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1. Preface 

Respiratory complications are life threating in Amyotrophic Lateral Sclerosis (ALS), 

and a proactive preventive approach is a key element in disease management. Non-

invasive ventilatory support and mechanically assisted cough are mainstay 

therapeutic techniques. Mechanical insufflation–exsufflation (MI-E) is an efficient 

tool used to improve cough in most patients with neuromuscular disorders, but the 

method often fails in ALS, especially when bulbar involvement is present. 

We do not fully understand why bulbar ALS patients do not seem to benefit from MI-

E, and thus we do not have evidence based guidelines to advise how treatment can be 

modified to be clinically more acceptable and efficient. Although the upper airways 

have been a suggested cause of this treatment failure, comprehensive studies of the 

laryngeal response patterns to MI-E have not been previously reported.  

Clinical respiratory physiotherapy and non-invasive ventilatory support is of vital 

importance to maintain respiratory health and quality of life in ALS, and it is 

therefore imperative that we gain more knowledge on how we can overcome the 

obstacles preventing MI-E from being effective in these patients.  

Thus, the overarching aim of this thesis is to investigate if and in what way abnormal 

laryngeal responses can possibly explain the frequently experienced lack of clinical 

effect of MI-E when applied in patients with progressing ALS.   



 

 

 

1.1 Scientific environment  

The thesis originated from the PhD program of the Department of Clinical Science, 

Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway. 

The Western Norway Regional Health Authority and Norwegian National Advisory 

Unit on Long-term Mechanical Ventilation, Thoracic Department, Haukeland 

University Hospital have funded the study. 

The present study was carried out between 2011 and 2017 in collaboration with 

Norwegian National Advisory Unit on Long-term Mechanical Ventilation at Thoracic 

Department, Departments of Neurology, Otolaryngology, Pediatrics, Physiotherapy 

and Clinical Engineering at Haukeland University Hospital, Bergen, Norway and The 

Faculty of Health and Social Sciences, Western Norway University of Applied 

Sciences, Bergen, Norway. 

The main research environment was the WestPaed Research Group at Haukeland 

University Hospital. Collaborative research environments were Norwegian National 

Advisory Unit on Long-term Mechanical Ventilation and The Bergen Respiratory 

Research Group. 

 

The supervisors during this work have been: 

Ola Drange Røksund, physiotherapist, professor at the Faculty of Health and Social 

Sciences, Western Norway University of Applied Sciences, Bergen, Norway. 

Thomas Halvorsen, pediatrician, professor at Department of Clinical Science, Faculty 

of Medicine, University of Bergen, Bergen, Norway. 

John-Helge Heimdal, otolaryngologist, professor at Department of Clinical Medicine, 

Faculty of Medicine, University of Bergen, Bergen, Norway. 

Ole-Bjørn Tysnes, neurologist, professor at Department of Clinical Medicine, Faculty 

of Medicine, University of Bergen, Bergen, Norway. 
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Maria Vollsæter, pediatrician, PhD, senior consultant at the Norwegian National 

Advisory Unit on Long-term Mechanical Ventilation and Department of Pediatrics, 

Haukeland University Hospital, Bergen, Norway. 

 

Ove Fondenes, pulmonologist and the head of the Norwegian National Advisory Unit 

on Long-term Mechanical Ventilation, Haukeland University Hospital, Bergen, has 

served as a professional specialist and supervisor in relation to respiratory challenges 

and mechanical ventilation of patients with Amyotrophic Lateral Sclerosis. 

 

Statistical longitudinal analyses were carried out under the supervision of: 

Roy Miodini Nilsen, biostatistician, associate professor at the Faculty of Health and 

Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway. 
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1.3 Summary of thesis 

Background: Patients with amyotrophic lateral sclerosis (ALS) are treated with 

mechanical cough assist devices using the technique of mechanical insufflation-

exsufflation (MI-E) in order to improve cough and enhance clearance of airway 

secretions. The aim of treatment is to prevent lung infections and to provide a better 

quality of life. The technique often fails in ALS patients with bulbar involvement, 

allegedly due to upper airway malfunction. Laryngeal collapse during exsufflation 

has been proposed to explain the ineffectiveness of MI-E in bulbar ALS. However, 

there are a lack of studies utilizing comprehensive and verifiable methods to 

investigate the role played by the larynx of patients in whom MI-E appears to be non-

successful.   

Objectives: Study #I: To examine the feasibility of transnasal fiberoptic 

laryngoscopy (TFL) during ongoing MI-E in healthy volunteers, and to describe 

normal laryngeal response pattern(s) to MI-E. Study #II: To investigate laryngeal 

response patterns to MI-E in a cross-sectional study of ALS of different phenotypes. 

Study #III: To examine and describe changes in laryngeal response patterns to MI-E 

as ALS progresses, and to explore if treatment protocols can possibly be modified 

and improved in these patients. 

Design: Population-based, explorative, descriptive, observational studies, with cross-

sectional design in Study #I and #II, and prospective cohort design in the Study #III. 

Subjects: Study #I: Twenty healthy medical students. Study #II: Twenty patients with 

ALS together with 20 healthy volunteers, matched for age and gender. Study #III: 

Thirteen eligible patients with ALS, recruited from Study II, prospectively followed 

during disease progression for up to 5 years. 

Methods: ALS was phenotyped according to established international standards. 

Upper and lower motor neuron symptoms were characterized, and the respiratory 

function determined. Video recorded flexible TFL was applied during ongoing cough 

assisted by MI-E that was applied using various pressures according to a preset 

protocol. The video files were used to carefully assess and tabulate the laryngeal 



 

 

 

movements. The examinations were performed at outpatient visits that were 

scheduled at set time-intervals. 

Results: Study #I: The larynx could be studied with TFL during ongoing MI-E. The 

laryngeal responses to MI-E in healthy volunteers were compatible to that described 

in normal cough. Study #II: The laryngeal structures of patients with ALS and bulbar 

symptoms tended to adduct, especially during insufflation, which in some patients 

severely compromised the size of the laryngeal inlet, especially if high pressures were 

applied. Study #III: During ALS disease progression, the first signs of laryngeal 

adduction occurred with the highest insufflation pressures and prior to any clinically 

evident signs of bulbar involvement. Hypopharyngeal constriction during exsufflation 

was observed in all subjects regardless of bulbar symptoms, and later in the disease 

progression than the above described adverse events during insufflation. Cough 

gradually became less expulsive and also less synchronized at the laryngeal level. 

Triggering of swallowing reflexes by the positive air flow from the MI-E further 

complicated these matters. Attempts of careful individual tailoring of the MI-E 

therapy as the patients’ condition deteriorated seemed to prolong its successful use.  

Conclusions and interpretations: Laryngoscopy can safely be performed during 

ongoing MI-E, and appears a feasible tool to visualize the laryngeal responses to this 

therapy. In bulbar ALS, laryngeal structures are prone to adduct throughout the 

various pressure cycles of MI-E, especially if applying high insufflation pressures, 

thereby severely obstructing the airflow and thus hampering the effect of the 

treatment. Cough patterns alter as ALS progresses, and rapidly alternating MI-E 

pressure cycles may become challenging or even impossible to handle for patients. 

Individually tailored MI-E treatment can improve and may possible extend the use of 

non-invasive ventilatory support in ALS, and TFL can become a feasible and 

valuable tool in this respect.  
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1.5 Abbrevations 

AEF Aryepiglottic folds 
ALS Amyotrophic Lateral Sclerosis 
ALSFRS-r ALS Functional Rating Scale – revised 
BIS Bulbar impairment scale 
BS Bulbar score 
BMI Body Mass Index 
CI Confidence interval 
CLE Continuous laryngoscopy during exercise test  
CPAP Continuous Positive Airway Pressure  
CPF Cough Peak Flow 
CT  Computer Tomography 
EILO  Exercise induced laryngeal obstruction 
ENT Ear-Nose-Throat 
FEV1 Forced expiratory volume in the first second 
FVC Forced vital capacity 
EG Epiglottis 
MEP Maximal expiratory mouth pressure 
MI Mechanical insufflation 
MI-E Mechanical Insufflation-Exsufflation 
MIC Maximal insufflation capacity 
MIC>SCV Calculated difference between MIC and SVC  
MIP Maximal inspiratory mouth pressure 
MND  Motor neuron disease 
NKH Norwegian National Advisory Unit on Long-term Mechanical 

Ventilation 
NIV  Non-invasive ventilation 
PCA  Musculus cricoarytenoideus posterior 
PCF Peak cough flow 
PEF Peak expiratory flow 
PImax Maximal inspiratory mouth pressure  
PEmax Maximal expiratory mouth pressure  
RCT Randomised controlled trial 
RS Respiratory score 
SNIP Sniff nasal inspiratory pressure 
SVC Slow vital capacity 
TFL Transnasal fiberoptic laryngoscopy 
TVF True vocal folds 
USA  United States of America 
WST 100-ml water swallow test 
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2. Background 

2.1 Personal Introduction 

Respiratory management of people with neurological disorders has improved 

significantly during the two last decades. This positive development has occurred for 

a range of reasons, but has primarily been due to an increased interest and volume of 

knowledge within the medical community, accompanied by technological advances. 

A better understanding of the pathogenesis of chronic respiratory failure, and the role 

played by weak cough have been important. In Norway, the Norwegian National 

Advisory Unit on Long-term Mechanical Ventilation (previously labeled The 

Norwegian Centre of Excellence for Home Mechanical Ventilation) was established 

in Bergen in 2002, with the aim to increase the quality of life of persons on long-term 

mechanical ventilation, and to facilitate equal access to evidence based treatment 

across Norway for patients with chronic hypoventilation. I have been employed by 

this institution as a respiratory physiotherapist with responsibility for airway secretion 

management since it was established.  

The prevailing clinical impression is that MI-E in most neuromuscular patients 

contributes to more efficient clearance of airway secretions, improved management 

of chest colds and prevention of severe chest infections, and that requirement for 

hospitalizations and even tracheostomy can be reduced. However, patients with ALS 

and bulbar dysfunction have been particularly challenging to treat successfully with 

MI-E, allegedly due to disturbed laryngeal responses. This clinical observation is 

poorly understood, and has not been thoroughly investigated using comprehensive 

and verifiable methods. (Literature search has been done regularly since October 

2010 and for the last time on 5th December 2017). 

In our hospital (Haukeland University Hospital, Bergen, Norway), transnasal 

laryngoscopy is being extensively used as a diagnostic tool in a variety of functional 

tests; e.g., during ongoing maximal treadmill exercise to diagnose exercise induced 



 

 

 

laryngeal obstruction (EILO). Inspired by these examinations, I decided to use 

laryngoscopy during ongoing mechanically assisted cough in patients with ALS in 

order to increase our understanding of why MI-E fails to help some of these patients, 

and - hopefully - to contribute to improving their airway clearance therapy. This idea 

constitutes the basis for my PhD thesis. 

2.2 Amyotrophic Lateral Sclerosis 

2.2.1 Definition 

Amyotrophic Lateral Sclerosis (ALS) is a fatal, highly disabling and incurable 

neurodegenerative disease of upper and lower motor neurons.1-3  

Charles Bell, a British anatomist and surgeon, reported the first ALS case in 1830, 

describing a condition that caused progressive paralysis of the limbs and tongue. The 

first to describe ALS as an entity was the French neurologist Jean-Martin Charcot; 

hence ALS is also known as Charcot disease. The condition gained more widespread 

attention after the very popular American baseball player Lou Gehrig was diagnosed 

with ALS in 1939.4 In Europe and in USA the term Amyotrophic Lateral Sclerosis 

(ALS) is used, while in Australia and United Kingdom the term Motor Neuron 

Disease (MND) is preferred.5 

The pathogenesis of ALS is poorly understood.6 The disease is heterogeneous in its 

presentation and progression; e.g., with variabilities as regard the presence and the 

timing of onset of upper and lower motor neuron signs. Upper motor neurons have 

their origin in the motor cortex. Their axons travel through the great corticofugal 

tracts to the brain stem (corticobulbar neurons) and to the spinal cord (corticospinal 

neurons) to influence the patterned activity of the lower motor neurons.7 Upper motor 

neuron abnormalities lead to spasticity and hyperreflexia, while abnormalities of 

lower motor neuron entail flaccidity and hyporeflexia in addition to muscle atrophy 

and fasciculation.8,9 The motor deficits in ALS are often mixed and encompass both 

flaccid and spastic weakness.8-11  
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The initial clinical findings and symptoms in ALS are characterized either as spinal 

onset with clinical symptoms from the arms and/or legs, or as bulbar onset, with 

clinical symptoms primarily being difficulties with speech, swallowing and coughing. 

Regardless of the type of onset, muscle weakness and atrophy will, as the disease 

progresses, eventually involve all skeletal muscles.3,12 Spinal onset ALS with 

gradually progressive weakness of arms or legs is the most common initial clinical 

presentation, occurring in about 70% of cases. About 25-30% of ALS patients have a 

bulbar onset disease, however, this is less common in younger patients and more 

common in older patients; i.e. occurring in 43% of those over 70 years.13 The 

patients’ history together with the clinical neurological examination commonly 

establishes the diagnosis and the subtype of ALS, in accordance with the El Escorial 

World Federation of Neurology revised criteria.14,15 Some few ALS patients have 

documented signs of frontotemporal dementia, characterized by cognitive and 

behavioral dysfunction associated with changes in personal and social conduct.4   

The causal factors leading to ALS are still unknown, and both environmental and 

genetic factors are assumed to be involved.16,17 Authors have suggested that a high 

level of physical activity might modulate the risks of ALS, with increased risk among 

e.g. professional football players and in subjects with a body mass index (BMI) 

below average.18,19 About 10% of ALS cases have a family history of the disease, and 

over 20 genes linked with familial ALS have been identified. Almost all familial 

cases have an autosomal dominant inheritance.16  

2.2.2 Epidemiology  

ALS is a rare disease; however, it is considered frequent among rare diseases.16 A 

wide range of ALS incidence and prevalence rates have been reported in various 

populations.17,20 In Europe, the reported annual incidence varies from 0.5/100 000 in 

Belgrade21 to 3.6/100 000 in the Faroe Island,22 and the prevalence varies from 

1.1/100 000 (95% CI, 0.71–1.71) in “old” Yugoslavia21 to 8.2/100 000 (95% CI 2.1–

20) in the Faroe Islands.22 The prevalence in Hordaland county in Norway, where our 

hospital is located, was 3.7/100 000 in 1989.23  



 

 

 

ALS onset is typically around 60 years of age.2 The incidence is highest in people 

aged 55–79 years, and onset below the age of 40 years is uncommon.24 There is a 

modest male predominance. While bulbar onset has no gender prediction, the spinal 

onset is more common in males.25 People older than 80 years have a standardized 

incidence of 10.2/100 000 in men and 6.1/100 000 in women.26 

2.2.3 Prognosis  

Involvement of respiratory muscles limits respiratory function and cough which leads 

to accumulation of secretions, increased risk of lung infections and eventually 

respiratory failure. In the end-stage of the disease, this strongly impacts quality of life 

and survival. Signs and symptoms of the disease increase as the disease progresses. 

Since there is no cure for ALS, the treatment is largely symptomatic and 

palliative.1,12,13,27,28 

Most patients with ALS die within 2–3 years of developing the first symptoms, but 

20% of patients survive for 5 to 10 years.29 The median post-diagnosis survival time 

has increased over the last decade; 29 months for patients diagnosed before the year 

2000 vs. 36 months for those diagnosed during 2000–2009.30 This is most likely due 

to better access to multidisciplinary clinics and better treatment. A poor prognosis is 

associated with older age at disease onset, quick development of respiratory muscle 

weakness and bulbar onset.5 Also rapid progression of bulbar or respiratory 

symptoms negatively influences outcome.20 Contrary, limb onset, younger age at 

disease onset and longer diagnostic delay are independent predictors of prolonged 

survival.29,31,32 

Care of the ALS patient focuses on maintaining function and quality of life.24 

Respiratory complications are life threating in ALS and a proactive preventive 

approach is a key element in disease management. Non-invasive ventilatory support 

and mechanically assisted cough are mainstay therapeutic techniques;33,34 however, 

non-invasive methods are challenging to use and tend to fail in ALS when bulbar 



 20

dysfunction is present.33,35-37 This is an unfortunate situation that hampers treatment 

success, particularly as the disease progresses.  

2.2.4 Bulbar innervated muscel weakness 

Muscles of the jaw, face, soft palate, pharynx, larynx and the tongue are innervated 

by neurons located in the so-called bulbar region of the brain stem.11 The bulbar 

region of the brain encompasses the lower brainstem, pons and medulla.38 Bulbar 

innervated muscle dysfunction leads to so-called bulbar symptoms, such as weakness 

of pharyngeal muscles, spasticity or lack of coordination of laryngeal or lingual 

muscles.39,40 

Clinically, bulbar involvement in ALS can primarily be characterized by either 

spasticity or flaccid paresis and atrophy, depending on the extent of upper versus 

lower motor neuron involvement, the former usually labeled pseudobulbar palsy and 

the latter progressive bulbar palsy, or a combination. ALS mainly involving the 

upper motor neurons leads to pseudobulbar palsy which is clinically characterized by 

spasticity of the bulbar innervated muscles, emotional lability (e.g. pathological 

laughing and crying) and an enhanced masseter reflex (jaw jerk reflex). ALS mainly 

involving the lower motor neurons leads to progressive bulbar palsy which is 

clinically characterized by flaccid paresis and muscular atrophy, and fasciculation of 

the tongue (i.e. small, local, involuntary muscle contraction and relaxation) and/or 

tongue fibrillations (rapid, irregular, and unsynchronized contraction of muscle 

fibers).11 

Dysarthria (difficulties to articulate and pronounce) and dysphagia (difficulties to 

swallow) are frequent features of bulbar symptoms in ALS, and can reduce quality of 

life and life expectancy. Dysarthria results from flaccid or spastic paresis of the 

bulbar innervated musculature. Dysphagia can result from weakness or spasticity of 

the muscles innervated by trigeminal, facial, hypoglossal, glossopharyngeal or vagal 

nerves.11 Laryngospasm (uncontrollable muscular contraction of the vocal folds) is 

described to affect up to 19% of patients with ALS.41  



 

 

 

Bulbar innervated muscle dysfunction is a huge challenge in the respiratory treatment 

of ALS, since upper airway stability is fundamental to the delivery of non-invasive 

respiratory aids to the lungs. Thus, bulbar muscle dysfunction is often associated with 

ineffective non-invasive respiratory management.33,36,37,42 Bulbar insufficiency also 

corrupts effective cough, and thereby prevents removal of airway secretions.35 ALS 

patients commonly report episodes of ineffective cough and episodes of choking 

when bulbar function deteriorates beyond a critical level.43 

2.3 Larynx 

The larynx functions as a valve to the airways with three major functions:  

1) To control airflow during respiration.  

2) To protect the lungs from aspiration. 

3) To play a key role in phonation.44-47 

2.3.1 Anatomy 

The larynx is located in the throat. The laryngeal inlet is situated at the inferior part of 

the pharynx (hypopharynx), and the larynx extends from the tip of the epiglottis, 

through the true vocal folds to beneath the border of the cricoid cartilage. See Figure 

1 for illustration.The larynx consists of rigid cartilage skeletons, ligaments and 

muscles for adduction and abduction.44  

 

Figure 1. Side view of the larynx. 
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The intricate skeleton of hyaline and nine elastic cartilages are connected to each 

other by joints and elastic ligaments.48,49 The aryepiglottic folds connect the epiglottis 

and arytenoid cartilage on either side of the midline.50 Within the mucous membrane, 

there are two tubercles (corniculate tubercle and cuneiforme tubercle) formed by the 

two cartilages of the corresponding name. The laryngeal muscles can be described as 

either intrinsic or extrinsic, and they are under voluntary as well as involuntary 

(reflex) control. The larynx is innervated by the internal branch of the superior 

laryngeal nerve and the recurrent laryngeal nerves; both branches of the vagus 

nerve.51  

2.3.2 Extrinsic and intrinsic muscles 

The laryngeal extrinsic muscles can be referred to as strap muscles. They control the 

position of the larynx in the neck and are particularly important in swallowing, which 

involves elevating and depressing the larynx in the longitudinal axis.52 Musculus 

cricothyroideus is the only extrinsic muscle that tightens and lengthens the true vocal 

folds. 

The small intrinsic laryngeal muscles move the laryngeal structures in relation to 

each other. They are essential in breathing, speech, cough and swallowing where they 

interact in complex manners, but always act in concert.48,49,53 The larynx has several 

small intrinsic adductor muscles, but only one abductor muscle; musculus 

cricoarytenoideus posterior (the PCA muscle). It operates in a coordinated and phasic 

relationship with the diaphragm, meaning that diaphragmatic vagal stimulation is 

coupled with increased activity of the PCA muscle, leading to laryngeal abduction 

and thereby opening of the laryngeal inlet immediately before diaphragmatic 

contraction.54 

Abduction and adduction 

Abduction of the glottis is fundamental for free airflow in and out of the lungs during 

respiration with the least possible resistance. During normal quiet breathing, the 

glottis widens during inspiration and narrows during expiration. This widening occurs 

ahead of the onset of inspiration, whereas the narrowing begins before the onset of 



 

 

 

expiration.55,56 Both forced inspiration and expiration are associated with increased 

activation of the intrinsic laryngeal muscles.57 Figure 2 demonstrates an open and 

closed glottis as viewed laryngoscopically. 

 

 

                              OPEN (DEEP INSPIRATION)                  CLOSED (GLOTTIC CLOSURE) 

Figure 2. Top view of the larynx; open and closed glottis. 

Tight adduction of the true vocal folds, together with the activity of the aryepiglottic 

muscles lead to closure of the inlet of larynx by bringing the aryepiglottic folds tight 

together. This enables the larynx to withstand the high pressures that can be generated 

in the thorax, e.g. during cough.58 Varying degrees of laryngeal occlusion are also 

involved in speech.52 During swallowing laryngeal occlusion is combined with a 

lifting of the larynx and elevating of the epiglottis in order to prevent the food bolus 

(i.e. the mass of food formed in the mouth, mixed with saliva) from entering the 

airways.58,59   

Opening and closure of the glottis require complex and concerted intrinsic laryngeal 

muscle contractions involving similarly complex neural interactions that are only 

partially understood.60,61 Stimulation of extremely sensitive receptors in the 

supraglottic larynx induce complex adductor reflexes that, for example, prevent 

foreign bodies from entering the airways.54  
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The larynx is considered to mature throughout puberty and little is known regarding 

inter-individual variability throughout adult life in healthy individuals. A gradual 

development of laryngeal structure and function from infancy to adulthood has been 

described, characterized by maturation of the cough reflexes and improved 

coordination and strength of the muscles that are involved in cough.62-64  

Cough at the laryngeal level 

At the laryngeal level, a normal cough requires intrinsic laryngeal muscle 

contractions60,61 and consists of three distinct phases:  

1) An initial abduction to allow airflow into the lungs.  

2) A closing phase (0.2 seconds) to allow build up of intrathoracic pressure.   

3) A secondary abduction of the true vocal folds to allow high expiratory 

airflow. The expiratory phase of cough can also present with a varying number 

of sequential glottic closures and openings.65-67 

During the closing phase, closure of the true vocal folds is followed by closure of the 

supraglottic structures. These movements are further aided by squeezing of the 

pharyngeal walls, collectively creating a supraglottic sphincter.66 A reflex cough is 

mediated (afferent) through the vagal nerve, while volitional cough is mediated 

through corticobulbar pathways.43 

2.3.3 Aerodynamics 

The larynx can be described as the bottleneck of the airways68 accounting for a 

significant fraction of total airway resistance. The type of the airflow, either laminar 

or turbulent, contributes to airflow resistance of the airways; turbulent airflow 

generating more resistance than laminar airflow. Most of the turbulent airflow is 

shown to be located in upper airways; i.e. in the nose during nasal breathing and in 

the mouth, pharynx, glottis, larynx and upper trachea during mouth breathing. 

Especially at higher airflow rates, the resistance in the larynx becomes proportionally 

larger than the resistance in the lower airways.69  



 

 

 

Increased airflow through the larynx may result in an aerodynamically induced 

laryngeal narrowing, or even a collapse of laryngeal structures. This is explained by 

the Bernoulli principle witch states that as the velocity of gas increases, the pressure 

exerted by the gas decreases. Translated into the laryngeal environment, this means 

that increasing airflow velocity leads to an increasing negative pressure inside the 

laryngeal lumen and then to an increasing inward pressure on the laryngeal 

architecture. The consequence of this is that the high airflows through the larynx may 

lead to negative pressures that may overcome the stability of the organ and thus lead 

to the structures being sucked inwards.70 To prevent this happening, the forces of 

muscular contraction and tissue elasticity/rigidity together try to keep the larynx 

open, allowing a passage for air in and out of the lungs.44 

2.3.4 Laryngeal effects of mechanically applied pressures 

In healthy awake subjects, passive progressive positive pressure ventilation results in 

progressive glottic narrowing, occurring especially in the absence of diaphragmatic 

activity. The glottic narrowing during positive pressure ventilation increases the 

inspiratory resistance and reduces progressively the fraction of delivered minute 

ventilation reaching the lungs.71 

The Bernoulli principle at the laryngeal inlet have been suggested to be causally 

involved in the condition known as floppy epiglottis during Continuous Positive 

Airway Pressure (CPAP) therapy. In this condition, the epiglottis is sucked into the 

laryngeal inlet during inspiration assisted by an externally applied positive pressure.72 

Negative pressures applied in the expiratory phase of the respiratory cycle in healthy 

subjects have been described to provoke partial or total narrowing of the upper 

airway at the pharyngeal and the oropharyngeal level, and thus decrease expiratory 

flow rates.73-75  

2.3.5 Laryngeal evolvement in ALS 

Several neurological conditions with impairment of sensory afferents, abnormal 

reflexes, poor coordination or motor weakness can severely disrupt laryngeal 
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function.76 Thus,  problems of upper airway function are frequently encountered in 

ALS39,77 and laryngological presentations of ALS are described in the literature,39,78-82 

particularly in relation to distinguishing between bulbar versus spinal onset 

ALS.39,78,83  

Bulbar innervated involvement in ALS leads to abnormalities of the control and 

strength of the laryngeal and pharyngeal muscles.39,40 Hillel and Miller described the 

typical progressive pattern of bulbar ALS, affecting firstly tongue and lips, secondly 

the palatal-, jaw- and pharyngeal muscles, thirdly facial-, upper trunk-, and laryngeal 

muscles, and finally the extra-ocular muscles. As a result of the order in which the 

muscles are being affected, swallowing difficulties are one of the earliest complaints 

reported by patients with bulbar ALS.84 The tongue muscle deficit has been suggested 

to be the major factor causing swallowing difficulties in ALS.85 Signs of laryngeal 

involvement can also include failure of the larynx to move superiorly and anteriorly 

during the swallowing, leading to incomplete closure of the larynx and thus a risk of 

aspiration.84 Additionally to the reduced muscle strength and control, abnormal 

sensory function at the laryngeal level has been described in ALS,86,87 and sensory 

deficits are more frequent in bulbar than in spinal onset ALS.87 Also an impaired 

laryngeal adduction reflex43 (the sensorimotor response that protects the airways from 

aspiration during and after swallowing) has been demonstrated in ALS.85 

Pharyngeal and laryngeal complications lead to increased risk of aspiration, and 

eventually a need for the patient being fed via a percutaneous endoscopic gastrostomy 

tube.80 Inability to coordinate the true vocal folds as well as weak expiratory muscle 

strength, impairs the compressive and expulsive characteristic of the cough,88 

challenging non-invasive management of airway secretions.33,36,37,42  

2.4 Respiratory management in ALS 

Respiratory insufficiency and pneumonia are the primary causes of comorbidity and 

mortality in ALS. Home mechanical ventilation and various airway clearance 



 

 

 

techniques are critical components of respiratory management in ALS, and are often 

used in conjunction.33  

2.4.1 Respiratory muscle weakness  

In patients with ALS, respiratory muscle function is a strong predictor of quality of 

life28 and survival.89 The respiratory muscle weakness is a major clinical feature of 

ALS24,90 and may affect all the respiratory muscles; both inspiratory- and expiratory, 

and the muscles controlling the upper airways.91 It decreases both voluntary and 

reflex coughing, and eventually leads to respiratory failure.11  

The progressive picture of respiratory muscular weakness in ALS contributes to 

lower functional lung volumes, decreased gas exchange and alveolar ventilation. 

Respiratory muscle weakness leads to ineffective cough, leading to further 

accumulation of airway secretion, pulmonary infections, atelectases, pneumonias and 

disturbed gas exchange.92  

Upper airway muscle weakness often leads to accumulation (pooling) of saliva or 

secretions in larynx, drooling (unintentional loss of saliva from the mouth) and 

aspiration (passage of material into the level of the vocal cords). Drooling is often 

regarded socially unpleasant, and may represent an additional burden to the more 

serious medical problems of aspiration. Aspiration of food, liquids or nasopharyngeal 

or oral secretions can lead to aspiration pneumonia.10,92  

Figure 3 illustrates pathological consequences and interactions from respiratory 

muscle weakness observed in people with neuromuscular disorders. Since ALS is a 

very rapidly progressing disease, the lung function deteriorates similarly rapidly. In 

fact, the pathological processes may evolve so quickly that the respiratory 

management often becomes responsive to already established pulmonary 

complications.  
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Figure 3. Pathologic consequences and interactions from respiratory 

muscle weakness in neuromuscular diseases. 

2.4.2 Home mechanical ventilation 

Mechanical ventilation is provided by positive pressure devices in the presence of 

daytime hypercapnia, symptomatic sleep-disordered breathing, and deteriorating 

pulmonary function. Technical development during last 100 years has provided 

ventilatory support that can be applied at home by means of small portable devices 

via a non-invasive interface, i.e. a nasal-mask, a face-mask or a mouthpiece.36 Home 

mechanical ventilation is widely provided in neuromuscular disorders and 

predominantly delivered by non-invasive mechanical ventilation (NIV) without need 

for tracheostomy.93 In contrast to other neuromuscular conditions, the use of 

ventilatory support in ALS has been evaluated using a randomized controlled study 

design.94,95 NIV increases the average survival especially in patients with mild to 

moderate bulbar weakness and maintains quality of life. In patients with severe 



 

 

 

bulbar impairment NIV had benefit in quality of life, but not in survival.94 NIV may 

be most beneficial for quality of life when it is started before patients becomes 

symptomatic for hypoventilation.95 Successful application of NIV requires adequate 

bulbar function to allow for sufficient airflow to the lungs,42,96,97 and a preserved 

ability to cough and to remove airway secretions.33,45,98  

Invasive mechanical ventilation and airway clearance via a tracheostoma cannula can 

compensate for these issues; however, it is less widely chosen in ALS since 

tracheostomy involves complex ethical issues and can have adverse effects on quality 

of life,42 and also involves a greater burden of caregiving and financial costs.33,99-104 

Thus, to choose tracheostomy in ALS requires careful consideration in each 

individual patient.105 There are no clinical guidelines that advice on the optimal 

timing to perform a tracheostomy in relation to increasing bulbar dysfunction and 

patients’ deterioration.106 

In summary, mechanical ventilation, both non-invasive and invasive, can extend life 

and improve respiratory symptoms in ALS.37,91,94,107-111 However, non-invasive 

methods are often challenging in bulbar ALS patients.37,94,107  

2.5 Airway secretions 

2.5.1 Defense mechanism of the lungs  

The respiratory tract from the nasal cavity to the bronchioles is covered by ciliated 

epithelium that contains mucus-secreting cells (goblet cells). Goblet cells together 

with submucosal secretory cells, produce a thick layer of mucus that lines all but the 

smallest conducting airways.59 The airway mucus catches foreign particles, such as 

dust and micro-organisms that are inhaled into the lungs with the air during breathing. 

This mechanism prevents foreign particles from reaching the alveoli, where gas 

exchange takes place. Mucus is normally transported to the oropharynx by the airway 

clearance mechanism.112-114 The airway secretions have an important role in the 

defense mechanisms of the lungs, and defective airway clearance can have serious 
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consequences as accumulation of airway secretions will lead to infections, atelectasis, 

increased airway resistance, increased work of breathing, hypoxemia, and eventually 

contribute to increased mortality.88  

2.5.2 Normal airway clearance  

Pheripheric airways 

Airflow bias is the label used to describe an important phenomenon that occurs 

naturally in the airways during normal breathing. The mechanism implies that the 

diameter of the airways widens on inspiration and narrows on expiration, with 

unchanged inspiratory and expiratory volumes and times. Narrowing of the airways 

during exhalation will increase linear velocity and thus enhance the shearing forces in 

the airways during normal tidal breathing, as well as in deeper voluntary breaths and 

during sighs, thereby contributing to clearance of airway secretions. Airflow bias is 

also a contributing factor to the clearance of secretions from the larger airways, and it 

may be amplified during a cough.114 

The ciliated epithelial cells contribute to moving the mucus layer towards the upper 

airways at the rate of 4 mm/min,59 until the so-called isothermic saturation boundary 

is reached. This is the level of the airways where inspired gas is humidified to 100 % 

and heated to body temperature (37°), and is usually located at the 3rd to 5th 

generation of the bronchial tree during quit breathing.115,116  

Typically, people with neuromuscular disorders have no abnormalities of these so-

called mucociliary escalator mechanisms, unless a chronic aspiration scenario has 

been established or a chronic lung disease has evolved. 

Proximal airways 

Cough is a crucial element among the defense mechanisms of the airways,117,118 

particularly as regards removing airway secretions from the central airways.119,120 The 

central airways contain irritant sensors that may become reflex triggered by mucus 

surplus or other physical or chemical irritants, subsequently inciting reflex cough.43,67 

An effective cough depends on coordinated and forceful movements from several 

muscle groups:  



 

 

 

- Inspiratory muscles to increase the lung volume up to 85 – 90 % of the total 

lung capacity. 

- Expiratory muscles to increase the thoraco-abdominal pressure to as high as 

400 cmH2O during glottic closure. Upon glottic opening, this enables 

extremely vigorous expiratory efforts and high expiratory flow rates, with peak 

cough flow in the range of 360–1200 liters/min. 

- Laryngeal intrinsic muscles to facilitate finely tuned coordinated glottic 

openings and closures.67,121,122 

During the expulsive phase of cough, the releasing pressures and the high expiratory 

flow rates shear the secretions from the airway walls and move the secretions 

upwards. This phase can be interrupted by short sequences of glottic closures and 

openings, each with compressive and expulsive phases, which can be seen as a series 

of airflow spikes on a maximal expiratory flow volume curve.123 For details, please 

see Figure 4.  

Peak cough flow is the highest measured airflow spike during cough, usually 

appearing immediately after the glottic opening phase of the cough cycle. When 

measuring peak cough flow, the person is simply encouraged to inhale deeply and 

then actively cough via a mask or a mouth piece into to a peak flow meter.124 Peak 

cough flow is a measure of the person’s ability and (indirectly) strength to cough, 

normal values in adults exceed 360 liters/min.125  

Effectiveness of airway clearance in neuromuscular diseases has been shown to be 

related to peak cough flow.120,126-128 Thus, techniques to augment coughing and to 

increase peak cough flow are recommended to prevent chest infections in 

neuromuscular disorders,129-131 with peak cough flow of 160 liters/min considered a 

minimum for effective airway clearance.120,126,132,133 Persons with neuromuscular 

disorders can be further weakened by acute episodes of viral illnesses. This has been 

linked to decreased inspiratory and expiratory muscle strength induced by the viral 

illness, leading to lower vital capacity and thus less effective cough.134  
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Figure 4. Airflow spikes with the peak cough flow (PCF) during the 

expiratory phase of cough illustrated by the flow volume curve measured 

during a cough maneuver.  

2.5.3 Airway clearance in respiratory physiotherapy 

Respiratory physiotherapy is a multifaceted discipline and consists of examination, 

assessment and evaluation of function, interventions, exercise and therapy to facilitate 

breathing, respiratory care and airway clearance, and - not least - education and 

advice on self-management.130,135 

Airway clearance, also referred to as mucus clearance or secretion clearance, is one of 

the main elements in respiratory physiotherapy and a critical aspect of respiratory 

care.88 Therapeutic airway clearance regimens should be effective, efficient, easy to 

use and teach, possible to carry out independently or with an assistant, and should 

improve lung function without being perceived as uncomfortable or causing 

hypoxemia. It should be flexible and adaptable to the changing needs of the 

individual patient.136 

Physiotherapy techniques to clear airway secretions should support mucociliary 

clearing (peripheral techniques) and augment cough (proximal 

techniques).104,124,136,137 The choice of technique depends on the patients’ 

physiological and functional deficiencies rather than the medical diagnosis.129 In 

primary pulmonary diseases, such as cystic fibrosis, primary ciliary dyskinesia, 

bronchiectasis and chronic obstructive pulmonary disease, the impaired airway 



 

 

 

clearance is related to impaired mucociliary escalator mechanisms, and the 

physiotherapy techniques should therefore support peripheral airway clearance.88 In 

neuromuscular disorders such as ALS, the impaired airway clearance is related to 

impaired cough due to respiratory muscle weakness, and the physiotherapy 

techniques should therefore focus on augmenting the cough. Some circumstances in 

neuromuscular disorders, for example during acute pulmonary infections, increased 

production of airway mucus and obstructions in the airways, the need for the 

institution of additional peripheral airway clearance techniques may be 

warranted.124,137  

The aim of respiratory physiotherapy and airway clearance techniques applied to 

persons with neuromuscular disorders is to increase inspiratory volumes and 

expiratory flow.129,130 Cough augmentation should target both of these aspects.88,124,138 

The techniques physiotherapists use to assist cough often combine assisted 

insufflation of the lungs with expiratory support. Insufflation can be delivered by the 

technique of air stacking (repeated inspirations without breathing out) with manual 

resuscitator, mechanical device delivering positive pressure, or with glossopharyngeal 

breathing (self-air-stacking by using the mouth, tongue, pharynx and larynx to 

compensate for the weakness of the inspiratory muscles). Expiratory support can be 

provided either manually by thoraco-abdominal thrust or mechanically by 

exsufflation. Mechanical insufflation-exsufflation (MI-E) is a mechanical technique 

to assist cough combining both inspiratory and expiratory support.88,124,139  

2.5.4  Airway clearance therapy in ALS 

The aims of airway secretion therapy in ALS are to relieve the symptoms and the 

discomfort related to the accumulation of secretions, and to prevent and treat 

pneumonias. The need for assisted airway clearance techniques increases when the 

respiratory muscles become progressively weaker.33,34  

In patients with ALS, peak cough flow below 270 liters/min during acute episodes 

suggests an ineffective cough, and therefore it is recommended that these patients 
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start using assisted cough techniques on a daily basis to prevent chest infections.140 

MI-E is regularly used in ALS.132,141-145 Additional techniques that have been 

described are manually assisted cough, air stacking techniques, lung volume 

recruitment techniques, postural drainage and manual techniques (shaking, percussion 

and vibrations), active cycle of breathing technique, intrapulmonary percussive 

ventilation, humidification and mouth- and airway suction.24,104,137,139,146-152  

2.6 Mechanical Insufflation-Exsufflation 

MI-E is widely used in patients with neuromuscular disorders to assist and augment 

cough by applying positive and negative pressure changes to the airways, either non-

invasively via a mask or invasively via a tracheostomy.117,119,128,131,141,143-145,153-158  

When the patient inhales, the MI-E supports the inspiratory movement by delivering 

a positive pressure (insufflation), contributing to a better expansion of the lungs. This 

is followed by a rapid switch (10 milliseconds) to a negative pressure, supporting the 

expiration (exsufflation) of the patient’s lungs. These positive and negative pressure 

swings are applied sequentially. The rapid switch from positive to negative pressure 

aims to simulate the airflow changes that occur during normal cough, potentially 

facilitating secretion clearance.153 A voluntary cough maneuver is desired when using 

MI-E, and patients must learn to co-ordinate their own cough movements (i.e. glottic 

openings and closures) when the device switches from insufflation to exsufflation.159 

The treatment is tolerated by most patients with neuromuscular disorders, and it is 

considered a safe method for cough clearance.119,155-157,160-162 

2.6.1 Clinical use 

In Norway, MI-E devices became available in 2001, and currently the Norwegian 

public health care system provides MI-E for eligible patients in home setting.163 The 

most commonly used MI-E device in Norway is Cough Assist® (Respironics, 

Murrysville, USA), and since 2013 Cough Assist E70® (Phillips Respironics, 

Murrysville, USA). 



 

 

 

MI-E devices can in principle be operated in two modes: manual or automatic. In 

both modes settings entail pre adjustment of the positive and negative pressures 

(cmH2O) and the inspiratory flow rate (liters/min). The automatic mode setting 

entails pre adjustment of the duration (timing) of the insufflation, exsufflation and the 

interval between the exsufflation and next insufflation (pause), when in manual mode 

this is operated during the therapy by the therapist. A new device from 2013 (Cough 

Assist E70®) also allows for patient triggered insufflation, as well as oscillations with 

interruptions of the insufflation and/or exsufflation pressures and flows. 

Physiotherapists use MI-E to increase chest expansion (lung recruitment) during 

inspiration and to assist the expiratory cough movements as a part of the total 

respiratory physiotherapy treatment. The clinical use of MI-E is a dynamic process, 

involving to a large extent patient interactions. It is important to build up a good chest 

expansion by utilizing the assistance provided by the applied positive pressure during 

inspiration, and subsequently to adjust the negative pressure during exsufflation so 

that the audible quality of the cough reaches the desired and adequate levels. MI-E is 

often combined with manually assisted cough; i.e. the therapist manually providing 

abdominal thrusts coordinated with the patients cough movements during the 

exhalation phase.159 The daily respiratory treatment of ALS patients usually takes 

place at the patients’ home, and is usually performed by personal caregivers 

according to individually tailored procedures that are planned for home use. One 

treatment session with MI-E usually consists of several phases of coughing and rest, 

involving repeated cycles of insufflations and exsufflations, followed by 

approximately 30 seconds of rest. An additional thoraco-abdominal thrust applied by 

the therapist or by an assistant can be provided during exsufflation. These cycling 

periods are repeated several times or until secretions are substantially expelled.153  

2.6.2 Settings 

When using MI-E for individual patient treatment, the settings of positive and 

negative pressures, flow rates and time intervals should be adjusted to ensure 

reasonable patient comfort, and facilitate a deep inspiration that provides as good 
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chest expansion as possible, subsequently followed by timing and pressure settings 

during expiration that allow for optimal cough movements, capable of mobilizing 

secretions.159  

Pressure 

The literature varies regarding suggestions of what are optimal inspiratory and 

expiratory pressure settings, ranging from 20 to 60 cmH2O in positive and negative 

pressures.124,153 High pressures of ±60 cmH2O have been described and used by Bach 

and co-workers.128,133,157,164-167 However, lower pressures have been reported by other 

researches; ±30 cmH2O156 and +20 cmH2O to -30 cmH2O.119,168 Pressure settings of 

±40 cmH2O appear to be a good compromise between efficacy and 

comfort.117,151,153,169 Higher pressures have been proposed to be necessary when lung 

mechanics change during progression of the illness,170 in scoliosis117 or if used via a 

tracheostomy cannula.171  

Insufflation flow 

The insufflation flow rate used with the Cough Assist® device can be adjusted to 

either high flow (10 liters/min) or low flow (3 liters/min).159 The optimal inspiratory 

flow settings when MI-E is applied in various disease conditions, have not been 

investigated in properly designed studies.  

Oscillation 

During the cycles of insufflation, exsufflation, or both, the Cough Assist E70 device 

can apply high-frequency oscillatory vibrations, generated by air pulses. Settings 

entail pre adjustment of the oscillation frequency within the range of 1-20 Hz, and the 

amplitude of oscillations within the range of 1-10 cmH2O. Theoretically, these high 

frequency oscillations may facilitate the loosening of thick secretions, enabling them 

to be cleared.172 This assumption is based on studies showing that the application of 

high frequency oscillations of airflow in the airway to change the viscoelastic 

properties of the secretions, making them more mobile.173,174 Recently, a study by 

Sancho et al. demonstrated that addition of oscillations to MI-E does not have effect 

on the peak cough flow in medically stable patients with ALS.172 



 

 

 

Time 

The time settings applied with the various MI-E phases is mainly based on 

experience, and has not been investigated in properly designed studies. A study by 

Gomez-Merino et al. demonstrated that increasing the insufflation time is more 

important for optimal peak cough flow than increasing the exsufflation time.175  

2.6.3 Effect 

The effect of MI-E in neuromuscular disorders is mainly linked to its ability to 

increase peak cough flow to the level required to eliminate airway secretions, and 

thereby augment airway clearance.117,119,128,131,141,143-145,153-158 A review from 2005131 

concluded that the use of MI-E is the most effective physiotherapeutic approach to 

increase peak cough flow and to maintain vital capacity in patients with 

neuromuscular disorder.119,132,133,143,157 

A Cochrane systematic review of randomized controlled trials (RCT) using MI-E in 

neuromuscular disorders, failed to demonstrate any conclusive benefits as regards 

mortality, morbidity, or quality of life for patients or any serious adverse events from 

the treatment.176 A recent review that also incorporated case series, cohorts and other 

pre-post trial designs other than RCTs, concluded that improvements of peak cough 

flow was consistently reported by all 12 studies; however, none of them reported 

survival advantages. Two of the studies (n=21 patients) found no change in hospital 

length of stay; however, two studies found a decrease in respiratory exacerbation 

rates, and improvements in quality of life were observed across a number of studies 

(n > 100 patients). None of the studies objectively measured sputum quantity. 

Further, the heterogeneity of the applied outcome measures complicated the summary 

statistics.177  

Despite these limitations, most relevant international guidelines recommend the use 

of MI-E, supporting the view that “absence of evidence of effect is not evidence of 

absence of effect”.137 
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2.6.4 MI-E in ALS 

Most literature suggests that MI-E is most efficient in ALS patients without bulbar 

dysfunction.132,141-145 Particularly, in patients with bulbar involvement MI-E is less 

effective at increasing peak cough flow to the levels considered necessary for 

effective removal of airway secretions.141,143 To increase understanding of this 

observation, Sancho et al. examined three patients with ALS at baseline conditions 

and during application of mechanical exsufflation with a computer tomography (CT) 

scanning of their upper airways (pharynx and oropharynx). They found that failure to 

increase peak cough flow to an adequate level was associated with a dynamic 

collapse of the upper airway during exsufflation. Although they did not examine 

directly the laryngeal level of the upper airways, they used their findings to suggest 

that coordinated movements of the glottis and intact bulbar function are necessary 

elements for effective use of non-invasive MI-E.141  

It is a well-established clinical experience that the response to MI-E in patients with 

ALS is variable, but it is difficult to predict beforehand in whom the method will 

succeed and in whom it will not. Non-responders tend to express a sense of being 

“unable to breath in or out” with the device. In practice, a therapeutic trial is 

conducted in most neuromuscular patients with a manifested cough problem. 

The knowledge obtained from the study of Sancho et al141, and the assumptions made 

by other authors fit my own clinical experience as a respiratory physiotherapist, and it 

supports the hypothesis that preserved laryngeal function is crucial to the 

effectiveness of MI-E.  

Nevertheless and surprisingly, laryngeal movements and patency during ongoing MI-

E cycles applied in patients with neuromuscular disorders has yet to be studied. 

2.7 Transnasal fiberoptic laryngoscopy 

Transnasal fiberoptic laryngoscopy (TLF) was first performed in the late 1960s, and 

has since proved to be a well-tolerated examination that provides a direct view of the 

larynx. The findings can easily be video-recorded, and thus it is possible to scrutinize 



 

 

 

and interpret outside the immediate examination context. This is particularly 

important in a study context, as the findings thereby can be made available for 

multiple assessors and also verifiable by others. TFL can relatively easily be 

performed by otolaryngologists or other trained medical doctors or speech therapists. 

It does not require sedation, and skilled hands can perform TFL with little discomfort 

and at no risk. TFL is "the gold standard" to visualize abnormal laryngeal 

movements.68,178-184  

In addition to playing an important role in the otolaryngological examinations, TFL 

has allowed for development of several functional tests in which its use plays a 

primary role.184 One of these is flexible endoscopic evaluation of swallowing; the 

laryngoscope is used to visualize the mechanics and efficiency of swallowing and to 

detect laryngeal malfunction and aspiration.185,186 TFL is also used to diagnose 

exercise induced laryngeal obstruction (EILO), applied in the continuous 

laryngoscopy exercise test. This method was developed at our hospital, and is suitable 

for children as well as adults.68,182,183 TFL has not routinely been used in ALS, but 

some studies have reported on vocal cord function during simple tasks such as 

vocalizing, spontaneous coughing, forced exhalation or swallowing.39,76,78,80,87,90,187,188  

 

We hypothesized that visualizing the larynx by means of video recorded TFL applied 

during ongoing MI-E in patients with ALS could contribute to a better understanding 

of the functional role played by the larynx in this contextual setting. The ultimate aim 

of this project was to apply this knowledge to improve the clinical management of 

impaired airway secretion clearance in patients with ALS. 
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3. Aims of the thesis 

The overall aim of this study was to explore the laryngeal response pattern(s) to 

mechanically assisted cough when applied in patients with ALS of different 

phenotypes and during the expected and rapidly progressing clinical course of the 

disease. Secondly, we aimed to use this knowledge to tentatively improve and 

possibly extend the use of MI-E in deteriorating patients with progressing ALS.  

 

 

STUDY #I (Paper #I) 

AIMS: To investigate the feasibility of TFL applied during ongoing MI-E, and to 

describe normal laryngeal response pattern(s) to MI-E, in healthy subjects. 

Research question #1:  

Can TFL successfully be performed during ongoing MI-E in healthy 

subjects?  

Research question #2:  

Are the laryngeal response patterns to MI-E in healthy subjects compatible to 

the laryngeal movements that are described for normal cough? 

 

 

STUDY #II (Paper #II) 

AIMS: To investigate the feasibility of TFL applied during ongoing MI-E, and to 

describe laryngeal response pattern(s) to MI-E in a cross-sectional study of patients 

with ALS of different phenotypes and to compare with healthy controls matched for 

age and gender. 

Research question #3:  

Can TFL be performed during ongoing MI-E in patients with ALS.  



 

 

 

Research question #4:  

Do the laryngeal response patterns to MI-E vary between patients with ALS 

with and without involvement of bulbar innervated muscle function and when 

compared to healthy controls? 

 

 

STUDY #III (Paper #III) 

AIMS: To investigate the feasibility of TFL applied during ongoing MI-E, and to 

describe changes of the laryngeal response pattern(s) to MI-E, in a longitudinal 

follow-up study of patients with progressing ALS, and to explore if treatment 

efficacy can be modulated and improved in these patients. 

Research question #5:  

Can TFL be performed during ongoing MI-E in deteriorating patients with 

progressing ALS? 

Research question #6:  

Do the laryngeal response patterns to MI-E evolve in ALS disease 

progression? 

Research question #7: 

Can the laryngeal response patterns to MI-E be modulated and improved by 

optimizing pressure settings, flow rates and time intervals? 
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4. Material and methods 

4.1 Study design  

This was a combined cross-sectional and longitudinal observational descriptive and 

explorative cohort design, applied in a field of medicine not previously studied with 

verifiable and objective methods.  

 

Study #I (Paper #I)  

A cross-sectional study of healthy volunteers. 

 

Study #II (Paper #II)  

A cross-sectional study of ALS patients and their age-and gender matched controls. 

 

Study #III (Paper #III)  

A prospective longitudinal cohort study of ALS patients. 

4.2 Ethics 

The study was based on voluntary participation and the subjects could withdraw from 

the study at any time. Written informed consent (Appendix 1 and 2) was obtained 

from all participants. The ethical considerations that were made when planning and 

conducting this study were based on the Declaration of Helsinki.189 The study 

protocol was approved in 2011 by the Regional Committee for Medical Research 

Ethics of Western Norway (2011/784/REK vest).  

Two years after the data collection had started, a new MI-E device was launched on 

the Norwegian marked with new options for pressure, flow rate, time and oscillation 

settings. We reasoned that it would be relevant to explore, within the frames of the 

present study, the opportunities that were provided by these new options, particularly 



 

 

 

as this new MI-E device was made available by the Norwegian public health care 

system for home treatment of eligible ALS patients comparable to the enrolled 

patients. Therefore, based on the findings made in the second and cross-sectional 

phase of the project, a protocol amendment was made in 2013 to include additional 

and explorative use of MI-E settings thought to be beneficial to individual patients, 

applying to the third and longitudinal phase of the project. This protocol amendment 

was approved by the Regional Committee for Medical Research Ethics of Western 

Norway in 2013.  

4.3 Sample size 

Explorative studies have no a priori hypothesis (to be tested), but subsidiary 

hypothesis (to be explored), and calculation of sample size and final number of 

patients who should be included is difficult.190,191 ALS is relatively rare and 100% 

fatal, and all diagnosed patients living in the area served by Haukeland University 

Hospital are routinely referred for followed-up at the hospital out-patient clinic. This 

setting enabled a population-based cohort design; cross-sectional in Study #II and 

longitudinal in Study #III. Same amount of healthy control subjects, individually 

matched for age and gender were recruited for Study #II. 

4.4 Exclusion criteria 

Prior to inclusion, all participants were screened for the following exclusion criteria: 

Age < 18 years, a history of laryngospasm, sensitisation to Xylocain® (anaesthetic 

used during laryngoscopy), pneumothorax, additional lung disease, cancer, acute 

infection of the chest one month before enrolment, frontotemporal paresis with 

cognitive changes and mental instability. 
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4.5 Participants 

The thesis included three groups of participants who are described in Table 1. 

Table 1. Overview of the study participants, design and publications. 

4.5.1 Healthy medical students 

Study #I included 20 healthy medical students, recruited to demonstrate the feasibility 

of TFL during MI-E, and to describe normal laryngeal response patterns to MI-E. 

Third year students at the Medical Faculty in University of Bergen, Norway received 

both verbal and written information about the study. Twenty students entered the 

study, after having signed the consent form. 

4.5.2 ALS patients  

Population 

The participating patients were recruited from the multidisciplinary and 

multispecialized team at the ALS outpatient clinic at Haukeland University Hospital, 

which serves a population of approximately 500 000 inhabitants. We aimed to 

include as many ALS patients as possible during the 1.5-year recruitment period from 

December 2011 to June 2013, thus aiming to produce population-based data with low 

attrition rates. Approximately 20 ALS patients who have not undergone tracheostomy 

are usually enrolled at all times, and by experience approximately eight new patients 

are expected to be enrolled per year. All patients enrolled at the clinic are routinely 

rescheduled every three to six months. The patients who were enrolled at the clinic 

when the study was commenced had different disease phenotypes (i.e. both limb and 

bulbar onset) and they were all at variable stages of their disease progress.  

 Population Study design Publications 

Study #I 20 healthy medical students Cross-sectional Paper #I 

Study #II/#III 20 ALS patients Cross-sectional cohort 

Longitudinal cohort 

Paper #II 

Paper #III 

Study #II 20 healthy volunteers (controls), matched 
for age and gender with the  ALS patients 
 

Cross-sectional Paper II 



 

 

 

Study #II 

At the start of this study (December 2011) and during the 1.5 years inclusion period 

37 patients without exclusion criteria received both verbal and written information 

about the study and were then invited to participate. Thirteen patients declined 

participation and four died soon after being invited, leaving 20 patients consenting to 

participate. Reasons for non-participation were severe disease and/or fatigue (n=7), or 

limb-onset ALS without bulbar symptoms and, therefore, no interest in participation 

(n=6) since treatment failure of MI-E in bulbar ALS was the focus of the study.  

Study #III 

All 20 patients from Study #II were asked to participate in the Study #III and 18 

consented. One patient did not want to be examined further due to discomfort during 

the examination procedures, and one declined due to fatigue with disease progression. 

However, shortly after inclusion in Study #III, two patients became tracheotomised 

and three died. This resulted in a cohort of 13 ALS patients having repeated and 

scheduled examinations approximately every three to six months at the ALS 

outpatient clinic during the study period from 2011 to 2016. Patients were followed 

up until death, tracheostomy or they had become too weak to come to the out-patient 

clinic, or did no longer wish to participate. 

4.5.3 Neurologically healthy age- and sex-matched controls 

A separate control group, different from the one that was recruited for Study #I, and 

instead matched for age and gender to the participating ALS patients, had to be 

recruited for Study #II. The reason was that anatomical and physiological conditions 

change with age, and that data suggest that many factors affect the function of the 

larynx change after the age of 60.192,193 Thus, 20 healthy individuals of comparable 

age and matched for gender to the participating ALS population were recruited 

through the network of our research group. 
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4.6 Study procedures 

All the examinations (Table 2) were performed in conjunction to scheduled visits at 

the ALS outpatient clinic. In the Studies #I and #II, the data was obtained during one 

pre-planned visit. In Study #III, all data retrieval was performed longitudinally at 

planned visits to the out-patient clinic until death, tracheostomy, or withdrawal. 

 

Table 2. Overview of the examinations used in Studies #I to #III.  

 

Procedures 

Study 

#I 

Study 

#II 

Study 

#III 

Video recorded transnasal fiberoptic laryngoscopy during: x x x 

  -Pre-set standardized protocol of MI-E settings used clinically x x x 

  -Additional use of MI-E with new modalities using individualised 

patients settings for home treatment  

  x 

Forced spirometry x x  

Slow vital capacity   x x 

Peak cough flow  x x x 

Respiratory muscle strength x x x 

Maximal insufflation capacity  x x 

Clinical neurological examination  x x 

ALSFRS-r  x x 

Assessment of dysphagia  x x 

MI-E=mechanical insufflation-exsufflation, ALSFRS-r= ALS Functional 

Rating Scale –revised 

4.6.1 Transnasal  fiberoptic laryngoscopy examination 

Transnasal fiberoptic laryngoscopy examinations were video-recorded in order to 

visualize the larynx during the use of MI-E and to provide opportunity to observe and 

describe laryngeal movements and patency retrospectively and in detail, both in real 

time and in slow motion. 

Preparations and implementation 

Participants were verbally informed about the examination both prior to the 

examination and during the complete MI-E protocol. Regular decongestant nasal 

spray (Otrivin, GlaxoSmithKline Consumer Healthcare, London, England) was used 



 

 

 

to facilitate the introduction of the laryngoscope. Examinations were performed by 

medical doctors specialized to perform TFL examinations; i.e. either ENT surgeons 

or trained pediatricians. 

The flexible laryngoscope (Olympus ENF-P3, Tokyo, Japan), diameter 3.5 mm, was 

lubricated with local anesthetic gel (Xylocain®, Astra Zeneca, Södertälje, Sweden) 

and led through an oronasal mask, the nose and via the nasopharynx advanced until a 

good view of the larynx was obtained. A modified oronasal facemask (adult facemask 

for Cough Assist ventilatory circuit, Respironics, Murrysville, USA) served to 

fasten the laryngoscope and to allow TFL video recordings to be obtained at the same 

time as the MI-E procedures were performed. In Study #I, the laryngoscope was 

attached to a head mount with a customized scope-holder during the examinations 

(Figure 5). In the Studies #II and #III, the laryngoscope was supported manually 

(Figure 6), instead of using the customized headgear. 

The laryngoscope was connected to a video camera-system for continuous recording 

during the entire examination. The examinations were continuously filmed by two 

independent video cameras/recording systems:  

 An endoscopic video camera system (Telecam, Karl Storz, Tuttlingen, 

Germany) via the transnasal fiberoptic laryngoscopy. 

 An external video camera with an attached microphone, in order to 

document the MI-E control panel, the instructions given by the therapist, 

and the respiratory sounds produced by the patients. 

The two video recordings and the sound track were stored as one file, which allowed 

for retrospective investigation of the laryngeal events during all MI-E pressure cycles. 

To ensure adequate technical quality of the recordings while they were performed, 

the complete set-up was shown real-time during the entire procedure on a television 

screen present in the same room as the procedure was performed (Figure 6; Samsung 

Electronics 55”, Suwon, South Korea). 
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Figure 5. The set up in Study #I with laryngoscope going through a 

modified interface and attached to a custom made headset. 

 

Figure 6. The setup in Studies #II and #III with a laryngoscope passing 

through a modified interface with the laryngoscope supported and adjusted 

manually. Situation arranged. 

Standardized MI-E protocol during TFL examination 

A standardized MI-E protocol was prepared, consistent with procedures commonly 

applied during therapeutic use in patients with neuromuscular disorders with a 

manifest cough problem. The MI-E device (Cough Assist®) was used both in an 



 

 

 

automatic mode with applied mechanical insufflations and exsufflations (MI-E), and 

in a manual mode for applied mechanical insufflations (MI) only, followed by a 

manually assisted cough; i.e. thoracic thrusts applied by the therapist accompanied by 

instructions to cough. The automatic MI-E mode had the following settings: 

insufflation time of two seconds, exsufflation time of two seconds and pause time 

(between exsufflation and next insufflation) of one second. The protocol included 12 

intervention arms, i.e. various combinations of pressures, patient instructions and 

manual thoracic thrusts (Table 3). Pressures of ± 20, ±30, ±40 and ±50 cmH20 were 

used with instructions as follows. 

1) With MI-E; Instruction to actively "inhale" (but not too deep) when insufflation 

was started and instruction to actively "exhale" when the device switched to 

exsufflation.  

2) With MI-E; Instruction to actively "inhale" (but not too deep) when insufflation 

was started and instruction to actively "cough" when the device switched to 

exsufflation.  

3) With MI: Instruction to actively "inhale" (but not too deep) when insufflation was 

started and instruction to actively "cough" while subjects received manually assisted 

thoracic thrust. 

Each intervention arm was repeated two to five times to secure good quality video 

recordings. After each intervention arm, a quick break was held to prevent 

hyperventilation. In the case of patient discomfort, the procedure was stopped and 

higher examination pressures were not applied.  



 50

Table 3. Standardized protocol of conditions during the intervention with MI-E and 

MI. 

Intervention  

arm 

Pressure settings (cmH2O): 

MI-E           MI 

 Instruction during exsufflation: 

active exhale   active cough 

Manual  

thoracic thrust 

1. ±20  x   

2. ±20   x  

3.  +20  x x 

4. ±30  x   

5. ±30   x  

6.  +30  x x 

7. ±40  x   

8. ±40   x  

9.  +40  x x 

10. ±50  x   

11. ±50   x  

12.  +50  x x 

MI-E=Mechanical insufflation-exsufflation, MI=Mechanical insufflation. 

Intervention arms 1-12: respective pressures of MI-E or MI combined with 

instruction to either actively exhale or to cough during exsufflation. 

Additional manual thoracic thrust during cough was provided in combination 

with MI.  

Additional MI-E use of individually titrated settings 

New and individually customized MI-E settings were put into use for home treatment 

of ALS when a new MI-E device with new modalities became available on the 

market in 2013 (Cough Assist E70; Respironics, Murrysville, PA, USA). Thus, we 

additionally tested these settings as an extended study arm of Study #III.  

We tested patient triggered insufflation (on/off) and oscillation (frequency in the 

range of 5 to 10 Hz and amplitude in the range of 5 and 10 cmH2O) along with 

asymmetric use of pressure settings (positive pressure range +15 to +40 cmH2O 

combined with the negative pressure range of -30 to -40 cmH2O) and reduced 

insufflation flow (high, medium and low). Each individual setting of interest was 

performed two to four times; whereof the cycle with best quality was studied 

retrospectively for laryngeal responses. Table 4 illustrates the overview of 

individually tested home settings in each six cases. 

 



 

 

 

Table 4. New and individually adjusted settings were put into use for ALS home 

treatment when a new MI-E device became available in 2013 (Cough Assist E70; 

Respironics, Murrysville, PA, USA), and tested as an extended arm of Study #III  

 Case no. 
 2 3 5 6 7 13 

Patient triggered insufflation (On/Off) On and off On and off On and off On and off On and off On and off 

Insufflation pressure (cmH2O) +15 to 40 +25 to 40 +20 to 40 +25 to 40 +25 to 40 0 to 40 

Insufflation flow (L/M/H) L/H L/M/H L/H M/H L/M/H M 

Insufflation time (sec) 2.0 to 3.5 1.8 to 3.0 2.0 to 3.0 2.0 2.0 to 3.0 2.0 

Exsufflation pressure (cmH2O) -40 -30 to 40 -40 -40 -35 to 40 -40 

Exsufflation time (sec) 1.0 to 2.0 1.8 to 2.0 1.7 to 2.0 2.0 2.0 2.0 

Oscillation (On/Off) Off On/off On/off On/off On/off Off 

Frequency (Hz) - 10 5 and 10 10 10 - 

Amplitude (cmH2O) - 10 5 and 10 10 5 - 

Visits with CAE70 during TFL 

(in the range of months) 

1 6 

(37) 

2 

(13) 

4 

(12) 

4 

(32) 

1 

L=low, M=medium, H=high 

4.6.2 Examination of pulmonary function and respiratory muscle 

strength 

Pulmonary function and respiratory muscle strength were determined as baseline 

characteristics of all study participants, and were followed up during the disease 

progression of the ALS patients participating in Study #III.  

Forced spirometry 

Forced spirometry was performed in Study #I and #II. In Study #I, it was performed 

seated and in Study #II both seated and supine, starting at total lung capacity, and 

measured with Vmax 22 (SensorMedics, Yorba Linda, USA), applying standard 

quality criteria. Forced vital capacity (FVC), forced expiratory volume in the first 

second (FEV1) and peak expiratory flow (PEF) were recorded, and the values 

expressed as percentages of predicted.140,194-197 

Slow vital capacity  

Slow vital capacity (SVC) was measured in Study #II and #III, starting at total lung 

capacity, and in seated position using a Respirometer Wright 14 (nSpire Health, 
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Hertford, UK). The highest value of three or more attempts was chosen for analysis 

and standardized to percentages predicted. 

Peak cough flow 

Peak cough flow (PCF) was measured in all studies, starting at total lung capacity, 

and in seated position via a mask using a hand-held Peak Flow Meter (Vitalograph, 

Ennis, Ireland). The highest value of three or more attempts was chosen for analysis. 

Respiratory muscle strength 

Plateau values (average of one second) of the maximal inspiratory (Pimax) and 

expiratory (Pemax) muscle strength were measured in all studies, and sniff nasal 

inspiratory pressure (SNIP) was measured in Study #II and #III, in seated position 

using a Respiratory Pressure Meter (Micro RPM; Micro Medical, Rochester, UK). 

SNIP was measured at functional residual capacity, Pimax at residual volume and 

Pemax at total lung capacity. The highest value of three or more attempts was chosen 

for Pimax and Pemax measurements, while the highest value of ten attempts was chosen 

for SNIP; and finally all raw data was standardized to percentages predicted. 

Maximal insufflation capacity 

Maximal insufflation capacity (MIC) was measured via an oronasal mask and in 

seated position using a Respirometer Wright 14 (nSpire Health, Hertford, UK) in 

ALS patients in Study #II and Study #III. MIC was measured after air stacking; i.e. 

the patient taking a deep breath, holding it, and then consecutively delivering 

volumes of air from a manual resuscitator (Lærdal Medical, Lærdal, Norway) to the 

maximum volume that the patient could hold with a closed glottis. The patient then 

exhaled the maximally held volume of air into the respirometer for volume 

measurement. The difference between MIC and SVC was calculated (MIC>SCV). 

The highest value of three or more attempts was selected.  



 

 

 

4.6.3 Neurological assessments 

Neurological assessments were used to determine the baseline characteristics and the 

phenotype of the ALS patients when entering Study #I, and during the follow-up 

performed during Study #III.  

Clinical neurological examination and categorization 

ALS was diagnosed by neurologists in accordance with revised El Escorial 

criteria.14,15 Details on diagnostics and description of symptoms and signs and their 

onset were obtained retrospectively from medical journals. The clinical neurological 

examination included identification of the relevant symptoms and signs when patients 

were enrolled and at each subsequent visit during the follow-up period. Particularly, 

the patients were phenotyped as regards presence or absence of upper and lower 

motor neuron degeneration, or if a combination of these features were present (Table 

5).  

In Study #II, patients were categorized by the state of the disease at enrollment 

(Table 6) classified as either spinal ALS or bulbar ALS that was further sub-classified 

as progressive bulbar palsy or ALS with pseudobulbar palsy.  

In Study #III, patients were categorized in two groups by the initial onset of the 

symptoms of ALS; i.e. spinal or bulbar onset (Table 7). This data was collected either 

retrospectively from medical charts in those participants who had already been 

diagnosed and enrolled in the ALS outpatient clinic when the study was commenced, 

or at the time of being diagnosed for those who were included later. Bulbar symptoms 

were further classified as progressive bulbar palsy or pseudobulbar palsy, as 

described in Table 6.  
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Table 5. Patient characteristics used to determine bulbar upper or lower motor neuron 

involvement. 

 YES NO Notice 

Triggered jaw reflex?    

Tongue atrophy?    

Reduced force in the tongue?    

Reduced pace in the tongue?    

Considering the state of the disease  

essentially as: 

   

  Spastic (pseudobulbar paresis)    

  Peripheral (progressive bulbar paresis)    

 

Table 6. Categorization of the state of the disease at enrolment in the Study #II.  

State of the disease Symptoms and signs 

Spinal ALS Symptoms affects the limbs 

 

ALS with 

Progressive bulbar palsy 

 

Hypotonic bulbar symptoms with dysarthria  

Tongue atrophy  

Absence of the jaw reflex 

 

ALS with 

Pseudobulbar palsy 

 

Spastic bulbar symptoms with dysarthria  

No tongue atrophy  

Exaggerated jaw reflex 

 

Table 7. Categorization of the onset of the disease retrospective from medical 

journals in the Study #III. 

Onset of the disease Symptom onset in Signs 

Spinal ALS Limbs Muscle weakness 

 

Bulbar ALS 

 

Bulbar innervated muscles 

 

Voice harshness, defects of articulation, 

breathlessness, dysphonia, hyper nasality and 

swallowing difficulties 

 

ALS Functional Rating Scale-r (ALSFRS-r) 

Patients were assessed by the neurologists using the ALS Functional Rating Scale 

(ALSFRS-r). The ALSFRS-r is a validated measure of functional impairment in 

ALS,198 nevertheless its sensitivity is discussed.199 It is a questionnaire-based 

functional scale, containing 12 items rated from 0 (complete dependence for that 



 

 

 

function) to 4 (normal function), divided into 3 sub scores (bulbar 12, spinal 24, and 

respiratory 12), with normal function defined by a maximum score of 48.198 

Items from the ALSFRS-r involving functions of speech and swallowing (maximum 

score of 8) were used to rate the bulbar impairment scale (BIS) in Study #II. 200 

In Study #III the bulbar and respiratory scores were calculated from ALSFRS-r, 

where the items of speech, salivation and swallowing, dyspnoea, orthopnoea and 

ventilation were calculated (each with a maximum score of 12).198 

Assessment of dysphagia 

Dysphagia in Studies #II and #III was determined with 100-ml water swallow test 

(WST). Subjects were asked to drink 100-ml water and the timing (seconds) to 

complete the task was recorded. Swallowing speed  < 10 ml/s was classified as 

dysphagia.201,202 

4.7 Analysis of the videorecordings 

4.7.1 Editing of the video clips 

Video recordings from each subject were edited into a video file including film clips 

based on representative shots of each intervention arm. In the video evaluation, the 

MI-E cycles were cut into three phases of interest: the insufflation phase, the point 

when the MI-E device switches from positive to negative pressure (labelled the 

pressure drop), and the exsufflation phase or the voluntary cough with no negative 

pressure applied. The onset and offset of each phase was observed and defined from 

the parallel external video recording of the MI-E manometer (Table 8).  
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Table 8. Definitions for onsets and offsets of phases for insufflation, pressure drop, 

exsufflation and voluntary cough with no applied negative pressures 

Phase of interest Definition for onset  Definition for offset 
Insufflation  
(Time settings  
for insufflation is 2 seconds) 

The point when the positive 
pressure is started with the MI-E 
device. Observed from the 
manometer on the control panel of 
the MI-E device. 

Offsets when the positive 
pressure on manometer turns 
off. 

Pressure drop  
(Automatically very rapid phase) 

The point when the MI-E device 
switches from positive to negative 
pressure. Observed from the 
manometer on the control panel of 
the MI-E device. 

Offsets when the negative 
pressure commences and 
appears on the manometer on 
MI-E devices control panel. 

Exsufflation  
(Time settings  
for exsufflation is 2 seconds) 

The point when the negative 
pressure is applied with the MI-E 
device. Observed from the 
manometer on the control panel of 
the MI-E device. 

Offsets when the negative 
pressure on manometer turns 
off. 

Voluntary cough with no applied 
negative pressures 

The point when the MI-E device 
has pressure of zero after an 
insufflation. Observed from the 
manometer on the control panel of 
the MI-E device. 

Offsets when the last glottic 
closure in voluntary cough 
maneuver is observed. 

4.7.2 Interpretation of the video clips 

Since the laryngeal movements during MI-E have not been studied previously, there 

was no standardized assessment score available. The intention of the present study 

was to establish a scientific foundation and a tool for the assessment of the larynx 

during MI-E. Laryngeal movements were observed and assessed from the video files, 

and this process generated categorized data from these explorative examinations. 

Laryngeal anatomy and movements at rest in Study #I and #II were evaluated by a 

senior otolaryngologist. Laryngeal responses during MI-E were evaluated by this 

PhD candidate in cooperation with a senior otolaryngologist. In Study #II recordings 

were initially evaluated together by two raters (Anne-Kristine Brekka, MSc student in 

cardiopulmonary physiotherapy, and this PhD candidate) and verified by a senior 

otolaryngologist.  

The video clips were reviewed and evaluated both in real time and in slow motion as 

many times as needed, both in real time and in slow motion. The observed 

movements at glottic, supraglottic and hypopharyngeal levels (Figure 7) were 



 

 

 

described both by words and with snapshots of the laryngeal positions during the 

movements. Thereby laryngeal responses were classified into explicitly defined 

categories, and an observation scheme was prepared (Appendix 3). Thereafter the 

video recordings were replayed as many times as needed and the responses observed 

in the individual participants were assessed and recorded by “yes or no” in the 

observation scheme. Laryngeal responses during MI-E were compared to “adequate 

laryngeal control”, defined as described for normal cough in the literature,65,67 and 

presented as initial inspiratory abduction of the true vocal folds and aryepiglottic 

folds, and thereafter glottic closure with subsequent rapid opening when coughing, 

abduction of the true vocal folds and aryepiglottic folds followed by sequential 

closures and/or narrowing in the exhalation phase of the cough.  

In the Study #III, five laryngeal events were targeted and tested, and defined as 

adverse and typical “bulbar features” and depicted in Table 9. See Figure 8 for the 

process chart. 

 

Figure 7. The examinations were recorded using two continuously running 

and synchronised video streams on one screen, depicting the laryngeal 

view in one and the various phases on the MI-E device in the other. 

Anatomic landmarks are illustrated on the laryngeal top view. 
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Table 9. Five laryngeal events during MI-E defined as adverse and typical bulbar 

features based on findings in Study #II, contrasting what has been described as 

normal cough.65,67 

Laryngeal level Adverse laryngeal response during MI-E 

Glottic True vocal 

folds 

Adduction of true vocal folds during insufflation; 

paradoxical movement of true vocal folds during 

inhalation creating either a slim glottic opening or a total 

closure of glottis. 
 

Supraglottic Aryepiglottic 

folds 

Medial rotation of the cuneiform tubercles accompanied 

by considerable adduction of aryepiglottic folds during 

insufflation, to the extent that it prevents observation of 

the glottic laryngeal level below. 
 

 Epiglottis A retroflex movement of the epiglottis (a passive dorsal 

rotation) covering the glottis, either as a brief movement 

or lasting throughout the insufflation. 

 
Hypopharyngeal Tongue base Backward movement of the tongue base during 

insufflation constricting the laryngeal entrance. 

 

 
 Hypopharynx A severe hypopharyngeal narrowing during exsufflation. 

 

 

 
 

 

Figure 8. Process chart of analysing the laryngeal responses during MI-E 

from unstructured to structured data. 



 

 

 

4.8 Statistical methods 

The statistical analyses used in all studies are presented in Table 10. All p-values 

were two-sided and values below 0.05 were considered statistically significant. 

 

Table 10. Statistical methods used in Studies #I to #III. 

Statistical methods Study  

#I 

Study  

#II 

Study  

#III 

Group counts and frequencies x x x 

Mean and standard deviation x x x 

Median and range   x 

The chi-square test or Fisher’s exact test if expected cell counts < 5  x  

Depicted line plots of longitudinal continuous measures   x 

Kaplan Meier survival function   x 

Log rank test   x 

Wilcoxon Signed Rank test   x 

 

Study #I 

Quantitative data of laryngeal movements during the MI-E were presented as 

percentages with the described movements. Baseline characteristics were presented as 

descriptive statistics in tables with means and standard deviations. Data from the 

assessment were processed in Excel for Windows Office version 2010 (Microsoft, 

Redmond, Washington, USA) and in SPSS v18.0 (Statistical Package for Social 

Sciences, SPSS Inc, Chicago, Illinois, USA). 

Study #II 

The number of subjects with the described patterns of laryngeal movements during 

MI-E was given as group counts and percentages. The chi-square test, or Fisher’s 

exact test if expected cell counts were less than five, were applied to assess 

differences between groups with regard to categorical data. Background data were 

given as group means with standard deviations. Statistical analyses were conducted 

using SPSS v21.0 (Statistical Package for Social Sciences, SPSS Inc, Chicago, 

Illinois, USA).  
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Study #III 

The number of subjects with the described patterns of laryngeal movements during 

MI-E was given as group counts. Individual longitudinal continuous measures were 

depicted using line plots. The Kaplan Meier survivor function was used to estimate 

the proportion of the various clinical and MI-E events as well as the corresponding 

median event times. To test for difference in survival functions across groups, the 

log-rank test was used. In the Kaplan Meier analyses, the time (in months) from ALS 

symptom start until the first occurrence of the relevant event was used as the measure 

of event time. A person’s event time was "right censored" if he died or did not 

experience the event before study end, defined as December 31st 2016. To investigate 

if various laryngeal outcomes occurred before the onset of bulbar symptoms in time, 

we used Wilcoxon Signed Rank test. If an individual did not experience laryngeal 

events and/or bulbar symptoms, that individual was removed from the analysis. 

Patient group characteristics were quantified, and central tendencies given as means 

or medians with variability measures indicated by standard deviation, 95% 

confidence intervals, or range, as appropriate. All statistical analyses were performed 

using Stata version 14 (StataCorp LLC, Texas, USA) for Windows.  



 

 

 

5. Summary of results 

Background characteristics of the study participants (n=60) are described in Table 

11, and the overview of the scheduled intervention arms and evaluated video clips of 

TFL examinations is presented in Table 12. 

 

Table 11. Background characteristics of the study participants (n=60). Figures are 

group means with standard deviations.   

 Healthy  
medical students  

(n=20) 

Healthy  
age- and gender 
matched controls 

(n=20) 

ALS patients in 
the cross sectional 

study 
(n=20) 

ALS patients in 
the cohort study 

(n=13) 

Male/female ratio 8/12 13/7 13/7 10/3 

Age, years 24.4 (1.9) 66.9 (7.2) 68.7 (9.3) 67.1 (8.5) 

BMI, kg/m2 22.6 (2.0) 23.9 (2.4) 23.6 (4.3) 24.1 (3.4) 

FVC, % pred 106.7 (8.5) 113.6 (16.0) 67.4 (22.1) 72.4 (18.7) 

FEV1, % pred 99.1 (13.0) 107.4 (19.0) 70.6 (25.7) 74.5 (25.0) 

SVC, l - 4.15 (1.3) 2.92 (1.0) 3.4 (0.7) 

SVC, % pred - 110.6 (20.1) 76.1 (22.5) 82.5 (15.7) 

PCF, l/min 501.0 (100.7) 484.5 (130.2) 266.8 (145.8) 318.5 (128.6) 

Pimax, cmH2O 101.0 (23.9) 95.2 (23.6) 43.3 (20.9) 49.3 (20.5) 

Pimax, % pred 101.0 (24.3) 111.3 (24.9) 52.9 (23.7) 57.3 (19.5) 

Pemax, cmH2O 132.6 (28.3) 140.8 (37.9) 50.4 (30.0) 61.2 (31.1) 

Pemax, % pred 105.1 (20.3) 140.1 (34.3) 49.4 (24.8) 56.3 (25.3) 

SNIP, cmH2O - 91.2 (33.7) 38.6 (17.9) 42.0 (17.9) 

SNIP, % pred - 99.1 (34.6) 42.6 (19.0) 45.2 (20.0) 

MIC>SVC, l - - - 0.26 (0.44) 

WST, ml/s - 31.50 (7.7) 12.3 (11.4) 16.3 (11.0) 

ALSFRS-r - - 36.7 (8.4) 38.5 (5.9) 

BIS - - 6.0 (2.3) 6.38 (2.1) 

BS - - 8.79 (3.9) 9.5 (3.1) 

RS - - 9.95 (3.4) 10.2 (3.1) 

ALS=amyotrophic lateral sclerosis, BMI=body mass index, FVC=forced vital 

capacity, FEV1=forced expiratory volume in 1 second, SVC=slow vital 

capacity, PCF=peak cough flow, Pimax=maximal inspiratory mouth pressure, 

Pemax=maximal expiratory mouth pressure, SNIP=sniff nasal inspiratory 

pressure,  MIC=maximal insufflation capacity, WST=water swallow test, 

ALSFRS-r=ALS functional rating scale (revised), BIS=bulbar impairment 

scale, BS=bulbar score, RS=respiratory score 
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Table 12. Scheduled intervention arms and evaluated video clips of TFL 

examinations. 

 Scheduled 

intervention arms 

Evaluated video 

clips from 

intervention arms 

Technical  

failures  

 

Technical  

failure  

percent (%)  

Study #I 240 239 1 0.4 

Study #II 480 453 6 1.3 

Study #III 763 751 12 1.6 

Total in all studies 1483 1443 19 1.3 

 

5.1 Paper #I (Study #I) 

Laryngeal Response Patterns to Mechanical Insufflation-Exsufflation in Healthy 

Subjects 

All participants (20 healthy volunteers, aged 21-29 years) completed all examinations 

according to plan. Visualization of the larynx with TFL did provide a good overview 

of the larynx, and it was possible to observe movements of the laryngeal structures 

throughout the complete MI-E intervention. In total 239 laryngoscopy recordings 

were analysed.  

An initial abduction of the vocal folds was observed in all subjects, both during the 

insufflation and exsufflation phases. 19 of 20 subjects adequately coordinated glottic 

closure when instructed to cough. When instructed simply to exhale during 

exsufflation, the glottis stayed open in a majority. Subsequent to an initial abduction 

during exsufflation and cough, various obstructive laryngeal movements were 

observed in some subjects, such as narrowing of the true vocal folds, retroflexion of 

the epiglottis, hypopharyngeal constriction and backward movement of the base of 

the tongue. 

In conclusion, the study showed us that video recorded TFL during MI-E was 

possible in healthy subjects, and also a feasible and well-tolerated method to 

characterize laryngeal movements. The laryngeal responses to MI-E were compatible 

with the laryngeal movements that are described for normal cough; however, there 



 

 

 

were some heterogeneities. The findings from the study suggested that laryngoscopy 

may be of value in patients.   

5.2 Paper #II (Study #II) 

Laryngeal response patterns influence the efficacy of mechanical assisted cough in 

amyotrophic lateral sclerosis 

All 20 patients with ALS (6 without bulbar symptoms and14 with bulbar symptoms; 

7 with pseudobulbar palsy and 7 with progressive bulbar palsy) and 20 neurologically 

healthy controls, matched for gender and age, were tested. Four patients with bulbar 

symptoms completed only parts of the MI-E protocol due to discomfort from the 

applied pressures. In total 453 (94%) of 480 scheduled recordings were analyzed. The 

overall impression was that video-recorded TFL was a tolerable and feasible method 

to characterize laryngeal responses throughout MI-E in ALS patients. 

In general, the larynx moved downwards during applied insufflation and upwards 

(cranially) during exsufflation. Healthy subjects and patients with ALS and no bulbar 

symptoms (n=6) coordinated their cough well during MI-E. The ALS patients with 

bulbar symptoms (n=14) adducted their aryepiglottic folds (supraglottic level) during 

insufflation. At the glottic level, initial abduction of true vocal folds followed by 

subsequent adduction was observed in all ALS patients (n=20) during insufflation 

and exsufflation. Hypopharyngeal constriction during exsufflation was observed in all 

subjects, most prominently in patients with ALS and bulbar symptoms. Differences in 

laryngeal movements between patients with pseudobulbar (n=7) and progressive 

bulbar ALS (n=7) were not statistically significant. 

In conclusion, the study showed that laryngoscopy during ongoing MI-E was possible 

in patients with ALS. If bulbar symptoms were present, the larynx adducted, 

especially during insufflation but also during exsufflation, severely compromising the 

size of the laryngeal inlet in some. This effect seemed to be influenced by the MI-E 

settings in that higher pressures had a greater negative impact.  



 64

5.3 Paper #III (Study #III) 

Mechanically Assisted Cough in Progressing Amyotrophic Lateral Sclerosis 

The 13 ALS patients who were longitudinally followed up varied substantially 

according to ALS subtype and disease progression. Follow-up time was median 17 

months (range 6-59). In total 751 TFL recordings from 67 individual examinations 

were analyzed (per patient median 4, range 2-11).  

The following adverse laryngeal events developed with disease progression during 

insufflation: Adduction of aryepiglotic folds was observed in all patients, initially at 

the highest positive pressure (50 cmH2O) and prior to onset of other bulbar symptoms 

in the majority. As cough became less expulsive with disease progression, 

aryepiglotic fold adduction occurred also at lower insufflation pressures (20 cmH2O). 

In 5 patients with spinal onset and no bulbar symptoms at study entry, aryepiglottic 

fold adduction occurred at 50 cmH2O at median (range) 38 (19-60) months after the 

ALS debut compared to 47 (30-57) months for other bulbar symptoms (p=0.046). 

Adduction of true vocal folds occurred in 8 of 9 spinal onset patients. Retroflex 

movement of the epiglottis was observed in 7 of 13 cases regardless of insufflation 

pressures and independent of bulbar involvements. Backward movement of the 

tongue base appeared regardless of insufflation pressures in all but one subject.  

During exsufflation constriction of the hypopharynx was observed in all patients 

regardless of the presence of bulbar symptoms, and appeared after the above listed 

adverse events during insufflation.  

Adverse laryngeal response patterns developed before the onset of other bulbar 

symptoms in most patients. As the disease progressed, cough at the laryngeal level 

was observed to become gradually less synchronized during the MI-E, and the 

laryngeal cough movements were observed to become rigid and require longer time. 

MI-E treatment could also be complicated by swallowing, which seemed to be 

associated with retroflex movement of epiglottis. 

Individually modified MI-E settings were explorative assessed with TFL in 6 patients 

(one bulbar and 5 spinal onset) as they met for their scheduled and consecutive 



 

 

 

outpatient assessments, analyzing a total of 45 film clips from altogether 19 visits. 

Customized use of MI-E, applying lower insufflation pressures and flows, were 

observed to provide less adduction in the larynx, both at the supraglottic and glottic 

level, with more appropriate laryngeal responses to insufflation at least in some 

(possibly all) cough cycles. This prolonged the time for which the treatment was 

perceived efficient by patients. The use of one cough cycle at the time, allowing for a 

‘pause’ prior to the next insufflation, and instructions to actively inhale prior to 

insufflation, was observed to induce better cough synchronization, particularly in 

cases of a retroflex epiglottis or spasticity at the laryngeal level.  

In conclusion, the study showed us that laryngoscopy during ongoing MI-E was 

possible to perform repeatedly in deteriorating patients with progressing ALS. The 

study suggested that “blindly” applying high insufflation pressures during 

mechanically assisted cough in ALS can become counterproductive during disease 

progression; importantly also prior to the onset of bulbar symptoms. 
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6. Discussion 

In this thesis we have demonstrated that it is possible to visualize the larynx by TFL 

during MI-E in healthy persons and in patients with ALS, and that the method was 

tolerated when applied repeatedly in deteriorating patients as their ALS progressed. 

Thus, laryngeal responses to MI-E can be observed, video-recorded and analysed 

retrospectively, allowing observation and description of dissimilarities between 

healthy subjects and ALS patients. The laryngeal responses to MI-E in patients with 

bulbar ALS differed from what we saw in healthy subjects in ways that were 

seemingly counterproductive in terms of treatment effect, and also unexpected 

compared to what has been suggested in studies performed by others.141 When 

following 13 ALS patients throughout their disease progression we saw that adverse 

and seemingly counterproductive laryngeal response patterns developed in most of 

them, and that this occurred before development of the typical “bulbar ALS 

phenotype”. The knowledge provided should be tested by others in larger studies. 

However, the findings suggest that clinical use of MI-E in ALS should be 

individualized, and if confirmed respiratory therapists will need to alter their clinical 

management of ALS patients. Our results indicate that individually tailored MI-E 

treatment can improve and possibly extend the use of non-invasive MI-E in ALS. 

In the following, methodological strengths and limitations will be discussed and 

ethical issues considered. Thereafter there will be a general discussion of the main 

findings, clinical implications and suggestions for future research. 

6.1 Methodological considerations 

6.1.1 Strengths and limitations 

The major strength of this study lies in the overall idea of filling an important 

knowledge gap that is of practical implication to a group of patients who suffer from 

a devastating, progressive and fatal disease. Thus, the study tested a novel method of 

utilizing TFL during ongoing MI-E in order to observe laryngeal response patterns in 



 

 

 

health and disease. The method was used for comprehensive assessments during a 

wide range of MI-E settings combined with patient instructions that are regularly 

used in clinical practice. This is therefore the first study that can provide systematic 

visual information on how the larynx performs during ongoing MI-E in ALS patients, 

cross-sectionally as well as throughout their disease progression. This is an issue that 

potentially will be of great importance to these patients. The studies have engaged 

and created a multi-professional research group that has included specialists from 

otolaryngology, neurology and respiratory medical environments and respiratory 

physiotherapists. 

The participating group of ALS patients was recruited from a complete geographical 

area, and the study was thus population based by design. The patients were followed 

longitudinally for as long as possible, limited only by disadvantageous manifestations 

of their progressing disease. Healthy volunteers, matched for age and gender with the 

participating ALS patients, served as control group.   

The major weakness of the studies lies in their size; as with all small studies the 

findings must be cautiously interpreted. To some extent this uncertainty was 

compensated by the population based design and by recruitment of a highly typical 

group of ALS patients who did exhibit an expected clinical course during the study 

period. Nevertheless, the knowledge provided should be tested by others in larger 

studies. The explorative design also calls for repeated testing of the findings in other 

and unrelated but comparable patient populations. Moreover, neither intra- nor inter-

observer repeatability of the findings was tested. These are all issues that prevent firm 

conclusions being made as regards internal and external validity, to be discussed in 

details below. 

Another weakness, or rather a shortcoming, of the studies, was that we were unable to 

fully test the opportunities that lie within the options provided by the new technology 

becoming available in a rapidly developing market. Thus, this research field is still in 

its "embryonic" phase. 
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6.1.2 Study design  

As current knowledge in this field is sparse, an explorative approach was chosen. A 

prospective observational descriptive design allowed observation - and thereby 

description - of hitherto unknown responses.  

Cross-sectional study design (Study #I and #II) 

This type of study design is used to document a status at a single time point for each 

participant within the study. Additionally, Study #II included a matched control 

group, suitable to compare the outcomes and the characteristics of the enrolled 

population based patient group.203 The cross-sectional study design does have 

limitations, especially when examining patients with a progressive disease like ALS; 

the patient is examined at one time point, acknowledging that the results obtained 

might differ from results obtained at another time point.203 This will influence the 

results, as it is practically not possible to compare patients at different stages of their 

disease progression at exactly the same phase. Nevertheless, the cross-sectional study 

design allowed for an overall assessment of the feasibility of the method in this 

patient group, and also for a description of laryngeal response patterns to MI-E in 

ALS patients of different phenotypes and how these patterns differed from those of 

the healthy control group.  

Prospective cohort study design (Study #III) 

A gradual development of bulbar innervated muscle dysfunction has been suggested 

to influence the extent of successful use of MI-E; thus, it was important to investigate 

the long term responses in a longitudinal design. A challenge facing all longitudinal 

studies is that data must be collected over long time periods. Considering a 5-year 

survival rate for ALS of approximately 20%, the five year follow-up period of the 

present study was considered adequate.2,13 Cohort studies are suited to determine the 

natural history of a condition.203 In the present Study #III, the data retrieval could not 

be performed continuously, but at pre-set outpatient appointments. Even so, adverse 

laryngeal events consistently preceded other clinical signs of bulbar involvement in 



 

 

 

cases without bulbar symptoms at inclusion, indicating that the findings of the study 

were solid. 

6.1.3 Subjects 

External validity is the expression used to describe the extent to which the results of a 

study can be generalized to other populations or other patients with the same 

disease.203 A population based sample implies that all participating patients with the 

disease under study are recruited from a specified population and that all patients 

with that disease and who belong to that particular population are invited to 

participate. In our studies, all patients with ALS were recruited from the area served 

by Haukeland University Hospital, and no patients with ALS who lived within that 

area remained uninvited.  

The data obtained from the ALS patients were compared with those of healthy 

matched volunteers who were recruited by a convenience sampling principle; i.e. 

drawn from a population that was easily accessible.204 The control subjects 

participating in Study #I were young medical students, individuals whose health, 

social and socioeconomic status can be assumed to be above average. The control 

subjects participating in Study #II were recruited in order to match the age and gender 

of the participating patients with ALS. Both these control groups turned out to be fit 

and with low BMI, good lung function and high respiratory strength. As such, the 

control groups of Study #I and #II can be seen as “too healthy or wealthy”, possibly 

increasing the differences versus the ALS group. However, we do not have 

information suggesting that factors such as fitness, BMI and social or socioeconomic 

status should influence laryngeal function and its responses to externally applied 

positive and negative airway pressures. 

Concerning the ALS population, their clinical disease presentation is generally highly 

heterogeneous due to variability of upper and lower motor neuron involvement, the 

disease onset and its progression. This heterogeneity was found also in our ALS 

population. Their peak cough flow values were below 270 litres/min in most of the 
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examinations, indicating that they represent a fairly “typical” population with ALS in 

need of MI-E to improve their airway clearance.140 There were 13 patients who 

declined and four who died soon after being invited to Study #II; a situation that can 

possibly have caused a selection bias.203 Reasons for non-participation were either 

severe disease or absence of bulbar symptoms. The critical scenario in the 

longitudinal follow-up Study #III was to obtain data also from the most severely ill 

patients. We were able to follow these patients for long periods, also in relatively 

severe distress.  

To conclude on these issues, we hold that our patient population was representative 

for ALS patients in general, and that the control groups adequately reflected the 

expected a normal responses to MI-E. 

6.1.4 Sample size 

A sufficient number of subjects and observations per subject are needed for adequate 

internal and external validity of a study.203 A sample size of 20 ALS patients in the 

cross-sectional study and 13 ALS patients in the prospective cohort study reflects the 

relatively low prevalence of ALS and the small population base from which 

participants were recruited. As this was an explorative study set up to investigate 

hitherto unknown outcome data with unknown distributions, a priori power 

calculations or sample size estimation could not be undertaken.190,191 The small size 

of the study complicated statistical handling of the data, and contributed to a situation 

were the generalizability of the results could be questioned. Particularly, these issues 

make the study vulnerable for type-II errors; i.e., failure to detect significant 

differences that may have been present.190  

The heterogeneity of our findings suggests that it can be possible that even more 

nuances or variations or other types of responses imposed by MI-E in ALS could 

have been found, had the study population been larger. However, with numerous 

observations collected from our sample of 20 ALS patients, we found a clear pattern 

of laryngeal adduction occurring during insufflation in bulbar ALS patients when 

compared to patients without bulbar symptoms as well as when compared to the 

healthy controls. This pattern was observed also in the spinal onset patients during 



 

 

 

their disease progression, as they gradually developed bulbar involvement, first at the 

highest MI-E treatment pressures, and later in their progression also at gradually 

lower pressures. Thus, as it seemed, a dose-response relationship between MI-E 

pressures and adverse laryngeal outcomes could be suspected as ALS proceeds. 

Thus, we hold it to be relatively improbable that studies of larger ALS populations or 

other control groups would have reached other conclusions than ours. However, we 

acknowledge and certainly encourage, that our findings must be systematically tested 

in other and larger ALS populations, treated and followed at larger institutions than 

ours.  

6.1.5 Visualization of the larynx 

The results of this thesis are based on the visualization of the larynx with TFL during 

MI-E. Construct validity indicates to what extent the test or instrument measures 

what it is supposed to measure,205 and refers to whether a study is able to truly answer 

the research questions.203 TFL examination is the gold standard for visualization of 

larynx.178-181,206 Several small studies have used TFL in ALS patients to describe 

laryngeal function during simple tasks.39,76,78,80,87,90,187,188 Further, patients are referred 

to otolaryngologists and examined with TFL as a part of a diagnostic work-up for 

ALS due to laryngeal symptoms.39 We used the TFL in a new setting, and 

experienced only a small amount of technical failures. Laryngeal responses and 

movements throughout the MI-E protocol were as previously described for normal 

cough in the healthy participants of Study #I,65-67 and the findings were different in 

bulbar ALS patients. We are not aware of any other and better methods that could be 

used to examine the laryngeal responses during MI-E. Only one study has previously 

explored the role of the upper airway during MI-E; i.e., Sancho et al. who performed 

an observational study of three ALS cases using CT scans and observed dynamic 

upper airway collapse during exsufflation.141 The limitations of their study are mainly 

linked to the limitations of using CT as a method to observe continuous cough cycles, 

and the fact that they did not examine the upper airways during insufflation, probably 

related to their hypothesis (i.e. upper airway collapse during the negative pressure). 
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Our results indicate that their study failed to reveal the complete picture of laryngeal 

responses to MI-E, as they did not focus on the inspiratory phase which is so 

important for the first phase of cough; the crucial ‘filling up’ of the lungs. Direct 

visualization of the larynx with TFL could provide a visual overview of the laryngeal 

structures throughout the complete MI-E interventions.  

The video recordings were precious parts of the diagnostic set-up. Two continuous 

videos were running in parallel, showing respectively the internal laryngoscopy 

images and the external MI-E set-up with the pressure settings, both inputs 

synchronized and showed real time on one television screen and later stored as one 

file to be showed on a computer monitor. This allowed retrospective analyses, 

enabling fine nuances and rapid movements to be visualized during slow motion and 

the findings to be validated afterwards by other observers.204,205  

Nevertheless, the examination with TFL during MI-E has limitations which can affect 

the validity of the findings. In all participants, the larynx tended to move upwards 

during the MI-E cycle, requiring adjustments of the position of the laryngoscope. In 

some subjects, anatomical characteristics could preclude visual access, such as a high 

standing epiglottis. In ALS patients we encountered additional challenges. As the 

larynx moved considerably more downwards and upwards during insufflation and 

exsufflation, dynamic adjustments of the laryngoscope position were required and the 

laryngoscopy was supported manually instead of using customized headgear as in 

Study #I. In some cases airway secretions led to poor-quality recordings and pre-

treatment aiming to clear secretions could have been considered. This was more often 

observed with disease progression in Study #III. Further, the adduction of the 

aryepiglottic folds obscured the view of the true vocal folds, and therefore the glottic 

level was not always successfully visualized. To compensate for these challenges and 

to produce adequate recordings, we repeated the MI-E cycles several times, which led 

to good quality recordings in at least one MI-E cycle per intervention in almost all 

sessions. These issues need to be considered in future studies using TFL during MI-E. 

We hold that direct clinical visualization of the larynx using TFL provides a good 

overview of the laryngeal responses to MI-E in patients who are difficult to treat. 



 

 

 

This opinion recently gained support by a study by Sayas Catalàn et al.,207 who 

postulated that titration of non-invasive ventilation (NIV) by means of visualization 

of the larynx with TFL leads to fewer obstructive events in subjects with upper-

airway obstruction. Also Georges et al.,208 inspected the larynx with TFL during NIV 

in 11 patients with ALS to increase the understanding of potentially 

counterproductive laryngeal response patterns.  

6.1.6 Interpreation of the video recordings 

There were no preexisting assessment scores that could be used directly in the 

evaluation of the video-recordings and the interpretations of the laryngeal responses 

were done by observing and describing the video-recordings which is usual in 

laryngeal inspection with TFL. This is solely an observational approach, which only 

requires a systematic knowledge of what to observe.203 The knowledge on which the 

evaluations of the present study are based, mainly rest on clinical - and research 

based activities performed by professionals who are members of our research group, 

and on the knowledge obtained from close to 2000 tests performed for exercise 

induced laryngeal obstruction (EILO).182 This work includes the EILO scoring tool, 

which has proved to be a reliable and valid tool in EILO.183 Such a specific scoring 

system cannot automatically be applied in a different disease context; however, it did 

contribute to our interpretations of the laryngeal responses to MI-E. Development of 

a scoring tool is time consuming, and combined with a low number of participating 

patients it was considered beyond the scope of the present study to establish a graded 

scoring system specifically designed to cover laryngeal responses to MI-E in ALS. 

However, in our opinion the observation scheme prepared in Study #I and further 

developed in Studies #II and #III can be used in clinical examinations with TFL 

during MI-E. Important issues like validity and reliability of this tool should be tested 

in future studies.  

Because the observer is ‘the instrument’, determining the reliability of observational 

measures is linked to determining intrarater and interrater reliability. Intrarater 

reliability could be assessed by using repeated MI-E cycles obtained from the same 
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study session, whereas interpretations of the video-recordings by different raters 

could be used to address interrater reliability. The measure is considered reliable if it 

repeatedly gives us the same result; assuming that what we are measuring is not 

changing. Repeatability is an integrated part of the validity of an assessment; a test 

can be reliable without being valid, but it must be reliable to be valid.203  

We did have the data to perform analyses of intrarater and interrater reliability, but 

these features were not formally addressed in the present studies. We interpreted the 

video-recorded data with the most reliable existing method to date; by the trained and 

experienced human eye. To secure reliable evaluations, several professionals were 

involved, working together in a consensus based approach. We acknowledge that 

other investigators could have found nuances in the laryngeal observations not 

emphasized by us. In the future, specifically designed tracking tools (algorithms to 

detect certain responses) of video recordings could theoretically be developed to 

assess the observations more objectively. Formal tests of reliability and validity 

should be performed in future studies.  

6.1.7 Functional value of the observed laryngeal closure 

Both insufflating and exsufflating the lungs require an adequately sized laryngeal 

inlet,44 and it is reasonable to assume that visually observed laryngeal adductions or 

even closures, are associated with corresponding obstructions to airflow and thus 

influence the efficiency of the MI-E treatment. However, we do not in fact know to 

what extent the laryngeal adductions observed during MI-E influences the airflow. 

This represents an important functional issue that was not addressed during the work 

with this thesis. Measurement of the airflow synchronized to the TFL examinations, 

could definitely shed light on these issues. Measurement of airflow near the facial 

mask has been used to measure upper airway obstruction during sleep, where reduced 

flow indicates upper airway obstruction.209,210 Airflow curves have been constructed 

to monitor physiological effects in studies on MI-E.119,155,211 Lacombe et al. presented 

an airflow profile curve obtained from a neuromuscular patient during coughing 

while being supported by MI-E cycles. By interpreting the flow changes on the curve, 

they marked laryngeal movements on this visual MI-E airflow profile curve.211 Their 



 

 

 

description of laryngeal movements is of course hypothetical since they did not 

directly observe the larynx, but relevant for our findings. Simultaneous monitoring of 

the airflow curve and visualization of the larynx during MI-E could reveal more 

information about the functional outcomes of TFL and potentially add validity to our 

results, and should be targeted in future research. We did collect data that can be used 

to construct airflow curves, but these issues were not addressed in the present studies 

but will be in the near future. 

6.2 Ethical considerations 

We need to perform clinical research in order to understand and to advance our 

management of diseases that affect quality of life, cause pain, suffering or death.212 In 

the present thesis, both the included patients (with a fatal disease) and the 

examination method (of TFL used during MI-E) requires ethical considerations.212  

6.2.1 Research projects including ALS patients 

Relevance 

ALS patients are vulnerable, facing a fatal disease which severely limits their life 

expectancy. Clinical research performed in such patients must be extraordinary well 

designed and should preferably also include elements that aim to improve the daily 

care of the participants.212  

The main focus of the present study was to improve daily respiratory care of patients 

with ALS. Accumulation of mucus without the ability to cough is a huge 

psychological burden that massively and negatively impacts quality of life. 

Additionally, it may cause pneumonia - the main cause of death in ALS. Airway 

clearance therapy with MI-E has empirically proved effective in several other 

neuromuscular disorders, however is challenging in ALS patients; therefore it was 

important to investigate these issues.  
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Informed consent 

Researchers whose study participants are terminally ill or very sick people must give 

extraordinary careful attention to the informed consent process in their research 

protocols as well as in their conduct and behaviour when interacting with eligible 

patients.212 In the present study, all eligible patients received both verbal and written 

information about the study and a signed consent was required before inclusion. 

Although ALS is a neurological disease affecting also parts of the brain, the 

intellectual capacity of those affected is not influenced, unless they have 

frontotemporal dementia which is rare and also was one of the study exclusion 

criteria.4 In the present study we carefully pointed out in a balanced way potential 

inconveniencies and disadvantages as well as potential advantages. We also 

emphasized that declining to participate would not in any way influence their 

treatment, and that knowledge gained from the study potentially could improve 

treatment, and would be made available also to them - to the extent possible. Patients 

had at least a week to think about participation, which prevented a rushed consent. 

It is our opinion that eligible patients were carefully and conscientiously approached 

and informed about the ‘pros and cons’ of participation, and that patients for whom 

participation was perceived to involve some form of extra challenge were excluded. 

Desperation and dependencies 

The project manager worked as a respiratory physiotherapist at the ALS outpatient 

clinic at study initiation, and thus had a therapist-patient relationship with several of 

the eligible patients. This raised particular issues and concerns, as eligible patients 

may have been willing to join the research project because they perceived themselves 

as being in a dependent position, they may have been extraordinary primed to 

participate, or they may have been extraordinary anxious or even desperate to have 

the best available treatment, even for a highly distant prospect of personal benefit.212 

To prevent this, we were clear that declining participation would not affect the 

regular treatment at the out-patient clinic. Still, we experienced that patients familiar 

with MI-E treatment were particularly eager to participate, similar to patients with 

already developed bulbar symptoms. Consequently, warnings against unrealistic 



 

 

 

expectations for own personal gains from participation were warranted.212 Prior to the 

examinations, many of the included patients expressed that if they did not get any 

direct benefit for themselves, they wanted to improve the treatment of other patients 

with the same disease. 

It turned out that patients participating in the study in fact did get individual benefits 

from the TFL examinations by more adequately and individually adjusted MI-E 

settings due to an understanding of their laryngeal responses that would not otherwise 

have been possible. Some of them also extended their use of MI-E, and potentially 

extended the use of NIV because of more successful non-invasive airway clearance.  

In retrospect, it is our overall (humble) opinion that the study subjects participated 

because of a personal interest in the topic, and that their participation resulted in 

individual benefits for most of them. The use of their ‘end-of-life time’ to take part in 

the study examinations was considered meaningful and also had a clinical benefit. 

6.2.2 Examination with TFL  

TFL is well-tolerated, though it is an invasive procedure which may feel unpleasant, 

as the laryngoscope is introduced through the nose and upper airways. Our research 

group has extensive expertise in the use of TFL in a wide variety of circumstances, 

patient and age groups, and considered participation safe with minimal risks and 

relatively few nuisances. This view was supported by the present study, in that only 

two out of 20 patients enrolled in the cross sectional Study #II actively declined to 

enrol also in the longitudinal Study #III and only one of them gave as their reason as 

‘discomfort during the examinations’. This patient expressed that the discomfort was 

mainly related to the use of MI-E, which was unfamiliar for her, and not to the TFL 

per se.  

To secure that TFL during MI-E with ALS patients was possible, we initially 

examined healthy individuals to increase our competence (Study #I). Skilled 

otolaryngologists or pediatricians who perform laryngoscopy routinely (every 

day/week), performed the procedure. We continuously explained the procedure to the 
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patient, and asked for feedback between procedures. The positive and negative 

pressures used during the test procedures with the MI-E were increased gradually, 

providing the subject with the necessary time to get familiar with the in- and 

exsufflations; similar to the MI-E pressure titration they are used to in their daily 

clinical use of this device. If the patient expressed any signs of discomfort, the 

procedure was stopped, and higher pressures were not applied. The intervention with 

new MI-E settings was used in the same way as we would have done without this 

study; i.e. the use of MI-E was reduced and eventually stopped when treatment 

tolerance decreased clinically. The TFL was performed as gently as possible, and 

under careful observation. Ethical aspects were a continual focus.  

Before commencing on Studies #II and #III, we considered potential risks and 

discomfort to the participants to be minor when compared to the potential clinical 

gains for the individual participating patients, and the potential clinical gains for 

future ALS patients due to knowledge obtained from this study. In retrospect, it is our 

(humble) opinion that these reflections, made in advance, were in fact fulfilled. 

6.3 Discussion of the main findings of the study 

This study revealed inspiratory adduction of supraglottic structures during 

insufflation in patients with bulbar ALS, the opposite of the inspiratory abduction 

observed in non-bulbar patients and in healthy controls. This might explain treatment 

failures in bulbar ALS. The compromised size of the laryngeal inlet obstructs the 

inspiratory airflow from the MI-E, resulting in poor filling of the lungs during the 

first phase of cough. With disease progression, supraglottic inspiratory adduction 

appeared in spinal onset ALS patients before the evolvement of other bulbar signs 

and symptoms. Generally, the cough during MI-E altered with disease progression, 

and became slower, less expulsive and desynchronized. Individually customized 

settings seemed to promote more optimal laryngeal response patterns to MI-E. Our 

findings may benefit vulnerable patients through better handling of their daily 

respiratory treatment.  



 

 

 

6.3.1 Inspiratory closure 

Contradicting previous suggestions that upper airway collapse during exsufflation 

should explain MI-E inefficacy in ALS patients,141 our results suggest that the 

application of insufflation is the principle challenge, especially when bulbar 

dysfunction is present. Conceivably, the observed adduction prevents lung 

insufflation and leads to inadequate filling up of the lungs; a situation that will 

compromise attempts to assist the expiratory phase of cough through exsufflation, 

and thus lead to inefficient MI-E. However, the larynx is a highly complex organ that 

integrates a number of vital functions44-47 and similarly, ALS is a complex disease 

involving several mechanisms.6 Thus, inefficient MI-E in these patients is likely to be 

multifactorial and also vary between patients, and the relatively simple causal chain 

suggested above needs to be elaborated and substantiated by further and more 

comprehensive physiological study. Functional loss in ALS is often explained by the 

loss of motor control and strength,11,213 and more recently by laryngeal sensory 

insufficiency.87 Since ALS affects motor neurons in the brain and spinal cord, both 

afferent and efferent innervation may play a part in the adverse laryngeal response 

patterns during MI-E in these patients. In the following paragraphs, these aspects are 

discussed. 

Aerodynamics 

The aryepiglottic folds are relatively soft structures that are only provided with 

scattered muscle fibres. Therefore, adduction at the supraglottic level could, 

theoretically, be explained by the Bernoulli principle, i.e., increasing flows generating 

increasing negative pressures inside the laryngeal lumen, sucking the laryngeal 

structures inwards.70 This mechanism may conceivably be particularly important in 

progressive bulbar ALS characterised predominantly by hypotonic paresis.  

The Bernoulli principle may also play a role in epiglottic retroversion during 

insufflation. A retroflex floppy epiglottis has previously been described in ALS by  

Ito et al. in two patients during regular inspiration.187 The epiglottis has also been 

shown to be pressed into the laryngeal inlet by the positive pressures applied when 
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continuous positive airway pressure (CPAP) is used to treat patients with obstructive 

sleep apnoea214 and in patients with multiple system atrophy.72 Considerably higher 

pressures are applied when using MI-E than in these CPAP studies; i.e. pressures of 

20-50 cmH2O compared to 4-7 cmH2O, a factor that makes the Bernoulli principle 

even more relevant. 

Motor control and strength 

The size of the opening of the larynx is determined by a balance of forces between 

the abductor and adductor muscles. This balance can be influenced and disturbed by 

weakness of abductor muscles or increased activity of adductor muscles or vice versa. 

Essentially, the larynx has several small intrinsic adductors,54 but only one abductor 

muscle. Several vital laryngeal functions involve occlusion,58,59 and it has therefore 

been suggested that adductive movements by nature are dominant to abductive 

movements. This may be relevant for the findings of the present study; we found 

dominant adductive laryngeal movements in all patients with ALS compared to the 

healthy controls. Our results are supported by comparable findings from TFL 

examinations in other ALS patients. Polkey et al. reported two patients with bulbar 

dysfunction as having true vocal fold closure during both rapid spontaneous 

inspiration and expiration. Their interpretation was that this could be due to laryngeal 

abductor weakness, and suggested that when the weakness extends beyond a critical 

level, this may limit these patients ability to cough effectively.90 Van der Graaf et al. 

described true vocal fold dysfunction with abduction weakness, paresis or 

laryngospasm in four patients with different disease courses (both limb and bulbar 

onset). After needle myography examination, the authors suggested that this was a 

result of both over activity of the adductors, and signs of re-innervation in the 

abductors.188 Both these observations and our findings suggest that the motor deficit 

of intrinsic laryngeal muscles becomes weaker in ALS and that adductive movement 

becomes superior to the abduction. 

Sensory insufficiency  

Afferent activation in the larynx influences motor patterns.52 In ALS, applied MI-E 

pressures may provoke reflex laryngeal adduction or swallowing. Stimulation of 



 

 

 

extremely sensitive supraglottic receptors normally induces complex adductor 

reflexes that prevent foreign bodies from entering the airways.54 This reflex circuit 

may be hypo- or hyper-responsive or dysregulated in ALS patients,87 and therefore 

lead to inappropriate laryngeal closure, comparable to observations made in patients 

with Parkinson’s disease or brainstem compression.215,216 In fact, stimulation with 

positive air pressures has been used by otolaryngologists to provoke laryngeal reflex 

activities leading to both laryngeal closure and swallowing.52,217,218 Positive pressure 

to the mucosa in the laryngeal vestibule activates afferents in the internal branch of 

the superior laryngeal nerve, releasing the laryngeal closure reflex.217 Positive air 

pressure to the anterior facial area in the oral cavity activates glossopharyngeal 

afferents and elicit swallowing.218 Amin et al. used positive pressure sensory testing 

(up to 14 cmH2O) in combination with TFL to provoke swallowing in 22 ALS 

patients. More than half of these cases demonstrated abnormal laryngeal sensitivity.86 

The therapeutic use of positive pressures has previously been reported to provoke 

laryngeal narrowing. Jounieaux et al. revealed with laryngoscopic evaluation that 

positive pressure ventilation in healthy and awake subjects tended to result in 

progressive glottic narrowing, increasing the inspiratory resistance and thereby 

progressively reducing the fraction of air delivered to the lungs.219 This was further 

aggravated during stable sleep stage, and even more during a deep sleep stage.220 

Delguste et al. reported complete upper airway obstruction in association with NIV-

induced hypocapnia. The authors suggested that the use of positive pressure devices 

to extreme hyperventilation may increase the upper airway resistance and further 

proceed to a complete closure.221  

These studies support the view that therapeutic positive pressures applied by MI-E 

may provoke afferent responses that may lead to adverse laryngeal adduction that 

prevents airflow from entering the lungs. The observation made in the present study 

that positive pressures triggered swallowing, support the notion that laryngeal 

adduction during MI-E may be reflex mediated and linked to afferent activation. 
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Type of muscular paresis 

The type of muscle paresis may influence the laryngeal responses to MI-E. Motor 

innervation of the larynx is complex and only partially understood.60,61 In ALS, both 

upper and lower motor neuron failure is possible, as are spastic or hypotonic 

muscular responses. Differences in the two subtypes of bulbar ALS may influence 

laryngeal response patterns to MI-E.8-10  The observations made in Study #II 

indicated that in pseudobulbar ALS, laryngeal adduction occurs mainly at the glottic 

level. Due to small numbers of subjects, we were unable to separate predominant 

problems in hypotonic progressive bulbar palsy and hypertonic pseudobulbar 

patients. To our knowledge, these aspects are previously only examined in 

swallowing, but not during cough. Ertekin et al. examined swallowing in a 

heterogenic sample of 43 patients with ALS by electromyography. They found that 

the motor control of swallowing was disturbed, and indicated that hypo- or hyper 

reflexive states in the involved muscles could explain the findings. The analyses were 

unfortunately did not take into consideration bulbar symptoms or the type of bulbar 

symptoms, but focused on dysphagia.213 

ALS affects both corticobulbar and corticospinal pathways, both crucial for voluntary 

efforts.7 In patients with pseudobulbar paresis, patients are unable to perform forced 

manoeuvres (such as cough on command); however, reflex-induced cough may be 

preserved. Clinically, reduced coordination of laryngeal muscles will predispose the 

individual to the risk of choking and pulmonary aspiration.43,222 It seems reasonable 

to suggest that MI-E more easily triggers laryngeal adductor reflexes in a disease that 

is predominantly spastic. 

To conclude, MI-E can theoretically provoke a variety of responses at the laryngeal 

level in patients with ALS, which are capable of precluding non-invasive respiratory 

treatment efficacy. MI-E pressure application can lead to a disturbed balance between 

the forces that regulate the size of the laryngeal lumen, such as physical and 

aerodynamic forces relating to flow itself, muscle balances and reflex mechanisms. 

The present study was not set up to explain or disentangle these causal pathways. 

They are likely to be multifactorial, involving motor control and strength, sensory 



 

 

 

insufficiency or abnormality, and aerodynamics in the larynx. These issues are 

important to investigate in order to understand how we can expand on the therapeutic 

alternatives that are available to these vulnerable patients. 

6.3.2 Laryngeal responses in disease progression 

Laryngeal responses evolves 

As ALS progresses, also laryngeal responses evolve. Although longitudinal studies 

that include laryngeal examinations are lacking in ALS; laryngeal dysfunction has 

been suggested to occur both before and after the onset of other bulbar 

symptoms.45,188 Van der Graaf et al. suggested that ALS patients with adequate vital 

capacity are at risk of glottic narrowing, and that vocal cord dysfunction in ALS is 

not always related to major bulbar involvement.188  

The findings in the present longitudinal follow-up support this viewpoint. The larynx 

failed to respond adequately to externally applied positive pressures before this could 

be predicted by other signs generally used to signal bulbar involvement. Except from 

our Study #III, only one study has been published to date examining dysphagia with 

video fluoroscopy in ALS patients during disease progression. Higo et al. reported 

that parts of the swallowing movements slowed with disease progression. The authors 

suggested that this slowness of swallowing was mainly associated with tongue 

weakness.223 Also inappropriate true vocal fold motion has been a feature of the 

disease, observed by laryngoscopic examination even in spinal onset ALS - without 

other clinical bulbar signs. In that a cross-sectional study Tomik et al. found that the 

function of true vocal folds was abnormal in both bulbar and limb onset ALS.78 Both 

the studies of van der Graaf, Tomik et al. and Higo et al., in addition to the present 

Study #III, concur that laryngological examination may reveal early signs of vagus 

nerve involvement, and demonstrate “preclinical” bulbar failure in ALS. Thus, in 

respiratory management of ALS patients one should be aware that the larynx may 

exhibit unexpected and adverse performance before other clinical signs of bulbar 

involvement. 



 84

Age 

Age of the patient may be a factor to consider when investigating the use of MI-E to 

assist cough. ALS patients are usually older than other neuromuscular patients who 

need to use a cough assist device. Age affects both strength and speed of the muscles 

that are involved in the cough process,224 and the lungs, thorax and glottis are affected 

by age related structural alterations.225 Expiratory strength is reduced, which affects 

the peak cough flow and relationship between two cough spikes.226,227 Also 

swallowing is influenced by the normal aging processes; swallowing slows with 

advancing age, which is a consequence of the initiation of the movements in the 

larynx and pharynx become slower.64,192 The sensitivity to trigger cough decreases 

and the risk of aspiration is increased in elderly people.225,228  

The implication of age on laryngeal responses to cough assist devices should be 

investigated further; e.g. by comparing the findings from the two control groups of 

the present study. 

Cough alters in ALS 

Study #III shows us that cough alters with disease progression in ALS, becoming less 

expulsive and less synchronized, more rigid and slower. Presumably, this is related to 

a gradual loss of adequate cough flow spikes and lower peak cough flows. Previous 

studies that have measured airflow have described this development. Chaudri et al. 

demonstrated that bulbar ALS patients were unable to generate cough airflow spikes, 

contributing to their ineffective cough.123 Polkey et al. also observed an inability to 

generate cough airflow spikes in patients with severe bulbar ALS and severe 

abdominal muscle weakness. The authors suggested that bulbar ALS patients are 

unable to achieve the necessary dynamic airway compression, and thus perform a 

huff instead of a cough. This may be related to muscular weakness and reduced 

glottic closure during cough maneuvers in ALS.90 It has been suggested that 

diaphragmatic muscular force is involved in generating the expulsive force of cough, 

and ALS disease progression will eventually affect also diaphragmatic regulation.43  

Inadequate dynamic airway compression, gradual loss of cough airflow spikes and 

lower peak cough flow combined with dysregulation of laryngeal muscles will 



 

 

 

eventually all contribute to development of ineffective cough in all patients with 

ALS. Given the heterogeneous nature of ALS, it seems fairly evident that this 

development must be complex and multifactorial, and that the causal chain is clearly 

insufficiently understood and also probably differs between patients. Therefore, 

cough clearance techniques must be individualized and tailored to the development of 

each and every patient, preferably based on objective information. In our view, the 

suggestions put forward in the present study - that laryngoscopy is performed during 

cough assist devices testing - seems reasonable. 

Swallowing during MI-E 

Reflex triggering of swallowing may further complicate altered cough in ALS, as it 

might lead to aspiration. In ALS, swallowing is altered: patients swallow lower 

volumes with prolonged apnoeic pauses. Swallowing may also be followed by an 

inspiration, increasing the risk of aspiration. This contrasts normal swallowing, where 

the epiglottis covers the laryngeal inlet with an apnoeic pause of 0.6-2.0 seconds, and 

is followed by expiration. As a result of the order in which muscles are affected, 

swallowing difficulties are one of the earliest complaints reported by patients 

manifesting bulbar ALS84 and swallowing is described to be most disturbed in 

pseudobulbar ALS.45 

Why MI-E triggers swallowing can be related to laryngeal afferent activation as 

discussed previously. In addition, both backward movement of the tongue base and 

retroflex movement of the epiglottis were frequent findings during insufflation and 

could potentially induce swallowing. In ALS, tongue muscle insufficiency is 

suggested to cause swallowing problems.85 In Study #III, retroflex movement of the 

epiglottis during insufflation could trigger swallowing and thus severely disturb 

timing and synchronizing of coughing. This can be related to the fact that the surface 

of the epiglottis is densely innervated by afferent fibres229 which might contribute to 

activation of afferent loops of reflex arcs as ALS progresses. Still, the retroflex 

movement of epiglottis was clearly not triggering swallowing in healthy subjects 

even it was frequently observed in several healthy controls both in Study #I and 
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Study #II; thus, these mechanisms may have a more important role in progressing 

ALS.  

To conclude, progressing ALS leads to disorganized laryngeal functions. Respiratory 

therapy in these patients therefore requires approaches that might differ from those 

applied in patients with other neuromuscular disorders without involvement of 

muscles with bulbar innervation. This study has indicated that when mechanical 

cough assist devices are used, great care must be taken to avoid applying pressures 

and cough cycles that the patients´ larynx is unable to handle, and that treatment 

needs to be individualized, preferably based on objective measures. Currently, in our 

opinion, direct laryngeal visualization during treatment is the best approach in 

challenging patients. This approach might be feasible also when titrating NIV for 

challenging ALS patients.222,230 

6.3.3 Individually customized MI-E therapy 

As dynamic collapse during exsufflation was previously thought to be the reason for 

ineffectiveness of MI-E in ALS, Kang and Bach suggested that ALS patients with 

bulbar dysfunction instead would benefit from a single deep insufflation combined 

with an abdominal thrust applied during the expulsive phase of cough.138,231 We 

included this intervention in our protocol. However, it seemed to be useless. Instead, 

and based on observations made in the present study, we developed a protocol for 

MI-E titration that should prevent inspiratory closure during insufflation. Figure 9 is 

a suggested algorithm for how to adjust MI-E settings based on observations in Study 

#II. 



 

 

 

 

Figure 9. A practical algorithm suggesting how to adjust the settings of MI-

E when used to treat ALS patients for airway secretion clearance problems. 

MI-E=Mechanical insufflation-exsufflation, ENT=Ear-Nose-Throat. 

Reproduced with permission from Thorax. Andersen et al.232 

Asymmetrical pressure settings 

We found that asymmetrical settings with lower insufflation pressures and flows 

appeared to be beneficial. To our knowledge, this is novel and has not been examined 

systematically in other studies including in ALS patients. Until recently, high 

symmetrical MI-E pressure settings have generally been considered to be most 

effective for neuromuscular patients,170,175 and most studies and clinicians apply 

settings of 40cmH2O or higher both for insufflation and for exsufflation.131,176,233 We 

showed in Study #I that this symmetrical approach could lead to hypopharyngeal 

constriction during exsufflation in healthy medical students, indicating that this 

phenomenon alone could not explain treatment failure with bulbar ALS. Results of 
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Study #II revealed that ALS patients with bulbar affection tended to close 

supraglottic structures during insufflation, and indicated that high positive pressures 

were the most provocative. The results of Study #III supported the findings that high 

pressures were most provoking to the larynx in ALS, inciting laryngeal closure 

already prior to other clinical bulbar symptoms. These observations suggest that a 

“disorganized larynx” in bulbar ALS patients prevent adequate filling of the lungs 

with insufflation, due to laryngeal closure. Applying negative pressures after an 

unsuccessful insufflation is bound to create only discomfort and a vacuum in the 

upper airways, leading to laryngeal collapse.  

Hence, we ended up exploring whether use of modified MI-E settings could succeed 

in keeping the laryngeal inlet open during insufflation for a prolonged period of time 

in patients with deteriorating ALS: we used lower insufflation than exsufflation 

pressures combined with more careful use of low insufflation flows. This approach is 

further supported by previous data published by Mustfa et al; they found that 

exsufflation alone could produce higher peak cough flow in bulbar ALS than 

insufflation alone; however, they did not examine other asymmetrical pressure 

settings.143 Senent et al. used a ventilator in patients with ALS to show that use of a 

positive pressure of 30 cmH2O prior to cough in fact produced higher peak cough 

flow than was achieved by using MI-E with ±40cmH2O.151 In Study #III we found 

further evidence suggesting that hypopharyngeal constriction occurred later in disease 

progression than laryngeal adduction during insufflation, thus supporting the theory 

that inability to fill the lungs with insufflation can create a vacuum-effect during 

subsequent exsufflation, and thereby aggravate hypopharyngeal narrowing. This 

emphasizes the importance of keeping the larynx open during insufflation to achieve 

a sufficient insufflation volume prior to cough. Increasing the insufflation time 

instead of the insufflation pressure is probably more feasible in achieving sufficient 

insufflation volumes; supported by a bench study by Gomez-Merino et al. who 

demonstrated that increasing the insufflation time is more important for optimal peak 

cough flow that increasing the exsufflation time.175 These complex relationships may 

explain the diverging results that are reported from studies of bulbar ALS patients, 

where MI-E have been shown both to fail141 and to succeed151,234 in producing the 



 

 

 

peak cough flow considered necessary for effective cough.126 In our opinion, too high 

insufflation pressures seem to be counterproductive as they might lead to laryngeal 

closure and thereby lower instead of increased insufflation volumes. 

MI-E cycle tailoring 

Rapid MI-E cycles may be challenging or impossible to handle for patients with ALS. 

It seems reasonable that successful MI-E requires that the larynx is "reset" after 

exsufflation and that possible swallowing or closure reflexes have been brought to an 

end before the next insufflation. An increased time interval between exsufflation and 

insufflation, or the use of only one cough cycle at a time, might thus be more 

appropriate to prepare the larynx for the next insufflation. These findings are highly 

explorative - for obvious reasons. However, they represent an attempt to address 

these matters with verifiable methods and outcomes, and should be the subject of 

future research. Given the changing and progressive nature of ALS with development 

of laryngeal responses being particularly difficult to predict, direct inspection of the 

larynx during ongoing treatment appears to be a simple and reasonable approach in 

patients with signs or symptoms suggesting treatment failure.   

6.4 Clinical implications  

The results of the present thesis potentially have direct clinical implications on how 

airway clearance therapy should be performed in patients with ALS. As alluded to by 

Simonds; patients with bulbar ALS may not have failed their MI-E therapy, but 

instead the previous therapy may in fact have failed the patients, due to erroneously 

applied settings.222 With the present studies we have achieved a better understanding 

of the laryngeal response patterns to MI-E in the various phenotypes of ALS, and we 

have been able to observe how these patterns evolve as the disease progresses. This 

study helped us - in our clinic - to establish better and individually tailored clinical 

respiratory treatment strategies for our participating patients, and we argue that our 

approach can successfully be applied also for patients with ALS in general. 
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Individually adjusted settings, carefully applied as patients deteriorate, may prevent 

adduction of laryngeal structures during insufflation, and thus prolong the period of 

successful non-invasive use of MI-E.  

A similar approach may also be appropriate when performing “start-up titration” of 

NIV settings; high inspiratory pressures may generate airway closure and therefore 

pressure should be gently titrated upwards.222 If problems are encountered, 

laryngoscopy can be a valuable tool in this process. This has already been preliminary 

reported by Farrero et al.; they adjusted ventilation parameters with the goal of 

achieving comfort for their patients in addition to adequate ventilation, and reported 

that over 50% of bulbar patients were successfully initiated on NIV. The authors 

attribute their success to a less “nihilistic attitude”, in-patient initiation, and overnight 

adaptation of settings.107 As alluded to before, therapeutic use of laryngoscopy may 

be a useful tool also during NIV titration, as suggested by the studies of Sayas 

Catalàn et al.207 and Georges et al.208 

In order to avoid bothersome, futile or even counterproductive handling of these 

vulnerable patients, we need proper and feasible methods that ensure optimal and 

extended use of non-invasive respiratory treatment. Various measures of lung 

function have also been suggested to this end.134,140,235 Additionally, various 

neurological scoring systems and clinical signs that indicate bulbar involvement are 

used as signals to execute caution. By observing medial collapse of laryngeal 

structures during insufflation before the appearance of these bulbar signs and 

symptoms, this thesis certainly questions their usefulness, and instead suggests direct 

assessment of the organ in question; i.e. the larynx of patients who are difficult to 

treat. Hence, TFL can be a valuable tool for a variety of respiratory therapeutic 

interventions in selected patients who do not respond as expected. 

There are no guidelines for the timing of tracheostomy, if that is a desired approach in 

a patient with ALS.106 The present study has provided data that may benefit ALS 

patients in that non-invasive treatment can be prolonged, potentially postponing the 

need to consider tracheostomy. However, both the decision whether or not to perform 



 

 

 

tracheostomy, and to optimize its timing, are exceedingly complex ethical and 

clinical issues that we did not set out to address in this thesis. 

6.5 Future prospects 

To examine functional outcomes of laryngeal adverse responses to MI-E by 

monitoring the airflow curve in parallel with TFL examination. 

To study if asymmetrical treatment pressures are effective in ALS. 

To develop and examine other outcome measures than peak cough flow for ALS 

patients that can be used to study the efficacy of MI-E or other cough augmentation 

techniques. 

To examine if therapeutic video recorded laryngoscopy can be beneficial in NIV 

titration in patients with ALS.  

To validate the findings of the present study in other and preferably larger patient 

populations. 

To investigate further causal pathways of laryngeal responses to MI-E in larger 

patient populations. 
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7. Conclusions 

In this thesis we have shown that video-recorded flexible laryngoscopy is a feasible 

method to characterize laryngeal responses throughout an MI-E protocol applied to 

assist cough in healthy individuals, in the various phenotypes of ALS, and throughout 

typical ALS disease progression. Laryngeal movements during MI-E in healthy 

individuals were found to be mainly as described for normal cough. We have 

concluded that treatment failure with MI-E in ALS patients with bulbar symptoms is 

likely to be caused primarily by laryngeal adduction during insufflation, 

predominantly at the supraglottic level. This response precludes air-filling of the 

lungs during insufflation, causing discomfort and subsequent inefficient exsufflation. 

In disease progression, this occurred prior to the development of clinically evident 

signs of bulbar involvement. Cough patterns at the laryngeal level altered in ALS as 

the disease progressed, and became less synchronized with the MI-E. Reflex 

triggering of swallowing by positive air pressures applied by the MI-E could further 

complicate these matters and rapid MI-E cycles can be challenging or impossible to 

handle for patients with ALS. Individually tailored MI-E treatment can improve - and 

may possible extend - the use of non-invasive MI-E in ALS. TFL may prove an 

efficient tool assessing patients whose laryngeal responses to treatment are suspected 

to complicate the MI-E treatment. 
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9. APPENDIX 

  



 

 

Forespørsel om deltakelse i forskningsprosjektet 
 
 
 

Kartlegging og oppfølging av strupens funksjon  
hos personer med Amyotrofisk lateral sclerose (ALS) 

 
 
 

Bakgrunn og hensikt med denne studien 
 
Dette er et spørsmål til deg om å delta som frisk kontroll i en forskningsstudie som skal kartlegge 
hva som skjer i strupen hos pasienter med Amyotrofisk Lateral Sclerose (ALS) når de puster og 
hoster - og spesielt når de bruker en såkalt ”hostemaskin”. Vi tror at strupen kan være et viktig 
hinder for god hostefunksjon og derved et hinder for å få opp slim fra lungene hos disse 
pasientene. Dette er uheldig for pasienter med ALS og derfor viktig å undersøke nærmere.  
 
Tolkning av resultater fra undersøkelser av pasienter med ALS må baseres på sammenligning med 
tilsvarende undersøkelse av friske personer (kontroller). Derfor vil vi også kontakte friske voksne 
med spørsmål om å delta i et tilsvarende undersøkelsesprogram. Resultatene fra undersøkelsene 
av kontrollene vil bli sammenlignet med resultatene fra de som har diagnosen ALS. 
 
Ca 200-300 personer har ALS i Norge. Det er en sykdom som rammer hjernen og ryggmargen og som 
etterhvert leder til problemer bl.a. med å hoste og puste på grunn av svekkelse av muskulatur i bryst, 
tunge og hals. Behandling av ALS tar sikte på å opprettholde eller forbedre livskvaliteten lengst mulig.  
 
Hostemaskin er et hjelpemiddel til å få opp slim fra luftveiene. Den virker ved at luft først forsiktig 
blåses inn i lungene og deretter suges ut sammen med slim fra de sentrale luftveiene. Vi opplever at 
flere ALS pasienter får god hjelp av hostemaskinen, mens den fungerer dårligere hos andre. Vi tror at 
hindringen kan ligge i strupen, men dette har ikke blitt undersøkt tidligere. 
 
Målet med denne studien er å kartlegge strupens funksjon hos ALS pasienter over tid gjennom 
undersøkelser ved de regelmessige polikliniske kontrollene ved Haukeland Universitetssykehus 
(HUS). Bedre kunnskap på dette området kan bidra til bedre og mer individuelt tilpasset behandling 
hos pasienter med ALS. Dette vil kunne forbedre kvaliteten på behandlingen, også hos pasientene 
som deltar i denne aktuelle studien. Vi ønsker å lære av våre erfaringer slik at de kan bli til nytte også 
for andre pasienter. Derfor utføres undersøkelsene systematisk og innenfor rammene av en 
forskningsstudie. Forespørsel om deltagelse i denne studien er sendt til alle pasienter som er 
tilknyttet ALS klinikken på HUS.  
 
 
Deltagelsen av friske kontroller innebærer  

- Kartlegging av lungefunksjon. 
- Inspeksjon av strupen med laryngoskopi mens hostemaskin blir testet ut med forskjellige 

innstillinger. Laryngoskopi betyr inspeksjon av strupen ved hjelp av en myk slange med 
kamera som føres forsiktig inn gjennom nesen slik at man kan kikke ned på stemmebåndene. 
Undersøkelsen utføres rutinemessig mange ganger daglig ved sykehuset. Kamera gjør 
videoopptak av strupen som kan studeres etterpå. 

 
Undersøkelsene utføres poliklinisk på en time avtalt sammen med deg.  
 

titu
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Mulige fordeler og ulemper 
Alle undersøkelser er trygge. Inspeksjon av strupen kan medføre ubehag ved neseskilleveggen og en 
følelse av kiling i halsen. For å redusere ubehaget vil neseslimhinnen behandles med vanlig nesespray 
som brukes ved forkjølelse, og deretter lokalbedøves ved hjelp av en gel (Xylocain®). Undersøkelsen 
utføres av en lege som utfører denne type undersøkelser av både barn og voksne med spørsmål om 
sykdommer i øvre luftveier.  
 
 
Hva skjer med informasjonen om deg?  
Informasjonen som registreres om deg skal kun brukes slik som beskrevet i hensikten med studien, 
dvs til å øke forståelsen vår for hva som skjer i strupen hos pasienter med ALS når de puster og 
hoster og bruker hostemaskin. Alle opplysningene og resultatene fra undersøkelsene vil i en 
forskningssammenheng bli behandlet uten navn og fødselsnummer eller andre direkte 
gjenkjennende opplysninger. En kode knytter deg til dine opplysninger og resultater gjennom en 
navneliste. Det er kun personer knyttet til prosjektet som har adgang til denne navnelisten og som 
kan finne tilbake til deg. Alle som får innsyn i opplysninger har taushetsplikt. Det vil ikke være mulig å 
identifisere deg i resultatene fra studien når disse publiseres.  
 
 
Frivillig deltakelse 
Det er frivillig å delta i studien. Du kan når som helst og uten å oppgi noen grunn trekke ditt samtykke 
til å delta i studien. Dersom du ønsker å delta, undertegner du samtykke erklæringen på siste side. 
Om du nå sier ja til å delta, kan du senere trekke tilbake ditt samtykke uten at det påvirker din øvrige 
behandling. Dersom du trekker deg fra studien, kan du kreve å få slettet innsamlede prøver og 
opplysninger, med mindre opplysningene allerede er inngått i analyser eller brukt i vitenskapelige 
publikasjoner.  
 
 
Mer informasjon om studiet kan du få ved henvendelse til: 
Tiina Andersen  
Spesialfysioterapeut  
Nasjonalt Kompetansesenter for hjemmerespiratorbehandling, HUS 
Tlf.  55 97 84 86 / 80 
Mob.  95 89 04 60 
E-post tiina.andersen@helse-bergen.no 
 
 
 
 
Det planlagte prosjektet er et samarbeidsprosjekt mellom 1Nasjonalt kompetansesenter for 
hjemmerespiratorbehandling, 2Lungeavdelingen, 3Neurologisk avdelingen, 4Øre Nese Hals avdeling, 
5Fysioterapiavdeling og 6Barneklinikken på Haukeland Universitetssykehus, 7Universitet i Bergen samt 
8Høgskolen i Bergen.  
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Forespørsel om deltakelse i forskningsprosjektet 
 

Kartlegging og oppfølging av strupens funksjon  
hos personer med Amyotrofisk lateral sclerose (ALS) 

 
Bakgrunn og hensikt 
Dette er et spørsmål til deg om å delta i en forskningsstudie som skal kartlegge hva som skjer i 
strupen hos pasienter med Amyotrofisk Lateral Sclerose (ALS) når de puster og hoster - og spesielt 
når de bruker en såkalt ”hostemaskin”. Vi tror at strupen kan være et viktig hinder for god 
hostefunksjon og derved et hinder for å få opp slim fra lungene. Dette er uheldig for pasienter med 
ALS og derfor viktig å undersøke nærmere.  
 
Ca 200-300 personer har ALS i Norge. Det er en sykdom som rammer hjernen og ryggmargen og som 
etterhvert leder til bl.a. problemer med å hoste og puste på grunn av svekkelse av muskulatur i bryst, 
tunge og hals. Behandling av ALS tar sikte på å opprettholde eller forbedre livskvaliteten lengst mulig.  
Hostemaskin er et hjelpemiddel til å få opp slim fra luftveiene. Den virker ved at luft først forsiktig 
blåses inn i lungene og deretter suges ut sammen med slim fra de sentrale luftveiene. Vi opplever at 
flere ALS pasienter får god hjelp av hostemaskinen, mens den fungerer dårligere hos andre. Vi tror at 
hindringen kan ligge i strupen, men dette har ikke blitt undersøkt tidligere. 
 
Målet med denne studien er å kartlegge strupens funksjon over tid gjennom undersøkelser ved de 
regelmessige polikliniske kontrollene ved ALS klinikken, Haukeland Universitetssykehus (HUS). Bedre 
kunnskap på dette området kan bidra til bedre og mer individuelt tilpasset behandling hos pasienter 
med ALS. Dette vil kunne forbedre kvaliteten på behandlingen, også hos pasientene som deltar i 
denne aktuelle studien. Vi ønsker å lære av våre erfaringer slik at de kan bli til nytte også for andre 
pasienter. Derfor utføres undersøkelsene systematisk og innenfor rammene av en forskningsstudie. 
Forespørsel om deltagelse i denne studien er sendt til alle pasienter som er tilknyttet ALS klinikken på 
HUS. Deltagelse innebærer stort sett bare undersøkelser som normalt uansett utføres ved ALS. 
 
Tolkning av resultater fra undersøkelser av pasienter med ALS må baseres på sammenligning med 
tilsvarende undersøkelse av friske personer (kontroller). Derfor vil vi også kontakte friske voksne med 
spørsmål om å delta i et tilsvarende undersøkelsesprogram. Resultatene fra undersøkelsene av 
kontrollene vil bli sammenlignet med resultatene fra de som har diagnosen ALS. 
 
Deltagelsen innebærer  
Første kartlegging: 

- Undersøkelse av en lege (spesialist i neurologi). 
- Kartlegging av lungefunksjon. 
- Inspeksjon av strupen med laryngoskopi mens man blir bedt om å gjøre enkle oppgaver som 

gir kunnskap om strupens funksjon. Hostemaskin blir testet ut med forskjellige innstillinger. 
Laryngoskopi betyr inspeksjon av strupen ved hjelp av en myk slange med kamera som føres 
forsiktig inn gjennom nesen slik at man kan kikke ned på stemmebåndene. Undersøkelsen 
utføres rutinemessig mange ganger daglig ved sykehuset. Kamera gjør videoopptak av 
strupen som kan studeres etterpå. 

- Spørreskjema om hoste og pustefunksjon og forhold knyttet til ALS og livskvalitet 
Oppfølging: 

- Kort inspeksjon av strupen mens man blir bedt om å gjøre enkle oppgaver tilsvarende den 
første undersøkelsen.  

- Oppfølging av funksjon i svelget, lungefunksjonen og sykdomsutviklingen. 
- Oppfølgende spørsmål fra spørreskjema om hoste og pustefunksjon og forhold knyttet til ALS 

og livskvalitet 
 
Inspeksjon av strupen første gang utføres poliklinisk på en time avtalt sammen med deg. De andre 
undersøkelser utføres når du har vanlige kontrolltimer ved ALS poliklinikken.  
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Mulige fordeler og ulemper 
Alle undersøkelser er trygge. Du vil få en grundig vurdering av hvorvidt hostemaskinen er et aktuelt 
hjelpemiddel for deg. Inspeksjon av strupen kan medføre ubehag ved neseskilleveggen og en følelse 
av kiling i halsen. For å redusere ubehaget vil neseslimhinnen behandles med vanlig nesespray som 
brukes ved forkjølelse, og deretter lokalbedøves ved hjelp av en gel (Xylocain®). Undersøkelsen 
utføres av en erfaren øre-nese-hals lege som utfører denne type undersøkelser daglig av både barn 
og voksne med spørsmål om sykdommer i øvre luftveier.  
 
Hva skjer med informasjonen om deg?  
Informasjonen som registreres om deg skal kun brukes slik som beskrevet i hensikten med studien, 
dvs til å øke forståelsen vår for hva som skjer i strupen hos pasienter med ALS når de puster og 
hoster og bruker hostemaskin. Alle opplysningene og resultatene fra undersøkelsene vil i en 
forskningssammenheng bli behandlet uten navn og fødselsnummer eller andre direkte 
gjenkjennende opplysninger. En kode knytter deg til dine opplysninger og resultater gjennom en 
navneliste. Det er kun personer knyttet til prosjektet som har adgang til denne navnelisten og som 
kan finne tilbake til deg. Alle som får innsyn i opplysninger har taushetsplikt. Det vil ikke være mulig å 
identifisere deg i resultatene fra studien når disse publiseres.  
 
Frivillig deltakelse 
Det er frivillig å delta i studien. Du kan når som helst og uten å oppgi noen grunn trekke ditt 
samtykke til å delta i studien. Dette vil ikke få konsekvenser for din videre behandling. Dersom du 
ønsker å delta, undertegner du samtykke erklæringen på siste side. Om du nå sier ja til å delta, kan 
du senere trekke tilbake ditt samtykke uten at det påvirker din øvrige behandling. Dersom du trekker 
deg fra studien, kan du kreve å få slettet innsamlede prøver og opplysninger, med mindre 
opplysningene allerede er inngått i analyser eller brukt i vitenskapelige publikasjoner.  
 
 
Mer informasjon om studiet kan du få ved henvendelse til: 
Tiina Andersen  
Spesialfysioterapeut  
Nasjonalt Kompetansesenter for hjemmerespiratorbehandling, HUS 
Tlf.  55 97 84 86 / 80 
Mob.  95 89 04 60 
E-post tiina.andersen@helse-bergen.no 
 
 
 
 
Det planlagte prosjektet er et samarbeidsprosjekt mellom 1Nasjonalt kompetansesenter for 
hjemmerespiratorbehandling, 2Lungeavdelingen, 3Neurologisk avdelingen, 4Øre Nese Hals avdeling, 
5Fysioterapiavdeling og 6Barneklinikken på Haukeland Universitetssykehus, 7Universitet i Bergen samt 
8Høgskolen i Bergen.  
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ABSTRACT
Background Most patients with amyotrophic lateral
sclerosis (ALS) are treated with mechanical insufflation–
exsufflation (MI-E) in order to improve cough. This
method often fails in ALS with bulbar involvement,
allegedly due to upper-airway malfunction. We have
studied this phenomenon in detail with laryngoscopy to
unravel information that could lead to better treatment.
Methods We conducted a cross-sectional study of 20
patients with ALS and 20 healthy age-matched and sex-
matched volunteers. We used video-recorded flexible
transnasal fibre-optic laryngoscopy during MI-E
undertaken according to a standardised protocol,
applying pressures of ±20 to ±50 cm H2O. Laryngeal
movements were assessed from video files. ALS type and
characteristics of upper and lower motor neuron
symptoms were determined.
Results At the supraglottic level, all patients with ALS
and bulbar symptoms (n=14) adducted their laryngeal
structures during insufflation. At the glottic level, initial
abduction followed by subsequent adduction was observed
in all patients with ALS during insufflation and exsufflation.
Hypopharyngeal constriction during exsufflation was
observed in all subjects, most prominently in patients with
ALS and bulbar symptoms. Healthy subjects and patients
with ALS and no bulbar symptoms (n=6) coordinated their
cough well during MI-E.
Conclusions Laryngoscopy during ongoing MI-E in
patients with ALS and bulbar symptoms revealed laryngeal
adduction especially during insufflation but also during
exsufflation, thereby severely compromising the size of the
laryngeal inlet in some patients. Individually customised
settings can prevent this and thereby improve and extend
the use of non-invasive MI-E.

INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is an incurable
and highly disabling neurodegenerative disease of
upper and lower motor neurons. Treatment is
largely symptomatic, and average life expectancy at
the time of the diagnosis is 2–3 years unless ventila-
tory assistance is provided.1

ALS is classified as ‘spinal’ if symptom onset
affects the limbs predominantly, and as ‘bulbar’ if
the disease presents with difficulty in speaking,
swallowing or coughing. Paresis to predominantly
upper motor neurons leads primarily to spasticity,

whereas paresis of lower motor neurons leads to
flaccidity.2 Regardless of the subtype, ALS pro-
gresses and eventually encompasses all skeletal
muscles.3 Involvement of respiratory muscles limits
respiratory function and cough, thereby leading to
secretion accumulation, lung infections and, even-
tually, respiratory failure.3–6 Effective augmentation
of cough is vital for clearance of airway secretions
in these patients and fundamental for the preven-
tion and treatment of pneumonias.6 7

In a voluntary cough, inspiratory muscles increase
the lung volume, laryngeal muscles coordinate
opening and closure of the glottis and expiratory
muscles increase the thoracoabdominal pressure.8

These interactions are disturbed in neuromuscular
disorders.7 9 Mechanical insufflation-exsufflation
(MI-E) is used widely to assist cough mechanically
by applying positive and negative pressure changes
to the airways, either non-invasively via a mask or
invasively via a tracheostomy.10 11 It has been
hypothesised that coordinated glottic movements are
required for MI-E to be effective.12 Non-invasive
MI-E can be difficult to apply in patients with the

Key messages

What is the key question?
▸ Mechanical insufflation–exsufflation (MI-E) is

an efficient tool used to improve cough in most
patients with neuromuscular disorders, but the
method often fails when bulbar involvement is
present.

What is the bottom line?
▸ We used laryngoscopy during ongoing MI-E

and saw that patients with bulbar amyotrophic
lateral sclerosis (ALS) were prone to adduct
laryngeal structures throughout the various
pressure cycles, thereby severely obstructing the
airflow and the effect of the treatment.

Why read on?
▸ In patients with bulbar ALS, cough assistance

with MI-E should be delivered carefully and
according to the criteria suggested in the
present study.
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bulbar subtype of ALS. This problem may be due to dysfunction
of bulbar-innervated muscles, but the basic mechanisms are not
understood.

The laryngeal response to MI-E in patients with ALS has
never been studied. Here, we investigated the laryngeal response
patterns to MI-E in ALS to improve the treatment that we can
offer to these severely ill patients.

METHODS
Neurological assessment and definitions
ALS was diagnosed by a senior neurologist (O-BT) in accord-
ance with the revised criteria set by the El Escorial World
Federation of Neurology.13 14 The disease was classified as
‘spinal ALS’, ‘ALS with progressive bulbar palsy’ (hypotonic
bulbar onset with dysarthria, tongue atrophy and absence of jaw
reflex) or ‘ALS with pseudobulbar palsy’ (spastic bulbar onset
with dysarthria, exaggerated jaw reflex and no tongue atrophy).
Patients were assessed using the ALS Functional Rating Scale-
revised (ALSFRS-r).15 Bulbar impairment score (BIS) was evalu-
ated from the ALSFRS-r, from where the items of speech and
swallowing were calculated.16 Dysphagia was determined using
the 100 mL water swallow test.17 18

Subjects
This was a cross-sectional observational population-based study
of 20 patients with ALS who had not undergone tracheostomy
and 20 neurologically healthy age-matched and sex-matched
controls. Exclusion criteria were age <18 years, history of laryn-
gospasm, sensitisation to Xylocain (anaesthetic used during
laryngoscopy), pneumothorax, additional lung disease, cancer,
acute infection of the chest 1 month before study commence-
ment and mental instability.

Approximately 20 patients with ALS who have not undergone
tracheostomy are usually enrolled at all times at the ALS clinic
at Haukeland University Hospital (Bergen, Norway), which
serves a population of ≈500 000 inhabitants. At the start of this
study, 17 patients were enrolled at the clinic and 20 new
patients were diagnosed and enrolled during the 1.5-year
recruitment period from December 2011 to June 2013. All 37
patients were informed about the study and invited to partici-
pate. Thirteen patients declined and four died soon after being
invited, leaving 20 participants. Reasons for non-participation
were severe disease/fatigue (n=7), or limb-onset ALS without
bulbar symptoms and, therefore, no interest in participation
(n=6). The study protocol was approved by the Regional
Committee for Medical Research Ethics. Written informed
consent was obtained from all participants.

Pulmonary function and respiratory strength
Spirometry was undertaken with a Vmax 22 Encore system
(SensorMedics, Yorba Linda, California, USA). FVC, FEV1 and
peak expiratory flow were measured seated, with a nose clip.
Slow vital capacity was measured with a Respirometer (nSpire
Health, Hertford, UK). Peak cough flow was measured using a
hand-held Peak Flow Meter (Vitalograph, Ennis, Ireland).
Plateau values (average of 1 s) of the maximal inspiratory (Pimax)
and expiratory (Pemax) muscle strength and sniff nasal inspira-
tory pressure (SNIP) were measured seated using a Respiratory
Pressure Meter (Micro RPM; Micro Medical, Rochester, UK).
SNIP was measured at functional residual capacity, Pimax at
residual volume and Pemax at total lung capacity. The highest
value from three or more attempts was selected for analyses and
standardised to predicted percentages.19–22

Video-recorded transnasal fibre-optic laryngoscopy during
MI-E
Video-recorded transnasal fibre-optic laryngoscopy (ENF-P3;
Olympus, Tokyo, Japan) was used to visualise laryngeal anatomy
at baseline and response patterns during MI-E (Cough Assist;
Respironics, Murrysville, Pennsylvania, USA). We used a set-up
described in detail previously, except that the laryngoscope was
supported manually (see online supplementary figure S1)
instead of using a customised headgear.23 A standardised MI-E
protocol was used.23 The protocol comprised 12 intervention
arms with various combinations of pressures, instructions and
manual thoracic thrust (see online supplementary table S2).

Pressures of ±20, ±30, ±40 and ±50 cm H2O were used
with specific instructions. For MI-E in automated mode with 2 s
insufflation, 2 s exsufflation and 1 s pause, the instructions were
to ‘inhale’ actively when insufflation was started and to (A)
‘exhale’ or (B) ‘cough’ actively when the device switched to
exsufflation. For MI in manual mode with 2 s insufflation fol-
lowed by manually assisted thoracic thrust, the instructions were
to ‘inhale’ actively when insufflation was started and to ‘cough’
actively during the thoracic thrust.

In case of patient discomfort, the procedure was stopped and
higher examination pressures were not applied.

Analyses of observations
Altogether, 480 recordings were scheduled for assessment, that
is, one recording from 12 intervention arms in 20 patients and
20 control subjects. With respect to assessment of observations,
MI-E cycles were edited into three phases of interest: (i) insuf-
flation, (ii) pressure drop (from positive to negative) and (iii)
active exsufflation or the voluntary cough with no negative pres-
sure applied. The onset and offset of each phase were observed
and defined from the parallel video recording of the MI-E man-
ometer.23 Video recordings were assessed systematically, as
described previously,23 by two trained raters (TA and AKB).
Main features were described at glottic, supraglottic and hypo-
pharyngeal levels (see online supplementary figure S3).
Laryngeal anatomy and motion at rest were evaluated by a
senior laryngologist ( J-HH).

Statistical analyses
The χ2 test, or Fisher’s exact test if expected cell counts were
less than five, were applied to assess differences between groups
with regard to categorical data. Background data were given as
group means with SDs. The number of subjects with the
described patterns of laryngeal movements during MI-E was
given as group counts and percentages. Statistical analyses were
conducted using SPSS V.21.0 (IBM, Armonk, USA). The two-
sided significance level was set at 0.05.

RESULTS
Patient characteristics
Of 20 participating patients with ALS, six had limb onset with
no bulbar symptoms and 14 had bulbar symptoms (table 1); of
these, seven had pseudobulbar (spastic) ALS and seven had pro-
gressive bulbar (hypotonic) ALS. Lung-function characteristics in
ALS were lower than predicted (table 1). In patients with pro-
gressive bulbar ALS, 4/7 subjects had an abnormal epiglottis:
three had a juvenile and high-standing epiglottis, and in one
patient the epiglottis was considered ‘floppy’. Retention of
secretions/sputum was observed in 4/7 patients with progressive
bulbar ALS, in 2/7 cases with pseudobulbar ALS, in 2/6 subjects
with non-bulbar ALS and in 1/20 healthy controls.
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Laryngeal response to MI-E
In total, 453 (94%) of 480 scheduled recordings were analysed.
Four patients with bulbar symptoms completed only parts of
the MI-E protocol due to discomfort from the applied pres-
sures, that is, one patient (progressive bulbar ALS) interrupted
the protocol after pressures of ±20 cm H2O (missing 9/12 inter-
vention arms), one patient (pseudobulbar ALS) after
±30 cm H2O (missing 6/12 intervention arms) and two patients
(one pseudobulbar and one progressive bulbar ALS) after
±40 cm H2O (both patients missing 3/12 intervention arms).
Technical failures led to loss of video recordings in one healthy
control at examining pressures of ±40 and ±50 cm H2O
(missing 6/12 intervention arms).

In general, the larynx moved downwards during applied insuf-
flation and upwards (cranially) during exsufflation. (See table 2
for overall descriptions and online supplementary video 1 for the
laryngeal response in a patient with non-bulbar ALS; online
supplementary video 2 in a healthy control; online supplemen-
tary video 3 in a patient with progressive bulbar ALS; online
supplementary video 4 in a patient with pseudobulbar ALS.)
Adequate laryngeal control was defined as described for normal
cough in the literature,8 and presented as initial abduction of the
true vocal folds (TVF) and aryepiglottic folds (AEF), and there-
after glottic closure with subsequent rapid opening when cough-
ing, abduction of the TVF and AEF followed by sequential
closures and/or narrowing in the exhalation phase of the cough.

Response at the glottic level
Observations at the glottic level were not possible in some patients
with ALS and bulbar symptoms, because adduction of AEF and/or
the hypopharyngeal area obscured the view of TVF, particularly in
the high-pressure ranges of 40–50 cm H2O. Observations at the
glottic level were based on successful visualisation of MI-E cycles
(TVF responses A, B, G, I, M, S, N1, N2 and N3 in figure 1 and
online supplementary tables S4, S5 and S6).

There were significant differences between patients with ALS
and healthy controls with respect to TVF adduction subsequent

to the initial abduction during insufflation (response B in figure 1
and in online supplementary table S4) and exsufflation. Varying
the instructions (to cough or exhale during negative pressures or
to cough without applied negative pressure) did not influence the
groups differently (response N1, N2 and N3 in figure 1 and
online supplementary table S6).

Response at the supraglottic level
AEF responses are presented as C, D, H, J, O and P (figure 2
and online supplementary tables S4, S5 and S6). Medial rotation
of the cuneiform tubercles accompanied by considerable adduc-
tion of the AEF was observed during insufflation (initially or
subsequent to abduction) in all patients with bulbar ALS (online
supplementary table S4 and response C and D in figure 2).

A retroflex movement of epiglottis (a passive dorsal rotation)
was observed to partly occlude the laryngeal inlet in some cases,
either as a rapid movement or lasting throughout the insuffla-
tion (responses E, K and Q (figure 2 and online supplementary
tables S4, S5 and S6)).

Oesophageal opening was observed during insufflation in two
patients with progressive bulbar ALS. Both subjects were
observed to burp afterwards, suggesting that (part of) the insuf-
flation volume ended up in the oesophagus and stomach instead
of the lungs.

Response at the tongue base and at the hypopharyngeal
level
There were significant differences between healthy controls and
patients with ALS with regard to backward movement of the
tongue base during insufflation and during the pressure drop
(responses F and L in figure 3 and online supplementary tables
S4 and S5).

Constriction of the hypopharynx during exsufflation was
observed in healthy controls and in patients with ALS, regard-
less of the presence of bulbar symptoms. In patients with ALS
and bulbar symptoms, hypopharyngeal constriction was more
prominent in those with progressive bulbar paresis. The

Table 1 Background characteristics of the study participants (n=40)

Healthy (n=20) ALS (n=20)
ALS without bulbar
symptoms (n=6)

ALS with bulbar
symptoms (n=14)

Male/female ratio 13/7 13/7 6/0 7/7
Age, years 66.9 (7.2) 68.7 (9.3) 65.8 (9.2) 69.9 (9.4)
BMI, kg/m2 23.9 (2.4) 23.6 (4.3) 23.5 (1.8) 23.6 (5.1)
FVC, % pred 113.6 (16.0) 67.4 (22.1) 73.5 (18.8) 64.5 (23.7)
FEV1, % pred 107.4 (19.0) 70.6 (25.7) 76.0 (22.0) 68.1 (27.7)
SVC, L 4.15 (1.3) 2.92 (1.0) 3.6 (0.7) 2.6 (1.0)
SVC, % pred 110.6 (20.1) 76.1 (22.5) 78.7 (12.9) 75.0 (26.2)
PCF, L/min 484.5 (130.2) 266.8 (145.8) 340.8 (198.6) 232.6 (108.4)
Pimax, cm H2O 95.2 (23.6) 43.3 (20.9) 54.2 (18.9) 38.6 (20.5)
Pimax, % pred 111.3 (24.9) 52.9 (23.7) 58.3 (20.6) 50.6 (25.2)
Pemax, cm H2O 140.8 (37.9) 50.4 (30.0) 80.2 (32.1) 37.6 (18.3)
Pemax, % pred 140.1 (34.3) 49.4 (24.8) 68.2 (30.3) 41.3 (17.6)
SNIP, cm H2O 91.2 (33.7) 38.6 (17.9) 47.7 (22.2) 33.6 (13.8)
SNIP, % pred 99.1 (34.6) 42.6 (19.0) 48.1 (22.9) 39.7 (16.9)
WST, mL/s 31.50 (7.7) 12.3 (11.4) 25.8 (7.6) 5.5 (4.9)
ALSFRS-r – 36.7 (8.4) 39.0 (7.5) 35.6 (8.9)
BIS – 6.0 (2.3) 8.0 (0) 5.0 (2.3)

Figures are group means with SDs.
ALS, amyotrophic lateral sclerosis; ALS Functional Rating Scale-revised; BIS, bulbar impairment scale; BMI, body mass index; PCF, peak cough flow; Pemax, maximal expiratory mouth
pressure; Pimax, maximal inspiratory mouth pressure; SNIP, sniff nasal inspiratory pressure; SVC, slow vital capacity; WST, water swallow test.
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hypopharynx was totally constricted in 4/7 patients with pro-
gressive bulbar paresis and in 1/7 patients with pseudobulbar
paresis (responses R1, R2 and R3 in figure 3 and online
supplementary table S6).

Differences in laryngeal movements between patients with
pseudobulbar and progressive bulbar ALS were not significant.
A few significant values were observed between observations of
healthy controls and patients with ALS and bulbar symptoms,
and between patients with ALS with and without bulbar
symptoms. Due to a multiple-testing problem, these results
should be interpreted with caution. However, we saw a pattern
in comparison between controls and patients with ALS and
bulbar symptoms with regard to backward movement of the
tongue base during the pressure drop and in subsequent adduc-
tion of TVF during exsufflation (see online supplementary
tables S4–S6).

DISCUSSION
This is the first study to show that video-recorded flexible laryn-
goscopy is a feasible method to characterise laryngeal responses
throughout MI-E in patients with ALS. Results clearly indicated
that MI-E in patients with bulbar symptoms was associated with
adduction of supraglottic laryngeal structures during insuffla-
tion, and that this seemed to compromise airflow. Backward
movement of the tongue base during insufflation, potentially
obstructing airflow at the hypopharynx, was more prominent in
patients with ALS than in healthy controls. Moreover, patients
with ALS, irrespective of subtype, were more likely to adduct
the vocal folds during insufflation and exsufflation. Patients with
ALS, without bulbar symptoms, could cough in a coordinated
way, similar to that seen in healthy controls.

The main strength of this study was provision of important
knowledge on a challenging clinical problem achieved using
objective and verifiable methods in a population-based sample
of patients whose data were compared with those of healthy
matched volunteers. The small study cohort was a limitation,
complicating statistical handling and rendering the study at risk
of particularly type-II errors (ie, failure to detect significant dif-
ferences that may have been present). A priori power calculation
could not be undertaken, because the data distribution was not
known when planning the study.24

Transnasal fibre-optic laryngoscopy during ongoing MI-E in
patients with ALS has not been described previously, but has
been used to describe the larynx during simple tasks (eg, vocalis-
ing, spontaneous cough and forced exhalation).25 26 We

encountered some technical challenges. First, as the larynx
moved downwards and upwards during insufflation and exsuf-
flation, dynamic adjustments of the laryngoscope position were
required. Sometimes, airway secretions led to poor-quality video
recordings, and pretreatment aiming to clear secretions could
have been considered. Adduction of supraglottic structures pre-
cluded visual access to the vocal folds in some patients.

The present study suggests that adduction of primarily supra-
glottic laryngeal structures during insufflation may be a critical
issue when carrying out MI-E in patients with ALS and bulbar
symptoms. Conceivably, the observed adduction prevents lung
insufflation before exsufflation, thereby compromising the effect
of MI-E. We cannot explain these response patterns, but can only
speculate. There is only one abductor muscle in the larynx, the
posterior cricoarytenoid muscle, but several small intrinsic
adductors.27 Intrinsic laryngeal muscles interact in a complex
way during cough, speech and swallowing, but always act in
concert. Stimulation of extremely sensitive receptors in the supra-
glottic larynx usually induces complex adductor reflexes that, for
example, prevent foreign bodies from entering the airways.27

This reflex circuit may be hyper-responsive or dysregulated in
patients with ALS and, therefore, lead to inappropriate laryngeal
closure, comparable with the observations made in patients with
Parkinson’s disease or brainstem compression.28 29 Tomik et al25

observed early dysfunction of the vagal nerve before any clinical
signs of bulbar dysfunction in patients with spinal ALS. The
observed vocal fold adduction in our study supports this finding.

Differences in the two subtypes of bulbar ALS may influence
laryngeal response patterns to MI-E, that is, progressive (hypo-
tonic) versus pseudobulbar (spastic) ALS. In pseudobulbar ALS,
laryngeal adduction occurred mainly at the glottic level at rela-
tively high insufflation pressures. It seems reasonable to suggest
that positive pressures more easily trigger laryngeal adductor
reflexes in a disease that is predominantly spastic. AEF are rela-
tively soft structures provided with only scattered muscle fibres.
Therefore, adduction at the supraglottic level could, theoretically,
be explained by the Bernoulli principle: increasing airflow initiates
negative intraluminal pressures that eventually cause medial col-
lapse.30 This mechanism may conceivably be particularly import-
ant in progressive bulbar ALS characterised predominantly by
hypotonic paresis. An abnormal high-standing epiglottis may have
a practical implication by compromising the laryngeal inlet during
insufflation due to retroflex movements caused by the positive
pressures, as demonstrated also during treatment with CPAP in
patients with obstructive sleep apnoea.31

Table 2 Description of laryngeal response patterns during the MI-E protocol (n=40)

Glottic level Supraglottic level Tongue base and hypopharyngeal level

Subjects (N=20) True vocal folds (TVF) Aryepiglottic folds (AEF) Epiglottis (EG)
Base of the
tongue (BT) Hypopharynx (HP)

Healthy (n=20) Adequate control* in all Adequate control† in all Retroflex movement
in 8/20

Backward in
4/20

Constriction in 12/20 of
varying degrees

ALS without bulbar
symptoms (n=6)

Adequate control* in all Adequate control† in all Retroflex movement
in 1/6

Backward
in all

Constriction in all of
varying degrees

Progressive bulbar ALS
(n=7)

Adequate control* in all Adduction in
insufflation in all

Retroflex movement
+‘floppy’ in 1/7

Backward in 5/7 Constriction in all, and
very narrow in 4/7

Pseudobulbar ALS
(n=7)

Inadequate control§ in insufflation;
in 3/7and in 1/7 in exsufflation

Adduction in insufflation in all
(but in 4/7, only at higher
pressures: ≥+40 cm H2O)

Retroflex
movement in 2/7

Backward
in all

Constriction in all, and
very narrow in 1/7

*Normal cough, that is, TVF abduction in insufflation, glottic closure when coughing and TVF abduction+sequential closures and/or narrowing in exsufflation.
†AEF follows the movements of the TVF.
§Very small TVF opening in insufflation or in exsufflation.
ALS, amyotrophic lateral sclerosis; MIE, mechanical insufflation–exsufflation.
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Hypopharyngeal constriction during exsufflation was
observed to varying extents in all study subjects, as well as
healthy controls. This finding confirms reports of upper-airway

narrowing at pharyngeal and oropharyngeal levels upon appli-
cation of negative pressures during exhalation in healthy sub-
jects.32–34 This phenomenon has been used to explain the

Figure 1 Laryngeal response at the glottic level. Figures are percentages of the sample with the described response. *Significant difference
between healthy volunteers and patients with ALS. ALS, amyotrophic lateral sclerosis; TVF, true vocal folds.
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ineffectiveness of MI-E in patients with ALS.35 Sancho et al
undertook CT during MI-E at baseline and during exsufflation
in three patients with ALS. They reported varying reductions

of the lateral diameter at the level of nasopharynx, uvula and
pharynx during the exsufflation phase at −40 cm H2O.12 The
response during insufflation was not examined. They suggested

Figure 2 Laryngeal response at the supraglottic level. Figures are percentages of the sample with the described response.*Significant difference
between healthy volunteers and patients with ALS. AEF, aryepiglottic folds; ALS, amyotrophic lateral sclerosis.
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that MI-E should be carried out by applying a single insuffla-
tion followed by a manually assisted cough instead of active
exsufflation with negative pressures.35 36 Hypopharyngeal con-
striction during exsufflation was observed in healthy controls
and patients with ALS in the present study; so, this phenom-
enon alone cannot explain treatment failure in bulbar ALS.
Moreover, inability to fill the lungs during insufflation because
of the observed supraglottic adduction would create a vacuum
during the subsequent active exsufflation, and thereby aggravate
hypopharyngeal constriction. If this hypothesis is correct, a
single insufflation followed by a manually assisted cough
cannot help patients with bulbar ALS to cough more effect-
ively, but will be both uncomfortable and unproductive.

The present study suggests that an individual approach to
MI-E used in respiratory airway therapy is highly important.
Lower positive pressures and airflow combined with longer
inspiratory times may contribute to better laryngeal stability
during insufflation, perhaps by preventing or reducing the impact
of protective laryngeal reflex circuits and the intraluminal suction
forces induced by the Bernoulli effect (figure 4). Patients with
bulbar insufficiency may, therefore, be more likely to obtain suffi-
cient inspiratory volumes, a situation that would improve the
conditions for exsufflation of the lungs. The phasic relationship

that exists between the posterior cricoarytenoid muscle and dia-
phragm is a feature that could, theoretically, be exploited clinic-
ally. That is, when the diaphragm contracts, the activity of the
posterior cricoarytenoid muscle increases in a coordinated
manner due to vagal stimulation, thereby abducting the larynx.27

If the patient is instructed to inhale actively before active insuffla-
tion with MI-E, this act would, theoretically, lead to better laryn-
geal abduction and facilitate airflow. Recently, MI-E devices with
a ‘trigger’ function linked to insufflation have become available,
and these mechanisms should be studied closely.

A better understanding of laryngeal dysfunction as ALS pro-
gresses in its various phenotypes can help establish better (and
hopefully individually tailored) clinical respiratory treatment
strategies for these patients, and perhaps also for other patients
with bulbar-innervated muscle dysfunction.

CONCLUSION
Video-recorded flexible laryngoscopy is a feasible method to
characterise laryngeal responses throughout an MI-E protocol in
patients with ALS. Treatment failure with MI-E in patients with
bulbar symptoms is likely to be caused primarily by laryngeal
adduction during insufflation, predominantly at the supraglottic
level. This response precludes air-filling of the lungs during

Figure 3 Laryngeal response at the tongue base and hypopharyngeal level. Figures are percentages of the sample with the described response.
*Significant difference between healthy volunteers and patients with amyotrophic lateral sclerosis (ALS).
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insufflation, causing discomfort and subsequent inefficient
exsufflation. We propose that individually customised settings
for pressure and flow can improve and extend the use of non-
invasive MI-E in ALS, and that flexible laryngoscopy can be an
efficient tool in this respect in selected patients who do not
respond as expected.
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SUPPLEMENTARY FIGURES 

Figure S1. The setup with a laryngoscope passing through a modified interface with the 

laryngoscope supported and adjusted manually. Situation arranged. 

 

Figure S2. Examination was recorded with two continuous videos on the same screen, and 

showed the laryngeal view and phases on the MI-E device synchronously. Anatomic 

landmarks are illustrated on the laryngeal top view. 

 



 

LEGENDS FOR SUPPLEMENTARY VIDEO FILES  

Supplementary Video 1. Laryngeal response to mechanical insufflation–exsufflation (MI-E) 

in a patient with non-bulbar ALS visualised in real-time and slow motion by video-recorded 

transnasal fibreoptic laryngoscopy.  

Supplementary Video 2. Laryngeal response to mechanical insufflation–exsufflation (MI-E) 

in a healthy control visualised in real-time and slow motion by video-recorded transnasal 

fibreoptic laryngoscopy. 

Supplementary Video 3. Laryngeal response to mechanical insufflation-exsufflation (MI–E) 

in a patient with progressive bulbar ALS visualised in real-time and slow motion by video-

recorded transnasal fibreoptic laryngoscopy. 

Supplementary Video 4. Laryngeal response to mechanical insufflation–exsufflation (MI-E) 

in a patient with pseudobulbar ALS visualised in real-time and in slow motion by video-

recorded transnasal fibreoptic laryngoscopy. 



Supplementary Tables 

Supplementary Table S1. Standardised protocol of conditions during intervention with MI-E and MI  

Intervention  

arm 

Pressure settings (cmH2O):  Instruction during exsufflation: Manual thoracic 

thrust MI-E MI active exhale active cough 

1. ±20  ×   

2. ±20   ×  

3.  +20  × × 

4. ±30  ×   

5. ±30   ×  

6.  +30  × × 

7. ±40  ×   

8. ±40   ×  

9.  +40  × × 

10. ±50  ×   

11. ±50   ×  

12.  +50  × × 

MI-E=mechanical insufflation–exsufflation, MI=mechanical insufflation. Intervention arms 1–12: 

respective pressures of MI-E or MI combined with instruction to either exhale actively or to cough during 

exsufflation. Additional manual thoracic thrust during cough was provided in combination with MI.  

 

  



Supplementary Table S4. Laryngeal response patterns during mechanical insufflation according to applied 

pressures. P-values are from comparisons between the ALS group and the control group, between the 

control group and the ALS group with bulbar symptoms, and between ALS without and with bulbar 

symptoms. 

DURING INSUFFLATION 

MI-E pressures (cmH2O) ±20 ±30 ±40 ±50 

Comparisons between ALS patient group (n=20) and healthy control group 

(n=20) 

A. Initial abduction of TVF n.s. n.s. n.s. n.s. 

B. Subsequent adduction of TVF .003 .03 .002 .003 

C. Initial abduction of AEF .003 .003 .002 .008 

D. Adduction of AEF .003 .04 .02 .002 

E. Retroflex movement of EG n.s. n.s. n.s. n.s. 

F. Backward movement of BT .003 .006 <.001 <.001 

Comparisons between healthy (n=20) vs ALS with bulbar symptoms (n=14) 

A. Initial abduction of TVF n.s. n.s. n.s. n.s. 

B. Subsequent adduction of TVF n.s. n.s. n.s. n.s. 

C. Initial abduction of AEF n.s. n.s. n.s. n.s. 

D. Adduction of AEF n.s. n.s. n.s. .02 

E. Retroflex movement of EG n.s. n.s. n.s. n.s. 

F. Backward movement of BT n.s. n.s. n.s. .02 

Comparisons between ALS without bulbar symptoms (n=6) vs ALS with 

bulbar symptoms (n=14) 

A. Initial abduction of TVF n.s. n.s. n.s. n.s. 

B. Subsequent adduction of TVF n.s. n.s. n.s. n.s. 

C. Initial abduction of AEF n.s. n.s. .03 n.s. 

D. Adduction of AEF n.s. n.s. n.s. .02 

E. Retroflex movement of EG n.s. n.s. n.s. n.s. 

F. Backward movement of BT n.s. n.s. n.s. n.s. 

Comparisons between pseudobulbar ALS (n=7) vs progressive bulbar ALS 

(n=7) 

A. Initial abduction of TVF n.s. n.s. n.s. n.s. 

B. Subsequent adduction of TVF n.s. n.s. n.s. n.s. 

C. Initial abduction of AEF n.s. n.s. n.s. n.s. 

D. Adduction of AEF n.s. n.s. n.s. n.s. 

E. Retroflex movement of EG n.s. n.s. n.s. n.s. 

F. Backward movement of BT n.s. n.s. n.s. n.s. 

P-values were calculated using the chi-square test or Fisher’s exact test if expected cell counts were less 

than five. MI-E=mechanical insufflation–exsufflation, TVF=true vocal folds, AEF= aryepiglottic folds, 

EG=epiglottis, BT=base of the tongue, n.s.=non-significant 

  



Supplementary Table S5. Laryngeal response patterns during the pressure drop according to applied 

pressures and instructions. P-values are from comparisons between the ALS group and the control group, 

between the control group and the ALS group with bulbar symptoms, and between ALS without and with 

bulbar symptoms. 

DURING THE PRESSURE DROP 

Instruction during exsufflation: Cough Exhale 

MI-E pressures (cmH2O) ±20  ±30  ±40  ±50  ±20  ±30  ±40  ±50  

Comparisons between ALS patient group (n=20) and healthy control group (n=20) 

G. Adduction of TVF  n.s. n.s. .04 n.s. n.s. n.s. n.s. n.s. 

H. Adduction of AEF  n.s. n.s. n.s. n.s. n.s. .01 n.s. n.s. 

I. Abduction of TVF n.s. n.s. n.s. n.s. .008 n.s. n.s. n.s. 

J. Abduction of AEF n.s. n.s. n.s. n.s. .008 n.s. n.s. n.s. 

K. Retroflex movement of EG n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

L. Backward movement of BT .048 .001 .002 <.001 n.s. .002 .008 <.001 

Comparisons between healthy (n=20) and ALS with bulbar symptoms (n=14) 

G. Adduction of TVF  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

H. Adduction of AEF  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

I. Abduction of TVF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

J. Abduction of AEF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

K. Retroflex movement of EG n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

L. Backward movement of BT n.s. .02 .02 .02 n.s. n.s. n.s. <.001 

Comparisons between ALS without bulbar symptoms (n=6) vs ALS with bulbar symptoms (n=14) 

G. Adduction of TVF  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

H. Adduction of AEF  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

I. Abduction of TVF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

J. Abduction of AEF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

K. Retroflex movement of EG n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

L. Backward movement of BT n.s. n.s. n.s. .03 n.s. n.s. n.s. n.s. 

Comparisons between pseudobulbar ALS (n=7) vs progressive bulbar ALS (n=7) 

G. Adduction of TVF  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

H. Adduction of AEF  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

I. Abduction of TVF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

J. Abduction of AEF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

K. Retroflex movement of EG n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

L. Backward movement of BT n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

P-values were calculated using the chi-square test or Fisher’s exact test if expected cell counts were less 

than five. MI-E=mechanical insufflation–exsufflation, TVF=true vocal folds, AEF=aryepiglottic folds, 

EG=epiglottis, BT=base of the tongue, n.s.=non-significant 

 



Supplementary Table S6. Laryngeal response patterns during mechanical exsufflation according to applied 

pressures and instructions. P-values are from comparisons between the ALS group and the control group, 

between the control group and the ALS group with bulbar symptoms, and between ALS without and with 

bulbar symptoms. 

DURING EXSUFFLATION 

Instruction during 

exsufflation: 

Cough Exhale Cough with no 

exsufflation 

MI-E pressures (cmH2O) ±20  ±30  ±40  ±50  ±20  ±30  ±40  ±50  +20 +30 +40 +50 

Comparisons between ALS patient group (n=20) and healthy control group (n=20) 
M. Initial abduction of TVF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

N. Subsequent adduction of TVF <.001 .001 <.001 <.001 .001 .003 .02 .005 .003 .001 .007 <.001 

O. Initial abduction of AEF n.s. .003 .005 .005 .008 .003 .002 .001 .008 .02 .001 .002 

P. Subsequent adduction of AEF n.s. .048 n.s. n.s. .016 .002 .02 .005 n.s. n.s. n.s. n.s. 

Q. Retroflex movement of EG  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

R. Hypopharyngeal constriction .03 n.s. n.s. n.s. n.s. n.s. .02 n.s. .010 n.s. n.s. n.s. 

S. Repetitive glottic closures n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Comparisons between healthy (n=20) and ALS with bulbar symptoms (n=14) 
M. Initial abduction of TVF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

N. Subsequent adduction of TVF .03 .004 .002 .002 .03 n.s. n.s. n.s. .03 .009 .05 <.001 

O. Initial abduction of AEF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

P. Subsequent adduction of AEF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Q. Retroflex movement of EG  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

R. Hypopharyngeal constriction n.s. n.s. n.s. n.s. n.s. .008 .007 n.s. n.s. n.s. n.s. n.s. 

S. Repetitive glottic closures n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Comparisons between ALS without bulbar symptoms (n=6) vs ALS with bulbar symptoms (n=14) 
M. Initial abduction of TVF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

N. Subsequent adduction of TVF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

O. Initial abduction of AEF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. .02 

P. Subsequent adduction of AEF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Q. Retroflex movement of EG  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

R. Hypopharyngeal constriction n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. .01 n.s. 

S. Repetitive glottic closures n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Comparisons between pseudobulbar ALS (n=7) vs progressive bulbar ALS (n=7) 

M. Initial abduction of TVF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

N. Subsequent adduction of TVF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

O. Initial abduction of AEF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

P. Subsequent adduction of AEF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Q. Retroflex movement of EG  n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

R. Hypopharyngeal constriction n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

S. Repetitive glottic closures n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

P-values were calculated using the chi-square test or Fisher’s exact test if expected cell counts were less 

than five. MI-E=mechanical insufflation–exsufflation, TVF=true vocal folds, AEF=aryepiglottic folds, 

EG=epiglottis, BT=base of the tongue, n.s.=non-significant 



Graphic design: Com
m

unication Division, UiB  /  Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 978-82-308-3718-4


	143884_Tiina Andersen_Elektronisk
	143884_Tiina Andersen_innmat
	143884_Tiina AndersenElektronsk_bakside



