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Abstract

We have implemented and tested a computer pro-
gram which can determine the phase composition
and the pressure above and below a given reference
depth in a fluid column. The program can also de-
termine whether the oil phase becomes saturated,
i.e., whether a gas-oil contact exists within a spe-
cified depth range in the reservoir. To do so, the
program uses a phase stability test. We have only
considered isothermal cases.

As an extension of the above tasks, the program
also calculates bubblepoint or dewpoint pressures
at the various depths, provided that suitable initial
estimates are calculated. The ultimate alternative
of generating the entire phase envelope has also been
implemented.

The program can be used as a tool for initializ-
ing a 3D reservoir simulator at steady state equilib-
rium. It can also be applied to check if data from
different fluid test samples, taken from the same pet-
roleum reservoir at different depths, are in accord-
ance. However, under the current implementation,
the program can only do calculations on fluids con-
taining species from a list of 15 components.

This report provides an outline of the thermo-
dynamic relations behind the calculations, and the
numerical schemes used for solution of the vari-
ous equations are presented shortly. Application
of the program is also presented, including plots of
reservoir pressure versus depth, saturation pressure
versus depth, phase composition versus depth and
some phase envelopes, all generated by the program.

A copy of the source code of the program is given
as an attachment to this report.

1 Introduction

When fluids are at equilibrium in a gravity field,
the individual phases are not homogenous. At each
depth there exists at most one distinct phase, and
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the fluids are subject to pressure and composition
gradients in the vertical direction.

The pressure at a given point depends on the mass
density of fluids situated above that point. Con-
sequently, pressure increases with depth, and the
pressure gradient is larger in an oil (liquid) phase
than in a gas (vapour) phase. Heavy components
tend to be placed in the lower part of the fluid
column, and the largest amounts of light compon-
ents are found in the upper part.

If both an oil phase and a gas phase exist in a
fluid column, the gas is situated on top of the oil.
The border between oil and gas can be sharp, in
which case we have a distinct so-called gas-oil con-
tact (GOC). As we approach such a GOC from be-
low, we find that the oil phase becomes unable to
increase its amount of light components, i.e., the oil
becomes saturated.

If, however, the fluids are critical in the region
between the gas column and the oil column, it is im-
possible to specify an exact GOC. As we approach
the GOC region from below the oil phase is still able
to increase its amount of light components. Such a
GOC region is therefore referred to as an undersat-
urated GOC.

In order to determine the variations in pressure
and composition with depth, and to be able to indic-
ate if a gas-oil contact exists, we must perform grav-
ity/chemical equilibrium (GCE) calculations. GCE
calculations are based on thermodynamic principles
and equations.

1.1 The GCE governing equations

By including the effect of gravity in the first law
of thermodynamics, we obtain the so-called funda-
mental relation:

dU = TdS − PdV +
Nc∑
i=1

µidni − d(
Nc∑
i=1

migD), (1)

where U is internal energy, T is absolute temperat-
ure, S is entropy, P is pressure, V is volume, µi is
the chemical potential of component i, ni are the



moles of component i, mi is the total mass of com-
ponent i, g is the gravitational acceleration and D
is depth. The number of components in the system
is denoted Nc.

The internal energy U is by definition given by

U = TS − PV +
Nc∑
i=1

µini −
Nc∑
i=1

migD. (2)

By comparing the total differential of U ,

dU = TdS − PdV +
Nc∑
i=1

µidni − d(
Nc∑
i=1

migD)

+SdT − V dP +
Nc∑
i=1

nidµi, (3)

to the fundamental relation (1), we obtain the so-
called Gibbs-Duhem condition,

SdT − V dP +
Nc∑
i=1

nidµi = 0. (4)

The second law of thermodynamics implies that an
equilibrium state of an isolated system is a station-
ary point of maximum entropy. Equivalently, but
more conveniently, using T ,P and n as the com-
plete set of independent variables, equilibrium cor-
responds to a minimum of the Gibbs energy G, given
by

G = U + PV − TS =
Nc∑
i=1

µini −
Nc∑
i=1

migD. (5)

Consequently, in order for a single phase fluid to
remain at equilibrium in a gravity field, we must
not be able to decrease the Gibbs energy by moving
a differential molar amount δni a vertical distance
dD.

Assume that moving δni corresponds to a change
dµi in the chemical potential of component i. Using
the relation mi = Mini, where Mi is the molecular
weight of component i, we write

dG =
Nc∑
i=1

(dµi −MigdD)δni ≥ 0, ∀ δni, (6)

which yields the stability condition

dµi −MigdD = 0, i = 1, 2, . . . , Nc. (7)

For an isothermal system, dT = 0, the Gibbs-
Duhem condition (4) combined with the stability
condition (7) gives

dP = ρgdD, (8)

where ρ =
∑Nc

i=1 Mini/V is the mass density of the
fluid. Equation (8) is the well-known condition for
hydrostatic equilibrium.

1.2 Convenient reformulation

The chemical potential µi is conveniently expressed
by the relation

µi = µ∗i (T ) + RT ln fi , (9)

where µ∗i (T ) is the temperature-dependent ideal-gas
contribution, R is the universal gas constant, and fi

is the fugacity of component i. For an isothermal
system, equation (7) may therefore be written

1
fi

dfi =
Mig

RT
dD. (10)

This ordinary differential equation has the solution

fi(D) = fi(Dref)e
Mig

RT (D−Dref), (11)

where Dref is some reference depth at which we know
the pressure and the phase composition (in addition
to the uniform temperature), and thereby also the
fugacity.

We note that fugacities fi are often expressed in
terms of pressure P , phase composition z and the
fugacity coefficient φi,

fi = Pziφi . (12)

The fugacity coefficients are calculated from some
thermodynamic model, for example an equation of
state model (e.g., Peng-Robinson, Soave-Redlich-
Kwong). We refer to Michelsen and Mollerup, [1],
for details.

If the GCE calculation is based on an equation
of state model, component volumes vi should, ac-
cording to Whitson and Berely, [2], be adjusted by
the Peneloux correction, vi,corr = vi + ci, where ci

is known as the volume shift. Fugacities must then
also be corrected:

fi,corr = fi e
ciP

RT . (13)

However, the Peneloux correction has not been used
in the calculations presented in this report.

1.3 The possible presence of a GOC:
Stability analysis

Equation (11) applies to single phase fluids, both
liquid and vapour, and can therefore be used to
determine pressure and composition throughout a
fluid column at steady state. However, precautions
must be made to prevent the GCE calculation from
being applied to an unstable (e.g., two phase) com-
position. Any pressure P and composition z calcu-
lated from (11) must therefore be checked, to see if
the proposed solution is a stable single phase.

The single phase stability condition is derived in a
similar manner to the gravity/chemical equilibrium
condition (7), and may be written

TPD(y) =
Nc∑
i=1

yi

(
µi(y)− µI

i (z)
)
≥ 0, ∀ y. (14)



Here y is the composition of a proposed new phase,
and superscript I indicates a single phase of com-
position z. Condition (14) is often referred to as
the tangent plane distance condition of Gibbs. For
computational convenience, we may introduce the
modified tangent plane distance measure

tm(Y) = 1 +
Nc∑
i=1

Yi(ln Yi + ln φi(Y)− ei − 1),

ei = ln zi + ln φi(z). (15)

Here the Yi are formally treated as mole numbers.
We refer to Michelsen and Mollerup, [1], for details.

The application of stability analysis in GCE cal-
culations can be described as follows. If, at some
depth, the solution obtained from (11) implies an
unstable fluid, i.e., there exists at least one compos-
ition y such that the tangent plane distance condi-
tion (14) is violated, we have discovered the exist-
ence of a gas-oil contact (a gas-oil contact region).

To proceed with GCE calculations on the other
side of the GOC, we may let the y, corresponding to
the most negative minimum, be the initial estimate
for a repeated solution of (11), so that we eventu-
ally obtain a switch from one single phase state to
another.

Moving through an undersaturated GOC region,
the stability test will never indicate instability, and
no distinct phase switch can be observed. To loc-
ate an undersaturated GOC, we must do saturation
point calculations.

1.4 Saturation point calculations

Saturation point calculations may serve as an illu-
minating complement to stability analysis in GCE
calculations. At each depth in the liquid column,
the difference between the reservoir pressure and
the bubblepoint pressure indicates how far we are
from the appearance of a vapour phase. Similarly,
in a gas column, the difference between the reservoir
pressure and the dewpoint pressure indicates how
far we are from the appearance of a liquid phase
(i.e., condensed vapour).

The dewpoint pressure will also indicate whether
we have a so-called retrograde gas condensate. If the
dewpoint pressure is below the reservoir pressure,
depressurization will lead to condensation of the gas.

In addition, if a GOC exists, the bubblepoint
pressure and the dewpoint pressure will be equal at
the GOC. If the GOC is saturated, the saturation
pressures will also be equal to the reservoir pres-
sure. This is not the case if the GOC is undersat-
urated. Consequently, saturation point calculations
give guidance for characterizing a GOC.

Saturation point calcuations are based on the set
of equations

ln Ki = ln φl
i(x, T, P )− ln φv

i (y, T, P ), (16)∑Nc

i=1(yi − xi) = 0. (17)

Here x denotes a liquid composition, y is a vapour
composition and Ki = yi/xi is the K-value of com-
ponent i. Equation (16) requires that the chemical
potentials of the liquid and vapor phases are equal,
while equation (17) represents the material balance.

In the isothermal case, the task reduces to finding
the saturation pressure of a given single phase com-
position z at the given temperature T . For bubble-
point calculations, z = x, equation (17) reduces to

g =
Nc∑
i=1

Kizi − 1 = 0, (18)

and for dewpoint calculations, z = y, it reduces to

g = 1−
Nc∑
i=1

zi

Ki
= 0. (19)

Saturation point pressure calculations rely on good
initial estimates for pressure and the incipient phase
composition. If a saturation point of the same kind
as the one we are looking for (bubblepoint or dew-
point) has already been found, this previous point
is likely to be a good initial estimate. However, for
the calculation of the very first saturation point, we
use the Wilson correlation,

ln Ki = ln
(

Pci

P

)
+5.373(1+ωi)

(
1− T

Tci

)
, (20)

to generate the initial estimate. This approximation
is valid at low pressures, as fluids in the low pressure
region behave nearly like ideal gases.

We can not expect that saturation point calcu-
lations based on initial estimates from the Wilson
correlation succeed in a broad pressure range. Then
the ultimate solution is to start with an easy satur-
ation point calculation (for instance, a low pressure
bubblepoint), and generate the entire phase envel-
ope, including the saturation point(s) we are looking
for.

Phase envelope calculations are based on the set
of equations (16) and (17), with the relations

xi =
zi

1− β + βKi
, yi =

Kizi

1− β + βKi
. (21)

If x is the liquid phase composition and y is the
vapour phase composition, β is the vapour fraction.

2 Practical Implementation

The implemented computer program requires that
a reference pressure Pref and a stable single phase
reference composition zref at some reference depth
Dref is given as input. The temperature T must also
be specified, and is kept fixed at all depths.

On user demand, the program should then be
able to determine the pressure and fluid composi-
tion at other depths D, above and below the refer-
ence point. In addition, the program should be able



to indicate whether a gas-oil contact exists within
a user-specified depth range. In the case of an un-
dersaturated GOC, the user must identify the GOC
from the generated saturation pressure versus depth
plot.

2.1 GCE calculations

The gravity/chemical equilibrium part of the pro-
gram must solve equation (7), or more conveniently,
equation (11), in a way so that the Gibbs-Duhem
condition (8) is fulfilled. We accomplish this by us-
ing a numerical scheme that converges pressure and
composition at the same time.

For notational convenience, we define

f̃i ≡ f̃i(D,Dref) = fi(Dref)e
M1g
RT (D−Dref) (22)

so that fugacities with a ˜ have been gravity correc-
ted with respect to some reference depth Dref. The
calculation of all the f̃i is the starting point of any
GCE calulation in the program.

2.1.1 A Newton-Raphson scheme

We define the vector equation

F =



f1 − f̃1

f2 − f̃2

...

fNc
− f̃Nc∑Nc

i=1 zi − 1


= 0, (23)

and the variable set

u = [z1, z2, . . . , zNc , P ]T , (24)

where u is to be determined at a depth D, and fi =
Pziφi is the fugacity at that depth.

We set up the following Newton-Raphson scheme
for solving equation (23):

F′(k−1)
(
u(k) − u(k−1)

)
= −F(k−1). (25)

Here superscript k refers to iteration step k, and
k = 0 corresponds to an initial estimate.

The Jacobian F′ =
{

∂Fi

∂uj

}
is calculated using the

following derivatives:

∂fi

∂uj
=

fi

P

∂P

∂uj
+

fi

zi

∂zi

∂uj
+

fi

φi

∂φi

∂uj
, (26)

∂P

∂uj
=
{

1 , uj = P
0 , uj 6= P

, (27)

∂zi

∂uj
=
{

1 , uj = zi

0 , uj 6= zi
, (28)

∂φi

∂uj
= φi

∂lnφi

∂uj
. (29)

Expressions for the derivatives of the ln φi, are
provided by Michelsen and Mollerup, [1].

With a suitable initial estimate u0, the Newton-
Raphson approach is quadratically convergent, and
the solution u satisfies the Gibbs-Duhem condition
(see Halldórsson and Stenby, [3]).

If the depth where we want to determine pres-
sure and composition is not too far from the refer-
ence depth, u0 = [zref, Pref]T provides a good initial
estimate for the Newton-Raphson scheme. In ad-
dition, if we calculate several subsequent pressures
and compositions in some depth range, we may re-
define the reference state to increase the quality of
the initial estimates.

If we look for a single pressure and composi-
tion far away from the reference depth, the refer-
ence state may no longer be a sufficiently good ini-
tial estimate for the Newton-Raphson scheme. We
have therefore also included a successive substitu-
tion based approach. Such a scheme is not as de-
pendent on proper initial estimates as the Newton-
Raphson scheme. However, many iterations may
be required for convergence, especially in near crit-
ical regions. The program therefore only switches to
the successive substitution approach if the Newton-
Raphson scheme fails to converge.

2.1.2 A successive substitution scheme

The successive substitution scheme we have imple-
mented is described by Whitson and Berely, [2]. The
scheme is used to solve the equation

Q(z, P ) = 1−
Nc∑
i=1

zi
f̃i

fi
= 1−

Nc∑
i=1

Yi = 0, (30)

iteratively with respect to pressure and composition.
Each iteration step consists of a Newton-Raphson
correction of the pressure,

P (k+1) = P (k) − Q(k)

(∂Q/∂P )(k)
, (31)

followed by a update of the variable Yi,

Y
(k+1)
i = Y

(k)
i

[
r
(k)
i

]λ
, (32)

where

ri =
f̃i

fi

(
Nc∑
i=1

Yi

)−1

. (33)

λ is an acceleration parameter, and λ = 1 implies
an unaccelerated scheme. For acceleration, Whitson



and Berely suggest to calculate λ as an approxim-
ation to the dominant eigenvalue of the problem.
Acceleration is then performed at every fourth step
of the iteration. We have not investigated the effects
of this acceleration, and consequently used λ = 1.

The composition z is at each step updated by

z
(k+1)
i =

Y
(k+1)
i∑Nc

j=1 Y
(k+1)
j

, (34)

and we iterate until convergence. We refer to Whit-
son and Berely, [2] for more details on the successive
substitution scheme.

2.2 Stability tests

To ensure that only GCE calculations on a stable
single phase are pursued, and to be able to locate
saturated GOCs, the program contains a stability
test. The stability test is performed after each pro-
posed solution of the GCE problem. We have imple-
mented the stability test as a simplified search for
negative minima of the tangent plane distance. Us-
ing the Wilson correlation, the program calculates
two initial estimates, one “light” estimate

yi = KWilson
i zi , (35)

and one “heavy” estimate

xi =
zi

KWilson
i

. (36)

We then seek (possibly negative) minima of the
function (15) by the successive substitution scheme

ln Y
(k+1)
i = ei − ln

[
φi(Y(k))

]
. (37)

Here Y 0
i = yi (light estimate) or Y 0

i = xi (heavy
estimate), and the Yi are formally treated as mole
numbers.

If a negative minimum of the tangent plane dis-
tance is discovered, the program reports that a sat-
urated gas-oil contact has been found.

To proceed calculations on the other side of the
GOC, the program uses the composition w corres-
ponding to the most negative minimum as an initial
estimate for recalculating the GCE. Consequently, a
switch from one single phase state to another even-
tually is obtained.

2.3 Saturation point calculations

The implemented GCE calcuations combined with
a stability test yields a computer program capable
of determining pressure and composition at depths
above and below a given reference depth, and of de-
ciding whether a saturated gas-oil contact exists in
a certain depth range. However, to identify any un-
dersaturated gas-oil contacts, procedures for calcu-
lating saturation pressures are added. Under the

current implementation, saturation point calcula-
tions are only performed when the user specifies a
depth range for GCE calculations.

2.3.1 A successive substitution approach

The saturation point calculations are based on a suc-
cessive substitution approach. With an ideal solu-
tion approximation, the compositional dependence
in the K-values of equations (18) and (19) are neg-
lected. By using this approximation at the start of
each iteration step we may update the saturation
pressure by a Newton-Raphson correction,

P (k+1) = P (k) − g(k)

(dg/dP )(k)
, (38)

where the equation g = 0 is defined by (18) for
bubblepoint calculations, and by (19) for dewpoint
calculations. We then update the composition of
the incipient phase by

y
(k+1)
i = zi

(
φl

i

φv
i

)(k)

, (39)

or

x
(k+1)
i = zi

(
φv

i

φl
i

)(k)

, (40)

for bubblepoints and dewpoints, respectively.
The very first bubblepoint and dewpoint calcula-

tions are the most difficult, as no initial estimates of
guaranteed quality are given. The program there-
fore first tries to use an initial estimate from the
Wilson approximation. In other words, it solves (18)
or (19) with respect to the initial pressure estimate,
and finds the incipient phase initial estimate from
the relation KWilson

i = yi/xi.
If calculations based on the Wilson initial estim-

ate fail to converge, the program tries to construct
the entire phase envelope (see below), thereby most
likely generating a sufficiently good initial estimate
for the desired saturation point(s).

When the very first dew- and bubblepoints have
been determined, these points are used as initial es-
timates for later saturation point calculations. How-
ever, in near critical regions, the successive substi-
tution scheme may still fail to produce a solution
in a reasonable number of iterations, in which case
the program skips the saturation point calculation
in question.

2.3.2 Phase envelope construction

The phase envelope calculation available in the pro-
gram uses the natural logarithms of pressure, tem-
perature and K-values as primary variables. As we
have Nc +1 equations, (16) and (17), in Nc +2 vari-
ables, the program may at each stage in the con-
struction process, specify one of the primary vari-
ables, say U , as U = S.



At each determined point of the phase envelope,
the program also calculates the derivatives of all
primary variables with respect to the specified S
at that point (so-called sensitivities). The sensitiv-
ities indicate how much each primary variable will
change if S is changed. The program uses this in-
formation to provide a suitable initial estimate for a
Newton-Raphson calculation of the next saturation
point. To control the changes in all the variables,
the program automatically chooses to specify the
variable that is expected to change the most (i.e.,
has the largest sensitivity). Based on the number
m of Newton iterations required for convergence of
the previous point, the steplength (the change in the
specified variable U) is either kept fixed (m = 3, 4),
increased (m < 3) or decreased (m > 4).

The near critical region should pose no conver-
gence problems for this procedure, as long as at least
one of the ln Ki is kept non-zero in that region. In
addition, the program can locate the approximate
position of critical points by registering when all the
ln Ki switch sign.

As the first initial estimate, the program uses a
low pressure bubblepoint temperature calculation
(P < 1 MPa). This should be a fairly easy task,
as fluids at low pressures behave nearly ideal, and
the Wilson correlation gives good K-value estimates.
When calculations reach/pass the given reservoir
temperature T , the program registers the pressure
and the incipient phase composition, and is able to
interpret the point as a bubblepoint (if no critical
point has been detected) or a dewpoint (if a single
critical point has been detected).

We note that the implemented automatic genera-
tion of the entire phase envelope may fail, in which
case the program ignores the phase envelope calcu-
lation, and produces an error message.

Further details on phase envelope construction
are found in [1].

2.4 The final program

The final program reads reference data from the file
input.dat and gives the following user options:

1. Calculate pressure and composition at a spe-
cified depth D

2. Search for a gas-oil contact in a specified depth
range

3. Generate the phase envelope at a specified
depth D

4. Exit program

Option 1 only gives output to screen. Op-
tion 2 gives output to screen and generates the
matlab-files plots.m and comps.m, which can used
to obtain plots of reservoir pressure and saturation
pressures versus depth, and compositions versus

depth, respectively. Option 3 generates a matlab-file
phaseenv.m, used for plotting the phase envelope.
Note that repeated runs will overwrite the output
files.

Note also that, under the current implementation,
the user must choose from the following list of com-
ponents when constructing input.dat:

Table 1: List of components

1: C1 2: C2 3: C3
4: iC4 5: nC4 6: iC5
7: nC5 8: nC6 9: nC7
10: nC8 11: nC9 12: H2O
13: N2 14: CO2 15: H2S

This is due to the use of Fortran subroutines
provided at the IVC-SEP Summer School 2004. We
refer to [4] for details.

A listing of the source code behind the program
is given as an appendix to this report.

3 Results

The program has been tested on the reference com-
positon given in Table 2:

Table 2: Fluid reference sample

Component Molepercent
C1 94.30
C2 2.70
C3 0.74
nC4 0.49
nC5 0.27
nC6 0.10
N2 1.40

We use a uniform temperature of 180.0 K and a
reference pressure of 6.0 MPa. The reference depth
is set to 4000 m.

The phase envelope at the reference depth is
shown in Figure 1, and is generated by choosing
option 3 and letting 4000 m be the specified depth.
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Figure 1: Phase envelope at reference depth

We then perform a search for a GOC in the depth
range 4200-2000 m (option 2), specifying that the
program should do calculations at 20 depths. The
resulting plot is shown in Figure 2. The plot also
shows a comparision to results obtained with the
simulator SPECS (see [5]).
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Figure 2: GCE calculations and saturation curves,
depth range 4200-2000 m

As we can see, the reservoir pressures calculated
by our program seem to be in accordance with the
results from SPECS. However, the saturation point
calculations show a poorer match. We have not been
able to investigate this disagreement, but note that
SPECS results are Peneloux corrected.

During calculations, the program reports that a
saturated gas-oil contact appears at or near a depth
of 3100.0 m. It also reports that the pressure ap-
pears to be 3.12 MPa (before recalculation using the
stability test generated estimate). The recalculated
pressure is reported to be 3.27 MPa. SPECS here
reports a gas-oil contact at approximately 3150.0
m. In view of the chosen resolution in our program

(20 points, 110 m per step), we have a satisfactory
match in finding the GOC.

We can also get plots of the compositional gradi-
ent in the same depth range. These are shown for
components 1 (C1) and 6 (nC6) in Figures 3 and 4,
respecively.
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Figure 3: Mole fraction of component 1 versus depth
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Figure 4: Mole fraction of component 6 versus depth

To investigate what happens near the gas-oil con-
tact, we use option 3 to generate phase envelope
plots at depths 3000 m and 3200 m. These are
shown in Figures 5 and 6.
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Figure 5: Phase envelope below GOC
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Figure 6: Phase envelope above GOC

The figures confirm that a gas-oil contact appears
between 3000 m and 3200 m.

We have also made attempts at introducing up
to 22 components, where the C7+ components were
lumped in up to 12 pseudocomponents. Component
properties were obtained from [2]. However, we were
unable to match the results presented in [2]. At
present, it is not evident what causes the mismatch,
but the necessary altering of IVC-SEP subroutines,
[4], appears to be errorprone.

4 Conclusions and
Further Work

A program for performing gravity/chemical equilib-
rium calculations, including searches for a possible
gas-oil contact and calculations of saturation points
and phase envelopes has been implemented.

The program has only been tested on a narrow
range of test cases, but appears to give reason-
able results, also measured against available soft-

ware (SPECS). However, we have not been able to
test the program on undersaturated GOC problems,
and extensive testing is needed to validate the res-
ults given by the program.

We have noted in the report that the Peneloux
volume correction should be applied for correct res-
ults. This is an important subject of further devel-
opment of the program.

As mentioned, the possibility of including a
broader range of components, especially heavier
ones, is already under investigation. In addition, it
would be interesting to include the effect of thermal
gradients in the calculations.
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