

Cao and Aziz also presented an approximate CFL stability criterion
for the IMPSAT formulation, and reported that their IMPSAT model
is significantly more stable than the IMPES model, and in many cases
substantially less expensive than the fully implicit model.

In [5], Hauk̊as et al. aimed at minimising not only the overlap be-
tween the implicit and explicit equations at the nonlinear level, but
also the overlap between pressure and saturations and the additional
primary variables. Based on the theory of orthogonal complements in
linear algebra, they presented a set of additional conservation equations
that are complementary to the volume balance equations of Watts,
and can be derived as weighted sums of the component conservation
equations. In addition, they claimed that some selection of phase mole
fractions should not be considered complementary to pressure and sat-
urations, and defined their additional primary variables as weighted
sums of phase mole fractions, based on a stability argument.

Hauk̊as et al. presented results indicating improved convergence over
the approach of Quandalle and Savary. However, they commented that
a thermodynamic interpretation of their additional primary variables,
and a natural relation between these variables and the additional con-
servation equations, is missing. In addition, we note that Hauk̊as et al.
chose to evaluate interblock flow terms with the additional variables
from the previous iteration level and not from the previous time level.
Consequently, at convergence, a fully implicit solution is obtained.
Their scheme therefore corresponds to a quasi-Newton fully implicit
scheme, and not a true IMPSAT scheme.

This paper is a continuation of the work done by Hauk̊as et al. We
argue that a reformulation of the component conservation equations
is important for consistence, and use the same system of implicit and
explicit equations as presented in [5]. However, due to the lack of a
thermodynamic interpretation of the additional primary variables in-
troduced in [5], we discard using weighted sums of phase mole fractions
as primary variables. We claim that the stability properties of IMPSAT
are easier to analyse if we introduce a set of explicit variables that can
be interpreted as complementary to pressure and saturations. Conse-
quently, a more precise stability criterion can be proposed. We also
note that the use of complementary variables and equations makes the
system better conditioned. In addition, we use a true IMPSAT scheme,
in which the interblock flow terms are evaluated with explicit variables
from the previous time level and not from the previous iteration level.
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2. Background

2.1. General isothermal compositional model

Compositional multiphase flow in porous media is governed by Nc

component flow equations, where Nc is the number of chemical com-
ponents in the system. The equations express conservation of the mass
of each component within some (bulk) volume Vb. The i-th component
conservation equation can be written in integral form as∫

Vb

∂

∂t

(
ni

Vb

)
dVb =

∫
Vb

q̄i dVb −
∫
S

f̄i dS, (1)

where ni is the component mole number present in Vb, q̄i is the compo-
nent source density within Vb per time, and f̄i is the component outflux
density per time through the boundary S of Vb.

In a control-volume discretisation, we refer to Vb as a control-volume.
The control-volume is assumed to be fixed in time, and we interpret
ni as an average over the control-volume. For a timestep of size ∆t,
the control-volume discretised form of the i-th component conservation
equation can then be written

gi =
(

δni

δt
− qi + fi

)
∆t = 0. (2)

Here, δni/δt is a discretisation of the time derivative ∂ni/∂t, while
qi is the total source of component i within the control-volume per
time and fi is the discretised net outflux through the boundary of
the control-volume per time. If u = [u1, . . . , uN ]T denotes the set of
primary variables, a possible time discretisation is

δni

δt
=

N∑
k=1

(
∂ni

∂uk

)
u(k)

∆uk

∆t
, (3)

where the subscript u(k) indicates that all primary variables except for
uk are kept fixed, and ∆uk is the change in uk during the timestep ∆t.

In an isothermal model, pressure p and the mole numbers n =
[n1, . . . , nNc ]

T give a complete description of the system. However, the
set (p, n) must confine to the specified size Vb of the control-volume.
This requirement is inherent in the compositional pressure equation,
which expresses conservation of the total fluid volume VT within Vb,
and can be written in discretized form as, [1],(

Vb
dφ

dp
−
(

∂VT

∂p

)
n

)
∆p

∆t
+

Nc∑
i=1

(
∂VT

∂ni

)
p,n(i)

(fi − qi) = 0, (4)
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where φ is the porosity of the control-volume. The equation corresponds
to VT−φVb = 0, and is unique, although it can be derived in a number
of different ways, [7].

The conventional set of primary equations for an isothermal com-
positional model is the component conservation equations (2) plus the
compositional pressure equation (4), and the conventional set of pri-
mary variables is (p, n). The time discretisation (3) then reduces to
δni/δt = ∆ni/∆t.

Let Np denote the number of fluid phases. The set of IMPSAT
primary variables can generally be written as (p, Sp,xp), where Sp

is a set of Np − 1 primary saturations, and xp is the set of Nc −Np

additional primary variables. The similar set that corresponds to the
conventional set (p, n) is (p, V ,xp), where V contains the Np fluid
volumes. For both sets, Vb = VT/φ is an inherent condition.

Generally, the variables xp must be defined so that a complete
description of the system is preserved. In addition, to make explicit
treatment of the variables xp feasible, the interblock flow terms should
be only weakly dependent of xp. Since the interblock flow terms mainly
depend on pressure and volumes, this is obtained if the variables xp

are complementary to (p, V ), which also implies that the set (p, V ,xp)
gives a complete description of the system. We will refer to the variables
xp as the isochoric (constant volume) variables. The reason for this
notion is given in section 4.2.

In addition, a set of conservation equations for determining the
primary variables is needed. For consistence, there should be a min-
imum overlap between the pressure and saturation equations and the
conservation equations that determine the isochoric variables, referred
to as the isochoric conservation equations (see section 4.2). This is
obtained if the isochoric conservation equations are complementary to
the pressure and saturation equations.

We also note that the use of complementary variables and equations
yields a better conditioned system.

3. Principles

In this section, we use the concept of complementary subspaces in
linear algebra to define the isochoric variables xp and the isochoric
conservation equations.
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3.1. Transformation from (p, n) to (p, V ,xp)

We consider a transformation from (p, n) to (p, V ,xp), i.e., a mapping
that produces (V ,xp) when applied to n. The same transformation is
applied to the component conservation equations to derive a pressure
equation, Np− 1 saturation equations and Nc−Np isochoric conserva-
tion equations. This provides a natural relation between the isochoric
variables and the isochoric conservation equations.

We let WV and Wx denote the transformations from n to V and
from n to xp, respectively, and write

V = WV (n), WV : RNc → RNp , (5)

xp = Wx(n), Wx : RNc → RNc−Np . (6)

If interpreted as matrices, WV is a Np × Nc matrix, while Wx is a
(Nc −Np)×Nc matrix. WV is referred to as the volume transformation,
and Wx is referred to as the isochoric transformation.

Letting rV denote the residuals of the pressure and saturation equa-
tions, and rx denote the residuals of the isochoric conservation equa-
tions, we write

rV = WV (g), rx = Wx(g), (7)

where g = [g1, g2, . . . , gNc ]
T, gi is defined by (2) and

δni

δt
=
(

∂ni

∂p

)
Sp,xp

∆p

∆t
+

(
∂ni

∂Sp

)
p,xp

∆Sp

∆t
+

(
∂ni

∂xp

)
p,Sp

∆xp

∆t
, (8)

according to (3).
We realise from (5), (6) and (7) that if Wx is complementary to

WV , the variables xp will be complementary to the variables V , and
the equations rx = 0 will be complementary to the equations rV = 0 .

3.2. Volume transformation

The form of the volume transformation WV is derived from Euler’s
theorem for homogenous functions, [8]. Any volume V (phase volume
or total volume) is a homogenous function of first degree in the mole
numbers, and may therefore be expressed by

V =
Nc∑
i=1

(
∂V

∂ni

)
p,n(i)

ni. (9)

Consequently, the transformation from mole numbers n to volumes V
is given by

WV =
(

∂V

∂n

)
p
. (10)
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If, for instance, V = [VT, V o, V w]T, where V o is the oil volume and
V w is the water volume, the transformation can be given in terms of
the matrix

WV =



(
∂VT
∂n1

)
p,n(1)

(
∂VT
∂n2

)
p,n(2)

. . .
(

∂VT
∂nNc

)
p,n(Nc)(

∂V o

∂n1

)
p,n(1)

(
∂V o

∂n2

)
p,n(2)

. . .
(

∂V o

∂nNc

)
p,n(Nc)(

∂V w

∂n1

)
p,n(1)

(
∂V w

∂n2

)
p,n(2)

. . .
(

∂V w

∂nNc

)
p,n(Nc)

 . (11)

It has been shown by Watts, [1], that the discretised form of the
equations which result from applying (11) to the vector of component
conservation equations, may be written(

Vb
dφ

dp
−
(

∂VT

∂p

)
n

)
∆p

∆t
+

Nc∑
i=1

(
∂VT

∂ni

)
p,n(i)

(fi − qi) = 0, (12)

which is the compositional pressure equation, and

φVb
∆Sj

∆t
+

(
dφ

dp
VbS

j − (
∂V j

∂p
)n

)
∆p

∆t
+

Nc∑
i=1

(
∂V j

∂ni

)
p,n(i)

(fi − qi) = 0,

(13)
which is the compositional saturation equation of phase j. Here Sj is
the saturation of phase j, and V j is the volume of phase j (in the above
case, j = o,w).

The compositional pressure and saturation equations (12) and (13)
express conservation of total volume and phase volumes, respectively,
and will be referred to as the volume balance equations. Watts, [1],
showed that the compositional saturation equations reduce to the con-
ventional black-oil equations when used with black-oil fluid properties.
Consequently, the volume balance equations form the basis for a unified
black-oil and compositional model.

3.3. Isochoric transformation

In order for the isochoric variables and equations to be complementary
to pressure and saturations and to the volume balance equations, re-
spectively, the isochoric transformation Wx must be complementary to
WV . In the following, we use the theory of orthogonal complements in
linear algebra to obtain this.

The effect of the transformation WV can be described by the range
of W T

V , which is a subspace of RNc defined by

πV = R(W T
V ) =

{
v ∈ RNc | v = W T

V u for u ∈ RNp

}
. (14)
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In words, the range of W T
V is the set of linear combinations of the rows

of WV . The space πV will be referred to as the volume space.
The nullspace (kernel) of WV , also a subspace of RNc , is defined by

N (WV ) =
{
ω ∈ RNc | WV ω = 0

}
. (15)

It can be shown that the nullspace of WV is the orthogonal complement
of the range of W T

V , [9]. Consequently, Wx is complementary to WV

if and only if

R(W T
x ) =

[
R(W T

V )
]⊥

= N (WV ). (16)

The space
πx = R(W T

x ) = N (WV ) (17)

will be referred to as the isochoric space.
If we give Wx in terms of a matrix, the rows ωT

m of Wx, with m
ranging from 1 to Nc −Np, must form a basis for the isochoric space,
which means that the vectors ωm must be Nc−Np linearly independent
solutions of the equations

WV ωm = 0. (18)

In other words, we require

WV W T
x = O, (19)

and that WxW T
x is non-singular.

Although a basis is not unique, the equations (18) and the require-
ment of linear independence provide the essential properties of Wx. An
interpretation of the isochoric space πx and the isochoric variables xp,
defined by

xp = Wx n, (xp)m =
Nc∑
i=1

ωm,i ni, (20)

can therfore still be given.
We will return to the question of a unique definition of the elements

of Wx when considering the properties of the isochoric conservation
equations, which can be written

Nc∑
i=1

ωm,i

(
∂ni

∂t
+ fi − qi

)
= 0, (21)

or, by the discretisation (3) of the time derivative,

Nc∑
i=1

ωm,i

(
∂ni

∂p
∆p +

∂ni

∂Sp
∆Sp +

∂ni

∂xp
∆xp + (fi − qi)∆t

)
= 0. (22)
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4. Interpretation

4.1. An interpretation of the isochoric variables

In the following, we give an interpretation of the isochoric variables xp.
We will here assume that the rows of Wx form an orthogonal basis for
the isochoric space πx.

The existence of the two mutually orthogonal spaces πV and πx indi-
cates that we may split the mole numbers in a volume part and an iso-
choric part without loosing any information. We recall the orthogonal
decomposition theorem of linear algebra, [9]:

THEOREM 1. Let π be a subspace of Rn. Then each y in Rn can be
written uniquely in the form

y = ŷ + z, (23)

where ŷ is in π and z is in π⊥. In fact, if {u1, . . . ,up} is any orthogonal
basis of π, then

ŷ = projπy =
y · u1

u1 · u1
u1 + . . . +

y · up

up · up
up, (24)

and z = y − ŷ.

The notion projπy is referred to as the orthogonal projection of y
onto π. We note that if the rows of a matrix W form an orthonormal
basis for π, which also means that π is the range of W T, the definition
(24) reduces to

projπy = W TWy. (25)

Since the volume space πV and the isochoric space πx are orthogonal
complements and subspaces of RNc , any vector n ∈ RNc can, according
to the orthogonal decomposition theorem, be written as

n = projπV
n + projπx

n. (26)

If we choose the rows of the (Nc − Np) × Nc matrix Wx to form an
orthonormal basis for πx, we may conveniently calculate the isochoric
part of n as

projπx
n = W T

x Wxn, (27)

and the volume part as

projπV
n = n−W T

x Wxn. (28)

By inserting (20) into (27), we find that

projπx
n = W T

x xp. (29)
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Consequently, the isochoric variables xp are the coefficients of the linear
combination of the rows of Wx necessary to form the projection of n
onto the isochoric space. In other words, the variables xp identify the
isochoric part of the mole numbers n.

4.2. An interpretation of the isochoric space

We also give a physical interpretation of the isochoric space πx, thus
motivating the use of the notion isochoric.

The set (p, n) gives a complete description of the system, and we
may therefore write V = V (p, n). Consequently, at constant pressure,
dp = 0, we deduce that

dV =
(

∂V

∂p

)
n

dp +
(

∂V

∂n

)
p
dn = WV dn. (30)

Now if
dn ∼ projπx

n = W T
x xp, (31)

and pressure is kept fixed, we find that

dV = WV dn ∼ WV W T
x xp = 0, (32)

due to (19). In other words, (31) identifies a set of mole number changes
that, under constant pressure, do not change any of the volumes.

When pressure is kept fixed, the dimension of the computational
space (e.g., the mole numbers) is Nc. The requirement of constant
volumes provides Np conditions, and identifies a subspace of dimen-
sion Nc − Np. The elements of the subspace are of the form (31).
Consequently, the subspace coincides with the range of W T

x , which
has been referred to as the the isochoric space πx. Based on the above
analysis, the notions isochoric space, isochoric variables and isochoric
conservation equations are well-founded.

The presence of an isochoric space seems reasonable, but studies of
isobaric, isochoric processes have, to our knowledge, not been reported
in the literature. However, an intuitive example of an isobaric, isochoric
process can be given. If we keep pressure fixed and replace some amount
of volatile components by a larger amount of less volatile components
(corresponding to a dn of the form (31)), we may be able to preserve the
phase volumes, as less volatile components generally occupy a smaller
volume than volatile components.
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nn

projπV nn

projπxnnnn+1/2

nn+1

projπxnn
projπxnn+1

projπV nn+1/2 = projπV nn+1

Figure 1. An interpretation of the IMPSAT scheme: the mole numbers evolve from
time tn (right) to time tn+1 (left) through one implicit volumetric step and one
explicit isochoric step.

4.3. An interpretation of the IMPSAT scheme

In an IMPSAT formulation, we treat the isochoric variables xp ex-
plicitly in the interblock flow terms, i.e., we fix the coefficients of the
isochoric part of the interblock flow terms. The resulting scheme can
be interpreted as follows, referring to Figure 1.

At time tn, the state variables pn and nn are known. The mole
numbers nn can be decomposed into a volume part, projπV nn, basi-
cally identified by the volumes V n, and an isochoric part, projπxnn,
identified by the isochoric variables xn

p .
The first step of IMPSAT, which corresponds to solving the volume

balance equations implicitly with respect to pressure and saturations,
establishes an intermediate state, referred to by superscripts n+1/2.
The isochoric variables xp are kept fixed, and we determine pressure
pn+1/2 and volumes V n+1/2. Consequently, the implicit step identifies
the volume part projπV nn+1/2 of the mole numbers, while the isochoric
part is still projπxnn, as shown in Figure 1.
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According to Darcy’s law, the implicit step determines the dominant
part of the interblock flow terms. Since the variables xp are treated
explicitly, we regard the implicitly determined volume part and the
isochoric part of the previous timestep as sufficient to establish the
interblock flow terms. We note that this assumption is the one that
may introduce stability problems.

In the second step of IMPSAT, we aim at determining the isochoric
part of nn+1, i.e., projπxnn+1. For this purpose we use the isochoric
conservation equations, and determine the isochoric variables xp. As
the interblock flow terms are determined by the implicit step, the sec-
ond step only adjusts the isochoric state locally in each gridblock. This
corresponds to an explicit solve.

Unfortunately, the implicit and explicit equations will not be com-
pletely decoupled, e.g., the volume derivatives (∂V/∂p)n, present in
the accumulation terms of the volume balance equations, will also de-
pend on the isochoric variables xp. This is not avoidable, but since the
isochoric variables are complementary to pressure and saturations, we
argue that the overlap between the implicit volume solution and the
explicit isochoric solution is minimal.

If the adjustment of the volume balance residuals due to the update
of the isochoric variables is insignificant, the first implicit step actually
yields the volume state and the interblock flow terms at time tn+1.
We may then set pn+1 = pn+1/2 and V n+1 = V n+1/2, which means
that projπV

nn+1 = projπV
nn+1/2. The explicit step then establishes

the isochoric state projπxnn+1, identified by the variables xn+1
p . This

is illustrated in Figure 1.
On the other hand, if the adjustment is considerable, we must do new

implicit and explicit steps until the explicit update of xp is insignificant
for the volume solution.

5. Practical Considerations

5.1. Considering the need for a unique definition of Wx

We have based our interpretations on the requirement that the rows of
Wx must form a basis for the nullspace of the volume transformation
matrix WV , i.e.,

WV W T
x = O, (33)

where O is a zero matrix of dimensions Np× (Nc−Np), and where the
rows of Wx must be linearly independent.

As mentioned, a basis is not unique. If the rows of Wx form a basis
for the nullspace, then so do the rows of HWx, for any non-singular
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matrix H of dimensions (Nc −Np)× (Nc −Np), because

WV (HWx)T = WV W T
x HT = O. (34)

Fortunately, we may show that the isochoric projection, defined by
(27), is independent of the choice of orthonormal basis. If the rows of
Wx and HWx both form orthonormal bases for the nullspace, we know
that

WxW T
x = I, (HWx) (HWx)T = I, (35)

where I is the identity matrix of dimensions (Nc −Np)× (Nc −Np).
Consequently,

I = (HWx) (HWx)T = HWxW T
x HT = HHT, (36)

which means that H is a square orthonormal matrix with

H−1 = HT. (37)

The expression (27), using the alternative basis (HWx)T, therefore still
reduces to

projπx
n = (HWx)T (HWx) n = W T

x HTHWxn = W T
x Wxn. (38)

However, the need for a unique definition of Wx must also be con-
sidered with respect to the primary equations. We repeat the form of
the isochoric conservation equations, (22), which are to be solved with
respect to the isochoric variables xp:

Nc∑
i=1

ωm,i

(
∂ni

∂p
∆p +

∂ni

∂Sp
∆Sp +

∂ni

∂xp
∆xp + (fi − qi)∆t

)
= 0. (39)

The equations appear to be non-linear in xp, so that a Newton-
Raphson linearisation may be necessary. We can show that the deriva-
tives ∂ni/∂u, u ∈ (p, Sp,xp) generally depend on first derivatives of
the rows of Wx, referred to as the weight vectors ωT

m, with m ranging
from 1 to Nc − Np. The linearisation of (39) with respect to xp thus
requires both first and second order derivatives of the weight vectors.
To be able to carry out this differentiation, we need a unique definition
of Wx.

The equations (33) constitute Np(Nc−Np) relations for determining
the Nc(Nc−Np) elements of Wx. Consequently, (Nc−Np)2 additional
conditions, including conditions that impose linear independence, are
needed. We note that the number of additional conditions is the same
as the number of elements in H.
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Since the weight vectors ωm are supposed to span the isochoric
space, it is natural to impose linear independence by requiring orthog-
onality between each pair of vectors ωm, ωl, i.e.,

ωT
m ωl = 0, m 6= l. (40)

The equations (40) correspond to (1/2)(Nc−Np)(Nc−Np−1) indepen-
dent conditions. In addition, we may add Nc−Np scaling conditions to
obtain an orthonormal basis, and thereby make the convenient relation
(27) applicable.

The conditions of orthonormality are satisfied by a standard singular
value decomposition of WV , which produces an orthonormal basis for
the nullspace. However, (1/2)(Nc − Np)(Nc − Np − 1) conditions still
remain. The number of remaining conditions indicate that they should
relate each pair of weight vectors, and thus provide an order of prece-
dence for the weight vectors. Generally, we could write the remaining
conditions as

F (ωm,ωl) = 0, m 6= l, (41)

but, unfortunately, the form of the ranking conditions is not evident.
In addition to the problem of specifying a full set of conditions,

we realize that the calculation of derivatives of the weight vectors may
become very time-consuming. Due to (18) and (11), the first and second
derivatives of the weight vectors namely depend on second and third
order derivatives of volumes, respectively.

However, we may show that both of the above problems are over-
come if we assume the weight vectors to be constant over a timestep,
i.e., if we assume that the isochoric space πx does not change consid-
erably during a timestep. Such an assumption seems plausible.

5.2. The consequences of using constant weight vectors

In the following, we let the weight vectors ωm be mutually orthonor-
mal. If the weight vectors are assumed constant, we may differentiate
through (20) to find that

∂(xp)m

∂t
=

Nc∑
i=1

ωm,i
∂ni

∂t
. (42)

Consequently, by inserting relation (42) into equation (21), we find that
the isochoric conservation equations reduce to the simple form

∂(xp)m

∂t
+

Nc∑
i=1

ωm,i(fi − qi) = 0. (43)
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We observe that all non-linearities in the accumulation term are
eliminated, and recall that the interblock flow terms fi are evaluated
using values of the isochoric variables from the previous timestep. This
means that a linearisation (which implies calculation of derivatives with
respect to the isochoric variables xp) is necessary only in gridblocks
containing a non-constant source term. However, since the isochoric
projection of the mole numbers is the same, regardless of the actual
definition of the orthonormal weight vectors, so is the solution of (43).
The possible influence on the convergence rate of the iteration used to
solve (43) is limited to a minor number of gridblocks (the well blocks),
and will not be discussed.

However, the weight vectors also go into the calculation of partial
derivatives with respect to (p, Sp), as the isochoric variables xp are
to be kept constant in such a differentiation. Partial derivatives with
respect to (p, Sp) are required to solve the non-linear volume balance
equations. In the following, we show that any set of basis vectors for the
space πx produce the same partial derivatives with respect to (p, Sp).
Referring to (34), we show that the presence of the matrix H does not
affect the calculations.

Let u = (p, Sp,xp) denote the set of primary variables for the
compositional model. We find that the set

nj = nj(u) =
[
n1

1, . . . , n
1
Nc

, n2
1, . . . , n

2
Nc

, . . . , n
Np

1 , . . . , n
Np

Nc

]T
, (44)

where nj
k is the mole number of component k in phase j, is a convenient

set of secondary variables, since the conventional thermodynamic equa-
tion of state model is given in terms of the set (p, nj). Consequently,
any variable or relation h can be written as

h = h
[
u, z

(
p, nj (u)

)]
, (45)

and all derivatives with respect to v ∈ (p, Sp) therefore depend on
the Np Nc derivatives ∂nj/∂v. To determine these derivatives, we need
Np Nc secondary relations,

rs = rs

[
u,z

(
p, nj (u)

)]
= 0. (46)

The conditions of chemical equilibrium between the components of
different phases j and l constitute Nc(Np − 1) independent relations,
conveniently represented by fugacity equalities

f j
i (p, nj)− f l

i (p, nj) = 0. (47)

In addition, we have a relation between pressure and density for
each phase, represented by the equation of state relations

pφVbS
j − njRTZj(p, nj) = 0, (48)
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where nj is the total mole number of phase j, R is the universal gas con-
stant, T is the absolute temperature and Zj is the phase compressibility
factor.

The remaining Nc−Np conditions assure that the derivatives confine
to the definition of the isochoric variables xp,

Nc∑
i=1

ωm,i ni(p, nj)− (xp)m = 0, (49)

where the coefficients ωm,i now are assumed to be constant.
By differentiating through the relations (46) with respect to v, we

obtain a linear system for determining ∂nj/∂v:(
∂rs

∂z

)
u

(
∂z

∂nj

)
p

∂nj

∂v
= −

(
∂rs

∂u

)
z

∂u

∂v
−
(

∂rs

∂z

)
u

(
∂z

∂p

)
nj

∂p

∂v
. (50)

The system of equations can be written

A
∂nj

∂v
= bv, (51)

where

A =
[

B
C

]
,

B : (NcNp − (Nc −Np))×NcNp,

C : (Nc −Np)×NcNp,
(52)

and only the part of the system involving the sub-matrix C is influenced
by the definition of the weight vectors ωm.

We find that

C =
[

C1 C2 . . . CNp

]
, Cj = Wx, (53)

where Wx is a solution of (33) which has linearly independent rows. It
is evident that HWx satisfies the same criteria as Wx, so that C could
be replaced by HC.

We consider the two alternative system matrices for the system (51),

A =
[

B
C

]
, Ã =

[
B

HC

]
, (54)

and let their inverses be given by

A−1 =
[
E F

]
, Ã−1 =

[
Ẽ F̃

]
, (55)

where
E, Ẽ : NcNp × (NcNp − (Nc −Np)) ,

F , F̃ : NcNp × (Nc −Np) .
(56)
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Since v ∈ (p, Sp), the last Nc−Np elements of the right hand side bv

of (51), corresponding to the relations (49), are zero. This reflects the
fact that the derivatives ∂(xp)m/∂v are zero. Consequently, the sub-
matrices F and F̃ are immaterial; they will be multiplied by a zero
vector when solving the system (51).

If we can show that Ẽ = E, the effect of the matrices A and Ã
will be the same, regardless of H, and so will the derivatives ∂nj/∂v,
v ∈ (p, Sp). From

AA−1 = I =
[

BE BF
CE CF

]
, (57)

we find that BE = I and that CE = O, and from

ÃÃ−1 = I =

[
BẼ BF̃

HCẼ HCF̃

]
, (58)

we deduce that BẼ = I and that HCẼ = O. Since H is non-singular,
the latter implies CẼ = O. This means that

A(E − Ẽ) = O, (59)

implying that E = Ẽ.

Consequently, we have shown that if we assume the changes in the
isochoric space πx with respect to time to be so small that the space
may be considered constant during a timestep, the equations (18) and
the requirement of linear independence (in our case, orthogonality)
yield a sufficient set of conditions for identifying the transformation
matrix Wx. In other words, specifying any additional conditions will
not affect the performance of the formulation. We can therefore simply
use a standard singular value decomposition of WV to determine Wx

as an orthonormal basis for the nullspace of WV .

6. Stability Analysis

6.1. The general CFL stability criterion

The compositional flow equations form a system of hyperbolic conser-
vation equations, written in differential form as

ut + f̄ (u)x = 0, (60)

where u are the solution variables, f̄ are the flow density rates, and
subscripts t and x denote partial differentiation with respect to time
and space, respectively.
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If the system of equations is solved by an explicit finite-difference
scheme, i.e., a finite-difference scheme where the flow terms are evalu-
ated using values of u from the previous timestep, timestep sizes must
be restricted to avoid an unstable solution (a solution that experiences
physically unreasonable, increasing oscillations).

Instabilities occur when the Courant-Friedrichs-Lewy (CFL) crite-
rion is violated. The CFL criterion requires that the numerical domain
of dependence must contain the domain of dependence of the associated
system of partial differential equations. For a system of the form (60),
the CFL criterion can be shown to be, [10],

CFL =

∥∥∥∥∥ ρ

(
∂f̄

∂u

)∥∥∥∥∥
L∞

∆t

Vb
≤ 1, (61)

where ρ is the spectral radius of the matrix ∂f̄/∂u, while Vb is the
size of the gridblock in which the system of equations is solved. If we
assume Vb to be constant, and let f = Vb f̄ denote the flow rates, we
may write

CFL =
∥∥∥∥ ρ

(
∂f

∂u

)∥∥∥∥
L∞

∆t ≤ 1. (62)

If the system of equations is linear, e.g., f = diag (λi) u, where
diag (λi) is a diagonal matrix with entries λi on the diagonal, the CFL
criterion reduces to

CFL = max
i

λi ∆t ≤ 1. (63)

Here, diag (λi) represents the ratio between the flow rate of u and the
value of u in place in the gridblock. The physical interpretation of (63)
is that the flow of u out of a gridblock must not exceed the amount
of u present in the gridblock. A similar interpretation applies to (62),
i.e., the largest stable timestep is the time the solution wave needs to
travel through one gridblock.

If the system is non-linear, calculations of eigenvalues of the matrix
∂f/∂u for each timestep will be too expensive. We therefore look for
an approximate CFL criterion. This may be achieved by simplifying
assumptions that linearise the equations, and/or consideration of the
physical interpretation of the CFL criterion.

6.2. Explicit treatment of mole fractions

In [4], Cao and Aziz presented a CFL stability criterion for explicit
treatment of the mole fraction cj

i of component i in phase j,

CFL
cj
i

=
∆t
∑Np

j=1 cj
i ξ

jf j

φVb
∑Nc

j=1 cj
i ξ

jSj
≤ 1, (64)



A Volume Balance Consistent Compositional IMPSAT Formulation 19

where ξj = nj/V j is the molar density of phase j, and f j is the
volumetric flow rate of phase j. The criterion is based on simplifying
assumptions that linearise the component conservation equations, [11].

In the following, we let fi denote the flow rate of component i, repre-
sented by the gross component outflux through the boundary of Vb. In
practice, we calculate fi by going through all interfaces γ of a gridblock,
and summing the interface fluxes f j

i,γ of component i in phases j for
which the gridblock is the upstream cell. We note that fi coincides
with the sum in the nominator of (64), and that the denominator of
(64) is the amount of component i present in the pore volume φVb. We
therefore introduce the ratio

βi =
fi

ni
, (65)

and write criterion (64) more conveniently as

CFL
cj
i

= βi∆t ≤ 1. (66)

For stability, criterion (66) must be fulfilled for every gridblock in
which the mole fraction cj

i is treated explicitly. The interpretation of
the criterion is that, in a stable timestep, the amount of component i
flowing out of a gridblock can not exceed the amount of that component
in place in the gridblock. In other words, a component can not move
more than one gridblock in a stable timestep.

In the IMPSAT formulation of Cao and Aziz, all of the component
mole fractions are treated explicitly, which means that the correspond-
ing approximate CFL stability criterion can be written

CFLCA = ‖β ‖∞ ∆t ≤ 1, (67)

where β = [β1, . . . , βNc ]
T. The corresponding maximum stable timestep

is
max (∆t)CA =

1
‖β ‖∞

. (68)

By comparison to (62) we find that criterion (67) corresponds to ap-
proximating the spectral radius of the matrix ∂f/∂n by the maximum
of the ratios fi/ni.

6.3. Explicit treatment of the isochoric variables xp

In order to find an approximate CFL criterion for explicit treatment of
the isochoric variables xp, we look for a modification of the ratio (65).
We note that the criterion of Cao and Aziz does not distinguish between
the part of the mole numbers that is treated explicitly and the part
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that is treated implicitly. Hence, it should be possible to derive a more
precise, i.e., less restrictive, approximate CFL criterion for IMPSAT.

Explicit treatment of the isochoric variables corresponds to explicit
treatment of the isochoric projection of the mole numbers, projπx

n.
The decomposition into a volume part and an isochoric part can be
done not only for the mole numbers,

n = projπV
n + projπx

n, (69)

but also for the flow rates

f = [f1, . . . , fNc ]
T = projπV

f + projπx
f . (70)

Our experience with the IMPSAT formulation shows that instabilities
(increasing oscillations) only appear in the isochoric part of the mole
numbers and in the isochoric part of the flow terms. This suggests that
the isochoric projections should be included in our modified ratio.

As a first approach, we introduce

ηi =
(
projπx

f
)
i(

projπx
n
)
i

, η = [η1, . . . , ηNc ]
T , (71)

and the approximate CFL stability criterion

CFLη
xp

= ‖η ‖∞ ∆t ≤ 1. (72)

The interpretation of criterion (72) is that the isochoric part of the
outflux from a gridblock must not exceed the isochoric part of the mass
in place in that gridblock. Unfortunately, experience shows that the
criterion in many cases allows for an unstable solution, corresponding
to a violation of the true CFL criterion. In other cases, it is more
restrictive than the criterion of Cao and Aziz. The criterion is therefore
of no use, and we must look for another modified ratio.

We know that instabilities arise from the hyperbolic part of the
system. Consequently, the pressure (total volume) equation (12), which
has an elliptic nature, should possibly be excluded from the stability
analysis. This is not reflected in (71), as the volume space πV = π⊥x ,
defined by (14), includes the total volume (pressure).

In order to obtain a modified volume space that only represents the
hyperbolic part of the phase volumes, we exclude the total volume from
the volume transformation (10), and introduce

W
V

j =

(
∂V

j

∂n

)
p

, (73)



A Volume Balance Consistent Compositional IMPSAT Formulation 21

where W
V

j contains all the fluid volumes except for that of phase j.
We interpret W

V
j as a (Np − 1) × Nc matrix, and introduce Wxj as

a (Nc −Np + 1) ×Nc matrix, the rows of which form an orthonormal
basis for the nullspace of W

V
j .

We may then argue that the projection operator

proj
πj

x

= W T
xjWxj (74)

captures the explicit hyperbolic part of the system better than the
operator projπx

, and that (71) should be replaced by

νj
i =

(
proj

πj
x

f

)
i(

proj
πj

x

n

)
i

, νj =
[
νj
1, . . . , ν

j
Nc

]T
. (75)

Experience shows that some of the ratios (75) may be negative,
indicating that the projected component flux is an influx rather than
an outflux. The way we formulate the stability criterion, only outfluxes
are used to limit the stability. We therefore only consider the positive
components of νj , corresponding to a vector νj+.

In addition, we must choose which phase j should be left out in
(73). In order for phase j to reflect the stability properties of the total
volume (pressure), it should be chosen as the most stable phase. This
corresponds to

CFLν
xp

= min
j

∥∥∥νj+
∥∥∥
∞

∆t ≤ 1, (76)

and yields a maximum stable timestep of

max (∆t)xp
=

1
minj ‖νj+ ‖∞

. (77)

The interpretation of criterion (76) is that the explicit hyperbolic
part of the outflux from a gridblock must not exceed the explicit hy-
perbolic part of the mass in place in that gridblock. Consequently,
we expect (76) to be closer to the true CFL criterion than the first
approach, (72). However, the precision of the criterion depends on the
assumption that phase j reflects the stability properties of the total
volume, and its range of validity must be tested by numerical examples.

Finally, we note that (76) reduces to the criterion of Cao and Aziz,
(67), in the single phase case. In that case, only pressure is treated
implicitly, and the criterion should be interpreted as a compositional
IMPES stability criterion.
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7. Numerical Results

7.1. Reservoir and fluid data for test cases

In order to investigate the properties of the presented IMPSAT for-
mulation, we consider a reservoir where the fluids consist of four hy-
drocarbon components (C1, C2, nC4, nC7). We are not interested in
single phase gridblocks, in which only pressure would be treated im-
plicitly (IMPES), so we initialise with a two phase (gas/oil) chemical
equilibrium and consider only horizontal flow (reservoir fluids are not
subject to gravity segregation). We use a 25×25×1 uniform orthogonal
quadrilateral grid with gridblocks of dimensions 100 m × 100 m × 10
m. The porosity is set to φ = 0.2 in all gridblocks, and we use a uniform
permeability tensor of

K =

 100 0 0
0 100 0
0 0 10

mD. (78)

We let the residual oil and gas saturations be zero, and use the simple
gas and oil relative permeability relations

kg
r = 0.4 · (Sg)2 , ko

r = 0.4 · (So)2 . (79)

All thermodynamic calculations are based on the Peng-Robinson
equation of state, [12], using component properties from Reid et. al.,
[13]. Phase viscosities are calculated by the approach of Lorentz et. al.,
[14]. The reservoir temperature is set to 420.0 K, and capillary pressure
between the oil and gas phases is neglected. The initial pressure in all
gridblocks is 40.0 bars.

A producer, controlled by a fixed bottom hole pressure of 30.0 bars,
is located in gridblock (1,1,1).

To control timestep sizes, we use the formula

∆tn+1 = min
{

∆tn min
u

[
(1 + λ)∆un

∆u∗ + λ∆un

]
, α ·max(∆t)xp

}
days, (80)

where ∆tn+1 is the next timestep, ∆tn is the previous timestep, ∆un

is the change in the variable u over the previous timestep, ∆u∗ is the
target variable change during the next timestep, λ is a tuning factor
and α is the CFL factor of (76). The leftmost part of the formula is due
to Aziz and Settari, [16]. We use λ = 0.5, ∆p∗ = 15.0 bars, ∆Sj,∗ = 0.1
and ∆cj,∗

i = 0.05.
We note that instabilities may occur for α > 1, but that the os-

cillations will eventually be damped due to the leftmost part of the
timestep control formula. The initial timestep is 1 day.
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7.2. Test cases

Case 1: Initial overall composition: z = [ 0.1, 0.1, 0.2, 0.6 ]T. Oil domi-
nant, So = 0.84905 initially.

Case 2: Initial overall composition: z = [ 0.3, 0.2, 0.2, 0.3 ]T. Gas dom-
inant, Sg = 0.888087 initially.

Case 3: Initial overall composition: z = [ 0.2, 0.05, 0.1, 0.65 ]T. Similar
oil and gas volumes, So = 0.547284, Sg = 0.452716 initially.

7.3. Validation

To check our results, we use the commercial compositional simulator
Eclipse300, [15]. The Eclipse300 simulations are run in fully implicit
mode (FIM).

7.4. Compared quantities

For each case, we first run our simulator through 50 timesteps controlled
by (80) with α = 1. We may then plot the maximum stable timestep
during the simulation, both according to the criterion of Cao and Aziz,
(68), and the new criterion, (77). We also plot the actual timestep taken
due to the timestep control (80). We expect that the new approximate
CFL criterion allows for larger timesteps than the criterion of Cao and
Aziz, and we plot the relative timestep size improvement, calculated
by

κ =
max(∆t)xp −max(∆t)CA

max(∆t)CA
. (81)

The cases are then run using some α > 1 in the timestep control,
thus producing an unstable solution. We plot how the solution, repre-
sented by pressure, oil saturation and normalised mole numbers, evolves
with time in the production block, according to the runs with α = 1,
the corresponding runs with Eclipse300, and the runs with α > 1.

Finally, for a component amount ni which experiences increasing
oscillations, we plot its decomposition onto the volume space and the
isochoric space,

ni =
(
projπV

n
)

i
+
(
projπx

n
)
i
, (82)

with respect to time.
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Figure 2. Timesteps and relative improvement for Cases 1, 2, 3. Here, ’maxDtxp’
is the maximum stable timestep according to the new criterion (77), ’actualDt’ is
the actual timestep controlled by (80), while ’maxDtCA’ is the maximum stable
timestep according to the criterion of Cao and Aziz, (68).

7.5. Comparing timestep sizes

Figure 2 shows timesteps, timestep limits and relative improvements
κ for Cases 1, 2, 3. Timesteps are controlled by the maximum stable
timestep limit (’maxDtxp’) during most of the simulations. The relative
improvement κ is significant in all cases, and ranges from around 20-
40 % in Cases 1 and 2, to around 100 % in Case 3. We note that, since
(76) reduces to (67) in the single phase case, smaller values of κ are
expected when the system is close to single phase (Cases 1 and 2).
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Figure 3. Production block results versus time, Case 1. Comparison of IMPSAT
runs with CFL factors of α = 1 and α = 2 and a fully implicit Eclipse300 run.

7.6. Production block results, Case 1

Figure 3 shows production block results versus time for Case 1. We
observe that the results of IMPSAT with a CFL factor of α = 1 match
the results of Eclipse300. However, for an IMPSAT run with a CFL
factor of α = 2, some of the normalised mole numbers experience
increasing oscillations. An extra simulation with α = 1.9 showed no
sign of oscillations. We conclude that the stability limit for Case 1
corresponds to a CFL factor of (76) of around 2.0. Consequently, in
Case 1, the approximate CFL criterion is reasonably precise.
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Figure 4. Production block results versus time, Case 2. Comparison of IMPSAT
runs with CFL factors of α = 1 and α = 1.7 and a fully implicit Eclipse300 run.

7.7. Production block results, Case 2

Figure 4 shows production block results versus time for Case 2. The
results of Eclipse300 and IMPSAT with a CFL factor of α = 1 are very
similar, but for a run with a CFL factor of α = 1.7 the solution becomes
unstable. Repeated runs leads us to conclude that the stability limit
for Case 2 corresponds to a CFL factor of around 1.7. Consequently,
the approximative CFL criterion is reasonably precise also in Case 2.
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Figure 5. Production block results versus time, Case 3. Comparison of IMPSAT
runs with CFL factors of α = 1 and α = 1.5 and a fully implicit Eclipse300 run.

7.8. Production block results, Case 3

Figure 5 shows production block results versus time for Case 3. We here
observe a mismatch between the results of Eclipse300 and IMPSAT, but
only for the components that contribute less to the saturations, i.e., the
intermediate ones. A one-dimensional study shows that the correspond-
ing component fronts are significantly more smeared by the Eclipse300
fully implicit solution. Consequently, the mismatch is reasonable.

For a run with a CFL factor of α = 1.5 the solution becomes
unstable. We conclude that the stability limit corresponds to a CFL
factor of around 1.5, which makes (76) a quite precise estimate.
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Figure 6. Volume part (left) and isochoric part (right) of the lightest component with
respect to time in Cases 1, 2, 3, with CFL factor α = 2, 1.7 and 1.5, respectively.

7.9. Instabilities

Figure 6 shows the volume part and the isochoric part of the lightest
component versus time for Case 1, 2, 3, with α = 2, α = 1.7 and
α = 1.5, respectively. In all three cases, we observe that the increasing
oscillations are isolated to the isochoric part. In addition, we note that
similar behaviour is seen for the decomposition of the flow rate of
component i,

fi =
(
projπV

f
)

i
+
(
projπx

f
)
i
, (83)

with respect to time.
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8. Conclusions and Further Work

A new volume balance consistent compositional IMPSAT formulation
has been developed and tested. It is based on transforming the conven-
tional set of variables and equations into complementary sets: pressure,
volumes and the volume balance equations on the one hand, and iso-
choric (constant volume) variables and isochoric conservation equations
on the other hand. The approach yields a minimum overlap between
the implicit volume solution and the explicit constant volume solution.

In addition, the new concepts of isochoric variables and spaces have
been interpreted both mathematically and physically, leading to a bet-
ter understanding of the stability of the IMPSAT formulation. Conse-
quently, new approximate CFL stability criteria have been proposed
and tested. Numerical results indicate that the new approach leads
to a reasonable measure for the stability of IMPSAT. The predicted
maximum stable timestep can in some cases be up to twice the timestep
allowed by the conventional IMPSAT stability criterion of Cao and Aziz
(corresponding to a relative improvement of 100 %). However, further
testing is required to establish the range of validity of the new stability
criterion.

The main focus of this paper has been the theory behind the volume
balance consistent IMPSAT approach. Simulator performance has not
been emphasised, but we have noted that the use of complementary
variables and equations yields a better conditioned system. Compar-
isons to other IMPSAT formulations will be subject to future research.
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