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Abstract

Significant progress has been made in the field of information visualization. Many

programming libraries (like D3) enable the creation of almost any 2D visualization.

However, this power of expression is not available for non-coders. In this thesis we

show how non-coders can create both simple and complex visualizations using only

drag & drop operations. We define a data structure (Visception Tree) that can repre-

sent arbitrarily nested and layered charts. This data structure can define a hierarchy

of charts embedded within one another, or layered side by side, or a combination of

the two. Each chart can be edited separately and intuitively, and selecting a chart is

done in an outline view - similar to a file view. Such simple ways of interaction are

made possible by the Visception Tree being easily mappable to user interface actions

as well as being flexible enough to encapsulate arbitrary hierarchies and layerings of

charts. The viability of these ideas is demonstrated by showing how some complex

visualizations can be made with just a few drag & drop operations - enabling the

creation of visualizations in just a few minutes.
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Chapter 1

Introduction

1.1 Motivation

Munzner [38] defines information visualization as a subfield of visualization where

the visual encoding is chosen by the designer. With such visualizations we can ex-

plore data and gain insight in ways that are difficult (if not impossible) without vi-

sualizations. However, creating such visualizations is not trivial and usually requires

training or programming skills. Creating visualizations is usually done by coding.

Most people who might use visualizations are not able to create the visualizations

they need. A system that enables people to create their own visualizations without

requiring expert help or extensive training is needed. This problem is partially solved

by existing solutions, yet they fail to provide the freedom and power of expression

that is achieved by programming toolkits.

Problem and Contribution

Most interactive visualization systems do not for the same power of expression as a

programming toolkit. Usually a system will do the basic things, such as bar charts,

scatter plots and pie charts. More complex visualizations may be available in some

systems, but usually they are rigid and the designer is left with less options than with

a programming toolkit. One way to create a system with as much expression would

be to implement every single layout by brute force. However, this is practically im-
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possible. When designing visualizations it is not always obvious which variation is

the most effective. With limited time, we tend to not test out all different options.

Testing out more options increases the likelihood of finding a better design. This the-

sis will present a way to enable users to nest, layer and transform different charts. By

using these operations, a great number of different visualizations can be expressed.

However, these operations must be available in a simple and intuitive fashion. Such

a simple and intuitive interface with these operations is currently unavailable. To

address this, we propose a data structure that maps nicely to an intuitive interface,

as well as the interface itself. It is easier to use, and easier to implement. The visual

language (Visception) will enable users to intuitively build and manipulate one or

more Visception Tree structures and see the corresponding visualizations.

The Visception Tree facilitates the construction of arbitrary nested and layered visu-

alizations. Each node in the Visception Tree encapsulates one chart. For example,

if there is a bubble chart with embedded bar charts, the corresponding Visception

Tree has two nodes: The root node being the bubble chart, and the child node being

the bar chart. To change it to a bar chart with embedded bubble charts, we would

have to swap the node positions so that the bar chart is at the root node, and the

child node is the bubble chart. In other words, to edit a nested visualization, the Vis-

ception Tree must be edited. To edit the tree, a set of operations is needed. This set

of operations must enable the expression of any tree topology. The set of operations

(layer, nest, group, and delete) allow us to express any tree topology - and likewise

any nested visualization. These operations are made easily available in an intuitive

user interface. This enables the user to intuitively edit and transform nested visual-

izations.

Each node in the Visception Tree holds a single chart. Editing a single chart is not

always trivial, with nested visualizations it may be even harder. We have taken the

approach of letting the user edit the charts one chart at a time. In practice, this

means the user has to select one node in the Visception Tree to "link" the editor to

that single chart. Charts are edited, by editing its channels. Building on Munzners

[38] notion of a channel, each chart is edited through its set of channels. A channel

controls one aspect of a chart - for example Bar Height or Bar Width. With this

setup, each chart has a set of channels that are exposed to the user as a set of icons.

Each icon can be clicked and a corresponding control will show. The control can be
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a slider, text input, color input or something more complex.

To facilitate the exploration of multiple designs, it is also possible to convert one

chart into another one, while preserving the mappings. For example, if the user cre-

ates a bar chart, it can be converted into a scatter plot or polar area chart in one

click.

To illustrate the power and flexibility of our approach we will reconstruct some non-

trivial nested visualizations step-by-step in just a few minutes.
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Chapter 2

Information Visualization and Visual

Analytics

Figure 2.1: Here we see some examples of typical information visualization charts.
Different charts tell a different story, picking and customizing the right chart is a
crucial task for designers.

In this chapter we will give an overview of information visualization and visual an-

alytics. We will demonstrate how some of the concepts can be improved upon and

this will be used as basis for the next chapter. Information visualization is the study
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of ways to represent data in a way that is easy to understand and manipulate. We

will limit ourselves to interaction techniques, visualization techniques, and the gen-

eral direction of the field. Interpreting the information in data is not simple, and

one way to better understand this information is to visualize it. By visualizing data

we can help people make better informed decisions, and thus help people carry out

their data tasks quickly and efficiently. In the field of information visualization we

look for ways of visualizing datasets such as networks, hierarchies and multidimen-

sional datasets, as well as ways of enabling users to conveniently create such visual-

izations. In visual analytics, we also want to enable the user to interactively explore

the data. Creating a static visualization is not always enough. An interactive visual-

ization enables us to gain insight into increasingly complex datasets. Good systems

and techniques are crucial in fields where well informed decisions need to be made

quickly, as discussed in [19].

2.1 Visualization Techniques

To create a visualization, a technique to turn the data into a chart is needed. Exam-

ple charts are illustrated in Figure 2.1. Beyond the basics, many systems and tech-

niques have been created or combined to address specific user needs. When the

data is high-dimensional we need more sophisticated techniques. Parallel coordi-

nates [27, 26] allows for the exploration of many dimensions, by having one axis for

each dimension. If the data is categorical, parallel sets can be used [4]. Sometimes,

the datasets are too big to visualize in one visualization. Researchers have proposed

pixel-based and very compact layouts [48] and de-cluttering techniques [3] for un-

covering clusters.

2.1.1 Basic Techniques

With simple datasets, simple techniques are often good enough. The most basic

techniques and layouts include scatter plots, area charts, line charts and bar charts

[13]. With these techniques we can visualize a few dimensions in a very effective

manner. Other non-trivial techniques are usually less effective because they need to

use increasingly unconventional visual channels to convey informations.
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2.1.2 Radial Techniques

Radial techniques, while often argued to be ineffective and deceptive [35] are still

widely used. Most known is the pie chart, but we also have other variations like

elliptical pie charts, and spirals [14]. In some cases these techniques can expose

cyclical patterns that bars and scatter plots can not.

2.1.3 Techniques for High Dimensional Data

When looking for more complex relationships in data, or multiple dimensions, a

simple chart is not enough. Using multiple basic charts, each depicting a small set

of dimensions is a commonly used method. By making a selection on one chart, the

selection is highlighted in the other charts. This is called linking and brushing [33].

While this is useful, more expression can be gained from using techniques that can

express more data with less screen space.

Parallel Coordinates, Sets and Axes Based Techniques

Parallel coordinates [27, 26, 24] allows for visualizing many dimensions at the same

time. In a parallel coordinate chart there is one axis per dimension, thus it can vi-

sualize a large number of dimensions at the same time. The links between each

axis exposes the relationship between the two dimensions. Parallel sets [26] provide

the same method for categorical variables. A drawback is that we only see the rela-

tionship between adjacent axes. Being able to rearrange axes quickly will solve this

problem. Axes based techniques [51, 12] provide a more general form of parallel co-

ordinates that allow us to layout axes radially, and arbitrarily decide which axes are

to be linked together.

Hierarchical Techniques

In visualization, hierarchies create order and facilitate understanding. A hierarchy

is either strictly defined by the data source, or can be arbitrarily defined by the user.

Different visualizations correspond to different aggregation techniques [17].

TreeMaps [31] allows for compactly displaying deeply nested hierarchies (See Figure
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(a) A basic TreeMap display-
ing a hierarchical dataset.
TreeMaps give a good indica-
tion of what the data contains,
but it is difficult to gauge the
hierarchical structure of the
data.

(b) A cushioned TreeMap. The
shading makes it easier to de-
termine the hierarchical struc-
ture of the dataset.

(c) A cushioned, squarified
TreeMap. The squarification
optimizes the layout to display
less elongated rectangles,
and display more even-sized
rectangles.

Figure 2.2: Three kinds of TreeMaps depicting the same datasets. (Source: Figure 6
in Squarified Treemaps by Bruls et al. [8]).

2.2(a)). Cushion TreeMaps [55] do the same thing as regular TreeMaps - but uses

shading to clarify the depth (See Figure 2.2(b)), while Squarified TreeMaps [8] op-

timize the layout to show less elongated thin rectangles appearing to be lines (See

Figure 2.2(c)). TreeMaps can also be defined by an arbitrary, user specified hierarchy

[11] . Matrices of charts such as the scatter plot matrix [16] reveals the connection

between every permutation of a dimension. Dimensional Stacking [36] takes the

same concept further by nesting dimensions even more deeply.

Handling Large Datasets

Suppose a dataset is extremely large, then, many techniques will result in a cluttered

unreadable visualization. Parallel coordinates turn into "hairballs", and TreeMaps

turn into black squares. However, there are techniques that can handle large amounts

of data. Some techniques are pixel-based or extremely dense [48], and others aug-

ment existing techniques [3].
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Figure 2.3: Five different visualizations created with nesting operations. By enabling
nesting, it is possible to create such charts as a combination of simpler ones, rather
than having to explicitly choose one hard coded nesting permutation.

2.1.4 Nesting and Combining

By nesting and combining the above techniques, a wider range of different visualiza-

tions can be expressed. Combining these techniques allows for picking and choos-

ing the best techniques for the data. This is what the method in this paper aims to

do. This approach turns simple charts into building blocks, that can be used to intu-

itively and incrementally build complex visualizations. Instead of providing a wide

range of hard coded visualizations, like icicle charts and sunburst charts, we can in-

stead provide a small set of building blocks. This will allow the user to nest bar charts

within pie charts, and bar charts within bar charts, and much more. Figure 2.3 shows

five different visualizations created with nesting, among them an icicle chart and a

sunburst chart. With nesting and combining we can intuitively explore new visual

representations.

2.2 Challenges and Directions

The direction of visual data analysis involves researchers discovering new layouts

and interaction techniques. While discovering new techniques is important, all the

methods that have been discovered are not easily available to those who might want
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to use them. Thus, it makes sense to bring together these already discovered con-

cepts into one system. Designing interaction techniques [60], defining user tasks

[47] as well as identifying challenges [34] are important aspects of keeping the re-

search going in the right direction.

2.3 Marks and Channels

In order to reason about visualizations, a language for reasoning about visualizations

is needed. A very important part of this language is these two terms: marks and

channels. Munzner introduces the notions of marks and channels [38]. The basic

idea is that each visualization consists of a set of marks, and a set of channels. Marks

depict items or links. Intuitively, marks can be thought of as the "skeleton" for the

visualization, while channels control the appearance of the marks.

Marks Channels
Size Stroke Stroke Dash Fill Color

Bars

Circles

Arcs

Streams

Figure 2.4: Some examples of a marks and corresponding channels. A channel con-
trols the appearance of some marks. In this case, marks are defined as the basic
shapes that depict each data item. For example, pie charts, as well as tubes as seen
above consist of arc shapes. In some cases, the shape itself may be affected by a
channel, then the mark is the deformable path.
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With these two terms established, we can already reason about visualizations in a

very straightforward manner. For example, a bar chart consists of marks (one rect-

angle per bar) and channels controlling the appearance of each bar (Fill Color, Bar

Width, Bar Height, Position, and so on). What we can see after some closer inves-

tigation is that while charts may have different marks, they may some completely

identical channels. These commonalities are useful when designing a larger space

of visualizations. Figure 2.4 shows some examples of marks and channels, and how

the different channels affect the marks.

2.4 Categorical and Continuous Attributes

In any dataset, there are different attributes. The attribute types determine how we

can visualize it. For example, a numeric value such as height or length can be visu-

alized differently than a set of hair colors. Since "height" is a numeric continuous

value, we refer to such an attribute as continuous. "hair color", having only a small

limited set of values will be referred to as a categorical attribute. While we simplify

the discussion of attributes to continuous and categorical, Stevens [49] provides a

more detailed classification of different attributes. Figure 2.5 illustrates the differ-

ence between a continuous and categorical attribute mapped to color ranges.

(a) A categorical attribute mapped to the Fill
Color channel. It is clear that there is a
smaller amount of distinct colors.

(b) A continuous attribute mapped to the Fill
Color channel. Intuitively we can see the
color changes gradually on a continuum, as
opposed to the categorical mapping.

Figure 2.5: An illustration of the difference between a continuous and categorical
attribute.
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(a) Juxtaposition (side-by-
side).

(b) Nesting (one chart within
another).

(c) Two juxtaposed charts
nested within a bubble chart.

Figure 2.6: Three different kinds of positioning settings.

2.5 Nesting and Other View Operations

When creating a single visualization, positioning it is not something that requires a

lot of thought and effort. If there are several visualizations, or combined ones, then

the way in which they are positioned becomes more important. Visualizations can

be combined in different ways. For example, we can put one visualization inside,

beside, on top of, under, over, (or something in between) another visualization. This

section will cover over a small set of common operations and ways to achieve this.

The most common approach to display multiple charts is showing them side-by-

side (juxtaposed, as seen in Figure 2.6(a)) [28]. By nesting charts, one chart is placed

within another chart, for example a row chart inside a column chart as seen in Figure

2.6(b). In Visception these operations can be combined or used separately. In other

words, it is possible to free-form juxtapose charts, even if they are nested within a

visualization. An example of juxtaposition and nesting combined can be seen in

Figure 2.6(c).

2.6 Table Arrangements

A table has both categorical and continuous (numeric) attributes. The most effective

way to display an attribute is to map it to a spatial channel. By that, we mean Posi-

tion X, Size, Bar Width, Bar Height and so on. For example, a scatter plot can dis-

play two continuous attributes - one for the Position X and another for the Position

Y. Consequently, the traditional way of programming and creating visualizations re-

quires these inputs as a bare minimum.

For example, to render a scatter plot a program may require two continuous inputs
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(a) Starting with an
empty viewport.

(b) Dropping one
attribute creates
one circle per distinct
value of that attribute.

(c) Mapping a con-
tinuous attribute to
the Position X chan-
nel first.

(d) Next, map a con-
tinuous attribute to
the Position Y and set
Collision to 0. This is
now a traditional scat-
ter plot.

Figure 2.7: Exposing the steps omitted by traditional visualization input require-
ments.

to be selected before anything is visible on the screen. This can complicate and slow

down the process of exploring multiple designs.

When conceptualizing how the scatter plot is made, there is a mental jump from see-

ing nothing on the screen, to seeing a scatter plot. If we were to imagine which steps

are omitted when going from a blank viewport to a scatter plot, we would (ideally)

see three missing steps. To understand these steps, a generic plot chart as will be

defined as a force layout. The force layout has a Collision channel, which if set to 1

it will ensure the circles do not overlap, if set to 0 it will be like a scatter plot. The first

step is the creation of the circles, one circle for each data point. Usually this step is

implicit, i.e each row in the dataset is one circle. If aggregating the data, there will be

one circle for every row in the aggregated dataset. This first step is depicted in Figure

2.7(a) and 2.7(b). The second and third step is to position the circles on the X-axis,

and on the Y-axis. The order of the second and third step does not matter. These

final steps can be seen in Figure 2.7(c) and 2.7(d).

Another example is a bar chart. A bar chart traditionally requires one categorical and

one continuous attribute. Instead, we could drop one categorical attribute to get a

set of equally sized bars. Then, we could map any continuous attribute to the Bar

Height, Bar Width or any other channel.

Our contribution provides a solution to these issues by not omitting the steps be-
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tween and allowing the user to build visualizations more step-by-step.

2.7 Summary

While most people would know what a bar chart is, there is a wide variety of vi-

sualization different techniques. The most basic techniques include scatter plots,

line charts, area charts, and bar charts. In some cases radial techniques are advanta-

geous, especially if there is a cyclical relationship in the data. For higher dimensional

data there are special purpose techniques, some of which are hierarchical like varia-

tions of the TreeMap. By nesting and combining basic charts, complex charts can be

expressed by combining simpler ones. That is what Visception aims to do.

Marks and channels are two very useful terms when it comes to describing and rea-

soning about different charts. If a channel is mappable to a data attribute, it may in

some cases accept only categorical attributes, in some cases only continuous ones,

or in other cases, both categorical and continuous attributes. Thinking in terms of

marks and channels allows for expressing charts in a more step-by-step manner. The

mark takes in a bare minimum data input, and the channels accept varying inputs.

This paradigm does not require the user to specify inputs in a certain order, or in

clusters. Building on this, we propose a system that brings these concepts together,

in order to make them easily available for non-expert users.
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Chapter 3

Related Work

This chapter will cover previous work done on information visualization systems as

well as underlying concepts these systems are built on. The central part of any sys-

tem is a formal graphics specification, a field in which much work has already been

done. By formally specifying ways of reasoning about graphics, such reasoning can

be put into a system to specify different kinds of graphics. Formal specifications have

given rise to programming toolkits that allow coders to express increasingly complex

visualizations concisely and intuitively. We will go over the different paradigms of

programming toolkits, leading to the train of thought that eventually led to D3 by

Bostock et al. [7]. D3 was used as a foundation for higher level languages such as

Vega and Vega-Lite [44, 22]. The programming toolkits have two main paradigms,

the earlier ones were more focused on object orientation and providing interfaces

for chart types, whereas Protovis [6] and D3 allowed for more flexibility and "visual

thinking" by mapping data to graphical primitives, without having to get steeped in

specific chart abstractions. Such "visual thinking" enables intuitive abstractions for

charts as well as ways to explore and create new layouts with a minimal barrier of

entry.

Early visual database exploration systems were spreadsheet systems, which over time

evolved into using visualizations. Since then, visual database exploration systems

are typically built on top of some kind of graphics programming toolkit. The graphics

programming toolkit powers the rendering of visualizations. Older systems are built

on systems more like Chi’s Data State Model [10] and Prefuse [23] or some other cus-
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tom implementation. Newer systems are more frequently indirectly or directly built

on top of D3. The visual language presented in this thesis uses D3 for its rendering

as well as data binding.

What separates Visception from other database exploration systems is that Viscep-

tion enables nesting of visualizations. By nesting visualizations, simple charts are

used as building blocks for more complex ones. One could argue that this train of

thought started with the idea of using multiple views. From this, researchers looked

for ways to make these multiple views "work together" – principles like Linking &

Brushing [33] and positioning views side by side addressed these issues. Other tech-

niques, like overloading [28] (putting one visualization on top of another) allow us

to display more information using less screen space. Finally, the nesting of charts al-

low for combining simple visualizations into more complex ones intuitively. In some

cases, nesting can with more clarity and less screen space, provide the same infor-

mation as multiple linked views. Since then researchers have tried multiple ways

of increasing the power of expression and exploring new ideas by enabling opera-

tions such as nesting, juxtaposing and overloading. However, most research results

are either specialized interactive systems, or programming libraries exclusively for

programmers or computer scientists. With Visception we express all these possible

operations by enabling layering, nesting and adjustable bounds for each layer.

3.1 Formal Graphics Specifications

In order to specify multiple charts, an organized way of expressing them formally

is needed. A formal specification allows for intuitively reasoning about charts, and

more importantly it enables us to specify systems to express different visualizations.

Interactive visualization editors are typically built on top of a visualization program-

ming toolkit, and a visualization programming toolkit is usually based on a formal

graphics specification.

Bertin [5] was the first to propose such a way of reasoning about graphics. He pro-

posed six basic retinal variables (color, size, location, etc.), each assigned an expres-

sive power and specific use cases. By using these variables we already have a way

of talking about different kinds of charts. Notable is the spatial placement variable -
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which is the most expressive and effective variable. For example, we can vary the Fill

Color, or Size of a scatter plot. While Bertin exposes different variations of one chart,

Wilkinson’s Grammar Of Graphics [56] exposes both differences and similarities be-

tween different chart types. He breaks a visualization down into a set of components,

and details how changing just one of these components can change the entire visu-

alization. A very important observation he made is seeing the coordinate system as

a property. This idea is crucial to nesting of visualizations. He pointed out that pie

charts and a bar charts are essentially the same, but with different coordinate sys-

tems. Knowing these similarities and differences enables us to express a wider range

of visualizations more concisely, both intuitively and programmatically.

Munzner [38] provide a framework and language for discussing visualizations. She

presents two important terms: marks (geometric primitives) and channels. Every

visualization can be expressed as marks (bars, circles, arcs) and channels (color, po-

sition, stroke width and so on).

While mathematical or topological differences between visualizations are useful for

both reasoning and implementation, it is also crucial to consider how the visualiza-

tion is perceived by the observer. Different kinds of shapes are perceived differently,

by different people – some research has been done into this problem. Ziemkiewicz

and Kosara [61] point out that even though there are "equivalent" visualizations (like

the pie chart and the bar chart), the shape and overall impression changes the per-

ception of the data, and call for a structural theory of visualization.

3.2 Visualization Recommendation

One crucial step towards exploring multiple visualizations quickly is to have the abil-

ity to quickly toggle between different structural representations of a visualizations.

One step further would be for the system to simply recommend visualizations to

the user. Such recommendation systems do exist and are likely to become more

relevant in the future, just like recommendation systems have become popular in

other sectors. These recommendation systems are built on a specification saying

how different kinds of visualizations relate to one another. One such recommen-

dation system is CompassQL [57]. CompassQL is a general query language for vi-
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sualization recommendation, sorting, and grouping of different visualizations. It

enables for to exploring, sorting, and filtering the space of available visualizations

based on a declarative specification. Such programmatic reasoning about the ef-

fectiveness of visualizations enables the recommendation of visualizations to users.

Vartak et. al [52] predict that visualization tools will have to become visualization

recommendation tools. Current visualization tools lack the ability to navigate un-

explored areas in the design space, fail to take the interest of the user into account

when recommending, and lack an understanding of which kinds of insights the user

is looking for. Roopana [32] is another system that attempts to semi-automate visu-

alization recommendations. With Roopana we receive visualization recommenda-

tions based on predefined rules based on the best practices from visualization litera-

ture, the data types of the columns, and previous user actions. Voyager [58] provides

automatic recommendations of visualizations according to statistical and percep-

tual measures as well as user preferences. In practice, data columns are dropped on

shelves to specify which columns are mapped to which channels. Then, the system

automatically displays recommended visualizations. Building further on Voyager,

Voyager 2 [59] combines both recommendation and manual construction of visual-

izations. There is one focus view showing a selected visualization, and a set of related

views suggesting related visualizations. Our contribution does not explicitly provide

visualization recommendations, though toggling between an icicle chart, sunburst

chart, and bar charts nested within circles can be done within seconds. Visception

would be a good foundation for a visualization recommendation system.

Recommendation systems greatly simplify researching the problem of how different

visualizations are perceived. It makes sense to have powerful visualization recom-

mendation systems in place to make all options easily available.

3.3 Programming Toolkits for Visualization

Programming toolkits for visualization support the creation of visualizations by writ-

ing code. Each toolkit aims to be as simple as possible while at the same time being

as expressive as possible. There are two main paradigms of such libraries: 1) Object

oriented ones where there is a specific set of abstractions for each chart. Example

thinking: "Draw a tree map for this data, here are the options." 2) A "visual thinking"
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approach where the level of abstraction is to what graphical shape we are drawing.

Example thinking: "Draw one circle for each row of the dataset, and map data at-

tribute A to the size, and data attribute B to the color".

In the early days of information visualization, visualizations were created by us-

ing low level libraries like OpenGL and other rendering libraries. The programmer

would have to specify each vertex, transformation matrices, fragment colors and so

on. Such low level APIs are not suitable for "visual thinking", thus multiple visualiza-

tion toolkits that raise the level of abstraction have been developed. The Data State

Model [10] is one of the pioneers in building a programming library based on a for-

mal graphics specification. Chi describes the data state model, bridging the gap be-

tween formal graphics specifications and the implementation of such specifications

as programming toolkits. He introduces the visualization data pipeline split into four

stages (value, analytical abstraction, visualization abstraction, and view), as well as

three transformation operators (data transformation, visualization transformation,

and visual mapping transformation). These steps provide a clear streamlined way

of thinking about the steps that turn a dataset into a visualization. Building further

on the data state model, the Prefuse toolkit [23] was one of the first programming

toolkits designed specifically for information visualization. It provides abstractions

to create interactive visualizations, as well as multiple built-in layouts. However,

Prefuse is still in the paradigm of providing a specific abstractions for specific charts,

requiring the user to become familiar with the abstractions to create visualizations.

Protovis [6] addressed this concern by providing a way of designing visualizations by

combining graphical primitives. Protovis was one of the first toolkits enabling con-

struction of visualizations by mapping data items to a set of graphical primitives.

With this, we can program "visually" and only have to consider one data item at a

time. Additionally, this approach is more flexible and allows for a more modular

visualization design. Later, the same author published D3 [7] which consists of a

small set of operators, allowing even more flexibility, extensibility and expressive-

ness than previous approaches. D3 enables direct manipulation of the Document

Object Model (DOM) based on data items. D3 can concisely express both simple

and complex visualizations without losing flexibility. Multiple libraries have been

built on top of D3, providing an even higher level of abstraction and simplicity, but

usually at the cost of flexibility.
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When using D3, the interaction has to be specified manually, and in many cases the

designer just wants a few types of interaction that might as well be available "out

of the box". Vega [22] (built on top of D3) and projects built on Vega address this by

enabling the programmer to connect actions to interactions as concisely as possible.

In practice, the programmer can specify interactions in a declarative fashion. Vega

provides a novel visualization grammar inspired by previous approaches. It enables

us to specify visualizations even more concisely than with D3 – but at some cost of

flexibility. Vega allows for specifying visualizations declaratively. Reactive Vega [45]

introduced a declarative way of interaction design as well as visualization design.

Events are seen as continuous streams, which the designer can specify a behavior for.

Vega-Lite [44] provides an even higher level of abstraction, enabling the specification

of interactive visualizations, as well as providing a view algebra to layout multiple

visualizations on the same page. Currently, D3’s full power of expression is limited to

programmers only. Visception attempts to abstract over D3 and the Visception Tree

data structure to enable users to visually combine and nest different visualizations

while retaining as much of the expressiveness as possible. While Visception could

be another programming library, we have decided to use drag & drop operations,

sliders and other UI components to create a visual language.

3.3.1 Visual Data Exploration Systems

Having established both formal grammar specifications and visual programming

toolkits, the next step is to enable users to create visualizations without having to

write code. Such systems allow users to explore large datasets by creating their own

visualizations. One limitation of the existing systems is the power of expression.

Many existing systems still have an impressive range of features, but lack some of

the flexibility offered by programming toolkits like D3.

One of the first, and still most widely accepted approaches for exploring large multi-

dimensional databases were pivot tables. Pivot tables were first added as an explicit

feature to Microsoft Excel, though Pito Salas and his team worked on the concept

as early as 1986 [29]. As hardware improved, data visualization became more acces-

sible, and information visualization became more commonly used. Multiple visu-

alization systems have aimed to replace the pivot table, enabling users to visualize
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their data instead of looking at numbers.

One of the first systems enabling the creation of visualizations is IVEE [1]. IVEE can

connect to a database and let the user choose from a rich variety of different visu-

alizations. Among other charts, IVEE can create starfields, cone trees, while also

filtering the query using sliders and other query handles. This wide range of features

is very impressive given that it was published in 1995. Another database visualiza-

tion system is Tioga2 [2], Tioga2 tries to build a visual language on top of a database

query language, enabling non-coders to visually explore relational databases. While

the phrasing is different and in accord with the time of its creation, it is an early vi-

sualization system aiming to make it possible to "wire up" visualizations using drag

and drop operations. Visage [41] takes an information-centric approach, enabling

the dragging & dropping of information between multiple windows/views. For ex-

ample, it is possible to drag a set of rows to a separate plot view, and instantly see

a scatter plot of the selected rows. Furthermore, Visage allows for selecting from a

set of generated database queries, and generating visualizations from simple drag &

drop operations.

The Polaris [50] interface by Stolte et al. (later commercialized as Tableau) enables

rapid exploration of large multidimensional datasets. They introduce a table algebra

for performing underlying data operations, a set of graphical operations to depict

the query results, as well as a set of interactions to further explore the graphical de-

pictions of the data. With Polaris we can simply drag and drop data columns onto a

shelf, and see a corresponding visualization instantly.

Together, the presented visual tools extend the pivot table interface and allow for

visually doing what can be done with a pivot table. Visception aims for the same

kind of expressiveness as Polaris, but with a different set of operations. By exposing

a greater set of channel mappings and combining visualizations, the same visualiza-

tions can be expressed with greater intuitiveness and flexibility.

While most editors are "hard-coded" in a sense, Lyra [43] allows for more flexibility.

Lyra allows for interactively designing a large variety of visualizations using drag &

drop operations. Notably, it has visual data pipelines, enabling advanced layouts and

data transformations. The idea of a visual data pipeline enables much expression,

but may also be too "programmatic" for non-coders to understand. While Lyra has

powerful visual data pipelines, Visception focuses on nested visualizations and the
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combination of different coordinate systems in a generic manner.

3.3.2 Nesting and Related Techniques

By nesting visualizations we can express many visualizations using a few simple vi-

sualizations as building blocks. Being able to resize and move visualizations adds

even more freedom to the designer. Ways of combining and editing existing visu-

alizations allow us to express more with less. These operations are usually intuitive

and allow for "visual thinking", both when programming or interactively designing

visualizations.

If there is too much information to convey in one picture or one simple visualization,

using multiple views is a feasible option. Norman et al.[39] were among the first to

discuss the idea of using multiple views. They explored how humans interpret infor-

mation displayed on multiple displays, as well as multiple windows. This idea was

general and not specifically targeted towards information visualization, and novel at

the time of its writing. More targeted towards information visualization, Schneider-

man [47] proposed the visual information seeking mantra: Overview first, zoom and

filter, then details on demand. This principle is helpful when designing advanced

graphical user interfaces and is used (knowingly or unknowingly) by most systems

today. Nested visualizations in particular, are manifestations of this mantra. Impor-

tantly, this principle provides a basic way of thinking about arranging visualizations

in multiple views. For example, showing a visualization within another visualization

can be seen as instantly giving details on demand. Having one visualization within

another one already exposes a relationship within the data. Another way of expos-

ing such relationships is juxtaposing (side-by-side) coordinated views. Juxtaposition

is the most common way of coordinating multiple views, however it is not the only

way. Javed and Elmqvist [28] detail four visual composition operators: juxtaposi-

tion, superimposition, overloading, and nesting. While Visception’s main focus is

on the nesting operation, we provide a flexible layering operation that, combined

with movable and resizable bounds, achieves the same level of expression as using

four operators. When juxtaposing views, it is natural to want to explore the relation-

ships between the data of each view. A common technique to do this is linking and

brushing [33]. When linking and brushing, a selection in one view will appear in
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multiple other (linked) views. LeBlanc et al. [36] describes the technique of dimen-

sional stacking. Dimensional stacking is a way of embedding many dimensions into

one visualization, this can be achieved through nesting or mapping data to a large

set of channels. For example, five dimensions can be exposed by mapping each di-

mension to a separate channel. Such channels can be Size, Fill Color, Stroke Color,

Position X, and so on. Dimensional stacking can be achieved by simply nesting vi-

sualizations by either aggregates or bins of a dataset. Since Visception exposes many

channels and operations, the dimensional stacking technique is possible within our

system.

ManyVis [42] operates at the program level, applying the principles of nesting, su-

perimposition, and overloading to different application windows. In other words,

ManyVis coordinates different windows into one window. For example, it allows for

a video editor to be embedded into a PowerPoint presentation.

Nesting is not the only way to combine visualizations, and many different approaches

for combining visualizations have been explored. Wickham and Hofmann [54] pro-

vide a way of transforming and combining area-based visualizations. They define

three 1D primitives: bars, spines and tiles. These three primitives are used as build-

ing blocks to express a wide range of both simple and complex visual representations

of data. Combining these primitives is intuitively similar to the nesting operation

used in Visception. Blending existing visualizations is also a way of expressing new

kinds of visualizations. Schulz and Hadlak [46] introduce a way of representing vi-

sualizations by blending together existing visualizations defined as presets. Their

method allows for transitioning between different visualizations. For example, it en-

ables smooth interpolation from a bar chart to a pie chart, or vice-versa. In the pro-

cess of describing how to interpolate between different visualizations, they expose

connections between different visualizations, such as the polar area chart and the

bar chart. What is exposed on a more intuitive high level in formal graphics specifi-

cations is exposed in much more detail by Schulz and Hadlak.

Multiple views can also be juxtaposed and linked to display relations. Domino [21]

uses overloading and juxtaposition to compare and manipulate subsets across mul-

tiple datasets. Domino can show relationships at multiple levels of detail, as well as

expose relationships at multiple levels. Figure 3.1 shows a lot of information about

artists from various countries using linked visualizations.
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Figure 3.1: Figure 1 taken from [21]. It shows that that Whitney Houston is a female,
inactive artist with many hits in English speaking countries, but less than 10 studio
albums.

If the dataset represents a very large network, separate techniques may be required.

NodeTrix [25] enables the visualization of large networks using juxtaposition and

overloading by linking adjacency matrices together. It combines the node-link dia-

gram and the adjacency matrix into one visualization, enabling the designer to show

more data as well as data relations using less visual space.

Nesting does not have to be limited to only 2D. Parker et al. [40], as early as 1998,

designed NestedVision3D, allowing for the exploration of nested graphs to explore

the structure of computer programs. From a codebase, NestedVision3D will give an

interactive 3D graph, giving a very realistic depiction of all the relationships between

the different software modules. Another approach to visualize the same kind of data

involves showing more information inside cells of an adjacency matrix. ZAME [15]

(Zoomable Adjacency Matrix Explorer) nests glyphs inside each cell of an adjacency

matrix. Combined with zooming, panning and aggregation represented as glyphs,

ZAME allows for the exploration of huge datasets, as large as 500,000 nodes and

6,000,000 links.

Wang et al. [53] introduced the Circle Packing layout, nesting circles within circles at

arbitrary levels. This layout may be expressed by nesting circles with a force layout

[20] within one another. The force layout and the circle packing algorithm achieve

very similar results. However, the force layout provides more flexibility, while the

circle packing is less computing intensive.
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Chapter 4

Creating Visualizations with

Visception

Figure 4.1: A complex visualization created with Visception in about 15 minutes.

Creating visualizations can be time consuming and not always intuitive. If the vi-

sualizations are complex (Figure 4.1 shows an example of a complex visualization),

creating and customizing them becomes even more difficult. The goal of our ap-

proach is to enable users to visually create both complex and simple visualizations.
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In order to enable this, an underlying data structure is needed. The constructs of

this underlying structure must be flexible enough to enable the expression of arbi-

trary visualizations. Such flexibility is usually accompanied by complexity. Thus, it

is a challenge to create a structure that is flexible and simple enough to be manip-

ulated through a small set of visual actions. Our main contribution, the Visception

Tree simplifies the design of visualizations greatly, without stunting expression and

flexibility. The Visception Tree and its underlying structures is designed to be easily

mappable to a simple user interface, enabling the rapid creation and exploration of

nested visualizations.

A natural next step to exponentially increase the expressiveness is to enable the user

to perform operations between different charts. A small set of operations can enable

the creation of complex hierarchies by simply dragging and dropping. A nested hier-

archy of visualizations is equivalent to a Visception Tree – a tree of charts. The child

chart owns all the marks placed within each mark belonging to the parent chart. In

a Visception Tree, each node can have multiple children, and each child node can

have multiple children, and so on. Each visualization consists of one or more Vis-

ception Trees.

When interactively designing a visualization, the first step is to pick a chart. If the

chart has N channels, the space to explore is N-dimensional. The fastest way to ex-

plore this space, is to explore one dimension at a time. In other words: One channel

at a time. There are far more channels than charts, yet mathematically channels can

be very similar. We will argue for a more precise definition of a channel, made up by

several components.

4.1 Simplifying Table Arrangements

The insight the user is looking for in a particular dataset is not constant. Further-

more, with high-dimensional datasets, it is even less clear exactly what to look for.

Even if knowing what to look for, expressing it in terms of a visualization may be

even harder. Typically, visualizations are defined as requiring a set of inputs. For

example, while a scatter plot can take in only one key, a matrix requires two (one

for each direction). It gets more complicated when a visualization can only take in
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certain kinds of data columns. This section will go over some different visualizations

and their required table arrangements, before showing how these requirements are

greatly simplified within Visception.

4.1.1 The Scatter Plot

The scatter plot represents a set of points on a Cartesian grid. Each point is posi-

tioned by a given position on the X and Y axis. Thus, the X and Y positioning rep-

resents two dimensions. Other adjustable inputs include the size of each point, as

well as the color of each point. Data items could be mapped to even more channels,

like the size, the stroke width, stroke color and more. Initially it may seem that a set

of inputs is needed in order to get something showing on the screen. However, this

process can be simplified so it requires only one data column to get started.

Visception can get a bubble chart up on the screen without requiring any initial in-

puts other than the data column. Initially, if a data column D is dropped on the

screen, the data is aggregated by that column. Then, one circle will appear for each

distinct value of D . After getting the bubble chart up, attributes can be mapped to

the X and Y-position, but it is not a prerequisite. This enables more expression, while

requiring less inputs to get started. Traditionally, the scatter plot is not aggregated –

this means there will be one circle for every row in the dataset. By taking in the level

of aggregation as the first input, both aggregated and unaggregated scatter plots and

force layouts can be intuitively expressed as variations of one chart type. Figure 4.3

Figure 4.2: A bubble chart created in Visception. When dropping one data column,
one bubble is rendered for each distinct value of that column. Intuitively we can see
that this is similar to a scatter plot without X or Y-mappings.
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(a) The same chart as in Figure 4.2, but with a
mapping for the X and Y column and Collision
set to 0. This makes it equivalent to a regular
Cartesian scatter plot.

(b) Here we expose more dimensions by map-
ping data attributes to the Stroke Width and
Size channels.

Figure 4.3: Incrementally adding more dimensions to the visualization.

illustrates these steps.

4.1.2 The Bar Chart

A bar chart represents a set of values, and traditionally requires one categorical and

one continuous input. One bar is created for each distinct value of the categorical

attribute, and the bars are assigned heights according to the continuous attribute.

This requires the user to point out one categorical, as well as one continuous col-

umn before seeing anything on the screen. This can be simplified by requiring only

one data column to render some bars. In other words, simply dropping any data col-

umn on the screen will create a corresponding set of bars - all with the same height.

Figure 4.4 and 4.5 show how a bar chart changes incrementally as data attributes are

mapped to different channels.

Figure 4.4: A bare minimum bar chart created in Visception. Dropping one data
column implicitly renders one bar per distinct value of that column.
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(a) The same bar chart as in Figure 4.4 with
a continuous data column mapped to the Bar
Height channel.

(b) Same bar chart as in a), but with data
mapped to the Bar Width and Stroke Color
channels.

Figure 4.5: Incrementally displaying more dimensions with a bar chart.

When the basic bars are rendered, the user is free to keep adding dimensions to the

bars one step at a time. For example, dragging a column on the Fill Color will expose

the dimension of that column through the Fill Color channel, and so on.

4.2 Charts

Representing a visualization as one object requires a higher level of abstraction than

simply mapping one data item to one mark. A clean encapsulation of an entire visu-

alization is needed. To address this, we will refer to such an object as a chart. A chart

represents the mapping of a set of data items to a set of marks. In our approach, a

chart transforms a selection of data into a set of marks or one mark.

Charts represent different ways of displaying a selection of data. For example, data

can be displayed as a bar chart, a pie chart or a scatter plot. This concept is also in

effect when it comes to nested visualizations (See Figure 4.6).

The visual appearance of the marks is a direct result of the input channels of the

chart. Each chart has a distinct set of input channels, and some channels may be

mapped to data columns. A few examples of channels are Fill Color, Stroke Opac-

ity, Stroke Dash and Area. Each channel can be seen as one dimension of a chart.

All N dimensions of the chart make up the N-dimensional design space. For nested

visualizations, the design space is the permutation of the design spaces of every sin-

gle chart. Visception allows for exploring this space by providing simple controls for



30 CHAPTER 4. CREATING VISUALIZATIONS WITH VISCEPTION

Figure 4.6: Three visualizations depicting the same data. These visualizations have
the same underlying tree structure and data mappings, but different charts.

each channel.

Figure 4.7: A high level overview
of the spaces of a chart. Initially,
the charts shapes are calculated in
layout space. Then, the marks are
fit into the parent space. If the
display space is not equal to the
parent space, the marks are again
transformed to fit into the display
space. This figure is only meant to
give a quick intuition of what these
spaces do. They are discussed in
more detail in section 4.3.2.

Each chart has a distinct set of spaces, a layout

space, child spaces, a parent space, and a dis-

play space. The nesting behavior of a chart is

determined by its own spaces and the spaces

of its parent. Every chart "begins" in its layout

space – where the normalized coordinates of

the marks are calculated. Then, the marks are

transformed to fit within the parent space. Fi-

nally, the marks are transformed to fit within

the display space (the coordinate system used

when rendering the shapes). The parent space,

is the child space of the parent chart. Figure 4.7

gives a high level overview of the spaces. These

spaces are discussed more closely in section

4.3.2. Each of the spaces have a type, which

refers to the internal coordinate system of that

space. For example, the child space type of a

pie chart is an arc, while the child space type

of a bar chart is Cartesian. All marks of a chart

share the same child space type, yet mark has

a unique child space instance. For example, a

bar chart with 3 bars has 3 child spaces, one for

each bar.
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Each chart is a part of a chart class and has a chart cardinality. Charts grouped to-

gether are intuitively related and have distinct common channels that are not present

in other chart classes.

4.2.1 Chart Cardinalities

In order for nesting to make sense within a mark, the mark must be nestable. To

determine whether a mark is nestable or not, one deciding factor is the cardinal-

ity of the chart. Considering the dataset, we can not nest a visualization within an

area chart or streamgraph. In order to have something to nest within a chart, there

must be aggregated data that can correspond to the parent mark. For area charts,

streamgraphs and lines, there are no aggregations corresponding to a deeper level of

nesting. Intuitively, an area chart, line chart or streamgraph "uses" up all the rows

in the dataset. Visually, it is possible to imagine nesting a chart within an area or a

stream, but the data depicted in the nested chart would not be nested. Thus, this

nesting would rather be a layer fit within the area mark.

Cardinality Description Examples

Many-to-one Maps multiple data points to
one path

Lines and areas.

One-to-one Maps N data points to N
paths

Plots, bar charts, pie
charts.

Many-to-many Maps N data points to M
paths

Series.

Table 4.1: Chart cardinalities

A chart maps a set of data items D = {d0,d1, . . . ,dN−1} to a set of marks M . |M | does

not necessarily equal |D|. For example, if rendering a line, multiple data points are

mapped to one path. If rendering a bar chart, or a set of circles, the mapping is one-

to-one. We refer to this as the chart cardinality, which is an inherent property of each

type of chart. Table 4.2 depicts common chart types and their cardinality.
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Figure 4.8: An area-based pie chart and a polar area chart. These two charts share
the same set of input channels, yet they are different. The only difference between
them, is how they depict their areas. The pie chart area is modulated by changing the
arc angle, while the polar area chart area is modulated by adjusting the outer radius
of the arcs, while the radius is constant.

4.2.2 Chart Classes

There are both commonalities and differences between different charts. For exam-

ple, there is an intuitive similarity between an icicle chart and a nested bar chart.

The purpose of defining and classifying charts is to put the basic building blocks of

visualization into a system that is as general, flexible and simple as possible.

A chart class is a grouping of charts based on common properties that distinguish

them from others. The most important properties that distinguish one chart from

another are its spaces, its possible layouts, and its channels. For two charts to be

classified the same, they must have the same child space type. For example, a bar

chart and a pie chart have different internal child space types (internal coordinate

systems). Finer details also play into the classification of charts. If some charts share

a distinct set of channels they can usually be classified similarly. Such charts are

usually intuitively related (for example, a pie chart and a polar area chart as shown

in figure 4.8). In some cases a new type of visualization can be made available by

simply adding one or several channels to an existing chart.

Adding channels to existing charts is preferable, but only if adding the channels does

not break the already existing semantics of the chart or introduce too much com-

plexity. For example, an area-based pie chart and a polar area chart are defined as

two distinct charts. Yet, they could be defined as one chart, with a channel to toggle

between pie and area. There could even be one chart trying to express every sin-
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Class Examples Chart Cardinality

Line Based Many-to-one

Circular One-to-one

Bars One-to-one

Plots One-to-one

Series Many-to-many

Table 4.2: Five distinct chart classes, all nestable except Line Based and Series. Note
how bars and plots have a Cartesian child space, while the Circular child space is an
arc.

gle possible visualization. The goal with charts is to classify and simplify, too much

generalization may create more complexity than simplicity. Charts are loosely con-

nected by specifying mapping equivalences between channels belonging to different

charts. For example, the Bar Height channel B of a bar chart is equivalent to the Area

channel A of a polar area chart. Thus, when toggling between those two charts, the

channels A and B would have the same data mappings. Using these concepts, it is

possible to specify simple visualizations such as bar charts, pie charts, scatter plots

and areas and fully customize them by mapping data columns to channels.

4.2.3 Channel Mappings

When creating a visualization, choosing the chart type is only a part of the equation.

It is also needed to control the appearance of the chart, and determine what data
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the chart shall represent, and exactly how it should be represented. Every chart has

a set of channel mappings. The channel mappings control the final appearance of

the chart. The task is then to enable the user to edit these channel mappings conve-

niently and easily. Such a simple paradigm can expose a large range of channels and

give the user more power of expression.

Typically, the layout and styling channels are separated, while in Visception they are

accessed and edited through the same interface and have meaningful defaults. This

allows us to expose a wide range of channels for each chart, increasing the flexibility

and range of expression of each chart. In other words, a channel can receive any

input, and produce any output. The transformation of input to output may also be

specified, or have a different behavior for each channel. For example, a Size channel

may take in a numeric value, or a data column and a numeric range. The appearance

of a chart is a function of all its channels. One channel controls one aspect of the

appearance of a chart. When mapping a data column to a channel, the goal is to find

the best way to represent the data through that channel. For example, if mapping a

data column D to the Fill Color channel, we must pick a color scheme, whether the

color scheme should be discretized or continuous, how the domain of D should be

mapped to the color range, and so on.

A more concise mathematical definition is that every single channel has an input

I and an output O. Let dom(I ) be the input domain, and dom(O) be the output

domain. dom(I ) and dom(O) can be sets of categorical values (for example, colors

and strings), numeric ranges, or custom objects (for example, sorting orders). The

transformation function T maps a value of dom(I ) to a value of dom(O). While this

may seem a very general definition, some channels have distinct common traits. For

example, when mapping a continuous data attribute to the Size channel, T is simply

a function mapping one numeric range to another.

Intuitively, a channel mapping can be thought of as an input to a visual channel. The

input can be as simple as a single value, or a data attribute. The output can be a set,

a continuous range, an ordering or a custom object. What is common for all channel

mappings is that they have an input and a resulting output, and an arbitrary num-

ber of transformation steps in between. Table 4.3 illustrates some different channel

mappings, their inputs, outputs and the visual effects on a deformed bar chart. Ta-

bles 4.4, 4.5, 4.6 and 4.7 show some (but not all) channel types available in our
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system.

Channel Input Output Illustration

Font Size Continuous Attribute Numeric Range

Fill Color Color Color

Fill Color Continuous Attribute

Fill Color Categorical Attribute*

Bar Height Continuous Attribute Numeric Range

Sorting Continuous Attribute Order

Table 4.3: Some example channel mappings on a deformed bar chart. These exam-
ples illustrate the wide range of channel inputs, outputs and their results on their
respective charts.
*The categorical attribute is in this case the same attribute as the aggregation. I.e
there is a one-to-one mapping between each bar, and each distinct value in the do-
main of the attribute.
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Channel Illustration

Bar Height

Bar Width

Bar Baseline Offset*

Stroke Dash

Stroke Width

Table 4.4: Five different channels. *The Bar Baseline Offset channel displaces the
bars upwards. For example, it can allow us to place a bar chart on top of a line chart
(assuming the Position X channels match). This channel is more useful for Positioned
Bars, where Position X is directly mappable to a column.
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Channel Illustration

Collision

Force X

Force Y

Position X

Size (plot)

Table 4.5: Five different channels. All of these are exclusive to plots. By modulating
these channels we can express a wide range of different plots including force layout
variations. Note how we can also map data to all of the channels in this table.
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Channel Illustration

Inner Radius

Sorting

Tube Height

Text Transform*

Skew X

Table 4.6: Five more different channels. *The Text Transform channel allows us to
rotate and translate the text within a Cartesian space, and have Visception automat-
ically apply a transformation corresponding to the parent space type.
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Channel Illustration

Aspect Ratio

Bounds*

Stream Shape

Stack Inner Padding

Fill Color

Table 4.7: A set of five channels. *The Bounds channel enables us to move and resize
each chart within any space. The Bounds channel allows us to achieve any size and
position, also when a chart is nested within another or has a non-Cartesian parent
space.
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4.3 The Visception Tree

Every nested visualization corresponds to a tree. For example, a bar chart with two

polar area charts inside each bar corresponds to a tree with a root node (correspond-

ing to the bars) and two children (corresponding to the pie charts). We can express

arbitrary nested visualizations by building a tree corresponding to the visualization.

The first requirement to build such a tree is to be able to encapsulate one visualiza-

tion into one tree node. Since we established that a visualization can be represented

as a chart, creating nested visualizations is as simple as creating a tree of charts. Such

a tree will be referred to as a VC-tree (short for Visception Tree). Likewise, a node in a

VC-tree will be called a VC-node. Each visualization can contain multiple VC-trees.

4.3.1 Operations

Each node is directly affected by the chart it represents. For example, if the chart en-

capsulated by the node is a line chart, the node can not have any children, because

the line has no child space. A VC-node has no attributes in itself other than a depth

and an index. In other words, most of its properties are determined by the chart it

encapsulates. Thus, the properties of the chart determine which operations can be

performed on the tree, as well as the outcome of these operations. Before we can dis-

cuss how chart properties affect operations, we will cover the basic operations of a

VC-tree. Other operations are possible, but we will limit the discussion to the opera-

tions Nest (N ), Group (G), Layer (L), Move (M), Delete, (D) and the special operation

Push (P ). With these operations any VC-tree can be expressed. Other operations are

simply shortcuts that can be expressed as a combination of these operations. Let C

be an arbitrary chart with input data DC , and MC be the set of marks corresponding

to DC . Furthermore, let Di be an arbitrary data column, and Ci , Mi be an arbitrary

chart, and a set of marks corresponding to Di . Our VC-tree operations are defined

as follows (see also Table 4.8)
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Operations
Visception Tree Visualization

Before After Before After

N (Nest)

G (Group)

L (Layer)

M (Move)

D (Delete)

Table 4.8: Visception Tree operations and their corresponding visualizations and
tree topologies before and after.
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Nest N (C ,Di ) is equivalent to N (C ,Ci ). For each datum dC , get the aggregated set

DCi – each dCi will correspond to a mark mCi to be nested inside mi .

Group G(C ,Di ) is equivalent to N (Di ,C ), i.e., it "places" C inside Di . N (A,B) ∼=
G(B , A)

Layer L(C ,Di ) adds Di as a sibling to C .

Move Changes the tree position of a node, i.e., it moves the node and its children to

the new position. Let d be the depth of the node, i be the index of the node,

Ne be the node existing at (d , i ). Then M(C ,d , i ) inserts the node at the given

depth and index of the VC-tree and shifts any existing node Ne (and its neigh-

bors to the right) at (d , i ) to the right. In other words, it layers C on top of Ne .

Delete Removes a node including all its children from the tree.

Push Adds a data column to the node, but does actually not alter the VC-tree. This

operation is only useful and available for series charts (e.g., streamgraphs).

For the Nest and Group operations, the following conditions must be met:

Nest N (P,Di ). DP must be an aggregate because it is not meaningful to nest a visu-

alization into a node that only represents a single datum.

Group G(P,Di ) Di must be an aggregate (for the same reason stated above).

4.3.2 Nesting and Spaces

Having established charts, the VC-tree and its operations, we now propose a generic

way of sizing and positioning child marks within parent marks. A chart has several

spaces to consider (see Figure 4.9): Its parent space SP , layout space SL , and its dis-

play space SD . SP denotes SL of the parent chart, or a default space if the node is

a root. A single nestable chart must consider the space of its parent SP , which also

affects its display space SD . The layout space SL is the space that is used when cal-

culating the layout of the charts marks. Finally, if we are to nest something inside a

chart, each mark on the chart has its own space Si , which will be the parent space for
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(a) A depiction of four spaces types. In this
case SP is the same as SD , this is not neces-
sarily always the case. For example, if SP was
not Cartesian, then SD would be the inher-
ited from its parent. In other words, it would
take the first-hit Cartesian space as its dis-
play space, recursively up towards the root of
the Visception Tree.

(b) A depiction of four spaces types where
SP 6= SD . It is crucial to note we are looking at
it from the perspective of the innermost bars,
and more crucial – one bar at a time. Each
bar maps its layout space to the correspond-
ing parent space, however since the parent
space is deformed, it will instead be applied
as a transform before being rendered in the
display space of the parent’s parent.

Figure 4.9: Two examples of the four spaces of a chart.

child charts. Together these spaces determine how the layout of the chart is done,

and how the layout of the child chart is done.

All spaces {SP ,S,SC } share the same domain. The domain of these spaces include

different grid types. Common examples are: The regular Cartesian grid and the polar

grid. The full domain includes all possible grids that are not imaginary and that can

have their coordinates converted to a regular Cartesian grid.

A vital step to enable the nesting of charts is to be able to convert a coordinate of

a grid G1 into the coordinates of a grid G2, where G1 6= G2. Each root node has a

layout space SL . The layout space defines the coordinate system in which the marks

are placed. For example, a scatter plot has a Cartesian layout space. In order to fit a

scatter plot inside an arc, we would have to transform the coordinates from its layout

space SL to its parent space SP j , where j is the index of parent datum. Furthermore,

if we were to fit a column chart with a Cartesian layout space SL into an arc we would

have to transform the columns from Cartesian to polar as shown in figure 4.9(b).

Such transformations enable nesting of arbitrary charts.
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(a) Since the immediate parent space of the
bar chart is an arc, the arc deforms the space
before it is transformed to the Cartesian co-
ordinates corresponding to the inner space
of the square.

(b) The immediate parent’s child space is
Cartesian, hence there is no intermediate de-
formations. The bars are fit into the Carte-
sian coordinate system of the immediate
parent.

Figure 4.10: Deformation of layout coordinates according to parent spaces. The red
VC-node is the node that contains the display space of the leaf. Note how the node
in-between can still deform the coordinates before they are transformed to fit the
display space of the marked node.

For the sake of brevity, we will limit ourselves to two grids. The general principle

is valid for any other arbitrary 2D space Sa , as long as its grid coordinates can be

transformed to 2D Cartesian coordinates and vice versa. A Cartesian coordinate is

defined as (x, y), denoting longitude and latitude on a 2D rectangular grid. A polar

coordinate p is defined as (r,φ) where r is the distance from the origin and φ is the

angle. When nesting charts, we need to determine which space to calculate the lay-

out in, and which space the calculated layout will be positioned within. These two

spaces will be denoted as SL and SD . When a chart C ’s layout space SL has a different

coordinate system from its immediate parent space SP , the chart’s layout in S must

be transformed to fit in its display space SD . SD is the space S will be fitted into. In

other words, P will calculate its layout in SL-coordinates. S is then transformed to fit

into SD . The nature of this transform varies, and depends on the nature of the chart

C , and its parent chart CP . For example, to fit a scatter plot into inside an arc, only

the coordinates are transformed. Another example is when fitting a column chart

inside an arc (a circular chart), the entire shape is deformed, and not just the coor-

dinates. Each VC-node has one such transformation, and each child will handle the

transformation from the parent in a unique way.
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Let V T be an unbranched VC-Tree with d nodes. Let T0 be the transformation ap-

plied to the root node, and Td−1 be the transformation applied to the node at depth

d −1. Here T denotes a very general transformation, a function that transforms a set

of coordinates. The transformation applied to a VC-node at depth i ,0 < i < d can be

expressed as T0 ◦T1 ◦ · · ·◦Ti . The way these transformations are received is specified

by the chart and its parent charts. Some charts will deform their center coordinates

and scale to fit within the parent, some will deform their entire shape, some will de-

form their children. It is up to the designer to specify exactly how the charts should

be transformed by their parents, as illustrated in Figure 4.10.

4.4 Summary

This chapter has covered the main underlying principles of Visception. It began by

showing ways to simplify table arrangements by requiring less initial inputs, and

showed examples of how this is advantageous when used visually. Requiring less

initial inputs enables the user to do things more step-by-step.

Visception is built on a framework for classifying charts. This classification system

is based on the channels and properties of each individual charts. In particular, the

internal coordinate system (synonym to child space) of the chart is crucial to classi-

fying charts. For example, a pie charts and a bar charts are intuitively different.

To build these charts, operations must be made available. The operations within

Visception, Move (M), Nest (N ), Layer (L), Delete (D) and Push (P ) enable the user

to express a wide range of visualizations, and modify the Visception Tree topology

freely. Some operations, specifically the Nest operation can only be done on charts

with a chart one-to-one chart cardinality. With the ability to build a Visception Tree

and create an arbitrary hierarchy, the final step is to modify each chart one by one.

This is done by editing the channel mappings. Channel mappings encapsulate most

ways of editing a chart.

It has also been presented how the nesting of spaces work. Four different spaces have

been suggested: The layout space, the parent space, the display space, and the child

space. These four spaces provide a framework for creating nested visualizations,

even with varying internal coordinate spaces.
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Chapter 5

Interaction

The Visception Tree data structures enables for programmatically editing nested and

layered visualizations. However, it should also be possible to edit the Visception

Tree, without having to write any code. In this chapter we will demonstrate how

the Visception Tree is mappable to simple user actions, enabling the highly flexible

interactive design of visualizations

A Visception Tree provides a discrete, flexible representation of arbitrary visualiza-

tions. Most visualization programming libraries are not trivially mapped to a fully

expressive user interface. We propose a mapping from user actions in the form of a

visual language, to VC-tree operations. On a high level, we can break down all possi-

ble operations into four categories:

1. Map data to charts

2. Map data to channels

3. Modify channel mappings

4. Modify the Visception Tree topology

These four categories indicate what the user interface must do, and what it must look

like. The user interface must be able to operate on chart types, channel mappings

and the Visception Tree topology, without being too complex to the user. In order

to map data to charts, we first need a pane from which we can drag data columns.
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Figure 5.1: An overview of the main user interface functionality. The outline view
on the right represents the structure of the Visception Tree, and enables the user to
do nesting operations, as well as change the chart on any node. From the columns
view we can drag columns, or aggregates and map them to charts or channels. In the
channels view we can edit the channel mappings further.
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For this we have a simple columns pane embedded in a floating window. From the

columns pane we can drag data columns, as well as aggregates to the middle of the

screen, or other designated drop areas. Designated drop areas correspond to VC-

Tree operations, as well as channels that are mappable to the dragged columns. The

Outline View provides a file-tree-like overview of the Visception Tree topology as well

as the active charts per node, and exposes available operations. By clicking a node

in the Outline View, we select that chart. When a chart is selected, the Channels

View will display all available channels. Likewise, the Guides View show available

channels for guides (axes and legends). In order to provide an easily accessible and

customizable interface, all controls are placed into in floating windows that can be

minimized, resized and moved around. A screenshot of the essential parts of the

user interface is shown in Figure 5.1. The four most important windows for building

a visualization are: The Columns View, the Channels View, the Outline View and the

Guides view. With only these windows the user is able to create any nested visual-

ization.

Each view will be explained in greater detail in the coming sections. The views pro-

vide fully expressive interaction, while being highly scalable and flexible.

5.1 Controller Views

With highly expressive and flexible design tools there are many options. Usually

this leads to options being deeply nested within drop-down menus, making it more

difficult to learn how to use the program. In Visception we have exposed all con-

trollers in floating minimizable, resizable, and movable windows. These windows

provide more flexibility and available screen space for designing. There are five

views: The Columns View, the Channels View, the Outline View, the Guides View,

and the Dataset View. Each view, as well as the synergy between them, will be ex-

plained in closer detail. Figure 5.2 shows the most important controller views.
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Figure 5.2: An overview of the most important controller views. With these three
views we can create basic visualizations. We can drag from the columns view and
drop on the Outline or Channels View.

5.1.1 The Dataset View

Figure 5.3: The dataset view

When the user loads a dataset, Viscep-

tion automatically infers the types of

each attribute. This is done by creat-

ing a histogram of types for each data

column, then picking the data type ac-

cording to a rule set. By default the

data type occurring the most frequent

is picked. One example of a custom

rule, is that if a majority integer vari-

able has a few floats, it will be treated

as a float. Also attributes such as lon-

gitude, latitude, date have a higher precedence than floating numbers or integers.

However, the initial guess may be wrong, and the user may want to rename the col-

umn. Thus, the Dataset View enables renaming and re-typing of data attributes.
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5.1.2 The Columns View

Figure 5.4: The
columns view

After a dataset has been loaded, the available attributes must

be displayed somehow. The columns pane displays all avail-

able data columns and is central to the application. Clicking

on one data attribute will show all available aggregates for that

attribute. Each attribute is an accordion, where each item is

an available aggregate. The column and its aggregates may be

dragged. Every data mapping action begins with a drag op-

eration from this view. Figure 5.4 shows a screenshot of this

view.

5.1.3 The Outline View

The Outline View (See Figure 5.5) provides a high-level glance

at what charts a visualization consists of. By clicking on a

chart in the Outline View, we select that chart. When a chart

is selected, the Channels View and the Guides View will be

updated accordingly. Furthermore, it shows the current chart

type, its available operations (Nest, Group, Divide, and so on)

and its children.

Figure 5.5: The outline view and a corresponding visualization.



5.1. CONTROLLER VIEWS 51

5.1.4 The Channels View

The Channels View exposes all channels for the selected chart. Each channel has

an icon that gives the user an intuitive idea of what the channel does. Even if the

icon does not give a clear enough indication, the user can find out what the channel

does within just a few seconds by adjusting it. The channels view consists of a tiled

layout, where each tile is a channel. Channels that are mapped to data have a header

indicating which data column they are mapped to. Figure 5.6 shows two examples

of the Channels View, for a stream and an area chart.

Figure 5.6: The channels view for a stream chart, and an area chart. We can see that
they have some unique channels, and some channels in common.
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5.1.5 The Guides View

Guides are synonym for legends and axes. These are a crucial part of the visualiza-

tion, and should also be customizable for the user with great flexibility. One problem

with guides is that one chart may have two axes - an X and a Y axis. Then, each axis

has an identical set of inputs. To solve this, the user must be able to select an outer

asset before adjusting it. Thus, there is an outline of the visualization as well as its

guide on the top view. In this outline the user can click the guide and get access to

its corresponding channels, as shown in Figure 5.7.

Figure 5.7: The Guides View and a corresponding visualization. Here we enable the
user to edit axes and legends at any level of nesting. Each guide has its own set of
channels, all editable in the same manner as channels tied to the chart itself.
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5.2 Mapping Data

The most basic operation of Visception is to initiate a column drag. When initiating

the drag, every potential drop area will be highlighted. This includes possible VC-

tree operations, channels, and the viewport.

5.2.1 Mapping data to charts

The first step to create a visualization with Visception is to add one VC-node. In order

to add a VC-node, only one input is required: a data column. To express creating

a VC-node as well as mapping a data column D to it, we drag a column from the

columns pane and drop it on the middle of the screen. This action implicitly creates

a chart with default settings. The chart type can be changed in the outline view.

5.2.2 Mapping data to channels

To customize a chart, the user most likely wants to map data columns to certain

channels. The user needs to see all of the possible channels that can be mapped to

a column without getting overloaded. To facilitate this, every channel that accepts

data is highlighted on drag start. This instantly exposes all channels that can accept

a data column. When a column is dragged over a channel, the chart will show a

preview of the mapping. This mechanism enables the previewing of a great number

of potential channel mappings within seconds.

5.3 Modifying the Visception Tree

In order to create a nested visualization, one chart must be nested within another.

In order to accomplish this, a new VC-node is created, and appended as a child to

the target node. Visually, we achieve this by dropping a column on the Nest operator

area. By dropping a column, a VC-node with the chart type of the parent node is

implicitly created. The chart is then edited in the outline view. Grouping a chart

by a data attribute D will show one instance of that chart for each distinct value of
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the domain of D . Dropping a column on Group operator area will group a node by

a column. Implicitly, a new VC-node is created, mapped to the new column and

set to the chart type of the child (unless the child is not nestable, then it defaults to a

nestable chart). The Layer operation is used to overlay visualizations. It is performed

in the same way as the Group and Nest operations. In order to delete a node, there

is a delete button which will delete the node as well as all of its children. The outline

view allows the user to browse the tree topology and select a single node. The layout

is similar to the conventional way of browsing a file system. This allows for easily

inspecting and editing the contents of one VC-node at a time. The layer order can be

rearranged by dragging the nodes in the Outline View.

5.4 Editing Channel Mappings

When programming, certain values will be specified for certain attributes. For exam-

ple, for the Fill Color channel the output domain is all valid colors, while the Stroke

Width channel the output domain is a certain numeric range, or a numeric value.

The channels view partially automates this by having a preset domain and an ad-

justable range. So, instead of having to type in a color value or numeric value, it is

adjusted by a value slider or range slider.

Customizing a single chart is done by editing its channels. By simply dropping a

column on a channel in the Channels View, the channel will be mapped to that col-

umn. A drop-operation will be automatically previewed by simply dragging the col-

umn over the channel. This enables the user to look through outcomes of mapping

the column to all channels within seconds. In order to edit the finer details of the

channels, the user can click a channel icon to see all the available controls. Some

channel mappings are controlled by a single slider, while some have more complex

visual controls. For example, numeric ranges are edited through range sliders, color

values are chosen with a color picker, and so on (See Figure 5.8).
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(a) Choosing a color range. (b) Editing the tooltip text and styling.

(c) Editing the Size channel of a Cartesian circles chart.

(d) Editing the bounds of a chart.

Figure 5.8: Some examples of channel editing cards. The editor card appears when
clicking an icon.

Summary

In this chapter it has been demonstrated how a set of controller views can provide

full, flexible access to charts and their individual channels, as well as the tree topol-

ogy. The Dataset View both enables and assists the user to set the types of each data
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column. After the types are set, the Columns View presents columns, as well as their

available aggregates to the user. The user may drag aggregates, or column from the

columns pane and instantly see the possible drop targets highlight. If a column is

dropped on the middle of the screen, a corresponding chart is created. The Outline

View shows the available operations per chart, as well as a file-tree like outline of

the tree topology. In the Outline View, the user can select a VC-node, edit or change

the chart, as well as rearrange the tree topology and delete nodes. When a single

chart is selected, the Channels View will display all available channels for that chart.

Each channel has an icon, indicating what it does, and displays a custom controller

card when clicked. Channels that accept data are highlighted on drop. Likewise, the

Guides View lets the user control the appearance of axes and legends. Each guide

has a set of channels, and is edited in the same way charts are edited. The Columns

View is the source of most drag actions, while the other views are the receivers.
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Chapter 6

Implementation

At the time of writing, Visception is about 30,000 lines of code without whitespace

and comments and there are plenty of improvements that can be made. The biggest

challenge with this system is that it grew very large and had to be refactored many

times for it not to become unmanageable and cluttered.

6.1 Architecture

The architecture has been an important part of making all the components work

together without becoming too complex to manage. The user interface and the un-

derlying logic is fully separated. In practice, the Visception core could be exported

as a standalone library. In broad terms, the Visception core consists of a data man-

agement part, as well as a language part – encompassing charts, channels, layouts

as well as the Visception Tree. The Visception core allows for creating new visu-

alizations, and provides hooks for adding, deleting, fetching, querying and editing

charts. These hooks connect to the user interface - providing a clean separation of

logic. Figure 6.1 depicts a diagram of this overview.

The architecture must also facilitate optimizations addressing performance bottle-

necks. Major potential performance bottlenecks in a system like Visception are: con-

stant querying of data and re-rendering cycles. To still enable rapid interaction, Vis-

ception only lazily evaluates transforms and channel changes. With this minimal
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Figure 6.1: A high level outline of the architecture of Visception. Boxes that are col-
ored similarly are related. For example, the Columns View and the Dataset View
"connect" to the Data Management part of the core, while the Channels View and
Guides View are "connected" to the channels.

evaluation, data querying and rendering cycles are kept to a minimum.

Running nested layouts can be highly computing intensive. To address this we de-

fined each layout as a pipeline with certain steps. Our Visception Tree is stateful,

meaning we only render one chart at a time as we iterate through the parent data. In

the pipeline we refer to local steps as steps dependent on the selected parent datum,

and global steps as steps independent of the selected parent datum. Each pipeline

consists of local and global steps, varying for each layout. With this pipeline archi-

tecture we only have to re-run the absolutely necessary part of the layout, thus saving

more computing power.

6.2 The Visception Tree

The Visception Tree itself is implemented as a plain tree structure, where each node

is enumerated by a depth and an index from doing a level-order tree traversal. Nodes

are put in a 2D table indexed by depth and index. Whenever the tree changes the
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node table is updated. Each node has read-access to its parent node as well as its

children. Figure 6.2 illustrates the general topology of a Visception Tree, as well as

managers encapsulated the contents of each node.

Figure 6.2: The architecture of the Visception Tree. Each node has a manager for its
layout, guides, transformations and channels.

Since many channel mappings have much in common, they are reduced to a smaller

set of general channels. For example, a channel may be numeric, and take in a nu-

meric range plus a column or a numeric value. Such numeric channels are coded as

a general channel.

A specified set of equivalence groups between charts enables for transferring chan-

nel states when changing charts. For example, bar length, circle area, sector area size

are in the same group, so if bar length is mapped to a column, the mapping will be

transferred to the channel in that equivalence group.

6.3 User Interface and External Libraries

The user interface code is written in AngularJS, and the Visception library itself is

written in ES6. Consequently, the interface and Visception library is loosely coupled.

The AngularJS controllers fetch relevant information from the Visception Tree data

structure.
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To enable undo/redo mechanism for all actions, each action performed through the

user interface is stored in an action manager class. Each action is represented as a

state change to the visualization. The action manager automatically removes dupli-

cate/overlapping actions, and trims away redundant information from the objects

incrementally. The action history is exportable as a plain string. This allows for users

to save their progress.

For data query processing we used CrossFilter [18], Reductio [30] and Vega Datalib

[22]. When a column is dropped, a corresponding query is created and fetched. Vis-

ception relies heavily on D3’s built in data binding system, especially for looking up

relevant parent items when doing nested layouts. Lodash was used for basic ob-

ject and array operations. To facilitate a modular design, we used Browserify for the

bundling of Javascript modules. Hence, the distribution is one JS file referred to by

the browser.
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Chapter 7

Results

Using Visception enables us to create visualizations quickly and easily. To demon-

strate this we will show how some non-trivial visualizations are made and what steps

are involved.

7.1 At the National Conventions, the Words They Used

This visualization was published by The New York Times in 2012. It shows which

words were mentioned at which conventions, but also how many times they were

said, and which party said it the most. To recreate this, we took a similar dataset

from a transcript of one speech by Donald Trump, and one by Barack Obama. Figure

7.1 shows the end result.

1. Looking at the NYT visualization, we see that there is one bubble for each

word. The first step is thus, to create one bubble for each word. To do this

we can simply drop the word column mid screen. This creates one circle for

each distinct value of the word column. (See Figure 7.2(b))

2. Looking more closely at the NYT chart, there are two mappings that can be in-

ferred intuitively. Each word is sized proportionally to its number of mentions,

and the more republican-dominated words are further to the right. The next

step is to recreate these mappings. To position the circles, we drop percent-

age(trump) on Position X. Then, to size the channels we drop sum(count) on
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Figure 7.1: The final result made with Visception. Each circle represents one word.
Inside each circle we see clipped bars, with a width proportional to the number of
mentions. By displaying the same dimensions using multiple channels, the data
becomes much clearer.

Size. sum(count) is the same as the number of mentions for each word. (See

Figure 7.2(c) )

3. Now we have a set of circles that are sized and positioned as desired. Somehow

we need to subdivide these circles by who has mentioned it the most. To ap-

proximate this we will use the columns chart. The rationale behind this, is that

if we can put a column chart inside each circle, and size it so that it "covers"

the entire circle - we can clip it and map the Bar Width channel to the num-

ber of mentions. Hence, we begin by nest the column name within the current

chart, then we set the chart type to columns. (See Figure 7.2(d) )

4. To expand the columns to cover their parent circles, we edit the bounds of the

column chart. Intuitively this can be thought of as "stretching" the column

chart to cover the circles. (See Figure 7.2(e)

5. Next, we map name to the Fill Color channel, and sum(count) to the Bar Width

channel. Additionally we edit the Text Label channel to display sum(count) –

the number of mentions of each word, implicitly broken down by party. (See

Figure 7.2(f) )
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6. Currently the column chart is overflowing the circle bounds, in order to clip it

we enable the Clip channel. (See Figure 7.2(g) )

7. Next, we see that the colors are much brighter than in the original. To achieve

a more similar color scheme, we adjust the fill opacity channel. The visualiza-

tion is now close to identical to the original. (See Figure 7.2(h) )

8. Instead of leaving it at this, we will look at some other variants of this visual-

ization. We decide that we want to see a pie chart inside each circle, instead of

clipped bars. Thus, we change the chart type to sectors, and map sum(count)

to the Area channel. Then, we see that the text of parent circles is overlapping

the text of the pie chart slices. To fix this, we edit the Text Transform channel

and move the parent labels slightly up. (See Figure 7.2(i) )

9. To see what a polar area within each circle might look like, we set the chart

type to polar area. (See Figure 7.2(j) )

10. Since there are more options, we now try change the chart type to rows. (See

Figure 7.2(k) )

11. We keep exploring, and change the chart type to tubes with one click. (See

Figure 7.2(l) )
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(a) The original visualiza-
tion by The New York times

(b) Drop column word (c) Drop percent-
age(trump) on Position X,
and sum(count ) on Size.

(d) Nest name within cur-
rent chart. Change chart
type to columns.

(e) Edit columns Bounds
channel, expanding to
cover the parent circles.

(f) Map name to Fill
Color, and sum(count) to
Bar Width.

(g) Edit (enable) Clip
channel

(h) Edit Fill Opacity (i) Change leaf chart to
sectors. Edit Text Trans-
form

(j) Change leaf chart to po-
lar area

(k) Change leaf chart to
rows

(l) Change leaf chart to
tubes

Figure 7.2: These visualizations were made in 2 minutes and 30 seconds (includes
loading the data).
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7.2 Dimensional Stacking

This visualization will depict a snapshot of the Visception code base from late 2017.

It will show which folders contain most lines of code, as well as the amount of code,

comments and blank lines per file. To achieve this, streams will be nested within

squares, bars and arcs.

Figure 7.3: Visualization of an old Visception source code snapshot. Each square
represents a folder, sized by the amount of code its files contain. Within each square,
we see the distribution between code, comments and blank spaces. Using a stepped
curve interpolation also gives us a rough indication how many files are in each folder.

1. Knowing that the "top level" of the visualization is the folders, we will create

one square for each folder. This can be achieved by dropping the folder1 col-

umn mid screen, then setting the chart to squares. (See Figure 7.4(a) )

2. The squares are all equally sized. To illustrate how much code is within each

square, we can map sum(code) to the Size channel. We also want the labels to
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not occlude the child charts, this is addressed by editing the Text Transform

channel. (See Figure 7.4(b) )

3. The next thing we want to see is streams within each square. To achieve this,

we must first create a nested node. To achieve this, we nest the code column

within the current chart. This only creates one square for each distinct value

of code, which is not what we want, but it is simply an intermediate step. (See

Figure 7.4(c) )

4. We set the chart type to streams, which creates one stream for code, where

each step in the stream represents one file. (See Figure 7.4(d) )

5. Since the goal is to see the amount of code, comments and blank lines, we

must create one stream for each of these attributes. We push the columns

blank and comments onto the stream, using the push operation. The push op-

eration is only available for series charts and is equivalent to divide. This cre-

ates one stream for bl ank, and one stream for comment s. (See Figure 7.4(e)

)

6. With only white streams, it is difficult to differentiate between them. To ad-

dress this, we edit Fill Color to show one color per column. This channel mode

is only available for streams. Next, we edit the Text Label input to

’<key>: <sum(key)>’, and set the Stream Shape to step, which exposes the

amount of files more clearly. (See Figure 7.4(f) )

7. While the size does indicate the total amount of code, it can be made more

clear. Thus, we horizontally sort the squares by sum(code). To achieve this,

sum(code) is mapped to Position X. (See Figure 7.4(g) )

8. To exploring some more options, we will replace the squares with columns.

Thus, we set the parent chart to columns. Note how the Size channel prop-

agates its mapping to the Bar Height channel, and Position X to Bar Order.

(See Figure 7.4(h) )

9. Next, we check if rows display it better. The parent chart is set to rows. The

mappings are automatically transfered from the previous chart. (See Figure

7.4(i) )
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10. Exploring more, we set the parent chart type to sectors. Note how the Size

and Order is transferred. Out of curiosity, we also set the Stream Shape to

minWiggle[9] (See Figure 7.4(j) )

11. Since there are more pie charts, we test the polar area, though it is immedi-

ately clear that this is harder to read than the previous chart.

(See Figure 7.4(k) )

12. To make it more readable, we set the Stream Shape to expand. (See Figure

7.4(l) )
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(a) Drop column folder 1
and set chart to squares.

(b) Drop sum(code)
on Size, and edit Text
Transform channel.

(c) Nest code within cur-
rent chart.

(d) Change chart type to
streams.

(e) Push columns blank
(lines of white space) and
comments onto the leaf
node.

(f) Edit Fill Color, Text
Label, Stream Shape
(Stream Shape maps to a
d3.stackOffset).

(g) Map sum(code) to Posi-
tion X

(h) Change parent node
chart to columns

(i) Change parent node
chart to rows

(j) Change parent node
chart to sectors. Note how
sum(code) is mapped to
area

(k) Change parent node
chart to polar area.

(l) Edit leaf node Stack
Padding Stream Shape

Figure 7.4: These visualizations were made in 5 minutes.
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7.3 Loans

Here we will analyze a loans dataset from Kaggle (www.kaggle.com) without using

the nest operation, but rather only the group operation. Here we will compare how

loan recipients pay down their loans, broken down by education and gender. The

final result can be seen in Figure 7.5

Figure 7.5: A breakdown of loan payments by education and gender. The outermost
bubbles represent level of education. The innermost bubbles represent the value of
the loan, while the bubbles "in the middle" represent genders. From this we can see
that men tend to go overdue more often. It is also apparent that we have a very small
sample of highly educated people in this dataset.

1. First we will create one circle for every loan. To do this we use the LoanID

column. Though we could also use the root column which is equivalent if there

is only one row per LoanID value. After dropping the LoanID column on the

screen we see a bubble chart (See Figure 7.6(a) )

2. Next, we want to group all the loans by level of education. Intuitively, we can

imagine separating the bubbles and grouping them by level of education. By

dropping the Education column on the group operation we are creating one

bubble for every education level, and also showing one bubble per LoanID
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inside every Education bubble. At the tree topology level this is equivalent of

inserting the node representing the Education chart as the parent of the node

representing the LoanID chart. (See Figure 7.6(b) )

3. Now that we have grouped it by Education and LoanID, we want to see the

breakdown by gender. To do this, we do a g r oup operation on LoanID. This is

equivalent of inserting a node between the two already existing nodes so that

the grouping level is Education, Gender, LoanID. We can see that the sizing of

the bubbles is not optimal, which we can fix by adjusting the Size channel of

the Gender chart. (See Figure 7.6(a) )

4. Now we can adjust the colors. For the root node, i.e Education we map the

Education column to Fill Color. For the middle node we map Gender to the Fill

Color. We now have the color blue representing males, and red representing

females. For education levels we have one color for each education level. (See

Figure 7.6(d))

5. Next we want to see how large each loan is. For this we have the Principal col-

umn representing the size of the loan. On the leaf node representing LoanID,

we map the Principal column to the Fill Color and Size channel. Larger, greener

circles represent larger loans. (See Figure 7.6(e) )

6. Not everyone pays their loans on time. We want to see how this plays out for

the current grouping, as well as how this relates to different age groups. To

achieve this, we map PastDueDays to X Position, and Age to Y Position (See

Figure 7.6(f) )

7. By default Visception uses a force layout for circles, however we can adjust it

to a plain Cartesian layout by adjusting the Collision channel to 0. Doing this

we have a Cartesian layout with the nodes at their exact positions. With a force

layout the Position X and Position Y represent the centers of gravity of each

node. (See Figure 7.6(g) )

8. One problem with the current layout is that circles occlude one another, so we

cannot see all of them or get an idea of how many circles there are. To solve

this we adjust the Fill Opacity and Stroke Width channels. (See Figure 7.6(h) )
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9. With nested axes it is easy for the ticks to become too apparent. To fix this, we

adjust the Tick Width of the x-axis down. (See Figure 7.6(i) )

10. The Y-axis ticks are also too apparent, and not as distinguishable from the X-

axis ticks as we would like. To fix this we adjust the Tick Width and Tick Dash

channels of the Y-axis, as well as the Tick Color - making the ticks white. (See

Figure 7.6(j) )

11. Now we can zoom in and look at every nested chart separately. (See Figure

7.6(k) )

12. We adjust the Tooltip Text channel to display the principal of the hovered cir-

cle in a nicely formatted manner. (See Figure 7.6(l) )
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(a) Drop column LoanID
mid viewport.

(b) Group Education (c) Group Gender.

(d) Root node: Map Edu-
cation to Fill Color. Mid
node: Map Gender to Fill
Color.

(e) Leaf node: Map Princi-
pal to Fill Color, Size.

(f ) Map PastDueDays to X
Position, Age to Y Position.

(g) Edit Collision, set to 0.
Equivalent to using a plain
Cartesian layout

(h) Edit Fill Opacity,
Stroke Width

(i) Change Tick Width and
Tick Dash for x axis

(j) Change Tick Width,
and Tick Color for y-axis.

(k) Zooming in to inspect
further.

(l) Edit Tooltip channel

Figure 7.6: This visualization was made in 5 minutes and 10 seconds.
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Chapter 8

Discussion and Limitations

While we have demonstrated that Visception is capable of creating visualizations re-

ally fast, performance is still something to consider. For example, with larger datasets,

interaction will only stop up and slow down the process of exploring visualizations.

This could be addressed by doing "soft updates" only on a part of the visualization

or for a part of the dataset, but this is not implemented at the moment.

The two major factors that affect the performance is dataset querying and render-

ing. Rendering is easier to optimize than the dataset querying – with our pipeline

setup the rendering is already quite fast. The dataset querying is a major issue for

larger datasets and requires further work to improve. For example, if an attribute

has 10,000 distinct values, the user may try to create a bar chart for that row. Render-

ing 10,000 rows as rectangles will be disadvantageously slow on most computers. A

mechanism to address this could be implemented by displaying a warning message

when the user is about to make actions that may crash the browser.

If the dataset is really large, it will take up a lot of memory, as well as time to query.

Caching the query results becomes a lot harder if we run out of memory and have

to delete already cached queries. One way to address this is to implement a cache

management mechanism, or to run the data processing on a separate server. How-

ever, we believe that the best solution for this would be to use a GPU database [37]

for querying the dataset. With this setup we could simply load a 1GB file into GPU

memory and have the main memory remain close to untouched, and have high per-

forming queries.
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While performance is important, in most cases Visception still enables users to pro-

totype visualizations far faster than they can with other solutions or by coding. Usu-

ally, once the user has made one visualization that is adequate, it is not a big deal if

it takes a few seconds to render, especially if it is static.

Adding new charts to the system was not always trivial. The pipeline greatly simpli-

fied and streamlined the process of adding nestable layouts, however we still need to

specify how the layout is nested within different kinds of spaces. Our current solu-

tion has much room for improvement and simplification. However abstracting this

to a too high level (e.g. a generic nesting behavior for an arbitrary coordinate system)

may introduce more complexity than it removes.

On flexibility, there are still things that can only be done with code and not with

Visception. One way we can address this is to allow users to write their own D3 code

to be executed on the internal D3-selections after rendering. This would introduce

a bit of complexity to advanced users, but may still be a viable solution to providing

full flexibility combined with rapid prototyping.
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Chapter 9

Conclusion and Future Work

In this thesis we have presented a novel way of designing nested as well as non-

nested visualizations. By providing a data structure that is easily mappable to user

interface actions while still allowing for great flexibility, we have enabled non-coders

to design previously unavailable visualizations.

By building on the previous work done on formal graphics specification, program-

ming toolkits and information visualization we have developed a formalism for cre-

ating visualizations by using drag and drop operations. Our method builds on all

of this previous work. We have shown how we can simplify different table arrange-

ments by requiring less inputs to get started, and how these intermediary steps can

help simplify the process of creating charts.

We have gone through the different kinds of spaces that are needed to make differ-

ent chart layouts nestable within other spaces. These different spaces are crucial to

mathematically place one layout within another one. With nesting in place, we have

shown how the user can interactively construct and edit a Visception Tree, and how

these changes look in terms of a visualization as well as topologically. We have also

shown how nested visualizations can be complicated, but also how we can simply

edit one chart at a time by selecting one VC-Node in the Outline view. To facilitate

all of the operations and interactions, we have gone over the crucial parts of the user

interface, how it works and the rationale behind the design.

The project has been implementation-heavy, and would be suitable for future work.

Especially within visualization recommendation, Visception would be a good sys-
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tem to use as a basis, since it could be built on top of the already existing structures.

One unsolved problem, however, is to abstract the nesting to an even higher level.

If we had fixed definitions for multiple coordinate spaces, we could specify nesting

behaviors declaratively. However, we are not sure if this would introduce more com-

plexity than it would solve, since there are unexplored, possibly complex edge cases

for this problem.
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