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Abstract 

The Brown crab Cancer pagurus is appreciated as seafood and its fishery is of 

importance in several European countries. However, findings of high levels of 

cadmium have increased concern about food safety, and spatial patterns of cadmium 

levels have been found. Along the Norwegian coast, a sudden spatial increase in 

cadmium levels in brown crab from Salten region in Northern Norway (ca. 67°N) and 

northwards has been identified. An earlier study including sediment measurements 

investigated the reason for the high values in the North, and concluded that it is unlikely 

that an anthropogenic point source is responsible for the high cadmium levels.  

The main aim of this thesis was to investigate further factors that may explain the large 

variation of cadmium in brown crab, and whether these factors can explain the 

differences in cadmium levels in brown crab along the Norwegian coast, with focus on 

physiological factors. 

Conflicting values of reported cadmium levels in crab claw meat led us to evaluate the 

pretreatment of crabs before analyses. A strong effect of cooking and freezing was 

found, causing a leakage of cadmium from hepatopancreas to claw meat.  

The findings in crabs sampled in the North and the South of the Norwegian coast during 

one year, revealed that the influence of physiological factors on cadmium levels is not 

very pronounced in comparison to the large differences between crabs from the North 

and the South. However, there was a correlation between size and cadmium levels in 

crabs sampled in the North, indicating an accumulation of cadmium over time. As 

brown crabs are assumed to grow more slowly in the North, this indicates that some of 

the variation in cadmium between the North and the South can be explained by growth 

rate. Further evidence for a high potential of brown crab to accumulate cadmium has 

been found in a lab trial, where cadmium from food and water was traced in brown 

crab to compare the relative importance of the uptake routes. No depuration of 

cadmium was observed, indicating a high accumulation potential. Furthermore, the 

dietary uptake was predicted to contribute at least 98 % to the overall cadmium 

accumulation in brown crab in Northern Norway. This indicates that foraging and 

related behavior plays an important role in determining the cadmium levels in crab. As 
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we found an indication for different foraging patterns in crabs from North and South, 

this might partly explain the north-south variation.  

The field study did not reveal a clear pattern in cadmium levels in brown crab when 

considering sex, moulting stage, gonad maturation stage, or season, making it difficult 

to develop mitigation strategies for the crab fishery in the North. 

Another aim of this thesis was to assess the risk of exceeding the limit of safe exposure 

to cadmium by the consumption of brown crab considering different consumption 

patterns in the Norwegian population. According to our measured cadmium level in 

cooked crabs from the field study, it is safe to consume crab claw meat regardless of 

the origin of the crab. The consumption of whole crabs including brown meat in the 

coastal population, however, was calculated to lead to an intake of cadmium above the 

tolerable weekly intake. In general, brown meat should be consumed parsimoniously 

and a legal maximum limit for cadmium in brown meat and mixtures of brown meat 

and white meat should be considered. 
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Introduction 

Brown crab fishery in Norway 

The brown crab Cancer pagurus is a popular food item in Europe, including Norway 

and many southern European countries such as France, Spain and Portugal. In general, 

the importance of crustaceans for fisheries is steadily increasing in accordance with the 

declining trophic levels in fisheries catches (Molfese, et al., 2014). The brown crab is 

mainly distributed in the North-East Atlantic and the total European catch was about 

42.5 thousand metric tons in 2016. Most of the volume was caught in the United 

Kingdom (29 500 t), followed by Ireland (7 700 t), Norway (4 900 t) and France (4 200 

t), with a total value of 74 million € (EuroStat, 2017). In Norway, which is the 

northernmost fishery, the brown crab is expanding its distribution northwards and was 

recently observed at least as far north as 69°44’N (Bakke, et al., 2016). While this 

fishery still is in an experimental stage and needs further adaptations to be profitable, 

there is an active commercial fishery at about 68°N in Vesterålen (Bakke, et al., 2016). 

The main Norwegian brown crab fishery, however, is located in Mid-Norway and 

Helgeland (63° - 67°N), where 75% of the Norwegian catch is landed (Søvik, et al., 

2017; Woll, et al., 2006a). Traditionally, the Norwegian fishery targets mature 

individuals and peaks from August to October. The highest activity is within 12 

nautical miles from land and baited pots are used as gear. The only effort control for 

the fisheries is an established minimum landing size of 11 cm carapace width for crabs 

caught from the Swedish border to 59 ̊30' N and 13 cm carapace width further north 

(Søvik, et al., 2017).  

There is a distinct external sexual dimorphism in brown crab. Female crabs are 

characterized by broad abdomens with allometric growth from the onset of maturation 

(Öndes, et al., 2017). The abdomen is provided with four pairs of pleopods. The top of 

the female carapace is arched compared to males, which have a rather flat carapace. 

The slim abdomen of the males is only provided with one pair of pleopods morphed to 

mating organs. In males, claws are generally bigger and grow allometrically with 

maturation (Tallack, 2007; Öndes, et al., 2017). The brown crab has planktonic larvae 

that are pelagic for around 60 days at 15-20°C (Nichols, et al., 1982), and field surveys 
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indicate a larval planktonic phase of 2–3 months (Eaton, et al., 2003). Adults are 

benthic and mobile. As part of the growth process, crabs periodically shed their worn 

exoskeleton, replacing it with a new one. Due to this process, the animal periodically 

undergoes drastic changes in metabolism, and is also able to reproduce lost limbs 

(Warner, 1977). 

 

 

 

Figure 1 Alive male brown crab as offered on the Norwegian market.  

Photo: Kai Triebner 

 

It has been shown that crabs have the potential to migrate over long distances with 

females moving further, most probably for reproduction purposes (Bennett & Brown, 

1983; Hunter, et al., 2013; Ungfors, et al., 2007). In fact, females may compensate for 

larval dispersion in the present current by migration (Ungfors, et al., 2007). However, 

the lack of genetic variation in brown crab in the Kattegat Skagerrak area, and the 

absence of a clear population structure in Europe (Pan, M., personal communication, 

Feb 2018) does not support a hypothesis of compensatory counter-current adult 

migration (Ungfors, et al., 2009). The lack of genetic structure rather indicates a high 

degree of genetic mixing over a large area caused by adult or larval movement 

(McKeown, et al., 2017; Ungfors, et al., 2009). Along the Norwegian coast, a capture-

recapture approach indicated less migratory activity in a fjord system in Mid-Norway 

(Woll, 1995). Recently, brown crabs have been observed down to a depth of 400 m in 

Norway (Bakke, S., personal communication, Feb 2018) and compared to the rather 

shallow fishery in Norway, is for example the French fishery regularly targeting brown 
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crabs in deeper waters (Le Foll, 1982). 

The brown crab is assumed to be an opportunistic feeder. However, analysis of stomach 

contents is difficult as prey items are ground in the gastric mill when entering the 

stomach. The identification of prey items is therefore difficult and prone to a bias 

towards animals with parts that are hard to grind and digest (Woll, 1995). Nevertheless, 

the most frequently detected food items were blue mussels (Mytilus edulis) and horse 

mussels (Modiolus modiolus). A difference in ingested prey was found between crabs 

from different habitats, mirroring the abundance of the prey items (Woll, 1995) and 

different sized prey items are attacked (Lawton & Hughes, 1985) indicating 

opportunistic feeding.  

Brown crab as seafood 

The consumption of seafood has been implemented into the recommendations of a 

healthy diet in several European countries (NDA, 2014), as seafood is considered to 

have several beneficial health effects. Associations between increased consumption of 

seafood and reduced risk of developing coronary heart disease, high blood pressure, 

stroke, some forms of cancers, rheumatoid arthritis and other inflammatory diseases 

have been found (Lund, 2013).  

Crab white meat from claws and legs is rich of proteins, essential amino acids and 

elements paired with a low cholesterol and fat content, implicating a well-balanced 

nutritious food (Barrento, et al., 2009b; Barrento, et al., 2009c; Maulvault, et al., 2012). 

The most frequent and traditional way to prepare brown crabs in private homes in 

Portugal is boiling crabs whole (Maulvault, et al., 2013), which also applies to other 

European countries, including Norway. Muscle meat (mainly from claws and legs) and 

brown meat (mainly hepatopancreas and gonads) are either consumed separately or as 

a mixture. In Norway, whole crabs are consumed more frequently than claws only 

(Bergsten, 2004 ) and in Portugal, 99.6 % of crab consumers also consume brown meat 

(Maulvault, et al., 2013). Crabs are mostly sold alive (Figure 1). However, recently, 

the availability and popularity of ready-to-eat crab products have been increasing in 

Norway. 

During the last years, several studies have risen concern after findings of high values 

of the toxic element cadmium detected in crabs harvested in Norway, (Frantzen, et al., 
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2011; Julshamn, et al., 2013c; Julshamn, et al., 2012; Vik, 2014), Scotland (Barrento, 

et al., 2009b; Davies, et al., 1981; Falconer, et al., 1986; Maulvault, et al., 2012) and 

the English channel (Barrento, et al., 2009a). 

Cadmium  

Cadmium is an element that occurs naturally and is relatively rare, constituting only 

0.1 ppm of earth’s crust (Wedepohl, 1995). The sources of release into nature are either 

natural or anthropogenic. Natural release includes mobilization of cadmium during 

events such as volcanic activity, forest fires or weathering of rocks. The production of 

metals, fossil fuel combustion and waste incineration are amongst the most important 

anthropogenic emission sources (UNEP, 2010), also to the aquatic environment. 

Different estimates of the natural release (Nriagu & Pacyna, 1988; Richardson, et al., 

2001; Sigel, et al., 2013) make it difficult to assess the anthropogenic contribution to 

the overall release. However, emissions of up to 17,000 tons were estimated in 1983 

(Nriagu, et al., 1988). Cadmium is found in surface and ground water with 

concentrations in fresh and saltwater between 0.01 and 0.1 µg/L (Simpson, 1981). In 

Norway, as in many other European countries, the emission of cadmium has decreased 

significantly the last 20 years (Miljødirektoratet, 2014). Cadmium is mainly obtained 

as byproduct in zinc production and its production is therefore dependent on zinc 

extraction. Nevertheless, the production and use of cadmium almost doubled between 

1950 and 1990. Since then, the global production has levelled off. It is used in various 

products, with batteries representing the major application (UNEP, 2010). 

Health effects of cadmium 

The potential health hazard of cadmium has long been known. The hazard was 

originally identified with the occurrence of the Itai-Itai disease in 1955 in Japan, caused 

by cadmium-polluted rice (Hagino & Kono, 1961). Whilst in this case, the reason was 

heavy industrial pollution, adverse health effects have also been observed after 

exposure to rather low doses. The most prominent effects of Cd in the human body is 

nephrotoxicity and osteotoxicity. Cadmium causes tubular damage, which may lead to 

complete renal failure (Rani, et al., 2014). After entering the bloodstream, Cd is 

initially transported to the liver and taken up by hepatocytes, where most of it will be 
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bound to metallothionein (MT), preventing toxic effects. However, Cd-MT will at least 

partly be released into the blood stream, when hepatocytes die off and are filtered at 

the renal glomerulus. From there it is taken up in epithelial cells of the proximal tubule 

causing damage. Cadmium is efficiently retained in the human kidney with a half-time 

of 10–30 years (Rani, et al., 2014). Despite that, there is evidence that tubular damage 

to a certain degree is reversible (EFSA, 2009a).  

The osteotoxcity of cadmium is caused by a direct and an indirect mechanism (Rani, 

et al., 2014). It can stimulate bone resorption and inhibit bone formation by directly 

acting on osteoclasts or osteoblasts. Further, the renal and gastro-intestinal dysfunction 

caused by cadmium, can lead to bone damage by potentially hindering the uptake of 

necessary nutrients. In addition to these effects, cadmium is classified as a human 

carcinogen and induces some effects typical for endocrine disruptors (Järup & 

Åkesson, 2009; Satarug, et al., 2010). There is evidence that cadmium exposure leads 

to genomic instability. The mechanisms are complex and multifactorial. However, an 

interaction with the DNA-repair mechanism, generation of reactive oxygen species and 

induction of apoptosis may be most important, indicating a co-genotoxic effect (Rani, 

et al., 2014).  

Human exposure to cadmium 

For non-smokers in the general population, diet accounts for approximately 90 % of 

the total cadmium exposure (EFSA, 2009a; Järup, et al., 2009). Cadmium is abundant 

in a vast variety of food items and the content varies largely, depending on the 

environmental contamination and type of food. High levels can be found in offal 

products, especially from old animals, oil-seeds, cocoa-based products, some wild 

mushrooms, water mollusks and crustaceans. Generally, animal products like meat, 

egg, milk and dairy products, contain less cadmium than food from plants (Järup, et al., 

2009) and also fish muscle is low in cadmium (Frantzen & Maage, 2016; Julshamn, et 

al., 2004). Amongst plant based food, basic products like rice, wheat, potatoes, green 

leafy vegetables and root vegetables show the highest cadmium levels (Järup, et al., 

2009). High cadmium levels are particularly caused by the use of phosphate rock for 

agricultural purposes, containing significant levels of cadmium (Thévenod & Lee, 

2013). Food that is consumed in large quantities contribute most to the overall 
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cadmium exposure. On average, cereals, vegetables and potatoes constitute 80 % of the 

cadmium intake from food (EFSA, 2012; Järup, et al., 2009). However, some food 

items, although not being consumed very frequently, may be problematic as they hold 

high levels of cadmium, such as crustaceans (Järup, et al., 2009). Cadmium is 

dangerous because of its ubiquity and the chronic long term exposure paired with a 

long biological half-life exceeding 20-30 years. This means that exposure in childhood 

actually may affect health in old age (Thévenod, et al., 2013). Already in 1988 the Joint 

FAO/WHO Expert Committee on Food Additives and Contaminants (JECFA) 

established a Provisional Tolerable Weekly Intake (PTWI) for cadmium of 7 μg/kg 

body weight. After an extensive review a provisional tolerable monthly intake of 25 

µg/kg body weight corresponding to a weekly intake of 5.8 µg/kg body weight was 

established. The European food safety authority (EFSA), however nominated a 

tolerable weekly intake (TWI) of 2.5 µg/kg body weight (EFSA, 2012).  

The European Union applied a maximum level for cadmium in crustaceans excluding 

brown meat of crab and head and thorax meat of lobster and similar large crustaceans 

of 0.5 mg/kg ww in the No 1881/2006 (unconsolidated version) (EU, 2006). For crabs 

and crab-like crustaceans it was specified that the maximum level only applies to 

muscle meat of the appendages, i.e. claw and leg meat (EU, 2011). 

Findings of high cadmium levels in brown crab in Norway  

In 2009, Swedish authorities detected high levels of cadmium in muscle meat of brown 

crab caught in the North of Norway (north of Salten region, Nordland), exceeding the 

maximum legal limit of 0.5 mg/kg ww (Jensen & Wasmuth, 2010). Accordingly, the 

National Institute of Nutrition and Seafood Research (NIFES) conducted several 

investigations on crab in this area, funded by the Norwegian Food Safety Authority. 

The results revealed a distinct pattern with much higher levels of cadmium in brown 

crab caught north of 67°19' N (Figure 2) (Frantzen, et al., 2011; Julshamn, et al., 2013c; 

Julshamn, et al., 2012). Consequently, the Norwegian Food Safety Authority gave 

advice not to eat crabs caught in Salten and northwards. Fishermen in the area had to 
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stop commercial crab fishing and also the industry processing crab meat, suffered 

substantial economic losses.  

 

Figure 2 Map of Norway showing concentrations of cadmium (mg/kg wet weight) in 

claw meat of brown crab captured at different positions along the coast in 2011. Circle 

sizes indicate the mean concentration for each position as shown in the legend. From 

Julshamn et al. (2013b). 

Food safety considerations  

The high values of Cd found in claw meat displayed an issue for fisheries, as 

exceedance of the legal limit had economic consequences. However, brown meat with 

much higher cadmium levels, is consumed as well, making it the main food safety 

issue. This was already identified by others for crabs from UK and Scotland (Barrento, 

et al., 2009a; Maulvault, et al., 2012). A risk-benefit assessment, addressing the 

consumption of brown crab in Portugal, considered the risk of the intake of methyl 

mercury and Cd versus the potential benefits from selenium and EPA + DHA when 

consuming the different tissues of cooked crab. Combining the consumption 

frequencies in the Portuguese population and the concentrations found in brown crab, 

they concluded that muscle meat can be included in a well-balanced diet, while the 

brown meat should only be consumed parsimoniously (Maulvault, et al., 2013).  

No risk assessment considering the Norwegian consumption, was published before 

June 2015. The Panel on Contaminants of the Norwegian Scientific Committee for 

Cd in claw meat

mg/kg ww

1,4

0,7

0,14
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Food safety (VKM) assessed the risk of dietary cadmium exposure in the Norwegian 

population with special focus on high cadmium food, including brown crab meat 

(VKM, 2015). To assess the risk, consumption data for the Norwegian population was 

combined with cadmium levels measured in an earlier study (Julshamn, et al., 2012). 

They concluded, that the consumption of crab brown meat is of concern, as high 

consumers are at high risk of exceeding the TWI (VKM, 2015) while the consumption 

of muscle meat does not pose a risk in the Norwegian population. However, they only 

considered cadmium levels of crabs being frozen before cooking, which might 

influence the results. Scenarios were only based on cadmium levels for crabs from the 

South. 

Previous research addressing the high cadmium levels in the North 

The North-East Atlantic Ocean has been considered a rather pristine area and the 

finding of a contaminant gradient with increasing values in the North got much 

attention, both in public and research. Several studies were conducted to investigate 

mainly the sources of the Cd found in crabs in the North. Both natural and 

anthropogenic sources were suggested.  

The run-off from bedrock is considered a natural source of cadmium and it was 

investigated by analyzing naturally occurring cadmium in bedrock, ground and surface 

water. No differences in cadmium run-off were found between areas with high or low 

levels of cadmium in crab (Finne, 2013). In an attempt to identify anthropogenic 

contamination, sediment samples from the region with high concentrations in crab were 

analyzed. Only low levels of cadmium were found, and it was concluded that local 

sources of cadmium pollution are very unlikely to cause the high values in crabs (Falk, 

2012). To investigate, whether the high values of cadmium in crab were caused by high 

concentrations of cadmium in seawater, a study was conducted using blue mussels 

Mytilus edulis as indicator for cadmium levels in seawater (Foldøy Tverdal, 2012). 

Cadmium levels in blue mussels from the Salten area were low, and no correlation was 

found between levels in blues mussels and brown crab in the affected region. It was 

concluded that the high values of cadmium in crabs in the North are probably not 

directly caused by high values of cadmium in the seawater. Also, a study of fish from 

the Salten area showed no elevated Cd levels in fillet or liver of tusk Brosme brosme, 
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Atlantic halibut Hippoglossus hippoglossus or redfish Sebastes marinus (Julshamn, et 

al., 2013a). 

Falk (2014) excluded fish feed from fish farms as the main source for cadmium after 

having analyzed cadmium in crabs, sediment, blue mussels, polychaetes and seawater 

around three fish farms, without finding any significantly increased Cd levels.  

Another study focused the cadmium concentration of macrofauna amongst different 

taxonomical groups and trophic levels in the area with high levels of cadmium in brown 

crab. No clear relationship between the level of cadmium in prey organisms and brown 

crab itself was found. However, several potential prey organisms were identified with 

high levels of cadmium (Ness, 2014).  

A literature study suggested an emphasized upwelling of deep-sea water rich in 

nutrients and cadmium, being the reason for the high levels of cadmium in brown crab 

(Falk & Nøst, 2013). Because of its special topography, it can be expected that the 

affected coastal region is exposed to a pronounced upwelling and since it is assumed 

that deep-sea water is rich in cadmium, it could be the starting point for high values in 

crab. However, this theory needs further experimental backup and it delivers no 

explanation, why other organisms exposed to the cadmium rich deep-sea water in the 

same area do not exhibit increased levels of cadmium to the same extent as brown crabs 

do. In another survey, cadmium was measured in brown crabs sampled in 20 localities 

from Salten to Vesterålen (Frantzen, et al., 2015). As expected, high levels of cadmium 

were found with a large inter-individual variation. Interestingly, no clear difference in 

cadmium levels was seen between brown crabs caught in inner fjord and outer coast 

localities, potentially more exposed to upwelling deep-sea water. 
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2. Objectives and Methodology 

As no conclusive explanation for the gradient of cadmium concentration in the brown 

crab in the North-East Atlantic Ocean along the Norwegian coast has been found, the 

main objectives of this work have been: 

 

1. To identify the main parameters influencing cadmium levels in brown crab and 

to determine which of these parameters can explain the difference between crabs 

from the North and the South of Norway.  

 

2. To identify possible mitigation strategies to avoid the catch of crabs high in 

cadmium content in the North. 

 

3. To assess the risk from cadmium exposure due to brown crab consumption in 

the Norwegian population, and evaluate possible mitigation strategies. 
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3. Methodological Approach 

Paper 1) Effects of Cooking and Freezing Practices on the Distribution of 

Cadmium in Different Tissues of the Brown Crab (Cancer pagurus) 

To address our objectives, a robust sample preparation procedure had to be established 

to obtain reliable and comparable results. The importance of sampling and sample 

preparation as basis for reliable measurements is underestimated and often poorly 

addressed in scientific literature. This can be illustrated by comparing the sample 

treatment in various studies on crab measuring cadmium in different tissues. Crabs 

were treated in multiple ways before sample dissection. While some crabs were 

sampled after thawing (Davies, et al., 1981), cooking (Bolam, et al., 2016; Foldøy 

Tverdal, 2012; Frantzen, et al., 2011) and some fresh (Barrento, et al., 2009a; Barrento, 

et al., 2009b; Bjerregaard & Depledge, 2002; Bolam, et al., 2016; Ervik, et al., 2017), 

some crabs underwent combinations of different treatments (Julshamn, et al., 2013c; 

Julshamn, et al., 2012). In other studies, pretreatment was not described at all 

(Bjerregaard, et al., 2005; Rainbow, et al., 2000) and in several instances it is not clearly 

stated if individuals have been frozen before sample preparation (Barrento, et al., 

2009c; Frantzen, et al., 2011; Maulvault, et al., 2012; Noël, et al., 2011). Without 

knowing the effect of the different procedures on cadmium levels in the crab, it was 

difficult to compare findings in the different studies. This also became obvious, in the 

case of the measurements of high cadmium levels in Northern Norway. While 

Julshamn, et al. (2012) and Frantzen, et al. (2011) consistently found high 

concentrations of cadmium in claw meat, it was claimed by some stakeholders of the 

fisheries, that measurements of crab claw meat from the North, conducted by an 

independent service provider, showed very low concentrations. Doubt was risen on the 

reliability of the existing data.  

Furthermore, the existing risk assessment for the Norwegian population (VKM, 2015), 

was based on samples of frozen and cooked crabs, which does not conform to the 

commercial or traditional way of cooking brown crab. Traditionally, fresh and alive 

crabs are boiled in salted water. In the processing industry fresh crabs are either cooked 

whole or claws are removed and steamed separately from the rest. The EU limit of 
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0.5 mg Cd/kg applies to unprocessed white meat from crab appendages. 

To develop a standardized and appropriate sampling procedure as solid basis for further 

studies, a laboratory study on the effect of different cooking and freezing methods on 

the concentration of cadmium in brown crab was conducted. First, the effect of cooking 

and freezing whole crabs was investigated, before the effects of treating claws and 

cephalothorax separately were addressed. This gave us the opportunity to address 

objective 3, as first attempt addressing the risk from consuming brown crab caught in 

Norway, using cadmium levels from crab treated similarly to the traditional and 

commercial cooking method.  

Paper 2) Tracing Simultaneous Cadmium Accumulation in Brown Crab Cancer 

pagurus from Different Uptake Routes using Stable Isotopes 

 

Figure 3 Schematic illustration of Paper 2. Accumulation parameters for dietary and 

aqueous accumulation of Cd in brown crab were established tracing different stable 

isotopes and used in a modelling approach to predict the importance of the uptake 

routes in the case of Northern Norway. CCR denotes the cadmium concentration ratio 

between feed and seawater. 
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Aquatic invertebrates take up trace metals via two different routes: From solution or 

from diet, and the rate of uptake and relative importance depends on the metal and/or 

species considered (Rainbow & Luoma, 2011a). In addition, the uptake may vary with 

physiological stage of the animal, physicochemical conditions of the surrounding 

medium and by bioavailability of trace metals in diet (Rainbow, et al., 2011a). Most 

studies investigating the uptake in crab looked at the uptake from solution, and only a 

limited number of studies addressed the uptake from diet (Bjerregaard, et al., 2005). 

For brown crab, the uptake of cadmium via both routes was poorly investigated 

(Davies, et al., 1981). To get a better understanding on the importance of the different 

uptake routes for the total cadmium accumulation, giving an indication what the main 

source of cadmium in brown crab actually is, a laboratory study was conducted. One 

widely accepted way to compare the relative importance of the uptake routes and 

predict concentrations in different invertebrates at different conditions is the use of 

biodynamic modeling (Luoma & Rainbow, 2005; Wang, et al., 1996). This approach 

simplifies the accumulation of trace metals to a very limited number of parameters 

which can be measured in laboratory trials. The steady state accumulation is assumed 

to be the uptake from water plus the uptake from diet minus depuration and growth 

(Luoma, et al., 2005). Uptake from diet and water is further the product of the uptake 

rate constant and concentration in diet or water, respectively. Both, uptake rate 

constants and the depuration rate constant can be established using lab trials. The 

uptake rate constant from water is mostly derived directly in lab trials under certain 

conditions. The uptake rate constant from food, however, is expressed as diet ingestion 

rate in the experiment multiplied by assimilation efficiency, more practical to measure. 

The use of long-term exposure has been criticized, as the measured uptake in the 

exposure actually is the sum of uptake and depuration, as the animal after a certain time 

will simultaneously eliminate trace metal (Reinfelder, et al., 1998). This has recently 

been confirmed in HP in a freshwater shrimp (Cresswell, et al., 2017). The depuration 

rate of cadmium from HP was much lower after long-term exposure compared to short-

term exposure (Cresswell, et al., 2017). However, the suggested under-estimation of 

the uptake because of simultaneous elimination should in a sufficient long-term 
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exposure be balanced out by a decreased elimination in the elimination phase, as less 

trace metal will be left. 

In the present literature radiotracers were often used to determine the accumulation 

parameters. The experimental work with radiotracers, however, requires elaborate 

permissions and handling licenses for disposal procedures and work is cumbersome 

because of the potential hazard for personnel. It is therefore difficult to find a lab 

fulfilling the necessary requirements to conduct a trial with radiotracers in large 

animals like crab, with high demand for water that has to be disposed of. Also the 

availability of pure radiotracers can be limited and they are expensive (Croteau, et al., 

2004). Furthermore, logistics for sample shipment is difficult and requires permission 

and expensive technical measures. It was therefore decided to use stable isotopes in our 

experiment, being much easier to handle. However, availability of standards with a 

high enrichment of stable cadmium isotopes turned out to also be limited. Other 

difficulties directly connected to the use of stable isotopes were mainly analytical. An 

analytical issue when using ICP-MS are the polyatomic interferences on all cadmium 

masses in different analyzed tissues. This was addressed with an analytical setup using 

an ICP-MS instrument with collision/reaction cell, where a reaction gas can be used to 

get rid of ions potentially leading to interferences. As a part of the natural isotope 

distribution, the stable isotopes of an element are abundant wherever natural cadmium 

is present in the experiment. This means that high background concentrations have to 

be expected when using them in a laboratory trial. To get control of this issue, a 

mathematical correction was used addressing all input of natural background and also 

the contributions of the impurities in the standards used to spike water and food. The 

final solution equations were calculated with a computer program and although the 

approach appears to be complex, it is practically handy. Applying these equations made 

it possible to establish accumulation curves for both uptake routes in all tissues except 

for the dietary uptake in hemolymph. 

When studying the ratio of amount of tracer in feed to the amount taken up in the 

animal, it is crucial to know how much feed actually was ingested. This is especially 

challenging in crab, as they tend to crush all prey when eating it. As a consequence, it 
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is difficult to estimate the actual digested amount of food and in addition, tracer could 

leak into the water. In our case, gavage feeding was chosen as the most accurate and 

practical, though time-consuming method. In rodents, where gavage-feeding is 

frequently applied (Atcha, et al., 2010), holding the animals in a certain way, makes it 

easy to insert the needle into their mouth. For crab however, it is crucial that they open 

their mouth parts voluntarily to be able to insert the gavage needle without harm. The 

application of a few drops of water flavored with shrimp powder on the mouth parts 

was found to be an effective stimuli and animated the crabs to move their mouth parts 

and the syringe could gently be inserted. Also the consistency of the food is important. 

If the applied food is too liquid, it can easily run out of the crab’s stomach after feeding. 

Additionally, feed should be homogeneous and sieved, as particles will block the 

needle, making an accurate feeding impossible. As crabs in a pre-trial were 

occasionally spitting out the feed if directly put back into the water, they were kept out 

of the water for at least 30 seconds after feeding and washed with seawater to avoid 

tracer from eventually spilled feed to enter the experimental tank. 

To estimate the accumulation parameters, the obtained experimental data was fitted to 

the standard bioaccumulation equation (OECD, 2012). As hepatopancreas (HP) is the 

organ containing about 90 % of the total cadmium body burden in crab (Bjerregaard, 

et al., 2002), for simplicity, a one-compartmental model was used, assuming that the 

gross amount of ingested cadmium from both routes will be accumulated in HP. The 

freely available R-package bcmfR (Aldenberg, 2017) developed to evaluate 

bioconcentration studies in fish according to OECD 305 was used for modelling the 

accumulation parameters. However, due to a modified setup, the package had to be 

modified. In contrast to OECD 305, aqueous and dietary uptake was traced 

simultaneously and we therefore applied the model for the aqueous uptake also on the 

dietary approach. In other studies establishing accumulation parameters in 

invertebrates, mostly separate experiments for the estimation of dietary and aqueous 

uptake and elimination rate constants are conducted (Lee & Fisher, 2016; Wang, et al., 

1996) (Bjerregaard, et al., 2005).  

Further, the uptake of cadmium in HP observed from both routes, was not followed by 

a marked elimination and the best model fit was found, assuming the elimination rate 
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constant being zero. 

The estimated accumulation parameters were used to predict the relative importance of 

the two uptake routes. To make a prediction for crabs at the Norwegian coast, the 

importance of the uptake routes was calculated considering a wide range of 

combinations of cadmium concentrations observed earlier in natural potential prey 

organisms (Ness, 2014) and seawater (Falk, 2015) in Northern Norway. 

Paper 3) Cadmium in Brown Crab Cancer pagurus in Norwegian Waters. Effects 

of Area, Season, Cooking and Different Physiological Factors and Consequences 

for Food Safety 

While most investigations targeting the high cadmium values in brown crabs in 

Northern Norway mainly have focused on the potential source of cadmium, it was 

ignored that accumulation of cadmium in invertebrates also can be influenced by 

factors other than this. This has clearly been shown for the shore crab Carcinus maenas. 

Other than pure concentration in water and feed (Bjerregaard, 1990; Jennings & 

Rainbow, 1979; Pedersen, et al., 2014; Wright, 1977a, 1977b), many physiological 

factors like crab size  (Bjerregaard & Depledge, 1994) stage in the moulting cycle 

(Bondgaard, et al., 2000; Nørum, et al., 2005) ovarian stage (Bondgaard, et al., 2000) 

and the feeding status of the crab (Bjerregaard, 1991; Styrishave, et al., 2000) have 

been shown to affect the accumulation of cadmium. Furthermore, environmental 

factors like temperature and salinity have been shown to have an influence (Hutcheson, 

1974; O'Hara, 1973). Therefore, crabs were sampled in the field from one locality in 

the North of Norway (Vesterålen), known for high levels of cadmium in crab and one 

locality in the South of Norway (Sotra). The physiological factors size, sex, moulting 

stage, gonad maturation stage, condition and tissue hydration were recorded for each 

crab to study the effect of different physiological factors on the cadmium concentration 

and whether these effects vary between different areas. The intention was to sample 

crabs every second month throughout one year at both stations for comparison. By 

sampling crabs during one whole year, we addressed objective two by investigating if 

there were times of the year with lower cadmium levels. This could potentially provide 

a time window in which crab fishing could take place. To assess the risk from exposure 
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to cadmium when consuming brown crab (objective 3), we combined cadmium levels 

measured in freshly cooked crabs with available consumption data for the Norwegian 

population to identify consumer groups in risk of exceeding the tolerable weekly intake 

set by the European food safety authority to 2.5 µg/kg bw (EFSA, 2009b). The risk of 

exceeding the tolerable weekly intake was assessed for two different cases. First 

assuming brown crab as the only source of cadmium exposure in the diet of the 

consumers and second, by considering the exposure to cadmium from other food stuff 

estimated for the European population (EFSA, 2012). 

Paper 4) Cadmium in the shore crab Carcinus maenas along the Norwegian Coast: 

Geographical and Seasonal Variation and Correlation to Physiological 

Parameters 

The pattern with high values of cadmium in animals North of Salten region along the 

Norwegian coast has not been observed in blue mussel Mytilus edulis (Foldøy Tverdal, 

2012; Frantzen, et al., 2011) known to be a good indicator species for cadmium 

pollution (Phillips, 1977). Also the finfish species Atlantic cod Gadus morhua, Atlantic 

halibut Hippoglossus hippoglossus, redfish Sebastes marinus, and tusk Brosme 

brosme, did not show elevated concentrations in the North (Julshamn, et al., 2013d), 

although known for high trophic levels and relatively high mercury concentrations, 

generally indicating potential for biomagnification. However, it has been shown that 

cadmium, although not biomagnified considering all trophic levels in an ecosystem, 

actually was biomagnified within a benthic submodel (Signa, et al., 2017b). This 

together with high levels of cadmium in a wide range of crab species (Bolam, et al., 

2016; Hutcheson, 1974; Noël, et al., 2011; Rouleau, et al., 2001), indicate that there 

might be common characteristics in benthic food webs and especially crab, enhancing 

the accumulation of cadmium. Brown crab and shore crab Carcinus maenas, have 

partly overlapping ecological niches, many characteristics in common and both are 

known to be efficient cadmium accumulators (Bjerregaard, et al., 2005). To investigate 

if this is sufficient to cause the same pattern in cadmium levels along the Norwegian 

coast, we conducted a comparative study sampling shore crab Carcinus maenas at foyr 

different locations along the Norwegian coast. Two in the North, where high values 
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have been found in brown crab and two in the South. Also here the effect of 

physiological parameters and seasonal variation on cadmium was investigated. 
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4. Results and Discussion 

4.1 Factors explaining variation in cadmium in brown crab 

High variation in cadmium levels in brown crab is a common finding in all conducted 

studies within this thesis and the present literature (Barrento, et al., 2009a; Barrento, et 

al., 2009b; Croteau, et al., 2005; Davies, et al., 1981; Falconer, et al., 1986; FSA, 2013; 

Maulvault, et al., 2012; Maulvault, et al., 2013; Maulvault, et al., 2011). While some 

factors causing variation could be identified or confirmed, the effect of other 

investigated factors was not as clear. It could be underscored that the crab’s local origin 

and the tissue analyzed does explain much of the total variation in cadmium levels 

(Paper 1 and 3). Furthermore, sampling practice was found to be a crucial factor 

explaining much variation between differently treated samples (Paper 1 and 3).  

However, also when considering these factors, much inter-individual-variation in 

cadmium levels was observed. Addressing different physiological factors showed that 

the variation and potential covariation of different factors make it difficult to 

disentangle the effects on cadmium concentrations. Other factors, which could not be 

covered in this thesis, such as opportunistic feeding, might have contributed to the large 

variation in cadmium levels.  

4.1.1 Sampling practices and nomenclature  

The comparison of the effects of different cooking and sampling procedures on the 

distribution of cadmium between different tissues in brown crab revealed strong 

effects. In Paper 1 cooking crabs induced a leakage of cadmium from hepatopancreas 

(HP) to claw meat. The transfer was pronounced by freezing the crabs prior to cooking, 

probably due to a bursting of HP cells. Also freezing and thawing in itself led to a 

significant leakage of cadmium from HP to claw meat to a comparable extent as 

cooking. When claws were boiled or thawed separately from carapace, cadmium levels 

were low. Consequently the amount of cadmium in brown meat, consisting of HP and 

gonad, was reduced after cooking whole crabs. While the cadmium concentrations in 

claw meat were significantly increased after cooking whole crabs, freezing and cooking 
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claws separately did not change the concentrations. This was confirmed by the findings 

in Paper 3.  

 

Figure 4 Schematic illustration of the cooking and freezing practices applied in Paper 

1 (upper panel) and the corresponding cadmium measurements in claw meat of crabs 

sampled in the North (lower panel).  

 

These findings emphasized the importance of sampling procedure. When levels of 
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cadmium in crabs in the field are studied, it is crucial to choose an appropriate sampling 

and processing method mirroring the real concentrations. As freezing and thawing 

already have been shown to influence cadmium levels significantly, the dissection of 

fresh animals should be favored. This however, can be challenging depending on 

sampling area and available logistics. When analyzing crabs for assessing food quality 

or risk assessment, crabs should be boiled whole and fresh in salted water to mimic the 

most common way of cooking crabs. 

For the study presented in Paper 3 in brown crab, we therefore decided to be on site 

when brown crabs were landed, to be able to dissect crabs freshly and freshly cooked, 

respectively. This was also based on personal experience with shipping of alive brown 

crabs over long distances, which can be challenging with the available logistics in 

Norway. The large size of the animals and long distances make fast transport 

challenging and costly. Also in commercial trade, the handling of alive crab is 

challenging and can lead to high mortality rates (Barrento, et al., 2008) and induces 

stress (Barrento, et al., 2011; Woll, et al., 2010), which should be avoided due to 

welfare reasons. Further, stress responses might influence the metabolism of trace 

metals and lead to mortality, which could lead to a leakage of cadmium similar to what 

was observed while thawing crabs. Dead cells, especially of HP in the presence of 

digestive enzymes, will be broken down and potentially release cadmium, which again 

can redistribute within the crab. Furthermore, tissue hydration may be altered during 

transport.  

The observed differences in sample handling make it difficult to compare earlier 

reported cadmium levels and draw conclusions, as much of the variation found in 

earlier studies might be due to different sampling procedures. Noël et al. (2011), for 

example analyzed crabs from France, United Kingdom, Netherlands and Ireland and 

found a huge variation of cadmium levels in white meat (<0.020 mg/kg - 0.587 mg/kg 

ww). Sample preparation in terms of cooking, freezing or analyzing fresh samples, was 

not explicitly described in this study and sampling was performed by inspectors at the 

final consumer level, at different types of facilities. Considering the strong effect of 

cooking and freezing and the high chance that differently treated products are offered 
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at consumer level, a large part of the variation found, is likely to be caused by different 

processing and sampling procedures.  

Another issue making it difficult to compare levels of contaminants or nutrients in 

different studies of crab, is the inconsistent use of nomenclature for organs and tissues. 

Especially the terms ‘brown meat’ and ‘white meat’, describing the main edible tissues, 

are often not exactly defined, or defined in different ways. In literature on brown crab, 

the following terms can be found for the muscle meat: white meat, either not further 

specified (Maulvault, et al., 2013; Noël, et al., 2011) or defined as taken from legs and 

claws (Bolam, et al., 2016), claw muscle (Davies, et al., 1981), muscle meat, defined 

as muscle from the claw (Barrento, et al., 2009b) (Barrento, et al., 2009c), muscle, not 

further specified (Maulvault, et al., 2012; Maulvault, et al., 2011) and claw meat (Paper 

1) The differences between the different “white meats” might not be crucial, as there 

is not much reason to assume different cadmium values in the different muscle tissues. 

However, the proximity of HP to muscle meat within the cephalothorax and similarly 

the walking legs, may cause higher values, especially for processed crabs.  

When considering ’brown meat’, the definition is of obvious importance, as the 

different tissues falling under the definition vary greatly in cadmium level. The main 

part of brown meat is gonad and HP, and in Paper 1 a mean ratio of over 1 000 in 

cadmium concentration was found between these tissues. Furthermore, especially in 

females, the amount of gonad tissue varies widely according to the gonad maturation 

stage. 

The following definitions of brown meat can be found in the literature on brown crab: 

‘brown meat’, not further specified (Maulvault, et al., 2012; Maulvault, et al., 2013), 

‘brown meat with thorax’ (Noël, et al., 2011), ‘including the reproductive organ, as 

well as the digestive organ’ (HP) (Bolam, et al., 2016), ‘gonads and HP’ (Maulvault, 

et al., 2011) and ‘hepatopancreas or hard roe’ (Ervik, et al., 2017). Ervik et al (2017) 

sampled brown crab in an inshore region in Mid-Norway and at one location a mean 

cadmium concentration of 23.19 µg/kg dw was reported with an extraordinary large 

standard deviation of 64.18 µg/kg dw, which is very likely caused by the sampling of 

only 1g of tissue consisting of hepatopancreas or roe, known to vary significantly in 

cadmium levels. Further, the term ‘hard roe’ indicates that crabs might have been 
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cooked before sampling.  

In Norway, according to experience, brown meat is often referred to as all edible tissue 

in the cephalothorax except muscle. This also includes other tissues than gonad and 

brown meat. Especially in early postmolt crabs and crabs with low meat yield, the sub-

epidermal connective tissue actually is a significant part of the brown meat and may 

lead to a dilution of cadmium. Therefore, we referred to the analyzed tissue as ‘inner 

meat’. As none of the earlier studies referred to the sub-epidermal tissue, it is unclear 

if it was regarded a part of brown meat or not. Further, some studies only consider 

hepatopancreas (Barrento, et al., 2009c) or HP and gonads separately (Barrento, et al., 

2009a; Barrento, et al., 2009b). With reference to the unclear terminology, there is a 

need to harmonize protocols and being precise in the description of the sampled tissue 

and applied sampling procedure, to allow precise comparisons between sampling 

procedures and study findings.  

4.1.2 Physiological factors 

Size and Age 

The results of paper 3 indicate a correlation between size and cadmium levels in brown 

crab. In crabs sampled in the North, a weak correlation was found for size and cadmium 

concentration in HP. Based on the total amount of cadmium, however, the correlation 

was clear. For crabs from the South, no such correlation was found. A similar pattern 

as in brown crab in the North was also observed in shore crab (Paper 4). In our study 

with brown crab, only crabs above the legal size limit of 13 cm carapace width (CW) 

were sampled. The correlation between size and cadmium was therefore probably 

masked by limited variation in size (Paper 3). In a master thesis of Lindborg (2017), 

conducted in connection to the present work, crabs between 90 and 180 mm CW were 

sampled at two sampling locations from the Norwegian coast, one in the North (Senja, 

69 N), and one in the South (Sotra, see Paper 3) and analyzed for cadmium. Similar to 

the findings in Paper 3, there was a weak correlation between size and cadmium 

concentration in HP in the North and a clear correlation between size and the total 

amount of cadmium in HP. The findings from both studies suggest an accumulation of 

cadmium in HP of brown crab over time, not clearly visible as an increase in 



24 

 

concentration, probably due to growth dilution. An accumulation over time is 

reasonable considering the high assimilation efficiency and slow excretion of cadmium 

in brown crab (Paper 2) and shore crab (Bjerregaard, et al., 2005). In shore crab, 

cadmium concentration in HP based on dry weight, but not wet weight, was positively 

correlated to the total weight of the crab (Bjerregaard, et al., 2002). 

The fact that no correlation between size and cadmium level was found in brown crabs 

from the South both in Paper 3 and by Lindborg (2017) can be due to different growth 

rates in the two areas, expressed as moulting frequency (Bakke, S., personal 

communication, Feb 2018). If moulting occurs less frequently in the North, the same 

variation in size may represent a wider age range in the North than in the South, 

explaining why Cd in brown crab showed correlation with size in the North and not in 

the South. 

As growth rate in crabs can vary between individuals (Eriksen & Moen, 1993) two 

crabs at the same size might be of very different age. Further, higher temperatures lead 

to shorter intermoult periods in crustaceans (Passano, 1960), potentially triggering 

different growth rates in latitudinally separated populations. Therefore, age rather than 

size can be considered being the more relevant parameter to assess bioaccumulation. 

Hence, the intention in the study of Lindborg (2017) was to have the age determined 

for a certain number of crabs similar in size, and to correlate age with cadmium levels. 

Recently, a considerable effort has been spent to develop methods for the direct age 

determination of crustaceans. Kilada et al. (2012) proposed a promising direct ageing 

method similar to the common method of otolith readings in fish. However, the 

challenge with crustaceans was to identify a structure that is retained unchanged during 

the moults. The calcified structures on eyestalk and gastric mill ossicles have been 

proposed to be suitable, as they in addition show discernable growth bands. The count 

of growth bands in four crustacean species obtained comparable age estimates, for the 

respective individuals, as length-frequency analysis. However, a direct validation of 

the periodicity of the growth bands in organisms of known age was still missing 

(Kilada, et al., 2015). For brown crab, this method also obtained promising result, 

however until now without validation (Sheridan, et al., 2015). The attempt to determine 

the age of the crabs sampled in the study of Lindborg (2017) however, turned out to be 
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challenging. Different persons counting the growth bands on the same ossicles got 

different results and the correlation between age and size was very weak, also within 

crabs from the same location. It was therefore decided not to use the results further, 

because of the high uncertainty connected to the method. Sheridan et al. (2016) 

followed the fate of the ossicles in Norway lobster Nephrops norvegicus throughout 

the moulting cycle, in order to investigate their utility for age determination. By 

staining the ossicles and dissecting animals after moulting, they found ossicles being 

detached and loose within the stomach of the individuals and stained material was later 

found incorporated in the newly calcifies ossicles. They concluded that the growth 

bands are unlikely to be of annual periodicity as previously interpreted and that gastric 

mill ossicles probably cannot be used to directly determine the age of Norway lobster 

and the same may be the case for a number of decapod crustacean species. Further 

scientific work on this field is highly warranted. 

Moulting and gonad maturation  

Neither the factors moulting stage nor gonad maturation stage had a clear influence on 

the cadmium levels in brown crab. This is in contrast to investigations on the uptake of 

cadmium in shore crab, where clear differences in uptake were seen for crabs at 

different moulting and gonad maturation stages (Bondgaard & Bjerregaard, 2005; 

Bondgaard, et al., 2000; Nissen, et al., 2005; Nørum, et al., 2005). However, most of 

these studies mainly focused on the cadmium uptake from water. The results from 

Paper 2 and an earlier study on shore crab (Bjerregaard, et al., 2005), suggest that the 

accumulation of cadmium from diet is more important for the overall accumulation. 

Hence, significant effects of moulting and gonad maturation might not be found in the 

overall accumulation of crabs sampled in the field. Further, it cannot necessarily be 

expected that differences in uptake between crabs at certain moulting or gonad 

maturation stages in the laboratory are mirrored in the levels of cadmium found in the 

field. The cadmium level measured in a crab at a certain time is the result of the 

accumulation of cadmium during the whole lifespan of the crab and thereby the sum of 

the cadmium accumulation throughout multiple moulting and gonad maturation cycles.  
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Condition 

The condition of the crab, measured as hepatosomatic index (HSI), was moderately 

negatively correlated to the cadmium concentration based on dry weight in North (r=-

0.36) and South (r=-0.42), while no correlation was found for the amount of cadmium 

and cadmium concentration based on wet weight. This indicates a dilution of cadmium 

with increasing condition, as the constant amount of cadmium will be distributed in a 

growing HP. However, as the result of study 2 revealed a high importance of the dietary 

route combined with a high assimilation efficiency of cadmium from feed, an increase 

of the total amount of cadmium could be expected with increasing condition, resulting 

from continuous feed intake. This effect might be masked by the fact that crabs are 

opportunistic feeders and prey on organisms having varying levels of cadmium (Ness, 

2014). This leads to large inter-individual variation in cadmium intake, reflected in 

variation in cadmium levels between the crabs. Further, due to the moulting cycle, 

crabs are building up their condition rather stepwise due to the total depletion of 

reserves after building up the new exoskeleton after ecdysis (Warner, 1977). Moreover, 

the condition can vary according to season and feed availability. Therefore, the large 

inter-individual variation might also be caused by the fact that the condition of the crab 

during the recent moutling cycle or feeding season, might not correspond to the 

condition during passed moulting cycles or feeding seasons. This means that crabs 

sampled in recent good condition, may have eaten and accumulated little cadmium in 

the previous moulting cycles, as moulting is not only triggered by condition, but also 

external factors such as light regime and temperature (Warner, 1977). The cadmium 

accumulated during one season or moulting cycle is probably only a relativelty small 

part of the total cadmium burden. 

Sex 

There was no differences in cadmium levels in HP between male and female crabs, 

although differences in migratory habits of crabs have been shown (Bennett, et al., 

1983; Hunter, et al., 2013; Karlsson & Christiansen, 1996; Ungfors, et al., 2007). For 

brown crab, as an opportunistic feeder (Woll, 1995), different migration patterns will 

result in the consumption of different prey items at different locations. Males and 

females may also be exposed to other concentrations of metals dissolved in water 
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including different physicochemical conditions of sediment and water, potentially 

influencing accumulation (Signa, et al., 2017a). It is known from other regions that 

female crabs tend to migrate further (Hunter, et al., 2013; Ungfors, et al., 2007) and a 

study using microsatellite genotyping on brown crab also suggests differences in 

migration between males and females in a fjord at the Swedish west coast (McKeown, 

et al., 2017). While females showed no distinct genetic differences to crabs sampled in 

other regions of the North-East Atlantic Ocean, the males were distinctly different, 

suggesting limited gene flow and thereby migration. 

Further, the sexual dimorphism with larger claws in males connected to allometric 

growth (Öndes, et al., 2017), could lead to the consumption of different prey. However, 

also earlier studies on brown crab have not reported different cadmium levels in HP 

between males and females in HP in brown crab (Barrento, et al., 2009a) and burrowing 

crab Neohelice granulate (Beltrame, et al., 2010). Differences were, however, found in 

muscle and gills with higher concentrations in females (Barrento, et al., 2009a). Higher 

cadmium concentrations in claw meat of females was also observed in the results of 

Paper 3, while the total cadmium content was the same. This is probably due to a larger 

growth dilution of cadmium in claws in male brown crabs due to allometric growth. 

The higher concentration cadmium in gills of the female crabs may be caused by a 

higher exposure to Cd when migrating to deeper waters.  

Season 

The cadmium levels in crab from North and South did not follow a clear seasonal 

pattern. A tendency to higher levels in February and July in the North and in October 

in the South was however seen. Examining the corresponding changes in physiological 

parameters revealed one interesting clue. While no clear seasonal pattern was visible 

in the physiological parameters themselves for crabs sampled in the South, in the North, 

the condition was lower in July, however not significantly, corresponding to the trend 

in high cadmium levels. This underlines the negative correlation between condition and 

cadmium levels discussed earlier. No clear patterns were seen for the other assessed 

physiological parameters underlining the huge inter-individual variation in crab, 

making it difficult to obtain representative results on a population level. The fact that 

crabs migrate, makes it difficult to ensure that a representative part of the population is 
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sampled throughout field studies. Further, as we only used one type of gear (baited 

pots), gear selectivity can lead to sampling bias. For baited pots, gear avoidance 

behavior is known for ovigerous crabs (Howard, 1982) and actively foraging crabs will 

be most vulnerable. Further, soak time and type of bait have an influence on the 

catchability (Bennett, 1974).  

The sampling procedure itself revealed another interesting difference between crabs in 

the North and South. In the South, brown crabs were caught all year round in rather 

shallow water (5 - 40 m). In the North however, considerable effort was spent to catch 

brown crab in April, without success. This could be due to a lack of experience in 

fishing at this time of the year, as the fishing of brown crab in this region is restricted 

to autumn and early winter. Only one attempt in deeper water (80 – 140 m) delivered 

two crabs. Sufficient catches at fishing depths and places common for the crab fisheries 

in autumn, could not be obtained before July. This finding in combination with the 

observed lower condition in July indicates that crabs from the North might have 

different migratory patterns, probably linked to lower water temperatures. The water 

temperature along the Norwegian coast generally decreases with increasing latitude 

and the mean temperature for 2015 to 2017 at Sognesjøen (61 °N), a station close to 

our sampling site in southern Norway, was 10.0 °C, ranging from 5.8° to 15.6 °C at a 

depth of 5 m. At a station in the proximity of our site in the North, Eggum (68 °N), a 

mean temperature of 8.3 °C, ranging from 4.7 ° to 12.3 °C during the same time and at 

the same depth, was measured (IMR, 2018). Crabs in the South seem to be foraging 

and moving at shallower waters to a certain degree all year round, making them 

available for trap fisheries. The low catchability of crabs in the North when the water 

temperature is at its lowest, may have two explanations: Either crabs stop foraging, as 

indicated by observations of recreational divers, spotting crabs dug into sediment 

during spring and earlier found evidence that crabs do not feed at all at temperatures 

below 5 °C (Karlsson, et al., 1996). Or, they are migrating to deeper waters for feeding, 

comparable to what is observed in for example French waters (Le Foll, 1982). A 

combination of the two is also possible. The lower HSI supports that crabs are not 

foraging. However, it is also possible that crabs are not foraging as actively in deeper 

water or that prey is less abundant there. 
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4.1.3 Dietary and aqueous cadmium uptake 

The results from Paper 2 revealed that the dietary route dominates the accumulation of 

cadmium in HP in brown crab for representative concentrations in water and diet found 

in the North and most likely the whole distribution range of brown crab. The relative 

importance of the dietary route was predicted to be at least 98 % in our model, 

considering a wide range of naturally occurring combinations of concentrations in 

potential feed organisms and seawater in Northern Norway. The assimilation efficiency 

α from cadmium in food in HP was also determined to be 98 %.  

This means that even though our modelled parameters might carry some uncertainty 

and the uptake at only one set of physicochemical condition was measured, the dietary 

uptake can be considered as more important. This is in line with the findings in brown 

crab of Davies et al. (Davies, et al., 1981) who exposed crabs to cadmium in water 

(10 µg/L) and a high concentration in feed (58 mg/kg) for approximately 300 days. 

Also for shore crab, Bjerregaard et al. (2005) concluded that diet is the main uptake 

route for cadmium, as the increase of cadmium in crabs sampled at different months 

could not be explained by an accumulation of cadmium from water measured in a 

laboratory study.  

The model predictions of the importance of the uptake route might bear uncertainty 

because of variability in the model parameters. The applied ingestion rate will vary 

with food accessibility and quality as well as environmental conditions such as 

temperature (Woll, et al., 2006b). Assimilation efficiency has been shown to depend 

on food type and chemical form of cadmium (Rainbow, et al., 2011b) and also variation 

in geochemical parameters such as salinity can influence the uptake of trace metals 

(Bjerregaard, et al., 1994). Furthermore, physiological parameters might influence the 

uptake. However, considering the clear result of the model prediction, the dietary route 

can be regarded to be more important than the aqueous uptake. 

Using a biodynamic modelling approach assuming steady-state conditions, the 

determined accumulation parameters like those determined in Paper 2, can further be 

used to predict concentrations of cadmium in brown crab in the field (Lee, et al., 2016; 

Luoma, et al., 2005; Wang, et al., 1996). The predicted value can then be compared to 

values found in the field to validate the model output.  
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The total steady state concentration of cadmium in HP of crab (CSS) can then be 

described as: 

CSS = CSSwater+CSSfood= 
(kw ∙ Cw)

ke+ g
+

(α ∙ I ∙ Cf)

ke+ g
, 

Where kw is the uptake rate constant from water determined to be 0.0067 L ∙ g crab–1 ∙ 

d–1, Cw and Cf being the cadmium concentration in seawater [µg/L] and feed [µg/g dw], 

I being the feeding rate of 0.08 gfeed ∙ gHP
-1 ∙ day-1 dw from Woll et al (2006b), adjusted 

for HP and dry weight (Paper 2). The elimination rate constant ke was set to zero, 

according to the best model fit and as no clear depuration of cadmium from HP was 

observed after the exposure phase. Therefore, the growth rate g is crucial for the output. 

However, estimates of the growth rate of brown crabs are scarce adding uncertainty to 

the prediction. One rough estimate found in the literature is that crabs at around 200 g 

in Mid-Norway are about 8 years old (Eriksen, et al., 1993), corresponding to a growth 

rate of 0.07 g ∙ d–1. 

The mean cadmium concentration in seawater recently measured in the Salten region  

was 0.05 µg/L (Falk, 2015) and concentrations in blue mussel and horse mussel 

(Modiolus modiolus) identified as the most frequently consumed food items of brown 

crab were 0.75 and 11.4 µg/g dw (Duinker, et al., 2016). Applying these concentrations 

in the model, steady state concentrations of 0.84 and 12.8 µg/g dw were predicted, 

respectively. These values are relatively low compared to the highly variable 

concentrations found in the North and South with means ± SD of 68 ± 67 µg/g dw and 

23 ± 25 µg/g dw, respectively (Paper 3). For small filter feeders and plankton, 

validations of the biodynamic model resulted in more accurate predictions. (Luoma, et 

al., 2005). However, variations in the trace metal concentrations in the diet are probably 

not as pronounced and the environmental conditions more stable for plankton and filter 

feeders in comparison to a mobile opportunistic feeder like brown crab. Considering 

the uncertainty in the input parameters in the present model prediction, some deviation 

in the predicted concentration can be expected. Better estimates for the growth rate, 

ingestion rate and foraging preferences are needed to make a validation of the model, 

using measurements of cadmium levels in brown crab sampled in the field, more 

reasonable. The accumulation parameters itself are also somewhat uncertain, as the 
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uptake and elimination of trace metals in invertebrates is complex and can be 

influenced by a variety of factors such as physicochemical properties of the 

environment and physiological parameters of the crab difficult to cover completely in 

laboratory studies. Further, even though considerable effort was spent to use 

physiologically similar crabs in the experiment and environmental conditions, with 

cadmium exposure similar for all crabs, rather large variation was seen in the uptake. 

This indicates inter-individual differences in uptake of cadmium in brown crab.  

In conclusion, Paper 2 revealed that cadmium in brown crab is mainly accumulated via 

the dietary route, which clearly indicates, that foraging behavior is important for the 

accumulation of cadmium in this species. 

4.1.4 Cadmium accumulation in shore crab vs brown crab  

The pattern in the brown crab with high cadmium levels in the North was not reflected 

in the shore crab. Only males from one station in the North showed significantly higher 

cadmium levels than at the other locations (Paper 4). This suggests, that the difference 

in cadmium levels in brown crab from North and South are rather due to certain 

characteristics of the species itself, than being connected to characteristics of the area, 

at least in shallow waters. Different cadmium accumulation patterns among taxa and 

species can be explained by factors such as: species-specific differences in 

bioaccumulation dynamics, differences in metal exposures by different habitat 

characteristics or dietary preferences, different foraging behaviors and different food 

web structure and trophic position (Croteau, et al., 2005). Shore crab and brown crab 

have similar feeding habitats. However, clear differences can be seen in the depth 

distribution of the two species; i.e. from the tidal zone down to a few meters in shore 

crab (Klassen & Locke, 2007) and from the tidal zone down to several hundred meters 

in brown crab (Le Foll, 1982). Furthermore, a comparative study in juvenile brown and 

shore crab showed that brown crab tended to feed on larger prey, most probably 

because of the more powerful chelae (Mascaro & Seed, 2001) and it can be assumed 

that this difference is even pronounced in adult animals. If differences in foraging 

habitat are causing a variation between the spatial cadmium patterns between different 

species, this supports the suggestion that differences in foraging behavior also can 
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explain the variation between different areas within one species, the brown crab.  

Another reason for the absence of the spatial cadmium pattern in shore crab, could be 

that shore crab might be better adapted to the climatic conditions. At our northern 

sampling location, brown crab lives near its northern limit of distribution, where 

pronounced biological responses to seasonal temperature fluctuations may be expected. 

Brown crab, arrived according to local fishermen in the North about 20 years ago and 

the earlier mentioned lower moulting frequency suggests suboptimal conditions. In 

contrast, at the southern location, brown crab inhabits an area where temperatures may 

be closer to ideal all year round. Shore crab, however, is known for its wide distribution 

range all along the Norwgeian coast and tolerance of temperature and salinity (Klassen, 

et al., 2007). Shore crab might therefore not grow slower in the North and crabs at the 

same size may have had the same time to accumulate cadmium. Further the shore crab 

may not need to migrate, because of difficult foraging at cold temperatures, as indicated 

for brown crab (Karlsson, et al., 1996). 

4.2 Difference between North and South 

Our results indicate that the sudden spatial increase in cadmium levels in brown crab 

in the North of the Norwegian coast is a complex, multifactorial phenomenon. 

Nevertheless, important factors could be identified potentially playing an important 

role in cadmium accumulation. Combined with earlier observations, our findings 

suggest some explanations for the differences in cadmium levels in brown crab 

between the areas north and south of about 67°N. 

An earlier study measuring the cadmium level in sediments in the North came to the 

conclusion that the high levels of cadmium in crab are probably not caused by an 

anthropogenic point source (Falk, 2012). This finding is strengthened by the fact that 

neither blue mussels (Foldøy Tverdal, 2012), finfish (Julshamn, et al., 2013a; 

Julshamn, et al., 2013e), (Julshamn, et al., 2013a), nor the closely related shore crab 

showed the same pattern with high cadmium levels in the North. Regarding riverine 

input of cadmium in Norway, the release of cadmium in 2015 was actually higher in 

the South with 1.1 t to Skagerrak, 0.61 t to the North Sea, 0.2 t to the Norwegian Sea 
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and 0.3 to the Barents Sea in 2015 (Skarbøvik, et al., 2016). Neither was there a trend 

towards higher concentrations in the North visible in Cd levels in seawater at different 

depths across the North-East Atlantic Ocean (Danielsson, et al., 1985).  

The finding in Paper 2 that most cadmium is accumulated from diet indicates that 

foraging and linked factors are important in understanding the variation in cadmium 

levels.  

Combining these results with the finding in Paper 3, indicating different patterns of 

migration and foraging for crabs from North and South, this could be the key to 

understanding the different cadmium concentrations in brown crab found in North and 

South. As different prey organisms will be abundant at different habitats and depths, 

the possible downward migration of crab might bring them into contact with organisms 

potentially holding high amounts of cadmium, like for example porifera (Ness, 2014) 

and as deep-sea water is known to be rich in cadmium (Janssen, et al., 2014; Xu & 

Morel, 2013), also species abundant in shallower waters might be higher in cadmium 

in deeper waters. 

Low accumulation of cadmium from seawater in brown crab means that differences in 

cadmium in crab from different regions cannot be explained by variations in direct 

uptake of cadmium from seawater. However, as trace metals have the potential to 

biomagnify over several trophic levels, the earlier suggested hypothesis that upwelling 

of cadmium rich deep-sea water is causing the high values in the North (Falk, et al., 

2013) cannot be ruled out. Although biomagnification of trace metals except methyl-

mercury is not expected (Fisher & Reinfelder, 1995), cadmium biomagnification over 

several trophic levels in seawater has been described earlier. In a subtropical lagoon 

(SE Gulf of California), 20 of 31 trophic interactions resulted in biomagnification 

factors > 1.0 for cadmium (Ruelas-Inzunza & Páez-Osuna, 2008) and also within the 

Greenland part of the Arctic a general pattern of cadmium biomagnification was found 

(Dietz, et al., 2000). On the contrary, cadmium concentrations were lower in higher 

trophic levels in a southern Baltic ecosystem (Szefer, 1991) and also in a food web in 

the Mediterranean Sea, cadmium concentrations in species at higher trophic levels were 

lower. In a freshwater food web, a higher cadmium accumulation was shown in fish 

than in invertebrates (Croteau, et al., 2005). Cheung and Wang (2008) found cadmium 
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to biomagnify distinctly in food webs with gastropods as top predators in different 

marine environments. This is in accordance with the recent study of Signa et al. (2017b) 

in a highly contaminated area of the Mediterranean Sea in a benthic food web. 

Interestingly, when considering all the components of the food web, not only the 

benthic part, no biomagnification could be found. This indicates that the detection of 

biomagnification in a food web clearly depends on the considered species and parts of 

the food web. Findings in gastropods suggest that biomagnification of cadmium is more 

common in benthic food-webs than in pelagic food-webs and that certain predators, 

like gastropods, are prone to biomagnify cadmium (Signa, et al., 2017b).  

Comparing cadmium concentrations found in Paper 1 and 3 with concentrations found 

in the potential feed organisms for crab in Northern Norway (Ness, 2014), showed that 

brown crab itself is amongst the organisms with the highest concentrations. In 

combination with the high assimilation efficiency found in Paper 2, this make it very 

likely that brown crab is a top predator for a benthic cadmium biomagnifying food web, 

similar to gastropods. 

Whether an organism biomagnifies a certain trace element depends on the underlying 

physiological handling mechanisms (Rainbow, et al., 2011a) and can be independent 

of the trophic position. While some invertebrates directly regulate the excess of trace 

metal concentrations by balancing uptake with excretion, some store it in detoxified 

form. Some organisms excrete the detoxified metals, like amphipod crustaceans with 

copper. Others show no significant excretion, such as barnacles for cadmium, similar 

to crabs.  

An indication for the accumulation of cadmium in HP of brown crab over time was 

found in paper 3. Further, a recent study on the moulting frequency of brown crab along 

the Norwegian coast suggests that crabs in the North moult less often and therefore 

most probably have a slower total growth (Bakke, S., personal communication, Feb 

2018). This supports the hypothesis that a lower growth rate in the North could lead to 

higher cadmium levels in crabs compared to crabs at the same size in the South. 

Moulting may also play a role as a mechanism of trace metal depuration. Bergey and 

Weis (2007) measured the content of copper, lead and zinc in fiddler crab Uca pugnax 
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and in the respective exuvia immediately after ecdysis. They found a significant 

decrease in all metals, however the decrease was less in crabs coming from a clean 

compared to a contaminated site. While the total body burden elimination for copper 

was 12 and 3 % at a contaminated versus clean site, was it 76 and 56 % for copper and 

22 and 8% for zinc, respectively. The large difference between the different metals 

could partly be explained by the fact that most of the total body burden of lead is located 

in the exoskeleton, while zinc and copper are mainly abundant in soft tissue. For 

cadmium, mainly accumulated in HP, the elimination during moulting will most likely 

not be as pronounced as for lead. However, if there is some elimination taking place at 

ecdysis, the higher moulting frequency, and thereby elimination of cadmium in the 

crabs in the South, might contribute to the lower values of cadmium.  

A comparison of the cadmium levels measured in Paper 3 and literature values on 

brown crab from Scotland and the English channel (Barrento, et al., 2009a; Barrento, 

et al., 2009b; Maulvault, et al., 2012) indicates that the cadmium levels in brown crab 

from the North actually are not high compared to other areas, while brown crab from 

the South are low in comparison. In other studies crabs were purchased at fish mongers 

and a high meat yield and condition of the crabs can be assumed. According to our 

finding of a negative correlation between condition and cadmium levels, this should 

result in lower concentrations, even underlining that actually brown crabs from the 

South of Norway are unusual with their lower values. 

4.3 Implications for the brown crab fishery 

Considering commercial fishing and that crabs are processed and cooked as whole, the 

results of Paper 3 indicate that capture area (North or South) is the most important 

factor influencing the concentration of cadmium in HP. Neither season nor other 

physiological factors had a strong influence. This makes it difficult to develop 

mitigation strategies for fisheries other than avoiding fishing in the North. Only fishing 

south of Salten provides a catch of crabs with low enough cadmium concentrations in 

HP to guarantee cadmium values in claw meat below the legal limit of 0.5 mg/L (Paper 

3). Neither fishing at a certain period of the year nor sorting by a certain physiological 
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stage in the North of Norway would be sufficient to guarantee cadmium levels below 

the legal limit in claw meat.  

However, as HP was identified as source of cadmium redistributing in the animal, and 

also being most crucial for the risk when consuming crab (Paper 3), a suitable 

mitigation strategy in the North could be the avoidance of HP in processing. According 

to the results of Paper 1, with low findings of cadmium in crab claw treated separately 

and in raw gonad, there is potential to use crab claw meat as a food resource on 

commercial basis also in the North. It can be ethically questioned whether or not it is 

acceptable to harvest a crab, if only a minor part will be processed. However, according 

to own experience, brown crab is caught as by-catch in net fisheries targeting finfish. 

For example, in the early period of the large yearly fishery on Atlantic cod at the 

spawning ground in the Lofoten area, brown crab is a very common by-catch which is 

discarded and often killed or mutilated prior to release, as they are entangled in the 

nets, making it cumbersome and time consuming to release them alive. High catches 

of crab in the North have also been reported in net-fishery aiming for halibut and 

monkfish in autumn (Bakke, et al., 2016).  

Thus, claw meat of crabs caught as bycatch in other fisheries could safely be utilized 

as food if claws are removed before processing. As it is illegal and unethical to remove 

claws from live crabs, brown crabs should first be killed humanely. With some degree 

of training, this can be done quickly by the method described in Paper 1 to 4.  

4.4 Risk assessment and implications for human consumption 

Our results from Paper 1 regarding the change in concentrations after cooking and 

thawing are crucial when the risk of exceeding dietary reference values in a certain 

population wants to be assessed. The findings in Paper 1 clearly show that a relevant 

risk assessment has to take into account how the food item in question actually is 

processed before consumption, as concentrations can be heavily affected. So far, this 

is not implemented in legislation and the awareness is low. 

The risk assessment presented in Paper 3 is the first using cadmium concentrations 

measured in freshly boiled crabs to assess the risk of critical cadmium exposure linked 
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to the consumption of brown crab.  

Consumer data from the Norwegian population was combined with the measured 

cadmium values in brown crabs from North and South. Even when considering the 

exposure of cadmium from consumption of brown crab in addition to exposure from 

other foodstuffs, crab claw meat of crabs cooked whole can be safely consumed 

regardless of where the crabs were caught. Eating whole brown crab from the South as 

frequent as an average Norwegian consumer, would not lead to an exposure higher than 

the tolerable weekly intake. However, consumers at the coast, having a higher 

consumption frequency, would slightly exceed the TWI, while heavy coastal 

consumers are exposed to three times the TWI. Consumption of the same number of 

crabs from the North leads to an exceedance of the TWI in all considered consumption 

patterns and the heavy consumers ingest 13 times the TWI. As most of the crabs 

commercially landed in Norway are caught south of the critical are (Søvik, et al., 2017), 

the consumption of crabs with low levels comparable to our findings in the South, are 

more likely. However, it has been shown, that the contribution of self-caught seafood 

is especially high for people living along the Norwegian coast (Meltzer, et al., 2002). 

Consequently, consumers living along the coast of Northern Norway, eating self-

caught crabs, are at risk.  

Table 1 Calculated exposure to cadmium in the Norwegian population given as 

percentage of the TWI of 0.73 mg Cd/kg body weight, accounting for the contribution 

of Cd from other foodstuff in the European population. Different consumption 

patterns and concentrations in brown crab along the Norwegian coast and consumed 

tissue were considered. Red indicates an exceedance of the TWI. 

% of TWI 
Whole crabs Claw meat 

North South North South 

Avgerage 

consumption 
295 85 19 2 

Coastal 

consumption  
353 102 19 2 

High coastal 

consumption 
1237 357 82 8 

 

The current advice of the Norwegian food safety authority to avoid eating crabs from 

the North is reasonable, although the consumption of claw meat can be regarded as safe 
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regarding cadmium. However, it does not protect the coastal consumers of brown crab 

in Norway. Additionally, it seems like the popularity of ready-to-eat products is 

increasing often containing a mixture of crab brown and white meat. This probably 

changes the consumption patterns. Further, it can be discussed if the current legal 

maximum limit protects consumers against high cadmium exposure from consumption 

of brown crab. It only applies for muscle meat, which has been identified not to be of 

concern. For the actual hazard, cadmium in brown meat, no legal limit is established. 

Such a limit would be more protective for consumers and could be set considering 

current consumer patterns and processing methods and should also apply for mixtures 

of brown and white meat. 
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5. Conclusions 

The results of this thesis showed that the main factors explaining the large inter-

individual variation of cadmium levels in brown crab are sampling area and sample 

treatment. Crabs sampled in the north of the Norwegian coast showed significantly 

higher values than crabs from the South, confirming findings from earlier studies. 

Cooking and freezing crabs caused a pronounced leakage of cadmium from the 

hepatopancreas to the claw meat and thereby altered the cadmium distribution. 

No clear pattern was seen in the cadmium levels throughout the year in the North and 

the South. However, in the North, a trend towards higher concentrations was 

accompanied by a somewhat reduced condition of the crabs, supported by a negative 

correlation between condition and cadmium concentrations, indicating growth dilution 

with increasing condition. 

The variation in other physiological parameters did not have a strong influence on the 

cadmium levels. An indication for an accumulation of cadmium over time was 

observed in the North as a correlation between crab size and total amount of cadmium. 

Taking into consideration that brown crabs in the North have been shown to have a 

lower moulting frequency than brown crabs in the South, this could explain the 

differences between crabs in the North and the South. If crabs are accumulating 

cadmium over time, a lower growth rate in the North will result in more time for the 

crab to accumulate cadmium in comparison to crabs of the same size in the South. 

In the conducted laboratory study, crabs were found to be highly efficient in 

assimilating cadmium from ingested feed and no elimination was observed. This 

underlines the assumption of an accumulation over time. The predicted importance of 

dietary uptake to the overall accumulation was 98 %. 

Sampling of crabs during the year indicated a difference in migration or foraging 

between crabs in the North and the South. Crabs in the North were not catchable during 

the coldest period of the year. Considering the importance of the dietary uptake and 

opportunistic feeding behavior in crabs, a difference in foraging will potentially lead 

to differences in cadmium levels.  

In the comparative study with shore crab, no congruent pattern was found, indicating 
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that the high accumulation in the North is specific for brown crab, and that an 

anthropogenic point source is rather unlikely to cause the high levels of cadmium. 

As no clear differences in season and physiological parameters were found, no 

mitigation strategy could be developed. However, the risk assessment revealed that the 

consumption of claw meat is safe in terms of cadmium regardless of where the brown 

crabs are caught. Whole crabs and brown meat, however, should be consumed 

parsimoniously and consumers living along the coast in particular are in danger of 

exceeding the tolerable weekly intake of cadmium, as they generally consume more 

brown crab. The establishment of a legal limit for cadmium in the brown meat of crabs 

would be an important step to ensure consumer protection.  
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6. Future perspectives  

The evidence we found of the importance of foraging behavior for cadmium levels in 

crab can potentially explain some of the differences in cadmium found along the 

Norwegian coast. Further stomach analyses should be conducted, coupled with DNA 

analysis to get a better idea of the different prey items in North and South. Another 

approach to find out more about foraging would be using stable nitrogen and carbon 

isotopes to estimate the trophic level of the crabs in different regions to see if there is 

a correlation with cadmium levels. This could be expanded on by sampling organisms 

from several trophic levels to investigate the biomagnification of cadmium, as has been 

done elsewhere (Signa, et al., 2017b). It has also been shown that some links between 

dietary regimes and metal accumulation are better detected using fatty acid profiles and 

a complementary use of stable isotopes and fatty acids is preferable (Le Croizier, et al., 

2016). 

Since brown crabs are opportunistic feeders, their dietary composition probably highly 

depends on migratory patterns. However, especially along the Norwegian coast, 

information about the migration of crabs is scarce. This issue could be addressed with 

capture-recapture studies using electronic data storage tags, which have shown to be 

useful for tracking brown crab in the English channel (Hunter, et al., 2013). An 

alternative approach to investigate the migration patterns is acoustic tracking with 

ultrasonic transmitters such as those used in a brown crab study on the west coast of 

Sweden (Ungfors, et al., 2007). 

Modern isotopic analysis using multi-collector inductively coupled plasma-mass 

spectrometry (MC-ICP-MS) has been proven to be a promising tool to trace mercury 

pollution in brown crabs, by comparing isotopic signatures of the mercury present in 

crab to the possible sources of mercury (Rua-Ibarz, et al., 2016). There are first attempts 

to apply the same technique to cadmium, and MC-ICP-MS would be a promising tool 

to trace back the high cadmium values in Northern Norway to sources like cadmium 

rich deep-sea water, or anthropogenic sources like mining activity or dumped 

ammunition.  



42 

 

In our investigations we focused mainly on biota, however physicochemical 

characteristics of the environment can also be important for the uptake of trace metals 

and cadmium, and has been shown to be more important for bioaccumulation than pure 

sediment contamination in a highly contaminated area of the Mediterranean sea (Signa, 

et al., 2017a). The importance of physicochemical characteristics could be addressed 

by measuring potentially important parameters like pH; total organic carbon, redox 

potential and grain size in sediment and water samples from the different areas.  

As some crabs showed exceptionally high levels of cadmium, the question of the 

toxicity of cadmium to brown crab itself could be raised. While the recent literature on 

the toxicity of cadmium in sub-lethal doses suggests no behavioral changes in other 

crab species (Blewett, et al., 2017), there is evidence for toxicity on the cellular level, 

and altered gene expression (Zhou, et al., 2016; Zhou, et al., 2017). As cadmium 

exposure can also cause cell damage and apoptosis in the hepatopancreas of crab (Lin, 

et al., 2017), it could lead to feedback mechanisms by releasing detoxified cadmium, 

causing even more damage. These toxic effects might in turn also influence cadmium 

accumulation. The high variation in cadmium in crabs gives a good opportunity to 

investigate dose-response mechanisms using genetic tools in crabs from the field, while 

laboratory exposure experiments can be difficult because of the varying background 

concentrations.  

So far only organisms abundant in shallow water have been comparatively analyzed 

for cadmium in the north and south of the Norwegian coast. An investigation of the 

level of cadmium in Norway lobster Nephrops norvegicus, which lives at water depths 

similar to where brown crab is assumed to migrate to in spring in the North, could 

deliver valuable information. However, because of a low abundance of Norway lobster 

in the North, a first fishing attempt was not successful and more effort would be needed 

to obtain samples from North. 

With regard to risk assessment, the bioavailability of cadmium in crab to human beings 

is an issue important to address. In rats it has been shown that the uptake of cadmium 

from crab meat is only half of that from a diet fortified with cadmium chloride (Maage 
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& Julshamn, 1987). In another experiment, cadmium absorption was increased in diets 

with low calcium and protein content, which is not the case for crab meat (Thévenod, 

et al., 2013). In humans, up to 8% of ingested cadmium is absorbed, and uptake depends 

on individual differences such as age, body stores of iron, calcium, zinc, pregnancy 

history and lactation. However, absorption is also dependent on the levels of ions (zinc, 

calcium) and other dietary components ingested with cadmium (Thévenod, et al., 

2013), and due to the strong binding to MT, the absorption of cadmium from crab 

brown meat may be difficult. In an in vitro study, a trend was visible towards higher 

bioaccessibility of cadmium from crab meat, when it was cooked. To assess the real 

risk from cadmium when consuming brown crabs, further studies are needed to 

investigate exposure, depending on the food type cadmium is ingested with. 
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a b s t r a c t

Increased cadmium concentrations in claw meat were demonstrated after cooking and freezing practices
of whole brown crabs. This was investigated in crabs from two different locations along the Norwegian
coast, one with normal and one with high cadmium concentration. For both locations, in whole crabs,
samples of fresh raw claw meat showed lowest values followed by raw-boiled and frozen-thawed-boiled.
Cadmium levels in separately cooked claws were comparable to the low values in claws from raw whole
crab. Claws taken from frozen crabs before thawing had low values compared to claws taken off the
carapace after thawing. This clearly indicates a transfer from hepatopancreas to claw meat, which
potentially induces biases when measuring and monitoring Cd levels in crabs. Further, different cooking
and storing practices might have profound effects on cadmium intake from eating crabs since concen-
trations above regulatory limits were found following common household and commercial practices.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The edible crab Cancer pagurus is an appreciated food item in
different countries and its fishery is of significant economic value in
different European countries. In the English channel, the catch of
crustaceans steadily increases, partly replacing the catch of large
finfish (Molfese, Beare, & Hall-Spencer, 2014) which shows the
future importance of the crab fishery. In Norway, the annual catch
of brown crab tripled within a decade (1993e2003) and has been
stable around 5e6000 tons ever since (Norwegian Directorate of
Fisheries, 2016). White crab meat from claws and legs is a well-
balanced nutritious food, rich in proteins, amino acids and essen-
tial elements with a low cholesterol and fat content (Barrento et al.,
2009b; Barrento et al., 2009c). However, findings of high values of

cadmium above the legal limit of 0.5mg/kgww set by the European
Commission (EU, 2006) in clawmeat (Julshamn, Nilsen, Valdersnes,
& Frantzen, 2012), and even higher values in the commonly
consumed hepatopancreas (HP) (Maulvault, Cardoso, Nunes, &
Marques, 2013), have raised concerns about food safety
(Maulvault et al., 2012a; No€el et al., 2011). High values of cadmium
have been found in claws and HP in crabs harvested in Norway
(Julshamn et al., 2012), Scotland (Davies et al., 1981; Maulvault
et al., 2012a) and the English channel (Barrento et al., 2009a).
Measurements along the Norwegian coast have shown a clear
pattern with higher values of cadmium in brown crab meat in the
north of Norway (Julshamn et al., 2012) which eventually led to a
breakdown of the crab fishery in the Salten region. However, crabs
are also caught north of this area and commercially processed to
different products. In food processing, crabs are either steamed as
whole, or claws are taken off and the different body parts processed
separately. The traditional and most frequently applied method for
preparing crabs in private homes in Portugal is boiling crabs as a
whole (Maulvault et al., 2013), which also applies to other European
countries.

The toxicity of cadmium towards humans is well known with
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renal and bone diseases as most common symptoms (J€arup &
Åkesson, 2009). Further evidence also implicates cadmium as a
risk factor for diseases in other tissues and organ systems, and also
at low concentrations (Satarug, Garrett, Sens, & Sens, 2010). The
European food safety authority EFSA has determined a tolerable
weekly intake (TWI) for Cd of 2.5 mg/kg body weight as a long term
intake limit to avoid harmful effects (EFSA, 2009). At present, the
intake of Cd by the average European is already close to the TWI
without considering consumption of crabs (EFSA, 2012).

Most studies focusing on toxic elements in crabs as well as the
current legal limits consider raw tissues, even though they are
almost exclusively consumed cooked. The cadmium content varies
substantially between different organs in many consumed crab
species, with much higher concentrations in HP than in muscle
(Davies et al., 1981; No€el et al., 2011; Nørum, Bondgaard, Pedersen,
& Bjerregaard, 2005; Rouleau, Gobeil, & Tj€alve, 2001). Mobility of
Cd under different cooking processes has been shown in fish (Atta,
El-Sebaie, Noaman, & Kassab, 1997; Ersoy, Yanar, Küçükgülmez, &
Çelik, 2006), mussels (Houlbr�eque et al., 2011; Metian et al., 2009)
and crustaceans (Abd-Allah & Abdallah, 2006; Jorhem, Engman,
Sundstr€om, & Thim, 1994). Although located in different body
parts of the crab, there is limited physical barrier between the HP,
located in the carapace and the claw meat. Thus, there is a risk in
the edible crab that cadmium from HP may contaminate claw meat
and other tissues while cooking. Contamination of clawmeat by Cd
during cooking may impose an increased risk for reaching the legal
limit and thereby a critical intake level of Cd. So far, only one study
looked at the effect of cooking on the Cd concentration in crab claw
meat (Maulvault et al., 2012a) and no difference between raw and
cooked crabs was found. However, the brown meat cadmium level
was relatively low (mean 5.6e8.4 mg/kg wet weight (ww))
compared to crabs from Northern Norway (mean 16e18 mg/kg
ww) (Julshamn et al., 2012). Further, the process of freezing also
needs to be considered as it has been shown to influence the cad-
mium level in saucer scallop (Francesconi, Moore, & Joll, 1993) and
sunfish samples (Ney & Martin, 1985). Studies focusing on the
natural level of Cd in crabs and processes underlying the accumu-
lation of cadmium, have not always contemplated the effect of
sample treatments like freezing. If a transfer occurs during sample
treatment, it could have a significant effect on analytical results and
thereby study outcomes.

This study was conducted to assess the influence of different
cooking and sample preparation methods on the level of cadmium
measured in the claw meat of crabs. The aim was to assess 1) the
difference in Cd concentrations in HP and claw meat between raw,
whole boiled and thawed and whole boiled crabs from geograph-
ical areas with high and normal Cd levels, 2) the effect on Cd
concentrations in separately boiled or steamed claws and 3) the
effect of freezing and thawing on Cd concentrations.

2. Material and methods

2.1. Biological material

Three experiments were performed to elucidate the effects of
different cooking and sampling methods. In experiment 1, 60 fe-
male crabs were sampled in Vesterålen, Northern Norway (68.7 N,
15.1 E) 05 Nov 2013, where earlier investigations have shown that
crabs contain elevated levels of cadmium, and around Hitra,
Southern Norway (63.5 N, 9.2 E) 01 Dec 2013. For experiments 2
and 3, 18 crabs were sampled 18 Nov 2014 and 12 crabs were
sampled 19e22 Sep 2015, respectively, in Vesterålen, Northern
Norway (68.7 N,15.1 E). Crabs were captured using baited crab pots.

2.2. Experiment 1: effect of freezing and cooking crabs

In each treatment of experiment 1, we used fifteen crabs. Sam-
ples of claw meat and brown meat were taken from each crab.
Brown meat consisted solely of HP and gonad at different matu-
ration states. In treatment 1 (‘raw’), samples were taken from raw,
fresh crabs. Before samples were taken, crabs were euthanized by
sticking according to best practice regulations Codex Alimentarius
(WHO/FAO, 2012). Gill samples were also taken. In treatment 2
(‘boiled fresh’), samples were taken after boiling the whole crabs
for 15e25 min in 8 L of salted water (50 g NaCl/L). In treatment 3
(‘thawed, boiled sw’) and treatment 4 (‘thawed, boiled fw’), whole
crabs were frozen and thawed before being boiled in salted water
(50 g NaCl/L) or fresh water respectively. In treatments 2 to 4,
several crabs were cooked together in one pot and the water was
renewed after each cooking.

2.3. Experiment 2: effect of cooking claws separately

In experiment 2, we investigated, whether the exoskeleton
could serve as a source of cadmium, and used frozen crab carapaces
and claws cooled on ice. The experiment consisted of two trials. In
trial A (n ¼ 10), claw meat of one of the two claws from each crab
was analyzed raw (‘raw A’) and the second claw was boiled (‘boiled
sw A’) separately in salted water (50 g NaCl/L) before sampling. The
boiling water was renewed after each cooking to avoid contami-
nation. We took HP samples from the thawed carapace (‘defrosted,
raw A’). In trial B (n ¼ 8), one claw was boiled (‘boiled sw B’) for
20 min in salted water (50 g NaCl/L) and the remaining claw was
steamed (‘steamed sw B’) for 15 min over boiling salted water (50 g
NaCl/L). The complete inner meat, consisting of HP, gonad and
connective tissue (excluding stomach), of the thawed carapace was
taken as raw sample (‘defrosted, raw B’), as this was done in earlier
studies on Cd levels in crabs in Norway (Julshamn et al., 2012). In
addition, we took samples of the exoskeleton from all claws after
the respective treatments.

2.4. Experiment 3: effect of freezing and thawing

In experiment 3, the aim was to determine if leakage of cad-
mium occurs during freezing and thawing. Whole crabs (n ¼ 12)
were received frozen. One claw was removed from the carapace
while still frozen and thawed separately (‘claw taken frozen’)
(n ¼ 12), while the second claw was removed after the crab had
thawed (‘claw taken thawed’) (n ¼ 8). HP was taken after thawing
(‘defrosted raw’). Samples from claw meat and HP were analyzed.

A schematic illustration of the different treatments in the ex-
periments is given in Fig. 1. In all three experiments, all liquid was
collected when dissecting the raw clawmeat, and the carapace was
emptied of liquid before samples of HP or brown meat were taken.
To prevent contamination, all used stainless steel dissection in-
struments were cleaned between each sample and samples were
directly transferred to sampling tubes, avoiding contact with other
external surfaces.

2.5. Chemical analyses

After freeze-drying and homogenization of the samples, the
analysis of cadmium was performed using ICP-MS as described by
Julshamn et al. (2007). In brief, we used ICP-MS (Agilent 7500c)
after digestion of samples in a microwave oven (Milstone-MLS-
1200). The method is accredited by the Norwegian Accreditation
Authority according to NS-EN 17025 and was controlled by use of
standard reference material (CRM, Tort 2, National Research
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Council, Canada). The LOQdw was set to 0.005 mg/kg dw with
standard sample size (0.2 g). The wet weight based LOQ for each
individual samples (LOQww) was determined as: LOQww ¼ LOQdw x
% dry mattersample/100.

2.6. Data treatment

In a pilot study it was found that the Cd concentration in gonads
represented less than 1% of the Cd concentration in brown meat of
raw crabs (0.031 ± 0.032 mg/kg ww (mean ± SD)). Thus, for
experiment 1, Cd concentration in HPwas calculated using the ratio
of dry weight of brown meat neglecting the Cd concentration in
gonad:

CdHP ¼ Cdbrown meat � dry weightbrown meat/dry weightHP

With CdHP being the calculated concentration of Cd in HP and
Cdbrown meat being the actual measured concentration of Cd in
brownmeat consisting of HP and gonad. The samewas assumed for
boiled and thawed and boiled crabs.

Differences between the Cd concentration in the different
treatments were tested with ANOVA and whenever necessary fol-
lowed by multiple comparison testing (Tukey HSD). The signifi-
cance level was 0.05. If homoscedasticity requirements were not
fulfilled, data was log-transformed before use. For experiment 1,
Pearson's linear correlation coefficient was calculated for Cd in HP
and Cd in claws. All statistical analyses were performed with STA-
TISTICA 12 (©Statsoft, Tulsa, USA).

3. Results

The results from all three experiments are presented in Table 1.
A clear difference in Cd concentrations between crabs from

Northern and Southern Norway was found for both, claw and
brown meat, with higher concentrations in crabs from Northern
Norway. This is in line with the results from the national moni-
toring program (Julshamn et al., 2012).

3.1. Experiment 1: effect of freezing and cooking crabs

The different treatments in experiment 1 led to significantly
different Cd values in claw meat. In crabs from Northern Norway,
claw meat from raw crabs was lowest with 0.024 mg/kg ww fol-
lowed by boiled crabs with 0.30 mg/kg ww and highest in crabs
thawed and boiled in either freshwater (0.84 mg/kg ww) or salted

water (1.0 mg/kg ww). The difference between boiling crabs in
fresh or salted water was not significant. The same pattern was
found for crabs from Southern Norway with 0.007 mg/kg ww for
raw, 0.065mg/kg ww for boiled and 0.16mg/kg ww and 0.10mg/kg
ww for crabs thawed and boiled in freshwater and salted water
respectively.

In crabs from Northern Norway, the different treatments caused
no statistically significant difference in the Cd concentration in the
HP. However, there was a trend with lower concentrations in HP of
crabs that were thawed and boiled than in HP of raw crabs. In crabs
from Southern Norway, the concentration in HP in freshly boiled
crabs was significantly higher than in thawed and boiled crabs in
freshwater. Otherwise, no clear trend was seen.

For both locations, the total Cd content in brown meat (con-
sisting of both gonads and HP) showed higher values in raw crabs
compared to thawed and boiled crabs. In crabs from Northern
Norway, boiling of fresh crabs also resulted in lower values than in
raw crabs. Gills showed a significantly higher Cd concentration in
crabs form Northern Norway with 0.54 ± 0.14 mg/kg ww
(mean ± SD) compared to Southern Norwaywith 0.36 ± 0.09mg/kg
ww (mean ± SD).

In the crabs from Northern Norway, with generally higher Cd
concentrations in HP, strong correlations between the concentra-
tion of Cd in HP and claw meat were found in all treatments (co-
efficients of correlation between 0.65 and 0.95, Table 1). In crabs
from Southern Norway, only the correlation between the Cd con-
centrations in HP and claw meat from raw crabs was statistically
significant (r ¼ 0.70).

3.2. Experiment 2: effect of cooking claws separately

Meat from claws, which were cooked separately from the
carapace in trial A and B, showed no elevated Cd concentrations
compared to raw claw meat with values between 0.020 and
0.027 mg/kg ww.

The Cd concentration in HP in thawed crabs was significantly
higher than the concentration in thewhole innermeat consisting of
HP, gonads and other edible tissues, excluding the stomach.

We found very low Cd concentrations in the exoskeleton of the
separately cooked claws with only three values above LOQ
(0.04 mg/kg ww) and a maximum of 0.013 mg/kg ww.

3.3. Experiment 3: effect of freezing and thawing

In frozen claws thawed separately from the carapace, the

Fig. 1. Schematic illustration of the cooking and freezing practices applied in the different experiments.
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concentration of cadmium in the meat was low with a mean of
0.011 mg/kg ww and thereby significantly lower than the concen-
tration in the meat from the claw that was thawing while attached
to the carapace with 0.24 mg/kg ww.

4. Discussion

4.1. Effect of cooking method and sample preparation

4.1.1. Claw meat
Our Cd levels found in raw claw meat (Table 1) are in line with

other findings of 0.01 (Maulvault et al., 2012a) and levels of about
0.03 mg/kg ww (Barrento et al., 2009c).

Both, cooking and thawing significantly increased Cd values in
the claw meat. In Experiment 1, for both locations, boiling whole
fresh crabs resulted in about tenefold higher claw meat Cd con-
centrations compared to raw claw meat. Freezing and thawing
before boiling enhanced this effect, causing at least a further
doubling of the claw meat Cd concentrations. In experiment 3, the
freezing and thawing process also increased the Cd concentration
in claws that were attached to the carapace during thawing. This
clearly indicates a transfer and redistribution of Cd fromHP, with its
high concentrations, into the claw meat during these processes. Cd
in raw crabs is mainly found in the soluble cytosolic fraction bound
to metallothionein (MT) (Pedersen et al., 1994). During freezing,
water expands and ice crystals form, leading to cell bursting and
leakage of the cadmium during thawing. In cooking processes,
additionally free Cd ions are partly released, as, although MTs are
described as heat stable, the metal link (metal-SH) is vulnerable to
heat (Bragigand & Berthet, 2003). As no rise in Cd levels was found
once claws were thawed and boiled separately, it can be concluded
that the Cd is not transferred from the exoskeleton. In accordance
with our findings, Jorhem et al. (1994) noticed a reduction of cad-
mium concentrations in crayfish HP and a rise of Cd in abdominal
muscle comparing raw and boiled crayfish. As high brown meat to
white meat Cd ratios are known for other widely consumed crus-
taceans like Lobster H. gammarus,with 101, spider crabM. squinado

with 28.5 (No€el et al., 2011), and snow crab Chiononectes opiliowith
10 (Rouleau et al., 2001), a transfer of Cd into the white meat during
cooking is probable for all these important crustacean species.

In similar experiments with bivalves, the Cd concentration in
the cooking water increased and cooking processes concentrated
Cd in the soft tissue by loss of water (Houlbr�eque et al., 2011;
Metian et al., 2009). When boiling crayfish, Jorhem et al. (1994)
found no changes in heavy metal concentration in the water. The
differences in anatomy of bivalves and decapod crustaceans might
explain this difference. Bivalves, once the shell opens during
boiling, expose a big surface of the inner organs to the cooking
water. The almost closed exoskeleton of crabs instead, only allows a
limited movement of boiling water in and out of the exoskeleton.
Cadmium from HP may therefore to a higher degree redistribute
inside the crabs.

4.1.2. Brown meat
Experiment 1 showed that for both locations, the total cadmium

content in brown meat (taking into account the wet weight of the
total brownmeat consisting of both gonad and HP), is highest in the
raw crabs with lower values in boiled and thawed and boiled crabs,
although not significantly for freshly boiled crabs from Southern
Norway. In HP, the levels of Cd were lower in the thawed, boiled
treatments, however, not significantly and the values in freshly
boiled crabs were even slightly higher than in raw crabs. In an
earlier study by Maulvault et al. (2011), an increase in brown meat
Cd levels was found after cooking, while in another study con-
ducted by the same group no difference in the brown meat Cd
content after cooking was found (Maulvault et al., 2012a). The de-
gree of change in Cd levels in HP due to cooking seems to be less
clear. Probably, this is partly related to the large inter-individual
variation in Cd levels (see 4.2). The assumption made in calcu-
lating the concentration of Cd in HP, that the gonad of the crabs
does not contain any Cd might bias the results in the freshly boiled
and thawed and boiled crabs. As seen with the claw meat, it is
possible that there was some transfer of Cd from HP to the gonad
while cooking and thawing. Thereby, the concentrations in HP

Table 1
Weight, carapacewidth (CW) andmeasured cadmium concentrations in the different tissues of the brown crabs and the correlation between HP and clawmeat concentrations.
Different letters indicate statistically significant differences within each experiment and column.

Treatment Weight [g] CW [cm] Claw Cd [mg/kg ww] HP Cd [mg/kg ww] Total brown meat Cd [mg] Correlation
between HP Cd
and Claw Cd

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD r p

Experiment 1
Northern Norway
Raw 589 ± 76 ac 15.6 ± 0.7 ac 0.024 ± 0.012 a 38 ± 28 a 1.15 ± 0.76 a 0.72 <0.01
Boiled fresh 473 ± 51 b 14.4 ± 0.5 b 0.30 ± 0.29 b 44 ± 42 a 0.45 ± 0.26 b 0.95 <0.01
Thawed, boiled sw 553 ± 68 c 15.1 ± 0.7 ac 0.84 ± 0.66 c 22 ± 16 a 0.41 ± 0.28 b 0.95 <0.01
Thawed, boiled fw 592 ± 104 c 15.8 ± 1.0 c 1.0 ± 1.1 c 26 ± 16 a 0.43 ± 0.25 b 0.65 <0.01
Southern Norway
Raw 492 ± 63 abc 15.1 ± 0.7 abc 0.007 ± 0.005 a 8.4 ± 4.9 ac 0.21 ± 0.14 a 0.70 <0.01
Boiled fresh 555 ± 86 b 15.6 ± 0.8 b 0.065 ± 0.075 b 12 ± 11 ab 0.16 ± 0.12 a 0.33 0.23
Thawed, boiled sw 462 ± 39 c 14.7 ± 0.4 c 0.16 ± 0.09 c 6.8 ± 5.1 ac 0.08 ± 0.07 b 0.39 0.15
Thawed, boiled fw 450 ± 51 c 14.5 ± 0.7 c 0.10 ± 0.08 c 5.7 ± 2.3 c 0.08 ± 0.10 b 0.16 0.58
Experiment 2
Raw A 0.027 ± 0.047 a
Boiled sw A 0.020 ± 0.019 a
Boiled sw B 0.022 ± 0.012 a
Steamed sw B 0.027 ± 0.019 a
Defrosted, raw A 459 ± 99 a 14.9 ± 1.1 a 15 ± 9.5 a
Defrosted, raw B 390 ± 114 a 14.3 ± 1.2 a 5.7 ± 2.3 b
Experiment 3
Claw taken frozen 0.011 ± 0.007 a
Claw taken thawed 0.24 ± 0.23 b
Defrosted raw 379 ± 93 14.0 ± 0.9 11 ± 11
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might be overestimated and the effect of the treatments under-
estimated. The degree of leakage from HP to gonad should be
investigated further in future studies, as the female gonad is
commonly consumed as a part of the brown meat or could be used
separately if taken from raw crabs.

In crabs from Northern Norway, concentrations of Cd in HP and
claw meat were strongly correlated in all treatments. In crabs from
Southern Norway, correlations between Cd in claw meat and HP
were not that pronounced, probably because of lower concentra-
tions in the HP. High variations between the individual crabs might
also mask the statistical significance of the effects. Furthermore,
several crabs were cooked together in one pot, and although the
leakage out of the body is not expected to be pronounced while
boiling crabs, it might be enough for some interaction of the con-
centrations between different crabs through the boiling water.
Other factors during crab handling could also influence the final
cadmium levels in the different organs. The position and orienta-
tion of the crabs while freezing, thawing and cooling off after
cooking, as well as lost legs and claws while and before thawing
and cooking, could influence the distribution of the liquids and
hereby Cd concentrations. Hence, the need to have a detailed
standardized protocol for how to process crabs for analysis is
evident. There was no difference between the salted water and
freshwater treatment, showing that the variation in salt used for
preparation in households is of no importance for the Cd content.

4.2. Natural variation of Cd in the edible crab

Cd measurements exhibit a high variability with a mean SD of
80% in raw HP and 87% in raw claw meat. This is confirmed by
findings in other studies measuring Cd in the edible crab with a
mean SD of 61% in rawHP and 63% in raw clawmeat (Barrento et al.,
2009b) and 137% in raw HP and 93% in raw claw meat (Maulvault
et al., 2012a). No€el et al. (2011) measured Cd levels in crabs origi-
nating from France, United Kingdom, Netherlands and Ireland. The
values for white meat ranged from <0.020 mg/kg ww and up to
0.587 mg/kg ww underlining the high variability. However, the
sample preparation is not explicitly described in this study and the
leakage processes demonstrated in our study might have contrib-
uted to the high variation. In an investigation by the Food Standard
Agency UK (2013) of crabs caught and retailed in UK, cadmium
concentrations in HP fromwhole crabs ranged from 0.61 to 16 mg/
kg ww. Here, cooked and fresh samples of different crab species
were evaluated together. The high variation might be explained by
different biological and natural factors. In the green crab Carcinus
maenas the accumulation of cadmium depends on different phys-
iological parameters like ion concentrations, hydration level and
volume of tissues which can be interpreted as condition of the crab
(Bjerregaard, 1991; Bjerregaard & Depledge, 2002) and is thereby
linked to feeding conditions. Also the stage in the moulting cycle
and ovarian maturation influences the Cd accumulation in green
crabs. In post-moult stages, they accumulated Cd at much higher
rates and accumulation decreased during ovarian maturationwhen
exposed to Cd in water (Bondgaard, Nørum, & Bjerregaard, 2000;
Nørum et al., 2005). Furthermore age and growth rate could in-
fluence the values like seen in fish (Gigu�ere, Campbell, Hare,
McDonald, & Rasmussen, 2004).

Our mean value in HP in raw crabs from Southern Norway of
8.4 mg/kg ww is in line with earlier findings of 5.6 mg/kg ww
(Maulvault et al., 2011), about 8 mg/kg ww (Maulvault et al., 2012a)
and 6e28mg/kgww (Barrento et al., 2009b) in crabs from Scotland,
and the findings of No€el et al. (2011) in crabs from different coun-
tries (UK, FR, IE) with amean value of 12.8mg/kg ww. However, our
values for Northern Norway with an average of 38 mg/kg ww and a
maximum of 87.8 mg/kg ww were exceptionally high. As similar

differences were found earlier along the Norwegian coast
(Julshamn et al., 2012), it seems to be a consistent pattern. Further
investigations are needed to clarify why this is the case. Dry weight
contents in the different tissues were quite stable and showed no
significant differences within the different trials and experiments.
Accordingly, dry weight and wet weight based results show the
same pattern. In contrast, Maulvault et al. (2012a) found higher dry
matter contents after steaming compared to boiling (summer 19%
and 15%, spring 9 and 5%) and argues for a leaching of water during
the cooking process. Measurement in gills of raw crabs showed
significantly higher Cd values in Northern Norway compared to
Southern Norway. This might be caused by higher concentrations of
Cd in the North, as it has been shown in fish that higher Cd con-
centrations inwater results in higher concentration in gills (Gigu�ere
et al., 2004). The higher values in the gastro-intestinal tract, here
HP, than in gills however, suggest a more important uptake of Cd
from food than water. This has been demonstrated in lab experi-
ments in brown crabs (Davies et al., 1981) and green crabs
(Bjerregaard, Bjørn, Nørum, & Pedersen, 2005).

4.3. Implications for human consumption and study design

The Cd concentrations in all our analyzed HP and brown meat
samples were higher than the EU limit of 0.5 mg/kg set for un-
processed white meat from crab appendages (EU, 2006, 2011), with
a total mean value exceeding the EU maximum level by a factor of
35. Considering the high values of Cd found in brown meat in crabs
from Norway, a person of 70 kg only needs to consume as little as
4 g of HP from a freshly boiled crab from Northern Norway or 15 g
from a freshly boiled crab from Southern Norway, to reach the TWI
of 2.5 mg/kg body weight set by EFSA (EFSA, 2009). Also the mean
levels in claw meat from the thawed and boiled crabs from
Northern Norway and some single values in the cooked crabs of
experiment 1 and thawed crabs of experiment 3 exceeded the legal
limit of 0.5 mg/kg ww. In the Portuguese and Norwegian popula-
tion, crabs are mostly consumed in the coastal areawith portions of
up to 200 g of muscle and inner meat consumed per meal
(Bergsten, 2004; Maulvault et al., 2013). Taking into account these
consumer habits together with the potential of high catch rates in
some regions, people fishing crabs for recreation and consuming
their own catch, are in high danger of heavy Cd exposure. In in-
dustrial processing, meat of crabs from different origin is often
mixed. This, however, is not the case in small-scale recreational
fishing, and a repeated exposure to values as high as our maximum
individual value of 174mg/kg ww in HP of a freshly cooked crab can
take place. A questionnaire amongst recreational fishermen in the
inner Oslofjord showed that over 45% did not know about any
contamination in different kinds of fish (Holt, 2015). Thus, low risk
perception or lack of knowledge might fortify the risk of high Cd
exposure.

The risk of exceeding the TWI is highest when brown meat is
consumed (99.6% of the consumers in Portugal (Maulvault et al.,
2013)), but should not be neglected either, if white meat in crabs
from Northern Norway is consumed, given that crabs are prepared
in the traditional way of boiling the whole crabs. An assessment
based on the existing consumer data in the Norwegian population,
considering the Cd intake from other sources then crab meat,
concluded that consumers of high amounts of crab brownmeat and
especially adolescences are at high risk of exceeding the TWI (VKM,
2015). In contrast, treatments based on cooking the claws sepa-
rately, result in a safe product in regards to Cd. We agree with the
conclusion of Maulvault et al. (2013) that white crab meat is a
healthy food item if adequate processing methods are used.
Considering our findings, even crabs with high values in the HP can
be processed if claws are treated separately from HP. Furthermore,
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gonads of the females could be safely consumed if taken from raw
crabs. Our findings emphasize the importance of choosing the right
sample preparation method coinciding with the aim of the study. If
conclusions about food safety regarding to Cd are drawn, samples
must be prepared according to common household or commer-
cially used practices. Otherwise, values are prone to overestimation
(HP) or underestimation (white meat) and cannot serve as the basis
of risk assessment. Similar findings are present for other heavy
metals in seafood (Atta et al., 1997; Ersoy et al., 2006; Jorhem et al.,
1994) and also other characteristics like chemical composition,
fatty acids profile, macro and trace elements (Maulvault et al.,
2012b).

5. Conclusions

This study evidenced the influence of cooking and freezing on
the Cd content in claw and brown meat of the edible crab. The
results strongly suggest that the process of cooking crabs whole
leads to a leakage of Cd from HP to claw meat. In crabs with high
levels of Cd in HP this resulted in values in claw meat above the
maximum legal limit. Freezing and thawing enforced the effect
with even higher values after cooking the crabs whole. Claw meat
from separately cooked claws had Cd values comparable to raw
claw meat, which were low and unproblematic for human con-
sumption. Furthermore, the freezing and thawing process of whole
crabs from Northern Norway with high levels of Cd in HP led to
values of Cd in raw clawmeat above themaximum legal limit. Thus,
if natural levels of Cd are investigated, care should be taken if
freezing of the samples is necessary. Our results strongly suggest
the consideration of the cooking process when assessing food
safety of the edible crab regarding Cd.
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Abstract 

High concentrations of cadmium in brown crab are an issue of food safety, and large 

variations between different areas have been found. To investigate the relative importance 

of dietary and aqueous uptake regarding the overall accumulation in brown crab, we used 

stable isotopes to trace the uptake from both routes simultaneously in the same animals. 

We demonstrated that the analytical challenges regarding background concentrations of 

natural isotope distribution and polyatomic interferences in the different matrices can be 

overcome with an appropriate analytical setup and modern mathematical corrections 

using a computer software. Cadmium was accumulated from both routes and was found 

in all measured organs at the end of the exposure phase. The obtained data was used to 

establish accumulation curves for both uptake routes and estimate accumulation 

parameters for hepatopancreas, as the most important organ in crab regarding total 

cadmium body burden. Using the estimated parameters in combination with naturally 

relevant cadmium concentrations in seawater and diet in a model, allowed us to predict 

the relative importance of the aqueous and dietary uptake route to the total hepatopancreas 

burden. According to the prediction, the dietary route is the main route of uptake in brown 

crab with a minimum of 98% of the accumulated cadmium in hepatopancreas originating 

from diet. Future studies addressing the source and accumulation of cadmium in crab 

should therefore focus on the uptake from feed and factors connected to foraging.  

Key words: Cancer pagurus; cadmium; accumulation; stable isotope; gavage feeding; kinetic 

modelling 
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1. Introduction 

The brown crab (Cancer pagurus) is an appreciated seafood species with an increasing value 

and a global catch of about 50 000t (FAO, 2017) with about 5 000 tons harvested in Norway in 

2016 (Søvik, et al., 2017). However, elevated concentrations of cadmium (Cd) in the 

hepatopancreas (HP) and claw meat of cooked brown crab in several European countries 

(Barrento, et al., 2009; Julshamn, et al., 2012; Maulvault, et al., 2012) has become a food safety 

concern (Maulvault, et al., 2012; Noël, et al., 2011). In the North-East Atlantic Ocean, an 

interesting pattern was seen in crabs caught at the Norwegian Coast. The highest Cd values 

were found in crab in the North and claw meat concentrations have regularly been found to 

exceed the current legal limit of 0.5 mg/kg ww set by European Union (Julshamn, et al., 2012; 

Wiech, et al., 2017). The coast of Northern Norway is regarded a rather pristine area and the 

occurrence of high concentrations of Cd in crab therefore arouse public concern and scientific 

interest in finding the reason for the high levels. In general terms, trace elements, except methyl-

mercury are not expected to biomagnify along the food chain (Fisher & Reinfelder, 1995). To 

elucidate the cause of the high Cd levels, it is important to understand how Cd is taken up and 

retained in brown crab.  

The uptake of metals in crab can occur via two different routes: from water over the gills, or 

via the dietary route from ingested diet. The importance of these routes regarding the overall 

metal concentration at equilibrium can be determined using a kinetic model when assimilation 

efficiency, ingestion rate, and unidirectional uptake and elimination rate constants are known 

for the species in question (Luoma & Rainbow, 2005; Wang, et al., 1996) .  

To produce data sufficient for a reliable parameter estimation, radioisotopes have often been 

used to trace the accumulation of metals. However, the use of radioisotopes has some 

drawbacks (see Croteau et al (2004)) and since the recent developments in inductively coupled 

plasma mass spectrometry instrumentation (ICP-MS), the use of stable isotopes has become a 

good alternative. The use of stable isotopes has proven to be adequate to investigate the uptake 

of metals from water and feed in bivalves (Croteau, et al., 2004; Strady, et al., 2011). In Daphnia 

magna also interaction effects of metals were successfully studied using stable isotopes 

(Komjarova & Blust, 2008, 2009). Strady et al. (2011) have further shown the potential of using 

stable isotopes to simultaneously trace aqueous and dietary uptake in the same animals in the 

case of oysters. A prerequisite for simultaneous tracing is that the uptake from the different 

routes is non-competitive. In crab, Cd is mainly present in HP and almost entirely bound to 

metallothionein (MT) (Pedersen, et al., 1994; Pedersen, et al., 1998). As the binding capacity 

for Cd ions in MT is limited, expression is induced at a certain level (Pedersen, et al., 2014) and 
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exceedance could lead to a competitive accumulation of Cd.  

One challenge when using stable isotope tracing lies within the chemical analysis. Stable 

isotopes, are part of the natural isotope distribution of an element and are therefore abundant 

wherever natural Cd is present in the experiment. Therefore, high background concentration is 

expected. Another analytical issue when using ICP-MS are polyatomic interferences on all Cd 

masses in the different tissues. These challenges need to be addressed to enable the detection 

of Cd in tissues of animals exposed to low naturally relevant concentrations. 

Aqueous uptake of Cd in branchuryan crabs has been studied closely in the green crab Carcinus 

meanas, a species partly sharing the habitat with brown crab. Various factors such as 

temperature, salinity, exposure concentration, calcium concentration, moulting stage, ovarian 

stage and feeding status influencing the uptake of Cd from water, have been identified (see 

Bjerregaard, et al. (2005)). The dietary uptake route has not been studied equally well 

(Pedersen, et al., 2014), although a comparative study indicated that the uptake from feed 

contributes most to the overall Cd accumulation in green crab (Bjerregaard, et al., 2005).  

A recent study has quantified the Cd concentrations in green crabs along the Norwegian coast 

and found a different pattern between green and brown crab. For green crab, there was no clear 

difference in Cd concentrations between crabs from North and South (Knutsen, et al., under 

review), as seen in brown crab (Julshamn, et al., 2012). This indicates that there might be 

differences in uptake and elimination processes in the two species, as already known for other 

crab species (Rainbow & Black, 2005a, 2005b). The accumulation of Cd in brown crab, 

although commercially important, has not gotten much attention. To our knowledge, only 

Davies et al. (1981) investigated the uptake of Cd from feed and water in brown crab and 

concluded that dietary uptake exceeds aqueous uptake. However, deep-freezing of crabs before 

dissection make the results uncertain, as this can have a significant influence on the Cd 

concentrations in the different organs and can mask the actual distribution of Cd (Wiech, et al., 

2017). In general, the importance of the different uptake routes in brown and green crab have 

been estimated based on assimilation efficiencies for dietary uptake and concentration factors 

for aqueous uptake, often only considering data from the end of the exposure phase 

(Bjerregaard, et al., 2005). Further, concentrations of Cd in prey and seawater, and ingestion 

rates under natural conditions were not taken into account (Davies, et al., 1981) adding 

uncertainty to the results and making a direct comparison of uptake routes difficult. 
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In the present study, we wanted (1) to determine accumulation parameters of Cd in brown crab 

from aqueous and dietary route at the same time in the same animal, by (2) applying the method 

of stable isotope tracing. To address the observation in Northern Norway, (3) the importance of 

the different uptake routes was estimated using a modelling approach. 
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2. Material and Methods 

 

 

Figure 1. Schematic illustration of the methodological approach, where Cd accumulation from water and feed was traced 

simultaneously in the same animal using two different stable Cd isotopes.  

2.1 Experimental Animals 

Female, intermoult brown crabs (Cancer pagurus) (n=156) with a carapace width of 131 ± 5 

mm (mean ± SD), caught with baited traps in September 2016 around the southern tip of Sotra, 

Norway, were used in the experiment. Prior to the experimental period, crabs were acclimated 

to the laboratory conditions at Austevoll Research Station, Institute of Marine Research, 

Norway, for minimum five days, before the controlled feeding regime was established. The 

claws of the crabs were tied with a rubber band to avoid cannibalism and provide safety for the 

personnel handling the animals. Each of the rubber bands was carrying a number for 

identification of individual crabs. The animal handling and experimental protocols were 

approved by the Norwegian Food Safety Authority (FOTS ID 8845) and performed in 

accordance with the Norwegian and European law for the use of animals in experiments.  

2.2 Experimental Setup 

During the experimental period of 96 days starting 04 Oct 2016, the crabs were maintained in 

two 900 L tanks (control and exposure) in two levels of plastic baskets (34x25x16 cm) at a 

maximum density of 32 crabs/m2. Crabs were mainly kept in darkness with only slight exposure 
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to the natural light regime. Seawater was taken from 160 m water depth, sand-filtered and 

continuously exchanged at least ten times daily, and the pressure regulated using valves with 

flow-meters. Water temperature was measured daily and ranged from 7.2 to 9.0 ºC during the 

experimental period. Salinity was measured to 35 ppt and pH to 8.0 at start and end of the 

experiment. Aeration with air stones was used to obtain a sufficient oxygen saturation (> 88 %) 

and a homogenous mixture of the water. To minimize potential desorption of Cd from feces to 

the water, the tank was flushed and cleaned two to three times a week. 

2.3 Feeding 

Gavage feeding was applied in order to know the exact amount of feed ingested. Crabs from 

control and exposure tank (see 2.4 for exposure) were taken out of the water and fed individually 

with 6 mL feed per week, by feeding them two or three times with 2 or 3 mL, respectively 

(Ingestion rate I: 2.36 mgfeed ∙ gcrab
-1 ∙ day-1 ww or 9.39 mgfeed ∙ gHP

-1 ∙ day-1 dw) using a 

disposable plastic syringe with gavage needle (15G, 1.8 x 80 mm, Jørgen Kruuse A/S, 

Denmark). The feed was a slurry prepared from codfish powder (cooked, dried and micro milled 

cod fillet, Seagarden AS, Norway) sieved through 200 µm and mixed with deionized water in 

a blender to a dry weight content of 22.5 %. Gavage feeding is only possible when crabs are 

moving their mouth parts voluntarily, which can take minutes. A few drops of deionized water 

flavored with shrimp powder (Seagarden AS) was an effective stimuli for the crabs to open 

their mouth parts and the feeding time could be shorten to approximately under one minute per 

crab. To impede crabs from spitting out the feed, they were kept out of the water for minimum 

30 seconds after feeding.  

2.4 Exposure 

Crabs in the exposure tank (n=78) were exposed to Cd in seawater (0.5 µg 106Cd/L) and in feed 

(1 mg 108Cd/kg wet weight) (Figure 1) for 42 days, followed by a depuration phase of 56 days. 

To obtain an accurate concentration in feed, a stock solution enriched with 108Cd (Neonest 

AB/BuyIsotope.com, Stockholm, Sweden) was added and the mixture homogenized by stirring. 

For the spiked sea water, a stock solution  enriched with 106Cd (Neonest AB/BuyIsotope.com, 

Stockholm, Sweden) was dosed using a peristaltic pump (Watson-Marlow). Flow was checked 

daily. In addition, during the exposure phase, weekly water samples from the exposure tank 

were measured in the exposure phase and a concentration of 0.518 ± 0.010 µg 106Cd/L (mean ± 

SD, n=7) and a maximum of 0.002 µg 108Cd/L (n=7) was found. During the depuration phase 

the highest measured 106/108Cd concentration in water was 0.002 µg/L (n=6). In the control tank, 
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the highest measured concentration of 106/108Cd concentration was 0.001 µg/L (n=4). The 

enriched feed contained 1.01 ± 0.03 mg 108Cd /kg ww (mean ± SD, n=5). 

2.5 Sampling 

Samples of HP, gills, hemolymph, claw meat and gonad were collected from five individuals 

per treatment on day 0, 2, 7, 14, 21, 30 and 42 in the exposure phase and at day 2, 4, 7, 21, 35 

and 56 in the depuration phase. Hemolymph was drawn through the arthodial membrane of the 

posterior pereiopod using a disposible syringe. Then, crabs were humanely sacrificed 

(WHO/FAO, 2012) piercing the two main nerve ganglia according to Baker (1955). Crabs were 

dissected fresh. Gills were squeezed to remove the contained liquid and blotted dry using tissue 

paper. All samples were kept on ice during sampling and frozen as soon as possible after and 

kept at -20°C until ICP-MS analysis. For HP a subsample was kept at -80°C for the 

measurement of MT.  

Total weight and carapace width (CW) before and after the experiment, gonad maturation stage 

according to Haig et al. (2016), and gonad and HP weight was determined for each crab. 

Further, gonadosomatic index (weight of gonad/CW2 ∙100) and hepatosomatoc index (weight 

of HP/ CW2 ∙100) were calculated. To assess if there were statistically significant physiological 

differences between crabs sampled at the different sampling days, data was analyzed using 

ANOVA. Data was checked for homoscedasticity (Levene`s test) and log-transformed, if 

necessary. For categorical parameters (gonad maturation stage), non-parametric statistics was 

applied. The significance level was p=0.05. The analysis was done using STATISTICA 12 

(©Statsoft, Tulsa, USA).  

2.6 Chemical Analysis 

2.6.1 ICP-MS Analysis 

All isotopes of Cd were measured with a tandem quadrupole Agilent 8800 ICP-MS with 

collision/reaction cell (CRC). The use of NH3 as reaction gas was found to be the most efficient 

for removing polyatomic interferences on all Cd isotopes. 103Rh was used as online internal 

standard. A control standard was analyzed every ten samples as drift check, both for 

concentration and mass bias. Masses 106, 108, 110, 112, 113, 114 and 116 were corrected from 

isobar overlapping from Pd, In and Sn. All isotope ratios were measured in pulse detector mode. 

Samples were diluted if concentrations exceeded the pulse mode limit (< 1.2 Mcps/s) due to 

nonlinear calibration between puls and analog mode. The instrumental setup is shown in 

Appendix A1. 
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2.6.2 Sample Preparation 

Tissue samples were freeze-dried (Freezone, Labconco, US) before being homogenized. 

Approximately 0.2 g (dry weight) of the homogenized sample and certified reference material 

(CRM) was microwave digested (Ethos, Milestone, Italy) with 2 mL HNO3 and 0.5 mL 30% 

H2O2. After digestion, samples were diluted to 50 mL with deionized water. The CRM were 

Lobster HP (TORT 3, National Research Council Canada) and Oyster Tissue (1566b, National 

Institute of Standards and Technology, USA). All HP, gill and hemolymph samples were 

analyzed while for claw meat and gonad only samples taken at day 42 were analyzed. 

2.6.3 Calibration 

A Cd standard with a naturally abundant isotopic composition (Inorganic Ventures, 

Christiansburg, USA) was used for calibration and the Cd concentration (w/V) for each isotope 

was calculated from the natural mass percent abundance. Using this calibration, mass bias 

corrected isotope ratio (IR), cps1/cps2 equals C1/C2, where cps denotes counts per second on the 

detector and C denotes the isotope concentration (w/V) of isotope 1 and 2. Cadmium 

concentrations, for all isotopes measured in TORT-3 (n=7) and NIST 1566b (n=6) were within 

the certified ranges.  

2.6.4 Correction for background Cd 

The 114Cd is the naturally most abundant isotope and was selected for correcting the natural 

contributions of 106Cd and 108Cd and for estimating the natural total Cd concentration. The 

enriched 106Cd and 108Cd isotope standards used for spiking of water and feed (enrichment 

levels of 73.1 and 69.9 mass %), also contained all other Cd isotopes. Thus, contributions from 

the isotope standards on 114Cd, the contribution from 106Cd isotope standard on 108Cd and the 

contribution from 108Cd isotope standard on 106Cd had to be corrected for. This was 

accomplished using equation 1 to 9 as input to solve equation 10 to 12 to calculate Cd in the 

crab accumulated from water (106Cdw), feed (108Cdf) and the natural background concentration 

(114Cdn). The equations were solved using the software wxMaxima 16.12.0 

(http://andrejv.github.io/wxmaxima). The input equations were: 

C114  = Cw,114 + Cn,114 + Cf,114        

 (1) 

C106  = Cw,106 + Cn,106 + Cf,106        

 (2) 

C108  = Cw,108 + Cn,108 + Cf,108        

 (3) 

IRf,108 = Cf,108 / Cf,114          (4) 
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IRw,106 = Cw,106 / Cw,114         

 (5) 

IRn,106 = Cn,106 / Cn,114          (6) 

IRn,108 = Cn,108 / Cn,114          (7) 

IRf,106 = Cf,106 / Cf,114            (8) 

IRw,108 = Cw,108 / Cw,114         

 (9) 

where C denotes total measured concentration (w/V) of the respective isotopes and w, n and f 

are contributions from isotope standard in water, natural contributions and contributions from 

isotope standard in feed, respectively. IR denotes the measured mass bias corrected isotopic 

ratio from original water, feed and natural isotope ratio before exposure. The solution equations 

were: 

Cd
106

w
=-

C114(IRf,108IRn,106IRw,106 − IRf,106IRn,108IRw,106)+C106(IRn,108Rw,106 − IRf,108IRw,106)+C108(IRf,106 − IRn,106)IRw,106

IRn,106IRw,108 − IRf,106IRw,108+IRf,108(IRw,106 − IRn,106) − IRn,108IRw,106+IRf,106IRn,108

            (10) 

Cd
108

f
=-

C114IRf,108(IRn,108IRw,106 − IRn,106IRw,108)+C106IRf,108(IRw,108 − IRn,108)+C108IRf,108(IRn,106 − IRw,106)

IRn,106IRw,108 − IRf,106IRw,108+IRf,108(IRw,106 − IRn,106) − IRn,108IRw,106+IRf,106IRn,108

                                (11) 

Cd
114

n
=

C114(IRf,108IRw,106 − IRf,106IRw,108)+C106(IRw,108 − IRf,108)+C108(IRf,106 − IRw,106)

IRn,106IRw,108 − IRf,106IRw,108 + IRf,108(IRw,106 − IRn,106) − IRn,108IRw,106 + IRf,106IRn,108

                                                         (12) 

The natural total concentration of Cd in samples are calculated from 114Cdn multiplied by 

1/natural abundance of 114Cd. Limits of detection (LOD) and limits of quantification (LOQ) 

were calculated based on control group concentrations using equations 10 and 11. LOQs 

increased with increasing concentration and range of natural Cd in the control group (Appendix 

A2). Concentrations of naturally abundant Cd from the samples had no significant effect on the 

results as they were subtracted by using the equations for the added enriched isotopes on the 

treatment group.  

2.7 Determination of Metallothionein 

The concentration of MT in HP was examined in five crabs of the exposure group at start (t=0d) 

and end (t=42d) of the exposure phase. Metallothionein was measured spectrophotometrically 

at wavelength 412 nm after extraction and derivatization of thiols with Ellman`s reagent DTNB 

as described by Viarengo et al. (1997). The method was shown to be suitable for green crab 

(Pedersen, et al., 1997). A standard curve was made using glutathione. Assuming a fixed ratio 

of thiol groups between glutathione and MT of 1:19 and a molecular weight for MT of 5800 

(Overnell, 1986), the concentration of MT could be calculated. 
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2.8 Modelling the Accumulation Parameters  

Crabs accumulate about 90% of the total Cd body burden in HP (Bjerregaard & Depledge, 

2002). Therfore, the accumulation in HP was used as a proxy for the accumulation of Cd in the 

whole crab. All modelling was based on data of Cd concentrations in HP.  

To estimate the parameters describing the accumulation of Cd in HP for both uptake routes 

(aqueous and dietary), data was fitted to standard bioaccumulation equations derived from 

OECD TG 305 (2012) and related guidance document (OECD, 2017) :   

Cdcrab(t) = {
Cinput∙

k1

k2
∙(1 − exp(-k2∙t))       for 0 ≤ t < tdep 

Cdcrab(tdep)∙ exp (-k2∙(t-tdep))      for t ≥ tdep

     (13) 

We neglected growth of the crab, since it was zero during the course of the experiment. 

To apply the generic model for either exposure route, we adapted the exposure concentration 

and uptake rate constant to the respective experimental condition as follows: 

Cdcrab(t) (aqueous): Cdcrab
w , Cd concentration in HP of the crab over time [µg 106Cd ∙ kg 

crab–1], 

  (dietary): Cdcrab
f , Cd concentration in HP of the crab over time [µg 108Cd ∙ kg 

crab–1], 

Cinput  (aqueous): Cw, water exposure concentration [µg 106Cd ∙ L–1],  

  (dietary): Cf
, feed exposure concentration [µg 108Cd ∙ kg feed –1],  

k1  (aqueous): kw, uptake rate constant from water [L ∙ kg crab–1 ∙ d–1],  

  (dietary): kf, uptake rate constant from feed [kg feed ∙ kg crab–1 ∙ d–1],  

k2  (both aqueous and dietary): ke, elimination rate constant [d–1],  

t  independent variable time [d],  

tdep  onset of the depuration phase [d]. 

At t = 0, the initial concentration in the crab equals zero:  

Cdcrab(0) = 0,  

while at the onset of the depuration phase, i.e. t = tdep,  one has, in the generic form:  

Cdcrab(tdep) = Cinput∙
k1

k2
∙ (1 − exp(-k2∙tdep))       (14) 

which follows from equation 13, first part, when t approaches tdep.  

Generally, when k2 > 0, the accumulation curve of Cd in the crab during the uptake phase will 
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be concave and increasing, while the depuration curve of Cd in the crab over time will be 

convex and decreasing.  

However, because of the shape of our data in the depuration phase (Figure 3) and the statistical 

analysis of the applied models (Appendix A3), two versions of the model were applied: one 

with k2 being unconstrained, i.e. allowed to have any value, and one with k2 constrained to be 

zero. For the case of a constrained elimination rate, i.e. k2 → 0, elimination is assumed to be 

negligible.  

Since, with k2 very small, we have (1 − exp(-k2∙t)) ≈ (1 − (1−k2∙t))= k2∙t, the approximate 

model equations (generic form) become: 

Cdcrab(t) = {
Cinput∙k1∙t    for 0 ≤ t <tdep 

Cinput∙k1∙tdep      for t ≥ tdep
       

 (15) 

In this case, the uptake curve will essentially be linear over time, with the level of accumulation 

nearly constant from the onset of the depuration phase onwards. 

For the dietary uptake route, we additionally considered the sub-model  

kf  = α ∙ I           (16) 

with I the ingestion rate of feed in the experiment [kg feed ∙ kg crab–1∙ d–1], and α the 

assimilation efficiency, as a dimensionless constant.  

2.8.1 Model fitting and statistical analysis 

The model equations (13) define Cd concentration in crab as a function of time, with separate 

branches relating to the respective uptake and elimination phases. The model is nonlinear in the 

unknown parameters, k1 (kw or kf, respectively) and k2 (ke in both cases), hence, fitting the 

models to the measured time series basically is a problem of nonlinear regression. Initially, we 

allowed ke to be fitted separately for each of the routes, before constraining it to zero. 

We used the R-package bcmfR_0.3-2.zip, as distributed by OECD (Aldenberg, 2017) with 

additional enhancements for the negligible elimination rate case, and supplementary routines 

for summarizing regression output, as well as estimating parameter and prediction uncertainty. 

The predictive limits of the model fits were calculated with the Bayesian bootstrap (Rubin, 

1981, 1987).  

The fitting procedure used was the nonlinear least squares regression function nls from the base 

R-package stats. Both untransformed Cd accumulation/depuration data were fitted, as well as 
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log10-transformed accumulation/depuration data with the method of ‘transform-both-sides’ 

(Ritz & Streibig, 2008). 

The regression quality was assessed through the Shapiro-Wilk test for normality of the 

regression residuals and Q-Q plots that compares the distribution of the standardized residuals 

to a standard Normal distribution. We employed implementations for both assessments from 

the R-package nlstools (Baty, et al., 2015). 

2.9 Modelling the Relative Importance of the Uptake Routes 

To compare the relative importance of the aqueous route RIwater and dietary route RIfeed to the 

overall accumulation of Cd in crab at different feed and water concentrations, we consider ke = 

0 and defined them as: 

RIwater(t)

=  
Cdcrab

w (𝑡)

Cdcrab
w (𝑡)  +  Cdcrab

f (𝑡)
                                                                                                               (17) 

and  

 RIfeed(t)

=  
Cdcrab

f (𝑡)

Cdcrab
w (𝑡)  +  Cdcrab

f (𝑡)
 , respectively.                                                                             (18) 

Adapting the generic equation 15 to the respective uptake route and substituting into equation 

17 and 18 for the respective route, (t) cancels and the relative importance of the aqueous route 

RIwater becomes: 

RIwater = 

kw ∙ Cw

kw ∙ Cw + kf ∙ Cf

                                                                                                                                                        (19) 

and the relative importance of the dietary route RIfeed becomes 

RIfeed = 

kf ∙ Cf

kw ∙ Cw + kf ∙ Cf

  , respectively                                                                                             (20) 

Considering equation 16, we got the final equations used for the calculations of the relative 

importance of the uptake routes in percent (Figure 4):    
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RIwater = 
kw ∙ Cw

kw ∙ Cw + α ∙ I ∙ Cf

 ∙100 

and 

RIfeed = 
α ∙ I ∙ Cf

kw ∙ Cw + α ∙ I ∙ Cf

 ∙100 

with I being adapted to a more natural feeding rate of 79.4 mgfeed ∙ gHP
-1 ∙ day-1 dw according to 

Woll et al (2006) and adjusted to HP and dry weight according to the ratio of total crab weight 

and HP weight and average dry weight content from crabs used in the present study. To illustrate 

the relative importance of the uptake routes of Cd for brown crab at different concentrations 

found in feed [µg/kg dw] and seawater [µg/L], the concentrations were illustrated as cadmium 

concentration ratio (CCR) being Cf / Cw . 
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3. Results and Discussion 

Although low and environmentally relevant concentrations were used in water and feed and the 

background Cd concentrations in the wild-caught crabs were high and strongly varying, it was 

possible to reliably detect and quantify even low contributions of Cd from both uptake routes 

in all measured tissues except claw meat (Figure 3 and Appendix A4). This was made possible 

by using mathematical corrections preventing the natural concentrations of Cd to outweigh the 

signal from spiked and accumulated Cd isotopes. The issue of plasma formed polyatomic mass 

interferences on all Cd isotopes was overcome using NH3 as reaction gas in the CRC.  

 

 

Figure 2. Distribution of Cd taken up from feed and water in the different tissues after 42 days of exposure. Filled columns 

show mean concentrations of 108Cd taken up from feed and the clear columns concentrations of 106Cd taken up from water. 

Whiskers represent standard errors (n=5).  

At the end of the exposure phase, most Cd from feed was accumulated in HP followed by gills, 

gonad, hemolymph and claw meat (all concentrations < LOQ) with concentrations of 

2850 ± 1870 µg/kg dw, 15.3 ± 8.0 µg/kg dw, 5.47 ± 4.96 µg/kg dw, and 0.14 ± 0.08 µg/kg dw 

(2 values < LOQ) (mean ± SD, n=5), respectively. A similar tissue distribution was found in 

green crab fed six meals of 109Cd labelled blue mussels soft parts over 11 days (Bjerregaard, et 

al., 2005). Considering the total body burden, HP was by far the organ accumulating most Cd 

with 91 ± 4 % of the total body burden of the traced Cd. Much less Cd was found in the other 

organs with on average 0.03 to 4.6 % (Bjerregaard, et al., 2005).  

Cadmium accumulated from water, was mainly found in gills at the end of the exposure phase, 
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followed by HP, gonad, hemolymph and claw meat with concentrations of 6235 ± 3240 µg/kg 

dw, 224 ± 159 µg/kg dw, 31.6 ± 23.8 µg/kg dw, 20.8 ± 9.8 µg/kg dw and 12.5 ± 6.7 µg/kg dw 

(n=5) (mean ± SD), respectively.  

Gills were also found to have higher Cd concentrations than HP in green crabs after exposure 

to 100 pm l09Cd/mL for 27 d (Bjerregaard & Depledge, 1994). In that study, the concentration 

in muscle was much higher than in hemolymph (Bjerregaard, et al., 1994). The difference to 

our studies, might be due to the fact that we only analyzed muscle meat from claw, which might 

contain lower Cd concentrations than muscle meat from other parts of the crab like the thoracic 

sternum, as the proximity to the HP might lead to higher Cd concentrations. Norway lobster, 

Nephrops norvegicus, also accumulated Cd from feed mainly in HP, however when exposed to 

Cd in seawater, the concentration in gills were not higher than in HP (Canli & Furness, 1995). 

The concentration factor (Cw/CHP) for the aqueous uptake of Cd in HP was 10.6 ± 7.6 (mean ± 

SD, n=5) at the end of the exposure phase, which is comparable to findings in green crab using 

similar exposure conditions with factors of 6.9±7.5 and 6.5±5.1 at concentrations of 173 and 

800 ng/L respectively (Bjerregaard, et al., 2005).  
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Figure 3. Accumulation curve of mean concentrations of Cd from water (A) and feed (B) in HP of brown crab. The vertical 

dashed line marks the end of the exposure phase. Error bars indicate the standard deviation of the five samples taken per 

sampling day.  

 

The Cd concentration in HP increased continuously during the exposure phase of 42 days and 

steady state was not reached. During the depuration phase, no clear pattern of decrease in Cd 

concentration was seen. Rather a temporary increase was observed. However, none of the 

concentrations from the sampling days of the depuration phase were significantly different (P 

> 0.32), which might be due to high inter-individual variation. High inter-individual variation 
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in Cd concentrations is common in brown crab sampled in the field (Wiech, et al., 2017). 

Similar patterns with increasing concentrations of Cd during the depuration phase have also 

been observed earlier. After an exposure of seven days to Cd in water, the concentration of Cd 

in HP of the freshwater prawn Macrobrachium australiense, was first rapidly decreasing within 

two days and subsequently was increasing again until day 7, where it was stable until day 21 

(Cresswell, et al., 2017). In fish, Cd concentrations in liver and kidney increased and 

concentrations in the gut and white muscle decreased simultaneously, representing a 

redistribution of Cd within the organism (Harrison & Klaverkamp, 1989; Wicklund Glynn, et 

al., 1992). In the present study, an internal redistribution of Cd from other organs into HP is not 

very likely. The only considerable amount of Cd at the end of the exposure phase was seen in 

gills and these concentrations also increased during the depuration phase (Appendix A4). The 

hemolymph concentrations were rather low and rapidly decreased to a negligible level after 

exposure. If a redistribution would have taken place, it should have been visible as an increase 

in the hemolymph concentrations, acting as intermediate organ for Cd transported between for 

example gills and HP (Bjerregaard, 1990; Cresswell, et al., 2017). It cannot be ruled out that 

Cd was accumulated in tissues not analyzed and a redistribution from these tissues occurred. 

However, it is not likely, as it has been shown for green crab that Cd does not accumulate in 

considerable amounts in other tissues than those measured here (Bjerregaard, et al., 2005). This 

is confirmed by the high assimilation efficiency of 98 % in HP, which means that most of the 

Cd from feed was accumulated there.   

Reinfelder et al (1998) discussed that in accumulation experiments with long-term exposures, 

as the present study, especially for metals, a substantial elimination can occur already during 

the exposure phase. This can result in a lower elimination rate after exposure ended and might 

partly explain the low depuration observed in the present experiment. In freshwater prawn 

Macrobrachium australiense it was recently shown, that the depuration rate of Cd from HP was 

much lower after long-term compared to short-term exposure (Cresswell, et al., 2017).   

The transport of Cd from hemolymph to HP is strongly dependent on the physiological 

condition in green crab (Bjerregaard, 1990). We found no physiological differences in crabs at 

the different sampling days. However, inter-individual differences were present in crabs from 

the same sampling day, which might be connected to the feeding stage of the animals. As all 

crabs had the same feeding regime while being in the lab, and no weight change during the 

experiment was seen, it is possible that the former feeding conditions are reflected in the 

physiological differences and thereby contributed to the high inter-individual variation in Cd. 
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The concentrations and induction of MT in HP was used as an indicator of the handling capacity 

of Cd in the crab, to examine if there was a competitive uptake between the two uptake routes. 

Cadmium in HP is mainly present in the soluble cytosolic fraction and almost entirely bound to 

MT. In green crab, a dietary exposure to 5.1 mg Cd/kg ww for 18 days led to an induction of 

MT, while 1.1 and 3.1 mg Cd/kg ww did not (Pedersen, et al., 2014). This indicates that the 

binding capacity of present MT for Cd ions was reached at the highest concentration. Exceeding 

this capacity and inducing MT, could lead to a change in the handling and accumulation of Cd 

and thereby a competitive uptake of Cd. Consequently, the importance of the two routes could 

be prone to under- or overestimation. In our study, there were no statistically significant 

difference between the MT concentrations in HP at start and end of the exposure phase with 

20.2 ± 2.1 nmnol/g ww (mean ± SD, n=5)) at day 0 and 16.1 ± 3.7 nmol/g ww (mean ± SD, 

n=5) at day 42, respectively (P > 0.05). Levels are comparable to findings in green crab 

(Pedersen, et al., 2014). The stable MT concentration, found in the present study indicated that 

there was no competition for binding sites on MT of the Cd accumulated in HP, and that the 

measured Cd concentrations reflect the real uptake for both uptake routes, although traced 

simultaneously in the same animals.  

The present study demonstrates that the use of stable isotopes when studying trace metal uptake 

has several advantages compared to radiotracers, as already discussed by Croteau et al (2004). 

Advantages, such as low costs for the tracer and low handling hazard and less restrictions, 

become especially important when using large laboratory animals such as fish or crab, with 

high water and space demand. Further advantages of the method relate to the correction for 

background Cd. This makes it possible to use wild-caught animals in laboratory experiments, 

which might be necessary when larger animals or species difficult to raise in captivity are 

studied. Wild-caught organisms or parts of organisms enriched with a stable isotope can in this 

way be used as feed, almost regardless natural background concentrations. This is especially 

useful when using wild-caught filter feeders, such as blue mussels enriched with stable isotopes 

as feed to study trophic transfer. Further, is it no longer necessary to use pure stable isotope 

standards for enrichment, which often are expensive and difficult to obtain, as we can correct 

for the content of the other isotopes. The correction also enables the use of natural water with 

its possible background contamination and further, laboratory equipment does not have to 

undergo laborious cleaning to avoid background contamination. Restrictions however, could 

arise when total element exposures are too high, as the accumulation from different uptake 

routes might be competitive and toxic effects might arise influencing the accumulation. Further 
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the LOQ increases with ascending background concentrations.  

Since there is no need for a control group to correct the background concentrations against, 

experimental animals in the control group can be reduced to the number necessary to control 

for other effects, as for example to study if possible toxic effects observed in exposed animals 

are due to the exposure. Both uptake routes can also be studied in the same animals 

simultaneously, making two different treatment groups redundant.   

In conclusion, the introduced methodology makes accumulation studies using stable isotopes a 

robust alternative to radiotracers. 

The modelling based on the standard bioaccumulation equations with additional adaptations to 

estimate the accumulation parameters, delivered reasonable results for both routes. The case 

with constrained ke to zero and log10 transformed data resulted in a better model fit for both 

uptake routes (Appendix A3) and kw and kf were determined to be 6.721 ± 0.567 L ∙ kg crab–1 ∙ 

d–1 (mean  ± SE) and 0.0092 ± 0.0008 kg feed ∙ kg crab–1 ∙ d–1 (mean  ± SE). Using equation 

16, we calculated the mean assimilation efficiency α in HP to 98 % for the dietary route. This 

corresponds to similarly high values reported for green crab with 91 ± 4 % (Bjerregaard, et al., 

2005) and 81 – 96 % (Pedersen, et al., 2014). This means that almost all Cd administered in the 

feed was accumulated in HP. One factor facilitating the uptake from feed in the present study 

might be the chemical form of Cd. It has been shown earlier that trophical availability of Cd in 

crustaceans depends on the chemical form (Rainbow, et al., 2011) and as the Cd in our study 

was spiked to the processed feed as watery solution, it was probably easier accessible than Cd 

in natural prey. However, as the assimilation efficiency in green crab fed with blue mussels 

exposed to Cd for spiking, was equally high (Bjerregaard, et al., 2005), crab seems to have a 

high digestive power making it efficient in taking up Cd from diet.  

To predict the relative importance of the uptake routes to the total accumulation of Cd in brown 

crab at different concentrations in diet and water in the field, we used a modelling approach 

based on estimated accumulation parameters for the two uptake routes. To be able to make a 

prediction for brown crab along the Norwegian coast, the respective CCR was estimated. 

Knowledge on the feeding habits of brown crab is limited and stomach analysis difficult due to 

the fact that prey items are masticated and ground in the gastric mill when entering the stomach. 

Therefore, analysis is prone to overestimation of animals holding parts difficult to grind and 

digest (Woll, 1995). Nevertheless, the two most frequently found feed items in the stomachs, 

were blue mussel (Mytilus edulis) and horse mussel (Modiolus modiolus) (Woll, 1995), with 

mean Cd values along the Norwegian coast of 0.12 mg Cd/kg ww and 2.3 mg Cd/kg ww 
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(Duinker, et al., 2016) corresponding to about 0.75 and 11.4 mg/kg dw, respectively. In a recent 

investigation on Cd in seawater in the North of the Norwegian coastline, concentrations were 

measured to 0.05 ± 0.07 µg/L (mean ± SD, n=18))(Falk, 2015). Considering these data, an 

average CCR of 15 000 for blue mussels 228 000 for horse mussel can be expected, 

corresponding to an importance of diet to more than 99% for both cases according to the 

modelling (Figure 4). An attempt to map the total range of Cd concentrations in the potential 

feed organisms for crabs in Northern Norway, found concentrations between 0.4 and 11 mg/kg 

dw (Ness, 2014) resulting in CCRs between 8 000 and 220 000. This corresponds to a relative 

importance of the dietary route of at least 98% for all the considered CCRs. Therefore, we 

suggest, based on the output of our model, that the large difference in Cd between crabs from 

the South and North of the Norwegian coast, can rather be explained by differences in foraging 

than differences in water concentrations. The CCR for Cd between a crabs diet and seawater 

can be considered to be equally high in other regions of the brown crab’s distribution. It is 

therefore reasonable to assume that the dietary route contributes most to the overall Cd uptake 

in brown crab in general. When investigating differences in Cd between different locations in 

decapods, it should therefore be focused on factors connected to foraging and feed preference, 

potentially connected to migratory patterns. Our findings suggest that dietary uptake of Cd in 

decapods should be investigated further and that knowledge on dietary exposure is crucial to 

understand Cd accumulation in crab. 
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Figure 4. Prediction of the relative importance of dietary and aqueous uptake route to the total Cd hepatopancreas burden 

using modelling. The Cd concentration ratio (CCR) is the ratio of Cd concentration in diet [µg/kg dw] to seawater [µg/L].  

 

Most studies comparing the relative importance of dietary and aqueous uptake, assume steady 

state conditions (Lee & Fisher, 2016; Thomann, 1981). However, our modelling approach 

showed that the prediction of relative importance (equation 20) is the same regardless of 

whether it is derived considering steady state conditions or not (ke being zero). The assumption 

being that ke is the same for both uptake routes, which is reasonable in crab, as Cd accumulated 

in HP will be tightly bound to MT regardless origin (Pedersen, et al., 2014; Pedersen, et al., 

1994). 

When interpreting model outputs, uncertainty connected to the used input parameters and 

underlying assumptions has to be taken into account. The used ingestion rate was determined 

for crabs in captivity and feeding ad libitum on constantly present feed, not necessarily being 

representative in situ and also other factors like physiological state and temperature can 

influence I (Woll, et al., 2006). For fish, there is evidence that dietary Cd uptake is regulated 

and the increase in uptake non-proportional to feed concentrations with a saturation at high 

concentrations (Douben, 1989; Reinfelder, et al., 1998). The importance of the dietary route 

will then be over-estimated with increasing concentrations (Reinfelder, et al., 1998). However, 

in green crab no sign of saturation in uptake was seen at Cd concentrations up to 5.1 mg/kg ww 
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at a high feeding rate (Pedersen, et al., 2014) and the aqueous uptake was increasing 

proportional over a wide range of exposure concentrations (Bjerregaard, et al., 2005). Also 

developmental stage and organism size were suggested to influence metal accumulation 

(Reinfelder, et al., 1998). In the present study, the size of the experimental animals was 

determined by practical issues such as availability, demand of space and large enough size for 

gavage feeding. However, no clear relationship between size and Cd concentration was found 

in crabs of commercial size (Julshamn, et al., 2012). Further accumulation might be influenced 

by other environmental and also physiological conditions of the crab.  
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4. Conclusion 

Tracing stable isotopes is a suitable method to investigate the accumulation of trace metals in 

the same organism at the same time. Analytical challenges with background concentrations of 

natural isotope distribution and polyatomic interferences in the different matrices can be 

overcome with the right analytical setup and modern mathematical corrections using a computer 

software helping to solve equations .  

For the brown crab, we have shown that the dietary route is more important for the uptake of 

Cd in HP. The accumulation parameters, uptake rate constant from feed kf and water kw and 

assimilation efficiency α from feed were determined from the data of the conducted laboratory 

study using non-linear regression modelling. We applied the estimated parameters in a further 

modelling approach combined with naturally relevant concentrations in diet and seawater to 

determine the importance of the uptake routes. Considering naturally relevant concentrations, 

it is clear that the dietary pathway is far more important for the uptake of Cd into HP and thereby 

the whole body burden of brown crab.  
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Abstract 

Previously, high concentrations of cadmium have been found in the hepatopancreas of 

the edible or brown crab (Cancer pagurus) sampled from positions north of about 67 

°N, compared to regions further south along the Norwegian coast, with no clear 

understanding why. In order to study a similar organism in the same ecosystem, the 

present study analyzed 210 shore crabs (Carcinus maenas) from four different locations 

along the Norwegian coast, two in the North and two in the South. The physiological 

variables size, sex, moulting stage, hepatosomatic index, carapace color and gonad 

maturation were registered, in attempt to explain the high inter-individual variation in 

cadmium levels in hepatopancreas. In contrast to the brown crabs, the shore crabs 

showed no clear geographical differences in cadmium concentrations. This indicates 

physiological differences between the two crab species. No clear and consistent 

correlations were found between cadmium levels and physiological parameters, except 

for sex, where cadmium concentration in hepatopancreas was twice as high in males 

compared to females. The cadmium levels also varied with season, with approximately 

40 and 60 % lower cadmium concentration in April than August for male and female 

shore crabs, respectively. None of the analyzed cadmium concentrations in muscle meat 

from claws exceeded EUs food safety limit, and low cadmium levels in soup prepared 

from shore crabs clearly indicated that this dish is not problematic regarding food safety. 
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1. Introduction 

It is well established that marine invertebrates such as crustaceans and mollusks can accumulate 

cadmium (Jennings and Rainbow, 1979; Ray, 1984; Wright, 1976). A comparison of typical 

European foodstuffs revealed particularly high cadmium levels in crustaceans (EFSA, 2012a). 

As such, cadmium in crustaceans is of considerable interest both regarding toxic effects on the 

organisms itself (Weis, 2012) as well as the suitability as food for humans. To ensure food 

safety, the European Commission has established upper limits for cadmium in several foods, 

where the limit for cadmium in claw meat of crustaceans is set at 0.5 mg Cd/kg wet weight 

(ww) (EU, 2006). There is at present no legal limit for cadmium in the brown body meat, 

commonly consumed from crabs (Maulvault et al., 2013), although it mainly consists of 

hepatopancreas, where the majority of cadmium is accumulated (Bjerregaard, 1990; 

Bjerregaard et al., 2005; Davies et al., 1981; Hutcheston, 1974; Wiech et al., 2017) and gonad. 

The brown crab Cancer pagurus is commercially important, with an annual catch volume in 

Europe of approximately 50 000 tons in total (Bakketeig et al., 2016) and rising to 10 000 tons 

in Norway alone (Norwegian Directorate of Fisheries, 2017). Findings of cadmium levels above 

the legal limit for claw meat in the brown crab from Northern Norway has had a crucial negative 

impact on the crab fisheries in this area. To investigate the cadmium levels in brown crabs along 

the whole Norwegian coast, cadmium levels in brown meat and muscle meat from claws were 

measured of in a total of 475 frozen and cooked brown crabs sampled at 47 different sites along 

the Norwegian coast between July 2011 and January 2012. A pattern with significantly higher 

cadmium levels in brown crabs sampled from positions north of about 67 °N (around 

Saltfjorden) was found compared to regions further south (Julshamn et al., 2012. The average 

cadmium concentrations in brown meat in frozen and cooked brown crabs sampled from 

positions north of Saltfjorden varied from 6.7 to 25 mg/kg wet weight and from 0.55 to 4.8 

mg/kg wet weight in crabs sampled at positions south of Saltfjorden. In another survey, 

cadmium was measured in brown crabs sampled at 20 locations from Salten and further north 

to Vesterålen (Frantzen et al., 2015). In agreement with the survey from 2011 and 2012, high 

levels of cadmium were found varying from 2.4 mg/kg wet weight to 17 mg/kg wet weight in 

brown meat. No difference was seen between samples from inner fjord and outer coast 

localities.  

Several follow-up studies have been performed in attempt to explain the elevated cadmium 

levels in brown crabs from Northern Norway compared to the rest of the Norwegian coast. 

However, no obvious point source from industry has been determined responsible for the high 



3 

 

cadmium levels found in the brown crabs (Falk 2012). Further, measurements of cadmium in 

surface water, groundwater, soil and bedrock have not displayed elevated cadmium levels in 

the Salten region (Finne, 2013). Surveys have shown relatively low cadmium levels in fish 

species and blue mussels from Northern Norway (Julshamn et al., 2013a; Ørnsrud and Måge, 

2012; Foldøy Tverdal, 2012), and no correlation to the elevated values in the brown crabs were 

found. 

As reported for the brown crab (Wiech et al., 2017), also the shore crab Carcinus maenas is 

able to accumulate high levels of cadmium in heptaopancreas (Rainbow et al., 1995). As these 

species are also sharing parts of the same ecological niche, a comparison of their cadmium 

levels is of considerable interest. The smaller shore crab is found subtidally as well as 

intertidally on all shores (Crothers, 1968), while the brown crab is abundant from the shallow 

sublittoral to depths of about 100 meters (Neal and Wilson, 2008). Shore crab is considered a 

delicacy in Spain and Portugal, with commercial fisheries yield of up to 900 tons per year for 

France, Portugal and Spain together (Klassen and Locke, 2007). The culinary popularity is also 

increasing in Norway, especially as a base for shore crab soup. In terms of food safety, it is 

therefore important to study the cadmium levels in shore crabs. Comparison of brown and shore 

crabs geographical cadmium pattern would contribute to explaining the high cadmium levels in 

brown crabs north of 67 °N.  

In brown crabs, concluding studies are hampered by large inter-individual variability in 

cadmium between brown crabs from the same geographical areas, with especially high variation 

in the hepatopancreas (Davies et al., 1981; Maulvault et al., 2012; Wiech et al., 2017). Shore 

crabs have also shown to display large variability in their cadmium levels (Bjerregaard 1982, 

1990, 1991; Bjerregaard and Depledge 2002; Bondgaard et al. 2000; Nørum et al. 2003). The 

high variation could be caused by biological factors. Laboratory studies have shown 

relationships between cadmium levels and physiological variables such as sex (Bjerregaard et 

al. 2005), size (Bjerregaard and Depledge, 2002), moult stage (Bondgaard et al. 2000; 

Bondgaard and Bjerregaard 2005; Nørum et al. 2005), ovarian maturation (Bondgaard et al., 

2000) and variables indicating the condition of the crab (Bjerregaard, 1991), like water content 

in tissues (Bjerregaard and Depledge 2002). As observed by Bjerregaard et al. (2005), the tissue 

cadmium content may also vary seasonally. Cadmium bioaccumulation increases with 

increasing temperature (Ray 1984), and reduced salinity stimulate uptake of anionic cadmium 

species in brachyuran crabs (Wright 1977; Burke 2003).   
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In the present study, cadmium levels in shore crabs were investigated for comparison to the 

problematic high levels in brown crabs, which have many parallels in physiology as well as a 

similar ecological niche as the shore crab. Also, the cadmium levels in shore crabs were 

investigated due to food safety reasons. This paper describes geographical (investigation 1) and 

seasonal (investigation 2) variations in cadmium levels in shore crabs sampled from four 

different sites along the Norwegian coast. In addition, the study examined effects of different 

physiological parameters on individual cadmium levels (investigation 3). Lastly, cadmium 

concentrations in shore crab soup (investigation 4) are described for an evaluation of food 

safety. 

 

2. Materials and methods 

2.1 Sampling of biological material 

Male and female shore crabs Carcinus maenas with carapace width (CW) varying from 29 to 

88 mm were caught along the Norwegian coast in baited pots at approximately 1-5 m water 

depth between March and August 2016. The sampling locations (figure 1) were chosen 

according to earlier studies on cadmium in the brown crab (Julshamn et al., 2012; Wiech et al., 

2017). 

 

Figure 1. The Norwegian coastline showing the four sampling areas Kvitsøy, Sotra, Fleinvær and Vesterålen 
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2.2 Investigation 1: Geographical variation in cadmium  

Shore crabs of similar size (CW 62 ± 7 mm (mean ± SD)) were collected from Kvitsøy (59 °N), 

Sotra (60 °N), Fleinvær (67 °N) and Vesterålen (68 °N) during the spring of 2016 (March-

May). From each site, 30 shore crabs were collected with equal sex distribution, except from 

Fleinvær, with 27 male and three female crabs. Although an effort was made to keep 

experimental groups as uniform as possible, there was some variation in sizes of specimens, 

with the male shore crabs from Fleinvær being significantly larger (70 ± 3 mm) than the other 

males (64 ± 4 mm), and the females from Kvitsøy being significantly smaller (50 ± 3 mm) than 

the other females (58 ± 4 mm).  

 

2.3 Investigation 2: Seasonal variation in cadmium  

To investigate whether the cadmium content in shore crabs varies with season, 30 shore crabs 

(61 ± 5 mm) were collected in the end of August 2016 (Sotra-August) in addition to the 30 

shore crabs (61 ± 5 mm) collected earlier from Sotra in the middle of April 2016 (Sotra-April). 

The sex distribution was equal in both groups.  

 

2.4 Investigation 3: Physiological variables and their effect on cadmium  

To examine the potential effect of size on cadmium levels, in addition to the 30 crabs from 

investigation 1, 30 shore crabs were collected from Sotra and Vesterålen during April-May 

2016 to obtain the largest size range possible (CW from 29 to 88 mm and whole body weight 

from 6 to 170 gram).  

To investigate the correlation of cadmium levels to further physiological variables, several 

individual physiological variables were measured in all of the sampled shore crabs: 

After arrival at the National Institute of Nutrition and Seafood Research (NIFES), the crabs 

were sacrificed following the guidelines in WHO/FAO (2012), by piercing the nerve ganglia as 

described by Baker (1955) and dissected freshly, as freezing and boiling may affect cadmium 

levels in crab tissues (Wiech et al., 2017). The same observer recorded all visually examined 

measures to minimize bias.  

For each individual, carapace width, whole body wet weight, sex, damage on the exoskeleton, 

missing legs and/or claws were recorded. One of the following carapace colors was assigned: 

green, brown, blue/black, orange or red. For female shore crabs the presence of sperm plug was 

noted.Crabs were assigned to one of four different moulting stages (early post moult, recent 

moult, inter-moult or degraded) by examination of carapace hardness, levels of biofouling and 

visual indices according to Haig et al. (2016). 
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To determine the hepatosomatic index (HSI), an indication of lipid stores, the hepatopancreas 

was removed and weighed, and HSI was calculated: 

𝐻𝑆𝐼 =
𝑚𝐻𝑃

𝑚𝑤ℎ𝑜𝑙𝑒 𝑏𝑜𝑑𝑦−𝑚𝐻𝑃
∗ 100%        (1) 

Where 𝑚𝐻𝑃 and 𝑚𝑤ℎ𝑜𝑙𝑒 𝑏𝑜𝑑𝑦 are individual hepatopancreas and whole body wet weights, 

respectively. Hepatopancreas samples were individually homogenized and kept for analysis.  

Gonads were staged as described in Haig et al. (2016) and removed from mature female crabs 

and pooled for analysis for each location separately. Pooled samples were also prepared for 

muscle meat for each sampling area and sex. After the wet weight was obtained for all samples, 

they were frozen and subsequently freeze-dried (Freezone 18 liter by Labconco, Kansas, USA) 

to determine the dry weight content. The water content (WW%) was obtained for all samples: 

 𝑊𝑊% = 100% −
𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
∗ 100%        (2) 

Where 𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 and 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 are sample weight before and after freeze drying, 

respectively.  

 

2.5 Investigation 4: Cadmium in shore crab soup 

To measure possible cadmium exposure from shore crab soup, triplicates of soups were made 

using crabs from Sotra and Vesterålen, separately. From Sotra, 30 shore crabs were collected, 

with equal sex distribution (CW = 62 ± 6 mm and 58 ± 4 mm for male and female crabs, 

respectively). From Vesterålen, the selection was limited to 15 male crabs (CW = 74 ± 2 mm). 

Approximately the same weight of shore crabs were used in each triplicate (397 ± 13 g and 

457 ± 1.0 g for Vesterålen and Sotra, respectively).  

After the crabs were sacrificed, they were cut in half and fried while crushing with a solid 

kitchen spoon in a saucepan with heated vegetable oil with no salt. After about 5 minutes, the 

crabs turned red, and water was added to cover the crabs (4-5 dl). After 30 minutes of boiling, 

the soup was sifted off and cooled for freeze-drying and homogenization.  

 

2.6 Chemical analysis 

Freeze-dried tissue and soup samples were homogenized and prepared for metal analysis using 

ICP-MS (iCAP Q) as described by Julshamn et al (2007). The method was accredited according 

to NS-EN 17025, and the quality of the metal measurements was assured by the use of the 

certified reference materials (CRM) Tort-3 (Lobster Hepatopancreas, National Research 

Council, Canada) and 1566b-O.T. (Oyster Tissue, National Institute of Standards and 
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Technology, Gaithersburg, USA). Average values for all metals were within 20 % of the 

certified values, and the dry weight (dw) based quantification limit (LOQdw) for cadmium was 

set to 0,005 mg/kg with standard sample size (0.2 g). All individual samples were over the wet 

weight based quantification limit (LOQww), calculated as: 

𝐿𝑂𝑄𝑤𝑤 = 𝐿𝑂𝑄𝑑𝑤 ∗
𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑎𝑚𝑝𝑙𝑒
        (3) 

 

2.7 Statistical analysis  

When necessary, the data was box-cox transformed to obtain normality and homogeneity of 

variances, tested for by normal plots and Levene’s F test, respectively. Results were evaluated 

using analysis of variance (ANOVA) followed by Tukey HSD post hoc test as the multiple 

comparison procedure. The significance level was 0.05. Simple linear regression analysis was 

performed by using Pearson’s linear correlation (STATISTICA v. 13.1, ©1984-2016 by 

Statsoft, Tulsa, USA).  
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3. Results 

The mean cadmium concentrations in hepatopancreas was 1.1 ± 1.2 mg/kg ww (mean ± SD) 

corresponding to 3.4 ± 4.1 mg/kg dw (mean ± SD), and ranged from 0.046 to 11 mg/kg ww 

corresponding to 0.13 to 39 mg/kg dw, underlining the high individual variability. Furthermore, 

the cadmium concentrations were higher for male than female shore crabs for all locations with 

1.3 ± 1.3 mg/kg ww (mean ± SD) corresponding to 4.3 ± 4.6 mg/kg dw (mean ± SD) and 0.61 

± 0.79 mg/kg ww (mean ± SD) corresponding to 2.0 ± 2.5 mg/kg dw (mean ± SD) for male and 

female shore crabs, respectively (table 1). 

 

Table 1 Cadmium concentrations (mg/kg) based on wet weight (ww) and dry weight (dw) in hepatopancreas of shore crabs 

(Carcinus maenas) from the Norwegian coast. Mean ± standard deviation (SD) and concentration ranges are given for 

each group 

Area 

Male Female 

N 

Mean ± 

SD 

(ww) 

Range 

(ww) 

Mean ± 

SD 

(dw) 

Range 

(dw) 
N 

Mean ± 

SD 

(ww) 

Range 

(ww) 

Mean ± 

SD 

(dw) 

Range 

(dw) 

Kvitsøy 15 0.98 ± 0.68 0.11-2.7 3.0 ± 2.1 0.38-7.6 15 0.45 ± 0.57 0.056-2.3 1.4 ± 1.7 0.16-6.6 

Sotra-April 33 1.0 ± 0.59 0.14-2.4 3.3 ± 2.0 0.36-7.4 27 0.91 ± 1.1 0.059-4.0 2.8 ± 3.2 0.19-12 

Fleinvær 27 2.4 ± 2.2 0.37-11 7.7 ± 7.7 1.3-39 3 0.58 ± 0.35 0.20-0.87 2.0 ± 1.0 0.90-2.7 

Vesterålen 42 1.1 ± 1.0 0.16-4.1 3.9 ± 3.6 0.37-14.9 18 0.47 ± 0.54 0.048-2.4 1.6 ± 1.7 0.13-7.5 

Sotra-August 15 0.90 ± 0.78 0.093-3.4 3.2 ± 3.0 0.44-12.4 15 0.39 ± 0.60 0.046-2.3 1.5 ± 2.3 0.18-9.1 

All areas 132 1.3 ± 1.3 0.093-11 4.3 ± 4.6 0.36-39 78 0.61 ± 0.79 0.046-4.0 2.0 ± 2.5 0.13-12 

 

Cadmium concentrations in muscle meat and gonads were significantly lower than in 

hepatopancreas for both sexes (p < 0.0001) with 0.0027 ± 0.0017 mg/kg ww (mean ± SD) 

corresponding to 0.0112 ± 0.0069 mg/kg dw (mean ± SD) for muscle meat in claws, and 

0.0149 ± 0.0055 mg/kg ww (mean ± SD) corresponding to 0.036 ± 0.014 mg/kg dw (mean ± 

SD) for gonads, respectively (supplementary table 1 and 2). In muscle meat, there was no 

significant difference between males and females. For the analyzed tissues, the cadmium 

distribution was 99.7 % in hepatopancreas and 0.3 % in muscle meat from claws for the male 

crabs. For the female shore crabs the cadmium distribution was 92 % in hepatopancreas, 0.1 % 

in muscle meat from claws and 7.9 % in gonads. The water content in these tissues was 32 ± 

5.3 % and 24 ± 2.1 % for hepatopancreas and muscle meat for male shore crabs, and 31 ± 4.3 

%, 24 ± 1.4 % and 42 ± 5.4 % for  for hepatopancreas, muscle and gonads for the female shore 

crabs. More detailed values on weight, carapace width, dry matter in hepatopancreas and 

hepatosomatic index are presented in table 2. 
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Table 2 Weight (g), carapace width (CW. mm), dry matter content in hepatopancreas (DM, %) and hepatosomatic index 

(HSI, %) of shore crabs (Carcinus maenas) from different sites along the Norwegian coast. Mean ± standard deviation 

(SD) and concentration ranges are given for each group 

Area 

Male  Female  

Weight 

(g) 

CW 

(mm) 

DM 

(%) 

HSI 

(%) 

Weight 

(g) 

CW 

(mm) 

DM 

(%) 

HSI 

(%) 

Kvitsøy 58 ± 11 6.2 ± 0.35 32 ± 5.1 5.2 ± 1.2 26 ± 4.5 5.0 ± 0.34 33 ± 5.5 5.4 ± 0.99 

Sotra-April 73 ± 26 6.7 ± 0.96 31 ± 5.5 6.1 ± 1.3 30 ± 12 5.2 ± 0.79 31 ± 4.3 7.9 ± 2.4 

Fleinvær 86 ± 14 7.0 ± 0.33 31 ± 3.9 7.0 ± 1.2 59 ± 17 6.4 ± 0.56 29 ± 8.3 8.0 ± 0.89 

Vesterålen 74 ± 44 6.4 ± 1.4 32 ± 6.7 7.8 ± 2.5 39 ± 11 5.6 ± 0.52 31 ± 5.8 7.7 ± 1.6 

Sotra-August 54 ± 15 6.3 ± 0.56 28 ± 4.9 7.5 ± 1.4 42 ± 6.5 5.8 ± 0.32 27 ± 4.3 9.4 ± 1.0 

All areas 72 ± 31 6.6 ± 1.0 31 ± 5.6 6.9 ± 2.0 35 ± 12 5.4 ± 0.67 31 ± 5.4 7.7 ± 2.1 

 

 

3.1 Investigation 1: Geographical variation in cadmium 

Cadmium concentrations in hepatopancreas based on dry weight and wet weight (table 1) did 

not vary significantly between the different sampling areas for the female shore crabs (figure 

2). Male crabs from Fleinvær however, had significantly higher wet weight based cadmium 

concentrations in hepatopancreas compared to the male crabs from Kvitsøy in Southern Norway 

(p < 0.01), and Vesterålen in Northern Norway (p < 0.001). On dry weight basis cadmium 

concentrations found in male crabs from Fleinvær were in addition higher than in male crabs 

from Sotra (p < 0.02). The male crabs from Vesterålen did not have higher cadmium levels 

compared to the crabs sampled further south (figure 2). There was no significant geographical 

difference in cadmium levels in muscle and gonads for neither males nor females (p > 0.05) 

(supplementary table 1 and 2).  
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Figure 2. Geographical variation in cadmium concentrations in hepatopancreas (mg/kg wet weight) of male (left panel, 

n = 72) and female (right panel, n = 48) crabs collected from Kvitsøy and Sotra in south, and Fleinvær and Vesterålen in 

north (median ± 25 % percentile is given and triangle symbols shows the mean for each location, sampling points with no 

letters in common show statistically significant differences) 
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3.2 Investigation 2: Seasonal variation in cadmium  

Crabs sampled in August had lower wet and dry weight based cadmium concentrations in 

hepatopancreas than in April, and the difference was significant for the female crabs (p < 0.03), 

while not significant for the male crabs (p > 0.05) (figure 3). The total cadmium content in 

hepatopancreas was not statistically significantly different between August and April (p > 0.1). 

However, there was a clear trend in measured cadmium concentration, with about two times 

lower concentrations for both sexes in August than in April. Statistically, the difference was 

probably covered by the large variation between individuals. There was no significant seasonal 

variation in cadmium levels in muscle and gonads (p > 0.7).  

 

3.3 Investigation 3: Physiological variables and their effect on cadmium 

The size parameters carapace width and whole body weight were strongly correlated for both 

sexes (r2 = 0.90, p < 0.001 and r2 = 0.88, p < 0.001 for male and female shore crabs, 

respectively (Supplementary table 3). Carapace width was chosen as the main size parameter 

for further examination, and it was positively correlated with water content in hepatopancreas 

for both male (r2 = 0.25, p < 0.0001) and female (r2 = 0.32, p < 0.0001) shore crabs. The 

hepatosomatic index was negatively correlated with carapace width for the males (r2 = -0.35, 

p < 0.0001), though not for females (r2 = 0.026, p < 0.2). 
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Figure 3. Cadmium concentrations in hepatopancreas (mg/kg wet weight) of male (left panel, n = 30) and female (right 

panel, n = 30) crabs collected from Sotra in April and August (median ± 25 % percentile is given and triangle symbols 

shows the mean for each location, sampling points with no letters in common show statistically significant differences) 
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Overall, size was not correlated with cadmium concentrations in hepatopancreas despite the 

relatively large size variation for the shore crabs from Sotra and Vesterålen (figure 4) – a 

difference of about three times between maximum and minimum carapace width. For the male 

crabs from Vesterålen there was a weak significantly positive correlation between carapace 

width and cadmium concentrations (r2 = 0.15, p < 0.01 on wet weight basis and r2 = 0.29, p < 

0.001 on dry weight basis). The correlation was pronounced for carapace width and total 

cadmium content in hepatopancreas (r2 = 0.47, p < 0.0001). For male crabs from Sotra, 

cadmium concentrations were not significantly correlated with carapace width, but the total 

cadmium content in hepatopancreas showed a weak correlation with carapace width (r2 = 0.13, 

p < 0.05). The cadmium concentrations  were not significantly correlated with carapace width 

for female crabs from neither Vesterålen nor Sotra. However, the cadmium content was weakly 

correlated with carapace width for the females from Sotra (r2 = 0.15, p < 0.05).  
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Figure 4. Relationship between cadmium concentration in hepatopancreas (mg/kg wet weight) and carapace with of male 

(n = 75) (A and C) and female (n = 45) (B and D) shore crabs from Vesterålen in north (upper panel) and Sotra in south 

(lower panel) 
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Overall, there was no clear correlation between cadmium concentration in hepatopancreas 

(mg/kg ww) and the physiological variable water content. Only for male shore crabs from 

Vesterålen a weak significantly positive correlation (r2 = 0.20, p < 0.05) was observed. On dry 

weight basis (mg Cd/kg dw), the correlation was pronounced (r2 = 0.39, p < 0.001). In addition, 

there was a significantly positive correlation between water- and cadmium content in 

hepatopancreas for the male shore crabs from Vesterålen (r2 = 0.30, p < 0.001).  

Male shore crabs had higher cadmium concentrations and a higher total amount of cadmium in 

hepatopancreas in all experimental groups (p < 0.003). Physiological variables that were 

significantly different between male and female shore crabs might be of importance for the 

different cadmium levels. The male crabs were significantly larger than females in both CW 

and body weight (p < 0.0001) and the females had a significantly lower hepatosomatic index (p 

< 0.02) (Table 2). However, there was no clear correlation between HSI and cadmium levels 

when sexes were segregated, except for a significant negative correlation between cadmium 

concentration on dry weight basis and HSI for the male shore crabs from Vesterålen: r2 = 0.27, 

p < 0.001). However, a relationship between cadmium concentration and HSI was indicated, as 

the females had significantly higher HSI and lower cadmium levels in hepatopancreas. 

Additionally, both sexes had significantly higher HSI (p < 0.0003) and lower cadmium 

concentration in August than April at Sotra. For the females from Sotra-April and Sotra-August 

in total, the correlation between cadmium concentration and HSI was significantly negative 

(r2 = 0.24, p < 0.006), whereas there was no significant correlation between total cadmium 

content in hepatopancreas and HSI (p > 0.05). Female crabs showed a seasonal trend in dry 

matter content in Sotra with a lower dry matter content in August (p = 0.066), while this was 

not observed in male crabs. In male crabs, the dry matter content increased significantly from 

recent moult to inter-moult crabs, while this was only visible as a trend in females 

(supplementary figure 1). 

The proportion of red females was larger than for males (approximately 65 and 50 %, 

respectively), but no significant correlation was found between carapace color and cadmium 

levels (p > 0.05) (supplementary figure 2). There were no clear and consistent relationships 

between cadmium and other physiological variables such as moult stage (supplementary figure 

3), gonad maturation stage (supplementary figure 4 and 5), and the presence of sperm plugs, 

probably linked to high variation in Cd values and low variation in the measurement of the 

parameters. 
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3.4 Investigation 4: Cadmium in shore crab soup 

The cadmium concentrations in shore crab soups from Sotra and Vesterålen ranged from 17 to 

79 µg/kg ww, with average values of 28 ± 11 and 63 ± 14 µg/kg ww, respectively. In total, the 

average cadmium concentration was 44 ± 22 µg/kg ww soup. Based on cadmium levels in 

hepatopancreas in shore crabs from Sotra and Vesterålen (table 1), it was calculated that 

approximately 62 % of the crabs cadmium levels were extracted into the soup during the 

cooking process.  
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4. Discussion 

4.1 Geographical variation in cadmium 

The main objective in the present study was to investigate whether the shore crab shows as 

large differences in cadmium concentrations in hepatopancreas as have been found earlier in 

brown crabs from northern and southern sites along the Norwegian coast. The cadmium 

concentrations in the shore crabs in this study did not follow such a clear geographical pattern. 

Only males from one of the two locations in the North showed significantly higher 

concentrations. This is in contrast to the brown crab, where concentrations in the brown meat 

were significantly higher in Northern Norway, compared to Southern Norway (Julshamn et al., 

2012). Except for the relatively high cadmium concentrations in male shore crabs from 

Fleinvær, the cadmium levels in the analyzed tissues in the present study correspond fairly well 

to earlier published values for shore crabs from Denmark and Scotland (Depledge and 

Bjerregarrd, 2002; Bjerregaard, 1982, 1990; Rainbow, 1985). The male shore crabs from 

Fleinvær were larger than the other males, and one reason for their high cadmium levels may 

be that they have foraged on different and potentially larger and older prey, with potentially 

higher cadmium levels. It is also possible that the cadmium levels are higher in this area, 

although the cadmium concentrations in the females from Fleinvær were not correspondingly 

high. However, this may be due to the low sampling size of female shore crabs from this area, 

with only three females from Fleinvær. Brown crabs from the same area did not show elevated 

cadmium levels compared to other samples in the North (Julshamn et al., 2013b; Julshamn et 

al., 2012). 

The differences in geographical cadmium pattern between shore crabs and brown crabs from 

the Norwegian coast may be explained by several causes. As food presumably is the most 

important cadmium source for crabs (Davies et al., 1981; Bjerregaard et al., 2005), differences 

in diet might be of importance for the different cadmium levels between shore crabs and brown 

crabs sampled along the Norwegian coast. Compared to the cadmium levels in the brown crab 

(Julshamn et al., 2012), the levels in the shore crab in this study were low along the whole 

Norwegian coastline. The brown crab generally consumes larger organisms (Mascar and Seed, 

2001) with potentially higher cadmium levels. Further, differences in diet might be a result of 

their different distribution in the water column, as the shore crab generally lives in shallower 

waters (Crothers, 1968; Neal and Wilson, 2008), where different prey species might be 

abundant.  



15 

 

Crabs also accumulate cadmium from the water phase (Jennings and Rainbow, 1979; Weis, 

2012; Davies et al., 1981) and it is possible that differences in cadmium accumulation from the 

water is associated with the higher cadmium levels in brown crabs compared to shore crabs. As 

the brown crab is more abundant in deeper water, it is possible that it is more exposed to the 

cadmium rich deep-water (Falk and Nøst, 2013, Janssen et al. , 2014) than the shore crab. 

However, the cadmium levels in brown meat in brown crabs from Northern Norway are shown 

to be higher in males (Frantzen et al., 2015), even though females generally migrates to a greater 

extent to deeper waters where the cadmium concentrations potentially are higher (Ungfors et 

al., 2007; Falk and Nøst, 2013). Further, several studies indicate that the rates of cadmium 

accumulation from the water phase to the hepatopancreas are too low to explain the high 

cadmium levels in hepatopancreas and/or brown meat (Bjerregaard et al., 2005; Davies et al., 

1981; Jennings and Rainbow, 1979; Nørum et al., 2005).  

It might be an explanatory feature that the shore crab could probably be better adapted to the 

cold climate in Northern Norway compared to the brown crab. The water temperature along the 

Norwegian coast generally decreases with increasing latitude and the mean temperature for 

2015 to 2017 at Sognesjøen (61 °N), a station close to our sampling sites in Southern Norway, 

was 10.0 °C, ranging from 5.8° to 15.6 °C at a depth of 5 m. At a station in the proximity of our 

northernmost site, Eggum (68 °N), a mean temperature of 8.3 °C with, ranging from 4.7 ° to 

12.3 °C was measured for 2015 to 2017 at a depth of 5 m (IMR, Permanent hydrographic 

stations). The shore crab is known to be very robust and survives a wide range of temperatures 

from approximately 0 to 35 °C and tolerates salinities from 4 to 52 ‰ (Klassen and Locke, 

2007). This suggests that the shore crab grows equally good in northern and Southern Norway. 

There is evidence that brown crabs do not feed at all at temperatures below 5 °C, as well as 

migration is limited (Karlsson and Christiansen, 1996). Further, a survey of brown crabs has 

shown that they moult less frequently in northern compared to Southern Norway (Snorre Bakke, 

personal communication, January 23, 2017). Consequently, the growth rate will be relatively 

lower for brown crabs from Northern Norway. As such, a brown crab of a given size from 

Northern Norway might have had longer time to accumulate metals such as cadmium, and will 

consequently have higher cadmium levels compared to a brown crab of similar size sampled 

further south. This will probably not apply for the shore crab, under the assumption that shore 

crabs have similar growth rates in the north and south. Further, Bergey and Weis (2007) has 

suggested moulting as a mechanism for depuration of lead for the fiddler crab Uca pugnax. If 

moulting is a feasible mechanism for crabs to also departure cadmium, it is possible that lower 
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moulting frequency for brown crabs from Northern Norway result in less cadmium excretion 

and thereby higher cadmium concentrations compared to brown crabs from Southern Norway. 

 

4.2 Seasonal variation in cadmium 

In agreement with findings from Bjerregaard et al. (2005), the results in the present study 

showed that the cadmium concentrations in hepatopancreas varies with season. The 

concentration was significantly lower for female shore crabs sampled in August than April. The 

seasonal variation might be explained in terms of changing bioavailability of the metal due to 

changing physicochemical conditions of the environment as well as changing physiological 

state of the individuals. With rising water temperature, the crabs activity will probably increase 

(Klassen and Locke, 2007; Griffen et al., 2012), which may lead to increased food intake. This 

is indicated by significantly higher hepatosomatic index for both sexes in August than April. 

With higher HSI, the lipid stores consequently increase, which seems to lower the cadmium 

concentration by dilution, as indicated by the significantly negative correlation between HSI 

and cadmium concentration for the females sampled in August and April in total. Further, the 

higher concentrations of cadmium in hepatopancreas in April could be explained by the 

tendency to higher water content in hepatopancreas in the crabs sampled in August. This is 

consistent with the total content of cadmium not differing between the two months. In addition, 

the lower cadmium levels in August might be a consequence of a potentially shorter biological 

half-life of cadmium as the temperature increases during summer, with subsequently higher 

activity among the crabs, as discussed by Bjerregaard et al. (2005).  

Seasonal changes in physiological variables such as ovarian maturation and moult stage 

(Bondgaard et al., 2000: Bondgaard and Bjerregaard, 2000; Nørum et al., 2005) might also 

influence the cadmium levels, but the span in variation for these parameters was too low to 

reveal any effects. In agreement with the results in the present study, elevated cadmium levels 

are reported for the American oyster (Crassostrea virginica) in April with a decline throughout 

the summer (Frazier, 1979). 

As the bioavailability of cadmium increase with temperature (Klassen and Locke, 2007; Ray, 

1984; Rainbow, 1997; Burke et al., 2003), the cadmium accumulation from the water phase 

would probably be higher for the shore crabs in August than April. However, the cadmium 

levels were not elevated in August for the shore crabs in this study. Therefore, cadmium uptake 

from the water phase does not explain the observed variations. 

 



17 

 

4.3 Physiological variables and their effect on cadmium 

For both sexes, the size parameters were positively correlated with each other and with water 

content in hepatopancreas, in agreement with other studies (Bjerregaard and Depledge, 2002; 

Nissen et al., 2005). For the male shore crabs, the HSI was negatively correlated with size, 

which indicates that the relative energy reserves decrease with increasing size. In concordance 

to Nørrum et al. (2013) we found a trend towards a higher dry matter content in hepatopancreas 

in inter-moult crabs in comparison to recent moult crabs. This is most likely a result of active 

foraging.   

We found an indication of cadmium accumulation over the crab's lifetime, as the total amount 

of cadmium was correlated with size. However there was no consistent effect of size on 

cadmium concentrations even though the range in size was relatively large. The increase of 

water content with size might mask the increase of the wet weight based concentration. Little 

or no correlation between size and cadmium concentrations has been found for shore crabs from 

Denmark (Bjerregaard and Depledge, 2002; Nissen et al., 2005), king crabs (Pseudocarcinus 

gigas) from Australia (Turoczy et al., 2001) and brown crabs from Norway (Julshamn et al., 

2012). It is possible that crabs excrete cadmium during moulting (Bergey and Weis, 2007), 

which could explain why the cadmium concentrations do not increase considerably with size. 

However, this needs to be elucidated further.  

There was a clear difference between the sexes regarding cadmium concentrations in 

hepatopancreas. The cadmium concentration was more than twice as high for the male shore 

crabs. In correspondence with these results, Bjerregaard et al. (2005) also found generally lower 

cadmium concentration in female hepatpancreas, compared to male shore crabs. As food 

presumably is the most important cadmium source for shore crabs (Bjerregaard et al., 2005; 

Pedersen et al., 2014), it is possible that differences in foraging strategy between male and 

female shore crabs may lead to differences in accumulation of cadmium. The sexes behave 

differently in the coastal zone, where the females generally stay at deeper waters than the males 

(Reid et al., 1997). Furthermore, the males are generally larger, with bigger and presumably 

stronger claws, which enables foraging on larger organisms (Kaiser et al., 1990) with potentially 

higher cadmium levels. 

The cadmium concentration in muscle meat from claws was not significantly different between 

male and female shore crabs. The majority of the accumulated cadmium was measured in 

hepatopancreas, and the whole body cadmium distribution was approximately 92, 7.9 and 0.10 

% in hepatopancreas, female gonads and muscle meat from claws, respectively for the analyzed 
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tissues. The cadmium distribution in the analyzed tissues was similar to other studies on both 

shore crabs and brown crabs (Bondgaard and Bjerregaard, 2005; Bjerregaard et al., 2005; Weis, 

2012; Frantzen et al., 2015; Wiech et al., 2017).  

Except for a clear relationship between cadmium concentrations and sex, and weak correlations 

between hepatosomatic index and carapace width and cadmium, there was no correlation 

between cadmium concentrations and the registered physiological variables. Limited range in 

visually assessed parameters such as carapace colour, number of legs and claws, moulting stage, 

presence of sperm plugs and gonad maturation might be the reason why no relationships 

between cadmium levels and these individual parameters were found. Other studies have shown 

higher cadmium accumulation rates for crabs in early post-moult and early ovarian maturation 

stages when exposed to cadmium in water (Bondgaard et al., 2000; Bondgaard and Bjerregaard, 

2005; Nørum et al., 2005), and green shore crabs seems to accumulate more cadmium than red 

shore crabs (Nissen et al., 2005; Styrishave et al., 2000). 

 

4.4 Cadmium in shore crab soup 

Even though the amount of cadmium extracted from the crabs to the soup was relatively high, 

the cadmium concentrations in the prepared shore crab soup were low. Therefore, shore crab 

soup was considered to be safe regarding cadmium exposure. Based on the highest measured 

cadmium concentration of 79 µg Cd/kg ww, a portion size of 100 g would constitute 

approximately 5 % of the tolerable weekly intake (TWI) for a person weighing 70 kg, based on 

the TWI of 2.5 µg Cd/kg body weight (EFSA, 2009), set by the European Food Safety Authority 

(EFSA). However, it is estimated that the average cadmium exposure from food is 

approximately 1.7 µg/kg body weight per week for an adult Norwegian person (VKM, 2015). 

Taking this into consideration, the additional dietary cadmium exposure allocated to other 

dietary sources is 56 µg per week given a body weight of 70 kg, which corresponds to 

approximately seven portions of shore crab soup per week. As such, shore crab soup is not 

considered problematic regarding food safety. Furthermore, a cooking time of 30 minutes may 

be excessive as the soup may become bitter during the long cooking process (personal 

observation). However, it was chosen as worst-case scenario to ensure sufficient cadmium 

extraction. In addition, all the pooled samples were under the legal limit of 0.5 mg Cd/kg ww 

in claw meat for humane consume, set by EU (EU, 2006). 
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5. Conclusion 

The cadmium concentrations in shore crabs in this study were very low in muscle meat from 

claws, and between 0.046 mg Cd/kg ww and 11 mg/kg ww in hepatopancreas. There was no 

clear geographical difference with latitude as opposed to earlier findings in the brown crab. 

Possible explanations for this may be that these species have different feeding habits or that the 

shore crab is better adapted to the colder climate in Northern Norway. Sex had a clear impact 

on the cadmium levels in hepatopancreas, as the male shore crabs had approximately twice as 

high cadmium levels compared to the females. No clear and consistent correlations were found 

between cadmium and other registered individual variables, but some minor relationships were 

seen with an indication of cadmium accumulation over time as well as a weak relationship 

between cadmium concentrations and fluctuating water contents of tissues. Cadmium 

concentrations were lower in August than in April. Most of the total amount of cadmium was 

allocated in the hepatopancreas while muscle meat and gonads of females contributed together 

with less than 10 %. None of the measured cadmium levels exceeded EUs legal limit of 0.5 

mg Cd/kg ww set for claw meat for human consumption. 

Low cadmium levels in shore crab soup make it a safe food item regarding cadmium and food 

safety.  
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Supplementary figure 1. Wet and dry weight based concentrations of cadmium in hepatopancreas of shore crabs  

(Carcinus maenas) from different sites along the Norwegian coast with different carapace color. Bars denote the mean 

concentration and whiskers the standard error. The number of crabs within each category is given. 
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Supplementary figure 2. Wet and dry weight based concentrations of cadmium in hepatopancreas of shore crabs  

(Carcinus maenas) from different sites along the Norwegian coast at different moulting stages. Bars denote the mean 

concentration and whiskers the standard error. The number of crabs within each category is given. 
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Supplementary figure 3. Wet and dry weight based concentrations of Cd in hepatopancreas of male shore crabs  

(Carcinus maenas) from different sites along the Norwegian coast at different gonad maturation stages. Bars denote the 

mean concentration and whiskers the standard error. The number of crabs within each category is given. 
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Supplementary figure 4. Wet and dry weight based concentrations of Cd in hepatopancreas of female shore crabs  

(Carcinus maenas) from different sites along the Norwegian coast at different gonad maturation stages. Bars denote the 

mean concentration and whiskers the standard error. The number of crabs within each category is given. 
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Supplementary figure 5 Dry matter content of hepatopancreas of male and female shore crabs at different moulting 

stages. Bars denote the mean concentration and whiskers one standard deviation. The number of crabs within each 

category is given. Different letters indicate significant differences. 

  



Tables 

 
Supplementary table 1. Cadmium concentrations (mg/kg wet weight) in muscle meat from claws and female gonads of 

shore crabs (Carcinus maenas) from the Norwegian coast. Mean ± SD and concentration ranges are given for each 

group, except for the measured concentration levels in female gonads, as these results are based on measurements of only 

one pooled sample (N = 1). 

Area Tissue 

Male Female 

N 
Mean ± SD 

(mg/kg ww) 

Range 

(mg/kg ww) 
N 

Mean ± SD 

(mg/kg ww) 

Range 

(mg/kg ww) 

Kvitsøy 
Muscle 3 0.0053 ± 0.0042 0.0028 – 0.010 3 0.0028 ± 0.00058 0.0021 – 0.0032 

Gonad - - - 1 0.023  - 

Sotra-April 
Muscle 3 0.0022 ± 0.00063 0.0015 – 0.0027 3 0.0024 ± 0.00033 0.0020 – 0.0027 

Gonad - - - 1 0.017  - 

Fleinvær 
Muscle 3 0.0027 ± 0.0015 0.0017 – 0.0044 3 0.0037 ± 0.0015 0.0020 – 0.0051 

Gonad - - - 1 0.0092  - 

Vesterålen 
Muscle 3 0.0018 ± 0.00037 0.0015 – 0.0022 3 0.0020 ± 0.00023 0.0018 – 0.0022 

Gonad - - - 1 0.015  - 

Sotra-August 
Muscle 3 0.0017 ± 0.0012 0.0030 – 0.0012 3 0.0020 ± 0.0 0.0020 – 0.0020 

Gonad - - - 1 0.015  - 

All areas 
Muscle 15 0.0027 ± 0.0022 0.0010 – 0.010 15 0.0025 ± 0.00090 0.0018 – 0.0051 

Gonad - - - 5 0.015 ± 0.0055 0.0092 – 0.023 

 

 

Supplementary table 2. Cadmium concentrations (mg/kg dry weight) in muscle meat from claws and female gonads of 

shore crabs (Carcinus maenas) from the Norwegian coast. Mean ± SD and concentration ranges are given for each 

group, except for the measured concentration levels in female gonads, as these results are based on measurements of only 

one pooled sample (N = 1).   

Area Tissue 

Male Female 

N 
Mean ± SD 

(mg/kg dw) 

Range 

(mg/kg dw) 
N  

Mean ± SD 

(mg/kg dw) 

Range 

(mg/kg dw) 

Kvitsøy 
Muscle 3 0.022 ± 0.016 0.013 – 0.041 3 0.012 ± 0.0013 0.010 – 0.013 

Gonad - - - 1 0.050  - 

Sotra-April 
Muscle 3 0.0087 ± 0.0026 0.0059 – 0.011 3 0.0095 ± 0.0010 0.0083 – 0.010 

Gonad - - - 1 0.044  - 

Fleinvær 
Muscle 3 0.013 ± 0.0083 0.0062 – 0.022 3 0.015 ± 0.0067 0.0080 – 0.021 

Gonad - - - 1 0.020  - 

Vesterålen 
Muscle 3 0.0069 ± 0.0015 0.0058 – 0.0086 3 0.0086 ± 0.0010 0.0074 – 0.0094 

Gonad - - - 1 0.022  - 

Sotra-August 
Muscle 3 0.0072 ± 0.0045 0.0044 – 0.012 3 0.0085 ± 0.00036 0.0084 – 0.0085 

Gonad - - - 1 0.044  - 

All areas 
Muscle 15 0.012 ± 0.0093 0.0044 – 0.041 15 0.011 ± 0.0036 0.0074 – 0.021 

Gonad - - - 5 0.036 ± 0.014 0.020 – 0.050 

 

  



Supplementary table 3. Significant pearson correlations between carapace width (cm), water content in hepatopancres 

(%), hepatosomatic index (%) and cadmium concentrations (mg/kg) based on dry weigth and wet weight and total 

cadmium content (mg). 

Variables Male shore crabs Female shore crabs 

Carapace with (cm) and whole 

wet weight (g) 

r = 0.9498***, r2 = 0.90 for all locations r = 0.9404***, r2 = 0.88 for all locations 

Carapace width (cm) and water 

content in HP (%) 

r = 0.4989***, r2 = 0.25 for all locations r = 0,5633*** , r2 = 0.32 for all locations 

Carapace width (cm) and HSI 

(%) 

r = -0.5954*** , r2 = -0.35 for all 

locations 

- 

Carapace width (cm) and Cd 

(mg/kg ww) 

r = 0.2233** , r2 = 0.050 for all locations 

r = 0.3983**, r2 = 0.15 for Vesterålen 

 

- 

Carapace width (cm) and Cd 

(mg/kg dw) 

r =  0.3030***, r2 = 0.092 for all locations 

r = 0.5344***, r2 = 0.29 for Vesterålen 

- 

Carapace width (mm) and Cd 

content (mg) in HP 

r = 0.5312*** , r2 = 0.28 for all locations 

r = 0.3594*, r2 = 0.13 for Sotra-April 

r = 0.6872***, r2 =  0.47 for Vesterålen 

r = 0.2824*, r2 = 0.080 for all locations 

r = 0.3835*, r2 =  0.15 for Sotra-April 

 

Water content in HP (%) and 

Cd (mg/kg ww) 

r = 0.1713* r2 = 0.029 for all locations 

r = 0.4424*, r2 = 0.20 for Vesterålen 

- 

Water content in HP (%) and 

Cd (mg/kg dw) 

r = 0.3574*** r2 = 0.13 for all locations 

r = 0.6260***, r2 =  0.39 for Vesterålen 

- 

Water content in HP (%) and 

Cd content (mg) 

r =  0.2074* r2 = 0.043 for all locations 

r = 0.5493***, r2 = 0.30 for Vesterålen 

- 

HSI (%) and Cd (mg/kg ww) r = -0.3511* , r2 = 0.12 for Vesterålen r = -0.2244* , r2 = 0.050 for all locations 

r = -0.4529*, r2 = -0.21 for Sotra-April 

HSI (%) and Cd (mg/kg dw) r = -0.2549*, r2 = -0.065 for all locations 

r = -0.5163***, r2 = 0.27 for Vesterålen 

r = -0.2249*, r2 = -0.051 for all locations 

r = -0.5078**, r2 = -0.25 for Vesterålen 

HSI (%) and Cd (mg) r = -0.3548*, r2 = 0.13 for Vesterålen   

 



Errata
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Errata 

Page IV: “brown” was added before “crab”  

Page 1: “a” was deleted before “planktonic” 

Page 2: “indicates” was changed to “indicated” 

Page 3: “the” was deleted after “The” 

Page 4: “and fuel combustion” deleted after “and”  

Page 4: “heavy” added before “industrial” 

Page 5: “nutrient” was changed to “nutrients” 

Page 7: “the” inserted after “indicate” and “in” 

Page 7: “assessments” changed to “assessment” 

Page 9: “was” was changed to “were” 

Page 9: “brown” was added before “crab”  

Page 10: “of” inserted after “catch” 

Page 11: “the brown” deleted before “crab” 

Page 11: “described” was changed to “described” 

Page 16: “(Bjerregaard and Depledge, 1994)” was deleted after “(Bjerregaard and 

Depledge, 1994)” 

Page 16: “brown” was added before “crabs 

Page 17 : “foyr” was changed to “four” 

Page 23: “and shore” was deleted after “brown” 

Page 25: “levels” was changed to “level” 
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Page 28: “in” was changed to “is” 

Page 28: “with, ranging from 4.7 ° to 12.3 °C during the same time and at the same 

depth” was changed to “, ranging from 4.7 ° to 12.3 °C during the same time and at 

the same depth, was measured” 

Page 28: “and” added after “spring” 

Page 29: “in” added after “found” 

Page 31: “in” deleted after ”species” 

Page 19:  “to” inserted after “compared” 

Page 37: “are” to “area” 

Page 37: “compared” was changed to “comparable” 

Page 37: “could be at risk” changed to “are at risk” 

Page 38: “not” was changes to “no” 

Page 41: “in” deleted after “in a” 
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