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A B S T R A C T

The current work presents an in-exact solution method used to identify
feasible, and less costly inter-array cable layout for offshore wind farms.
The solution method developed has been built considering the interests of
wind farm developers in mind, and to support them in the planning of large
offshore wind projects. The objective of the current study is to develop a
fast heuristic based algorithm able to find good (less costly), feasible solu-
tion, with a small optimality gap.

We are given the positions of the turbines, obstacles, and substations.
The optimization problem is to find a cable layout such that there is a
unique path from each turbine to one of the substations. All the turbines
are connected in a series connection on a cable having a pre-defined ca-
pacity limitation. There are few additional constraints such as to prevent
two or more cables from crossing each other, and cables from entering any
restricted areas in the sea bed. This problem is quite similar to the well-
known Capacitated Minimum Spanning Tree (CMST) problem.

The cable layout problem has been proved to be NP hard, thus, an ex-
act algorithm is likely to have a running time that is an exponential func-
tion of the size of the input. Most of the available exact models require fast
computers, and hours of computation time to find an optimal solution and
still, in large instances of the problem, an optimal solution is not achieved.
Although our heuristic does not guarantee an optimal solution, it has the
ability to reveal good, feasible solutions in short time frame for large as well
as small instances. We have implemented the heuristic in Java, and used
in-built as well as customized data structures for improving the running
time of the algorithm.

We have tested our solution method on 8 real wind farm instances with
total number of turbines ranging from 30 to 160. We have compared the
results of our heuristic with the optimal solutions available for 4 wind farm
instances. We achieved near optimal solutions (<1%) in most of the in-
stances. The solution method includes a construction heuristic, which is a
modified version of a well established greedy heuristic for CMST problem
called Esau Williams’ heuristic. We have adapted this heuristic by introduc-
ing a procedure to find a crossing free layout, and also used a shape factor
in the heuristic function to improve the solution quality.

We have utilized a multiple node exchange neighborhood structure, and
used it in a local search framework. The local search method improves the
solution quality, and finds locally optimal solutions. In the end , we have
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used the algorithm on some of the larger instances with more than 100
turbines. These instances are practically impossible to solve using exact
methods. We have compared our heuristic results in these instances with
the actual installed layout.
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1
I N T R O D U C T I O N

Offshore wind energy is gradually emerging as a significant new source
of electricity especially in European countries such as U.K., Germany, Bel-
gium, Denmark and The Netherlands. Europe buys 40% of all wind tur-
bines sold globally [EWEA, 2017a]. According to the International Energy
Agency (IEA), wind energy should meet a quarter of Europe’s power de-
mand by 2030. The daily wind energy data accessed from WindEurope’s
website on 13 October 2017 showed the share of wind energy in total daily
electricity supply in EU countries was 7%. This included onshore wind
contributing 455GW h, and offshore wind contributing 106GW h. This sup-
ply could power approximately 138 million average EU households [EWEA,
2017a]. The total grid connected offshore wind capacity in Europe is 11.5GW ,
and a total of 21.7GW [EWEA, 2017b] of new projects have been consented.
This includes a total of 3,344 offshore wind turbines fully grid connected in
European waters in 82 wind farms across 11 countries.

Power is directly proportional to the cube of the upstream wind veloc-
ity, so placing wind turbines in sea having high wind velocities results in
higher energy production. Although beneficial in terms of power output,
offshore wind comes along with its own set of challenges. Offshore wind
farms are generally more expensive than their onshore counterpart. Due
to deflated electricity prices in Western Europe, it is difficult for the devel-
opers to get financing for offshore projects, and renders heavy reliability
on government subsidies. Most of the developers look to cut costs during
the planning stage. One of the options available to offshore wind develop-
ers is cutting down investments in expensive sub-sea cables. This can be
achieved using mathematical optimization, which is the approach taken in
the current work.

The thesis is organized as follows, in this chapter, we discuss the problem
statement, and constraints involved in the cable layout problem. In Chap-
ter 2, we discuss the literature, and introduce some of the exact, and in-
exact methods already developed. We also discuss some of the well-known
heuristics for an optimization problem similar to our problem called Ca-
pacitated Minimum Spanning Tree (CMST). We also discuss some back-
ground required to understand algorithms developed in Chapter 4 and Chap-
ter 5. In Chapter 3, we introduce a Mixed Integer Programming Model
(MILP) representing the cable layout problem. In Chapter 4, we present
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1.1 O F F S H O R E C A B L E S 13

a construction heuristic. In Chapter 5, we develop a local search method
to improve the solution quality. In Chapter 6 , we present experimental
results obtained by using the developed solution method, and check its ef-
fectiveness by comparing it with the available optimal solutions.

1.1 O F F S H O R E C A B L E S

Whereas most of the traditional power generating sources are built around
a few high rating generating units at a single location, wind farms collect
the power generated by multiple wind turbines spread over a large area.
The energy generated at each wind turbine is collected through inter-array
cables, and sent to shore using an export cable. Due to increasing distance
of offshore projects from the shore, most of the current offshore wind farms
have either single or multiple substations. These substations are required
to step up the voltage and send power to the onshore terminal using high
voltage export cables. The medium voltage cables which collect and chan-
nel the power to the substations are called collector system or inter-array
cables.

Designing a wind farm is a multi-step process, which involves identifying
a potential site, developing wind resource map, identifying optimal turbine
locations, selecting inter-array cable type, and finalizing the cable layout.
The above mentioned steps are done with an objective of minimizing over-
all investment cost and maximizing power production. There is also need
to maintain high reliability of the offshore wind farms.

Currently, the above is achieved by a combination of mathematical mod-
elling, statistical analysis, and some practical ad-hoc methods. The power
losses due to wake effect can be accounted for by using various analytic
wake models, wind resources are assessed using historical data. Both wind
conditions, and wake effects are utilized to identify optimal positioning of
the wind turbines in the approved area. Once the position of turbines are
fixed, then inter-array and export cable layout is finalized. Since export ca-
bles are high voltage cables that run a long distance from substation to the
onshore location, there are few decision variables to be manipulated. How-
ever, inter-array cable layout optimization is a challenging mathematical
task, especially in wind farms with large number of turbines and multiple
substations.

1.2 P R O B L E M D E F I N I T I O N

Following is the optimization problem that we solve in this work:

Given the positions of turbines and substations, find a cable layout such
that there is a unique path from each turbine to one of the substations, and
the overall cable length is minimized. The constraints to be satisfied are: No
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two or more cables should cross, splitting of power cables leaving turbines is
not allowed, a predefined maximum number of turbines can be connected
on a single cable, and cables cannot enter any restricted areas in the sea bed.

The cable layout has a tree structure similar to the one shown in Figure
1.2.1 with root in the substation. While developing an optimization model
for the cable layout problem, one has to make few decisions related to the
graph representation of the problem. Most of the available models con-
sider only turbines and substations as nodes in the final solution, but some
also use optional nodes (Steiner nodes) around turbines. The latter option
as opposed to former, doesn’t lead to sub-optimal solutions [Fischetti and
Pisinger, 2016], [Klein and Haugland, 2017]. The restricted areas in the sea
bed are modeled by placing optional nodes at the vertices of the convex
hull of a restricted area. The addition of optional nodes results in increas-
ing the size of the problem, and makes it even more harder to solve.

One of the crucial constraints which requires special attention while solv-
ing this optimization problem is the cable crossing constraint. The two
main reasons behind such a constraint are the need for expensive bridge
structures to allow cable crossing, and thermal interference between the
two crossing cables resulting in reducing the cable capacity [Fischetti et al.,
2015] [Bauer and Lysgaard, 2015].
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Figure 1.2.1: An illustration of a feasible cable layout for Thanet Offshore
Wind Farm with 100 turbines. The red line is the cable going
into the substation from each rooted tree. The cable capacity
used is 10



2
L I T E R AT U R E R E V I E W

Due to increased interest in offshore wind energy in Europe, various arti-
cles pertaining to offshore cable layout optimization have been published
in previous few years. Most of the articles are using Mixed Integer Linear
Programming (MILP) models to minimize the cost of cables by minimiz-
ing the cable length. The focus is mainly on the layout of inter-array ca-
bles. [Bauer and Lysgaard, 2015] have compared the problem to an open
vehicle routing problem with unit demands and planarity constraint. The
authors have used a route based structure. It is highlighted in [Klein and
Haugland, 2017] , [Pillai, 2017], [Fischetti and Pisinger, 2016] that branch-
ing is allowed, and tree structures could be used for inter-array cable lay-
out. There is an opportunity to reduce the cable length using branching,
and parallel cables. [Pillai et al., 2015] have used a path finding algorithm
to avoid non-convex as well as convex obstacles. All the models have used
commercial MILP solvers to achieve optimal solutions of the cable layout
problem.

[Fischetti and Pisinger, 2016] have not only included the cable costs, but
also taken into consideration future revenue losses due to power flow in
the cables. They have presented a MILP model to optimize the routing
by considering both cable cost and power losses in the objective function.
However, as opposed to [Pillai et al., 2015] and [Wȩdzik et al., 2016], where a
non-linear objective function is used for including power losses, [Fischetti
and Pisinger, 2016] uses a pre-computing strategy to avoid complicated
quadratic models. In most of the above mentioned work, the authors have
not included non-crossing constraints in the formulation, but added them
dynamically after getting infeasible solution from the MILP solver.

2.1 S O L U T I O N M E T H O D S

Authors [Chen et al., 2013], [Klein and Haugland, 2017], [Bauer and Lysgaard,
2015] and [Hou et al., 2016] have developed exact solution methods to solve
the layout problem, and they have been reasonably successful in their ap-
proach. [Klein and Haugland, 2017] were able to solve all the instances for
Barrow (30 turbines), Walney 1 (51 turbines), Walney 2 (51 turbines) opti-
mally, except Sheringham Shoal (88 turbines and 2 substations). [Hou et al.,
2016] have solved the problem using a dynamic minimum spanning tree al-
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gorithm for up to 80 turbines and achieved optimality.

[Gonzaélez-Longatt et al., 2012] have developed a genetic algorithm based
solution method for the cable layout problem. Although they have achieved
near optimal solutions for various test instances including more than 200
turbines, but it uses a fixed start open multiple TSP (mTSP) problem which
doesn’t allow for branching and thus, adds unnecessary constraints. [Pil-
lai et al., 2015] have formulated a constrained version of the capacitated
minimum spanning tree problem and used Gurobi 5.6 MILP solver that
combines simplex solving approaches, cutting plane algorithm, heuristic
algorithms and terminates when it reaches a threshold of optimality gap.
[Macedo de Lacerda and de Medeiros Junior, 2006] have developed a ge-
netic algorithm for a capacitated minimum spanning tree problem with
unit demands. They have suggested a new method for cross-over and en-
coding the candidate solutions. [Dahmani et al., 2015] have developed a
novel genetic algorithm based approach in which non-crossing constraints
are taken into consideration. One major criticism of the model is its inflex-
ibility. Each node can only have 8 neighbouring nodes with which it can
form an arc, apart from one with the substation. This reduces the num-
ber of variables and makes non-crossing constraints manageable, but the
model loses on providing flexibility.

Given the cable capacity, final task after identifying the location of tur-
bines, substations, and obstacles is to find optimal cable connections. Since
the MILP model cannot be solved to optimality in larger instances, we de-
velop fast heuristics which can provide good solutions in less time. We will
compare our solutions with optimal solutions achieved in [Klein and Haug-
land, 2017] for 4 wind farm instances. We have chosen this MILP model
for comparison, because it includes all the relevant constraints, and is the
most accurate representation of the layout problem. Similar to [Klein and
Haugland, 2017], we also allow parallel cables and branching at turbine lo-
cations.

The above mentioned problem has resemblance to the classical Capaci-
tated Minimum Spanning Tree (CMST) problem with additional constraints.
In the next section, we describe the CMST problem , and related exact and
in-exact solution methods.

2.2 C A PA C I TAT E D M I N I M U M S PA N N I N G T R E E

The Capacitated Minimum Spanning Tree (CMST) problem is a general-
ization of the well known Minimum Spanning Tree (MST) problem with a
pre-defined root r , and a capacity limitation of K . The capacity limitation
means that each sub-tree can have a total demand K or less. The sub-tree
can be defined as the maximal sub-graph of the tree connected with the
root using a single edge. In Figure 2.2.1, a capacitated minimum spanning
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Figure 2.2.1: An illustration of capacitated minimum spanning tree rooted
at 0

tree rooted at 0 and capacity limitation K = 4 is shown.

Now, we develop some notation to be used in succeeding section. We
consider a connected graph G = (V , A, f ,c,K ), with node set V = {0,1,2, ..,n},
A is the set of arcs , fi is the non-negative demand at each node i ∈ V ,
and ci j represents the cost of the arc between node i and node j (Note:
ci j = c j i ). The root node is represented by 0. The arc set A = (V × (V \ {0}))

A rooted sub-tree is represented by Ti , which is the rooted sub-tree con-
nected with the center node 0 using an arc (0, i ). The sum of the demands
at each node in any rooted sub-tree Ti , where i ∈ V \ {0} cannot exceed K .
Thus, if all nodes have unit demand fi = 1, there can be at most K nodes
in each rooted sub-tree. The minimum spanning tree problem has an ef-
ficient or polynomial algorithm, but the capacitated minimum spanning
tree problem has been proved to be NP hard, even with uniform demand
at each node [Sharma and Bardai, 1970]. Since the CMST is NP hard, exact
algorithms are likely to have an exponential running time. Due to the in-
tractability of the problem, numerous heuristics as well as meta-heuristics
have been proposed for use in various fields, such as telecommunication
design and network design [Voss, 2008].

Although there are many similarities between the offshore wind cable
layout problem (OWCLP) and the CMST problem, there are also quite sig-
nificant differences. Unlike CMST problem, in the OWCLP, the demand is
at the root nodes (substations), and cable crossing constraints are applica-
ble. The latter makes OWCLP even more harder to solve than CMST.

2.2.1 Mathematical formulation

In this section, we discuss one of the mathematical formulation for CMST
problem, which forms the basis for a MILP model for OWCLP. A great va-
riety of mathematical formulations have been suggested in the literature
and a detailed review can be found in [Voss, 2008]. Assuming fi = 1 for all
i = {1, · · · ,n}, and f0 = 0, the CMST problem can be formulated as a mixed
integer linear programming (MILP) model. We define xi j = 1, if arc (i , j ) is
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in the final solution and xi j = 0, otherwise. We introduce a continuous non-
negative flow variable yi j , which represents the amount flowing through
the arc (i , j ) for all i = {0, · · · ,n} and j = {1, · · · ,n}.

Let us use the graph: G = (V , A, f ,c,K ) with fi = 1 for all non-central
nodes, and f0 = 0. A MILP model is formulated for the CMST problem:

min
n∑

i=0

n∑
j=1

ci j · xi j (2.2.1)

s.t
n∑

i=0
xi j = 1 ∀ j ∈ {1, ...,n} (2.2.2)

n∑
i=0

yi j −
n∑

i=1
y j i = 1 ∀ j = {1, ..,n} (2.2.3)

xi j ≤ yi j ∀(i , j ) ∈ A (2.2.4)

yi j ≤ (K −1) · xi j ∀(i , j ) ∈ A (2.2.5)

xi j ∈ {0,1}, yi j ≥ 0 ∀(i , j ) ∈ A (2.2.6)

The constraint (2.2.2) ensures that only one arc reaches every non-root
node. The constraint (2.2.3) makes sure that the difference between the
flow units going in and leaving out is 1, that is, a unit demand at each node
i ∈V \ {0}.

The flow variable yi j has been introduced to prevent the formation of
sub-tours and ensure connectivity of the solution. [Toth and Vigo, 1995]
have presented an exact model using a branch and bound based algorithm.
[Gouveia and Martin, 1999] have proposed a hop-indexed generalization
of the above formulation, [Malik and Yu, 1993] have used Lagrangian sub-
gradient optimization, [Malik and Yu, 1996] have used cutting plane algo-
rithm for more than 200 nodes. Although there are plethora of exact al-
gorithms available, still the interest has been on fast heuristics which can
solve large instances of the above problem in less time. [Chandy and Rus-
sel, 1972] have shown experimentally that Martin’s [Martin, 1967] and Esau-
Williams’ [Esau and Williams, 1966] heuristics provide near-optimal solu-
tions with Esau Williams’ heuristic having a slight edge over the others.

2.3 B A C K G R O U N D

In this section, we briefly discuss some necessary background required
to develop the algorithms in later sections. Some of the key topics cov-
ered are Esau Williams’ heuristic, Convex hull, Graham Scan algorithm
and a brief review of commonly used local neighborhood structures for the
CMST problem.
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2.3.1 Esau-Williams

[Esau and Williams, 1966] proposed a greedy heuristic based on a real val-
ued reduction function which maps each non-root node to a potential cost
reduction value(see equation (2.3.4)). We use the same connected graph G
as discussed in the previous section with unit demand at each non-root
node and no demand at the root node 0. In the first iteration of the Esau-
Williams’ heuristic, we start with a costly, but feasible star layout. In the
star layout, every node i is connected to the root node 0 forming an arc
(0, i ). However, in each iteration of Esau-Williams’ heuristic a central arc
(0, i ) is traded off for a better link with any of the neighboring node satisfy-
ing certain conditions to be discussed later.

The equation (2.3.1) states that there can be at most K nodes in each
rooted sub-tree Ti . The rooted sub-tree Ti is a component of a tree span-
ning V as its maximal sub-graph uniquely connected to the root by an arc
(0, i). We define N (Ti ) as the set of nodes in the rooted sub-tree Ti . We
define Xi as the set of nodes in the same sub-tree as node i ∈ V \ {0} . The
equation (2.3.4), gives the the reduction value for each node i ∈V \{0} , cal-
culated in each iteration of the Esau-Williams’ heuristic. We define M as
the set of |V |−1 arcs constituting a spanning tree of the graph G .

The reduction value (Ri ) is the maximum cost reduction that is achieved
by removing the central arc (0, i ) from M and still maintaining the connec-
tivity of the spanning tree M by adding an arc with a node j ∉ Xi , such that
c j i is minimized. We define a set S(i ) containing all the feasible neighbor-
ing nodes of the node i using the equation (2.3.2). We also define node j (i ),
which is one of the nearest, feasible neighboring node to i , and is identified
using the equation (2.3.3).

We have also shown a pseudo-code in the Algorithm (1) to give an intu-
ition of how it works. The Algorithm (1) continues until at least one of the
value is non-zero in the reduction vector R ∈R|V |−1. This approach can also
be easily generalized for multiple-root CMST problems.

∑
z∈N (Ti )

fz ≤ K (2.3.1)

S(i ) = { j ∈V \{0} : j ∉ Xi , ( j , i ) ∈ A, |Xi |+ |X j | ≤ K } (2.3.2)

j (i ) =
{

one of the j ∈ argmin j∈V \{0}{c j i : j ∈ S(i )}, S(i ) 6= ;
0, S(i ) =;

(2.3.3)

Ri =
{

c0i −min{c j i : j ∈ S(i )}, S(i ) 6= ;
0, S(i ) =;

(2.3.4)
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Algorithm 1: Esau Williams

Data: G=(V , A,c,K )
Result: M : set of |V |−1 arcs spanning G
M ←; ;
for node i ∈V \0 do

M = M ∪ {(0, i )} ; // set of arcs in spanning tree
Xi = {i };
Ri = .1 ; // any value except 0

while (∃i ∈V : Ri > 0) do
for node i ∈V do

j (i ) = nearest neighbouring node ; // using (2.3.3)
compute Ri ; // Reduction value using (2.3.4)

find i∗ ∈ argmaxi∈V Ri ;
if Ri∗ > 0 then

M = M ∪ {( j (i∗), i∗)};
M = M\{(0, i∗)};
X j (i∗) = Xi∗ = Xi∗ ∪X j (i∗);

return M ;

Esau Williams’ heuristic (Alg. 1) is a simple greedy heuristic which cre-
ates a feasible capacitated minimum spanning tree. It has been proved
[Karnaugh, 1976] with an example that a modified version of the well-known
minimum spanning tree algorithm called Kruskal’s algorithm, with an addi-
tional capacity limitation cannot guarantee a better result than Esau-Williams’
heuristic [Voss, 2008].

2.3.2 Convex hull, and Graham Scan

Definition 2.3.1. The convex hull of a set of points S in n dimensions is
the intersection of all convex sets containing S. For N points p1, ..., pN , the
convex hull C is then given by the expression:

C = {
N∑

j=1
λ j p j : λ j ≥ 0 for all j and

N∑
j=1

λ j = 1}. (2.3.5)

There are numerous algorithms to find the convex hull of a finite set of
points in 2 dimensions. We will be using Graham Scan algorithm to find
the convex hull of the set of N points in n = 2 dimensions. It is an effi-
cient algorithm that has a time complexity of O(N · l og N ), where N is the
number of points and all the points P1 · · ·PN ∈ R2. We define the points
as P1 = (x1, y1),P2 = (x2, y2),P3 = (x3, y3), · · ·PN = (xN , yN ). Following is an
overview of the algorithm:

1. Find an anchor point with the smallest y coordinate

2. Sort all the points by comparing angles between the anchor and the
point which is being assessed



2.3 B A C K G R O U N D 22

Figure 2.3.1: An illustration of Graham Scan

3. Add each point to the list H

4. While assessing each point in the list, we check whether 3 consecu-
tive points are turning left or right . If there is a right turn then the
algorithm removes the second to last point in the list H.

A simple example is given in Fig. 2.3.1. We first analyze points p,q,r,.
These three points form a right turn, so we remove second last point q from
the list H. In the next step, we notice that the last point r also forms a right
turn with o and p, so we remove p. Then we analyze r,o and n which turns
left, r is added to the list H. Continuing in the same way, we get convex hull
of the set of points. We do not mention the pseudo-code here as we are
merely interested in the results.

2.3.3 Local neighborhood structures for the problem

A heuristic gives us a good, and feasible solution of an optimization prob-
lem without guaranteeing optimality. After attaining a feasible solution, we
try to reduce the optimality gap or improve the solution quality. In this sec-
tion, we look into the various improvement methods which improves the
solution quality by exploring neighboring candidate solutions.

Once the initial feasible heuristic solution is available, a local search al-
gorithm can be used to change the solution, and reduce the optimality gap.
In this step, local neighborhoods, and exploration policies are defined. The
performance of any neighborhood search algorithm mainly rely upon the
neighborhood structure it exploits. Two of the well known neighborhood
structures for the CMST problem are mentioned in [Amberg et al., 1996]
and [Sharaiha et al., 1997]. The neighborhood structure in [Amberg et al.,
1996] is based on exchanging one node between two sub-trees.

The neighborhood structure defined by [Sharaiha et al., 1997] moves a
part of the sub-tree from one sub-tree to another or directly connects it to
the root node. Both of these neighborhood structures can be considered
as two-exchange neighborhood structure, because they exchange nodes
between only two sub-trees. As it is quite evident from their definition, the
number of neighborhood solutions in two-exchange neighborhood cannot
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Figure 2.3.2: An illustration of Cyclic Multi-exchange (from left to right)

be more than n2, where n is the number of non-root nodes.

In article [Ahuja et al., 2001], a multiple node exchange (multi-exchange)
neighborhood structure has been proposed. This neighborhood structure
allows exchange of nodes spanning multiple sub-trees. There are two types
of multi-exchange methods : cycle and path-based exchanges as depicted
in Figures 2.3.2 and 2.3.3. The cardinality of each sub-tree remains the
same in cycle-based exchange, but in the path-based multi-exchange, car-
dinality of one of the subtree increases and one reduces. The arcs on the
left side of the Figure 2.3.2 represent node 17 leaving sub-tree T13 and en-
tering T1, whereas node 3 leaves T1 and enters sub-tree T6. Similar is the
case for the path-based exchange.

The multi-exchange neighborhood structure finds large number of neigh-
bors of a solution. A capacitated minimum spanning tree problem with
n nodes and capacity K , may contain as many as Ω(K

n
K (n −K −1)!) solu-

tions [Ahuja et al., 2001]. Therefore, the authors have developed a heuristic
based method which involves formation of a directed improvement graph
of the solution. The improvement graph maps each multi-exchange to
a subtree-disjoint cycle. Thus, every negative sub-tree disjoint cycle in
the improvement graph represents a profitable multi-exchange neighbor
of the current solution. The computational experiments have proved the
superiority of this neighborhood structure as compared to two-exchange
neighborhood.
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Figure 2.3.3: An illustration of Path Multi-exchange (from left to right)
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M AT H E M AT I C A L D E S C R I P T I O N

In order to evaluate the results attained from heuristics, it is always a good
idea to benchmark heuristic solutions for some of the reference instances
with the solutions from a state of the art exact/MILP model. It can be used
to find the optimality gap, and benchmark the performance of different
heuristics. In this work, we compare our heuristic results with results pub-
lished in [Klein and Haugland, 2017] for four wind farms Walney 1, Wal-
ney 2, Barrow and Sheringham Shoal. We have deliberately chosen this
model as it allows branching, parallel cables, and obstacle avoidance. So,
we believe that this exact model is an accurate representation of the actual
problem. However, different project developers may have different addi-
tional restrictions which can be addressed by an ad-hoc fix of the heuristic
or adding new constraints to the exact model.

Now, we briefly describe the engineering problem, followed by mathe-
matical description of the problem.

3.1 E N G I N E E R I N G D E S C R I P T I O N

We are provided as an input; positions of the turbines, substations and re-
gions of the seabed not accessible to cable installations. We are also given
the maximum cable capacity to be used for the cable connections. Multi-
ple turbines are connected to one of the substations in series circuit with-
out any loops. Two or more cables can enter a turbine , but only one cable
containing all the power leaves. This is done using switch gears at the tur-
bines. The cost of the cable is given in per unit length, and we assume that
the overall cost depends on the total cable length.

The installation of parallel cables between two turbines in a shared trench
may reduce the overall cable length. Parallel cables are used as a cost sav-
ing measure, as they help in avoiding any potential cable crossing. This
point can be understood by looking at the example highlighted in Fig. 3.1.1,
where parallel cable are used in (c), and the layout is feasible as opposed
to (a), which is infeasible. This layout is also less costly than (b). Therefore,
allowing parallel cables gives better results in some cases.

25
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Figure 3.1.1: An illustration of importance of Parallel cables. a: Infeasible b:
cost = 12.54 c: cost = 12.46

One of the main constraints to be tackled is node crossing. In Fig. 3.1.2,
there is a node crossing at node B . The cable (green) from A is connected
to F via B. This cable layout is not feasible according to our cable crossing
constraints. An alternate feasible path which can be used is A−G−F , where
no power is deposited at node G. In order to tackle these issues, some ad-
ditional optional/steiner nodes are placed in an orbit around each turbine
node. So, a connection with a Steiner node located in an orbit of turbine
node i means no power is deposited through that cable at node i .

Due to growth in the offshore wind industry, it is expected that many off-
shore wind farms have location shared with some restricted zones in the
sea. Thus, tackling obstacles becomes crucial. Although restricted areas
can come in all shapes and sizes, it is safe to assume that we can identify a
convex polygon around each convex/non-convex obstacles. Vertices of the
convex polygon can be the location of optional nodes, which can be used
to avoid these obstacles. These additional nodes are necessary for provid-
ing flexibility to the cable path.
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Figure 3.1.2: An illustration of node crossing

3.2 G R A P H D E S C R I P T I O N

As we are dealing with a combinatorial optimization problem, a good place
to start is first establishing the graph.

We have a directed graph G = (V , A), with V as the set of nodes in the
graph and A is the set of arcs in the graph. The node set V contains T ,O
and S, the set of turbine nodes, optional nodes and substation nodes re-
spectively (V = T ∪O ∪ S). The optional nodes are placed near each tur-
bine, and also at the vertices of the convex polygons containing the ob-
stacles. The location of the optional nodes (O) are not part of the prob-
lem statement, but used as a design parameter for improving the solution
quality of the model. The set of arcs A consists of arcs originating from ei-
ther T or O and reaching all the nodes in V . There are no arcs originating
from the substation nodes in S. Thus, the set of arcs A = (V \ S ×V ). The
set ω consists of all the edge pairs ({i,j},{h,k}) crossing each other, where
both the edges {i,j} and {h,k} ∈ E . Here E is the undirected edge set de-
fined as ({i , j } : (i , j ) ∈ A). The power produced at each node i ∈ V is given
by Mi . We are assuming that each turbine has same power production,
Mi = 1,∀i ∈ T and Mi = 0,∀i ∈ O. The function P : V 7→ R2 embeds the
nodes in the plane and line segment between i and j , where i , j ∈ V is
embedded by P (i , j ) = {P (i )+ θ(P ( j )−P (i )) : θ ∈ [0,1]}. Summary of the
notations used in developing MILP are in Table 3.2.1.
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Name Description Type

V Vertices in the graph Set
T Turbine nodes Set
O Optional nodes (around turbines and obstacles) Set
S Substation nodes Set
A Set of arcs, A= (T ∪O)× V Set

P (i ) Coordinates of i ∈V Parameter
P (i , j ) Closed line segment between between P (i ) and P ( j ) Parameter

ci j Euclidean distance between P(i) and P(j) Parameter
xi x-Coordinates of i ∈V Parameter
yi y-Coordinates of i ∈V Parameter
K Maximum number of turbines on a cable Parameter

xi j If the arc between vertex i and j is formed xi j = 1,otherwise 0 Binary variable
yi j Flow variable between nodes i and j Continuous variable
E undirected edge set {{i,j}:(i,j) ∈ A} Set
ω {{i , j }, {h, j } ∈ E ×E : P (i , j )∩P (h, j )\{P (i ),P ( j ),P (h),P (k)} 6= ;} Set

Mi Power production at each node Parameter

Table 3.2.1: Notations for Cable Layout Optimization Problem

3.3 M I L P M O D E L

The model is simplified for ease of understanding and conveying the core
ideas behind the cable layout problem. However, for detailed understand-
ing of some of the common MILP models, readers are referred to [Klein and
Haugland, 2017], [Fischetti and Pisinger, 2016]
MILP Model:

min
∑

(i , j )∈A
ci j · xi j (3.3.1)∑

i∈V :i 6=k,(k,i )∈A,(i ,k)∈A
(yki − yi k ) = Mk ∀k ∈ T ,O (3.3.2)

K · xi j ≥ yi j ∀(i , j ) ∈ A (3.3.3)∑
j∈V : j 6=i ,(i , j )∈A

xi j = 1 ∀i ∈ T (3.3.4)∑
j∈V : j 6=i ,(i , j )∈A

xi j = 0 ∀i ∈ S (3.3.5)∑
j∈V : j 6=i ,(i , j )∈A

xi j ≤ 1 ∀i ∈O (3.3.6)∑
i∈V : j 6=i ,(i , j )∈A

xi j ≤ 1 ∀ j ∈O (3.3.7)

xi j +x j i +xhk +xkh ≤ 1 ({i , j }, {h,k}) ∈ω (3.3.8)

xi j ∈ {0,1} ∀(i , j ) ∈ A (3.3.9)

yi j ≥ 0 ∀(i , j ) ∈ A (3.3.10)
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The objective (3.3.1) minimizes the cable length. The constraint (3.3.2) are
used to balance the flow at each turbine, and optional nodes. It is not a
valid constraint for the substations as they absorb all the power entering it.
The constraint (3.3.3) is necessary to avoid flow through any arc more than
its capacity. The flow variable yi j is used in the model to prevent forma-
tion of any sub-tours and ensure connectivity. The continuous variable yi j

is the amount of power flowing in the cable between i and j . The binary
variable xi j is 1, if the arc (i,j) is in the final tree solution. The constraints
(3.3.4), (3.3.5) and (3.3.6) all put constraints on the number of outgoing arcs
from turbines, substations and optional nodes respectively. There must be
one arc leaving each turbine, no arcs leaving substations and at most one
arc can leave optional nodes. There is an additional limitation on the in-
degree of the optional nodes as mentioned in the constraint (3.3.7). The
constraint (3.3.8) refers to the non-crossing constraint.

One could choose to add more restrictions in the MILP model by limit-
ing the in-degree of each turbine or substations. However, we restrict our
description to the above mentioned simple MILP model for the cable lay-
out problem. One of the drawbacks of the MILP model mentioned above
is equation (3.3.8), as it is weak and its number can be very large O(|V |4).
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G R E E DY H E U R I S T I C A N D M O D I F I C AT I O N S

In this chapter, we present a modified version of Esau Williams’ algorithm
(Alg. 1). We call the new heuristic presented in this chapter as Obstacle-
Aware Esau Williams heuristic (or Obstacle-Aware). As discussed previ-
ously, MILP exact models exist, and provide optimal solutions in few hours
for smaller instances, but they are unable to solve larger instances in a rea-
sonable time frame. There is a need to develop a fast heuristic revealing
good, and feasible solutions for instances with large number of turbines.

4.1 P R E L I M I N A R I E S

The abstract problem definition and input graph to the heuristic remain
similar to the MILP model discussed in previous section 3.2.1. The only dif-
ference is in the set of optional nodes O. The set O now contains only the
extreme points of the convex hull of the obstacles, and optional nodes near
turbines are not included. Unlike the model in [Klein and Haugland, 2017],
we have not used optional nodes around each turbine. This is done to re-
duce the computational efforts. We have used another method to achieve
the same flexibility. The arc set A has all the arcs directed from T ∪O to all
the other nodes V . Therefore, we define A = (T∪O)×V , where V = T∪O∪S.

The ambition of the heuristic is to first find a set Z of rooted trees span-
ning all the turbine nodes i ∈ T . The trees are rooted at a turbine node hav-
ing least distance to one of the substations among all the turbine nodes in
their respective tree. We partition the nodes in each rooted tree λ ∈ Z into
two sets, the set aλ of active nodes and set pλ of passive nodes. Both active
(aλ) and passive node (pλ) sets are defined with respect to the rooted tree
λ. We define N (λ) ⊆ V \ S, as the set of nodes in the rooted tree λ. We use
LR(λ) ⊆ N (λ) , to denote the set consisting of all the leaf nodes and the root
of the tree λ. All the rooted trees λ ∈ Z , are eventually connected to one of
the substations such that there is a unique path from each turbine node
to one of the substations. Now, we define the active and passive nodes for-
mally:

Definition 4.1.1. A node i ∈ T in the rooted tree λ is an active node with
respect to λ, if it receives power from other nodes j ∈ N (λ) , that is, flow
variable y j i > 0, or it sends power to some other node j ∈ N (λ) , that is,
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yi j > 0. The set of active nodes of the rooted tree λ is denoted as aλ ⊆ T .
The node set N (λ) \ aλ is referred to as the passive node set (pλ) of rooted
tree λ.

It follows from the Definition 4.1.1, that for any rooted tree λ ∈ Z , we
have

aλ =
{

i ∈ N (λ)∩T : | ∑
j∈N (λ):(i , j )∈A

yi j −
∑

k∈N (λ):(k,i )∈A
yki | = 1

}
. (4.1.1)

We have used continuous flow variables yi j , where (i , j ) ∈ A. These vari-
ables have been discussed in previous Section 3.2.1. We define A(λ) ⊂ A,
as the set of arcs in the rooted tree λ. Any feasible set (Z ) of rooted trees
spanning all the turbine nodes T must be both arc crossing free and node
crossing free. These concepts are described next:

Definition 4.1.2. If all the arc pairs (i , j ) ∈ A(λ), (h,k) ∈ A(λ′);λ,λ′ ∈ Z ,
where λ 6= λ′, satisfy {{i , j }, {h,k}} ∉ ω (Table 3.2.1), then Z is said to be an
arc crossing free set of rooted trees.

Arc crossing free is a necessary, but not sufficient condition to attain a
feasible layout. We also need to prevent node crossing (see: Fig. 4.1.1) and
arcs from entering in restricted areas. We present an observation which
forms the basis of our definition of node crossing. We define a set D of all
the common nodes present in at least two distinct rooted trees. The nodes
in the set are neither leaf nodes nor root node in their respective tree. We
call this set common node set, formally given as

D = {
i ∈ T ∪O : i ∈ (

N (λx ) \ LR(λx )
)∩ (

N (λy ) \ LR(λy )
)
, x 6= y ,λx ,λy ∈ Z

}
.

(4.1.2)

Observation 4.1.1. We assume that ~u and ~v are two vectors in the Carte-
sian plane. We know that there is a unique parallelogram having ~v and ~w
as its two sides. The area of the parallelogram is given by |det[~v ~w]|. The
sign of the determinant indicates the orientation of ~w with respect to ~v .
The vector ~w is anticlockwise to~v if and only if the determinant is positive,
and ~w is clockwise if and only if the determinant is less than zero. The two
vectors are linearly dependent if the determinant is zero.

We make use of Observation 4.1.1, and common node set D (4.1.2) to
identify node crossing in the set of rooted trees Z . Now, we define a set of
nodes F (Z ) ⊆ D , which contains all the nodes violating the node crossing
constraint in the set of rooted trees Z . We use function P to embed nodes
in the plane P : i 7→ R2, where i ∈ V . We represent P (a)−P (b) with ~ba,
where b, a ∈ V . We define a set F (Z ) with respect to the set of rooted trees
Z , containing all the nodes where node crossing takes place as:

F (Z ) = {d ∈ D : (det[ ~kd ~ki ]×det[~dl ~d j ]) < 0;(k,d), (d , l ) ∈ A(λm),

(i ,d), (d , j ) ∈ A(λn),m 6= n,λm ,λn ∈ Z }.
(4.1.3)
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Figure 4.1.1: An illustration of Node Crossing at Node d. (Bold lines in red
and black represent two cables which cross at node d.)

This is highlighted in the Fig. 4.1.1, the node crossing takes place at node
d. The two parallelogram formed by ~kd with ~kl , and ~dl with ~d j have oppo-
site orientation. Thus, the node d gets added to the set F (Z ) mentioned in
equation 4.1.3.

Definition 4.1.3. If all the arc pairs (i , j ) ∈ A(λ), (h,k) ∈ A(λ′);λ,λ′ ∈ Z ,,
where λ 6= λ′, satisfy {{i , j }, {h,k}} ∉ ω, and F (Z ) = ;, then Z is said to be
a crossing free (both node crossing and arc crossing free) set of rooted trees

Following is the summary of the conditions required to be satisfied to at-
tain a feasible cable layout:

1. Each rooted tree λ contains at most K active nodes, that is, |aλ| ≤ K ,
where K is the cable capacity

2. The set Z is crossing free and none of the arcs in λ ∈ Z enter the con-
vex hull of the obstacles

3. N (λ)∩S =;, for each rooted tree λ in Z .

4.
⋃
λ∈Z aλ = T and aλ∩aλ′ =;, for λ 6=λ′

5. Each rooted tree λ ∈ Z is connected to S by exactly one path between
nodes i and s, where i ∈ aλ and s ∈ S. Thus, a feasible set of trees
spanning T ∪ S is obtained. (We do not use the term Forest, since
there is a possibility that the trees are not disjoint)

4.2 O B S TA C L E - AW A R E E S A U W I L L I A M S H E U R I S T I C

We had discussed Esau Williams’ heuristic in section 2.3.1, which finds
good, and feasible solutions to the CMST problem. We have now estab-
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Nodes Coordinates Reduction(1st Iteration) Reduction(2nd Iteration)

B (-2,-1) 2.236 - 1.414 = 0.822 0.822
C (-1,-2) 2.36 -1.414 = 0.822 0.822
D (1,-1) 1.414-2.236 = -.822 0
E (-1,-3) 3.162-1 = 2.162 2.162
F (-2,-3) 3.6-1 = 2.6 2.6
G (-3,-3) 4.24-1 = 3.24 0

Table 4.2.1: Sample calculations in Esau-Williams heuristic

lished additional constraints, such as node and arc crossing to be incorpo-
rated to the CMST problem. We discuss a simple example to give an intu-
ition about need for modification of Esau-Williams’ heuristic and later on,
we present the modifications to this heuristic.

4.2.1 Sample Calculations

The reduction value mentioned in equation (2.3.4) is calculated for each
turbine node, reflecting the potential savings achieved by removing the
central arc (i , s) ∈ A, where s ∈ S. We start with a feasible star layout, where
every turbine node is connected to one of the closest substations. In every
iteration, the central arc to one of the substations is removed from a node
i∗ having the maximum reduction value. The node i∗ is connected with a
nearest neighboring node j (i∗). An example is illustrated in Fig. 4.2.1. The
capacity limitation of each cable in this example is 3. In Fig. 4.2.1, from a
to c, overall cost is reduced. The calculations for two iterations are shown
in Table 4.2.1. In the first iteration, node G has maximum reduction value,
so central arc (G,A) is removed and node G joins node F using a direct arc
(G,F). Once the central arc of a node is removed, its reduction value is set to
0. In the final iteration, an infeasible layout is achieved (Fig. 4.2.1.c). Thus,
Esau-Williams’ heuristic does not guarantee a feasible solution to the off-
shore cable layout problem.

4.2.2 Key challenges

Esau Williams’ reduction function is used to partition the turbines nodes
in active node disjoint rooted trees. We develop some procedures to make
sure that the set of rooted trees are crossing free. Therefore, instead of
adding direct arcs between turbine nodes, we use paths which do not cross
any existing arcs or enter any restricted areas. Following are the key chal-
lenges addressed by our heuristic:

1. Identifying arc or node crossing if it exists

2. Preventing cables from entering restricted areas in the sea bed

3. Finding shortest paths while avoiding obstacles
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Figure 4.2.1: An illustration of steps in Esau-Williams’ heuristic. a. Star lay-
out b. First iteration c. Final iteration(infeasible) d. Feasible
layout

4.3 A P R O C E D U R E T O P R E V E N T C R O S S I N G

It is shown in example 4.2.1, that in each iteration two nodes are joined
from two trees. In the cable layout problem, it is required to check for ob-
stacles, and crossing when joining two turbine nodes. There are two parts
to solving this challenge 1: finding node and arc crossing, and 2: finding
shortest paths around obstacles.

Now, we discuss some important notations which are used while explain-
ing the algorithm. A closed line segments s = [P (i ),P ( j )] in the plane is
defined with respect to two nodes, i and j . The problem we address is
whether there exists an intersection among a collection of line segments
and the line segment s, where arc (i , j ) is being assessed to be added to the
solution. We have made use of a standard plane sweep based algorithm to
identify the line segment intersections. In Fig. 4.3.1, we have highlighted
some cases considered as intersection as True. We do not allow case (v) in
Fig. 4.3.1, as it may lead to node crossing later on, as depicted in the figure
to the right of case (v).

Let us call B as the Obstacle Set, containing distinct convex obstacles
in the sea bed. These convex obstacles are defined as the set of extreme
points. We define a function f : O 7→ B , where O, is the set of all the ob-
stacle nodes. The function maps each obstacle node (o ∈ O) to a unique
convex obstacle in Obstacle Set (B), such that f (o) is the obstacle of which
P (o) is an extreme point. Each convex obstacle b ∈ B , represents a distinct
restricted area in the sea bed. The set Qb stores the location of extreme
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Figure 4.3.1: An illustration of intersections

points of the obstacle b ∈ B .

Now, we formally define a set C of line segments called Obstacle Lines.
The Obstacle Lines (C ) is a set of line segments between each pair of adja-
cent extreme points in Qb , where b ∈ B . These sets are defined as follows:

Qb = {P (o) : o ∈O, f (o) = b} ⊂R2 (4.3.1)

Cb = {[P (i ),P ( j )] : P (i ),P ( j ) ∈Qb , i 6= j } (4.3.2)

C = ⋃
b∈B

Cb . (4.3.3)

We also define a Solution Set (M), which is a set of arcs in the final solu-
tion, and results in creating unique paths from each turbine node to one of
the substations. A line segment corresponding to each arc in the set M is
stored in a set called Turbine Lines (H) defined as:

H = {[P (i ),P ( j )] : (i , j ) ∈ M }. (4.3.4)

We have given a summary of the important sets in Table. 4.3.1.

4.3.1 Shortest feasible paths

In graph theory, a path represents a finite sequence of edges. A directed
simple path is defined in a similar way, but there are additional constraints;
all the directed edges are in the same direction and there is no repetition
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Set Name Brief Description

B Obstacle Set Set of obstacles
C Obstacle Lines Line segments between extreme points of obstacles
M Solution Set Arcs in the solution
H Turbine Lines Line segments corresponding to the arcs in the solution

Table 4.3.1: Explanation of the Sets

of nodes. We want to identify a crossing free path. This path can be rep-
resented as an ordered set of arcs between source node i and sink node j
referred as NC i , j . None of the arcs in the set NC i , j intersects with any of
the line segments in Turbine Lines (H) (eq: 4.3.4) and Obstacle Lines (C ) (eq:
4.3.3). Each node is reachable from itself, NC i ,i = {(i , i )}. We use the set of
crossing edge pairs ω mentioned in Table 3.2.1 to define the set NC i , j as:

NC i , j = {(x, y) ∈ A : {{x, y}, {k, l }} ∉ω, [P (k),P (l )] ∈ H ∪C , NC i ,x 6= ;, NC y , j 6= ;}.
(4.3.5)

Pathfinding or pathing is the method of finding a sequence of edges be-
tween two points. There are standard algorithms that find a shortest path
on a weighted graph. We have used Dijkstra’s algorithm to find a shortest
path between two nodes. However, the shortest path obtained from Dijk-
stra’s algorithm does not guarantee a crossing free path. We deal with this
challenge by checking each arc (m,n) of the shortest path P for intersec-
tions with line segments in sets Obstacle Lines (C ) and Turbine Lines (H).
The succeeding steps after identification of an intersection in the current
shortest path P , depends on whether the intersection is with [i , j ] ∈ H or
[i , j ] ∈C . In the latter case, we change the cost of an intersecting direct arc
(m,n) to a large value referred to as bigM (which can be assigned any large
value such as cost of a feasible star layout). This is because {{m,n}, {i , j }} ∈
ω, and thus, (m,n) is not allowed in Solution Set (M).

In the next run of Dijkstra’s algorithm, we identify a new path for assess-
ment. We use recursive calls to procedure Crossing on each edge of the
current shortest path (see Alg. 2). In Fig. 4.3.2, we have highlighted a case
where a crossing free path between nodes 1 and 2 is to be found. A cor-
responding recursion diagram of procedure Crossing is highlighted in Fig.
4.3.3. The direct arc (1,2) results in a crossing with line segments in Obsta-
cle Lines (C), therefore it makes recursive calls to procedure Crossing.

In the other case, if the intersection is with line segments from set Tur-
bine Lines (H), use of Dijkstra’s algorithm on the modified graph may lead
to node crossing. This is highlighted in Fig. (4.3.4). In this figure, the black
solid nodes are turbine nodes, and the others are optional nodes. It is ev-
ident from Fig (4.3.4.a) that using Dijkstra’s algorithm in such cases may
lead to node crossing. A pseudocode of this procedure is presented in Alg.
2.
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Figure 4.3.2: An example of a crossing free path between turbine nodes 1
and 2 (NC 12) (Bold line).

Figure 4.3.3: Recursion diagram for Crossing used to find a crossing free
path between nodes 1 and 2 (see:Fig. 4.3.2)
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Figure 4.3.4: a. Intersection with line segments from set Turbine Lines (H),
b. Intersections with line segments from set Obstacle Lines
(C)

Algorithm 2: Crossing

Data: G = (V , A),Turbine Lines(H),Obstacle Lines(C ), (i∗, j∗), function
embedding nodes in the plane (P : i 7→R2, i ∈V )

Result: True: No crossing free path between nodes i∗ and j∗, False: A
crossing free path has been found between the two nodes and
NC i∗, j∗ is updated with it

begin
if [P(i∗),P( j∗)] intersects H then

return True;
else if ([P(i∗),P( j∗)] intersects C) then

change cost of the edge (i∗, j∗) to large value;
run Dijkstra’s algorithm on G from source node i∗;
P i∗, j∗ = shortest path from i∗ to j∗;
initiate a boolean array called check;
x=0;
for each arc (i , j ) in P i∗, j∗ do

check[x ++] = Crossing(G , H ,C , (i , j ));

if (check[1]∨ check[2] · · ·∨ check[x]) then
return True;

else
for (each arc (i , j ) ∈Pi∗, j∗ ) do

replace (i , j ) in P i∗, j∗ with crossing free path NC i , j ;

NC i∗, j∗ = P i∗, j∗ ;
return False;

else
NC i∗, j∗ = {(i∗, j∗)};
return False;
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4.4 M A I N A L G O R I T H M

The heuristic being developed is referred to as Obstacle-Aware Esau Williams.
We develop an intuition for the heuristic using the pseudocode in Alg. 3.
The algorithm has two main parts: formation of rooted tree λ ∈ Z , where
Z is a set of rooted trees spanning T . These rooted trees are crossing free
as per our definition 4.1.3. The second task of the algorithm is identifying
paths from each rooted tree λ to one of the substations s ∈ S. This results
in a set of trees spanning nodes T ∪S.

We have used as inputs, previously defined graph G (section 4.1), a cost
array c, and a set Obstacle Lines (C ) (eq:4.3.3). The parameter K is the
maximum cable capacity. The array c initially contains the cost of direct
edges between each pairs of nodes in the graph. It is set as the Euclidean
distance between the two nodes. During the run of the algorithm, we join
two nodes using a crossing free path. The joining of two nodes, should be
preceded by checking the number of active nodes post joining of two trees.
It must be less than or equal to K . We have used a boolean variable Edge-
CostChanged to keep track of whether any of the cost of edges between
nodes have changed, and in case of change, the reduction vector is recal-
culated.

Procedure PathsToSubstations mentioned at the end of Obstacle-Aware
Esau Williams’ algorithm (Alg. 3) returns a set of crossing free directed
paths from each rooted tree to one of the substations. In some cases, it
is not able to find such a set of feasible paths, and thus, returns an empty
set. In such a case, algorithm can still return a crossing free solution which
is a Star layout.
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Algorithm 3: Obstacle Aware Esau Williams

Data: G = (V = T ∪O ∪S, A), cost array (c),cable capacity (K), Obstacle
Lines (C), function embedding nodes in the plane (P : i 7→R2,
i ∈V )

Result: Solution Set(M): set of crossing free arcs spanning T ∪S, such
that there exists unique path from each turbine node to a
substation using arcs in M

begin
H =;, M =;, NC i j =;,∀(i , j ) ∈ A;
initiate R;
while (∃i ∈ T : Ri > 0) do

EdgeCostChanged = Tr ue;
while (EdgeCostChanged) do

find j (i )∀i ∈ T ; // equation (2.3.3)
compute Ri∀i ∈ T ; // equation (2.3.4)
i0 = i∗ ∈ argmaxi∈T Ri ;
in = j (i0);
if Crossing(G,H,C,(i0, in)) then

ci0,in = bigM;
EdgeCostChanged = Tr ue ;

else
NC i0,in = new path obtained from procedure Crossing;
if NC i0,in is same as before then

join i0 and in ;
M = M ∪NC i0,in ;
H = H ∪ {[P (i ),P ( j )] : (i , j ) ∈ NC i0,in };
EdgeCostChanged = F al se;

else
if (|NC i0,in | > 1) then

ci0,in =
∑

(i , j )∈NC i0,in ci , j ;

EdgeCostChanged = Tr ue;

else
join i0 and in ;
M = M ∪NC i0,in ;
H = H ∪ {[P (i0),P (in)]};
EdgeCostChanged = F al se;

CP = PathsToSubstations(G ,C , M) ; // Alg. 4
if (C P ==;) then

return Star Layout;
else

Add each arc in the set of paths C P to Solution Set(M);
return M ;
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4.5 P R O C E D U R E : PAT H S T O S U B S TAT I O N S

The formation of a set of rooted trees spanning T in the first part of Alg. 3,
is followed by connecting these rooted trees to one of the substations us-
ing crossing free paths. We store these paths in a set Central Paths (C P ).
We highlight the details of procedure PathsToSubstations in Alg. 4. The in-
puts to the procedure are graph G , Obstacle Lines (C ) (4.3.3), and a set of
arcs in Solution Set M which is obtained from the first part of Alg. 3. The
main idea is to identify an active node (i ∈ aλ), from each rooted tree λ ∈ Z ,
where Z is the set of rooted trees having arcs in M , and connecting i ∈ aλ,
to one of the substations.

We begin by collecting the locations of nodes in each rooted tree λ ∈ Z ,
and storing them in a set X λ ⊂ R2. It is followed by finding the extreme
points of the convex hull of points in X λ. This is done using an algorithm
Graham Scan (sec: 2.3.2). Thus, we identify a set E , consisting of sets of
extreme points corresponding to each rooted tree λ ∈ Z . Then, we add line
segments between each pair of extreme points to set Obstacle Lines (C ).
This results in making each rooted tree a convex obstacle. This is followed
by identifying crossing free paths using the procedure Crossing (Alg. 2). In
the end, we have a set Central Paths (C P ), storing crossing free paths from
rooted trees to substations. The algorithm is not capable of searching for
a crossing free path in cases where all the active nodes of a rooted tree are
inside the convex hulls of other rooted trees.

An illustration in Fig. (4.5.1.a), highlights such a case which cannot be
handled by the procedure PathsToSubstations. However, our computational
experiments highlight that due to the greedy nature of the algorithm, such
cases rarely occur unless we drastically change the reduction function. This
reflects that our heuristic only partially explores the solution space. We
have used a standard convex hull inclusion test in the procedure Inclusion.

Figure 4.5.1: Possible layouts handled by the procedure PathsToSubsta-
tions a. Not possible to handle, b. Possible to handle
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It checks whether a point P (i ) ∈R2, where i ∈ aλx , is inside the convex hull
of any other rooted tree λy , where λy 6=λx .

Algorithm 4: PathsToSubstations

Data: G = (V = T ∪O ∪S, A),Obstacle Lines (C ), set of arcs from Alg. 3
(M)

Result: CP : a set of directed paths connecting rooted tree (λ) to
substations S by exactly one path in C P or returns an empty
set if at least one such feasible path cannot be found.

begin
Z = set of rooted trees formed using arcs in M , and spanning T ;
E =;;
for (each rooted tree λ ∈ Z ) do

X λ = {P (i ) : i ∈ T ∪O, i ∈ N (λ)} ⊂R2;
Fλ = {x ∈R2 : x ∈ extr eme(conv(X λ))} ⊆ X λ ; // Graham Scan
E = E ∪ {Fλ};
C =C ∪ {[P (i ),P ( j )] : P (i ),P ( j ) ∈ Fλ, i , j ∈ T ∪O}

for (each rooted tree λ ∈ Z ) do
initiate min = bigM ;
for (each active node i ∈ aλ : P (i ) ∈ Fλ) do

if (¬ Inclusion(P (i ),E \ {Fλ})) then
J = {[P (i ),P ( j )] : (i , j ) ∈ A(λ)};
for each substation s ∈ S do

if Crossing(G,J,C,(i , s)) then
ci s = bigM ;

else
NC i s = path from procedure Crossing;
ci s =∑

(a,b)∈NC i s cab ;
if ci s < mi n then

mi n = ci s ;
remove the current best path from C P ;
C P =C P ∪ {NC i ,s};

if all active nodes in aλ are in the convex hull of other rooted
trees then

return C P =;;

return C P ;

4.6 A N A LY S I S O F T H E R U N N I N G T I M E

The standard way to express the running time of an algorithm is by count-
ing the number of arithmetic operations, as a function of the size of the in-
put (n). Instead of reporting the lower order terms and coefficients, we usu-
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ally represent the running time in big-oh notation represented with O(.).

We divide the Obstacle-Aware Algorithm (Alg. 3) into two independent
parts. The first part is the one before procedure PathsToSubstations. This
part returns a set of rooted trees spanning the set T of turbine nodes. The
second part contains a procedure called PathsToSubstations (Alg.4). We an-
alyze the running time separately, and use the higher order term to give an
upper bound on the running time.

4.6.1 Worst Case Analysis of the First Part

We approach the task of finding the running time of the first part by iden-
tifying an upper bound on the work done to analyze each of the possible
crossing free connections between turbines. This is done because a tur-
bine node may be assessed O(|T |) times before a crossing free path to one
of the neighboring node is found. There are O(|T |2) possible connections
to be analyzed. Each connection between two turbines is a combination of
three cases.

In the first case, a direct arc joins the two turbine nodes, and we have to
run Crossing only once. There is no intersection, so, we just check the inter-
section of line segment [P (i ),P ( j )] with line segments in Obstacle Lines (C )
and Turbine Lines (H). A standard plane sweep algorithm takes O(n ·log n)
time, where n is the number of line segments. In our case, this would
amount to O((|C | + |T |) · log (|C | + |T |)) time. We have used |T | as the up-
per bound on the cardinality of set H .

In the second case, the joining of nodes i and j results in an intersection
with one of the line segments in set Obstacle Lines (C ). Thus, for every
intersection with a line segment in C , we temporarily increase the cost of
the intersecting edge to a large value bi g M and run Dijkstra’s algorithm.
The algorithm has a running time of O(E · logV ), where E is the number of
edges, and V is the number of nodes in the graph. In our case, this amounts
to ((|T |+ |O|)2 · log (|T |+ |O|)) time.

In the third case, the line segment corresponding to arc (i , j ) intersects
with a line segment from H . Therefore, we set the cost ci , j = bi g M , thus,
the node connection between i and j is never processed again. This is be-
cause the cost of joining nodes i and j is bi g M . Thus, node j is never
the closest node to node i . Thus, the running time for the third case is
O((|C |+ |T |) · log (|C |+ |T |))

We combine all these three cases, and assign α, β, and γ to the number
of times, we encounter case 1, case 2 and case 3 respectively for a connec-
tion between two nodes. By definition, α,β,γ are non-negative integers,
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where α≤ 1, β≤ |C |, and γ≤ 1. The important point to note is that if α= 1,
which means a direct path is found, then both β= γ= 0. Whereas, if γ= 1,
then α= 0. We denote by µ=O((|T |+ |C |) · l og (|T |+ |C |)), to represent the
running time of the plane sweep algorithm. We define the running time
for the first part as T1(|T |,µ, |O|) or T1. The running time for the first part
of the algorithm is given as:

T1 ∈ |T |2 ·
α ·µ︸︷︷︸

case 1

+β ·µ · (|T |+ |O|)2log (|T |+ |O|)︸ ︷︷ ︸
case 2

+ γ ·µ︸︷︷︸
case 3

 . (4.6.1)

T1 ∈


O(|T |2 ·µ), if α= 1 =⇒ β= γ= 0

O(|T |2 ·µ), if β= 0 (no obstacles)

O(|T |5 · |C | · log (|T |+ |C |) · log (|T |+ |O|)), otherwise.
(4.6.2)

In equation (4.6.2), we have highlighted three key scenarios, and their
running times. The first scenario is the best case, as there is neither an in-
tersection with convex obstacles nor with the existing arcs in the solution.
In the second scenario, there are no obstacles in the graph, therefore, β= 0.
The last scenario is considered as the worst case. In this case, there are
intersections with line segments from Obstacle Lines (C ), and arcs in the
solution (H). In the worst case, we can assume that β = |C |, which means
that a connection between two nodes leads to intersection with every line
segment in Obstacle Lines (C ) once. Thus, further simplification, and ex-
pansion leads to a running time for the first part as O(|T |5 · |C | · log (|T | +
|C |) · log (|T |+ |O|)) with obstacles, and O(|T |3 · log (|T |)) in instances with-
out obstacles, where β= |C | = 0.

4.6.2 Worst Case Analysis of the Second Part

The second part consists of procedure PathsToSubstations (Alg.4). There
are three main components in this procedure. The first component is to
identify convex hull of each rooted tree using Graham Scan algorithm, sec-
ond is the use of convex hull inclusion test to identify whether a node is in-
side the convex hull of other rooted trees, and lastly, to identify a crossing
free path from each turbine node to each substation. The last component
is quite similar to the first part mentioned in the previous section, with the
only different that we assess O(|T | · |S|) possible connections as opposed to
O(|T |2). We provide the explanation of running time (T2) in next paragraph.
The formula for T2 is given as:

T2 ∈O(|T | · log K )︸ ︷︷ ︸
1

+O(|T |2 · l og |K |)︸ ︷︷ ︸
2

+O(|T |3 · |S| · l og (|C |+ |T |) · |V |2log |V |)︸ ︷︷ ︸
3

.

(4.6.3)



4.6 A N A LY S I S O F T H E R U N N I N G T I M E 45

As the third term dominates the first two, we get:

T2 ∈O(|T |3 · |S| · log (|C |+ |T |) · |V |2log |V |). (4.6.4)

Some computations must be done for each tree. The running time is at
best linear in the number of nodes in the tree. Then, in the worst case, the
turbines are partitioned into fewest possible trees. No tree has more than
K turbines. To do a worst-case analysis, assume there are d |T |

K e trees with K
turbines each. Therefore, we use these assumptions and our knowledge of
running time of Graham Scan (O(n ·l og n)), and inclusion test (O(n ·log n))
to come up with the expressions for first, and second component in equa-
tion (4.6.3).

However, we focus on third, and the dominating term. The amount of
work done to identify crossing free path between each turbine node, and
substation. This is done to find a least cost feasible path to one of the sub-
stations from each tree. Thus, there are O(|T | · |S|) possible connections to
be analyzed. The analysis is same as in equation (4.6.1) ,however, the num-
ber of possible connections is O(|T | · |S|) and not O(|T |2).

While joining the rooted trees to the substations, apart from the obsta-
cles given as input, we also deal with obstacles formed by the trees (referred
to as tree obstacles). Therefore, instead of using an upper bound on β≤ |C |,
we use β≤ |C |+ |T |. The addition of |T | is due to the fact that we consider
other rooted trees as convex obstacles, and add a line segment between
each adjacent extreme points of the convex hull of a rooted tree. However,
this does not make any difference as the number of line segments becomes
O(|T |+K +|C |), and |T | >> K , so µ (as defined for the first part) still remain
the same (µ=O((|T |+ |C |) · log (|T |+ |C |))). While running the Dijkstra’s al-
gorithm, we use all the nodes V , therefore, the running time for Dijkstra’s
algorithm becomes O(|V |2log |V |). Thus, the worst case running time with
obstacles is given by O(|T |3 · |S| · log (|C | + |T |) · |V |2log |V |). Even without
obstacles, we have β 6= 0, as β = |T | + |C |. We just put |C | = 0 in such an
instance.

This is clearly a loose upper bound, as we are assuming that all the line
segments referring to the obstacles (both given as input, and tree-obstacles)
are intersected. Such a scenario in a large instance would be quite dif-
ficult to even conceptualize, especially with our greedy heuristic. More
research is required to better understand the geometry to come up with
tighter bounds.

4.6.3 Discussion

Instances with many obstacles have a high running time, as the number
of line segments in the set Obstacle Lines (C) , and nodes in the graph (|V|)
increases. Each intersection with a line segment from C , results in a call to
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Dijkstra’s algorithm. One of the easiest way to reduce the number of calls to
Dijkstra’s algorithm is by removing some of the unnecessary arcs from the
arc set A. This includes removing edges between the non-adjacent extreme
points of a convex hull of obstacle from the graph. Thus, line segments be-
tween non-adjacent extreme points is not required to be added to set C .
Hence, line segments only between adjacent extreme points is sufficient to
prevent cables from entering restricted areas.

One of the other approaches quite oftently used in VLSI chip design is
using Delaunay triangulation to remove some of the unnecessary edges. A
delaunay triangulation of the set of points D ⊂ R2, denoted by DT (D), is a
set of triangles where no point in D is inside the circumcircle of any trian-
gle in DT (D). This can be helpful in reducing the number of edges in the
graph, and thus, reducing unnecessary calls to Dijkstra’s algorithm. How-
ever, this may not have any impact on the running time in big-oh notations
or may result in sub-optimal solutions.



5

L O C A L S E A R C H H E U R I S T I C S

Local search algorithms are usually applied to hard combinatorial opti-
mization problems. They generate new candidate solutions, and evaluate
their objective values. Local search algorithms move from one solution
to the other using local moves based on a particular neighborhood struc-
ture. We described a large neighborhood structure involving path and cy-
cle-based exchanges in Section 2.3.3. In this section, we describe some of
the details about the neighborhood structure, and present a local search
framework to explore new candidate solutions, and to improve solution
quality.

Both cycle and path-based exchanges can either have nodes exchanged
between trees or entire sub-tree rooted at a node being exchanged. A cycle-
based node exchange can be defined by a tree disjoint cycle a1 − a2 · · · −
ar −a1. This exchange represents node a1 leaving its tree and entering the
tree of a2, subsequently node a2 leaving its tree and entering the tree con-
taining node a3 and so on. On the other hand, a cycle-based tree exchange
a1 − a2 · · · − ar − a1, represents that all the nodes in the sub-tree rooted at
node a1 move to the tree containing node a2, sub-tree rooted at a2 move
to tree containing node a3 and so on.

The other type of exchange is a path-based exchange. It can be defined
by a tree disjoint path a1−a2 · · ·−ar . The last node in the path is not the one
at the beginning. The path-based exchange can involve moving of nodes
between trees or entire sub-tree at a node to other tree. In the former, only
nodes are exchanged between rooted trees, whereas, in the latter entire tree
rooted at a node is exchanged. The computational investigations done in
[Ahuja et al., 2001] show that for the CMST instances with uniform demand,
both path and cycle-based exchanges only transferring nodes have better
performance than tree exchanges. Therefore, for cable layout problem we
decide to only exchange nodes between rooted trees. We use both path and
cycle-based exchanges involving exchange of nodes between rooted trees.

5.1 I M P R O V E M E N T G R A P H

We denote a feasible set of rooted trees spanning T ∪S, and rooted at sub-
stations as N . The set N is obtained from the heuristic developed in the

47
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previous section. The set Xi denotes the set of nodes in the rooted tree
containing node i ∈ T .

We create a directed complete graph called the Improvement graph. Each
rooted tree disjoint cycle of the improvement graph refers to a potential
multiple node-exchange in N . The improvement graph corresponding to
N , denoted by G1(N ), is a complete directed graph with node set T and
capacity limitation K . Hence, G1(N ) = (T , A1). We define the cost of the
arcs (i , j ) ∈ A1 in the complete improvement graph G1(N ) as :

βi j =
{

MST ({i }∪X j )−MST (X j ), if (i , j ) ∈ A1 : i ∉ X j , |Xi |+ |X j | ≤ K

bigMM, otherwise.
(5.1.1)

Here MST (F ) is the cost of the minimum spanning tree on a subgraph
containing nodes in the node set F ∪ { j∗}, where j∗ ∈ S, where S is defined
as the substation node set and F ⊆ T . The node j∗ is the substation node
nearest to the new rooted tree Ti∗ , where (i∗, j∗) ∈ argmin(i , j )∈A:i∈F , j∈S ci , j ,
where ci , j is the Euclidean distance between the nodes.

It is easy to interpret a cycle-based node exchange from a tree-disjoint
cycle in an improvement graph, but transforming a path exchange with re-
spect to N into a tree-disjoint cycle requires some additional nodes and
arcs in the improvement graph. In [Ahuja et al., 2001], the authors suggest
adding two types of additional nodes: One pseudonode for each rooted
tree in N , and an additional node v called the origin node. So, there are
three types of nodes in the improvement graph; regular nodes (turbine
nodes) , pseudonodes (one for each rooted tree) and a single origin node v .
We denote the set of pseudo-nodes as H , whose cardinality must be equal
to the number of rooted trees in the set of trees N . Now, we define a mod-
ified improvement graph by adding the above mentioned nodes and a few
more arcs: G2(N ) = (T ∪H ∪ {v}, A2), where G2(N ) is also a complete graph.
The cost of arc between any two nodes i and j can be defined as:

βi j =



MST ({i }∪X j \ { j })−MST (X j ), if i , j ∈ T , i ∉ X j

MST ({i }∪X j )−MST (X j ), if i ∈ T , j ∈ H , i ∉ X j , |X j | < K

0, if i ∈ H , j = v

MST (X j \ { j })−MST (X j ), if i = v , j ∈ T

bigMM, otherwise.
(5.1.2)

In equation (5.1.2), bigMM refers to a large number. Thus, G2(N ) is a
complete graph with arc weights as described in the equation (5.1.2). There-
fore, if both nodes are regular nodes (turbine nodes), then the arc (i , j )
denotes adding node i to and removing node j from X j . An arc from a
turbine node to a pseudo-node denotes addition of the node i in X j . The
corresponding cost is positive as none of the nodes are removed from X j .
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Figure 5.1.1: a: Path-based node exchange using pseudonodes and origin
node b: cycle-based exchange

Direct arcs from a pseudonode to origin node v result in zero cost. Any
directed arc from the origin node v to a regular node j results in removal
of node j from X j without addition of any node in X j . Thus, these arcs
have negative weights. All the other arcs are given large values so that they
are not considered. In Figure 5.1.1, we depict how pseudo-nodes enable
transforming path-based exchanges to valid cycles. The final objective is
to identify tree-disjoint negative cycles in the improvement graph G2(N )
called valid cycles.

Definition 5.1.1. Valid cycles in an improvement graph are negative weight
tree disjoint directed cycles. The sum of the edges of the cycle is negative,
and the cardinality of each rooted trees post node exchange is less than or
equal to the capacity limitation K .

Lemma 5.1.1. There is one-to-one correspondence between cost reducing
cyclic node exchanges with respect to set of trees N , and valid cycles in the
improvement graph G2(N ) [Thompson and Orlin, 1989].

5.2 I D E N T I F Y I N G T R E E - D I S J O I N T PAT H S

The formation of the improvement graph is followed by identification of
valid cycles. The problem of identifying all the negative cycles in a graph
has been proved NP Complete [Thompson and Orlin, 1989]. We recognize
the fact that any directed cycle can be obtained by closing a directed path,
that is, joining the first and the last node. For example, a directed path
1− 2− 3− 4, can be used to form a directed cycle by adding arc (4,1). So,
this simple idea can be used to enumerate all the valid negative cycles. This
method is destined to fail due to enormous redundancies. For example, to
obtain a valid cycle 1−2−3−4−1, we can add arc (1,2) to path 2−3−4−1,
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or add arc (2,3) to path (3−4−1−2). Since we are interested in identifying
only valid cycles, we reduce these redundant operations by making use of
a famous lemma by [Lin and Kernighan, 1973].

Lemma 5.2.1. If S = i1 − i2 − i3 − ·· · ir − i1 is a negative cost directed cycle,
then there exists a node ik such that all the partial paths ik −ik+1, ik −ik+1−
ik+2, ik − ik+1 − ik+2 · · · are negative cost directed paths.

This idea is used in algorithm Valid Cycle Detection (Alg. 5). In the begin-
ning a negative arc is selected, and checked whether it can be extended by
one more arc or a negative cycle can be created using a back edge.

For any path P , we define from(P) to be the first node and to(P) to be the
last node, c(P ) denotes the cost of the path, which is the sum of the weights
of the arcs in the path P . The rooted tree containing node i is given by
cluster(i), which is an identifier of the tree. We have divided all the nodes
into different rooted trees. CLUSTERS(P) is the set of identifiers of all the
unique trees visited by arcs in the path P .

Definition 5.2.1. Path A dominates a path B if and only if:

• from(A) = from(B),

• to(A) = to(B),

• CLUSTERS(A) = CLUSTERS(B), and

• c(A) < c(B).

We define a set Pk , which stores all the valid non-dominated paths of
length k. We consider from(P), to(P) and CLUSTERS(P) as the key value of
a path P .

Observation 5.2.2. If the key values of two paths having the same length
(k) are equal, then it is possible to replace the dominated path by the dom-
inating path in the set Pk to get the corresponding least cost valid cycle.

Algorithm 5 (Valid Cycle Detection) works on the principle of implicit
enumeration. After obtaining negative arcs, we use these arcs to find the
tree disjoint path of length 2, and so on. While forming these valid paths,
we only store those paths which are not dominated by any other path with
the same length and key values. For each path in the set Pk , the algorithm
checks if the path P can be extended.

Definition 5.2.2. A path P is extendable, if there exists a neighboring node
j to node to(P ), such that cluster ( j ) ∉ C LU ST ERS(P ), and total cost of
the resulting path is less than 0.

Thus, Algorithm 5 (Valid Cycle Detection) inductively uses the set Pk to
create Pk+1.
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Algorithm 5: Valid cycle detection [Ahuja et al., 2002]

Data: G2(N ),R(maximum length of the valid path)
Result: W ∗: valid cycle with maximum length R
P1 = {(i , j ) ∈ A2 : ci j < 0};
k = 1;
W ∗ =;;
while (k < R && c(W ∗) ≥ 0) do

while Pk 6= ; do
remove a path P from Pk ;
i =to(P ); h = from(P ) ;
if (i ,h) ∈ A2 && c(P )+βi h < c(W ∗) then

W ∗ = P ∪ {(i ,h)}

for (i , j ) ∈ A2 do
if cluster( j ) ∉ CLUSTERS(P) ∧ c(P )+βi j < 0 then

add the path P ∪ {(i , j )} to Pk+1;
if Pk+1 contains another path with identical key as

P ∪ {(i , j )} then
remove the dominated path from Pk+1;

return W ∗;

5.3 D ATA S T R U C T U R E

There is a challenge associated with removal of dominated paths in every
iteration. The total number of paths of length k is of the order O(( n

k )k ),
where k and n are length of path and total number of nodes, respectively.
Due to a potentially large number of paths with length k in Pk , placing
these paths in an array requires a special data structure to reduce the time
required to search for paths with identical key values. The data structure
should prevent going through the entire array to check whether the new
path is dominated by or dominating other paths in Pk . Therefore, we rely
on a well-know abstract data type called hash table. It utilizes a hash func-
tion which maps key values of a path to an array index. This reduces the
time to search for the current dominating path. We show this by an exam-
ple of a Path P with key: from(P ) = 21,to(P ) = 40,CLUSTERS(P ) = {0,2,6},
where a unique integer is assigned to every node and tree. We use a stan-
dard function used for such calculations:

index = [((31× from(P )+ to(P )) % 97)×31+ ∑
x∈C LU ST ERS(P )

x] % 97 (5.3.1)

The notation % is modulo operator in 5.3.1. The use of this formula gives
a value of 89 for the above mentioned example. Thus, we check at row
89 and column 2 of the hash table for a path of length 2 dominating the
current path or being dominated. The directed path is stored in the appro-
priate position if no such path exists. We make a note that the constants in
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the function should be changed depending on the size of the problem to
keep the array as compact as possible.

5.4 L O C A L S E A R C H A L G O R I T H M

We make use of the Valid Cycle Detection algorithm (Alg. 5) in a local search
framework. In Local Search (Alg. 6), we use First Accept strategy. We accept
the first feasible solution which is better than our current solution in the
neighborhood. This is followed by updating the current best solution, and
looking for a better solution in its neighborhood. The algorithm exits once
a locally optimal solution is found.

The inputs to the Local Search (Alg. 6) are the initial graph G , solution set
of trees N obtained from Obstacle-Aware Heuristic, the set Obstacle Lines
(C ) (eq: 4.3.3), cost of edges between pair of nodes c and cable capacity (K ).

We form the improvement graph, and use the Valid Cycle Detection al-
gorithm to form a minimum priority queue of valid cycles. The minimum
priority queue stores all the valid cycles obtained from the improvement
graph, and arranges them in a queue according to their increasing cost for
later evaluation. As opposed to the original algorithm presented in Alg.5
where only the best valid cycle is stored, we need to all the valid cycles.
This is mainly due to the need to check whether any of these valid cycles
results in a crossing free layout with lower cost than the current solution
(N ).

This is done using a procedure called CrossingFree, whose output is a
new feasible set of rooted trees (N ′) achieved by making multiple node ex-
changes corresponding to the current valid cycle. We do not mention de-
tails about this procedure, as it is similar to the Obstacle Aware heuristic,
with the only difference being that the partitioning of turbine nodes in dif-
ferent rooted trees is already done. We accept the new crossing free layout
if cost of the new solution is lower than the current (N), otherwise we re-
trieve another valid cycle from the priority queue. The outer loop (external
while) is exited when a locally optimal solution is achieved, and the priority
queue is empty.
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Algorithm 6: Local Search

Data: G, Current Solution (N), Obstacle Lines (C), cable capacity (K),
cost array (c)

Result: N : Updated new set of rooted trees spanning T ∪S, which is
locally optimal

begin
break = False;
while (break== False) do

G2(N ) = Impr ovementGr aph(N ,K );
initiate a minimum priority queue (minPQ) of cycles;
minPQ = ValidCycleDetection(G2(N ));
exi t = F al se;
while (¬(minPQ.isEmpty()) ∧ exi t == F al se)) do

W ∗ = remove a cycle with least cost in minPQ;

N
′ ←Cr ossi ng F r ee(G , N ,W ∗,C ,K ,c);

if (Cost of N ′ is less than the cost of N ) then
exi t = Tr ue;

N = N
′
;

else
if minPQ.isEmpty() then

br eak = Tr ue;

return N ;
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E X P E R I M E N TA L R E S U LT S

We compare results from the solution methods developed in this work with
the results presented in [Klein and Haugland, 2017] . The exact model
in [Klein and Haugland, 2017] is similar to the model discussed in Sec. 3.2.1.
The model implemented in [Klein and Haugland, 2017] uses CPLEX 12
Python 3.4 API. All the experiments are carried out on a fast computer - In-
tel Xenon with 72 logical cores and 256GB RAM. The results are presented
for wind farms Walney1, Walney 2, Barrow and Sheringham Shoal. We com-
pare our results obtained from developed solution methods with the opti-
mal solutions from [Klein and Haugland, 2017], and report the optimality
gaps.

All the experiments are carried out on hardware with the following de-
tails: Intel Corei5 2.5G H z, number of processors= 1, number of cores = 2
and 4GB RAM. Numerical experiments are made for multiple cable capac-
ities, and took less than a minute to provide the final solutions.

6.1 I N T R O D U C T I O N T O W I N D F A R M I N S TA N C E S

We have considered 9 real wind farm instances to test solution methods
developed in this work. We performed a total of 21 experiments using dif-
ferent cable capacity limitations. We obtained the geodetic coordinates of
the turbines and substations from the website [KIS, 2018]. We have con-
verted the geodetic coordinates to geocentric Earth-Centered Earth-Fixed
(ECEF) cartesian coordinates using World Geodetic System of 1984 (WGS
84) reference ellipsoid. The data set consists of the following offshore wind
farms:

• Thanet : The Thanet Offshore Wind Farm is operated by Vattenfall.
The wind farm is located approximately 12km from the shore in South-
ern North Sea, off the East Kent coast. The wind farm has 100 tur-
bines, one substation, capacity of 300 MW, and covers an area of
35km2.

• Walney 1 and Walney 2: Walney 1 and Walney 2 are operated by
Ørsted. Walney 1 is located approximately 14km from shore in the
East Irish Sea, off the North Lancashire coast. The wind farm has 51
turbines, one substation, capacity of 183MW , and covers an area of

54
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approximately 28km2. The neighboring Walney 2 has 51 turbines,
one substation, capacity of 183MW , and encompasses an area of ap-
proximately 45km2.

• Sheringham Shoal: Sheringham Shoal Offshore Wind Farm is oper-
ated by Statoil. It is located 23km from shore in the Southern North
Sea, off the East Norfolk coast. The wind farm has 88 turbines, two
substations, a capacity of 316MW and encompasses an area of ap-
proximately 35km2.

• Barrow: Barrow is operated by Ørsted. It is situated approximately
7km from shore in the East Irish Sea, off the North Lancashire coast.
The wind farm has 30 turbines, one substation, a capacity of 90MW
and encompasses an area of approximately 10km2.

• Race Bank: Race Bank is operated by Ørsted. It is located approxi-
mately 27km from shore in the Central North Sea, off the Lincolnshire
coast. The wind farm has 91 turbines, two substations, and a capac-
ity of 573MW . It covers an area of approximately 62km2.

• Gwynt Y Mor (G.Y.Mor): The Gwynt Y Mor Offshore Wind Farm is op-
erated by RWE Innogy. It is located 16km from shore in the Southern
Irish Sea, off the North Wales coast. The wind farm has 160 turbines,
two substations, and a capacity of 576 MW, and encompasses an area
of approximately 68km2.

• Dudgeon: The Dudgeon Offshore Wind Farm is operated by Statoil.
It is located 38km from shore in the Southern North Sea, in the Outer
Wash. The wind farm has 67 turbines, one substation, and a capacity
of 402 MW, and encompasses an area of approximately 55km2.

• The West of Duddon (Duddon): The West of Duddon Sands Offshore
Wind Farm is operated by Ørsted . It is located 15km from shore in
the Irish Sea, off the North Lancashire coast. The wind farm has 108
turbines, a capacity of 389MW and encompasses an area of approxi-
mately 67km2.

In some wind farms such as London Array, and Greater Gabbard, actual
cable layout is not a forest, because of the presence of loops to increase re-
liability. Hence, in such cases, comparing our solution with actual layout is
unfair. In such cases, a capacitated vehicle routing approach is more realis-
tic than a capacitated minimum spanning tree based approach. Apart from
the four wind farms Walney 1, Walney 2, Sheringham Shoal, and Barrow, we
do not have access to the optimial solutions for other wind farms. There-
fore, we compare our solutions with the actual installed cable layout of the
wind farms. This reflects the savings which can be achieved by practical
use of our solution methods. However, there can be additional constraints
imposed on these layouts, and these savings might not be realized.
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6.2 I N I T I A L R E S U LT S A N D M O D I F I C AT I O N S

We present a comparison of optimal solutions from [Klein and Haugland,
2017] and solutions from Obstacle-Aware Esau Williams (Alg.3) in Table
6.2.1. We have presented results for three wind farm instances; Barrow hav-
ing 30 turbines, Walney 1 having 51 turbines, and Walney 2, also having 51
turbines. We have performed computational experiments for cable capac-
ities 2, 4, 5 and 6. We have achieved optimality in only 1 out of 12 experi-
ments. The optimality gap is given by the relation cost (heur i st i c)−cost (exact )

cost (exact ) .
Optimality gap is on the higher side with the worst being 20% for Walney 2.
The Obstacle-Aware heuristic, performs much better in Walney 1 as com-
pared to Walney 2, mainly due to complex geometry of Walney 2. In Fig.
6.2.1, we show the solution from the Obstacle-Aware heuristic for Walney 1
with a capacity limitation (K ) of 6. In this instance, we have an optimality
gap of 5.89%.

Figure 6.2.1: Final solution obtained from Obstacle-Aware heuristic (Alg.3).
Left: Set of rooted trees, Right: Final Layout of Walney 1 with
cable capacity 6

K Barrow(T=30) Walney-1(T=51) Walney-2(T=51)

Exact Alg 3 gap(%) Exact Alg 3 gap(%) Exact Alg. 3 gap(%)

2 36990 38115 3.04 70286 75105 6.85 97885 117849 20.39
4 23208 23243 0.00 47411 49534 4.47 63496 73374 15.55
5 20691 21815 5.43 43420 44444 2.35 56904 62739 10.25
6 18374 20980 14.18 41418 43858 5.89 52981 63568 19.98

Table 6.2.1: Comparison of the solutions from exact method and Obstacle-
Aware heuristic method (Alg. 3).

Since, the results are not satisfactory, we propose a hypothesis explain-
ing the bad performance of the heuristic. We analyzed the layouts to un-
derstand main reasons. In Fig.6.2.2, it is clear that due to the greedy nature
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Figure 6.2.2: Walney 2 layout using Obstacle-Aware heuristic (Alg. 3) and
K=6

of the heuristic, partitioning of the turbine nodes leads to extremely long
paths to the substation. The rooted tree at node 45 is connected to the sub-
station node 51 using a long crossing free path. So, our hypothesis to im-
prove the solution quality is partitioning the turbine nodes in such a way
that the final connection between the rooted trees and substation should
not be extremely long. In the next section, we present a method to improve
the solution quality, and compare the results with solutions from our first
heuristic.

6.2.1 Introducing a shape factor

In this section, we test our hypothesis of improving solution quality by
merely recognizing the fact that we need to also encourage radial orienta-
tion of the rooted trees towards the substation. The Obstacle Aware heuris-
tic (Alg.3) discussed in the previous section is a greedy heuristic. It tries to
keep the rooted trees as compact as possible. This approach is not able to
provide good solutions in most of the instances. We tackle this challenge
by introducing a shape factor denoted by W (W ∈ [0,1]), where W ∈ R. We
modify the equation of Ri , originally given by the equation (2.3.4) to (6.2.2)
R

′
i . We have also included a more general case for the instances, where

the cardinality of substation node set S is not one. This is done by finding
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Wind Farm Exact Obstacle-Aware Modified Algorithm

K=6 value gap(%) value gap(%)

Walney 1 41418 43858 5.89 42580 2.80
Barrow 18374 20980 14.18 18900 2.86

Walney 2 52981 63568 19.98 53214 0.44

K=5 value gap(%) value gap(%)

Walney 1 43420 44444 2.35 43498 0.18
Barrow 20691 21815 5.43 20948 1.24

Walney 2 56904 62739 10.25 57816 1.60

K=4 value gap(%) value gap(%)

Walney 1 47411 49534 4.47 48396 2.07
Barrow 23208 23243 0.15 23243 0.15

Walney 2 63496 73374 15.55 63579 0.13

Table 6.2.2: Comparison of Best Solutions obtained using Modified Algo-
rithm

the substation node si closest to the node i ∈ T (6.2.1). The following two
equations define the new reduction value for a turbine i :

si ∈ argmin{ci s : s ∈ S} (6.2.1)

R
′
i =

{
ci ,si −min{c j ,i +W × c j ,s j : j ∈ S(i )}, S(i ) 6= ;
0, S(i ) =;.

(6.2.2)

In equation (6.2.2), as mentioned in (2.3.2), S(i ) is the set of neighboring
nodes which can be joined with node i .

The new reduction function uses a constant called shape factor W to
encourage a radial orientation of rooted trees. We have varied the shape
factor in the range from 0 to 1 with 1000 equidistant values and identified
the best resulting solution. The solution comparison is presented in Table
6.2.2.

6.2.2 Results after modification - Modified Algorithm

The introduction of a shape factor W has resulted in improving the perfor-
mance of the heuristic. The results are compared in Table 6.2.2. The mod-
ified algorithm with shape factor identifies better feasible solutions and
thus, significantly lowers the optimality gap. We can see from Fig. 6.2.3,
that the new layout has a radial orientation and a much lower cable length.
We have also plotted the sensitivity of cable length to changing shape fac-
tor in Fig. 6.2.4. It can be seen that iterating over shape factors from 0 to
0.4 can give us best solution.
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Figure 6.2.3: Final Layout of Walney 2 (K=6) using modified version of Ob-
stacle Aware with a Shape Factor

Figure 6.2.4: Change in cost with change in shape parameter, K=6
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6.3 F I N A L R E S U LT S

In the previous section, we have presented results using Obstacle-Aware
heuristic with shape factor. Now, we also present result obtained after us-
ing the local search method developed in Alg. 6. First, we present the
results achieved for the four instances for which we have access to opti-
mal solutions. The optimality gap, and actual values are mentioned in
Table 6.3.1. The developed algorithm performs well in all the instances.
We achieve near optimality (defined as less than 1%) in 8 of the 12 exper-
iments performed on 4 offshore wind farm instances. The final heuristic
based algorithm referred to as OWCL algorithm (Alg. 7), which is a com-
bination of both Obstacle Aware heuristic, and local search has outper-
formed Obstacle-Aware heuristic. We have made use of both the construc-
tion heuristic as well as the local search to obtain final solutions. For ex-
ample, in Barrow (K=6) instance, the optimality gap reduced from 2.86% to
optimal after including the local search. Similar impact is seen in Walney 1
(K=4). All the computations were finished in less than a minute.

We have also tried our algorithm on some other wind farms, and com-
pared our solutions with the installed layout. We do not have access to
their optimal solutions, so we are not aware of the lower bound. The sav-
ing is defined as cost (actual )−cost (heur i st i c)

cost (actual ) , where cost (actual ) is the cost
of installed layout. The savings achieved using our solution methods are
presented in Table 6.3.2. Since per meter cost of subsea cables are quite
high, even small reduction in cable length may result in huge cost savings.
The results are very encouraging, and shows the benefits of using the de-
veloped heuristic for larger instances. The heuristic provides better solu-
tions for all the 9 wind farms than the actual layout which is installed. We
have also compared our solutions with the actual cable layouts for the wind
farms Walney 1, Walney 2, Sheringham Shoal, and Barrow. We have used
their actual cable capacity (K ).

Some of the large instances, such as Thanet (100 turbines), Race Bank (91
turbines), Gywnt Y Mor (160 turbines), The West of Duddon (108 turbines)
also gave better results than the installed layout. This is one of the key
benefits of using such a fast heuristic, as these large instances are almost
impossible to solve using exact methods.
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Wind Farm Exact Obstacle-Aware Modified Algorithm OWCL

K=6 value gap(%) value gap(%) best

Walney 1 41418 43858 5.89 42580 2.80 2.80
Barrow 18374 20980 14.18 18900 2.86 0.00

Walney 2 52981 63568 19.98 53214 0.44 0.44
Sheringham Shoal 61463 64817 5.45 63838 3.86 2.89

K=5 value gap(%) value gap(%) best

Walney 1 43420 44444 2.35 43498 0.18 0.18
Barrow 20691 21815 5.43 20948 1.24 0.72

Walney 2 56904 62739 10.25 57816 1.60 0.10
Sheringham Shoal 64362 72816 13.13 68423 6.30 5.48

K=4 value gap(%) value gap(%) best

Walney 1 47411 49534 4.47 48396 2.07 0.68
Barrow 23208 23243 0.15 23243 0.15 0.15

Walney 2 63496 73374 15.55 63579 0.13 0.13
Sheringham Shoal 68862 71389 3.67 71389 3.67 2.94

Table 6.3.1: Optimality Gap

Wind Farm T K Actual Obstacle-Aware Modified Algorithm OWCL

savings(%) savings(%) savings(%)

Barrow 30 8 16829 1.56 1.56 1.56

Walney 1 51 10 41048 1.75 2.84 3.05

Walney 2 51 10 50279 0.15 6.24 7.13

Dudgeon 67 6 67047 -7.88 0.62 2.78

Sheringham 88 8 62248 0.0 2.94 3.04

Race Bank 91 6 84073 0.84 6.45 8.49

Thanet 100 10 49828 1.15 1.15 1.75

Duddon 108 10 96328 5.18 5.18 6.77

G.Y.Mor 160 10 106600 -3.88 -0.84 0.32

Table 6.3.2: Savings achieved by heuristic
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Algorithm 7: OWCL Algorithm

Data: G, Obstacle Lines (C), cable capacity (K), cost array (c)
Result: BEST: Set of trees spanning all turbines and substations with

each tree having at most K active nodes
current = Star Layout;
/* for each shape factor */
for w=0:0.001:1 do

new = ObstacleAware(G,C,w,K,c) ; // Alg. 3
if cost(new) < cost(current) then

current = new;

N = current;
BEST = LocalSearch(G,N,C,K,c) ; // Alg. 6
return BEST;

6.4 C A S E S T U D I E S

In this section, we present layouts of four wind farm instances. In Fig. 6.4.3,
we compare the installed layout of The West of Duddon Offshore Wind
Farm, and the new layout attained from the solution method (Alg. 7) de-
veloped in this work. The final layout is significantly different than the in-
stalled layout. The rooted trees are more radially oriented towards the sub-
station as compared to the installed layout. In Fig. 6.4.4, we compare the
final layout achieved for Sheringham Shoal after using OWCL algorithm
(Alg. 7), with the output from the Modified Obstacle Aware heuristic dis-
cussed in previous section. The node exchange which has resulted in the
cost reduction can be represented as 60−31−60. This means that the node
60 leaves its tree to join tree of node 31, whereas, the node 31 leaves its
tree to join the tree containing node 60. So, the two nodes 60 and 31 have
exchanged their tree memberships. The edges in some of the rooted trees
have also changed, because we use a minimum spanning tree algorithm
while forming the rooted trees. In Fig. 6.4.4(Top and Bottom), the rooted
tree at node 59, has the same nodes in both the layouts, but the edges are
different. We also show the comparison for a smaller wind farm instance
such as Barrow offshore wind farm. In Fig.6.4.2, it is clear that even for
smaller instances such as Barrow, there are ways to improve the solutions.

In Fig. 6.4.1, we have compared the layout of Dudgeon Offshore Wind
Farm obtained from the Modified Obstacle-Aware heuristic (Modified Al-
gorithm), and the layout from OWCL algorithm (Alg. 7). Following are the
sequence of node exchanges which has taken place in Dudgeon instance:

1. The first node exchange is a cycle-based exchange of nodes repre-
sented by 29−28−29. Node 29 moves to the tree containing node 28,
whereas, node 28 joined tree containing node 29. Node 29 forms an
edge with node 31, and node 28 forms an edge with node 21
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Figure 6.4.1: (Top): Layout obtained by using Modified Obstacle-Aware Al-
gorithm (Modified Algorithm) (Alg. 3) on Dudgeon Offshore
Wind Farm having 66 turbines. (Bottom): Final Layout from
the solution method developed in this work (Alg. 7). Both the
layouts have maximum cable capacity 6

2. The resulting layout was then again subjected to another node ex-
change 57−58−57

3. The last node exchange which resulted in a locally optimal solution
is 53−50−53. Final layout is the one at the bottom in Fig. 6.4.1.
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Figure 6.4.2: (Top): Actual Layout of Barrow offshore wind farm having 30
turbines. (Bottom): Final Layout from the solution method
developed in this work. Both the layouts have maximum cable
capacity 8
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Figure 6.4.3: (Top): Actual Layout of The West of Duddon Offshore Wind
Farm having 108 turbines. (Bottom): Final Layout from the
solution method developed in this work called OWCL (Alg. 7).
Node 108 is the substation node. Both the layouts have maxi-
mum cable capacity of 10
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Figure 6.4.4: (Top): Layout obtained by using Modified Obstacle-Aware Al-
gorithm (Modified Algorithm) (Alg. 3) on Sheringham Shoal
wind farm having 88 turbines and 2 substations. (Bottom): Fi-
nal Layout obtained after using OWCL (Alg. 7) developed in
this work. The layouts have maximum cable capacity 8.
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C O N C L U S I O N

In the current work, we have developed a construction heuristic, and a lo-
cal search heuristic, which attains a good, and feasible solution of the off-
shore wind cable layout problem. The construction heuristic is a modifi-
cation of the well know heuristic for the capacitated minimum spanning
tree problem known as the Esau-Williams’ heuristic. There are two impor-
tant modifications which have been done to this heuristic to prevent cable
crossing, and improve the solution quality. These two modifications are
procedures to prevent cable crossing, and using a shape factor to encour-
age radial orientation of each rooted tree in the solution. The former mod-
ification finds feasible layouts, whereas, the latter modification improves
the solution quality, seen in Table. 6.3.1 (Obstacle-aware and Modified Al-
gorithm (with shape factor)).

This is followed by development of a local search heuristic based on the
multiple node exchange neighborhood presented in [Ahuja et al., 2001],
[Ahuja et al., 2002]. We have modified the local search method in such a
way that we get feasible layouts for our problem. The solutions from the
heuristic have been compared with optimal solutions provided in [Klein
and Haugland, 2017]. The solutions are promising, and we are able to
get near-optimal solutions in many of the instances and the worst perfor-
mance is an optimality gap of 5.48%. There are 8 out of 12 experiments
that achieved an optimality gap of less than 1%. The solution method de-
veloped in the current work is a valuable tool to find good solutions for
larger instances. In some of the large instances, it would be simply imprac-
tical to use exact methods. This can also be a good tool to do multiple
What-if analysis using different cable capacities or may be incorporating
new restrictions.

7.1 F U T U R E R E S E A R C H D I R E C T I O N S

In this section, we discuss both the future directions for the heuristic devel-
oped in this work and also, for the cable layout problem in general.

The Obstacle Aware heuristic (Alg.3) uses shape factors to generates mul-
tiple feasible solutions. Instead of only choosing the best solution, and
running local search on it, we could also use some of the other feasible so-
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lutions. This will prevent the heuristic from pre-mature convergence and
increases the likelihood of identifying global optimum. There are different
meta- heuristic frameworks which suggest different acceptance criterion
for such a method.

Lastly, new formulations of the layout problem have surfaced in some
of the recent work. This is mainly due to the demand in the industry of a
customized solution. One such recent work is mentioned in [Fischetti and
Pisinger, 2018]. In this paper, the authors have highlighted the need for in-
clusion of branching penalties, and closed loop structure to increase the
reliability of the cable layout. Similar trends are also seen in some other rel-
evant work. Therefore, there is need to add some limitation on the number
of branching, or adding some penalties to it. Another important observa-
tion regarding this problem is the inclusion of power losses. Although it
will complicate the problem, but the final model will be closer to reality.
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