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Abstract 

Introduction 

Low-level laser therapy (LLLT) and cryotherapy are applied to the human skin to 

trigger biological actions in the underlying tissue. LLLT modulates biological 

processes by emitting energy-charged photons to pathological tissue, whereas 

cryotherapy produces its effect on pathology through the reduction of tissue 

temperature. When a treatment leads to an unexpected clinical event, the underlying 

mechanisms involved are often uncertain. This thesis is based upon such a clinical 

observation, and a reversed translational research approach was used to further 

investigate the biophysical and biological effects of combining LLLT and 

cryotherapy in tendinopathy treatment.  

Aim of Thesis 

The overall purpose of this thesis is to investigate the clinical, biophysical, and 

biological effects of LLLT alone and in combination with cryotherapy for the 

treatment of tendinopathy.  

Methods 

This thesis consists of three studies. In Study I, a systematic review with meta-

analysis was performed to determine the effectiveness of LLLT for shoulder 

tendinopathy. A structured search for relevant studies up to May 2013 was executed. 

Two independent assessors rated the included studies according to the Physiotherapy 

Evidence Database (PEDro) scale. Intervention quality assessments were performed 

according to World Association for Laser Therapy (WALT) guidelines. The included 

trials were sub-grouped by intervention quality and the use of other physiotherapy 

interventions. Study II was a basic in-situ research study of repeated measurements. 

The optical energy (from two different Class 3B lasers) penetrating the Achilles area 

of healthy adults was measured before and after 20 minutes of cryotherapy. In Study 

III, a blinded multiple-armed randomized controlled trial (RCT) design with a post 
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intervention test only was used to investigate the biological effects of LLLT and 

cryotherapy, both alone and in combination with each other. The study sample 

comprised in vivo rat Achilles tendons.  

Results  

Optimal LLLT can offer clinically relevant pain relief and initiate a more rapid 

course of improvement, both alone and in combination with physiotherapy 

interventions in patients suffering from shoulder tendinopathy. The systematic review 

identified parallel cryotherapy treatment as a possible confounder to LLLT, as it may 

induce inhibitory effects and negatively influence treatment outcomes. The 

penetration of laser energy increased significantly (p<0.01) through Achilles skin and 

tendons, for both lasers and at all time points, after 20 minutes of cryotherapy. 

Increased LLLT energy penetration occurred when mean skin temperature was 4.8˚C 

(SD±3.6), resulting in a significant reduction in the Achilles tendon (p=0.03) and 

skin-tendon-skin thickness (p=0.05). The biological effect of LLLT (3J) one hour 

after tendon trauma significantly (p<0.05) reduced pro-inflammatory interleukin (IL)-

1ß expression in the presence of the highest median levels of IL-10 (p=0.06) across 

all treatment groups. Cryotherapy alone failed to reach statistical significance over no 

treatment for all the targeted cytokines. The parallel treatment of LLLT and 

cryotherapy produced an anti-inflammatory “add-on” effect and significantly reduced 

the expression of all targeted cytokines except IL-10. Biomechanical and histology 

results suggested that the order of therapy administration was essential, showing 

superior results when LLLT followed cryotherapy.  

Conclusion  

This thesis reveals that the parallel treatment of cryotherapy and LLLT can negatively 

influence the clinical effects of LLLT in shoulder tendinopathy treatment. The optical 

properties of healthy skin and tendons are altered by cryotherapy, which significantly 

increases the penetration of laser energy irradiation. The order of therapy 

administration determined if a positive or negative biological response in injured rat 

Achilles tendons occurred. 
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1. Introduction 

Translational research is often associated with testing novel ideas in basic laboratory 

studies that aim to produce findings that can be turned into useful clinical 

interventions. However, the path between basic and clinical research is not 

unidirectional but runs both ways. Consequently, returning to the laboratory with 

observations made in human studies can lead to new discoveries, which may increase 

our understanding of human disorders and help us to optimize treatments (Mankoff et 

al., 2004; Littman et al., 2007). Indeed, the evidence for most physiotherapy 

interventions share this clinic-to-basic research history, in which observed clinical 

effects have been explained by plausible biological mechanisms of action in cell and 

animal trials. This thesis follows a similar research strategy, as an unexpected clinical 

observation intrigued and prompted us to gain more insight into the topic of low-level 

laser therapy (LLLT) in combination with cryotherapy for the treatment of 

tendinopathy. 

Tendinopathy is a common and frequently disabling condition that is challenging to 

treat. Physiotherapy treatment options for tendinopathies are manifold, which reflects 

the partly unclear and multifactorial etiology behind the condition (Jarvinen et al., 

2005; Seitz et al., 2011). The effectiveness of exercise-based physiotherapy treatment 

regimens has been extensively studied, and these are currently the cornerstone of 

treatment for tendinopathies. However, the ideal exercise program remains unclear, 

and many patients do not respond positively to exercise alone.  

In physiotherapy, different interventions are often combined to best address the 

individual needs of each patient. However, research studies are often designed to 

measure the effect of these interventions as monotherapies. As most physiotherapy 

interventions have limited potential to cause harm, combining treatment modalities is 

usually a professional decision that is based on clinical reasoning and empiricism. 

Combining LLLT and cryotherapy to reduce pain and accelerate recovery in patients 

with tendinopathy is an example of a treatment combination lacking evidence of 

efficacy and knowledge about biological interactions. 
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Although the use of light and ice as therapeutic modalities share an ancient history, 

light amplification by stimulated emission of radiation (laser) devices first emerged 

as a commercially available option for treating painful musculoskeletal conditions in 

the 1960s (Mester et al., 1968a). Despite initial skepticism regarding its usefulness in 

mainstream medicine, laser therapy research has progressed over the years and 

consistently demonstrates its ability to produce beneficial photobiological effects in 

mammalian cells. However, the transfer of positive results from laboratory research 

to clinical trials on musculoskeletal conditions often produces mixed results. Indeed, 

the first American Food and Drug Administration (FDA) approval of a Class 3B laser 

device that could be marketed for treating musculoskeletal conditions was not issued 

until 2002 (FDA, 2002). In Norway, LLLT treatment was first included in the 

national tariff payment system for physiotherapists in 2001 (Bjordal et al., 2014).  

There have been several studies investigating the efficacy of LLLT for tendinopathy, 

and reviewers were able to identify an optimal laser dose range for treating 

tendinopathy in 2001 (Bjordal et al., 2001). This discovery implies that LLLT trials 

should not be judged by methodological standards only but also by the validity of the 

dose and treatment procedure. Consequently, previously published randomized 

controlled trials (RCTs) and systematic reviews should be examined with new eyes if 

dose and procedural aspects have been left unaddressed. The efficacy of optimal 

LLLT has been synthesized in systematic reviews for some location-specific areas of 

tendinopathy. However, the evidence of effects related to the most prevalent site of 

tendinopathy in the general population, the shoulder, has not yet been reviewed. 

This thesis investigates the clinical, biophysical, and biological effects of LLLT alone 

and in combination with cryotherapy for the treatment of tendinopathy. Chapter 1 is a 

review of relevant literature, which provides the context for the objectives of the 

thesis. The aim of the thesis and included studies are presented in chapter 2. Materials 

and methods are described in chapter 3. The systematic review and meta-analysis 

identifies cryotherapy as a possible confounder to LLLT in tendinopathy treatment, 

and two basic research studies was performed to follow up on this finding. The 
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results from these three studies are found in chapter 4. Finally, the last chapters (5–7) 

provide a discussion, a conclusion, and suggestions for future research.  

1.1 Tendinopathy  

Tendons play a critical role in body mechanics, predominantly by transferring force 

from muscle contraction to bone, thus allowing movement and joint stability. They 

consist of collagen fibrils (primary, secondary, and tertiary fibers), each sheathed by 

an endotenon, which in turn is wrapped in an epitenon. Enclosing the epitenon is a 

third sheath, the paratenon, forming the actual tendon. The microbiology of normal 

tendons is mainly composed of fibroblast-producing cells called tenocytes, which are 

surrounded by an extensive extracellular matrix (ECM). The ground substance of the 

ECM consists of proteoglycans, glycosaminoglycans, glycoproteins, and several 

other small molecules. These components are involved in the development, 

organization, and growth of the tendons. The water-binding proteoglycans enable cell 

migration and the diffusion of molecules. The glycoproteins are active in the repair 

and regeneration of tendon material, while other proteins are important for collagen 

fiber alignment and orientation. This hierarchical and morphological structure gives 

tendons the ability to withstand high unidirectional tensile loads (Sharma and 

Maffulli, 2006; Abate et al., 2009; Magnusson et al., 2010). The mechanical loading 

of tendons is known to have a major influence on ECM turnover, increasing both the 

collagen synthesis and the degrading metalloprotease enzymes (Kjaer, 2004).  

Although tendons are metabolically active tissues dependent on blood supply, 

hypovascular areas have been identified in tendons such as the Achilles and 

supraspinatus (Åstroöm and Westlin, 1994; Mehta et al., 2003). The metabolic rate, 

oxygen consumption, and vascularization of tendons is lower, and the collagen 

turnover time higher, than those of skeletal muscles and other soft tissues (Vailas et 

al., 1978; Sharma and Maffulli, 2005). Consequently, the healing and regeneration 

processes of tendons are considerably slower than those of muscles. 
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Tendinopathy is a term used to describe the multifactorial pathology of non-ruptured 

tendon disorders characterized by localized pain and swelling, a decline in function, 

and a reduced tolerance for loading activities (Maffulli et al., 2003; Wang et al., 

2006; Van Dijk et al., 2011; Magnan et al., 2014a). The origin of the term 

tendinopathy was much influenced by the complex and unclear etiological initiation 

of tendon pain (Maffulli et al., 2003; Rio et al., 2014). Prior to the 1990s, painful 

tendons were referred to as tendinitis, with the -itis ending implying that 

inflammation initiates and drives the condition. New perspectives on tendon disorders 

were published during the next decade, suggesting that the etiology of tendinitis was 

very different from the etiology of other inflammatory conditions. 

The paper entitled “Time to Abandon the Tendinitis Myth,” by Khan et al. (2002), 

had a great impact by strongly proposing that the condition of tendon pain originates 

from a non-inflammatory degenerative process. These non-inflammatory and 

degenerative models dominated thinking on tendinopathy during the first decade of 

the twenty-first century. However, the dogma of degeneration without inflammation 

in tendinopathy has been increasingly challenged in the past 10 years. Development 

in areas such as immunohistochemistry, molecular techniques, and gene expression 

analysis have identified inflammatory reactions in longstanding tendinopathy as well 

as in its early stages (Rees et al., 2013; Millar et al., 2017).  

1.1.1 Risk factors of tendinopathy 

The risk factors of tendinopathy are often characterized as both intrinsic and 

extrinsic, referring to internal tendon processes and external contributing factors. The 

most commonly reported extrinsic risk factor for developing tendinopathy is an 

increased overall volume of tendon loading, often referred to as overuse 

tendinopathy. 

In terms of intrinsic risk factors, advancing age is demonstrated to be among the most 

significant (Maffulli et al., 2003; Seitz et al., 2011; Magnan et al., 2014a). As age 

progresses, the metabolic rate of the tendons decreases, which most likely influences 

reparative ability (Kannus, 2000). In addition, a decrease in the capillary blood 
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supply to the tendon and a degeneration of the tenocytes and collagen fibers are 

typical age-related tendon alterations (Kannus et al., 2005). The tendon loses tensile 

strength, stiffness, and rebound resilience, which may predispose it to injury. 

Degenerative tendon changes due to advancing age can be attenuated by physical 

activity (Narici et al., 2008). However, the optimal loading of the tendon is crucial, as 

the capacity to repair micro-trauma induced by mechanical loading may decrease 

with age (Cook and Purdam, 2009). 

Overuse is not responsible for all tendon pathology. Tendinopathy may also occur 

following external trauma (Wedderkopp et al., 1997, Agel et al., 2007). In addition, 

there are several other factors associated with an increased risk for developing 

tendinopathy, such as anatomical anomalies, genetic factors, muscular insufficiency 

or imbalance, posture, soft-tissue inflexibility, drugs, and various environmental 

conditions (Maffulli et al., 2003; Seitz et al., 2011; Magnan et al., 2014a). 

1.1.2 Tendon healing and regeneration 

Tendons respond to acute injury by initiating several overlapping stages of repair. 

Immediate bleeding and the clotting of blood at the site of the injury characterize the 

hemorrhagic stage of tendon healing. Cytokines and growth factors are released by 

the infiltrated platelets and initiate the inflammatory tendon healing. During this stage 

neutrophils and macrophage phagocytose necrotic tissue, whereas a fibrin clot 

consisting of mainly collagen type 3 is formed by tenocytes to stabilize the injury. 

The increased synthesis of this immature granulation tissue represents the 

proliferative healing phase. The following process of remodeling and maturation is 

characterized by decreased inflammation and increased fibroblast activity, gradually 

replacing the mechanically weaker collagen 3 with the more resilient collagen 1. The 

tendon may remain in this state of fibroblast hypercellularity for up to a year (Wang 

et al., 2006; Voleti et al., 2012; Muller et al., 2013). Nevertheless, the tendon’s 

structural and biomechanical properties may never be completely restored to pre-

injury levels (Oliva et al., 2011; Wang et al., 2012), and many patients develop 

chronic symptoms. 
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It has been proposed that the typical micro-injuries associated with chronic overuse 

tendinopathy may fail to stimulate an adequate inflammatory response and that the 

consequence is a failed healing response by the immune system (Cook et al., 2002; 

Maffulli et al., 2010). Cytokines are frequently investigated inflammatory mediators 

in tendinopathy, much because of their immunoregulatory role and crucial interaction 

with resident tenocytes and ECM (Millar et al., 2017). 

1.2 History of Electrophyscial Agents in Physiotherapy  

“The ability of a clinician to reduce pain in a patient by exploiting the patient’s own 

in-built neurophysiological mechanisms must surely rank as one of the greatest 

achievements of contemporary medical science.” 

 (Woolf, 1984, as cited in Macdonald, 1993) 

The first documentation of physiotherapy as a profession dates back to 1813, when 

the Swede Per Henrik Ling established the Royal Institute of Gymnastics for 

manipulation and exercise in Stockholm (Brodin, 2008). Other countries followed 

this initiative, and by 1920, the Chartered Society of Massage and Medical 

Gymnastics was granted its Royal Charter by King George V in the UK (Chartered 

Society of Massage and Medical Gymnastics, 1929). Physiotherapists were, at this 

point, educated in anatomy and biomechanics and given a license to interact with and 

treat patients using massage and manipulation. The adoption of a biomechanical 

framework and a growing attention to pathology were important for future advances 

in physiotherapy, ultimately leading to the assimilation of new treatment 

interventions in physiotherapy, such as electrotherapy (Nicholls and Cheek, 2006). 

The therapeutic use of electrical stimulation for alleviating pain may originate from 

ancient Greece, where electrical impulses from fish or eels were applied to treat 

painful conditions such as gout and nuclei prolapse. The Greeks termed the electrical 

fish narcs, a precursor to the word narcosis, due to their numbing effect. The ability 

to stimulate or provide shock treatment using mechanically produced static electricity 

emerged during the eighteenth century. These electrical devices were used 
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therapeutically to treat numerous conditions ranging from painful musculoskeletal 

disorders to epilepsy and sterility (Macdonald, 1993). Although the first 

electrotherapy pioneers of this century were convinced of the effect, the medical 

establishment had so far responded with contempt and discredit. Treatment with 

EPAs was first made respectable after Dr. Golding Bird opened an electrical 

department at Guy’s Hospital London in 1836 and gave a series of lectures on 

“Electricity and Galvanism in Relation to Physiology and Therapeutics” at the Royal 

College of Physicians (Selcon, 2001). 

At the beginning of the twentieth century, the first investigative reports and clinical 

trials were published in recognized medical journals. These early papers suggested 

that EPAs should be used as an adjunct therapy to accelerate recovery in 

musculoskeletal conditions, such as peripheral nerve injuries, due to its ability to 

produce contractions in paralyzed muscles (Wolfson, 1931; Doupe et al., 1943). 

Following World War II, more research attention was focused on this phenomenon, 

referred to as galvanic exercises (Tiktinsky et al., 2010). However, the first major 

step forward for treatment with electrical currents was the introduction of the gate 

control theory in 1965, which provided clinicians and researchers with the first 

necessary theoretical framework to explain its pain-relieving effect (Melzack and 

Wall, 1965).  

Over the years, technological improvements and innovations in the field of EPAs 

have been gradually adopted in physiotherapy. New electrophysical treatment 

interventions such as shockwave therapy and LLLT emerged, as well as devices 

suitable for diagnostics and tissue measurements. 

The continued mapping of how EPAs interact with and modulate pathological 

processes in biological tissue, especially in the inflammatory process and tissue 

repair, provided physiotherapists with the necessary tool to possess a more 

autonomous role in the pain management of musculoskeletal disorders. From this 

perspective, new areas of research questions become clear: the effect of adding EPAs 

to other established interventions must be continuously updated; treatment 
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combinations that enhance or reduce the effect of EPAs must be identified; and the 

optimal EPA treatment parameters and timing in relation to different stages of 

musculoskeletal pathology must be determined.  

1.3 Discovery of Low-Level Laser Therapy  

The history of using light for therapeutic purposes goes back more than 3,000 years, 

when people suffering from depigmentation of the skin were exposed to sunlight 

(Fitzpatrick and Pathak, 1959). During the eighteenth century, medical reports 

appeared demonstrated that sunlight could improve and accelerate the healing of 

many different conditions, such as skin ulcers, wounds, and rickets (vitamin D 

deficiency causing bone fragility) (Palm, 1890; Rollier and Rosselet, 1923; Chesney, 

2012; Hamblin and Huang, 2014). Therapeutic exposure to sunlight, known as 

heliotherapy, increased in popularity during the nineteenth century and was 

recommended for several different conditions including depression, rheumatic 

diseases, and scurvy (Cauvin, 1815). 

The first researcher to successfully put artificial ultraviolet (UV) light to medical use 

was Nils Ryberg Finsen (1860–1904). He developed a carbon arc lamp to treat Lupus 

Vulgaris and was honored with the Nobel Prize in Physiology or Medicine in 1903 

for his pioneering work (Grzybowski and Pietrzak, 2012). During the twentieth 

century, the use of both natural and artificial UV light in medicine rose, and 

consequently, much research into the physics of light followed. In the late 1950s, 

Basov and Prokhorov and Townes were able to produce the first laser (Karlsson, 

2000). A decade later, Theodore Maiman developed the first ruby crystal laser, 

operating at a fixed wavelength (694 nanometers [nm]) in the visible red spectrum 

(Maiman, 1960).  

The discovery of LLLT is predominately associated with the pioneering work of 

Hungarian professor Endre Mester (1903–1984). In the 1960s, Mester implanted 

tumor cells beneath the skin in mice. In a failed attempt to destroy these malignant 

tumors with what he believed was a “high power” ruby laser, he instead discovered 
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that the skin incisions healed faster in treated mice. In fact, the custom-made laser 

used in the experiment was actually low powered, and the light accelerated tissue 

repair (Mester et al., 1968a). This observation formed the basis of a new experimental 

study, in which Mester successfully demonstrated faster wound healing in mice 

treated with LLLT (Mester et al., 1971). Inspired by these findings, Mester performed 

several clinical case studies on humans suffering from various chronic unhealed 

wounds and found that the wounds healed in 78% of the treated cases (Mester et al., 

1985). Consequently, the effects of LLLT in biological tissue were referred to as 

photobiostimulation. However, the therapeutic application of LLLT extended beyond 

wound healing, and later research demonstrated that LLLT produced beneficial 

inhibitory effects in other conditions. It is now agreed that the term 

photobiomodulation therapy (PBMT) more accurately describes the mechanism by 

which low level lasers work in biological tissue. 

1.3.1 Components and characteristics of LLLT irradiation 

To produce laser light, three basic components are needed: a lasing medium, a power 

source, and a resonating cavity. Reflective mirrors, lenses, and other mechanical 

structures are added to manipulate the power output, irradiation mode (continuous or 

pulsed waves), and beam shape. The atoms or molecules from the lasing media are 

excited to higher energy levels by the power source, which generates photons of light 

(i.e., the emission of radiation). The lasing medium can be gaseous, liquid, solid 

crystal, or semiconductor. This component dictates the wavelength (nm) and the color 

of the light emitted from the machine (Baxter and Diamantopoulos, 1994). 

Laser light is characterized by being monochromatic (single-colored) and of a defined 

wavelength. Because these waves of light travel in a synchronized phase, it is 

described as being highly coherent. The divergence of the laser beam is small and can 

be focused on a tiny area, which is referred to as collimation. Some devices also 

produce polarized light, meaning the waves of light are oriented in one plane only 

(Baxter and Diamantopoulos, 1994; de Freitas and Simoes, 2015). The biological and 

clinical relevance of coherence and polarization is not clear. 
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1.3.2 LLLT parameters  

Lasers used for the treatment of musculoskeletal conditions are classified as 3B. 

These lasers typically have a wavelength ranging from 632 to 904 nm and a mean 

output power (MOP) between 5 and 500 milliwatts (mW). The energy absorption in 

water, cutaneous melanin, and hemoglobin differs with certain wavelengths but is 

lowest in the red and near-infrared spectrum (600–1000 nm) (Anderson and Parrish, 

1981; Karu and Kolyakov, 2005). Infrared lasers (780–1000 nm) penetrate skin with 

less energy attenuation than red wavelength lasers do (600–700 nm) (Anderson and 

Parrish, 1981; Stolik et al., 2000). Thus, wavelength is an important parameter to 

consider if the targeted tissue is deeply situated. 

Laser devices can deliver energy either continuously or in a pulsed mode. In 

continuous wave (CW) mode, the emitted energy (power output) over time is 

constant, whereas in pulsed mode, the energy may be delivered with high pulse peak 

powers and pauses. These pauses reduce the MOP of the laser, allowing it to still be 

classified as 3B even if the pulse peak power exceeds the 500 mW limit. 

The therapeutic energy dose in LLLT is delivered in joules (J) and is calculated as the 

average power output emitted in watts (W) multiplied by seconds (s) of irradiation in 

a point. Energy dose is also reported as power density (mW/cm2), which is defined by 

the power output divided by the laser beam spot size (cm2) at the tissue surface. 

However, the validity of spot size measurements is debatable, as the distribution of 

power is not uniform across the laser beam (Baxter and Diamantopoulos, 1994; 

Nussbaum et al., 2003). Energy density is another parameter reported in LLLT 

literature and reflects the amount of energy (J/cm2) received by the irradiated tissue. 

Energy density is calculated by adding time (s) to the equation of power density.  

However, it has been argued that LLLT doses expressed in J/cm2 are inadequate, as 

the calculations are based on the beam spot size, for which there is no agreement 

about how to define (Jenkins and Carroll, 2011). To overcome this shortcoming, 

Nussbaum et al. (2003) suggest that energy (J) per irradiated point should replace 
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power density and that the total energy of the treatment (J) should replace energy 

density. 

1.3.3 LLLT penetration 

The laser must penetrate the skin barrier with a sufficient amount of energy to 

modulate pathophysiological processes in musculoskeletal conditions. Wavelength is 

the main determiner regarding the penetration depth of a laser device. Lasers with 

longer wavelengths can penetrate tissue deeper than lasers with a shorter wavelength 

are able to. Furthermore, light energy can be “lost” before reaching deeper-situated 

pathology due to photon absorption and scattering in non-targeted tissue, and 

reflection of the skin surface (Bashkatov et al., 2011). The most commonly 

researched and clinically used wavelengths in LLLT are 632.8 nm helium-neon 

(HeNe), 810–830 nm gallium-aluminum-arsenide (GaAIAs), and 904 nm gallium 

arsenide (GaAs) (Enwemeka, 2000; Karu et al., 2001). The light penetration increases 

almost linearly with increasing wavelengths (450–1030 nm) in human skin samples 

(Ackermann et al., 2002). Red light lasers (600–700 nm) are easily absorbed by 

hemoglobin and melanin and penetrate approximately 4–5 mm into the skin (Ash et 

al., 2017). However, due to the circular-shaped scattering of red light, the indirect 

penetration depth should be deeper (de Freitas and Simoes, 2015). There is an 

“optical window” around 810 nm, where light can penetrate several centimeters (cm) 

into the tissue (Henderson and Morries, 2015; Hamblin, 2016). The elliptic-shaped 

scattering of infrared wavelengths can increase the indirect penetration even more 

(Mcleod, 2004; de Freitas and Simoes, 2015).  

Although penetration depth in biological tissue is predominantly dependent upon 

wavelength, photons of light are more easily transmitted if the emitting diode is 

pressed firmly in contact with the skin. Conversely, the application of LLLT in non-

contact mode will increase reflection and reduce the penetration of photons through 

the skin (de Freitas and Simoes, 2015). 
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1.3.4 Biophysical effects of LLLT treatment 

The exact biochemical mechanisms responsible for the therapeutic effects of LLLT 

are not yet well established. It is suggested that the underlying mechanisms of action 

could be manifold, including molecular, cellular, and tissular responses. There is 

consensus that the effects of LLLT treatment occur according to the first law of 

photobiology, which states that for low-power light to have any effect on a living 

biological system, the photons must be absorbed by some molecular photoacceptors 

or chromophores. The construction of an action spectrum (i.e., a plot of biological 

effects against wavelength) supports the existence of cellular photoacceptors and 

signaling pathways stimulated by light (Huang et al., 2011; Chung et al., 2012).  

The principal photoacceptors for monochromatic red and near-infrared light in 

mammalian cells have been attributed to the cellular respiratory chain, and the protein 

complex cytochrome c oxidase (CCO) located in the inner mitochondrial membrane 

(Karu, 1989; Karu and Afanas’eva, 1995). The application of LLLT to mitochondria 

increases the proton electrochemical potential, which results in increased adenosine 

triphosphate (ATP) production and electron transport. The activity of CCO is 

inhibited by nitric oxide (NO), which down-regulates cellular respiration (Fig. 1). It 

has been observed that LLLT releases NO from CCO, thereby preventing this process 

from occurring and promoting an increased cellular respiration rate (Karu et al., 2005; 

Moriyama et al., 2005). 

Figure 1. Schematic illustration of photon absorption by chromophores in the cell mitochondria and 

the release of NO, which is inhibiting CCO. Adapted from Huang et al. (2011). 
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Another possible mechanism of action for LLLT is an increased production of 

reactive oxygen species (ROS). ROS are natural by-products of cell oxidation and are 

involved in the signaling pathways from mitochondria to nuclei. Increased oxidation 

and expressions of ROS have been demonstrated after LLLT irradiation, which may 

influence the cellular redox state and induce several transcriptional changes. This 

cascade of cellular events triggers additional effects, such as increased cell 

proliferation and migration, a modulation of inflammatory mediators and growth 

factors, and increased tissue oxygenation (Huang et al., 2011; Chung et al., 2012; de 

Freitas and Hamblin, 2016). 

An imbalance in the cellular redox state with high levels of ROS is seen in several 

soft tissue lesions; this is often referred to as oxidative stress (Ribeiro et al., 2016). 

The potential harmful effects of increased ROS on the healing process are controlled 

by cellular anti-oxidant enzymes such as superoxide dismutase (SOD), catalase 

(CAT), and glutathione peroxidase (GPx) (Barbieri and Sestili, 2012). LLLT has 

demonstrated a reduction of ROS in oxidatively stressed cells (Huang et al., 2013) 

and the attenuation of oxidative stress in several pathological lesions, such as 

arthritis, muscle injuries, and tendinopathy (Fillipin et al., 2005; dos Santos et al., 

2017b; dos Santos et al., 2017a; De Marchi et al., 2017). Although the exact 

mechanisms are yet to be fully understood, LLLT seem to up-regulate the anti-

oxidant defenses, reduce oxidative stress after injury, and increase ROS production in 

normal viable cells (Hamblin, 2017). 

1.3.5 The effect of LLLT in tendinopathy treatment  

When tendons are injured or traumatized, several biochemical mediators are released 

into the tissue. These include alterations in cytokine gene expression and 

metalloproteinase (MMP), increased levels of cyclooxygenase-1(COX-1) and 

cyclooxegynase-2 (COX-2), and, consequently, increased levels of inflammatory 

chemicals such as substance P and prostaglandins (Rees et al., 2013). 

The anti-inflammatory effect of LLLT in tendinopathy has been extensively 

investigated over the years, and its ability to alter cytokine gene expression, COX-1, 
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COX-2, and the expression of inflammatory mediators have been demonstrated in 

several animal trials (Marcos et al., 2011; Marcos et al., 2012; Casalechi et al., 2013; 

de Jesus et al., 2015; Torres-Silva et al., 2015). There is some evidence that the anti-

inflammatory effect of LLLT can be translated to humans, as reduced prostaglandin 

E2 (PGE2) levels have been measured by microdialysis in Achilles tendinopathy 

patients treated with LLLT (Bjordal et al., 2006b). LLLT has also demonstrated 

beneficial effects in the tendon repair process (Oliveira et al., 2009; Marcos et al., 

2014), possibly by increasing collagen synthesis (Reddy et al., 1998), downregulating 

catabolic metalloproteinase enzymes (Marcos et al., 2014), regulating oxidative stress 

(Fillipin et al., 2005), and suppressing cell apoptosis (Sussai et al., 2010; Chen et al., 

2011). 

LLLT is used clinically to alleviate pain and accelerate recovery in tendinopathy. 

Although there is uncertainty about how to transfer consistent results from laboratory 

settings to clinical trials (Basford, 2005), the effect of LLLT appears to depend 

largely on the use of optimal laser doses. Systematic reviewers have identified such a 

dose-dependent effect of LLLT in lateral elbow (Bjordal et al., 2008) and generic 

tendinopathies (Tumilty et al., 2010), as well as in chronic joint disorders (Jang and 

Lee, 2012), neck pain (Chow et al., 2009), and osteoarthritis of the knee (Bjordal et 

al., 2007). 

1.4 Cryotherapy 

The history of medical cryotherapy dates back to 3000 BC, when ancient Egyptians 

used cold compresses to alleviate pain and reduce inflammation. The Greek physician 

Hippocrates advocated for the therapeutic use of cold to control hemorrhages and 

reduce the swelling of painful joints as early as 500 BC. Local application of cold for 

anesthetic purposes was described by monks in the mid-eleventh century (Grattan and 

Singer, 1952; Korpan, 2007). During the Napoleonic wars, Napoleon’s surgeon, 

Dominique-Jean Larrey (1776–1842), used the vasoconstrictor and numbing effect of 

local cryotherapy to facilitate amputations (Larrey and Mercer, 1832). In the period 

of 1845 to 1851, Dr. James Arnott (1797–1883) focused much of his work on the use 
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of cold in anesthesia. He initially used cold to treat malignant disease and observed 

that even though this did not cure the patients, morbidity and pain were considerably 

reduced (Arnott, 1851; Bird, 1949; Korpan, 2007). The cooling of wounds to reduce 

local inflammation and pus formation was strongly recommended by German 

military surgeon Johan Friedrich August von Esmarch around the same time 

(Esmarch, 1865). His great passion for cryotherapy in emergency care led him to gain 

the nickname “Fritz the ice pack” (Beyer and Dick, 2001).  

During the twentieth century, the application of ice packs and other local cryotherapy 

modalities became a widespread first aid treatment for acute soft-tissue injuries, in 

both domestic and sports medicine (Bierman, 1955; Blonstein, 1966). Physician Gabe 

Mirkin later suggested that first aid treatment for acute musculoskeletal injuries 

should be expanded to include four elements: rest, ice, compression, and elevation 

(resulting in the acronym RICE) (Mirkin, 1978). The RICE guidelines were quickly 

recognized by healthcare practitioners and implemented as the gold standard for the 

management of acute sports injuries (Wallace et al., 1979; Renström and Johnson, 

1985), despite the discrepancy between the alleged therapeutic mechanisms and 

clinical effects (Swenson et al., 1996). The management of acute soft tissue injuries 

was later expanded to include the element of protection, and the acronym RICE was 

replaced by PRICE. Recently, Bleakley et al. (2011) suggested that the guidelines for 

the management of acute injuries should also reflect strategies for ensuring early 

optimal loading. Hence, a new acronym, POLICE (which represents protection, 

optimal loading, ice, compression, and elevation) was recommended to guide 

management. 

1.4.1 Therapeutic mechanisms of cryotherapy  

Cryotherapy can be defined as the application of any physical medium to the body 

that removes heat and decreases the temperature of the contact area and adjacent 

tissue (Nadler et al., 2004). The reduction in tissue temperature is regarded as the 

main trigger for any biophysical effect of cryotherapy. 
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These effects can be categorized as follows: 

• Attenuation of inflammatory response (vascular changes) 

• Effects on metabolism (reducing the sequela of injuries) 

• Effects on nerve conduction (cold-induced neuropraxia)  

Attenuation of inflammatory response (vascular changes)  

The rationale for using cryotherapy in acute soft-tissue injuries is a general 

attenuation of the inflammatory process. Decreasing the temperature of the skin and 

underlying soft tissue reduces blood flow by causing a sympathetic vasoconstrictor 

reflex of the smooth muscle component on the vessel wall (Ho et al., 1994; Knobloch 

et al., 2007; Gregson et al., 2011). The cold-induced vasoconstrictor response and 

subsequent reduction in blood vessel diameter can help to reduce the amount of 

edema (Sloan et al., 1989; Deal et al., 2002; Schaser et al., 2007), which contains a 

large number of inflammatory cells. 

However, we also suggest that the main possible mechanism to reduce edema is the 

decrease of biochemical activity at the inflammatory site, especially the enzymatic 

activity that cools down dramatically with the reduction of temperature. This 

hypothesis from our group make sense because increases in vascular permeability, 

which is the main phenomenon of edema, is not physiologically related to 

vasodilation (Claesson-Welsh, 2015). The leukocyte migration through the 

endothelial cells following soft-tissue injuries is allowed because of the increased 

vascular permeability (Menger et al., 1992; Vestweber et al., 2014). It has been 

demonstrated that cryotherapy reduces the amount of rolling and adhering leukocytes 

on the endothelium after muscle contusion injuries in rats (Menth-Chiari et al., 1999), 

which can also help to control the inflammatory process and edema. It is also argued 

that the increased viscosity of cooled blood increases blood flow resistance, which 

further contributes to reduced local circulation and decreased permeability of the 

blood vessels (McMaster, 1977; Swenson et al., 1996). A decrease in edema 

formation also puts the injured tissue under less mechanical tension, which together 
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with reduced stimulation of sensory nerve endings could have a pain-reliving effect 

(Hocutt Jr., 1981). 

Although tendinopathy is a common musculoskeletal condition in both the general 

population and in sports medicine, the mechanism of effect and clinical benefit of 

cryotherapy for this condition are unclear. At present, very few studies have 

investigated the vascular and cellular effects of cryotherapy for tendinopathy. 

However, a significant decrease in capillary blood flow has been reported after local 

cryotherapy was performed on healthy human Achilles tendons (Knobloch et al., 

2007). A reduced expression of COX-2 and the inflammatory mediator PGE2 have 

also been demonstrated following local cryotherapy in acute mouse patellar and 

Achilles tendinopathy (Zhang et al., 2014). These findings have not been translated to 

human tendinopathy but could be explained by the temperature-sensitive expression 

of PGE2. Synovial PGE2 concentration decreased and correlated well with knee joint 

temperature in humans after postoperative cryotherapy (Stålman et al., 2011). 

However, evidence for a beneficial anti-inflammatory effect of cryotherapy is 

somewhat conflicting. A single study using 20 minutes of local cryotherapy showed 

no effect on inflammatory cytokine expression in rats subjected to acute skeletal 

muscle injury (de Almeida et al., 2014). On the contrary, Schaser et al. (2007) 

demonstrated that six hours of percutaneous cooling following a crush injury to 

skeletal muscle in rats significantly reduced the number of leukocytes, granulocytes, 

and macrophages in the injured area. Another animal study suggested that local 

cryotherapy immediately after muscle injury could be harmful and significantly delay 

the regeneration process, despite decreasing inflammation. Twenty minutes of local 

cryotherapy following a crush injury to skeletal muscle in rats slowed the migration 

of macrophages and, thereby, the secretion of growth factors to the injured area 

(Takagi et al., 2011). In contrast, Ramos et al. (2016) found that intermittent 

cryotherapy (three 30-minute sessions, every two hours) during the first 48 hours 

after muscle injury in rats decreased macrophage invasion and inflammatory markers, 

without having a negative influence on the regeneration process. 
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Effects on metabolism 

Cryotherapy is also used for reducing the metabolic rate of injured soft tissue. 

Following injury, cellular damage is directly caused by the trauma, but adjacent tissue 

areas may also suffer oxidative stress due to trauma-induced vascular disruption. A 

lack of oxygen hampers normal cellular processes and may lead to apoptosis and the 

release of more inflammatory mediators and edema (Rock and Kono, 2008). This 

process is referred to as secondary hypoxic injury. It is proposed that the slowing of 

cell metabolism by cryotherapy reduces the rate of oxygen consumption, and 

therefore has a protective effect on injured tissue. Evidence for such an effect on cell 

metabolism by cryotherapy has been demonstrated in rat muscle subjected to crush 

injuries and in humans suffering from acute traumatic injury to large joints (Ho et al., 

1994; Merrick et al., 1999; Siqueira et al., 2016). Siqueira et al. (2016) found that 

intermittent cryotherapy (three 30-minute sessions of local cryotherapy) reduced ROS 

and oxidative stress in rat muscles subjected to crush injuries. Similar findings were 

reported after four hours of continuous icing, by Merrick et al. (1999). Ho et al. 

(1994) demonstrated that 20 minutes of local cryotherapy to human knees decreased 

arterial and soft-tissue blood flow as well as bone uptake, which can be explained by 

reductions in cell metabolism. It has also been demonstrated that cryotherapy reduces 

skeletal muscle damage in ischemic and reperfused muscle in rats, which could be 

attributed to a reduction in oxidative stress and inflammation (Mowlavi et al., 2003; 

Puntel et al., 2013). 

Effects on nerves 

The external cooling of tissue is well known for inducing an analgesic effect on 

peripheral nerves. The activation threshold of nociceptors situated in soft tissue 

decreases after cryotherapy, and the conduction velocity of pain signals slows down 

(Mc et al., 1984; Algafly and George, 2007; Herrera et al., 2010). The relationship 

between peripheral nerve conduction velocity and temperature was found to be 

roughly linear in a study of the saphenous nerve in cats (Franz and Iggo, 1968). 

Prolonged cooling and very low temperatures have been shown to cause transient 
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injury to peripheral nerves in humans (Bassett et al., 1992; Moeller et al., 1997). The 

threshold for inducing optimal cryoanalgesia in a clinical setting seems to occur at 

skin temperatures between 10 and 13˚C (Bugaj, 1975; Algafly and George, 2007).  

1.4.2 Clinical effects of cryotherapy  

To the best of our knowledge, no rigorous clinical trials investigating the effects of 

cryotherapy in human tendinopathy have been published. Only one basic research 

study has examined the potential anti-inflammatory effect of cryotherapy in 

tendinopathy (Zhang et al., 2014). There are numerous animal studies demonstrating 

beneficial biophysical effects of cryotherapy in other soft-tissue lesions such as 

muscle injuries (Hurme et al., 1993; Merrick et al., 1999; Menth-Chiari et al., 1999; 

Schaser et al., 2007; Puntel et al., 2013; Siqueira et al., 2016), but translational 

clinical studies demonstrating efficacy in humans are lacking (Bleakley et al., 2012).  

In a systematic review including 22 RCTs, Bleakley et al. (2004) assessed the 

evidence in favor of using cryotherapy to manage a variety of acute soft-tissue 

injuries. The authors conclude that more high-quality trials are needed to provide 

evidence-based guidelines for the management of acute soft-tissue injuries. Similar 

conclusions were reported in a systematic review investigating the clinical 

effectiveness of RICE therapy in acute ankle sprains (van den Bekerom et al., 2012). 

The effect of cryotherapy in the acute phase post ACL surgery was assessed in 

another systematic review and demonstrated a significant effect on pain but no effects 

on functional outcomes (Raynor et al., 2005). In contrast, no effect on post-operative 

pain or function was found in a systematic review investigating the effect of 

cryotherapy after total knee arthroplasty (Adie et al., 2010).  

There is a lack of scientific consensus regarding important treatment parameters such 

as the optimal application method, duration, frequency, and timing of cryotherapy 

(MacAuley, 2001). Consequently, there is considerable heterogeneity in treatment 

procedures across studies investigating the efficacy of cryotherapy, both in humans 

and animals. In addition, the majority of clinical cryotherapy trials investigating its 
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efficacy in soft-tissue lesions are of poor methodological quality (Bleakley et al., 

2004; Hubbard and Denegar, 2004). 
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2. Objectives 

The overall objective of this thesis was to investigate the clinical, biophysical, and 

biological effects of LLLT and cryotherapy for the treatment of tendinopathy.  

Study I 

The aim of Study I was to review literature for patients with shoulder tendinopathy to 

examine the effect of LLLT as monotherapy and the potential benefit of adding 

LLLT to exercises or a multimodal physiotherapy treatment regimen, including its 

effect magnitude compared with other electrophysical agents. 

Study II 

The aim of Study II was to investigate energy penetration from two therapeutic 

infrared lasers through skin and the Achilles tendon in healthy participants, before 

and after 20 minutes of cryotherapy. 

H0: Laser optical energy penetration through the Achilles tendon area does not 

change after 20 mins of cryotherapy. 

H1: There are changes in laser optical energy penetration through the Achilles tendon 

area after 20 mins of cryotherapy. 

Study III 

The aim of Study III was to investigate the anti-inflammatory and biomechanical 

effects of LLLT and cryotherapy as monotherapies and in combination with each 

other, one hour after acute Achilles tendon trauma in rats. 

H0: A single dose of cryotherapy followed by LLLT, or LLLT followed by 

cryotherapy, is no more effective on tensile strength and cytokine expression than no 

treatment, LLLT alone, or cryotherapy alone.  
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H1: A single dose of cryotherapy followed by LLLT, or LLLT followed by 

cryotherapy, is more effective on tensile strength and cytokine expression than no 

treatment, LLLT alone, or cryotherapy alone.  
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3. Material and methods  

3.1 Design  

3.1.1 Study I  

This study is a systematic review and meta-analyses of RCTs.  

3.1.2 Study II  

This study is a basic research study on in-situ human tissue. The study has a single 

factor experimental design and includes repeated measurements. 

3.1.3 Study III 

This study is a blinded RCT on LLLT and cryotherapy in in vivo rat Achilles 

tendons. The study has a post intervention test only, control group design. 

3.2 Materials (subjects) 

3.2.1 Study I 

The systematic literature search identified a total of 395 potentially relevant trials. 

Two independent reviewers assessed these papers for suitability for inclusion. Only 

RCTs, controlled clinical trials, or trials with crossover design including human 

participants diagnosed with shoulder tendinopathy or subacromial impingement 

syndrome (SAIS) were eligible for inclusion. One group in the controlled trial had to 

be treated with LLLT (Class 3B) with reported outcome measures for pain or global 

improvement. Any disagreement regarding trial eligibility was resolved in consensus 

meetings between the reviewers. The final study population comprised 17 RCTs and 

854 shoulder tendinopathy patients. The flowchart (Fig. 2) displays the results of the 

literature search and inclusion process.  
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Figure 2. Flowchart illustrating the inclusion process 

3.2.2 Study II 

This study sample consisted of 54 healthy human Achilles tendons. Twenty-seven 

students from Bergen University College (20 women and 7 men), of light skin color 

and with ages ranging from 20 to 30 years, volunteered to participate in the study. 

Both the right and left Achilles tendons of the participants were included in the study 

sample. 

3.2.3 Study III 

This study was performed using 36 male Wistar rats weighing 200–250 g. The rats 

received food and water ad libitum. The rats were randomly divided into six groups, 

with six animals in each group: 
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1. Healthy control group (HCG)  

2. Injured non-treated control group (ING) 

3. LLLT group (LG) 

4. Cryotherapy group (CG)  

5. LLLT first/cryotherapy group (LCG) 

6. Cryotherapy first/LLLT group (CLG)  

3.3 Data collection (procedures)  

3.3.1 Study I 

A systematic literature search for clinical RCTs was performed on May 14, 2013 on 

Medline, PubMed, Embase, the Cumulative Index to Nursing and Allied Health 

Literature (CINAHL), the Physiotherapy Evidence Database (PEDro), and the 

Cochrane Controlled Trial Register Database. It is claimed that consulting Medline 

and Embase ensures a comprehensive literature search due to the minimal overlap 

between databases (Minozzi et al., 2000). However, we also applied the search 

strategy recommended by van Tulder et al. (2003). The keywords used were as 

follows: (low level laser therapy OR low intensity laser therapy OR low energy laser 

therapy OR phototherapy OR HeNe laser OR IR laser OR GaAIAs OR GaAs OR 

diode laser OR NdYag) AND (tendonitis OR tendinitis OR tendinopathy OR 

subacromial impingement OR impingement syndrome OR shoulder tendonitis OR 

shoulder tendinitis OR rotator cuff tendonitis OR rotator cuff tendinitis OR 

supraspinatus tendonitis OR supraspinatus tendinitis). Researchers in the field were 

contacted and contributed additional information. Article references were screened 

for potentially relevant trials. Unpublished material and abstracts were not included. 

No language restrictions were imposed. 

Studies were subsequently categorized according to control group measures to answer 

these four core questions: 

I. Does LLLT work in shoulder tendinopathy patients? 

- Control group receiving placebo LLLT or no therapy  
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II. Does LLLT work in combination with exercise?  

- Control group receiving exercise and placebo LLLT  

III. Does LLLT work in combination with several physiotherapy interventions? 

- Control group receiving a combination of exercises and other 

modalities 

IV. Does LLLT work better than other EPAs? 

- Control group receiving other EPAs 

Two reviewers independently assessed the methodological quality of the included 

trials against the 10-point PEDro checklist (Maher et al., 2003), as exaggerated effect 

sizes have been reported for trials with weaker methodologies (Schulz et al., 1995). 

Disagreement regarding the rating of individual items between reviewers was 

resolved by consensus. Trials were labeled as “high,” “moderate,” or “poor,” 

according to the total attainable sum score. The 17 included RCTs were also 

subjected to an in-depth assessment of possible confounders related to LLLT 

treatment parameters and procedures. Trials not adhering to the current treatment 

recommendations issued by the World Association for Laser Therapy (WALT) were 

classified as having “inadequate dosage.”  

3.3.2 Study II 

The room temperature was recorded before each experiment began. The participants 

were placed in a prone position, lying on a bench, with both ankles placed off the end 

of the bench, leaving the ankle joint in a neutral position. The experiment was carried 

out in eight steps. The MOP of each laser device was recorded for 3 s before and after 

each irradiation. Lasers in the order of 810 nm and 904 nm wavelengths were applied, 

changing every second time. Following is a list of the eight steps: 

1. A pen mark was drawn on both Achilles tendons, 2.5 cm proximal to the superior 

ridge of the Os calcaneus.  

2. The Achilles area was ultrasonographically scanned in both the longitudinal and 

transverse planes, and one image in each plane was saved for further processing. The 
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longitudinal image covered the superior tip of the Os calcaneus and the distal third of 

the Achilles tendon. The transverse image was obtained with the probe covering the 

pre-drawn pen mark on the Achilles. 

3. A thermographic camera was placed approximately 50 cm over the subject’s 

ankles, covering both Achilles tendons, and one image was recorded.  

4. Laser irradiation was performed with the subject lying on their side and the Os 

calcaneus placed on a mobilization wedge. The laser probe was placed in a tripod and 

pressed firmly to the medial side of the Achilles tendon (2.5 cm proximal to the Os 

calcaneus). A handheld optical power meter (OPM) was pressed firmly against the 

lateral side of the Achilles at the same level. The amount of energy penetrating 

through the skin and tendinous tissue was recorded after 1 s, 30 s, 60 s, 90 s, and 

120 s irradiation by the 904 nm laser, and after 1 s, 30 s, and 60 s irradiation by the 

810 nm laser. 

5. The subject was lying prone during 20 mins of tissue cooling. An icepack 

containing 28 icecubes was applied directly over each Achilles area, covering the 

targeted distal third of the tendon. The subject was not allowed to change body 

position to ensure an equal and comparable cooling effect. 

6. The icepacks were removed after 20 minutes, and a post-cooling thermographic 

image was recorded (per step 3). 

7. The subject was again positioned on their side, and the post-cooling LLLT 

procedure was performed (per step 4). While measuring laser energy penetration on 

one Achilles, the other Achilles was kept cool. 

8. The Achilles areas were scanned with real-time ultrasonography (RTUS) (per step 

2). While scanning one Achilles, the other Achilles was kept cooled.  

After all the participants had completed the procedures, the RTUS images were 

scored. The built-in caliper of the US device was used to measure the tissue size. In 

the longitudinal images, tendon thickness in an anterior-posterior (A-P) direction was 
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measured at 2.5 cm proximal from the tip of the Os calcaneus. In transversal images, 

tissue was measured 0.4 cm profound from the dorsal skin surface overlaying the 

Achilles. Tendon thickness was measured as the distance within the medial-lateral 

(M-L) border of the peritenon, and the total amount of tissue the laser irradiation 

should penetrate was measured as the skin-to-skin M-L distance. 

3.3.3 Study III 

The rats were anesthetized with ketamine/xylazine (100 and 20 mg kg−1, 

respectively), and individually positioned with the right hind limb and knee extended 

and the ankle in 90° dorsiflexion. Then, a mini-guillotine consisting of a block 

weighing 200 grams (g), with a blunt edge 2 mm wide was dropped from 20 cm, with 

guided support, to induce injury to the Achilles tendon. Previous studies have shown 

that the mini-guillotine model produces acute inflammation and the degradation of 

tendon collagen (Oliveira et al., 2009; Joensen et al., 2012). After 24 hours, the 

animals were euthanized with an overdose of halothane for biomechanical, 

histological, and biochemical analyses. The skin and connective tissue was removed 

in order to harvest the Achilles tendons for further analyses. A sample of six tendons 

per group were available for analyses of cytokine expression. Four tendons were used 

for the biomechanical procedure, and the remaining two tendons were used for 

histology examinations. All procedures were performed by one observer. To ensure 

consistency in the analyses and the reproducibility of the histology and cytokine 

results, a second laboratory duplicated the blinded analyses, and any disagreement 

was resolved by consensus-based discussions. 

Histology procedure 

The tendon tissue samples were fixed in a 10% formalin solution (Formaldeído PA, 

Synth, Diadema, São Paulo, Brazil) for 72 hours. The samples were then dehydrated 

in a series of alcohol baths (Alcohol PA, Synth, Diadema, São Paulo, Brazil), 

beginning with 50% and progressing to 100%. The samples were cleared in xylol 

(Xilol PA, Synth, Diadema, São Paulo, Brazil) for four hours and embedded in 

Paraplast® (Tyco, Mansfield, MA, USA) for four hours for impregnation. Slices 5 



 40 

micrometers (µm) in thickness were cut, stained with hematoxylin and eosin, and 

mounted on glass slides for histological evaluation. 

Cytokine procedure 

Interleukin (IL)-1β, IL-6, and IL-10, and tumor necrosis factor alpha (TNF-a), levels 

in the tendon samples were determined by enzyme-linked immunosorbent assay 

(ELISA) (R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s 

instructions. For this purpose, 96-well plates (R&D Systems, Minneapolis, MN, 

USA) were coated with 100 microliters (µL) of monoclonal antibody for each 

cytokine (anti-IL-1β, IL-6, and IL-10) and diluted in sodium carbonate buffer (Sigma, 

Aldrich, Brazil) (0.1 M, pH 9.6); anti-TNF-α was diluted in sodium phosphate buffer 

(0.2 M, pH 6.5). The plates were incubated (4°C) for 18 hours. For blocking, the 

plates were washed with phosphate-buffered saline containing 0.05% Tween 20 

(PBST) four times, and then filled with 300 L/well of blocking solution (3% gelatin 

in PBST; Sigma, St. Louis, MO, USA) at 37°C for three hours and subjected to a new 

cycle of washes. Next, 100 µL of properly diluted samples or standards of 

recombinant cytokines were added to the plate and left for 18 hours at 4°C. After 

washing, 100 µL of the respective biotinylated antibodies for the specific detection of 

each cytokine was added and left for one hour at room temperature. After the plates 

were washed, 100 µL of streptavidin-peroxidase was added and left for one hour at 

room temperature (22°C), followed by further washing. The reaction was revealed by 

adding 100 µL/well solution of 3,3’, 5,5’-tetramethylbenzidine and stopped by adding 

50 µL/well of sulfuric acid (2 Molar [M]). 

Biomechanical procedure 

Testing was performed immediately after tendon removal to avoid the influence of 

incubation (Screen et al., 2006). The mechanical characteristics were extracted from 

the force-displacement curves obtained from cyclic loading at a constant velocity of 1 

millimeter per minute (mm/min) for each tendon (Marcos et al., 2014). At each cycle, 

tendon displacement was increased by 10% and force was released until 0.1 Newton 
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(N) was reached. The sequence was repeated until complete tendon failure was 

achieved. 

3.4 Intervention (treatment)  

3.4.1 Study I 

Participants were treated with Class 3B lasers in the infrared spectrum with 

wavelengths ranging from 830 nm to 1064 nm. The mean treatment duration across 

the 17 included trials was three weeks. A total of 12 out of 17 trials used a direct laser 

application technique targeting the tendon pathology. In one study, a non-direct scan 

technique was used. The remaining four studies did not report the mode of LLLT 

application. Energy dose per irradiated point ranged from 0.72 to 4.5 J, and the total 

number of irradiated points ranged from 1 to 10 J. 

3.4.2 Study II  

Two commercially available infrared Class 3B lasers were used for irradiation of the 

Achilles tendons. The 810 nm-wavelength laser (Thor LX2, Thor UK) operates in 

CW mode with a 200mW MOP, a spot size of 0.0314 cm2, and a power density of 

6.37 W/cm2 (manufacturer’s specifications). The 904 nm-wavelength laser (MID-

laser, Irradia Sweden) operates in a super pulse wave (SPW) mode with a peak power 

of 20W, pulse train frequency of 6 kilohertz (kHz), pulses at 100 nanoseconds (nsec) 

(10-9 sec), a width of 30.000 pulses per s, a 60 mW MOP, a spot size of 0.0364 cm2, 

and a power density of 1.67 W/cm2 (manufacturer’s specifications). 

The left and right Achilles tendon of each subject was irradiated before and after 20 

minutes of ice application. Tendons were irradiated for a total of 60 s with the 810 

nm laser and 120 s with the 904 nm laser (Table 1). Domestic ice cube bags 

containing 28 ice cubes per bag were produced in a freezer at -10°C and used for 

cooling the tendons.  
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Table 1. LLLT irradiation intervals 

904 nm 810 nm 

Seconds (Joule) Seconds (Joule) 

MOP MOP 

1 (0.06) 1 (0.2) 

30 (1.8) 30 (6) 

60 (3.6) 60 (12) 

90 (5.4) 

120 (7.2) 

3.4.3 Study III 

All treatments were performed one hour after administering the tendon trauma. The 

LG, LCG, and CLG were treated with a single LLLT application using an infrared 

laser unit (DMC®, São Carlos, Brazil). The laser unit emitted a continuous optical 

output of 100 mW with a wavelength of 810 nm to a spot size area of 0.028 cm2, 

providing a power density of 3.57 W cm−2. Laser irradiation was performed with skin 

contact in the middle portion of the Achilles tendon. The laser delivered energy of 3 J 

in one single point, corresponding to an irradiation time of 30 s. The laser treatment 

parameters were chosen according to previous studies performed by our research 

group (Marcos et al., 2011; Marcos et al., 2012). 

The CTG, LCG, and CLG received cryotherapy to the injured Achilles tendons for 20 

minutes. Small rubber bags containing 10 g of crushed ice were fixed to the region of 

the Achilles tendon with rubber bands, and the hind limb was kept elevated. The ice 

came from a freezer that held a stable temperature of -20 °C.  

The HCG was not injured and not treated. The ING was injured but received no 

treatment.  
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3.5 Outcome measurement instruments 

3.5.1 Study I 

Methodological assessments of the included trials were scored using the 10-point 

PEDro scale. The intraclass correlation coefficient (ICC) for the total PEDro score is 

reported at 0.68 (CI=0.57–0.76) and interpreted to have “fair” to “good” reliability. 

Consensus scores are demonstrated to be in exact agreement with PEDro reviewers 

46% of the time and differs by 2 points or less 99% of the time (Maher et al., 2003). 

We interpreted scores differing by one point or less to be in line with PEDro.  

The WALT recommendations for treating tendinopathies with LLLT were used for 

examining the validity of the treatment procedure and the LLLT doses for each 

included trial. We used a calculation formula to compute the exact joules per point 

treated and total energy (J) per treatment session. LLLT treatment was ascribed as 

“inadequate” when LLLT doses ranged (± 50%) outside the stated therapeutic 

window regarding joules per point and/or total dose per treatment session. 

3.5.2 Study II 

Skin temperature was measured by a thermographic camera (Flir System, T640-25, 

USA) and ancillary software (FLIR Tools+). This software includes tools for 

quantifying the recorded temperature. The camera measures temperature with a 

precision of 50 millikelvin (mK) at 30°C and has an accuracy of ±2% 

(manufacturer’s specifications).  

The laser MOP was measured with an OPM system (Thorlabs Instruments, NJ, 

USA). The OPM system consists of a PM100 display unit with a sample rate of 6 

hertz (Hz), an accuracy of ±1%, and a S121B silicon sensor. The S121B sensor has 

an aperture diameter of ϴ=9.5mm with an optical power range of 500 nW to 500 mW 

and an accuracy of ± 5% (manufacturer’s specifications).  

The RTUS instrument was a Logiq-S8 (GE Healthcare, Minneapolis, USA). The unit 

has a 19” liquid-crystal display (LCD) screen and operates in B-mode with high-
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definition speckle reduction imaging (SRI-HD), CrossXBeam resolution, and coded 

harmonic imaging. The linear matrix transducer (ML16-15-D) was tuned to a 

frequency of 12 megahertz (MHz). The RTUS instrument has a caliper (Somet INOX 

CHROM, Czech Republic) with measurement precision scaled in millimeters (mm).  

3.5.3 Study III 

The optical power output of the laser unit was measured before, halfway through, and 

after the experiment with a Thorlabs power meter (Thorlabs Instruments, NJ, USA).  

Skin temperature over the Achilles tendon area was measured before cooling, after 3 

mins, and after 10 mins of cryotherapy with a thermographic camera (Flir System, 

ThermaCAM S65HS, Boston, MA). 

Histology samples were photographed using a microphotographic camera (Dino-Lite 

digital microscope®, Dino-Eye AM-423X model, Brazil) connected to a personal 

computer. Standardized photos were taken of all groups at a magnification of 100× at 

the specimen level. 

A universal tensile test machine (zL2.5, Zwick, Roell, Germany) was used to perform 

mechanical testing of the tendons. 

Cytokine readings were performed in a Spectrum Max Plus 384 spectrophotometer 

(Molecular Devices Corporation, Sunnyvale, CA, USA) at a wavelength of 450 nm, 

with correction at 570 nm. Sample concentrations were calculated from standard 

curves obtained from the recombinant cytokines. 

3.6 Statistics 

3.6.1  Study I 

Two reviewers extracted data for analysis in the statistical software program Review 

Manager (RevMan) version 5.2. If insufficient data were reported in the original 

articles, authors were contacted to provide additional information. Testing for 

statistical heterogeneity was performed using the chi-square test, which determined 
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whether a random or fixed effects model was applied. Subgroup analyses were 

preplanned, as heterogeneity was expected in LLLT treatment parameters, 

composition of treatment interventions, and exercise designs. Sensitivity analysis was 

performed to reveal trials contributing to a statistical heterogeneity, and the meta-

analysis was considered to be valid if the inclusion of these trials did not influence or 

inflate the overall effect size. End-of-treatment data were pooled as follows. 

We extracted the means and standard deviation (SD) for comparisons using the 

outcome measures of pain, function, and active range of shoulder abduction. Pain 

intensity on a 100 mm visual analogue scale (VAS) and degrees of active abduction 

was defined as the pooled estimate of the difference in change between the means of 

the treatment and control groups, weighted by the inverse of the SD of change for 

each study (i.e., the weighted mean difference [WMD] of change between the 

groups). The variance was calculated from the trial data and presented as 95% 

confidence intervals in mm on VAS and degrees of abduction. Improved global 

health status was defined as any of the following categories: “improved,” “good,” 

“better,” “much improved,” “pain-free,” or “excellent.” The relative risk (RR) for 

change in health status was calculated by pooling the number of improved patients.  

Shoulder function was measured by several different disability scales. If pooling of 

the data was justified, the standardized mean difference (SMD) of change between 

groups with a 95% confidence interval were calculated. SMD is a unitless pooled 

estimate of the difference between the mean of the treatment and control group, 

weighted by the inverse of the pooled SD of change between the groups. 

3.6.2 Study II 

The mean (± the standard error of mean [SEM]) amount of laser energy (mW) 

penetrating the Achilles area was calculated pre- and post-cooling. The difference in 

energy penetration pre- and post-cooling is illustrated as the mean change in mW and 

percentage of MOP when measured directly into the OPM. The mean (±SEM) tendon 

and skin thickness pre- and post-cooling is displayed in cm. Energy loss per cm of 

tissue was calculated as MOP (mW, no obstacle) – MOP (mW, through tissue) / skin-
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to-skin tissue thickness in cm. Student’s pairwise t-tests were used for pre- and post-

cooling comparisons of energy penetration, tendon/skin thickness, and energy loss, 

with the statistical significance level set at p<0.05. Microsoft Excel (Microsoft Office 

Excel 2011) was used for statistical analysis and graphics. 

3.6.3 Study III 

The Kolmogorov–Smirnov test was applied to assess the normality of distribution of 

the dependent variables. The Kruskal–Wallis test, followed by pairwise comparisons 

using the Mann-Whitney U test, was used to test for differences between the ING and 

the four treatment groups (LG, CTG, LCG, and CLG). The HCG was compared to 

the ING to validate the trauma model. Biomechanical data and cytokine 

concentrations are expressed as medians and interquartile range. Differences were 

considered statistically significant at p<0.05. Tendon specimens were evaluated 

qualitatively for differences in collagen organization, tenocyte infiltration, and degree 

of eosin staining. To increase readability, the findings are presented quantitatively in 

a four-point histology score table, and the mean score for each group is reported. 

3.7 Ethics 

3.7.1 Study I 

There is no universally accepted standard for ethical assessments in systematic 

reviews (Vergnes et al., 2010). Consequently, no systematic ethical assessments 

beyond the standards stated by the original authors were performed in this study. 

3.7.2 Study II 

LLLT is considered harmless when applied to healthy tissue. Due to the consistent 

absence of adverse events and the lack of treatment intentions in this study, no special 

ethical approval was necessary. This was confirmed orally by the Regional 

Committees for Medical and Research Ethics (REK) prior to the start of the study.  
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3.7.3 Study III 

The protocol for Study III was approved by the University of Sao Paulo Animal 

Research and Care Committee (Appl. no 144/78-2). 
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4. Summary of results 

4.1 Study I  

All trials were of either moderate or high methodological quality (mean PEDro score 

of 7). While eleven studies (paper I, table 4) reported positive effects of LLLT, six 

studies reported no significant effects after LLLT treatment (paper I, table 5). 

Four of the studies with non-significant trial results were performed with inadequate 

LLLT dosages (paper I, table 5). Three of these studies used the Roland (IR 904, 

Pagani) laser device, which has been revealed as faulty, with power outputs less than 

1% of the stated output by the manufacturer (Bjordal, 2010). Although this is a 

potentially valid reason for excluding these papers from the review, these trials were 

subgrouped in the RevMan 5.2 analyses. 

Eleven out of 15 trials (73%) that reported pain relief on VAS favored laser over 

placebo, no treatment, or other modalities. Statistically significant (p<0.05) effect 

sizes were found in 9 of these trials (53%), of which 7 trials exceeded the minimal 

important change of 14 mm on the VAS (Tashjian et al., 2009). When trials with 

inadequate laser dosage were excluded, 10 out of 11 trials (91%) displayed pain 

reductions exceeding 10 mm on the VAS. The 7 trials that provided data on global 

improvement were all in favor of LLLT, 4 of these trials with statistically significant 

effect sizes.  

All included trials presented end-of-treatment data in a format that made it possible to 

use RevMan 5.2 for calculations of effect sizes in one or both of the primary outcome 

measures. Continuous data for pain relief on a 100 mm VAS was available from 13 

trials in a format that made statistical pooling possible. 

Following are answers to the four core questions posed at the beginning of Study I: 

I. Does LLLT work in shoulder tendinopathy patients? (Comparison with 

placebo LLLT and no therapy) 
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LLLT was found to be significantly better (p<0.0001) than placebo LLLT or no 

therapy at the end of treatment, with a WMD of 20.41mm (95% CI: 12.38–28.44) 

on the VAS (paper I, fig. 2). Data from 5 trials found LLLT to be significantly 

better (p=0.004) than placebo or no therapy, with an overall RR of improvement 

at 1.96 (95% CI: 1.25–3.08) (paper I, fig. 4). Two trials comparing LLLT to 

placebo showed significantly better (p<0.0001) shoulder function with a SMD of 

1.01 (95% CI: 0.53–1.50) at the end of treatment (paper I, fig. 5). 

II. Does LLLT work in combination with exercise? (Comparison with exercise 

and placebo LLLT) 

Data from two trials showed that LLLT and exercise were significantly better 

(p<0.0001) than exercise and placebo laser, with a WMD of 16.00 mm (95% CI: 

11.88–20.12) on the VAS (paper I, fig. 2). 

III. Does LLLT work in combination with several physiotherapy interventions? 

(Comparison with exercise and other modalities) 

When used as an adjunct to exercise and other therapies, LLLT was significantly 

(p=0.02) better than other therapies, with a pain reduction of 12.80 mm (95%CI: 

1.67–23.94) on the VAS (paper I, fig. 2). Two trials made statistical pooling on 

global improvement possible for LLLT as an adjunct to other interventions. The 

RR for improvement was significantly higher (p=0.006) at 1.51 (95%CI: 1.12–

2.03), in favor of LLLT (paper I, fig 4.). When LLLT was used as an adjunct to 

other interventions, improvement in shoulder function was not significantly 

different (p=0.27) from placebo laser, with an SMD of 0.33 (95% CI: -0.26–0.91) 

(paper I, fig. 5). We were able to pool data for shoulder function expressed as 

improvement in active shoulder abduction for two trials investigating the effect of 

LLLT as an adjunct to other interventions. Although the overall effect was 

negligibly in favor of laser therapy, the effect did not reach statistical significance 

(p=0.09), with a WMD of 8.08 degrees (95% CI: -1.27–17.43) (paper I, fig. 6).  

 



 50 

IV. Does LLLT work better than other EPAs? (Comparison with other EPAs)  

Two trials compared laser therapy to ultrasound and both trials favored LLLT, 

with a significant effect size on the VAS. However, significant heterogeneity in 

treatment procedures and a lack of trial data did not justify statistical pooling 

(paper I, fig. 3). 

V. Trials subgrouped for not adhering to WALT treatment recommendations  

In trials performed with inadequate laser dosages, LLLT was not significantly better 

(p=0.38) than controls, with a WMD of 2.77mm on the VAS (95% CI: -3.46–8.99) 

(paper I, fig. 3). Shoulder function was not significantly different (p=0.26) from 

controls, with an SMD of -0.17 (95% CI: -0.48–0.13) (paper I, fig. 5). Data from 

three of the four trials with inadequate laser dosages showed no difference in active 

abduction with the application of LLLT, with a WMD of -0.08 degrees (95% 

confidence interval [CI] -0.81–0.65) (paper I, fig. 6). 

4.2 Study II  

The H1 hypothesis, “Laser optical energy penetration through the Achilles tendon 

area changes after 20 mins of cooling,” was confirmed, and the  H0 hypothesis, 

“There are no changes in energy penetration through the Achilles tendon area after 20 

mins of cooling,” was rejected. 

All study subjects (n=54) completed the experimental procedure according to 

protocol (paper II, fig. 1). The baseline room temperature was 21.9°C (SD ±0.7). 

Thermography recordings before cooling showed the Achilles mean skin temperature 

to be 28.2°C (SD ±1.8). Skin temperature dropped to a mean value of 4.8°C (SD 

±3.6) after 20 mins of cooling. 

MOP (no obstacle) 

The 904 nm laser was stable and not significantly different (p=0.22) during the 120 s 

pre-cooled and post-cooled irradiations at 54.5 mW (SD ± 2.41) and 55.2 mW (SD ± 
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3.05) (p=0.22), respectively. The 810 nm laser was stable during the 60 s laser 

exposure period, at 202.7 mW (SD 3.75) before ice and 204.3 mW (SD 2.99) after 

ice. The MOP increased by 1.6 mW in the post-ice measurement, which was found to 

be a statistically significant increase (p<0.05).  

904 nm laser energy penetration before and after ice (per steps 4 and 7) 

Irradiation with the 904 nm laser showed a linear increase in tissue penetration with 

time (30 s–120 s), and during this laser exposure period, penetration increased by 

0.03 mW (19%) before cooling and 0.09 mW (45%) after cooling. The energy 

penetration after cooling was significantly increased (p<0.01) at all time intervals 

(30 s, 90 s, and 120 s) compared to the before-cooling measurements (paper II, 

fig. 3a, table 3).  

The percentage of energy penetrating the Achilles area during the exposure period 

was 0.34–0.39% of the MOP before cooling (i.e., a relative increase of 15%). The 

percentage of energy penetrating the same area was 0.43–0.52% of the MOP after 

cooling (i.e., a relative increase of 21% during the laser exposure period) (paper II, 

fig. 3b). Laser energy loss per cm of tissue was significantly (p<0.05) higher at all 

time intervals after cooling (paper II, fig. 4a).  

810 nm laser energy penetration before and after ice (per steps 4 and 7) 

Irradiation with the 810 nm laser showed a stable energy penetration during the 60 s 

exposure. Laser energy penetration at the interval 30 s–60 s increased 0.012 mW 

(2%) in non-cooled Achilles and 0.02 mW (3%) in cooled Achilles tendons. The 

amount of energy penetrating the tissue in the Achilles area after cooling was 

significantly increased (p<0.01) at all time intervals compared to the before-cooling 

measurements (paper II, fig. 5a, table 3).  

The percentage of energy penetrating the Achilles area was 0.24–0.25% of the MOP 

before cooling and 0.30–0.31% after cooling (paper II, fig. 5b), meaning there was a 

relative increase of 4% before and 3% after cooling during the laser exposure period. 
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Laser energy loss per cm of tissue was significantly (p<0.05) higher at all time 

intervals after cooling (paper II, fig. 4b). 

RTUS measurements before and after ice (per steps 2 and 8) 

The mean thicknesses of the Achilles tendons before cooling were 0.51 cm (SD 

±0.07) in the longitudinal (A-P size) images and 1.83 cm (SD ±0.40) in the 

transversal (M-L size) images. The total amount of tissue the laser should penetrate 

before cooling (i.e., the M-L size skin-to-skin distance) was 2.20 cm (SD ±0.30).  

After 20 mins of cryotherapy, the mean A-P thickness of the Achilles tendons were 

not significantly different (p=0.49) in longitudinal images compared to the before-

cooling measurements, at 0.51 cm (SD ±0.07). The mean transversal M-L Achilles 

tendon thickness after cooling was 1.77 cm (SD ±0.38) and was significantly reduced 

(p=0.03) compared to before-ice measurements. The M-L skin-to-skin distance after 

cooling was significantly reduced (p=0.05) compared to the before-cooling 

measurements, at 2.14 cm (SD ±0.34) (paper II, fig. 6). 

4.3 Study III 

The H1 hypothesis, “A single dose of cryotherapy followed by LLLT, or LLLT 

followed by cryotherapy, has an effect on inflammation and tendon biomechanics,” 

was confirmed. The H0 hypothesis, “A single dose of cryotherapy followed by LLLT, 

or LLLT followed by cryotherapy, has no effect on inflammation and tendon 

biomechanics,” was rejected. 

The biomechanical properties measured as force (N) and displacement (mm) at the 

rupture point were statistically different across the ING and the four treatment groups 

(X2 (4)=5.3, p=0.02 and X2 (4)=5.3, p=0.02, respectively). The expression of 

inflammatory cytokine IL-1β, TNF-α, and IL-6 were significantly different across the 

ING and the four different treatment groups (at X2 (4)=6, p=0.00; X2 (4)=18.5, 

p=0.00; and X2 (4)=5.9, p=0.00, respectively). No statistically significant differences 

across the groups for the expression of IL-10 was found at X2 (4)=2.5, p=0.64.  
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Combination of LLLT and cryotherapy (comparison against ING)  

The pairwise comparisons against the ING showed improved force (p=0.02) and 

displacement rates (p=0.04) for the CLG. The LCG showed significantly lower 

displacement (p=0.04), but there was no difference in force at the rupture point 

(p=0.15) compared with the ING (paper III, fig. 1, table 2). 

Both groups combining LLLT and cryotherapy showed significantly reduced levels 

of IL-1β (p=0.00, p=0.01) and TNF-α (p=000, p=0.02). The expression of IL-6 

increased significantly (p=0.00) in both groups, while IL-10 remained at levels 

(p=0.75, p=0.63) similar to those of the ING (paper III, fig. 2a–d, table 3).  

The histology analyses of the CLG showed a near-normal appearance, with no sign of 

tendon rupture. As seen in the healthy controls, the collagen bundles were lightly 

stained and largely uninterrupted. The distribution of tenocytes was situated regularly 

between the collagen bundles (paper III, fig. 3). As such, this group achieved a 

histology score of three, similar to that of healthy control tendons (paper III, table 4). 

The LCG showed consistent signs of moderate tendon rupture. There were larger 

regions of irregularly shaped collagen bundles and heterogeneous staining compared 

to the other treatment groups. Tenocytes were scattered irregularly around the lesion 

(paper III, fig. 3). This treatment group displayed morphological features that most 

closely resembled those of the ING, resulting in a total histology score of eight out of 

twelve in our analyses (paper III, table 4). 

Monotherapy groups (comparison against ING) 

Tendons treated with LLLT tolerated higher forces (p=0.04), but they were not 

significantly less displaced than the non-treated tendons (p=0.19). Tendons treated 

with cryotherapy were significantly less displaced (p=0.02), but they did not tolerate 

higher forces at the rupture point than the non-treated tendons (p=0.56). 

The LLLT group showed significantly decreased levels of IL-1β (p=0.00) and 

bordered the threshold for statistical significance (p=0.06) for IL-10 cytokine 

expression (paper III, fig. 2a/d). TNF-α expression was non-significantly (p=0.15) 



 54 

reduced in the LLLT group (paper III, fig. 2b), whereas IL-6 expression remained 

equal (p=0.42) to that of the ING (paper III, fig. 2c). The cryotherapy group displayed 

cytokine expression in favor of an anti-inflammatory response, but no significant 

differences were found between the groups (paper III, fig. 2a–d).  

The histology analyses of the groups treated with LLLT or cryotherapy alone had a 

general appearance indicating slight tendon rupture. Small areas of irregularly shaped 

collagen bundles and disruption were evident, with somewhat larger regions of dark 

staining in the cryotherapy group compared with the LLLT group. The distribution of 

tenocytes was slightly disorganized, with small cluster formations around the lesion 

(paper III, fig. 3). LLLT and cryotherapy treatment resulted in total histology scores 

of six and seven, respectively, out of twelve (paper III, table 4). 
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5. Discussion 

This thesis investigated the clinical, biological, and biophysical effects of LLLT 

alone and in combination with cryotherapy for the treatment of tendinopathy. To 

explore these issues, a systematic review, a basic research study on in-situ human 

tissue, and an RCT were the methodologies used. All these approaches are robust and 

well-established evidence-based research designs. Regarding the main purpose of the 

thesis, there is evidence from the systematic review that LLLT is effective if 

guidelines regarding dosage and application are followed. The systematic review 

identified cryotherapy as a possible confounder of LLLT, with the potential to induce 

inhibitory effects and negatively influence treatment outcomes for LLLT. 

Interestingly, our basic research study demonstrated that the penetration of laser light 

through healthy Achilles tendons increased significantly after 20 min of cryotherapy. 

Finally, the results of our RCT animal trial were polarized and showed both positive 

and negative biological effects using the combination of ice and LLLT, depending on 

the order of therapy administration. The rule of thumb from this study was as follows: 

ice followed by LLLT seems like a good idea, but LLLT followed by ice does not 

seem wise. These novel findings illuminate a new area in LLLT research and raise 

several questions that require further exploration and verification. The main points 

and issues raised in this thesis will be discussed in conjunction with current 

knowledge regarding LLLT and cryotherapy for the treatment of tendinopathy. The 

results in each of the studies have been discussed in the respective papers. In the 

following chapter, the general aspects, including the main findings in this thesis and 

methodological considerations across the studies, will be discussed.  

5.1  General discussion  

The history of physiotherapy is a tale of relatively young profession. The Chartered 

Society of Massage and Medical Gymnastics was established in the early 1920s with 

support from medical community (Chartered Society of Massage and Medical 

Gymnastics, 1929). Physiotherapy quickly became a profession that developed within 
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the framework of biomedicine, with a subordinate and assistive role to medical 

doctors. Physiotherapists have traditionally been dedicated the role of treatment 

executioners, leaving the defining powers of diagnostics to doctors. Since diagnostics 

guides therapy, much research into treatment methods for musculoskeletal diseases 

have been initiated and defined by others than physiotherapists. This can be easily 

illustrated by conducting a simple database search in PubMed. While a search 

combining the terms “low level laser therapy” or “cryotherapy” and 

“musculoskeletal” results in a little more than 200 papers, “non-steroidal anti-

inflammatory drugs” and “musculoskeletal” increase the amount of published papers 

fourfold. From this perspective, LLLT may still be regarded a novel treatment in 

musculoskeletal diseases compared to non-steroidal anti-inflammatory drugs 

(NSAIDs), even though both interventions arose as potential treatment options 

around 50 years ago (Adams and Cobb, 1967; Mester et al., 1967; Rainsford, 2007). 

Furthermore, early studies stating that low-level lasers could produce beneficial 

biological effects and act at a molecular level were met with skepticism and discredit 

by a majority of scientists. Consequently, the method of LLLT was established, and 

still remains, outside of mainstream medicine (Hamblin and Huang, 2014).  

The term evidence-based medicine (EBM) was introduced in the 1990s and marks a 

transition in patient decision-making processes. It is emphasized that clinical decision 

making should be based on the best level of evidence from clinical studies rather than 

subjective expert opinions and clinical expertise (Guyatt et al., 1992). Extending this 

idea, a hierarchical model for grading levels of evidence was suggested, placing a 

systematic review with meta-analysis at the highest level of evidence (Evans, 2003). 

Although the main purpose of systematic reviews is to summarize existing research 

on a topic and make judgements regarding evidence, an equally important task is to 

identify gaps in the existing literature and direct future research. The requirement to 

bring the best evidence into clinical decision making highlights the need for more 

research in physiotherapy-related interventions. The number of RCTs and systematic 

reviews published per year in the PEDro database increased from less than 500 in the 

early 1980s to more than 2,000 in the late 1990s, and along with this, there was also a 
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substantial improvement in the methodological quality of the studies (Moseley et al., 

2002). The cumulative number of physiotherapy papers in the PEDro database has 

now exceeded 37,000 (PEDro, 2017). 

Another factor that has led to confusion in scientific and clinical laser therapy 

literature is the lack of consistency and consensus regarding terminology. The great 

heterogeneity in nomenclature has most likely contributed to a loss of momentum and 

increasing skepticism in the emerging field of LLLT. In addition to the term laser 

biostimulation, introduced by Mester et al. (1968b), other names such as cold laser, 

soft laser, low-power laser therapy, low-intensity laser therapy, and low-level laser 

(or light) therapy were used by the industry and researchers. Although LLLT is a 

well-established, searchable Medical Subject Headings (MeSH) term and extensively 

used by researchers, patients, and clinicians, it has been criticized for not accurately 

reflecting the variety of light sources used or the mechanisms of actions at play. In a 

nomenclature consensus meeting organized by WALT and the North American 

Association for Photobiomodulation Therapy (NAALT) in 2014, a majority of 

participants opted for photobiomodulation therapy as a more accurate and specific 

description of the therapeutic application of light (Anders et al., 2015). However, this 

term was not MeSH indexed at the time and was first included in the MeSH database 

as an entry term for “laser therapy, low level” in 2016.  

One major consequence of lacking adherence to a universal term is a neglect of the 

literature. Researchers may not be able to perform a comprehensive systematic search 

for literature if the many synonyms to LLLT and PBMT are not included. This 

limitation is not unique to the field of LLLT. A conglomeration of different terms has 

also been used to describe tendinopathy, which mirrors the uncertain pathophysiology 

driving the condition (Van Dijk et al., 2011). In literature, the move away from the 

term inflammatory tendinitis/tendinosis to degenerative non-inflammatory model of 

tendinopathy is evident (Rees et al., 2013). Consequently, studies containing both 

LLLT and tendinopathy are at risk of falling between the cracks and going unnoticed. 

This can be demonstrated by investigating the number of LLLT trials included in 

published systematic reviews of several shoulder tendinopathy interventions over the 
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past decade. We identified six systematic reviews that made conclusions regarding 

the effectiveness of LLLT for shoulder tendinopathy and were based on only a 

handful of studies, ranging from 1-4 RCTs (Green et al., 2003; Faber et al., 2006; 

Kromer et al., 2009; Valen and Foxworth, 2010; Gebremariam et al., 2013). In 

contrast, our systematic review and meta-analysis (Study I) includes a total of 17 

LLLT trials.  

The LLLT modality struggles to gain general acceptance in medical communities and 

remains controversial, much due to the uncertainties and confusion related to 

treatment parameters. A large number of parameters (e.g., wavelength, output power, 

irradiation mode, irradiation time, treatment timing, and repetition) can be chosen, 

showing the complexity of designing LLLT protocols (Nussbaum et al., 2003). 

Furthermore, the first law of photobiology states that for LLLT to have any effect on 

a biological system, a sufficient amount of energy from the irradiated light must be 

absorbed by photoacceptors in the targeted tissue. Consequently, if the amount of 

light energy delivered to the target tissue is too low, a response in the tissue will not 

occur. Conversely, if the amount of light energy is too high, inhibitory effects may 

occur. The existence of this biphasic dose-response phenomenon in LLLT has been 

frequently observed. Interestingly, this phenomenon contradicts our natural 

assumption that if a small dose of LLLT produces a significant therapeutic effect, a 

larger dose should produce an even greater effect (Hashmi et al., 2010; Huang et al., 

2011; Chung et al., 2012; Cotler et al., 2015). By acknowledging these challenges 

related to LLLT treatment dosages, a more refined interpretation of the many 

negative studies that have been published is appropriate. Rather than making firm 

conclusions that LLLT in general does not work, the key message should be that the 

laser parameters used in those particular studies were ineffective.  

To minimize dose issues related to the clinical application of LLLT, the WALT 

constructed guidelines for treating common conditions, such as tendinopathy and 

arthritis, based on the current best evidence from systematic reviews and meta-

analyses (WALT, 2006). These guidelines were made in an attempt to reveal optimal 

dose ranges (e.g., the biphasic dose-response window). To overcome the inadequacy 
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of reporting doses calculated from the laser spot size (energy density in J/cm2), 

WALT implemented the idea from Nussbaum et al. (2003) and suggested that the 

area size in cm2 should be replaced with energy (J) per point irradiated. The 

explanation for this decision can be illustrated by the following equation: two LLLT 

probes of different output power (500 mW, 1 mW) and different spot sizes 

(0.001 cm2, 1 cm2) were used for 8 s and 4 s, respectively. Dosage reported as energy 

density would be identical at 4 J/cm2 for both lasers, whereas the energy delivered to 

the tissue (in joules per point treated) is in fact completely different, at 4 J and 

0.004 J, respectively (Carroll, 2017). Consequently, one should not expect similar 

clinical results. Although the consensus agreement issued by WALT (2006) regarding 

reporting of LLLT parameters in clinical trials is comprehensive (including 

wavelength, power density, irradiation time, joules per point treated, number of 

points treated, and total dose in joules), the published guidelines only state 

recommendations for minimum total dose in joules, minimum joules per point 

treated, and number of points to treat (WALT, 2005). The guidelines contain no 

recommendations regarding irradiation time (i.e., a typical dose of 4 J can be 

delivered in 8 s with a 500 mW laser and 80 s with a 50 mW laser). Thus, more 

studies are needed to refine these guidelines and the optimal dose ranges for LLLT. 

Nevertheless, the validity of the guidelines has increased over the past ten years as 

systematic reviewers consistently report positive results across trials adhering to the 

recommendations, as opposed to trials using unsupported doses (Bjordal et al., 2008; 

Tumilty et al., 2010; Jang and Lee, 2012). The results from our systematic review 

(Study I) were not different. 

The identification of an optimal dose-response relationship is even more limited for 

the therapeutic use of cryotherapy in musculoskeletal conditions. To date, optimal 

recommendations regarding the mode, duration, and frequency of cryotherapy 

treatment for tendinopathy or other soft-tissue lesions do not exist. The basic 

rationale for applying cooling agents after soft-tissue injury is related to van ’t Hoff’s 

law, which states that for every 10°C reduction in tissue temperature, a two- or 

threefold decrease in the rate of chemical reactions will occur. The current best 

evidence for reducing metabolism and enzymatic activity in the early stages of injury 



 60 

is limited to animal trials, which demonstrate optimal effects when the targeted tissue 

is cooled to temperatures between 5 and 15°C (Bleakley and Hopkins, 2010; Bleakley 

et al., 2012). Similar to treatment success in LLLT, the treatment success of 

cryotherapy depends on penetrating the skin barrier to reach deeper-situated 

pathology. Moreover, a sufficient amount of temperature reduction is necessary to 

modulate pathophysiological processes. At present, the transfer of basic scientific 

theory and results from animal trials to clinical cryotherapy trials on soft-tissue 

lesions is frequently unsuccessful (Bleakley et al., 2004). As no study has 

demonstrated temperatures below 20°C in human muscle tissue following 

cryotherapy, its potential to reduce metabolism in deeper-situated soft tissue has been 

questioned (Bleakley and Hopkins, 2010). Skin and adipose tissue have an insulating 

effect, and individual variations in skinfold thickness require different cooling 

durations to produce an identical temperature reduction (Otte et al., 2002). The target 

area for reducing temperature in human muscle tissue is often 2 cm beneath the 

subcutaneous tissue (Merrick et al., 2003), and the amount of adipose distribution 

varies within and between subjects.  

To our knowledge, no studies have investigated intra-tendinous temperature 

reductions following cryotherapy. Superficial tendons are usually covered by a thin 

layer of subcutaneous tissue and located at anatomical body parts that are not 

associated with great inter-subject variability in adipose distribution. The Achilles, 

lateral elbow extensors, and rotator cuff tendons have all been measured and located 

less than 1 cm from the skin surface in an RTUS study (Bjordal et al., 2003). Hence, 

a greater reduction in intra-tendinous temperature in superficially located tendons 

should be expected when compared with most muscles. 

Research studies may be biased and produce erroneous results due to the influence of 

both known and unknown variables. An adequately powered and well-designed RCT 

will, on average, limit the influence of many potential cofounders (Polit and Beck, 

2008). Concomitant therapy is a well-known confounder and, therefore, often 

imposed as an exclusion criterion in RCTs. This is especially true for pharmaceutical 

studies, where polypharmacy may induce harmful drug interactions (Bjerrum et al., 
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2003; Rothwell, 2005). In contrast, most physiotherapy interventions, including 

modalities used for treating tendinopathy, display limited potential to cause harm. 

Moreover, different interventions are often combined into a physiotherapy treatment 

regimen, targeting individual clinical findings and etiological characteristics of the 

specific tendon disorder at hand (Cook and Purdam, 2009; Kuhn, 2009; Seitz et al., 

2011; Magnan et al., 2014a). Although these multimodal treatment regimens are 

designed to optimize effect, the evidence for such an effect is unclear for many 

treatment combinations (Green et al., 2003; Rees et al., 2009; Hanratty et al., 2012).  

In our systematic review and meta-analysis (Study I), we identified cryotherapy as a 

possible negative confounding variable if administered parallel to LLLT in patients 

suffering from shoulder tendinopathy. This hypothesis emerged as a trial with high 

methodological and procedural quality but which displayed ineffective results across 

all reported outcome measures (Dogan et al., 2010). Indeed, we expected this trial to 

be in favor of LLLT, as the remaining 10 trials performed with adequate LLLT doses 

reported reductions in pain and/or accelerated improvement. Unique to this study was 

the use of cryotherapy as a co-intervention. Consequently, a reversed translational 

research strategy was used to explore the potential biophysical and biological effects 

of the treatment combination of LLLT and cryotherapy in tendinopathy treatment.  

5.1.1 Clinical effects of LLLT and cryotherapy 

Studies on animal and cell models show that LLLT can modulate pathophysiological 

processes in tendinopathy, predominantly by modulating inflammatory components 

and stimulating the tendon repair process (Bjordal et al., 2006a; Cotler et al., 2015). 

Similarly, cryotherapy may induce beneficial anti-inflammatory effects by reducing 

microcirculation and cell metabolism, in addition to its neuro-analgesic potential 

(Malanga et al., 2015). Consequently, both therapies display a mechanism of action in 

which pain relief seems to be the most important outcome measure. A more rapid 

course of improvement may also be expected if pain subsides and the tendon healing 

process is either stimulated by LLLT or the sequelae of a tendon injury is limited by 

cryotherapy. However, none of these therapies target other crucial etiological factors 
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in human tendinopathy, such as soft-tissue inflexibilities, impaired muscular 

activation pattern, loss of muscular strength or stability, or any environmental risk 

factor (Jarvinen et al., 2005; Seitz et al., 2011; Magnan et al., 2014a). Therefore, 

LLLT and cryotherapy should be considered as possible pain-modifying treatments 

and their usefulness in the clinical management of tendinopathy should be evaluated 

based on these premises. 

The current best evidence suggests that both LLLT and cryotherapy produce clinical 

effects in a dose-dependent manner. Evidence from animal studies show that a 

sufficient level of temperature reduction in the skin (<12°C) and soft tissue (5–15°C) 

is necessary to produce optimal clinical effects (i.e., pain relief and lower cell 

metabolism) (Bleakley et al., 2012; Bleakley and Hopkins, 2010). The critical 

threshold for skin cooling deemed necessary to produce cryo-analgesia can be easily 

achieved in humans using ice-based cryotherapy modalities (Merrick et al., 2003), as 

demonstrated in Study II, in which domestic ice-cube application to the Achilles area 

produced a mean skin temperature value of 4.8°C in healthy adults. However, skin 

temperature is a weak predictor of deeper-situated tissue temperature (Jutte et al., 

2001), and the ability of cryotherapy to lower temperature to the threshold for 

metabolic reduction seen in animal studies (5–15°C) may not be possible in most 

human soft-tissue disorders (Bleakley et al., 2012). Furthermore, these emerging 

recommendations for cryotherapy must be validated in rigorous clinical trials, across 

different soft-tissue injuries and pathological stages, before any firm conclusions 

regarding dose-response relationship can be established. As yet, no clinical trials have 

attempted to investigate the effects of cryotherapy alone or as an adjunct to LLLT in 

human tendinopathy. 

The effect of cryotherapy as a supplement to therapeutic exercises have been 

investigated in two controlled clinical pilot trials, which included patients suffering 

from lateral elbow and rotator cuff tendinopathy. Parle et al. (2016) found significant 

improvements in pain and shoulder function in the presence of reduced bursal 

thickness following one week of cryotherapy or isometric exercises alone. There were 

no significant differences between the groups and there was no evidence for any 
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“add-on” effect when these two therapies were combined in a third treatment arm. 

The authors submitted no information regarding cryotherapy treatment parameters. 

Manias and Stasinopoulos (2006) investigated the potential “add-on” effect of 10 min 

of ice-bag application (five times a week for four weeks) post eccentric exercises in 

lateral elbow tendinopathy (LET), compared to exercise only. The authors concluded 

that the magnitude of pain relief did not differ between the two groups at the end of 

treatment. However, the validity of these preliminary results is very limited, as they 

arise from two small pilot trials of poor methodological quality. Hence, it is not 

reasonable to make any conclusions regarding the clinical benefit of using 

cryotherapy as a supplement to exercise in human tendinopathy. 

There is evidence from previous systematic reviews that LLLT is effective for 

treating Achilles tendinopathy and LET if the currently recommended dosage 

guidelines issued by WALT are followed (Bjordal et al., 2008; Tumilty et al., 2010). 

Results from Study I supported the existing evidence and demonstrated that LLLT 

can produce beneficial clinical effects alone, as an adjunct to exercise or a 

multimodal physiotherapy regimen in shoulder tendinopathy patients. Our results 

demonstrated significant pain relief and accelerated recovery rates if LLLT was 

included across these intervention strategies. 

Interestingly, the Dogan et al. (2010) trial, which combined LLLT, exercise, and 

cryotherapy, displayed a WMD for pain relief and an SMD for shoulder function at 

0.4 cm and -0.33 over placebo, respectively. These effect sizes are almost identical to 

the trials subgrouped for using non-valid laser treatment doses. Although this high-

quality study (10/10 PEDro score) adhered to the treatment recommendations issued 

by WALT, no measures of laser output testing were reported. Consequently, laser 

device failure or errors in actual irradiation dose cannot be excluded as a possible 

confounding factor. 

In Study II, we discovered that 20 min of cryotherapy significantly decreased skin-to-

skin and Achilles tendon M-L thickness. Furthermore, we found that penetration of 

laser light increased significantly through healthy Achilles tendons subjected to the 
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cryotherapy treatment protocol. Dogan et al. (2010) treated all patients with 10 min 

cold pack application. It is possible that the duration of cryotherapy treatment and 

choice of modality (cold packs) used in this study predominantly produced 

temperature reductions in the skin. Merrick et al. (2003) reported an overall 

temperature reduction of only 5°C 1 cm sub-adipose tissue and a superficial skin 

temperature of 12°C after 10 min of cold pack application to the thigh of healthy 

adults. Levy et al. (1997) investigated subacromial space temperature following 90 

minutes of cryotherapy (Cryo/Cuff) in post-operative shoulder arthroscopy patients 

and found that the subacromial temperature was similar to controls. It can be argued 

that the cryotherapy treatment protocol used by Dogan et al. (2010) targeted the skin 

and did not penetrate the rotator cuff tendons situated in the subacromial space. With 

regard to the results in Study II, this would have allowed LLLT to penetrate the skin 

with less energy attenuation and perhaps “over-dose” the tendon tissue. Indeed, 

Dogan et al. (2010) treated patients with an 850 nm infrared laser (100 mW MOP) 

and irradiated each point with 6 J, which is an energy dose in the absolute upper 

margin according to WALT recommendations. However, the authors did not report 

the order of therapy administration, and cryotherapy may have been applied after 

LLLT treatment. 

In Study III, we found that LLLT followed by cryotherapy produced counter-

productive biomechanical and histological effects in acute Achilles tendinopathy of 

rats. The immediate application of a cooling agent on injured LLLT stimulated 

tendons and seemed to interfere with some cellular responses in a non-beneficial 

fashion. Conversely, superior effects were observed in the group treated with 

cryotherapy followed by LLLT. 

To the best of our knowledge, no other clinical trials have examined the effect of 

LLLT in combination with cryotherapy in tendinopathy treatment. It should be 

mentioned that the trial by Yeldan et al. (2009), which is included in Study I, also 

combined LLLT, cryotherapy, and exercise. However, the findings of this trial were 

deemed invalid because the participants were treated with a discredited laser device, 

which had a MOP output of less than 1% of the displayed dose (Bjordal, 2010).  
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5.1.2 Biophysical and biological effects of LLLT and cryotherapy  

Physiotherapy interventions such as LLLT and cryotherapy are applied to the human 

skin for the purpose of triggering biological actions in underlying tissue. The 

penetrative ability of both therapies depends primarily on mode of delivery (i.e., 

wavelength for lasers and the thermodynamic properties of the cooling agent for 

cryotherapy) (Merrick et al., 2003; Bashkatov et al., 2011). The amount of dermal 

and adipose tissue between the skin surface and the underlying target is obviously of 

great importance. Although the depth to tissue target should affect both cryotherapy 

and LLLT treatment parameters, it has not been a prioritized area of research and is 

seldom reflected in clinical treatment protocols. The WALT consensus agreement on 

the design and clinical conduct of LLLT studies has not been revised since its release 

in 2006 (WALT, 2006). An updated version should perhaps encourage researchers to 

include ultrasonography measurements of dermal tissue thickness in LLLT 

tendinopathy trials. This would allow for future assessments of correlation between 

inter-subject variability in “depth to target tissue” and magnitude of effect. Indeed, 

such evidence is important to refine, optimize, and individualize the treatment 

parameters of both LLLT and cryotherapy. 

It has also been demonstrated that the biophysical penetration of laser light is 

influenced by skin color. LLLT doses within WALT recommendations increased skin 

temperature beyond the threshold for painful thermal stimuli in people with dark skin, 

whereas the skin temperature in those with light/medium skin tones remained 

negligible (Joensen et al., 2011). The melanosomes of dark skin are heavily 

pigmented, which increases the ability to absorb ultraviolet light (Yamaguchi et al., 

2007). Hence, dark skin most likely acts as a more efficient photon barrier than 

lighter skin tones can during LLLT irradiation. Skin color in relation to biophysical 

penetration of cryotherapy and thermodynamics has not been investigated. However, 

skin structure and function are known to vary across different ethnic skin types 

(Rawlings, 2006), and their response to heat or cold application may also differ 

(Taylor, 2006; Lee et al., 2010). 
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How the biophysical penetration of LLLT and cryotherapy is influenced by variables 

such as gender, age, disease, activity level, and various drugs are also unknown. 

Interestingly, the co-contaminant use of the cortisol antagonist mifepristone 

completely blocked the anti-inflammatory effect of LLLT in the carrageenan-induced 

pleurisy of mice (Lopes-Martins et al., 2006). The authors explained this negative 

event as resulting from a steroid-induced downregulation of cortisol receptors, 

suggesting that the effect of LLLT may depend on the cortisol/adrenal gland 

pathway. Notably, when the adrenal glands responsible for endogenous cortisol 

secretion were excised in rats, an inhibition or even a blockade of LLLT effects 

occurred (Albertini et al., 2004). It is also well known that corticosteroid treatment is 

able to produce a downregulation of its receptors (Silva et al., 1994; Felszeghy et al., 

1996; Zovato et al., 1996; Sanden et al., 2000), which in clinical situations may be 

responsible for the poor effects of LLLT in patients submitted to corticosteroid 

therapy. However, skin atrophy and hypopigmentation are well-known side effects of 

both local and systemic steroid use (Schäcke et al., 2002; Liang and McElroy, 2013; 

Coondoo et al., 2014). Consequently, the biophysical penetration of LLLT may 

increase through skin and possibly “over-dose” the underlying target tissue if 

administered parallel to steroid treatment. With regard to Study II, careful 

consideration should be given before generalizing the results to a heterogeneous 

general population of varying ages, activity levels, skin colors, pathologies, and 

pharmaceutical histories. 

We have shown that skin and tendon thickness is significantly reduced after 20 min 

of ice pack application to the Achilles area of healthy adults with light skin color. The 

total amount of tissue reduction (skin-to-skin distance) following cryotherapy was 

small (0.6 mm/2.7%) but may have contributed to the increased LLLT energy 

penetration observed in Study II. Optical energy penetration increased significantly 

for both lasers and at all measured time points after cryotherapy application. Laser 

energy may penetrate more easily in cooled tissue due to reduced skin and tendinous 

microcirculation and the amount of laser energy–absorbing hemoglobin (Knobloch et 

al., 2007; Yanagisawa et al., 2007). It is also possible that the reduced attenuation of 
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laser energy reflects the slowing of cell metabolism in cooled tissue. Conversely, heat 

therapy is frequently used by physiotherapists to increase blood flow, cell 

metabolism, and the elasticity of collagenous tissue (Malanga et al., 2015). Future 

studies should investigate whether heat induces the opposite effect on the optical 

properties of skin and tendon tissue (i.e., increases the attenuation of LLLT). 

The combination of cryotherapy and LLLT also produced different biological effects 

in acute Achilles tendinopathy of rats when compared to the effects of LLLT or 

cryotherapy alone (Study III). This finding suggests that some cellular or tissular 

interaction occurred. LLLT induces photochemical actions on mammalian cells by 

increasing the activity of the enzyme CCO in mitochondria (Hamblin, 2016), which 

in turn modulates cellular responses responsible for limiting inflammation and 

stimulating tendon repair. Merrick et al. (1999) investigated whether five hours of 

continuous local cryotherapy reduced secondary injury after crush injury to skeletal 

muscle in rats. In this study, triphenyl tetrazolium chloride (TTC) reduction rates in 

assayed muscle tissue served as a measurement of CCO activity and was found to 

significantly increase in injured rats treated with cryotherapy, thus limiting the 

magnitude of the secondary injury. It has also been demonstrated that acclimation to 

low temperatures provokes a compensatory increase of CCO activity in fish and in 

the adipose tissue of hamsters (Klingenspor et al., 1996; Hardewig et al., 1999). 

Our study on Achilles tendinopathy of rats demonstrated that cryotherapy in 

combination with LLLT was the only intervention that significantly reduced the 

expression of all pro-inflammatory cytokines, thus displaying evidence for an anti-

inflammatory add-on effect, despite which therapy was administered first or last. This 

may reflect a reinforced upregulation of CCO activity when these therapies are 

combined. However, the effect on tendon biomechanics and histology was only 

positively influenced if LLLT was applied after cryotherapy. In fact, tendons treated 

with LLLT before cryotherapy negatively influenced these outcomes, which suggests 

that the order of therapy administration is essential to achieving a beneficial effect.  
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The photons emitted from LLLT irradiation is suggested to increase CCO activity in 

damaged cells by liberating it from the inhibitory actions of nitric oxide (Hamblin, 

2016), but the exact mechanisms of action for cryotherapy remain unknown. 

However, a decreased formation of NO has been demonstrated in heart muscles of 

hypothermic rats subjected to myocardial inflammation (Scumpia et al., 2004). NO is 

a potent signaling molecule that can activate both beneficial and harmful immune 

responses (Bogdan, 2001). The NO released by LLLT may induce different intra- and 

inter-cellular signaling pathways in cooled tissues compared to those of tissues at a 

normal temperature, producing a beneficial biomechanical and histological outcome 

in the CLG and a negative response in the LCG, as observed in Study III.  

Another aspect to consider regarding Study III is timing of LLLT intervention. It is 

well established that LLLT limits inflammation and promotes tendon healing in a 

laboratory setting (Oliveira et al., 2009; Marcos et al., 2011; Marcos et al., 2012; 

Laraia et al., 2012; Tsai et al., 2012; Casalechi et al., 2013; Torres-Silva et al., 2015). 

Indeed, LLLT alone significantly reduced pro-inflammatory cytokine IL1 expression 

in the presence of increased levels of IL-10 in Study III. However, we were surprised 

that the anti-inflammatory response was not more profound and included a significant 

reduction of the pro-inflammatory cytokine TNF-a. The optimal time frame for 

initiating LLLT treatment after injury is still an open question in the literature. In 

Study III, rat Achilles tendons were irradiated with 3 J one hour after crush injury, 

which is a recommended irradiation dose for human inflammatory conditions 

according to WALT treatment guidelines. It is possible that an irradiation dose of 3 J 

was a case of “too much, too soon” to achieve an optimal anti-inflammatory effect in 

small rodents. Indeed, increased Achilles tendon edema has been demonstrated in rats 

treated with a similar dose (3 J) 30 min after blunt injury (Joensen et al., 2012). 

However, the optimal LLLT dose may also differ depending on which trauma model 

is used to inflict tendon injury in animals. It is likely that the course of inflammation 

and the cytokine expression profile varies between different trauma methods. COX-2 

gene expression was found to peak 2 hours after injury in collagenase-induced 

Achilles tendinopathy of rats, and a single LLLT dose of 3 J was more effective than 
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1 J in reducing inflammation one hour after injection (Marcos et al., 2011). Another 

study with LLLT treatment one hour after collagenase-induced tendinopathy in rats 

demonstrated significant reductions in COX-2 and pro-inflammatory markers IL-6 

and TNF-a after 3 J but not after 1 J (Torres-Silva et al., 2015). Conversely, de 

Almeida et al. (2014) treated rats with LLLT one hour after blunt muscle injury and 

found significantly reduced TNF-a levels after 1 J but not after 3 J. Both de Almeida 

et al. (2014) and Joensen et al. (2012) used a similar injury model as did Study III, 

and in retrospect, these findings suggest that the early initiation of LLLT treatment 

after blunt injury to tendons should be performed with a lower dose than 3 J. 

5.2 Methodological discussion  

The research question for this thesis was to investigate the clinical, biophysical, and 

biological effects of LLLT alone and in combination with cryotherapy for the 

treatment of tendinopathy. Hence, the target tissue in all the three included studies are 

tendons. This section addresses the methodological aspects of the thesis with an 

emphasis on research design, subjects, and internal and external validity. Specific 

methodological limitations of the individual studies are presented separately in 

subsections.  

5.2.1 Study design and study population  

Systematic review and meta-analysis (Study I) are powerful tools for collecting and 

summarizing existing knowledge in a research field and for combining the results of 

individual studies in one paper (Laake et al., 2007). The aim of Study I was to 

investigate the clinical effectiveness of LLLT for shoulder tendinopathy by 

synthesizing evidence from already-published RCTs. Heterogeneity across trials 

related to procedural aspects of LLLT treatment and different co-interventions to 

LLLT was expected and formed the basis of our a priori subgrouping (Chapter 3). 

The review question was formulated using the population, intervention, comparison, 

outcome (PICO) model (Table 2, below), and these parameters constituted the basis 

of our systematic literature search. The subjects in Study I originate from RCTs of 
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patients diagnosed with shoulder tendinopathy or SAIS. The diagnostic accuracy of 

the clinical tests used to confirm SAIS and shoulder tendinopathy are known to be 

limited (Hegedus et al., 2008). However, rotator cuff disorders are by far the most 

common associated source of shoulder pain, accounting for more than two thirds of 

all cases (Murphy and Carr, 2010). These limitations in clinical diagnostics may 

cause some subject heterogeneity across trials, which could arguably impose a threat 

to the internal validity of Study I. Perhaps more importantly, the subjects in Study I 

most likely mimic the diversity of shoulder tendinopathy patients treated by 

clinicians, which is a crucial element for the generalization of the findings to clinical 

practice.  

In Study II, the biophysical ability of LLLT energy (from two different Class 3B 

lasers) to penetrate healthy human Achilles tendons was measured before and after 

cryotherapy, and at several time points during exposure (Table 2). The amount of 

optical LLLT energy penetration before cryotherapy was compared—using a similar 

part of the body, the Achilles—to that after cryotherapy (i.e., the subjects were their 

own control). This basic in-situ research study follows a repeated measurements 

design, which is sensitive in detecting differences within the same subject. The 

healthy subjects in Study II were recruited by nonprobability convenience sampling. 

This non-random method of recruiting participants limits the ability to generalize 

findings (Polit and Beck, 2008), but a conservative interpretation of the results can 

still yield important and clinically relevant knowledge.  

In Study III, a blinded multiple-armed RCT design with post intervention test only 

was used to investigate the biological effects of LLLT and cryotherapy as 

monotherapies, as well as in combination with each other (Table 2). The study 

population comprised in vivo rat Achilles tendons. Animals included in this study 

were (outbred) male Wistar rats of the same age and weight, produced at the Biotery 

of Sao Paulo University, comprising a homogenous study sample. The rats were 

randomly divided into six experimental groups. The probability sampling using 

random assignment increases internal validity by reducing bias related to pre-existing 

differences between the groups before the experiment begins (Polit and Beck, 2008).  
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Table 2. PICO key components of individual studies 

Study no. Population Intervention Comparison Outcome 

I Humans diagnosed 

with shoulder 

tendinopathy or 

SAIS 

LLLT (Class 3B) 

administered to one 

group in the 

controlled trial  

Placebo LLLT or 

no therapy groups 

EPA groups 

Exercise and 

placebo LLLT 

Physiotherapy 

regimen and 

placebo LLLT or 

another EPA  

Pain 

Global 

improvement  

Shoulder function 

 

II Achilles tendons of 

healthy young 

adults  

 LLLT (Class 3B)  

Cryotherapy 

Subjects are their 

own control 

(repeated 

measurements)  

Optical energy 

penetration before 

and after 

cryotherapy  

RTUS tendon 

thickness 

measurements  

Skin temperature 

III Achilles tendons of 

male Wistar rats 

LLLT alone 

Cryotherapy alone 

LLLT & 

cryotherapy 

Cryotherapy & 

LLLT 

No treatment  Inflammatory 

mediators  

Tendon 

biomechanics  

Tendon histology  
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5.2.2 Internal validity  

All research studies should be evaluated based on their internal validity, and if it is 

found to be adequate, they should then be evaluated based on their results and 

external validity (Biondi-Zoccai et al., 2011). The level of internal validity reflects 

how confident one may be that the dependent variable (outcome) was caused by the 

independent variable (intervention) rather than some other variable (Polit and Beck, 

2008). All three studies in this thesis were performed with detailed predefined 

protocols and standardized procedures to minimize biases, and they were controlled 

for the influence of possible extraneous variables. 

Study I 

The systematic review and meta-analyses (Study I) included as part of this thesis 

followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) statement and was conducted with an a priori methodological approach 

(Moher et al., 2009). With PRISMA, several measures are taken to ensure that the 

review process is clearly defined, thereby establishing a framework for 

reproducibility of the results by other researchers and limiting potential sources of 

bias. However, the protocol for Study I was not registered in the PROSPERO 

database, which reduces the transparency of this a priori process.  

A comprehensive literature search strategy, adequate coverage of relevant databases, 

article reference screening, and personal contact with experts in the field were 

conducted to identify relevant trials for inclusion. No language restrictions or 

exclusions of “old” studies were imposed, to limit selection bias. Grey literature (e.g., 

unpublished trials) was not included in Study I, and their exclusion can lead to 

exaggerated estimates of intervention effectiveness (McAuley et al., 2000). However, 

as negative publication bias has been reported in LLLT literature, a devalued estimate 

of effect sizes seems like an equally likely outcome (Bjordal et al., 2008). 

The internal validity of LLLT trials depends on both methodological and procedural 

quality. There is no universal agreement or gold standard regarding which checklist 
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to use for methodological assessments of RCTs, and different quality scores for the 

same study may be reported across different systematic reviews (Olivo et al., 2008). 

The PEDro scale used for assessing trials in Study I was developed for use in 

physiotherapy and is a reliable and valid instrument (Maher et al., 2003; Macedo et 

al., 2010; Sherrington et al., 2010). According to the study by Maher, consensus 

scores were in exact agreement 46% of the time and differed by two points or less 

99% of the time. The ICC for the total PEDro score has been reported to range from 

0.68 to 0.91 (i.e., acceptably good reliability) (Maher et al., 2003; Foley et al., 2006). 

However, some disagreement between independent reviewers should be expected. 

For Study I, any disagreement in the rating of individual items between the two 

independent reviewers was solved by consensus, and scores differing by one point or 

less were interpreted to be in line with PEDro reviewers. For only one trial were 

reviewers in significant disagreement with the PEDro reviewers, and the results 

outlining this discrepancy were made available in the appendix of the published 

paper. 

The assessment of possible confounders related to LLLT treatment parameters and 

procedures were handled according to the standards issued by the WALT 

musculoskeletal advisory board, and trials using non-optimal treatment doses were 

subgrouped (WALT, 2006). The justification and validity of applying these standards 

in systematic reviews and meta-analysis of LLLT trials have been discussed in the 

general section. 

Two reviewers extracted data from the primary studies for the purpose of statistical 

pooling. There is an ongoing debate regarding how to handle cases of significant 

statistical heterogeneity (I2 > 0%, p< 0.05), and whether reviewers should avoid 

performing meta-analysis in such cases (Biondi-Zoccai et al., 2011). Higgins et al. 

(2003) investigated 509 meta-analyses of dichotomous outcomes in the Cochrane 

Database of Systematic Reviews and found that a quarter displayed I2 values over 

50%. Moreover, adjectives were suggested to interpret the degree of heterogeneity as 

follows: low (25%), moderate (50%), and high (75%). Although no attempt was 

made to categorize the meta-analysis of our study, sensitivity analyses were 



 74 

performed to reveal trials contributing to statistical heterogeneity. If the inclusion of 

these trials did not increase the overall effect size and the random or fixed effect 

model produced similar effect estimates, the meta-analysis was considered valid.  

Study II 

The within-subject repeated measurement design was used to investigate the 

penetration of laser energy through healthy Achilles tendons under two different 

conditions: before and after cryotherapy. An a priori power analysis was not possible 

to perform, as no similar studies containing expected means and variance data had 

been published (D’Amico et al., 2001). However, our study sample consisted of 54 

healthy tendons, which decreased the probability of beta errors (i.e., the probability of 

not finding a difference when one truly exists). The repeated measurement design 

also reduces error variance associated with individual differences between subjects, 

as they are their own control. In RCTs, important differences may exist between the 

two groups, which effects the dependent variable (Bordens and Abbott, 2002). While 

threats to internal validity such as history, maturation, and “carryover effects” are 

well-known disadvantages of this design, they do not apply in this study as the time 

interval between measurements (before and after cryotherapy) is limited to 20 min 

(Kirk, 1982, Polit and Beck, 2008). The internal validity of this study is largely 

dependent on the reduction of extraneous variables in the experimental set up, as well 

as the use of reliable measurement instruments and procedures.  

Two Class 3B lasers (an 810 nm 200 mW CW-mode laser and a 904 nm 60 mW 

SPW-mode laser) were used for irradiation of the Achilles tendons. Both lasers 

displayed a stable MOP during irradiation with no obstacle measured before and after 

cryotherapy. However, a small but significant increase in the 810 nm laser MOP (1.6 

mW) was observed in the after-cryotherapy measurement. Although we handled this 

inconsistency in our analysis by reporting the percentage of MOP penetrating the 

Achilles before and after cryotherapy, randomization of the intervention order could 

have eliminated this weakness. To obtain reliable measurements of non-cooled tissue, 

the tissue temperature must return to baseline levels after cryotherapy. The restoration 
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of skin temperature to baseline levels following cold-air exposure was found to 

exceed two hours (Kim et al., 2002), and the relationship between skin surface 

temperature and underlying tissue temperature is poorly understood (Hardaker et al., 

2007). The experiment could have been performed on consecutive days, but this 

approach was not taken because of the increased risk of influence from extraneous 

variables within subjects and “loss to follow-up.” 

Skin temperature was measured by thermographic imaging (Flir System, T640-25). 

Modern thermographic cameras have a small error rate of only ±2% and can produce 

high-definition infrared images with an accuracy of 0.1ºC in skin temperature 

measurements (Jiang et al., 2005; Villaseñor-Mora et al., 2009). Abnormal body 

temperature is a natural indicator of illness, and thermographic imaging has been 

successfully used in the diagnoses of several medical conditions, including breast 

cancer, neuropathy, vascular disorders, and chronic joint and tendon disorders (Ring 

and Ammer, 2012). This imaging technique is based on the phenomenon that 

different materials emit infrared thermal radiation, which can be used for calculating 

the temperature of the emitting object and visualizing it in real-time images. The 

emissivity of objects range from 0 (no emission) to 1 (complete emission), and the 

emissivity of human skin has been found to be almost constant, at 0.96 to 0.98 in both 

white and dark skin colors (Lahiri et al., 2012; Ring and Ammer, 2012). The 

reliability of thermographic temperature measurements can be affected by 

environmental changes in temperature, airflow, and moisture (Ring et al., 2004). The 

mean room temperature in our laboratory was 21.9ºC and varied less than 1ºC 

throughout the experiment; air filtered through a balanced ventilation system and the 

windows were double-glazed. 

Another factor to consider is the distance from the camera to the target measurement 

area (the Achilles), as this parameter can influence the pixel resolution. In Study II, a 

standardized distance of 50 cm was used for all measurements, as recommended by 

Ring and Ammer (2000). The skin surface temperature can also be affected by topical 

substances such as ultrasound gel or water from the ice packs (Bernard et al., 2013). 

Although measures were taken to ensure that the skin surface was dry before images 
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were captured, the skin surface temperature at a baseline would perhaps have been 

more reliable if the images were captured before the ultrasound examination. In a 

review by Costello et al. (2012), the use of thermal imaging to assess skin 

temperature following cryotherapy was investigated, and the authors concluded that 

thermal imaging appeared to be a safe, accurate, and reliable method of collecting 

such data.  

The Achilles area (skin and tendon) was scanned in the longitudinal and transverse 

plane using an ultrasonography instrument (Logiq-S8, GE Healthcare, Minneapolis, 

USA). A built-in caliper was used to measure the amount of tissue. Images were 

obtained in a standardized manner at 2.5 cm from the tip of the OS calcaneus bone. 

The inter- and intra-observer reliability of Achilles tendon thickness measurement has 

been reported as high (Bjordal et al., 2003; Ying et al., 2003; Brushøj et al., 2006). 

The stability of the laser MOP and the relative loss of energy after penetrating 

through skin-tendon-skin was measured with an OPM (ThorLabs model PM100 with 

a S121B optical sensor). This instrument measures power output at five specific 

wavelengths, including 810 nm and 904 nm, which corresponds to those of the two 

LLLT devices used in Study II. OPM systems are widely used to measure and control 

laser parameters and are associated with a high degree of stability and low occurrence 

of measurement errors (Chen et al., 2016). 

Study III 

Evidence hierarchies often rank well-designed individual RCT studies on the second 

rung in evaluating healthcare interventions, below the strongest evidence, which 

comes from the systematic review of multiple RCT studies (Polit and Beck, 2008). 

The aim of Study III was to investigate the biological effects of LLLT and 

cryotherapy as mono- and combined therapies on the tendon mechanical properties, 

inflammation and histology. Even though the rats form a homogenous group, the 

induction of injury to the tendon may still produce some variation between the study 

subjects. Hence, manually assigning animals to specific groups may cause selection 
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bias and ultimately influence the results (Van der Worp et al., 2010). The failure to 

randomize animals and employ blinded outcome assessors are associated with 

exaggerated effect sizes across several different disease areas (Hirst et al., 2014). In 

this study, the animals were randomly divided into six different cages by one person, 

and group allocation was decided by another blinded researcher. However, 

randomization does not ensure an unbiased comparison of the treatment groups. In 

clinical trials, the most robust method of limiting systematic bias is to employ a 

double-blind, placebo-controlled procedure, meaning neither the patient, researcher, 

nor caregiver know the details of the treatment given (Laake et al., 2007). As animals 

are not likely to experience any placebo effect, double-blinding procedures are not 

necessary (Van der Worp et al., 2010). Given the nature of the treatment intervention 

in our study, blinding the caregiver was not possible. However, we ensured that the 

outcome assessors were unaware of the group allocation. Tendon biomechanical tests 

can only be performed once, as the tendon ultimately ruptures. Two independent 

blinded assessors performed the histology and cytokine analysis to ensure the 

consistency of the analyses. 

ELISA is the most widely used and best-validated method for measuring individual 

inflammatory cytokine expression. The high sensitivity ELISA from R&D Systems, 

as used in Study III, has been reported as having a sensitivity of less than 1 picogram 

per milliliter (pg/ml) for IL-1, IL-6, and IL-10 measurements (Leng et al., 2008).  

The evaluation of biomechanical properties using a tensiometer has been widely used 

in animal research (Ferry et al., 2007; Joensen et al., 2012; Marcos et al., 2012; 

Marcos et al., 2014). In Study III, the tendons were attached to a universal tensile test 

machine (zL2.5, Zwick, Roell, Germany), and several bouts of loading and unloading 

sequences with increasing strength were performed until the tendon ruptured. A 

major prerequisite for obtaining reliable measurements is to avoid slipping of the 

tendon grip as tension increases. The musculotendinous junction was firmly fixed at 

the bottom, whereas the osteotendinous junction was fixed at the top of the 

tensiometer grip. This procedure reliably measured the force and displacement 

needed to rupture the healthy control tendons of the rats. 
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An a priori power analysis was not possible to perform, as no studies containing 

expected means and variance data for the treatment combination of LLLT and 

cryotherapy had been published. We requested a total of 36 rats (i.e., six rats per 

group), based on experience from previous animal studies conducted by our research 

group (Marcos et al., 2011; Torres-Silva et al., 2015). Also, six animals should be 

sufficient according to the following power calculation and our estimate of cytokine 

expression due to LLLT treatment. A previous study by our group investigated the 

effect of LLLT on expression of inflammatory mediators in rat Achilles tendinopathy 

(Torres-Silva et al., 2015). Using the means for IL-10 (15 SD±2 for the injured 

controls, 19 SD±0.5 for the LLLT group) and TNF-a (35 SD±1 for the injured 

controls, 18 SD±3 for the LLLT group), we calculated an effect size of 2.7 and 7.6, 

respectively. Hence, conducting a power analysis (using G*Power software) for the 

difference between independent means (two-tailed t-test) with these effect sizes 

revealed a sample size of two to four rats per experimental group.  

5.2.3 External validity  

External validity refers to the generalization of results from tightly controlled 

research settings to real-world clinical practice settings (Polit and Beck, 2008). From 

this perspective, some shortcomings across the included studies of this thesis require 

that the results should be interpreted with caution. 

In Study I, the included subjects most likely represent a subsample of the target 

population. In line with previous reviews, our study supports the validity of the 

WALT guidelines, which dictate that LLLT acts in a dose-dependent manner in 

tendinopathy. The external validity of Study I is primarily limited by the internal 

validity of the results, which originates from four different comparison groups, 

ranging between two and five studies for each comparison. A common critique of 

systematic reviews and meta-analysis is that they are not original research, as the data 

used for analyses originates from primary research studies. However, the originality 

of the research should be based on its novelty and usefulness rather than what appears 

as original or secondary research (Biondi-Zoccai et al., 2011).  
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In Study II, the subjects consist of 27 healthy young adults (22.5 years SD±2), 

comprising 54 healthy Achilles tendons. Skin and tendons degenerate with increasing 

age, and tendon pathology can produce changes in both morphology and biology. 

Hence, the generalization of the results from Study II to a heterogeneous population 

with tendon pathology has its limits.  

The use of animal models as surrogates for researching human health conditions has 

several shortcomings. The most obvious threat to external validity is the anatomical 

and physiological differences between species. There is no animal model that mimics 

human tendinopathy perfectly. The etiology and pathophysiology of tendinopathy is 

incompletely understood, which limits all animal models used for investigating 

aspects of human tendinopathy (Lui et al., 2011). Hence, the results of Study III 

should not be used to impose firm conclusions on human tendinopathy. One major 

advantage of using animal models is that the effect of an intervention can be 

measured at the tissue level as signs of accelerated healing or pathology 

improvement. The disadvantage is that pathology improvement cannot accurately be 

correlated with subjective outcomes such as pain relief, improved function, or quality 

of life. However, Study III provides evidence that cryotherapy can negatively 

influence the effect of LLLT in tendinopathy treatment, which can explain the lack of 

improvement in the study by Dogan et al. (2010).  

5.2.4 Statistics  

The meta-analysis in Study I was performed with RevMan (version 5.2), which is the 

software used in the Cochrane Database of Systematic Reviews. The validity of 

RevMan meta-analysis has been compared to analyses performed with several 

different commercial software programs, and no discrepancies in the results were 

reported (Bax et al., 2007). In Study II, Microsoft Excel 2011 was used for statistical 

analysis because of this software’s advantage in creating visualizations of the data 

sets. Some of the statistical functions of Microsoft Excel versions until 2007 have 

been criticized by statisticians, but these functions have been improved in later 

versions (Mélard, 2014). The p-values calculated from Microsoft Excel using 
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Student’s t-tests have been compared to SPSS analyses on similar data sets previously 

and found to be almost identical (Joensen, 2013). All statistical analyses of Study III 

were calculated on SPSS version 22. Non-parametric statistical methods were 

applied, as the data did not follow normal distribution. The Kruskal–Wallis analysis 

is adequate for detecting differences between several groups, but it will not indicate 

which groups are significantly different from each other. Consequently, multiple 

pairwise comparisons (Mann–Whitney U tests) had to be performed in Study III. We 

decided to compare the different treatment groups to one common reference group 

(ING), as the combination of cryotherapy and LLLT was a novel experimental 

treatment approach, and to limit the number of pairwise comparisons.  

5.2.5 Limitations of Studies I–III 

Study I 

Even though the overall effect for LLLT on pain and global improvement is 

encouraging in this review, the result should be interpreted with caution. The 

included trials were subjected to analysis in one out of four different comparison 

groups, depending on control group measures. Hence, the result for each comparison 

and outcome arises from a handful of studies. It should also be noted that our 

outcome measures are based solely on end-of-treatment data (2–12 weeks) and 

display the potential short-term effects of LLLT for shoulder tendinopathy. Only 

three trials (Al-Shenqiti and Oldham, 2003; Bal et al., 2009; Otadi et al., 2012) 

provided post-treatment follow-up data, and no robust conclusions can be drawn 

regarding the long-term effects. Synthesizing evidence was challenging for numerous 

reasons. In LLLT research, the validity of a study is based on both methodological 

quality and the validity of the intervention procedure. Clinical application procedures 

and laser parameters were poorly or inaccurately described in some studies (England 

et al., 1989; Logdberg-Andersson et al., 1997; Santamato et al., 2009; Abrisham 

et al., 2011). In addition, there were large variations in laser wavelength (nm), 

number of points treated, composition of co-interventions, and exercise design across 

the included studies. A lack of therapist blinding and an intention to treat analysis 
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were the two most frequent methodological shortcomings, consequently increasing 

the potential bias of this review. Although we thoroughly searched databases for 

available literature, hand-searches of the grey literature were not performed. As 

negative publication bias has been reported for the LLLT literature (Bjordal et al., 

2008), we cannot exclude the possibility that published trials may have been 

overlooked. 

Study II 

The use of a laser tripod and a hand-held OPM has its limitations. The exact amount 

of pressure exerted on the Achilles tendon from these devices was not measured. 

Although our experimental set up was identical for each measurement, we cannot 

exclude that small variations in Achilles squeezing occurred and influenced the 

outcome. The operator holding the OPM was blinded to all measurement recordings 

but could not be blinded to whether the tendon was cooled or not. We also observed a 

difference in MOP (no obstacle measurements) before and after ice for the 810 nm 

CW laser. Although this increase in MOP after ice was very small (1.6%), it was still 

significantly (p<0.01) higher than the before-ice measurements. However, a higher 

percentage of MOP-penetrating cooled Achilles were also found for the 810 nm CW 

laser, indicating that the increased penetration after ice cannot be explained by a 

higher MOP from the laser device alone. It should also be emphasized that our results 

originate from a homogenous population consisting of healthy young adults with a 

light skin tone. Dermal and tendinous tissue degenerates with increasing age 

(Lephart, 2016; Svensson et al., 2016) and can be influenced by both disease and 

activity levels (Wang, 2005; Kongsgaard et al., 2010; Babalola et al., 2014; Kjaer and 

Heinemeier, 2014). Careful consideration should be given before extrapolating the 

results of this study to a heterogeneous general population with pathology.  

Study III 

The experimental trauma model produced increased expression levels of pro- and 

anti-inflammatory cytokines, consistent with reactions known to occur in local 

inflammatory tendon disease (Kindt et al., 2007). It also caused a weakening of 



 82 

tendon material, loss of stiffness, and loss of ability to withstand force before 

rupturing. These findings correlated well with the histopathological appearance of the 

tendons. Nevertheless, the use of animal models in tendinopathy research has several 

shortcomings. At present, there is no ideal model to induce tendinopathy in animals 

(Lui et al., 2011), and all of the models share the common limitation of an unclear 

pathophysiology in human tendinopathy (Rees et al., 2006). We decided to use the 

mini-guillotine model to mimic a tendon disorder with inflammatory components, 

which is comparable to early or acute tendinopathy (Millar et al., 2010). Achilles 

tendinopathy in humans is often associated with overuse, and it can develop over 

months or even years (Paavola et al., 2002). In vivo animal models, such as repeated 

uphill treadmill running, would better mimic the etiology of chronic human Achilles 

tendinopathy. However, it is also a more stressful procedure for the animals than our 

mini-guillotine model. We also found no evidence of its superiority in causing 

inflammatory reactions. Perhaps the most important limitation of this study is the 

absence of a functional outcome, as activity-related pain is a common clinical feature 

in human tendon disorders (Rio et al., 2014). This point should be emphasized, as 

histopathological changes and pain intensity do not necessarily correlate in humans 

(Magnan et al., 2014b). Consequently, the validity of our findings would be 

strengthened by indirect measures of pain such as the analysis of gait pattern (Lui 

et al., 2011). Our cytokine analysis also showed considerable variance, indicating that 

the sample size should be increased in future replica studies. In view of these 

shortcomings, careful consideration should be given before extrapolating the findings 

of this study to clinical practice. 
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6. Conclusion  

The main purpose of this thesis was to investigate the clinical, biophysical, and 

biological effects of LLLT alone and in combination with cryotherapy for the 

treatment of tendinopathy. The hypothesis arose from our systematic review and 

meta-analysis (Study I), in which cryotherapy was identified as a possible negative 

confounding variable if administered parallel to LLLT in shoulder tendinopathy 

patients. This clinical finding revealed a gap in knowledge, stimulated our curiosity, 

and brought us to explore the potential biophysical and biological effects of 

combining LLLT and cryotherapy. The main insights from this thesis can be 

summarized as follows. 

In Study I, we demonstrated that LLLT acts in a dose-dependent manner in shoulder 

tendinopathy. Optimal LLLT can offer clinically relevant pain relief and initiate a 

more rapid course of improvement, both alone, in combination with exercises, and in 

combination with several physiotherapy interventions. However, the effects of 

optimal LLLT seemed to be inhibited if administered in combination with 

cryotherapy.  

In Study II, it was hypothesized that cryotherapy alters the biophysical penetration of 

LLLT. Consequently, we investigated the penetration of a CW 810 nm laser and an 

SPW 904 nm laser through skin and Achilles tendon in healthy humans, before and 

after 20 min of cryotherapy. LLLT penetration increased significantly through the 

Achilles area (skin-tendon-skin) for both lasers and at all measured time points, when 

skin surface temperature was lowered from 28.2˚C to 4.8˚C. This may indicate that 

cryotherapy can be used prior to LLLT to reach more deeply situated pathology but 

also that “over-dosing” the tendon with LLLT is possible if the biophysical effects of 

cryotherapy are limited to the skin.  

Finally, it was hypothesized that the combination of LLLT and cryotherapy would 

produce different biological responses in injured tendons when compared with no 

treatment or with LLLT or cryotherapy alone. Although we found that cryotherapy in 

combination with LLLT can produce an anti-inflammatory “add-on” effect in 
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Achilles tendinopathy of rats, other outcomes suggested that the order of therapy 

administration is essential to produce a beneficial biological effect in injured tendon 

tissue. Superior biomechanical and histology results were demonstrated if LLLT 

treatment followed cryotherapy. Conversely, cryotherapy after LLLT treatment 

produced the poorest biomechanical behavior and histological score of all treatment 

groups.  
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7. Perspectives  

This thesis has drawn attention to some interesting aspects regarding LLLT and 

cryotherapy in tendinopathy treatment. There are, however, several new questions to 

be answered: 

• To what extent do different cryotherapy modalities produce intra-tendinous 

temperature reductions in humans? 

• How is the infrared Class 3B laser’s ability to penetrate human skin and 

tendons after heat therapy? 

• What is the ideal timeframe for the initiation of LLLT and cryotherapy after 

tendon trauma in animals, and what are the optimal treatment parameters?  

• Is the ideal timeframe for the initiation of LLLT and cryotherapy different 

across different trauma models used to inflict tendon injury in animals?  

Most importantly, our findings clearly elucidate the need for future clinical RCTs that 

investigate whether cryotherapy in combination with LLLT can produce beneficial 

“add-on” effects in tendinopathy patients. As an extension of Study III, our research 

group is now recruiting Achilles tendinopathy patients to participate in a double-blind 

placebo-controlled RCT in which the effects of cryotherapy, LLLT, and exercise are 

compared to cryotherapy, placebo LLLT, and exercise. This ongoing clinical trial will 

also provide ultrasonography measurements of subcutaneous dermal tissue thickness 

and allow initial assessments of correlation between the depth to tissue target and 

magnitude of effect. 
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