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Abstract 

 

The increased use of plant-based ingredients in aquafeeds for Atlantic salmon has led to an increase 

in phytate, an antinutrient binding micro minerals and reducing their bioavailability. It has been 

suggested that the chemical form of the minerals (organic/inorganic) can alter their bioavailability, 

especially in feeds with high phytate content. The functional role of minerals in hepatic intermediary 

metabolism is poorly understood in fish, though studies have shown that dietary mineral levels can 

affect hepatic lipid metabolism. However, this effect has not been examined in the nutritionally 

relevant context of dietary mineral availability in plant ingredient based diets. The aim of this study 

was to investigate whether availability and chemical form of zinc, selenium and manganese affected 

liver lipid metabolism of Atlantic salmon.  

A feeding trial involving five different diets was performed. The two control diets contained 

inorganic Zn, Se and Mn with different phytate contents. Unfortunately, the difference in phytate 

turned out to be too small to have any effect on the mineral digestibility. The three other diets all 

had the higher phytate content and in each diet one of the inorganic minerals Zn, Se and Mn were 

exchanged with chelate of Zn, selenium methionine or chelate of Mn, respectively.  

The mineral content of the liver was investigated to see if there had been any changes to the mineral 

status. No significant differences were found. Genes involved in β-oxidation (PPARα, CPT1), 

lipogenesis (LXR, SREBP1, FAS), bioconversion into LC-PUFA (Δ5Fad, Δ6Fad) and transport out 

of the liver (ApoB100) were examined to see if there were any effects on hepatic lipid metabolism. 

There were no significant effects on LXR, FAS, PPARα, CPT1, Δ5Fad or Δ6Fad. ApoB100 and 

SREBP1 were significantly reduced in the higher phytate control group compared to the lower 

phytate control. However, these two groups had the same chemical form of all the minerals, no 

impact of phytate on mineral digestibility was detected and there was similar hepatic content of all 

three examined minerals. Thus, these effects are probably random effects rather than induced by 

the diets. As the minerals and phytate likely were not the cause of differences between the two 

control diets, the organic Mn is probably not the cause of the difference between the higher phytate 

control diet and the diet containing organic Mn either. Finally, a lipid class distribution analysis 

was also performed, but no significant effects of minerals on the hepatic lipid composition was 

discovered. Thus it was concluded that the chemical form of the micro-minerals Zn, Se and Mn 

probably have no effect on the hepatic lipid metabolism of Atlantic salmon. 
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1 Introduction 

1.1 General introduction 

Atlantic salmon (Salmo salar) has traditionally been fed a diet based on fishmeal (FM) and fish 

oil (FO). Its production is based on designated wild capture fisheries, using mainly small pelagic 

fish (Alder et al., 2008). FM and FO has long been considered the gold standard ingredients in 

fish feed as they have a near ideal nutrient composition (Sørensen et al., 2011). Historically 

they also represented cost-effective  feed ingredients (Tacon and Metian, 2008), and represented 

a beneficial supply of the n-3 long-chain fatty acid (Sargent et al., 2002). Owing to the ideal 

composition, the FM use more than doubled from 1995 – 2005, and FO use nearly doubled in 

the same period (Tacon and Metian, 2008). This increased use of and reliance on FM and FO 

from the capture fisheries is an unsustainable practice, simply because there soon will not be 

enough wild fish to capture. The FAO (2016) reported that approximately 90 % of the world’s 

wild fish stocks are either fully or overexploited. That leaves mere 10 % underexploited, and 

does not leave much room for growth in the capture fisheries. Indeed, the capture fisheries have 

remained stable over the past three decades with an annual production at 93.4 million tonnes 

per 2014, with a significant, although declining, fraction being used for FM and FO production 

(FAO, 2016). Concurrently, the aquaculture industry reported an annual growth of 5.8 % from 

2005 – 2014 (FAO, 2016). While the current use of FM and FO arguably could be considered 

sustainable assuming responsible management, the expected growth in aquaculture, and hence 

aquaculture feed production, will soon exceed the supply of FM and FO. Thus the increased 

demand for FM and FO combined with a stagnating supply has led to increased prices, reducing 

the viability of their use in fish feeds (Tacon and Metian, 2008) 

The feed production industry has long since acknowledged the viability of using plant origin 

feed stuffs in replacing FM and FO (Gatlin et al., 2007).This is evident from the use of marine 

ingredients in feeds for Atlantic salmon in Norway, which has been reduced from around 90% 

in 1990 to less than 30% in 2013 (Ytrestøyl et al., 2015). Even so, plant ingredients all have 

some characteristics that puts them at a disadvantage compared to marine ingredients (Gatlin et 

al., 2007). Generally, all plant protein sources have an imbalanced amino acid profile for fish. 

Soy for instance contains too little methionine, lysine and threonine (Gatlin et al., 2007). Many 

plant-based ingredients also contain excessive amounts of carbohydrate of which fish only have 

limited metabolic capabilities, particularly carnivores like salmonids (Hemre et al., 2002). 

Vegetable oils (VO) differs from FO in that they are generally lacking in the long chain 
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polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic acid (EPA, 20:5n-3) and 

docosahexaenoic acid (DHA, 22:6n-3), even though they often provide the 18 carbon precursor 

α-linolenic acid (ALA, 18:3n-3). Generally, partial replacement of FO with VO have little or 

no effect on growth in salmonids (Petterson et al., 2009, Torstensen et al., 2005). However, it 

leads to changed lipid composition of the tissues with reduced levels of EPA and DHA (Bell et 

al., 2003, Bransden et al., 2003, Bou et al., 2017). The lack of EPA and DHA in VO has been 

linked to several possible health effects, such as accumulation of visceral fat (Torstensen et al., 

2011, Todorčević et al., 2008), changes in the stress response (Holt, 2011) and increased hepatic 

lipid content, especially at low temperatures (Sissener et al., 2016, Ruyter et al., 2006). 

It could be argued that fish do not really need FM and FO, but the nutrients they contain. This 

was illustrated by Espe et al. (2006), who reported that salmon fed diets with only 5% FM with 

the rest made from plant meal and crystalline amino acids utilise these diets satisfactory as long 

as the amino acid profile mimics the composition of fishmeal. Provided we tailor the feed to 

contain all essential nutrients at required levels the fish will have normal growth regardless of 

the feed ingredient source.  

1.2 Organic and inorganic forms of supplemented micro-minerals 

Most plant ingredients used in fish feed are known to contain undesirable components called 

antinutrients (Francis et al., 2001). They are defined as substances either natural or synthetic 

that by themselves or through their metabolic products inhibit or decrease the digestion and 

absorption of other nutrients (Francis et al., 2001). One common antinutrient in plant 

ingredients is phytic acid, which is the main storage form of phosphorous in seeds (Morales et 

al., 2016). Phytic acid is a strong chelating agent that binds to divalent cations and renders them 

unavailable to the animal, whereupon they are lost to the environment through faeces (Morales 

et al., 2016, Katya et al., 2016). There have been numerous reports of the addition of phytase 

improving the availability of minerals, indicating that they had previously been bound to phytic 

acid (Morales et al., 2016, Gatlin et al., 2007, Cheng and Hardy, 2003, Sugiura et al., 2001). 

Organic forms of micro-minerals are expected to have a higher bioavailability than the 

inorganic forms (Mantovani et al., 2010), and particularly in feeds with a high phytic acid 

content as the organic forms can protect the micro-minerals from forming insoluble complexes. 

Micro-minerals have traditionally been provided as inorganic salts. Now their respective 

organically bound forms are being considered as an alternative, particularly in the presence of 
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antinutrients. Several studies report better micro-mineral bioavailability when they are provided 

as organic bound forms, such as for rainbow trout (Oncorhynchus mykiss) (Apines-Amar et al., 

2004), pacific white shrimp (Litopenaeus vannamei) (Bharadwaj et al., 2014, Lin et al., 2013, 

Katya et al., 2016) and European sea bass (Dicentrarchus labrax) (Fountoulaki et al., 2010). 

However, studies in  some species have reported lower availability with organic minerals, such 

as Nile tilapia (Oreochromis niloticus) (Do Carmo e Sá et al., 2005). For gilthead seabream 

(Sparus aurata), a reduced bioavailability for Mn and Zn was found, whereas increased 

bioavailability for Se was observed with organic minerals (Domínguez et al., 2017). Selenium 

is reported to be the only element with a clear advantage of using organic forms over inorganic 

ones for all fish (Prabhu et al., 2014). 

1.2.1 Metabolic fate of different chemical forms 

Theoretically, the main advantage of using organic micro-minerals over inorganic, is to reduce 

the inhibitory interactions with antinutrients in the feed. This means that the mineral can be 

transported to the site of absorption uninterrupted, hence increasing the bioavailability. 

However, this increased absorption is dependent on the organic form remaining table through 

the digestive system to the site of absorption. Any direct metabolic effects of organic minerals 

in target tissues is dependent on the chemical form remaining different also after absorption. If 

the organic mineral complex is broken up after absorption, then any metabolic effects seen by 

using organic minerals could be ascribed to increased mineral absorption, rather than a direct 

function of the organic micro-mineral complexes themselves. Although there is not much 

information on the metabolic fate of the micro-minerals after absorption, some research has 

been done.  

In mammals, selenium methionine (Se-Met) can either be used directly for protein synthesis or 

be metabolised to Se-Cys and then serine and selenide. This selenide can then be used for the 

production of selenoproteins or be excreted (Schrauzer, 2000). Selenite can also be used for the 

production of Se-Cys, but not for the production of Se-Met as fish cannot synthesise Met 

(Wilson, 2002). This is also seen in Atlantic salmon, where supplementation of Se-yeast (which 

contains mainly Se-Met) led to higher retention of Se as Se-Met in muscle than selenite (Sele 

et al., 2018). A similar result was found in rainbow trout fry, where Se-yeast led to higher 

accumulation of total Se in whole body than selenite (Godin et al., 2015). Se-Met and selenite 

achieved similar amounts of Se-Cys in rainbow trout fry (Godin et al., 2015), indicating that 
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they have similar ability of being metabolised into Se-Cys. Selenite inclusion in the diet gave 

no increase in Se-Met in neither Atlantic salmon (Sele et al., 2018) nor rainbow trout fry (Godin 

et al., 2015). As protein synthesis does not distinguish between Se-Met and Met (Suzuki, 2005), 

this means that adding Se-Met in the feed rather than selenite can lead to an increased retention 

of Se through storage in muscle.  

Regarding Zn and Mn there is very little information. However, there are some indications that 

different chemical forms of Zn are metabolised differently. Rider et al. (2010) found no 

significant differences in digestibility of Zn-proteinate and Zn-sulphate in rainbow trout, but 

dissimilar retention in different tissues. Zn-sulphate led to a higher increase in Zn retention in 

all tissues that responded to Zn-supplementation, with the exception of the liver. This showed 

that Zn-sulphate has a higher retention than Zn-proteinate, at least when provided at above 

requirements. If the organic minerals still are distinct chemical species post-absorption, with 

differing metabolic routes compared to the inorganic forms, then it is possible that they could 

affect lipid metabolism in dissimilar ways. 

1.3 Requirements 

The bioavailability of minerals in aquafeeds is of primary importance for their nutritional value 

to the fish. Increasing the efficiency of mineral uptake would decrease the required dietary 

inclusion, in addition to reducing the environmental impact. Most aquaculture fish and shrimp 

live in open sea cages, leaving feed spill and faeces with high mineral content to sink to the 

seabed under the net pen, or alternatively float with the current. This mineral and organic 

enrichment can lead to a build-up of anoxic sediments under the net pens, alter the seabed fauna 

and flora and lead to eutrophic waters (Lall and Milley, 2008) 

Increasing environmental concerns also put pressure on the authorities to implement stricter 

regulations regarding feed additives.  The upper limit for Zn, for instance, is being lowered 

from 200 mg/kg to 180 mg/kg for salmonids in the time period from 2016 to 2018 (EU 

regulation 2016/1095) The requirements of Atlantic salmon, upper limit values and current 

content of Zn, Se an Mn in Norwegian commercial feeds can be found in Table 1.  

In addition to reduced upper limits, marine ingredients are being replaced with vegetable 

sources. Not only do they contain antinutrients hindering uptake, they also contain lower 

amounts of minerals such as Se and Zn. However, Cu and Mn are actually present in higher 

amounts in plant feed ingredients (Sanden et al., 2017). Consequently, discovering whether 
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adding the minerals in other chemical forms increases the bioavailability is pivotal; it would 

allow for the addition of less mineral without affecting fish health, or perhaps with positive 

health effects at the same inclusion levels. 

Table 1: Mineral requirements in Atlantic salmon, upper limit values and content in Norwegian commercial fish feeds 
Trace mineral Requirement Atlantic 

salmon 

Upper limit (EFSA)1 Content in 

Norwegian feeds 

with min/max 3 

Mn 10 mg/kg4 100 mg/kg 42 mg/kg (20-110) 

Se Not tested 

(0.15 mg/kg in 

Rainbow trout)4 

0.5 mg/kg 1.1 mg/kg (0.3-17.0) 

Zn 37 mg/kg4 200 mg/kg 2 158 mg/kg (100-280) 
1 European food safety authorities. The upper limit applies to the sum of naturally occuring and added 

minerals, but only if the mineral has been added to the feed 
2 EU regulation 2016/1095 to reduce max Zn to 180 mg/kg for salmonids is being implemented 
3 Sanden et al. (2017) 
4 NRC (2011) 

 

1.4   Lipid metabolism and its regulation 

Lipids are a diverse group of organic molecules of biological origin with the common feature 

of being soluble in organic solvents, but insoluble in water (Lehninger et al., 2013d, Leaver et 

al., 2008). They have various important functions in fish; they are structural components of 

membranes, precursors to hormones, energy storage molecules and they are used in β-oxidation 

for energy production, to mention a few (Torstensen et al., 2001, Leaver et al., 2008). The 

pathways and regulatory processes of lipid metabolism are well defined (see Fig.  1), and the 

lipid homeostasis is a result of the balance between the dietary absorbed fat, biosynthesis of 

lipids (lipogenesis), catabolism via β-oxidation (lipolysis), transport and storage (Lehninger et 

al., 2013a, Lehninger et al., 2013c). These processes are tightly regulated through 

transcriptional factors and hormones in response to feedback and feed forward signals in order 

to maintain optimal homeostasis (Lehninger et al., 2013a, Lehninger et al., 2013c). A fat 

accumulation or depletion will be the result of an imbalance between these processes. 
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1.4.1 Fatty acid synthesis 

The process of synthesising endogenous fatty acids (FA) in the liver is called de novo 

lipogenesis. This process occurs in the cytoplasm and the first, committed step is catalysed by 

acetyl-CoA carboxylase (ACC) where acetyl-CoA is turned into malonyl-CoA. The enzyme 

fatty acid synthase (FAS) then catalyses the assembly of C16:0 (palmitic acid) and C18:0 

(stearic acid) from malonyl-CoA and acetyl-CoA (Berlanga et al., 2014, Lehninger et al., 

2013c). This is a process that requires substantial amount of reducing power in the form of 

NADPH (Leaver et al., 2008). Thus the main two limiting substrates for the FA synthesis is 

malonyl-CoA and NAPDH (Leaver et al., 2008).  

To avoid a futile cycle of simultaneous synthesis and degradation of FAs, they are separated 

into different compartments of the cell. Additionally, the rate-limiting step of β-oxidation is 

inhibited by malonyl-CoA, the first intermediate in the FA synthesis (Lehninger et al., 2013a). 

Fish have biosynthetic capabilities of the saturated FAs 16:0 (palmitate) and 18:0 (stearic acid) 

and the reactions are catalysed by FAS, as in all other living organisms (Sargent et al., 2002, 

 

Fig.  1: Schematic overview of the interconnection of the main metabolic pathways of the liver. The processes 

marked in red are the main processes for lipid metabolism. Normal arrows indicate catabolic routes, open arrows 

anabolic.  Adapted from Leaver et al. (2008). 
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Leaver et al., 2008). Many fish have an appreciable proportion of lipids in their diets, and as a 

result, they have a reduced need for biosynthesis. In some cases it could even be repressed.  

1.4.2 β-oxidation 

The oxidation of FAs occur within the mitochondria, peroxisomes and the endoplasmic 

reticulum (Berlanga et al., 2014). In general, the short-, medium- and long-chain FA are 

oxidised in the mitochondria (β-oxidation). However, FA longer than 20 carbons cannot cross 

the mitochondrial membrane and must first be oxidised in the peroxisomes to shorten the chain 

for transport across the mitochondrial membrane. The peroxisomes do not have the electron 

transport chain, so much of the energy is released as heat (Torstensen et al., 2001, Leaver et al., 

2008). FAs longer than 12 carbons cannot diffuse directly through the mitochondrial membrane. 

They have to form an acyl-carnitine to facilitate transport, a reaction catalysed by carnitine 

palmitoyltransferase I (CPT1). The acyl-carnitine is then transported over the membrane via a 

translocase and acyl-CoA is reformed with carnitine palmitoyltransferase 2 (CPT 2). The 

transport of FAs is thought to be the rate-limiting step of β-oxidation. As mentioned, malonyl-

CoA inhibits β-oxidation. It does this by inhibiting CPT1, hence CPT1 is considered the main 

regulatory enzyme of β-oxidation (Lehninger et al., 2013b). The mitochondrial β-oxidation is a 

four step reaction resulting in the successive removal of two-carbon units in the form of acetyl-

CoA. The acetyl-CoA is then used in the citric acid cycle to produce NADH and FADH2 which 

will enter the electron transfer chain to produce ATP (Lehninger et al., 2013a, Lehninger et al., 

2013b). 

1.4.3 Bioconversion 

As mentioned, the saturated FAs 16:0 and 18:0 can be synthesized de novo by fish, but the 

unsaturated FAs linoleic acid (LA, 18:2n-6) and ALA cannot be synthesized and are thus 

termed essential (Sargent, 1995, Miller et al., 2008). As a consequence, fish are dependent on 

dietary sources to get enough of these FAs. Whereas most freshwater fish have the ability to 

elongate and desaturate ALA into EPA and DHA, most marine species seem to have lost this 

capability (Tocher and Ghioni, 1999). As their diet is naturally rich in EPA and DHA, the need 

for synthesis is attenuated, hence also the desaturase activity (Tocher, 2010, Sargent, 1995).  

The synthesis of EPA from ALA starts with a desaturation with a Δ6 desaturase (Δ6Fad) to 

18:4n-3, which is then elongated to 20:4n-3 and a final desaturation with Δ5 desaturase (Δ5Fad) 
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into EPA. The synthesis of LA into ARA is essentially the same, and they compete for the same 

enzymes (Sprecher, 2000, Leaver et al., 2008). To produce DHA, EPA is first elongated to 

docosapentaenoic acid (DPA, 22:5n-3), but then there is not a direct Δ4-desaturation of DPA 

to DHA, rather it goes through another elongation step to 24:5n-3 before a Δ6Fad desaturation 

to get 24:6n-3. The final step to produce DHA is a peroxisomal chain-shortening step (Sprecher, 

2000, Leaver et al., 2008). The sequence of enzymes acting on ALA and LA into their 

respective LC-PUFA is as shown in Fig.  2. 

The bioconversion of ALA into LC-PUFA has been shown to increase with decreased fish oil 

content of the feed (Zheng et al., 2005b, Kjaer et al., 2016) , but also environmental cues such 

as temperature have been shown to modulate this synthesis (Zheng et al., 2005b, Ruyter et al., 

2003). Atlantic salmon has the capability for the synthesis of EPA and DHA from ALA to some 

degree (Sargent, 1995, Tocher, 2010, Bou et al., 2017, Rosenlund et al., 2016). Decreasing 

EPA+DHA in the feed results in increased elongation and desaturation, and especially when 

fed diets containing less than 1% EPA+DHA of the total FAs (Bou et al., 2017). Hence it has 

been suggested that the elongation and desaturation products can have a negative feedback 

inhibition on these enzymes (Tocher, 2003).  

  

 

Fig.  2: Sequence of enzymes and intermediates in the synthesis of LC-PUFA 
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The first Δ6 step has long been considered the rate-limiting step of this biosynthesis (Gregory 

et al., 2011), however increasing the availability of 18:4n-3 to bypass this step did not result in 

improved bioconversion into EPA and DHA (Alhazza et al., 2011). Rather than having one 

singular rate-limiting step, studies now report that there are a combination of regulations at each 

step that together regulate the synthesis of LC-PUFA (Alhazzaa et al., 2013, Thanuthong et al., 

2011). It has also been suggested that since the products of this bioconversion, namely EPA 

and DHA, are inhibitors of these enzymes, that the EPA produced from ALA could slow down 

further elongation and desaturation reactions (Alhazzaa et al., 2013). 

1.4.4 Uptake, packaging and transport of fatty acids 

Due to their hydrophobic properties, lipids need to be emulsified for uptake into the enterocytes. 

The formation of micelles greatly increases the accessibility of the lipids to the actions of water-

soluble lipases, which breaks triacylglycerol (TAG) into monoacylglycerol (MAG), 

diacylglycerol (DAG) and free FAs (FFA) (Lehninger et al., 2013a). Although, some data 

indicate that TAG is completely broken down to glycerol and free fatty acids (FFA) in salmon 

as the main hydrolysis products (Bogevik et al., 2008). This enables them to diffuse into the 

intestinal mucosa where they can be re-esterified and packaged together with apolipoproteins 

to form chylomicrons (Lehninger et al., 2013a). Chylomicrons are first transported to the tissues 

to deliver the majority of their lipids. They then become chylomicron remnants, which are 

mainly absorbed by the liver (Tocher, 2003). Together with FAs synthesised by the liver they 

can be packaged into very-low-density lipoprotein (VLDL), which requires apolipoprotein 

B100 (ApoB100). VLDL’s function is to transport lipids from the liver to peripheral tissues. 

After delivering lipids to the tissues it becomes low-density lipoprotein (LDL). LDL provides 

cholesterol to peripheral tissues. High-density lipoprotein (HDL) is also produced in the liver 

and its task is to return lipids and cholesterol to the liver from peripheral tissues (Tocher, 2003).                    

1.4.5 Transcriptional regulation of lipid metabolism 

A transcription factor is a nuclear protein which binds to the promoter sequence of a gene, 

thereby either activating or repressing its transcription (Lehninger et al., 2013e). The rate of 

lipogenesis is mainly regulated at the transcriptional level, and include several transcription 

factors such as liver X receptor (LXR), sterol regulatory element-binding protein (SREBP), 
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carbohydrate responsive element-binding protein (ChREBP), farnesoid receptor x (FxR) and 

enzymes such as FAS and ACC (see Fig.  3) (Berlanga et al., 2014).  

SREBP is a transcription factor that acts on genes involved in FA synthesis and biosynthesis of 

LC-PUFA (Dong et al., 2017, Minghetti et al., 2011). Reduced cellular concentration of 

cholesterol activates SREBP and induces expression of genes involved in cholesterol and fat 

synthesis (Horton et al., 2002). There are three different types of SREBP in mammals, 

SREBP1c, SREBP1a and SREBP2. SREBP1c preferentially regulates lipogenic genes, 

SREBP2 primarily targets those of cholesterol synthesis while SREBP1a activates both of these 

(Horton et al., 2002, Jeon and Osborne, 2012). Only two isoforms, the SREBP1 and SREBP2, 

have been identified in salmon (Minghetti et al., 2011).  

  

 

Fig.  3: Transcriptional control of lipogenesis and glycolysis. Image from Berlanga et al. (2014). Abbreviations: 

ACC: Acetyl-CoA carboxylase, ChREBP: carbohydrate-responsive element binding protein, FA: fatty acid, FAS: 

Fatty acid synthase, FxR: Farnesoid X receptor, G6PC: glucose 6-phosphatase, GCKR: glucokinase regulatory 

protein, LXR: Liver-X receptor, MUFA: monounsaturated fatty acid, PPARα: peroxisome proliferator-activated 

receptor alpha, SCD1: steroyl CoA desaturase 1, SFA: saturated fatty acid, SREBP1: sterol regulatory element-

binding protein 1c, TG triglyceride 
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SREBP can also be induced through another transcription factor called LXR. LXR forms a 

heterodimer with retinoid x receptor (RXR) and then binds to the DNA consensus sequence of 

the target gene, the LXR response elements (Zhao and Dahlman-Wright, 2010, Lehninger et 

al., 2013c). It is activated by oxysterols, the catabolic products of cholesterol (Zhao and 

Dahlman-Wright, 2010). High cholesterol levels in the cell will result in more oxysterols, 

leading to activation of LXR (Zhao and Dahlman-Wright, 2010, Lehmann et al., 1997). LXR 

can activate the synthesis of several proteins involved in lipogenesis (Lehninger et al., 2013c). 

It induces the production of FAS directly by binding the FAS promoter, and also indirectly 

through SREBP1 (Joseph et al., 2002, Carmona-Antoñanzas et al., 2014). LXR also modulates 

the catabolism of cholesterol through cholesterol 7α-hydroxylase (Chiang, 2009). An increased 

cholesterol level in salmon led to higher expression of LXR in salmon SHK-1 cells (Minghetti 

et al., 2011), and an upregulation of LXR resulted in an increased expression of FAS, SREBP1 

and SREBP2 in the same cell type (Carmona-Antoñanzas et al., 2014).  

Furthermore, SREBP1 has a regulatory function in the biosynthesis of LC-PUFA in fish. An 

SREBP binding site has been identified in the promoter region of the salmon Δ6Fad (Zheng et 

al., 2009). Only moderate expression of SREBP1 was found in Japanese seabass with inclusion 

of n-3 FA (Dong et al., 2015), corresponding with a previous study where they found low 

expression of Fad with high inclusion of n-3 LC-PUFA (Xu et al., 2014). Dong et al. (2017) 

and Carmona-Antoñanzas et al. (2014) both found that an increased inclusion of vegetable oils, 

which are devoid of LC-PUFA, gave a higher expression of SREBP1. This again gave rise to 

higher expression of Δ6Fad genes. Conversely, high levels of LC-PUFA repress the expression 

of SREBP1 (Desvergne et al., 2006, Betancor et al., 2014), hence also the Δ6Fad genes.  

The peroxisome proliferator-activated receptors (PPAR) are a group of transcription factors that 

alter the expression of genes involved in lipid and carbohydrate metabolism. They dimerize 

with RXR and bind to peroxisome proliferator response elements (PPREs), their DNA 

consensus sequence. They are responsive to dietary lipids, their ligands being FAs (mainly 

PUFAs) and their derivatives (Lehninger et al., 2013b, Tocher, 2003). There are three genes for 

PPARs in mammals, PPARα, –δ /β and -γ (Tocher, 2003, Desvergne et al., 2006). They are all 

part of the nuclear receptor family, but they have dissimilar tissue distributions and have 

functionally opposite effects (see Fig.  4) (Evans et al., 2004). 
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PPARα is expressed in tissues with high β-oxidation activity, reflecting its role in the regulation 

of FA oxidation. In mammals, the highest expression is found in liver and brown adipose tissue, 

then heart, kidneys, enterocytes and muscles (Desvergne et al., 2006). PPARα also plays a role 

in activating genes involved in transport and uptake of FAs (Desvergne et al., 2006, Tocher, 

2003). The importance of PPARα is particularly highlighted during fasting, when stored FAs 

are used as an energy source (Desvergne et al., 2006). PPARδ /β is expressed amply throughout 

the body, but in lower levels in the liver. It activates genes involved in FA catabolism and 

thermogenesis (mitochondrial uncoupling; resulting in heat production rather than ATP) (Evans 

et al., 2004). PPARγ is mainly present in adipose tissue and promotes lipid uptake and 

adipogenesis, which is the development of the adipocyte phenotype (Tocher, 2003, Desvergne 

et al., 2006). All three PPAR isoforms have been identified in salmon (Ruyter et al., 1997, 

Leaver et al., 2006). They are homologues of the mammalian PPARs and are expected to have 

relatively conserved functions (Tocher, 2003).                                  

  

 

Fig.  4: The three isoforms of PPAR regulate lipid and carbohydrate homeostasis through their concerted effects 

on gene expression in different tissues. PPARα and δ /β regulate lipid utilisation, whereas PPARγ regulated lipid 

storage. Image from Evans et al. (2004). 
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1.5 Minerals in fat metabolism 

The chemical definition of a mineral is an element in its pure form or its simple, chemical 

compound. There are approximately 20 elements that are considered essential in the diet of fish. 

An essential element is required for the maintenance of life, and a deficient intake will lead to 

impairment of normal physiological function. Recovery of physiological levels of the element 

will prevent such impairment or alleviate deficiency (Lall, 2002) Minerals can roughly be 

divided into two groups called macro- and micro-minerals, dependent on how much is needed 

in the diet (Lall, 2002). Macro-minerals are required at quite high concentrations (in grams) and 

have functions in for instance bone structures and hard tissues, osmoregulation and acid-base 

regulation (NRC, 2011, Lall, 2002). The macro-minerals include sodium, magnesium, chlorine, 

potassium, phosphorous and calcium (NRC, 2011). Micro-minerals are required at much lower 

concentrations than the macro-minerals (in milli- or micrograms) and participate in a variety of 

functions as components of hormones and enzymes and as cofactor and coactivators of enzymes 

(NRC, 2011, Lall, 2002). The most commonly recognised micro-minerals according to the NRC 

(2011) include zinc, iron, selenium, chromium, manganese, iodine and copper.  

1.5.1 Zinc 

Zinc is a micro-mineral that is an integral part of around 20 metalloenzymes (Chanda et al., 

2015) and also functions as a cofactor and activator for many Zn-dependent enzymes (NRC, 

2011, Lall, 2002). Zinc is important in the metabolism of proteins, carbohydrates and lipids 

(Lall, 2002). Fish can both show reduced growth performance during Zn deficiency (Luo et al., 

2011) or no significant changes (Zheng et al., 2015, Giri et al., 2016). Zheng et al. (2015) found 

that deficiency of Zn tends to increase hepatic lipid content in yellow catfish, whereas excess 

tends to reduce it. The Zn deficiency reduced the activity of CPT1, which is thought to be the 

main regulatory enzyme of β-oxidation. Reduced CPT1 activity would mean a reduced lipid 

utilisation. This is in accordance with results from Luo et al. (2011) who found that increased 

dietary levels of Zn significantly reduced whole body lipid content in yellow catfish. They also 

found increased lipoprotein lipase and hepatic lipase activities, thought to indicate increased 

lipolysis. Giri et al. (2016) and Lewis et al. (2013) also found increased β-oxidation with 

increased fortification of a mixture of cofactors and coenzymes which included zinc.  
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A study investigating the effect of Zn, Fe, Mg, niacin, riboflavin, pyridoxine and biotin on the 

n-3 LC-PUFA biosynthesis in rainbow trout showed significantly higher activity of Δ5Fad on 

20:3n-3. This effect was only significant at double and triple levels of the requirement, with no 

additional benefits of higher inclusion levels. Elongase activity on 18:4n-3 was also increased 

at double requirement level compared to the requirement. Increased transcription of elongase 5 

was found at double levels, with no further increase with increasing supplementation (Lewis et 

al., 2013). The authors suggested this hinted at an optimal level of supplementation, and that 

co-factor fortification can promote in vivo n-3 LC-PUFA biosynthesis in rainbow trout fed VO-

based diets. Another study on Atlantic salmon using the same co-enzymes and co-factor 

(excluding pyridoxine) in the feed showed significantly improved levels of EPA and ARA in 

the fillet with supplementation, though DHA was not affected. A numerical trend showed an 

increase in the activity of the enzymes involved in bioconversion, though there was no 

significant increase (Giri et al., 2016).  

1.5.2 Selenium 

Selenium is an essential trace element, which functions as the active part of selenoproteins. It 

is widely recognised for its antioxidant function as a part of the enzyme glutathione peroxidase 

(Lall, 2002, Bell et al., 1987), but it is also linked to the thyroid hormone production (Lorentzen 

et al., 2001). Se is also known to interact with vitamin E and they show sparing effects for one 

another, delaying the onset of deficiency symptoms (Lin and Shiau, 2009). Salmonid tissues 

are rich in PUFAs, which are highly susceptible to lipid peroxidation. It follows that Se plays a 

vital role in the protection against oxidative damage (Bell et al., 1987).  

Infante (1986) suggested early on that Se, together with vitamin E, play an important role in the 

desaturation of n-3 and n-6 FAs. Se-deficiency in rats resulted in reduced concentration of the 

Δ6-desaturase (Δ6Fad) product 22:6n-3, which could signify an inhibition of this enzyme 

(Schafer et al., 2004). Silva-Brito et al. (2016) found that Meagre (Argyrosomus regius) fed a 

diet of FO with adequate Se content exhibited reduced expression of Δ6Fad genes in the liver, 

but not when fed VO. When fed FO diets deficient of Se, they found increased expression of 

genes of PUFA biosynthesis. Sufficient supply of Se when fed FO was thought to protect PUFA 

from peroxidation, and when deficient of Se they had to express genes of PUFA biosynthesis 

to counteract the damage. During feeding of VO diets, Se stimulated PUFA biosynthesis. This 

could indicate that the effect of Se on desaturation is dependent on the FA composition.  
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In Se-adequate rats increased levels of TAG were found compared to Se-deficient rats (Schafer 

et al., 2004), indicating that Se have an impact on TAG metabolism in the liver. In rainbow 

trout higher levels of Se led to decreased liver TAG content (Knight et al., 2016), whereas in 

Atlantic salmon no significant change in TAG was uncovered, but a reduction of DAG and 

MAG in high selenite diets and reduced MAG in high Se-Met diets (Berntssen et al., 2017). In 

Atlantic salmon, it was suggested of being due to increased β-oxidation as they also found a 

reduction of coenzyme A (Berntssen et al., 2017). 

1.5.3 Manganese 

Manganese is a cofactor for various metal-enzyme complexes and is an integral part of 

metalloenzymes, and there is a greater concentration inside the mitochondria than in other 

organelles or the cytoplasm (Watanabe et al., 1997). As its chemistry is very similar to that of 

magnesium, Mg and Mn can often be used interchangeably by many enzymes (Lall, 2002). 

Some enzymes are specific for manganese, most notably the manganese superoxide dismutase 

(MnSOD). MnSOD is responsible for dismutation of reactive oxygen species (ROS) and is thus 

an essential part of the antioxidant defence of the cell (Holley et al., 2011).  

Some earlier work indicated that manganese could have a lipotropic effect, as manganese 

deficiencies were shown to cause enlarged abdominal fat deposits and fatty liver in mice and 

increased body fat content in pigs (Keen et al., 1984). Correspondingly, Tan et al. (2012) fed 

yellow catfish (Pelteobagrus fulvidraco) diets with increasing Mn content and found that the 

highest amounts of Mn led to the lowest whole body lipid content.  

Manganese acts as a cofactor for mevalonate kinase and farnesyl pyrophosphate synthetase, 

both of which are enzymes in this biosynthetic pathway of cholesterol (Johnson, 1986). 

However, experiments performed on manganese deficient Wistar and RICO rats showed no 

significant effects on the cholesterol metabolism (Klimis-Tavantzis et al., 1983). They did 

however find slightly reduced levels of LDL which they proposed could be caused by Mn’s 

role in apolipoprotein glycosylation, lipoprotein structure and membrane integrity. This would 

affect VLDL structure and catabolism, consequently affecting LDL the same way.  
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1.6 Research questions 

The functional role of minerals in the hepatic intermediary metabolism in fish is not very well 

understood. Some recent research has indicated that dietary minerals can have an effect on 

hepatic lipid metabolism. This has however, usually been performed with varying levels of the 

minerals and not in the context of plant-based ingredients with different chemically bound 

mineral sources. Phytic acid is expected to reduce the availability of the inorganic minerals, 

while changing from inorganic to organic forms may improve availability again, which in turn 

may affect liver lipid metabolism. 

This study aims to examine whether different digestibility and the chemical form of the micro-

minerals Zn, Se and Mn affect the liver lipid metabolism, and whether it could be of interest to 

conduct further investigation to attain a better understanding of the role of micro-minerals in 

the hepatic intermediary metabolism.  
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2 Materials and methods 

 

This master is part of the project “Apparent availability and requirements of micro-minerals in 

salmon”, which is funded by the Research Council of Norway (grant no. 244490). Vegetable 

ingredients contain fibre and phytic acid, and can thus decrease the mineral availability. The 

experiment was designed to elucidate the apparent digestibility of feed additives (minerals) in 

different chemical forms (organic or inorganic), to see how it is influenced by the presence of 

other feed additives and how phytic acid will affect mineral availability.  

In this master project, changes in the lipid metabolism of Atlantic salmon liver as affected by 

organic Zn, Se or Mn in high phytic acid diets was studied.  

2.1 Composition of diets 

The diets were produced at the pilot-scale feed mill facility for research diets at Skretting ARC, 

Stavanger. Five different diets were examined in this study. They were chosen to examine the 

effect organic Zn, Se and Mn in high phytic acid diets on the liver lipid metabolism of Atlantic 

salmon. In diet LPI, all three minerals were added in inorganic form in combination with low 

phytate level, in diet HPI the inorganic minerals were combined with high phytate, while in the 

three final diets (HPOZn, HPOSe and HPOMn) one of the three inorganic minerals were 

replaced by an organic form (Table 2). Table 3 shows the formulation of the low phytate and 

high phytate diets, respectively. 

Table 2: Overview of the different diets used. LPI: low-phytate inorganic, HPI: high-phytate inorganic, HPOZn: high-

phytate organic Zn, HPOSe: high-phytate organic Se and HPOMn: high-phytate organic manganese 
Diet Zn source Se source Mn source Phytic 

acid level 
LPI Zinc sulphate Selenite Manganous sulphate, 

monohydrate 

Low 

 

HPI Zinc sulphate Selenite Manganous sulphate, 

monohydrate 

High 

 

HPOZn Chelate of glycine Selenite Manganous sulphate, 

monohydrate 

High 

 

HPOSe Zinc sulphate Selenium methionine Manganous sulphate, 

monohydrate 

High 

 

HPOMn Zinc sulphate Selenite Chelate of glycine High 

 

 

  



24 

 

Table 3: Formulation of basal diets (g/100g) 

Diet Low phytic acid  High phytic acid 

Wheat 8.29 8.15 

Corn gluten 14.97 15.00 

Hi-pro soya 14.39 10.00 

Wheat gluten 20.00 14.35 

Soy protein concentrate 10.00 20.00 

FM North-Atlantic 5.00 5.00 

Rapeseed oil 12.27 12.56 

FO North-Atlantic 9.86 10.09 

Monoamoniumphosphate 1.85 1.81 

Astaxanthin 0.05 0.05 

Histidine HCl 0.50 0.48 

Internal premixes 3.27 3.12 

Yttrium 0.10 0.10 

Premix vitamins (at 

requirement) 

0.10 0.10 

Premix minerals (at 

requirement, excluding Zn, Se, 

Mn) 

0.10 0.10 

Correction for moisture -0.77 -0.91 

 

2.2 Fish and fish experiment 

The feeding trial was carried out at Skretting ARC Research station at Lerang, Norway, and 

was conducted according to the guidelines of the Norwegian State Commission for Laboratory 

animals. Atlantic salmon (Salmo salar) with an initial mean body weight of about 250 g were 

distributed in 15 tanks with seawater, with 33 or 32 individuals in each tank. The fish were 

acclimatised for 20 days in their respective tanks, and feeding of the experimental diets started 

when feed intake was as expected (0.8% of body weight per day). The tanks were supplied with 

flow through seawater at 12 ̊ C and were exposed to a 24-hour light regime. Each experimental 

diet was distributed to triplicate tanks and the fish were fed to apparent satiation three times per 

day, with a minimum of 10% overfeeding. Surplus feed was collected to determine feed intake. 

Acclimatisation started the 07.09.17, with sampling being performed the 9th, 10th and 11th of 

October. Fish sampled on the respective days started their experimental feeds on the 29th Sep, 

30th Sep and 1st Oct to ensure all fish were fed the experimental diets the same amount of time. 

The fish were euthanized using a stock solution of Tricain (MS222) containing 40 g/L. Of this 

solution 5 mL/L was used. 
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2.3 Sampling procedures 

The phase-feeding procedure prior to sampling was performed so that all the groups were 

sampled at the same definite time post last meal. The sampled fish were anesthetised and then 

killed with an overdose of anaesthetic. The weight and length of all fish were measured and 

liver samples were taken from six individual fish per tank. Thus, a total of 18 fish were sampled 

from each diet. Livers were weighed and deviating colour or appearance were noted. Samples 

for different analyses were taken from the same part of the liver each time (Fig.  5). The samples 

were flash frozen in liquid nitrogen, transported on dry ice and then stored at -80°C until 

analysis. 

 

 

 

 

 

 

 

 

 

2.4 Analytical methods 

2.4.1 Fatty acid analysis 

The fat was extracted from the feed sample by adding 20x weighed in sample of 

chloroform:methanol (2:1. v/v). The FA 19:0 methyl-ester was added as an internal standard in 

a concentration of 10%<>30% of the total fat content. The samples were then left overnight in 

-20°C for extraction. After extraction, the samples were filtered and evaporated in RapidVap 

(Labconco, Kansas City, MO, USA) to remove all chloroform:methanol. Then 1 mL of 0.5 M 

NaOH was added and the samples were boiled at 100°C for 15 minutes before saponification 

and methylation with 2 ml of BF3 and boiling at 100°C for 5 minutes. Then 2 mL of hexane 

 

Fig.  5: Liver cut up for different analyses. The same part of the liver was used for the same type of analysis. 
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was added to extract the fats before the sample was centrifuged and the hexane phase was 

pipetted out. After a second extraction with hexane, the samples were diluted to an appropriate 

concentration for analysis using gas-liquid chromatography (Autosystem XL, Perkin Elmer Inc, 

Waltham, MA, USA). A flame-ionization detector was used for the determination. The FAs 

were identified using a standard mixture of FAs and quantified using the internal standard. 

Chromeleon version 7.2.6 was used to integrate the chromatogram.  

2.4.2 Mineral analysis 

Due to little sample material, three liver samples were pooled to have enough for parallel runs. 

Thus, two pooled samples from each tank were used for this analysis.  

Digestion of sample 

The samples were weighed and placed in Teflon bombs 0.5 mL 30% H2O2 and 2 mL 

concentrated HNO3 for digestion in Milestone Microwave digestion system MLS-1200 MEGA 

for 20 minutes for complete digestion of organic matter. After water cooling, the content of the 

bombs was placed into 25 mL volumetric flasks and diluted using milli-Q water. The solution 

was clear after this process.  

Multielement determination with inductively coupled plasma mass spectrometer 

(ICPMS) 

The solution is nebulised and carried into argon plasma (~7000 ̊ C), were it is vaporised and the 

elements are ionised, mainly creating singly charged atoms. This is important as the mass filter 

separates the ions based on their mass/charge (m/z) ratio. Doubly charged ions would have 

different m/z ratio, and would thus be forced away from the detector. However, this also means 

that the MS is not able to separate between different substances with the same m/z ratio. The 

ions are then carried to the detector, which is an electron multiplier which releases an electron 

cascade each time an ion hits, leading to an electrical signal that can be read as hits per second. 

Quantification of the elements is determined with an external standard curve and an internal 

standard is also used. 

The method is accredited for Zn (0.5-1400 mg/kg dw) and Se (0.01-8 mg/kg dw). It is not 

accredited for Mn, but can be measured in the range 0.03-19 mg/kg dw.  
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2.4.3 Gene expression analysis 

RNA isolation  

All equipment and work areas were cleaned using RNase Zap (Sigma-Aldrich) to avoid 

contamination of RNase (ribonuclease), an RNA degrading enzyme. All samples were stored 

on dry ice prior to homogenisation to avoid degradation of RNA. EZ1 RNA universal tissue kit 

(Qiagen, Crawley, UK) was used to extract RNA from liver. Approximately 50 mg liver was 

used and homogenised with 750 µL Qiazol lysis reagent (Qiagen) and precellys beads in the 

Precellys 24 (Bertin Instruments, Montigny-le-Bretonneux, France) at 6000 rpm for 10 seconds 

3 times. After 5 minutes, the RNA was then separated from protein and DNA using 150 µL 

chloroform. Then it was hand shaken for approximately 30 seconds, before it was incubated at 

room temperature for 3 minutes. The sample was then centrifuged at 4°C at 12000 rpm for 15 

minutes before collection of the supernatant. The Biorobot EZ1 (Qiagen) was used to purify the 

RNA according to the producer’s instruction, with the inclusion of 10 µL DNase. The samples 

were frozen at -80°C until further analysis.  

 

Quality control of RNA  

The Nanodrop 1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) was 

used to measure the concentration and to give a measure of the purity of the RNA. The quality 

of twelve randomly selected samples was checked using the RNA 6000 Nano Kit (Agilent 

Technologies, Palo Alto, CA, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies). If 

all 12 samples showed adequate integrity, the same was expected to be true for the remaining 

samples. Integrity is measured in RIN (RNA integrity number), where 1 means completely 

degraded RNA and 10 means intact RNA (Schroeder et al., 2006). The RIN of all selected 

samples was above 8.6 in this study.  

 

Reverse transcription reaction  

A pooled sample was used to make a standard curve with concentrations from 31 ng/µL to 1000 

ng/µL RNAm, which was set up in triplicate on a 96 well cDNA plate. The samples were set 

up in duplicate with two negative controls; the non-amplification control (nac) and non-

template control (ntc) to ensure that only one PCR product was amplified, and that stock 

solutions were not contaminated. The nac and ntc were without enzymes and RNA, 
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respectively.  

10 µL sample diluted to 50 ng/µL (±5%) and 40 µL TaqMan® reverse transcriptase kit with 

oligo (dT) primers (Applied Biosystems, AB) were added in duplicate, and the reverse 

transcription reaction to make cDNA was performed in the GeneAmp PCR 9700 (Applied 

Biosystems) with the thermal program given in Table 4. The cDNA plate was then stored at -

20°C. 

Table 4: Temperature program for the reverse transcription reaction 

Step Incubation Reverse 

transcription 

activation 

Reverse transcription 

inactivation 

End 

Temperature °C 95 48 95 4 

Time (minutes) 10 60 5 ∞ 

 

Real-time quantitative PCR (qPCR)  

The cDNA was thawed on ice before vortexing on MixMate at 1500 rpm for 5 minutes. A 

mixture of 575 µL SYBR Green Mastermix (Roche applied science, Basel, Switzerland). Then 

a mixture of 322 µL MiliQ water, 11.5 µL forward primer and 11.5 µL reverse primer was 

prepared. The primer sequence of the target genes are given in Table 5. B-actin (Bact), 

phosphoprotein P0 (ARP) and elongation factor lab (EF1A) were used as reference genes. A 

BioMek® 3000 pipetting robot (Beckmann Coulter. Fullerton. USA) was used to transfer 8 µL 

of the mixture and 2 µL cDNA into a 384 well qPCR plate. The plate was spun down at 1500 

rpm for 2 minutes before the real time PCR in LightCycler 480 Real-time PCR system (Roche 

Applied science).  The thermal program was as given in Table 6. 

Table 5: Forward and reverse primers for target genes 
Gene Forward primer (5’ – 3’) Reverse primer (5’ – 3’)  Source of primer Accession 

number 

CPT1 CTTTGGGAAGGGCCTGATC CATGGACGCCTCGTACGTTA Nøstebakken et al. (2012) AM230810 

PPAR-α TCTCCAGCCTGGACCTGAAC GCCTCGTAGACGCCGTACTT Søfteland et al. (2016) NM001123560 

FAS GTGCCCACTGAATACCATCC ATGAACCATTAGGCGGACAG Morais et al. (2011) CK876943 

SREBP1 GCCATGCGCAGGTTGTTTCTT

CA 

TCTGGCCAGGACGCATCTCAC

ACT 

Minghetti et al. (2011) TC148424 

 

LXR TGCAGCAGCCGTATGTGGA GCGGCGGGAGCTTCTTGTC Cruz-Garcia et al. (2011) NM001159338 

 

Δ5Fad GGAACCACAAACTGCACAAG

T 

GTGCTGGAAGTGACGATGGT Torstensen et al. (2005) AF478472.1 

Δ6Fad GGGATTTAATCCATCGCATAT

TAACT 

CGTCACAACAAAATACAGCAT

CTG 

Zheng et al. (2005a) AY458652 

 

ApoB100 TTGCAGAGACCTTTAAGTTCA

TTCA 

TGTGCAGTGGTTGCCTTGAC Torstensen et al. (2011) gi:854619 

 

 
 

 

 

http://www.sciencedirect.com.pva.uib.no/topics/agricultural-and-biological-sciences/primer-molecular-biology
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=AM230810
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Table 6: Temperature program for the qPCR reaction 

Step Preincubation 45 cycles of amplification 

with 3 steps 

Melting point 

analysis 

Cooling 

Temperature (°C) 95 95 60 72 95 65 97 40 
Time 5 min 10 sec 10 sec 10 sec 5 sec 1 min  10 sec 

 

2.4.4 Lipid class analysis 

Liver samples were weighed and fat extracted by adding 20x weighed in sample of 

chloroform:methanol (2:1. v/v), with butylhydroksytoluen (BHT) to avoid oxidation of the FAs. 

The samples were left overnight at -20 °C for extraction. After extraction, the samples were 

filtered and evaporated in RapidVap (Labconco) to remove all chloroform:methanol. The 

sample was then diluted with chloroform with added BHT until a concentration of 

approximately 5 mg/mL. Analysis was performed using high performance thin layer 

chromatography in a HPTLC system (Camag, Berlin, Germany). The HPTLC plate was washed 

in a polar solution (KCl, methanol, chloroform, isopropanol, methylacetate), and then 

evaporated for 10 minutes before activation at 110°C for 30 minutes. It was then cooled down 

in an exicator. Application of 1.0 µL sample to the prewashed plate was performed using an 

automatic sample applicator (ATS4, Camag). Elution was performed using an automatic system 

(AMD2, Camag). Elution up to 48 mm of the plate with the polar solution was performed first, 

and then a second elution with a neutral solution (isohexane, diethyl ether, acetic acid) to 88 

mm. The plate was developed using a CuAc(aq) solution, and then it was quantified in 

Densitometer-Camag TLC-scanner with a deuterium lamp at 350 nm. The data was integrated 

using WinCats version 1.3.3 (Camag). Quantification of the lipid classes in mg lipid class/g 

tissue was carried out with established external standard curves and a standard sample per run. 

2.5 Data analysis 

The stability of the reference genes was calculated using GeNorm version 3.5, as the M-value. 

Bact and ARP were the most stable and were thus used to determine the normalisation factors. 

Ct values for the target genes were then used to calculate normalised gene expression with their 

respective normalisation values.  

All statistical analyses were performed using the free software environment R version 3.4.3 (R 

Development Core Team, 2011). Best-fit regression lines were found using the linear model 

(lm) function. The data were analysed using Levene’s test to check for homogeneity of variance 
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and Shapiro Wilk’s test was used to check for normality, as well as being evaluated graphically 

using quantile-quantile (QQ) plots. Data were modelled using one way ANOVA, and any 

significant differences among treatments given by the ANOVA model were evaluated using 

Tukey’s honestly significant (HSD) test, using the package multcomp. SREBP1 and ApoB100 

did not meet the assumptions of normality or homogeneity, and a Kruskal-Wallis nonparametric 

test was used. When evaluating correlations, Spearman’s rank correlation coefficient was used. 

The package ggpubr was used for this. 

Significance was set at p < 0.05 for all statistical tests. 
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3 Results  

3.1 Feeds 

 

The analysed values for proximate composition, mineral content (Zn, Se and Mn) and fatty acid 

composition of the feeds are given in Table 7, Table 8 and Table 9, respectively. The analysis 

of proximate composition (Table 7) and the mineral content (Table 8) were performed by the 

project, but were not a part of this thesis. Thus the method descriptions are not detailed, but the 

results are given due to their importance in explaining the results of this thesis. The dry weight, 

the content of fat, protein and ash was fairly consistent among the diets (Table 7).  There was 

only a slight difference in planned phytate levels, as it was attempted to only use regular feed 

ingredients and not add extra phytate. The fatty acid composition (Table 9) was very similar 

across all five diets.  

The amount of Zn, Se and Mn added to the feeds (Table 8) were at levels several times the 

requirement (NRC, 2011), at relevant levels to what is used in commercial feeds (Sanden et al., 

2017), and can be assumed to satisfy at least the minimal needs for Atlantic salmon.  

Table 7: Analysed proximate composition of the diets. Dry matter, protein, fat and ash of the diets given in g/100g.  

Diet LPI HPI HPOZn HPOSe HPOMn 

Dry matter 91 93 92 93 93 

Protein 46.7 44.7 46.7 48 46.3 

Fat 22 22 22 22 22 

Ash 3.9 4.2 4.2 4.3 4.3 

Phytate1 6.4 7.2 7.2 7.2 7.2 
1 Theoretical calculated values, as analysis by the project was not complete prior to deadline 

 

Table 8: Amount of Zn, Se and Mn in the experimental diets. Given as mg/kg wet weight 

Diet Zn Se Mn 

LPI 130 0.56 26 

HPI 140 0.55 26 

HPOZn 140 0.63 26 

HPOSe 150 0.58 27 

HPOMn 140 0.55 24 
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Table 9: Fatty acid composition of the diets, given in both % of total fatty acids and in mg fatty acid per g feed  
LPI HPI HPOZn HPOSe     HPOMn 

% mg/g % mg/g % mg/g % mg/g % mg/g 

14:0 2.3 4.79 2.3 4.85 2.3 4.80 2.3 4.70 2.3 4.74 

15:0 0.2 0.48 0.2 0.49 0.2 0.47 <0.1 <0.01 0.2 0.48 

16:0 10.5 22.15 10.4 22.04 10.5 21.98 10.3 21.34 10.3 21.61 

16:1n-9 0.2 0.45 0.2 0.46 0.2 0.45 <0.1 <0.01 0.2 0.46 

16:1n-7 2.2 4.55 2.2 4.65 2.2 4.61 2.2 4.53 2.2 4.62 

17:0 0.3 0.68 0.3 0.63 0.3 0.70 0.3 0.67 0.3 0.71 

16:2n-4 0.3 0.60 0.3 0.62 0.3 0.59 0.3 0.56 0.3 0.59 

18:0 2.3 4.92 2.3 4.98 2.3 4.92 2.3 4.84 2.3 4.91 

18:1n-9 38.6 81.05 38.8 82.35 38.4 80.81 38.7 80.27 38.1 80.03 

18:1n-7 2.7 5.57 2.7 5.63 2.6 5.55 2.6 5.49 2.7 5.58 

18:2n-6 (LA) 15.7 32.97 15.2 32.15 15.4 32.34 15.2 31.47 15.2 31.88 

20:0 0.4 0.94 0.4 0.82 0.4 0.80 0.4 0.88 0.4 0.85 

18:3n-3 (ALA) 5.6 11.78 5.6 11.96 5.6 11.74 5.6 11.65 5.6 11.83 

20:1n-11 0.2 0.49 0.2 0.49 0.2 0.51 0.2 0.48 0.2 0.49 

20:1n-9 2.6 5.51 2.6 5.59 2.6 5.54 2.6 5.39 2.6 5.55 

18:4n-3 1.0 2.04 1.0 2.10 1.0 2.10 1.0 2.04 1.0 2.09 

20:2n-6 0.2 0.34 0.2 0.37 0.2 0.41 0.2 0.39 0.2 0.38 

20:4n-6 (ARA) 0.8 1.78 0.9 1.85 0.9 1.80 0.9 1.89 0.8 1.76 

22:1n-11 2.8 5.90 2.9 6.10 2.9 6.15 2.9 5.98 2.9 6.17 

22:1n-9 0.5 0.98 0.5 1.03 0.5 1.13 0.5 1.14 0.5 1.10 

20:4n-3 0.2 0.46 0.2 0.49 0.2 0.49 0.2 0.48 0.2 0.48 

20:5n-3 (EPA) 3.2 6.77 3.3 6.96 3.3 6.91 3.3 6.81 3.3 6.93 

21:5n-3 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 0.1 0.22 

24:1n-9 0.4 0.78 0.4 0.83 0.4 0.84 0.4 0.81 0.4 0.81 

22:5n-6 0.1 0.29 0.1 0.26 0.1 0.27 0.1 0.25 0.1 0.25 

22:5n-3 (DPA) 0.4 0.79 0.4 0.79 0.4 0.77 0.4 0.74 0.4 0.76 

22:6n-3 (DHA) 4.9 10.24 5.0 10.55 5.0 10.51 5.0 10.38 5.0 10.56 

Sum saturated 16.2 34.0 15.9 33.8 16.0 33.7 15.8 32.7 15.8 33.3 

Sum 

monounsaturated 

50.1 105 50.5 107 50.2 106 50.4 104 49.9 105 

Sum EPA + DHA 8.1 17.0 8.3 17.5 8.3 17.4 8.3 17.2 8.3 17.5 

Sum n-3 15.3 32.1 15.5 32.8 15.5 32.6 15.5 32.1 15.6 32.9 

Sum n-6 16.8 35.4 16.3 34.6 16.6 34.8 16.4 34.0 16.3 34.3 

Sum 

polyunsaturated 

32.4 68.1 32.1 68.1 32.4 68.0 32.2 66.7 32.2 67.7 

n-3/n-6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 

n-6/n-3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 

Sum unidentified 1.0 2.20 1.1 2.43 1.1 2.33 1.4 2.84 1.9 3.93 

Sum identified 99.0 208 98.9 210 98.9 208 98.6 204 98.1 206 

Sum FA 100.0 210 100.0 212 100.0 210 100.0 207 100.0 210 
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3.2 Growth 

The fish grew from a mean weight of approximately 253 g to a mean final body weight of 296 

± 64 g, and the final weight of the fish per diet group is reported in Table 10. No significant 

differences in final weight were found between the different diet groups. There were also no 

significant differences in the condition factor (CF). For hepatosomatic index (HSI), it was 

significantly higher in diet groups HPOZn (p = 0.0041) and HPOMn (p = 0.0143) when 

compared to control diet LPI. Otherwise no significant differences occurred. The CF and HIS 

are given in Table 10 for each diet group.  

Table 10: Final weight, condition factor (CF) and hepatosomatic index (HSI) of Atlantic salmon fed the five different 

experimental diets. Final weight and CF were recorded for all fish (33/32 per tank). HSI and liver lipid was measured 

for six fish per tank. Numbers are mean and standard deviation (SD). Statistical difference is denoted by different 

letters. 

Diet LPI HPI HPOZn HPOSe HPOMn 

Final weight, g 284 ± 54 306 ± 64 295 ± 63 292 ± 69 306 ± 59 

CF 1.34 ± 0.10  1.38 ± 0.11  1.39 ± 0.12  1.37 ± 0.11  1.39 ± 0.11  

HSI 0.96 ± 0.15 a 1.00 ± 0.11 ab 1.12 ± 0.15 b 1.01 ± 0.12 ab  1.11 ± 0.14 b 

 

3.3 Mineral content 

The hepatic mineral content is given in Table 11. There were no significant differences in 

mineral content between any of the diet groups. However, the chelated Zn tended to give a 

lower liver Zn content than the inorganic form (p = 0.065).  

Table 11: Mineral content of Zn, Se and Mn in the liver of the different diet groups given in mg/kg ww. 

Diet LPI HPI HPOZn HPOSe HPOMn 
Zn (mg/kg ww) 21.5 ± 1.6 21.5 ± 1.2 19.7 ± 0.8 21.5 ± 0.5 21.0 ± 1.1 

Se (mg/kg ww) 1.64 ± 0.33 1.58 ± 0.17 1.45 ± 0.08 1.47 ± 0.10 1.33 ± 0.15 
Mn (mg/kg ww) 1.48 ± 0.08 1.48 ± 0.10 1.40 ± 0.06 1.45 ± 0.08 1.42 ± 0.11 

3.4 Gene expression 

A series of genes involved in lipogenesis, β-oxidation, FA transport and bioconversion were 

selected to perform a qPCR analysis on RNA extracted from the liver of Atlantic salmon fed 

the different experimental feeds. The dietary mineral source only had minor effects on the liver 

gene expression, with no significant effects on LXR, FAS, PPARα, CPT1, Δ5Fad or Δ6Fad 

(Fig.  6, Fig.  7). However, the expression of ApoB100 was significantly reduced (p = 0.0243) 

in diet group HPI compared to diet group LPI (Fig.  6). The expression of ApoB100 in diet 

group HPOMn was similar to that of LPI, and significantly higher than HPI (p = 0.0407). 

SREBP1 exhibited a similar expression pattern as ApoB100. There was a significantly lower 
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expression of SREBP1 (p = 0.0464) in diet group HPI compared to LPI, and although not 

significant (p = 0.145) there was also a trend towards higher expression in diet group HPOMn 

(Fig.  6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig.  6: Normalised expression of genes involved in lipid metabolism in liver of Atlantic salmon fed different diets. 

Statistical difference is denoted by different letters. Boxes provide 25th to 75th percentile, with the line giving the 

median. Error bars show minimum and maximum values, except for outliers which are provided as circles. Outliers 

are defined as 1.5 times the length of the box away from the box. 

 

 

 

Fig.  7: Normalised expression of genes involved in lipid metabolism in liver of Atlantic salmon fed different diets. 

Boxes provide 25th to 75th percentile, with the line giving the median. Error bars show minimum and maximum 

values, except for outliers which are provided as circles. Outliers are defined as 1.5 times the length of the box away 

from the box. 
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3.5 Liver lipids 

The liver lipid class distribution was very similar in all diet groups (Table 12). Except for a 

significantly lower amount of FFA in diet group HPOMn compared to diet group HPI (p = 

0.008), no diet-induced differences were revealed by this analysis.   

  

Table 12: Lipid class composition in liver. Results are presented as mean ± standard deviation in mg/g. Six fish were 

analysed per tank, thus a total of 18 fish per diet. One tank in diet D only had four fish analysed for lipid class 

composition.  

 LPI HPI HPOZn HPOSe HPOMn 

Total lipids 44.9 ± 15 52.6 ± 6.4 51.5 ± 10 56.7 ± 17 56.6 ± 8.4 

Total NL 7.9 ± 3.8 10.6 ± 3.2 9.86 ± 3.3 10.1 ± 4.2 11.5 ± 4.2 

Total PL 37.1 ± 12 42.0 ± 4.6 41.7 ± 8.3 46.6 ± 14 45.1 ± 8.0 

TAG 3.01 ± 2.3 4.59 ± 3.0 4.54 ± 3.0 4.13 ± 2.5 6.22 ± 4.3 

Cholesterol 3.25 ± 0.91 3.26 ± 0.28 3.22 ± 0.62 3.5 ± 0.92 3.47 ± 0.47 

FFA 1.05 ± 0.97 ab 2.09 ± 0.50 a 1.39 ± 0.81 ab 1.68 ± 0.98 ab 1.14 ± 0.59 b 

DAG 0.55 ± 026 0.67 ± 0.13 0.69 ± 0.27 0.79 ± 0.31 0.67 ± 0.15 

PE 6.39 ± 2.7 7.16 ± 1.3 7.29 ± 1.7 8.01 ± 3.5 8.36 ± 1.8 

CL 0.48 ± 0.28 0.61 ± 0.08 0.49 ± 0.21 0.67 ± 0.19 0.49 ± 0.26 

PI 2.29 ± 0.93 2.77 ± 1.2 2.34 ± 0.62 2.86 ± 0.75 2.86 ± 0.90 

PS 2.07 ± 0.93 2.44 ± 0.25 2.04 ± 0.72 2.59 ± 0.77 2.02 ± 0.59 

PC 23.2 ± 7.7 26.0 ± 3.4 27.0 ± 4.7 29.3 ± 8.7 28.7 ± 4.7 

SM 2.25 ± 0.73 2.30 ± 0.19 2.01 ± 0.63 2.49 ± 0.63 2.24 ± 0.53 

NL = neutral lipid; PL = polar lipid; TAG = triacylglycerol; FFA = free fatty acid; DAG = 

diacylglycerol; PE = phosphatidylethanolamine; CL = cardiolipin; PI = phosphatidylinositol; PS = 

phosphatidylserine; PC = phsophaticylcholine; SM = sphingomyelin 
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There was a positive correlation between the amount of TAG in the liver and the expression of 

FAS (r = 0.41, p = 0.00038, see Fig.  8). Additionally, the expression of FAS was positively 

correlated with the expression of Δ5Fad (r = 0.48, p < 0.0001) and Δ6Fad (r = 0.52, p < 0.0001) 

(See Fig.  9 and Fig.  10). The Δ5Fad and Δ6Fad also exhibited a positive correlation with liver 

TAG, with respectively r = 0.29, p = 0.012 and r = 0.35, p = 0.0024 (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  8: Correlation between liver TAG and the normalised expression of FAS. 

 

 

Fig.  9: Correlation between the normalised expression of FAS and Δ5 -desaturase 
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Fig.  10: Correlation between the normalised expression of FAS and Δ6-desaturase 
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4 Discussion 

4.1 Experimental design and feeds 

The concept was that the two control diets were both supplemented with inorganic micro-

minerals, but in either a low or high phytate environment. Since it is well known that phytate 

can cause inhibition of the micro-mineral uptake (Gatlin et al., 2007), it was expected that the 

bioavailability of the minerals would be lower in the HPI diet group than in the LPI diet group. 

It was then to be investigated whether this lowered bioavailability would have an effect on 

selected lipid metabolism markers. A difference between diet group LPI and HPI would indicate 

an effect of phytate. Restoration of marker levels similar to diet group LPI in the HPO diet 

groups, could then indicate improved digestibility of the organic minerals. No differences 

between the control groups, but with different levels in the HPO groups could then indicate an 

effect of the chemical form.  

However, there was a lack of impact of the phytate inclusion in the high and low phytate diets 

on the apparent digestibility (Prabhu, 2018), which seem to suggest that the difference in 

phytate might have been smaller than anticipated. This could be on account of wanting only to 

have phytate levels similar to what can be achieved in practical diets, and not add extra phytate 

to get artificially high levels. The analysis for accurate phytate content is not yet completed, but 

is performed as part of the project. The phytate levels used in the current study are not expected 

to have any effect on the digestibility of protein or lipid (Denstadli et al., 2006).  

4.2 Mineral availability  

The bioavailability of the different micro-minerals forms was, as mentioned, investigated as 

part of the larger project. Although not performed by the undersigned, a brief summary of the 

bioavailability in the current study is warranted. Yttrium was added to the feed as an inert 

marker, and the relationship between yttrium and the micro-minerals in the feed and faeces 

were used to calculate the apparent digestibility coefficient (ADC). This analysis showed that 

there was an improved uptake of organic selenium (Se-Met) compared to inorganic Se (selenite) 

(Prabhu, 2018), concurring with results in gilthead seabream (Domínguez et al., 2017), rainbow 

trout (Küçükbay et al., 2009) and the general consensus that organic Se has superior 

bioavailability compared to inorganic Se (Prabhu et al., 2014). There is some variability in the 

literature regarding the bioavailability of the other micro-minerals, and this could possibly be 
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species specific. In the current study, the inorganic Mn (manganous sulphate) achieved better 

ADC than organic Mn (chelate of glycine) (Prabhu, 2018). This is akin to results in gilthead 

seabream (Domínguez et al., 2017) but contrasting results in rainbow trout (Apines-Amar et al., 

2004). Neither the chelated Zn nor the Zn-sulphate showed a clear superiority over the other 

(Prabhu, 2018). This corresponds rather well with the findings of Maage et al. (2001) which 

indicated that organic and inorganic (glycine chelate of Zn and Zn-sulphate) were equally 

efficient Zn supplements for Atlantic salmon.  

Despite these differences in bioavailability, no significant difference in mineral content of the 

liver were induced. This means that the post-absorptive fate chemical form, i.e if still intact 

after absorption, is probably what would cause any changes on hepatic lipid metabolism 

markers. 

4.3 Desaturase genes 

No significant effects of the different chemical forms of micro-mineral supplementation on the 

expression of Δ5Fad and Δ6Fad were found in this study. This is despite that Zn has been linked 

to the desaturation process, owing to the similarities of Zn deficiency symptoms and EFA 

deficiency symptoms (Knez et al., 2017). Eder and Kirchgessner (1996), Cunnane et al. (1984) 

and Horrobin and Cunnane (1980) all discovered reduced desaturation capabilities in rats 

suffering from Zn deficiencies. Zn supplementation, together with other micro-nutrients, is 

needed for the biosynthesis of LC-PUFA in Atlantic salmon, but supplementation above the 

requirement did not result in any additional effect on LC-PUFA biosynthesis (Giri et al., 2016). 

Thus, the current results fit well with previous studies, as none of the groups in the current study 

were expected to suffer from Zn deficiency. If both mineral forms have the same chemical form 

after uptake, then it would be logical that no differences were observed when no differences in 

apparent digestibility were found. However, Rider et al 2010 found that Zn-sulphate and Zn-

proteinate did not have the same retention in different tissues of rainbow trout when supplied 

above requirements, suggesting a different metabolism of the two forms. Even so, the data from 

the current study indicate that Zn chelate of glycine and Zn-sulphate do not affect the 

desaturation process differently, at least when the total Zn levels in the diet are above the 

recommended requirement levels.   

Additionally, a relatively large proportion of the lipids in the present study were provided from 

FO, at around 44% of total lipids. FO contains a high percentage of the essential fatty acids 
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EPA and DHA, and they constituted 8% of the total lipids in the current diets. Hence, EPA and 

DHA were not limiting factors in the present experiment. It is well known that dietary EPA and 

DHA can affect the expression of fads genes in Atlantic salmon; Rosenlund et al. (2016), 

Betancor et al. (2014) and Bou et al. (2017) all found that increased dietary content of EFA led 

to reduced expression levels of Δ5Fad and Δ6Fad. Increased activity of desaturase and elongase 

enzymes with diets containing low EPA and DHA is also reported (Zheng et al., 2005b, Tocher 

et al., 2003). Furthermore, there exists evidence that low levels of EPA and DHA in the feed is 

necessary to see noticeable changes in the biosynthesis of LC-PUFA. Sanden et al. (2011) found 

that Atlantic salmon can have such high rates of elongation and desaturation as to be a net 

producer of DHA, but this effect was only noticeable with low levels of DHA in the feed. 

Turchini et al. (2011) found that Rainbow trout can also be a net producer of EFA when fed 

linseed oil, which is low in n-3 LC-PUFA. Bou et al. (2017) found that EPA+DHA below 1% 

in the feed resulted in high synthesis of LC-PUFA, but the effect was markedly reduced with 

levels above 1%. Consequently, as higher levels of EPA and DHA in the feed results in lower 

expression of desaturase and elongase genes, the expression in this study with 8% EPA+DHA 

would be relatively low. Hence, any eventual effects of the chemical form of the investigated 

micro-minerals on the expression of Δ5Fad and Δ6Fad might have been masked by the high 

FO content. 

4.4 Expression of ApoB100 and SREBP1 

The expression pattern of ApoB100 and SREBP1 in the current study seems to indicate a 

different effect of the chelated Mn than the Mn-sulphate. Despite the difference in digestibility 

between the two, the two chemical forms did not lead to significant differences in hepatic Mn 

content. This could indicate that it was the chemical form rather than the difference in 

bioavailability that caused the observed effects. The metabolism of Zn chelate and Zn-sulphate 

in rainbow trout appear to differ (Rider et al., 2010), so it is possible that the same may apply 

to Mn and thus lead to different responses.  

ApoB100 is critical for the production of VLDL (Sundaram and Yao, 2010) and SREBP1 is 

known to affect VLDL secretion (Wang et al., 1997). SREBP1 can cause increased synthesis 

of lipids for TAG production, and there is a close relationship between hepatic TAG synthesis 

and ApoB100 secretion (Yao and McLeod, 1994). Mn plays a role in activating 

glycosyltransferases (Chanda et al., 2015), and mammalian ApoB is dependent on 
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glycosylation of the N-terminal end for normal stability and secretion (Vukmirica et al., 2002). 

However, ApoB100 mRNA and protein level do not necessarily correlate well, and ApoB 

mRNA levels can remain very stable under metabolic conditions that alter secretion 

dramatically (Yao and McLeod, 1994). Furthermore, ApoB100 and SREBP1 are the only two 

parameters showing any response. There were no significant differences for the expression of 

FAS, which is the major enzyme catalysing synthesis of fatty acids for TAG used in VLDL 

production. Nor was there any significant changes in the expression of LXR, which also affects 

the VLDL assembly in mammals (Sundaram and Yao, 2010). There were also no significant 

differences in the hepatic TAG content, suggesting no increased clearance of hepatic lipid 

content. Furthermore, the phytate levels made no significant impact on the digestibility (Prabhu, 

2018), which is supported by the similar hepatic mineral content. As phytate did not impact 

mineral digestibility and diets LPI and HPI both had the same form of all the minerals, the 

reduced expression of ApoB100 and SREBP1 in diet group HPI was probably random rather 

than caused by the diets. Hence, it is also possible that the chelated Mn was not the cause of the 

differences in ApoB100 expression between the HPI and HPOMn diet groups, as the low 

expression in the HPI group seems to be a random occurrence.  

4.5 β-oxidation genes 

In mammalian studies, Zn has repeatedly demonstrated its anorexigenic properties. In mice, it 

ameliorated alcohol-mediated increased in hepatic TAG, cholesterol and FFA (Kang et al., 

2010). A decrease in expression of genes related to β-oxidation and VLDL production and –

secretion has also been shown (Kang et al., 2010). Simple Zn deficiency has also been shown 

to cause dysregulation in a large number of genes involved in lipid metabolism (Dieck et al., 

2003), with a clear trend of decreasing hepatic lipolytic processes and increase in hepatic 

lipogenic activity (Dieck et al., 2005, Dieck et al., 2003). None of the lipolytic or lipogenic 

enzymes themselves are known to contain Zn as an essential element. However, PPARα, a key 

regulator of lipid degradation, contain at least 2 zinc finger domains (Kang et al., 2010, Dieck 

et al., 2005), and the DNA binding capabilities of PPARα is significantly reduced during Zn 

deprivation (Kang et al., 2010). Thus, Kang et al. (2010) suggested that the effect of Zn on lipid 

metabolism is due to dysfunctional PPARα.  Similar effects of Zn are present in yellow catfish, 

in which Zn deficiencies tended to increase hepatic lipid content and excess reduced it (Zheng 

et al., 2015), and a 96 h chronic Zn exposure had the same effect (Zheng et al., 2013). In both 

cases the activity of CPT1 increased with higher Zn content, and Zheng et al. (2013) found a 
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positive relationship between the activity and expression of CPT1, indicating a pre-translational 

effect of Zn. This is in accordance with the possibility of PPARα being the mediator of the 

effects of Zn deficiencies and Zn excess on hepatic lipid content.  

There were no clear increases in any of the genes related to FA oxidation investigated in this 

study, with no significant differences between the diet groups for neither PPARα nor CPT1. If 

organic (or inorganic) micro-mineral supplementation had had any effect on the FA oxidation, 

likely similar effects as described in Zn excess/deficiency would have been seen. The non-

existent changes in gene expression corresponds well with the lipid class distribution in the 

liver, as an increase in FA oxidation should have been seen as a lowered lipid content. However, 

the experiment was probably too short for any noticeable changes in the lipid composition, to 

be further discussed below.  

4.6 Lipid class composition 

The lipid class composition analysis didn’t show many significant differences between the 

different diets in this study. There was a significantly higher amount of FFA in the diet group 

HPI than HPOMn, but this is not necessarily caused by biological reasons. The TAG proportion 

of the samples is highly sensitive to lipid hydrolysis, during which it is broken down to its 

constituents. This process is temperature sensitive, with higher temperatures leading to higher 

degree of hydrolysis, especially in samples with a high FA content (Rudy et al., 2016). Thus, 

the difference in FFA found between the two diet groups is probably due to degradation of 

TAG, most likely during weighing in for analysis, rather than differences caused by the diets.  

It is well known that salmonid tissues are affected by the dietary lipid composition (Glencross, 

2009, Turchini et al., 2009). The dietary lipids of the present study had the same amount of total 

lipids and the same FA profile, hence the dietary lipid would not cause any differences. All the 

investigated minerals have some direct or indirect connection to the lipid metabolism, but the 

chemical form seems to have had no effect on the hepatic lipid composition. This was not an 

unexpected result as there were few differences in the gene expression. Possibly, the experiment 

was too short for any effects to be seen on liver lipid class composition. Experiments 

investigating the effects of micro-minerals on lipid content usually last several weeks (e.g. 

Zheng et al. (2015), Tan et al. (2012), Luo et al. (2011), Maage and Julshamn (1993)). It should 

be mentioned that the liver lipid content of Atlantic salmon can change quite rapidly (Sissener 
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et al., 2017). However, it is possible that there was not enough time for the diets to affect the 

hepatic mineral status sufficiently for this to translate into the lipid distribution.  

4.7 Correlation between FAS and TAG, co-regulation with fads2 genes 

The expression of FAS correlated positively with the amount of liver TAG. It was not a strong 

correlation, but there are many factors affecting liver TAG in addition to FA synthesis, such as 

absorbed dietary lipids and lipid hydrolysis. An increased amount of FAS will still lead to 

increased FA synthesis which can be used to build up TAG, which is where fats are stored. As 

such, this correlation makes sense. That there was a correlation between the Fads and TAG is 

less intuitive, but it is probably derived from a connection between the expression of Fads genes 

and FAS. There are several examples of concurring increased expression of FAS together with 

Δ5Fad and Δ6Fad (Carmona-Antoñanzas et al., 2014, Martinez-Rubio et al., 2013). This could 

be on the account of them being regulated by the same transcription factors; FAS is a direct 

target of LXR in Atlantic salmon (Carmona-Antoñanzas et al., 2014), and LXR also led to up-

regulated expression of Fad and elovl genes in zebrafish (Pinto et al., 2016). FAS is a target of 

SREBP1 in Atlantic salmon (Minghetti et al., 2011), and so is Δ6Fad  (Zheng et al., 2009, 

Carmona-Antoñanzas et al., 2014). Additionally, Minghetti et al. (2011) showed a clear co-

expression of FAS with Δ5Fad and Δ6Fad after lipid depletion. This suggests a co-regulation 

between FAS and Δ5Fad + Δ6Fad, and that the correlation found between Δ5Fad and Δ6Fad 

with TAG is a result of this co-regulation. 

5 Conclusion and future perspectives 

The current results show no major overall effects of the chemical micro-mineral form on the 

selected hepatic metabolism markers, at least when supplied at above recommended 

requirement levels, as is often the case in commercial salmon feeds. Although some significant 

differences were seen in ApoB100 and SREBP1 expression it seems most probable that these 

were just random effects. The largest differences were seen between diets LPI and HPI, which 

both had the same mineral form and there was no effect of phytate on the mineral digestibility. 

Additionally, both diet groups had similar mineral content in the liver.  

It is possible the experiment was too short for the diets to bring about changes in the hepatic 

mineral status. Therefore, it could be of interest to see if any effects would occur over time with 
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longer experiments. To see if the organic forms can prevent inhibitory interactions, perhaps 

using diets with larger differences in phytate could be worth considering. If effects on the 

synthesis of LC-PUFA from the bioavailability or the chemical form is to be studied, then diets 

containing lower levels of EPA and DHA should be used. Furthermore, it may be of interest to 

examine whether the chemical forms remain the same after uptake and see if they have different 

metabolic pathways. If they do, they could have an impact on lipid metabolism.  
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