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Abstract Designing monitoring programs for detecting potential tracer discharges from unknown
locations is challenging. The high variability of the environment may camouflage the anticipated anisotropic
signal from a discharge, and there are a number of discharge scenarios. Monitoring operations may also be
costly, constraining the number of measurements taken. By assuming that a discharge is active, and a prior
belief on the most likely seep location, a method that uses Bayes’ theorem combined with discharge
footprint predictions is used to update the probability map. Measurement locations with highest reduction
in the overall probability of a discharge to be active can be identified. The relative cost between reallocating
and measurements can be taken into account. Three different strategies are suggested to enable cost
efficient paths for autonomous vessels.

Plain Language Summary Designing monitoring programs for detecting potential tracer
discharges from unknown locations is challenging. The high variability of the environment may camouflage
the anticipated anisotropic signal from a discharge, and there are a number of discharge scenarios.
Monitoring operations may also be costly, constraining the number of measurements taken. By assuming
that a discharge is active, and a prior belief on the most likely seep location, a method that uses Bayes’
theorem combined with discharge footprint predictions is used to update the probability map.
Measurement locations with highest reduction in the overall probability of a discharge to be active can be
identified. The relative cost between reallocating and measurements can be taken into account. Three
different strategies are suggested to enable cost efficient paths for autonomous vessels.

1. Introduction

Monitoring with the purpose of detecting tracer discharges from an unknown location is challenging in
many aspects. For instance, projects involved in subsurface gas storage, either to store energy to dampen
fluctuations in renewable energy sources or CO2 storage to mitigate the burden of elevated atmospheric
concentrations, will have to detect any leaks through to the atmosphere or the ocean [Bauer et al., 2013;
Blackford et al., 2015; Jones et al., 2015]. Further, with the number of fish farms present in Norwegian fjords,
there are many potential sources for organic waste [Ali et al., 2011] and other contaminants that might have
adverse effects on marine ecosystems [Hylland et al., 2017].

A monitoring program has three levels of modus operandi: (1) anomaly detection modus, (2) confirmation
and localization modus, and (3) flux quantification and abatement modus. All modes will have different
needs with regard to instrumentation and data. For example, location mode will require information about
real time current/wind direction and speed to be able to move upstream toward an increasing signal.

In the detection phase, in which the monitoring program looks for environmental anomalies, baseline statis-
tics, and predictions of discharge characteristics determine monitoring design. Three main questions will
be: (1) where will a discharge most likely occur, (2) how will a discharge trail materialize, and (3) will it be
possible to distinguish the signal from the background variability? In addition, what degree of anomaly will
mobilize the more expensive confirmation and localization step? There is a need to balance between the
need for confirmation and the cost of false alarms.

The aim here is to suggest three strategies to define survey paths for detecting anomalies using an autono-
mous vessel, such as an AUV in the ocean or an UAV in the atmosphere, capable of taking instant
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measurements [Maeda et al., 2015]. The relative cost, e.g., use of limited battery capacity, between taking
measurements and moving to another location can be taken into account. Bayes’ theorem lays the founda-
tion for defining these paths, and the methodology is exemplified using CO2 gas that seeps through the
seafloor.

Environmental changes, e.g., changes in bottom fauna or in the pelagic ecosystem [Wegener et al., 2008;
Blackford et al., 2010], detection of bubbles from ship sonars [Brewer et al., 2006; Noble et al., 2012], or ele-
vated concentration of dissolved gases [Alendal and Drange, 2001; Drange et al., 2001; Vielst€adte et al., 2015],
can be used as indicators of marine gas releases. Here elevated CO2 concentration is used as an indicator.

CO2 is a natural occurring tracer in seawater, with seasonal concentration and variability dependency.
Botnen et al. [2015] demonstrated a stoichiometric approach for detection of small CO2 concentrations that
might stem from seeps, lowering the concentration threshold for a signal to become statistically significant.
This approach is used here to define a detection limit.

Another challenge is the high variability in ocean dynamics. Tides change current directions, wind alters the
amount of mixing, and local topography change local current conditions [Alendal et al., 2005]. Footprints of
leaks are thus varying and highly anisotropic signals, depending strongly on the local oceanic and atmo-
spheric conditions [Ali et al., 2016]. Hvidevold et al. [2015, 2016] presented a procedure for optimizing place-
ment of fixed sensors on the seafloor that accounts for footprint anisotropy. The same tracer footprint
predictions, consisting of time series in an array of 51 3 51 grid points around the seep location from the
GCM simulations presented in Ali et al. [2016], are used here. One challenge is the extent of the area being
monitored and the unknown location of a potential discharge.

Bayes’ theorem has had a renaissance in the recent years, even though the technique has been used in
many contexts over the years without being named as Bayesian [Mcgrayne, 2011]. The theorem offers an
approach to update our belief about the presence of a discharge during a series of unsuccessful detections
in an area, and to identify most likely locations should a leak be indicated.

2. Bayesian Search Strategies

The classical search algorithm when searching for and locating missing objects based on Bayes theorem
reads [Breivik et al., 2012; Stone et al., 2014]:

ppost5pprior
12q

12pprior q
< pprior : (1)

A failed attempt in a location will reduce the probability of the object being there, and increase the
probability in all other locations, including the probability of the object not being in the search area (A)
at all. To shorten notation, pðleakÞ5pprior ; pðfoundjleakÞ5q, and pðleakj:foundÞ5ppost have been
introduced.

A tracer discharge in the search area can be detected remotely, hence a failed attempt will also reduce the
probability of a discharge to be in neighboring locations. Denoting the probability of detecting a discharge
at a location x by a measurement taken at y as qðx; yÞ the posterior probability field after an unsuccessful
measurement at y will be

ppostðx; yÞ5ppriorðxÞ
12qðx; yÞ

12

ð ð
A

ppriorðx0Þqðx0; yÞdx0
: (2)

The resulting change in overall belief, i.e., the probability of the a discharge being present in the search
area (A) from a measurement at y 2 A failing to detect a discharge, will be

DpðyÞ5ppost2pprior5

ð ð
A

ppriorðxÞ
12qðx; yÞ

12

ð ð
A

ppriorðx0Þqðx0; yÞdx0
21

0
BB@

1
CCAdx: (3)

An initial overall prior belief at the start of the search is given by
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pprior5

ð ð
A

ppriorðxÞdx; (4)

in which ppriorðxÞ represents the probability of the leak to be at x. Hence, the achievable DpðyÞ to be
obtained is dependent on our initial prior belief. Since the three strategies select the location with highest
reduction, this dependency does alter the initial path chosen. This is demonstrated later.

The three search strategies based for selecting the next measurement location are:

1. Highest: The most straightforward method is to select the next location for measurement, y, that will
maximize jDpðyÞj, i.e.,

y5 argmax
y2A

jDpðyÞj: (5)

2. Distance: It will take some time to move to the next location, so the location of highest jDpðyÞj might not
give the highest reduction in p for a given time interval, i.e., reduction of probability of the leak with
respect to time.

Assuming that the vessel moves with a constant speed (V), and that the distance between present
location z and a location y is dðy; zÞ, then the changes in p in a given time interval Dt will be

DpðyÞ
Dt

5
DpðyÞ
dðy; zÞ V : (6)

Notice that in the limit Dt ! 0 this represents dp/dt. The goal is to reduce probability as fast as possible, so
the next location that will be most efficient with respect to time, y, given that the vessel is at z, will then be

yðzÞ5 argmax
y2A

jDpðyÞj
dðy; zÞ : (7)

3. Continuous: The third approach is to select next position similar to the previous strategy, but measure-
ments are taken as the sensor moves toward it:

ynðzÞ5z1qnðy2zÞ; y5 argmax
y2A

jDpðyÞj
dðy; zÞ ; n51; 2; . . . ;N; (8)

where qn5n=N � 1, and N is the number of measurements to take while moving toward y. If the probability
field is not updated after each of these under way measurements this strategy equals the Distance strategy
in the limit N 5 1, i.e., choose to jump directly to y in one step. However, if the target location y is updated
after each measurement, the direction might change under way and the sensor starts to move toward
another location.

3. An Example Problem

To illustrate the method, and the three strategies, an artificial gas seep problem has been created. In an area
of 80 3 80 km2 in extent, 15 possible high-risk discharge locations have been randomly placed. These loca-
tions might represent perforating wells, each assumed to have equally high probabilities of being the leak
location. To account for the possibility of gas migrating horizontally as it moves toward the seafloor, the prob-
ability reduces exponentially toward a general background probability that is 100 times less than in the cen-
ter. Initially the probability field is normalized with an initial prior probability of an ongoing discharge

ð ð
A

pðxÞdx5pprior ; (9)

i.e., the starting prior overall belief that a leak is active. The resulting prior probability field is shown in Figure
1 for pprior 5 0.99.

In a real case, this map will have to be based on a thorough site characterization, taking into account, e.g.,
how deep the wells penetrate the geology, presence of gas pockets in the subsurface, and other geological
structures being present in the area.
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Ali et al. [2016] showed that the
footprints of discharges are highly
dependent on seep locations and
this will have to be accounted for
in real case scenarios. Given the
other simplifications taken in this
example, the footprint is assumed
to be independent of discharge
location. With this assumption,
qðx; yÞ5qðx2yÞ, i.e., the proba-
bility of detecting a seep at x by a
measurement taken at y is only
dependent on the relative dis-
tance vector. Here an anisotropic
footprint prediction of a CO2

seep, taken from Ali et al. [2016], is
used for qðx2yÞ.

Concentration time series in a 51
3 51 grid surrounding a seep
with flux 1 kg/s simulated by an
800 m resolution North Sea setup
has been collected. Time series

for 3 by 3 grid cells closest to the seep location is shown in Figure 2. The relative time the CO2 concentration
stays above a detection threshold of ct 5 5 lmol/kgSW, based on a stoichiometric approach [Botnen et al., 2015],
is shown in the left plot of Figure 3. This field represent the probability of detecting a leak at y5ðx; yÞ if the leak
is in (0, 0), i.e., the detectable region in the neighborhood of a seep.

To achieve qðx2yÞ, i.e., the area monitored from a location, the probability field will have to be inverted through
a 1808 rotation [Ali et al., 2016]. The location with highest probability will now represent the location of the mea-
surement, and the probability field represents the probability of detecting a leak from that position, as shown in
the right plot of Figure 3. The probability of detecting a seep from a measurement location, y is then the sum of
these probabilities weighted by the probabilities of the individual locations to be the location of the discharge.

To illustrate the strategies, assume that the sensor is located at the red cross in the two plots of Figure 3.
Using the probability field in Figure 1 as ppriorðxÞ and the right plot in Figure 3 as qðx2yÞ in equation (3)
gives the resulting fields of DpðyÞ as shown in the left plot of Figure 4. The point of highest reduction in Dp
ðyÞ is in the red circle. It is independent of where the sensor is presently.

When accounting for the distance, i.e., DpðyÞ=dðy; zÞ in the Distance method, the location of the first mea-
surement is shifted to the red circle in the right plot of Figure 3. In the Continuous strategy the sensor will
start moving toward the red circle in the right plot taking measurements while traveling.

In the following calculations, all methods select the red circle in the left plot of Figure 4 as the location of
the first measurement. Hence, the cost of traveling to the first measurement location is not accounted for in
any strategies. This removes any dependence of the resulting path taken on the starting location.

Figure 5 shows measurement locations and paths taken for the different strategies using initial pprior 5 0.99.
The left plot shows the unstructured path taken when using Highest method (equation (5)), to choose the
next measurement point. The sensor will move to the next point with the highest reduction in jDpðxÞj with-
out considering the distance or time it takes to move there.

The middle plot in Figure 5 shows that the path becomes more organized when the distance is taken into
account in the Distance method (equation (7)). The sensor tends to make new measurements close to the
present locations, but occasionally there are discontinuities in the paths. These occur when the probability
of the seep to be in the local area has been reduced to a level that makes it beneficial to move over a dis-
tance for the next measurement. As expected, the Continuous strategy results in a path that is continuous,
as shown in the right plot.

Figure 1. A randomly generated synthetics map of 15 probable discharge locations in an
80 3 80 km2 area. The well locations are assumed to have 100 times higher probability of
being the location of a seep, gradually decreasing toward background probability. The
map is normalized so that the sum of all the probabilities is pprior , the initial belief of an
ongoing discharge in the area, here set to 0.99.
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Figure 6 shows the remaining overall probability of a discharge being present in the area as function of
number of measurements taken (left plot) and distance traveled (right plot). If the number of measurements
is the limiting factor, choosing the next measurement in the location that maximizes Dp, labeled Highest.
The Continuous strategy will then collect measurements that do not reduce the probability significantly.

Figure 3. (left plot) The relative number of points in the time series in which the concentration is above detection threshold, hence the probability of drawing a random sample from
the time series that will be above the threshold. (right plot) The resulting probability of the concentration to be above the threshold in the origin, i.e., in (0, 0), if a leak is present in (x, y).
The latter is achieved through a 1808 rotation of the probability field in the left plot.
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Figure 2. Time series of the CO2 concentration along the seafloor at the (middle plot) leak grid cell and the eight neighboring grid cells.
The red line indicates the threshold value ct55 lmol=kgSW from Botnen et al. [2015]. Figure taken from Ali et al. [2016].
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If distance traveled comes with the highest cost, the situation is the opposite, as shown in the right plot of Fig-
ure 6. It is evident that the distance traveled is considerably larger when always selecting the location with
maximum jDpj, i.e., the Highest approach. The Continuous approach is now the most cost efficient strategy.

The example used here is related to chemical sensing in a marine environment using an autonomous ves-
sel. In such a case, propulsion and measurements utilize the same energy source, the onboard batteries. A
simple cost calculation for the different strategies, labeled i, might be

Ci5cm #mi1adið Þ; (10)

where cm is the cost of taking one measurement, #mi is the number of measurements taken, di is the dis-
tance moved, and a5cd=cm is the proportionate cost factor between moving and taking a measurement.
The resulting relative cost is shown in Figure 7, with the relative cost, a, on a logarithmic scale along the x
axis and the remaining probability of an ongoing discharge along the y axis. The contours are lines of con-
stant Ci=Cj , i.e., the relative cost between the two methods.

The left plot in Figure 7 shows the relative cost between Distance and Highest. In the shaded area, the Dis-
tance approach will be more expensive than using the Highest strategy. Taking a measurement will have to
be �300 times more energy consuming than moving for the Highest approach to be selected. The middle
plot of Figure 7 shows the costs of Continuous relative to Highest strategy. The shaded area is where the
Continuous approach will be the more expensive than Highest. This occurs when measuring costs are �166
times more costly than reallocating. The right plot shows the contours of cost of Continuous relative to Dis-
tance. In the shaded area, it will be more costly to perform measurements along transects while moving
toward the next ‘‘hot spot.’’

Figure 4. (left plot) jDpj from equation (3) when using the probability field in Figure 1 as ppriorðxÞ and the right plot in Figure 3 as qðx2yÞ. The red circle represent the location with the
highest jDpj and will be the place to take the first measurement when using the Highest strategy, independent of present location of the sensor indicated by the red cross. (right plot)
The resulting DpðyÞ=dðy; zÞ field when the sensor is located at the red cross. The next measurement will be at the red circle when using the Distance strategy and along the straight line
between the red cross and the circle for the Continuous method.

Figure 5. Measurement locations (blue crosses) and paths taken (red lines) when the probability of a leak being present in the area is reduced to 0.1 using initial pprior50.99 for the (left)
Highest, (middle) Distance, and (right) Continuous strategies. The background colors show the probability for a leak to be in that location.
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The number of measurements needed, and hence distance traveled, to bring ppost down to 0.1 is reduced
with reduced initial pprior , as shown in Figure 8. Hence, the prior is important when quantifying the overall
probability of a leak in the area. However, the initial part of the paths generated will not depend on the
choice of initial pprior .

Figure 9 shows that the first 50 measurement locations for the three strategies for initial pprior equal to 0.99
and 0.5 are the same. Two of the strategies, High and Distance, will cover the hot spots early, with Distance
covering the local area before jumping to other locations. Both Distance and Continuous use the first eight
measurements to cover the three wells close to the starting point, before moving toward the single well to
the north, denoting north in positive y direction and east in positive x direction. When reaching this loca-
tion, the Continuous strategy has collected measurements and route and after two measurements at the
same locations in the vicinity of this well, the paths for the two strategies diverge. The Continuous measure-
ments favor the single well to west as opposed to the double wells to the south selected by the Distance
case. This demonstrates that continuous measurements might alter the paths taken.

4. Discussion

The capability of Bayes’ theorem to design search paths for detecting a tracer discharge is demonstrated
here for a marine gas tracer’s discharge, using an autonomous vessel capable of doing instant measure-
ments. The idea is that each measurement updates the probability field, and the vessel decides where to go
next, i.e., a version of the greedy algorithm.

Figure 6. (left plot) The probability of a leak occurring in the area as a function of number of measurements taken. (right plot) Distance traveled when starting with an initial pprior 50.99.
Notice the shift to logarithmic scaling in the rightmost part of the x axis on the right plot.

Figure 7. Contours of the relative cost, Ci=Cj , between the different strategies for a given target belief that a leak is ongoing along the vertical axis and the relative cost between distance
traveled and measurements, a, on logarithmic scale along the x axis. Notice the logarithmic scale along the x axis. Contours are (left) Distance/Highest, (middle) Continuous/Highest, and
(right) Continuous/Distance. Initial used is pprior 5 0.99.
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The initial path is not depending on the initial prior (qprior ) in equation (9), but will become important when
quantifying the overall belief after a survey. Subsequent surveys will also benefit from the reduction in
belief achieved. How frequent surveys should be executed depends on the underlying site characterization,

Figure 8. The reduction in probability of a leak for different initial pprior as function of number of measurement taken (top row) and distance traveled (bottom row) for Highest (left),
Distance (middle), and Continuous (right) strategies.

Figure 9. The overlapping paths taken for the 50 first measurements for (left) Highest, (middle) Distance, and (right) Continuous strategies for initial pprior 5 0.99 (circles) and pprior 5 0.5
(stars). The top plots show the whole area, while the bottom plots focus on the initial part of the paths.
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the need for assurance, e.g., the vulnerability of the area in questions, and the cost of performing the
surveys.

In other approaches where measurements take some time (e.g., water sampling) or there is a delay between
sampling and results, it might be beneficial to define an optimal route during the cruise planning. The cost
function to be minimized will then differ. However, model predictions of discharge footprints and prior
identification of potential discharge locations can still be combined with Bayes’ theorem in solving such
‘‘traveling salesman’’ problems as demonstrated in Hvidevold et al. [2015]. Also, presence of obstacles and
off limit areas that constrain the paths taken can be accounted for. Here algorithms developed within robot-
ics can be worth reviewing [Karaman and Frazzoli, 2011; Hollinger and Sukhatme, 2014].

The method can also be extended to a monitoring program that combines different sensing techniques
and supplement with fixed installations. Also, noncontinuous, e.g., bursting, discharges can be implemented
through the footprint probability field.

The method and strategies presented are dependent on the initial belief of where a discharge will most
probably occur, exemplified through Figure 1, and the footprint predictions as exemplified in Figure 3. The
former will have to come from a thorough site characterization, identifying potential seep or discharge loca-
tions. The latter will also be highly site specific and depend on the processes that govern the environment
and the distribution of the discharged tracer. Such footprints will have to rely on transport modeling, and to
some extent experiments. All will have to be based on a proper environmental baseline.

It will be necessary to establish routines in the event that a measurement indicates an increased probability
of an ongoing discharge. The confirmation mode will require real time current/wind directions and speed
to move the sensor upstream toward an increasing signal. Bayes’ theorem can be useful in this context as
well, the belief of an ongoing discharge is updated as new measurements are taken and false alarm might
be concluded, should the probability show a consistent negative trend.
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Erratum

In the originally published version of this article, the website link containing the funding information was
incomplete. This has since been corrected and this version may be considered the authoritative version of
record.
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