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Abstract 
 

 
Upstream open reading frames (uORFs) are in frame start and stop codons starting in the 5’                
leader of mRNAs. They have been found to regulate gene expression, primarily through             
translational inhibition by hindering ribosomes from reaching the protein coding ORF. Initial            
estimates concluded that almost half of the genes in the human genome contain uORFs,              
and studies have shown that uORF mediated mis-regulation can lead to health issues and              
disease. While some efforts have been made towards annotating uORFs, a comprehensive            
annotation of uORFs across the transcriptome and its regulation across tissues is lacking. 
 
 
This thesis presents methods for large scale detection of uORFs based on experimental and              
sequence-based data, and presents an atlas of the human uORFs and their use and              
regulation across >1000 samples in 122 tissues. uORFs need to be translated to act as               
regulators and from an initial population of > 2 million candidates, my method identifies              
21,766 uORFs as actively translated. Collectively, they show a strong bias towards a             
ATG/CTG start codon and disfavour codons known to disfavour translation, indicating that            
my method produces predictions of high accuracy.  
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Introduction 
 
The central dogma of molecular biology describes the flow of genetic information between             
three main states; DNA, RNA and protein. The DNA sequences contain the genetic             
information which is copied into RNA molecules in a process called transcription. These RNA              
molecules then serve as templates for the assembly of amino acids into proteins - in a                
process called translation. This thesis will focus on the latter of these steps, translation, and               
how specific regulators in mRNAs called uORFs can regulate this process. I will show how               
these uORFs can be identified, catalogued and how to predict differential usage in human              
tissues. The results will be validated by correlating to known biological features and             
compared with a small set of experimentally verified uORFs. The resulting pipeline can be              
used to predict uORFs in other species or on additional human tissues in the future.  
 
I will first give a general introduction to the biology related to and of uORFs, followed by the                  
methods and results constituting the work of this thesis. 
 
 

From RNA to Protein 
Ribonucleic acid (RNA) is the product of DNA transcription and, like DNA, consists of nucleic               
acids, which are: A, G, C and U (corresponding to T in DNA). One of RNAs important                 
functions is to serve as copies of genomic regions that can then be translated into proteins.                
RNA can also act as active regulatory molecules and as building blocks in structures like               
ribosomes 1. 
 
The first of these functions, as templates for translation, is accomplished through messenger             
RNAs (mRNA), which contain protein encoding regions. These regions can be read in a              
process known as translation to convert an mRNA nucleotide sequence into its            
corresponding protein sequence. Proteins consist of amino acids, of which several hundred            
naturally occur, but only 20 are in the genetic code 

2. The genetic code describes which RNA                 
bases encode which amino acids. These codes are written in triplets of nucleotides, called              
codons, each of which specifies a single amino acid. E.g. the triplet AGA codes for the                
amino acid Serine. Some amino acids are encoded by multiple codons making the genetic              
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code partially redundant. So for instance, in addition to AGA, Serine is also encoded by               
AGG.  
 
The CDS is typically the longest stretch of an mRNA that starts with a start codon (AUG,                 
CUG and others), and ends with a stop codon (UUG, UAG and UAA) in the same 3                 
nucleotide frame. In general, regardless of whether these stretches encode proteins, they            
are known as open reading frames (ORFs). Since codons consist of triplets, the length of               
these ORFs can only be multiples of 3. 
 
The canonical model of translation states that mRNAs consists of three main parts, from              
start to end; the 5’ leader sequence, (also called 5’ untranslated region or 5’ UTR), the                
coding sequence (CDS) and the 3’ trailer (also called 3’ UTR). The ribosome initiates              
translation by first binding to the 5’ cap at the start of the 5’ leader of the mRNA, it then                    
moves downstream, scanning until it finds a special codon, known as a start codon, which is                
the start of the CDS region. The genomic location of the start codon is called the translation                 
initiation sites (TIS), since this is where translation is initiated. These TIS’ are often              
surrounded by a favourable sequence called the Kozak sequence which helps to facilitate             
the initiation 

3. Upon recognition of a start codon, the ribosome will assemble into an               
elongation complex and start translation. During translation the ribosome will produce the            
CDS-encoded peptide. This will continue until a special stop codon is reached 

4, whereupon              
the ribosome is released. The end of the mRNA, the 3’ trailer, is typically not reached by                 
ribosomes. It contains many regulatory signals and ends in a stretch of nucleobase adenine              
(A) - referred to as the poly-A tail - which protects the mRNA from degradation and is used in                   
regulation 5 
 
Since the CDS encodes the primary translation product in the mRNA, the other parts of the                
mRNA have been called untranslated regions. However, 5’ leader sequences can also code             
for peptide products 6, and these regions are the topic of my thesis. 

Upstream open reading frames 
While traversing the 5’ leader, the ribosome may encounter sequences that closely resemble             
translation initiation sites of CDS’. Such sites are said to be upstream open reading frames               
(uORFs), since they begin upstream of the main ORF, see figure 1 for examples. Recent               
experimental techniques estimate that 20-50% of all transcripts contain uORFs 7.  
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Figure 1: a) Overview of a mRNA containing a uORF. b) Example of uORF overlapping the                
mORF (CDS). c) Example of mRNA with 2 uORFs. The m7G cap (in blue) on the 5’ end                  
protects the mRNA from degradation and is involved in regulation.  
 
Certain uORFs are thought to have an effect as a regulator for the CDS. These uORFs are                 
called functional uORFs. While there exist examples of uORFs that produce small proteins             
or increase translation of the downstream mORF, the main mechanism of most functional             
uORFs, is to repress expression of the CDS through evicting ribosomes that would otherwise              
translate the CDS. This occurs when a scanning ribosome recognizes the uORF start codon              
as a site of translation initiation, leading to translation of the uORF. Since the common mode                
of action is to release ribosomes after translation, once the ribosome reaches the uORF stop               
codon it will often disassemble and be removed from the mRNA. In this way the protein                
product of the CDS will not be created. The uORF may act as a on/off switch for the CDS                   
translation.  
 
The ribosome is sometimes not disassembled, but regains its scanning capabilities and            
therefore continues scanning past the uORF. Whether the main CDS can be initiated after              
translating a uORF is determined by multiple factors. If the distance between the stop site of                
the uORF and the CDS is too short, this can repress the CDS expression. The ribosome will                 
be unable to re-initiate on the CDS start, because the distance would not be enough to                
regain its ability to initiate translation. Studies have shown that changing this distance             
between the uORF and the CDS affects translation rate of the CDS8. The distance needed to                
re-initiate may depend on other factors like concentrations of regulatory molecules in the             
cell. This can control the required reinitiation time and distance, for translation to start again               
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9. The size of the uORFs also varies. As an example, in the ATF4 gene a uORF of only 12                    
bases   (a start codon, two codons and then a stop codon) regulates the main ORF 10.  
 
There are also other, less common, mechanisms for uORF functionality. If a uORFs is              
translated, it can lead to nonsense mediated decay (NMD), a process where the mRNA is               
degraded 

11. The NMD pathway uses the fact the mRNA in eukaryotes are spliced. By               
splicing the final mRNA does not contain all the bases of the DNA that was transcribed                
(called precursor mRNA), the removed parts are called introns and the remaining parts             
spliced together are called exons. On each gap between the exons, which are called              
exon-exon junctions, there are splicing proteins. These can act as a signal pathway. When              
the ribosome scan over these splicing proteins they are removed, such that if there are still                
splicing proteins left after ribosomes are halted, it means that not all exons were read by the                 
ribosome. Many mRNAs have exon-exon junctions downstream of the uORF stop sites. In             
these cases, uORF translation can lead to NMD and reduced gene expression (if the              
downstream CDS remains fully or partially untranslated).  
 
If the NMD pathway is not activated and the uORF stops before the CDS, the ribosome can                 
reinitiate at the CDS start codon. On the other hand, if the stop codon of the uORF is inside                   
the CDS as shown in figure 1 b), the ribosome cannot reinitiate, since it’s already past the                 
CDS start.  
 
The number of uORFs in leader sequences have been shown to be less than what is to be                  
expected by chance 

6,12. At the same time, an increased presence of uORFs in genes related                
to regulation, like transcription factors, have also been reported 

6,12. A comprehensive            
catalogue of human uORFs should therefore contain information about these different           
parameters and features to be able to predict whether the uORF is translated or not.  

Next generation sequencing 
Even though a possible uORF exists on the genomic sequence in proximity to the 5’ leader it                 
does not mean that it will be transcribed into mRNA. Some genes produce alternative              
products called splice-isoforms or are exclusively transcribed in certain tissues. That means            
certain uORFs only exist in tissues with the required variant of the 5’ leader. To understand                
among others these variations between tissues, several experimental methods have been           
developed. In this project I made use of 3 next generation sequencing (NGS) technologies              
to identify variants of 5’ leaders and their translation. By combining these, I could estimate               
accurately which uORFs are translated (active) in a given tissue or cell-type.  
 
Most NGS technologies use the fact that different experimental methods retain certain            
regions of the DNA or RNA being investigated. These regions that are then mapped to               
locations on the genome are called reads. The number of reads mapped to a given position,                
provides information about how strong the signal is at that location. See figure 2 for typical                
read distributions of the relevant NGS technologies. 
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Figure 2: Three NGS technologies and their typical read distributions a) RNA-sequencing,            
a method to catch small reads of RNA which can be aligned to the genome, this gives                 
evidence for which mRNA isoforms are expressed in tissues. b) CAGE, a method to catch               
location of the 5’ end of the mRNA transcript. They are a special case, since it is the start                   
position of the reads that is important, not the whole read. c) Ribosome-sequencing, a              
method to identify locations of ribosomes on the transcripts, providing evidence of            
translation.  

RNA sequencing 
RNA-sequencing (RNA-seq) is a NGS technology that gives a snapshot of the current             
mRNAs in the cell. Several experimental protocols exists, for both mRNA and total RNA              
levels in the cell. For mRNA this is done by removing the DNA in the cell by DNase, and then                    
extracting the mRNA by their poly A tails, converting the RNA back to complementary DNA               
(cDNA), which is then sequenced and mapped back to the genome. This can be used to                
identify which mRNAs are present in the cell, as well as their relative abundance in a                
sample. 

CAGE 
RNA-seq experiments have some drawbacks, one of them is that it is not good at capturing                
the exact 5’ end (the transcription start site) of the mRNA. A complementary sequencing              
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technology has therefore been developed called cap analysis gene expression (CAGE) to            
address this problem. CAGE extracts short reads of the 5’ ends of the mRNA transcripts and                
sequences only these, providing a deep sampling of the transcription start site landscape of              
each sample. Allowing the discrimination of leaders with alternative 5’ caps, that can occur              
when, for example, different tissues  are regulated by different promoters. 
 
For the study of uORFs, the usefulness of CAGE lies in the fact that some tissues will                 
contain longer or shorter leaders than other tissues. Therefore different uORFs can            
potentially be found in those tissues. In this way CAGE enables us to map tissue specific                
uORF usage.  
 

Ribosome profiling 
To be able to identify which uORFs are actually translated, ribosome profiling can be used.               
Ribosome profiling (ribo-seq), is a NGS technology that provides a snapshot of the mRNAs              
that are currently being translated. The protocol is similar to the RNA-seq protocol, the              
difference is that all mRNAs are digested such that only positions where ribosomes are              
currently positioned are retained. These positions are called ribosome protected fragments. 
 
Since the protocol takes some time to complete it is desirable to prevent the ribosomes from                
moving further along on the mRNA, for accurate determination of the boundaries of the              
translated region. To accomplish this, samples can be treated with chemicals such as             
cycloheximide, flash frozen or exposed to other treatments that halts translation. 
 
While most mRNA fragments not protected by ribosomes are expected to be washed away              
during the protocol, RNA-binding proteins and RNA structural elements can produce the            
same protective environment as the translated mRNA and may be accidentally captured and             
sequenced 

13. Because of this, sophisticated methods are needed to separate signal from             
noise. These methods will be discussed in the Methods section. 
 
The ribosome-derived fragments from ribosome profiling have lengths around 28-34, since           
that is the number of nucleic bases spanned by the ribosome. When aligned with a               
transcriptome reference (a map of genomic coordinates for mRNAs), the corresponding           
reads will span more nucleic bases than just the codon it is currently translating, although               
the ribosome is known to read one codon at a time. Finding this specific codon within the                 
read of length 28-34 is called p-site shifting.  

uORFs translation level and biological function 
Most uORFs are thought to act by limiting the number of ribosomes reaching the CDS. So                
despite being translated it does not follow that the peptide resulting from uORF translation is               
biologically functional. Most uORF peptides are likely degraded with small effects on the cell,              
if any at all 14. Many of the reported regulatory effects from uORFs have been linked with                 
specific cellular conditions or events. For example the regulatory effect of uORFs the ATF4              
gene are dependent on eIF4G concentration. It is therefore important to separate translation             
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rate and biological function. To predict translation is easier, since ribosome profiling (in             
combination with RNA-seq) allows quantification of the translation rate of a given RNA             
sequence. While regulatory functions that affects phenotypes may depend on more than just             
translation of the uORF. For the sake of clarity our definitions are as follows: 1) a uORF is                  
simply a sequence delimited by a start codon and an in-frame stop codon beginning in the 5’                 
leader; 2) a translated uORF is a uORF that exhibits feature profiles in ribo-seq and               
RNA-seq experiments similar to those observed over canonical coding sequences and 3) a             
functional uORF is a uORF that regulates translation leading to a measurable cellular             
phenotype. This gives a concise definition of the goal for this thesis, I want to find translated                 
uORFs so that a potential set of functional uORFs can be experimentally validated from this               
set and show differential usage between tissues.  

Examples of functional uORFs 
Global uORF features have been investigated in several species. uORFs have on average             
been found to modestly repress the translation of the CDS, leading to a ~ 15 - 30 % down                   
regulation 

15. The repressiveness also increases with the number of uORFs in the leader              
sequence. The distance between uORF ends and CDS starts, also correlates with reduced             
CDS translation rate 

16. It has been estimated that around half of all transcripts in the human                 
genome contain translated uORFs 

17, and only a small part of these have been              
experimentally validated. Most of these validated uORFs have been catalogued in the            
database uORFdb 

18. However, uORFdb contains only 166 uORFs from the human genome,             
and only a part of these are actually validated. The articles referenced in uORFdb mostly               
focus on specific uORFs, that have been extensively investigated, like the uORFs in the              
ATF4 gene and the BRCA1 gene. 
 
The ATF4 (activating transcription factor 4), is a gene that codes for a transcriptional              
regulation product. It has three experimentally validated functional uORFs in its leader            
sequence 

10, see figure 3. uORF 1 positively regulates the translation rate of the CDS, while                
uORFs 2 & 3 negatively regulate the CDS. Two different scenarios happen in translation of               
this transcript. In the first scenario, shown in figure 3 a), the ribosome scans to and                
translates uORF 1. The distance is then too short for the ribosome to reinitiate at uORFs 2                 
and 3, allowing translation of the CDS. In the second scenario, uORF 1 is skipped leading                
instead to translation of uORFs 2 and 3. Since uORF 3 overlaps the CDS, this               
downregulates the CDS expression. Under certain stress situations in the cell, the translation             
rate of uORF 1 is upregulated, this make the CDS translation rate increase. This is a                
complex example of how uORFs can regulate the CDS and contain uORFs that both up and                
downregulate the CDS, even though on average uORFs are found to downregulate the             
CDS.  
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Figure 3: Illustration of regulation by uORFs on the mRNA from the ATF4 gene. a) In the                 
first scenario uORF 1 is translated, which leads to a too short distance for the ribosome to                 
reinitiate at uORF 2 and 3. As a result the mORF is translated. b) In the second scenario                  
uORF 1 is blocked, because of changes in eIFa concentration, uORF 2 and 3 are translated.                
The third uORF ends inside the mORF, which means the mORF will not be translated.               
Ensembl transcript ID: ENST00000396680.  
 

Prior work in detecting uORFs 
Several studies have looked at specific uORFs or specific metrics like start codon, distances,              
and periodicity 

19, to infer whether a given uORF is actively translated and potentially              
functional.  
 
Most experimentally verified uORFs have ATG as their start codon. uORFs that do not have               
ATG as their start codon are called, non-ATG uORFs. Some of these have been shown to                
be evolutionary conserved between species and are estimated to be  functional 19.  
 
There are very few examples of similar efforts to what I wanted to achieve. The most recent                 
example is an article from McGillivray et al.20. The article describes a prediction of uORFs in                
the human transcriptome using a small set of  3 ribo-seq datasets.  
 
There are currently no accurate annotations for differential uORF usage in human tissues.             
This makes it problematic to prioritize candidate functional uORFs for experimental           
validation.  
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Aims of thesis 
 
In this thesis I have constructed a comprehensive catalogue of human uORFs and provided              
a standardized way to classify and identify them. I have furthermore annotated their             
regulation across 1863 human transcriptomes in 122 tissues. The pipeline was optimized for             
fast and efficient searches in NGS libraries, allowing the catalogue to be easily extended in               
the face of new data. It has been included as an R package with the latest Bioconductor                 
release and features well documented code, that can be reused and extended by others. 
 
The primary challenge of the thesis was to find an efficient way of identifying translated,               
active uORFs and the biological features that distinguish them from other elements in 5’              
leaders. To accomplish this I catalogued all possible uORFs across all transcriptomes and             
based on this built a classifier to identify the translated uORFs based on experimental data. I                
therefore had two sets of uORFs, candidate uORFs identified purely by sequence, and             
uORFs predicted to be translated. First, I trained a classifier using experimental data for              
translation and transcription: ribo-seq and rna-seq. I used CDSs and 3’UTR regions to learn              
the features of translated ORFs based on these datasets. I then applied this model to obtain                
a high confidence set of translated uORFs. I used this high-confidence set to build a second                
classifier relying only on sequence features of these translated uORFs, which could be             
applied to all tissue-specific transcriptomes for which ribosome profiling data was not            
available. Finally, I validated my findings with experimentally verified uORFs and compared            
the final predictions of active uORFs  with the ones reported by  McGillivray et al. 
 
The primary goals can be summarised as follows 
 

1.  Develop an efficient and easy to use tool for finding uORFs. 
2.  Make a database containing all identified uORFs . 
3.  Predict translated uORFs from features of CAGE, ribo-seq and RNA-seq. 
4.  Predict uORFs across all transcriptomes based on sequence features of (3) 
5.  Describe tissue variance of uORF usage in humans  
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Methods 
The atlas presented in this thesis was made with different bioinformatics tools, several of              
which were made by me as part of the project. This chapter will describe the relevant steps                 
that went into making these tools and the resulting atlas. I will focus on the relevant tools and                  
methods used in a biological and computer science perspective.  
 
The primary methodical steps were: 
 

1. Preparing datasets (CAGE, ribo-seq and RNA-seq) 
2. Reannotating the 5’ leader sequences using CAGE. 
3. Identifying putative uORFs in these new leaders. 
4. Calculating  metrics for all putative uORFs. 
5. Training classifiers to identify the subset of translated/active uORFs. 
6. Comparing my predictions to experimentally validated uORFs.  

 

Overview of Datasets 
Datasets used in this thesis are the following: 
 
The genome reference for the human genome was: Genome Reference Consortium Human            
Build 38 (GRCh38 patch 79). 
 
The transcriptome annotation (the mRNA locations on the genome) was the ensembl gene             
reference from GRCh38. 
 
The CAGE libraries used were from the Fantom 5 projects (1863 files in total), a collection of                 
of  164 cell lines, primary cells and tissues. 
 
The ribo-seq libraries (103 experiments in total) were downloaded from different experiments            
listed in supplements. 
 
The RNA-seq libraries (43 experiments in total) were downloaded from different experiments            
listed in supplements. 
 
GEO accession numbers for experiments used, can be found in supplementary table 1.  
 

Preparing datasets 
The different datasets needed to be filtered and preprocessed, to remove data that were not               
usable for our purposes. CAGE experiments belong to different tissues, we filtered out all              
experiments that that did not have at least 2 experiments for its specific tissue-type.  
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For the ribo-seq and RNA-seq, only pairs of experiments that were from the same tissues,               
were kept. That means ribo-seq tissue types that did not match any RNA-seq experiment by               
tissue were filtered out.  
 
I then created the table containing the data that would be used in the thesis.  
 
For the CAGE data: 

1. A table for the experiments with the experiment id, file location and tissue type.  
2. For each CAGE experiments, filter out all reads that does not have a least one 

duplicate in the experiment. This was done to remove noise.  
 
For ribo-seq and RNA-seq data:  

1. A table for each experiment with experiment ID, file location, tissue type and 
treatment type (haringtonin, flash freezing and cycloheximide)  

2. A matching table, where only ribo-seq and RNA-seq experiments with the same 
cell-line and treatment  type are accepted. From the original 103 ribo-seq and 43 
RNA-seq, I created valid 35 matching pairs of ribo-seq and RNA-seq.  

 
If available, samples from cancerous and healthy cell lines for the same tissue were 
matched. 

Finding uORFs 
To find the uORFs, we developed an R / c++ package called ORFik, available on               
Bioconductor (https://bioconductor.org/packages/release/bioc/html/ORFik.html). The   
package features a pipeline that can be run in one function to: 1) reassign TSS’ and                
annotate 5’ leaders based on CAGE, 2) find all ORFs and 3) calculate ribo-seq and RNA-seq                
features from these. It can be run on any eukaryotic and even circular prokaryotic genomes.               
The inspiration for ORFik was to search for uORFs, but it could also be used to identify other                  
ORF such as novel genes and micropeptides. 
 
The procedure in ORFik to find uORFs is the following: 

 
For each leader sequence in the transcriptome, change the TSS to the strongest             
CAGE-peak, see figure 4. The strongest CAGE-peak must be a position with more than 1               
CAGE-read and a maximum of 1000 bases upstream of the original TSS. The peak can also                
be downstream of the original TSS, see TSS search space in figure 4.  
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Figure 4: The search space definition for uORFs and TSS selection in leader sequences.              
The new TSS is the position with most CAGE-reads ( must be more than 1) in the search                  
space. If no reads are present, the original TSS is used. EEJ is the exon-exon boundary in                 
the mORF, the end point of the search space for uORFs. The search space of the tss spans                  
1000 bases upstream of the annotated TSS until the end of the original leader.  
 
The CAGE data used are from the FANTOM 5 project 21 whose purpose was to make a                 
definitive atlas over all promoters in humans. The leaders are also extended downstream to              
include the first CDS exon, to allow uORFs to overlap the cds. Finding the reassigned               
leaders is done by the function reassignTSSbyCage() in ORFik. The function takes as input              
the Original 5’ leaders and the CAGE file, together with filtering options specified above.  
 
On these reassigned leaders, I searched for ORFs. This must be done efficiently, since there               
are so many leaders to search for uORFs in. A total of 1863 different CAGE libraries and                 
78423 transcripts with 5’ leaders in the human genome. I made a c++ implementation of the                
Knuth–Morris–Pratt (KMP) string search algorithm. That indexes hit locations of start codons            
and stop codons, see figure 5. 
 
A start codon was defined as the set of the start codon ATG and all 1 base variations: 
 {ATG,  CTG,  TTG,  GTG,  AAG,  AGG,  ACG,  ATC,  ATA,  ATT} 
 
Stop codons was defined as the set: 
{TAA,  TAG,  TGA}  
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Figure 5: Finding start and stop codons in fasta file by the KMP algorithm. The number of 
hits of the substring (start/stop codon) on the transcript is counted. When the value reaches 
3, it means there is a full match. Seen as dark blue and red for start and stop codon. The 
start site in transcript coordinates is for this example 9-2 = 7, stop site is 18-2 = 16.  
 
All hits of start and stop codons on the transcripts were indexed, and pairs of start and stop                  
codons were returned that were in frame (that is the modulus 3 distance between them is 0),                 
and obey the rule that each start codon can only be used with its closest in frame stop codon                   
downstream. Lastly the positions of the uORFs must be converted to genomic coordinates.             
For instance. in figure 5, the start codon is on position 9. This is relative to the transcript, the                   
genomic coordinates most likely is something different. 
 
DNA is double stranded, that means it consists of two paired strands containing the same               
complementary information. These two strands are represented as the positive strand and            
the negative strand. Therefore a mapping to genomic coordinates is done in opposite             
directions for the two strands. The example equation for a single exon leader sequence is               
shown under.  
 
Sequence index: position of start codon given by KMP algorithm, see figure 5. 
TSS: Genomic coordinate of TSS.  
 
For mRNAs on positive strand: 

enomic coordinates TSS sequence indexG =  +   
For mRNAs on negative strand: 

enomic coordinates TSS sequence indexG =  −   
 

Finding uORFs is done with the function findMapORFs() in ORFik. The function            
findMapORFs takes as input the leaders FASTA sequences, together with start and stop             
codon definitions, and the minimum uORF length of 12 bases.  
 
The function findMapORFs was computed for each of the 1863 leader definitions, found in              
the previous step. We made ORFik as a general tool used in ORF prediction. I therefore                
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made a pipeline wrapper around ORFik for running ORFik in parallel specifically for uORFs.              
The uORFome pipeline I made utilising ORFik, see figure 6, is available at:             
(https://github.com/Roleren/UORFome).  
 

 
Figure 6: The uORFome pipeline. A flowchart showing the general steps taken to create the               
uORFome atlas. The defined search space of the uORFs shown in figure 5, was searched               
for uORFs using ORFik. The processed data were used to calculate features on the uORFs.               
The features of the CDS and 3’UTRs are calculated the same way. A database was created                
with all the results. From the database I analysed the data for patterns and trained a                
classifier. I lastly predict functional uORFs on this classifier.  
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Constructing a uORF Database  
Since the size of the datasets returned is quite big, there was need for an efficient way of                  
storing and querying the data. An SQLite database was created for this purpose. The              
database consists of several tables of data, which can extracted efficiently.  
  
The 4 initial tables added into the database after finding the uORFs where: 
 

1. A table of all the uORFs found and their genomic coordinates, chromosome and             
strand. 

2. For each uORF: Ensembl transcript id for the transcript it came from, and Gene id               
from the gene the transcript came from.  

3. For each CAGE experiment (1863 in total), which uORFs does the leader sequences             
contain. A logical (True/False) table.  

4. For each tissue from CAGE data (122 in total), which uORFs does the leader              
sequences contain. A logical (True/False) table.  

 
A tissue was defined to have support for a specific uORF if two experiments from that tissue                 
contained the specific uORF. Out of the 164 tissues, 42 were rejected, because they only               
had 1 experiment ( so they could never have two experiments supporting a uORF). Leaving               
a total of 122 tissues in the database. From this you can query for uORFs in specific tissues,                  
or check which tissues a uORFs is supported by CAGE. 
 
The primary key of the database is called the orf-identifier. It is a unique identifier that                
specifies an ORF. 
 
It is of the syntax:  
“chromosome, strand, start width” 
 
An example from chromosome 1 with single exon uORF is: 
chr1,-,9938553 33 
 
For multiple exon uORFs a repetitive syntax is given for start and width per exon. 
Each exon is split by a semicolon.  
“chromosome, strand, start_1 width_1;start_2 width_2” 
 
An example from chromosome 1, with two exons is:  
chr1,-,112792 15;55281 396 
 
All tables related to uORFs will use this primary key, so all the uORF tables have the same                  
number of rows as in the primary key table. That is the total number of uORFs. 
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Calculating Features of uORFs  
After the completion of the initial database, features and metrics could be extracted and              
calculated from the uORFs. I comprehensively catalogued and implemented all features that            
have been described in scientific articles having a possible relevance for ORF translation             
22,23,24,25–29,30. Since these are the features used in my model, description for all the features               
will be shown here.  

Ribo-seq FPKM  
FPKM (Fragments Per Kilobase per Million reads) is a normalization on the number of              
overlapping fragments per region of interest. For ribo-seq reads of uORFs this is the number               
of reads per uORF normalized to the length of the uORF and the ribo-seq library size. This is                  
a measure of translation. 9 

 
nReads: number of reads 

PKMribo (nReadsOrf   × 10 9) / (orfLength × librarySize) F =  ˆ  

RNA-seq FPKM 
This FPKM normalization uses the RNA-seq reads to find the number of overlaps per              
transcript. It is defined as number of reads per transcript normalized to the length of the                
transcript and the RNA-seq library size. This is a measure of RNA expression. 
 
Tx: transcript 
 

PKMrna (nReadsTx × 10 9) / (orfLength × librarySize) F =  ˆ  
 

Translation efficiency 
Translational efficiency (TE) is normalization between ribo-seq FPKM and RNA-seq FPKM to            
find a more accurate value for the translation rate per uORF. Since mRNAs are transcribed               
at different rates, the ribo-seq fpkm does not explain how efficient a uORF is translated. To                
find a relative and less biased comparison, ribo-seq fpkm can be normalized by the RNA-seq               
fpkm, so that the relative transcription rate is included.  
 

E PKMribo / FPKMrnaT = F  
 

ORFscore  
Since the ribosome reads three bases at a time, the ribo-seq reads, which map the position                
of the ribosome, should have a higher accumulation in the frame of the ORF (frame 0),                
compared to the two other frames (frame 1 and frame 2). ORFscore is a function of the                 
number of reads in each of the three frames.  
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rameTotal (nReads0 nReads1 nReads2) / 3f :  +  +   

 
rame0 (nReads0 f rameTotal) 2 / f rameTotal f :  −  ˆ  
rame1 (nReads1 f rameTotal) 2 / f rameTotal f :  −  ˆ  
rame2 (nReads2 f rameTotal) 2 / f rameTotal f :  −  ˆ  

 
If: frame0 < frame1 or  frame0 < frame 2 

     
RFscore og(f rame0 f rame1 f rame2)O =  − l +  +    

else:  
RFscore log(f rame0 f rame1 f rame2)O =  +  +     

 
The ORFscore is negative if frame1 or frame2 have more reads than frame0.  

Kozak Sequence score 
The ribosome binds certain areas of the mRNA better than others, these strongly binding              
sequences called Kozak sequences can be compared between the start site region of each              
uORF, to understand how strongly the uORFs binds the ribosome. Using the experimentally             
verified reference Kozak sequence for human, represented as a position frequency matrix            
(PFM), I made a position weight matrix (PWM) used to score to ribosome binding strength of                
each uORF 29.  
 
promoter:  a string from the genomic alphabet [ATCGN] in the TIS region region of ORF. 
Given TIS position as position 0, the Kozak region is defined as {-9:-1, 3:5}. Start codon at 
{0:2} is excluded. 
 
len: length of promoter, same as number of columns in the PFM. 
[index]: index accessor of vector with promoter region 
[row, column] index accessor of matrix, there are 5 rows, the genomic alphabet [ATCGN] 

ozak Score WM (PFM [, ], promoter[i])K =  ∑
len

i = 1
P i   

 
It should be noted that the start codon is not part of this Kozak sequence score, as that 
would bias the search towards ATG uORFs, since these have the highest Kozak scores. A 
new member of the DNA base set is added here, called N. Used in genome assemblies 
when the actual base is unknown.  
 
 

Entropy 
To see how the ribo-seq reads distribute over all the ORF codons, a read distribution entropy                
score is used. It calculates logarithmic variance over the distribution of reads. It provides              

23 

https://paperpile.com/c/H1sGgK/hF5FC


 

evidence for certain biases in read coverage. An examples would be all reads only              
overlapping the start codon.  
 
codonSum: sum of reads per codon 
N: sum of reads in ORF 
len: length of ORF 
cLen: number of codons, that is (len / 3). 
i: sequence from (1 … cLen) 
 

 odonSum[i] / N  X = c  

x [i] × log2(X[i])H =  ∑
cLen

i = 1
X  

x 1 / cLen × log2(1 / cLen)M =   
 

ntropy Hx / Mxe =   
 

Disengagement Score 
Defined as the ratio of reads over the ORF, by reads over the remaining downstream part of                 
the transcript. 
 
Down stream is defined as the space: [ORFStop+1, TxStop] 

isengagementScore nReadsORF  / nReadsTxDownStreamd =   
 

Inside Outside Score (IO score) 
Defined as the ratio of reads over the ORF by reads on the rest of the transcript.  
 
Outside is defined as the length: [TxStart, ORFStart-1] + [ORFStop+1, TxStop] 

O nReadsORF  / nReadsTxOutsideI =   
 

Ribosome release score (RRS) 
To see how strongly the ribosome translate the ORF compared to the trailer, RRS can be                
used. It is defined as the number of ribo-seq reads over the ORF divided by the number of                  
reads over the trailer of the transcript that contains the ORF. This is normalized by length. It                 
is similar to disengagement score.  
 

RS  nReadsORF  / ORF length ) / ( nReadsT railer / trailerLength )R = (  
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Ribosome stalling score (RSS) 
To see how strongly the ribosome stalls on the uORF stop codon, RSS can be used. It is                  
defined as the number of ribo-seq reads over the uORF stop codon divided by the number of                 
reads over the whole uORF. This is normalized by lengths.  
 
nReadsORFStopCodon: number of ribo-seq reads over the uORF stop codon. 

SS  nReadsORFStopCodon/ 3) /( nReadsORF  / ORF length )R = (  

Distance to CDS 
 
The distance between the stop site of the uORF and the start site of the CDS can not be                   
calculated directly in genomic coordinates. Transcript coordinates is needed, to remove           
exon-intron boundaries. 
 
stopORF: stop site of ORF in transcript coordinates 
startCDS: start site of CDS in transcript coordinates 

istToCds startCDS stopORF   d =  −   
 
The distance is negative if ORF stops inside the CDS. 
 

Relative frame to CDS 
The distance between the uORF and the CDS can be used to calculate the frame of the                 
uORF compared to the CDS.  
mod: modulus operation.  

rfF rame (distToCds 1) mod 3o =  −   
 
If orfFrame is 0, it means the ORF is in frame with the CDS. 

Fraction length 
To find the relative size of the uORF compared to the transcript it belongs to. It is defined as                   
the ratio of the uORF length by the transcript length. 
 

racLength ORFLength / TxLengthf = u  
 

uORF rank order 
A transcript can have several uORFs, and since the ribosome scans from 5’ to 3’, an                
ordering of the uORFs in the transcript can be created. The order in which the uORFs occur                 
in the transcript can be computed by sorting the start sites of each uORF in the transcript.                 
This is called the rank order of the uORFs.  
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All of these features were implemented into our package (ORFik).  
 
For calculating the features a valid set of matching ribo-seq and RNA-seq experiments were              
used. These grouped to 5 tissues / cell types. 
Tissues of ribo-seq and RNA-seq (35 matched pairs in):  
 { Brain, kidney, fibroblast, prostate, Ovary } 
 
The table of GEO matchings can be found in supplements.  
 
The ribo-seq also needed to be pre processed, shifting the reads to the p-site, as described                
in the NGS section of the introduction. This was done using the program Shoelaces with               
automatic shifting of the different ribo-seq read lengths. The algorithm used by Shoelaces             
was integrated into ORFik as the function shiftFootprints(), so no installation of shoelaces is              
needed in future use. 
 
Calculations for all ribo-seq, RNA-seq and sequence features were calculated for uORFs,            
CDS’ and trailers. These were stored as tables in the database. Some features could not be                
calculated for CDS’ and trailers, e.g. distance to CDS for the CDS is always 0. The primary                 
key for accessing CDS and trailer tables was the ensembl id of the transcript it belonged to.  
 

Prediction of Translated uORFs 
To predict which uORFs are translated, I chose to make a pipeline of combining two random                
forest classifiers. Described in figure 7. The motivation for this choice was that I only had 5                 
tissues from ribo-seq (35 samples), while I had 122 CAGE tissues (1863 samples). I also did                
not want to bias the model towards sequence features like the start codon etc. By first                
creating a model for ribo-seq features I could ensure that I identified translated ORFs and               
could then extract sequence features from these that did not depend on ribo-seq. This              
enabled us to predict for any tissue as long as there is 5’ leader annotation  available. 
 
Since the amount of validated uORFs in uORFdb is so small, I could not train the first                 
random forest on uORFs. I therefore chose to use CDS’ as positive set and trailers as                
negative set. Using the open source big data analysis package H2O, from H2O.ai, I trained               
a random forest with 8 of the CDS and trailers ribo-seq and RNA-seq features.  
 
The features were:  
{floss, TE, ORF-score, entropy, inside-outside score, disengagement score,        
ribosome-release score and ribosome-stalling score}.  
 
The random forest prediction model was chosen to output regression instead of            
classification, to give more control on cut off between predicted translating / non-translating.             
The input data was split into 60% for training and 40% for validation, using 10 cross                
validations.  
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Figure 7: Representation of prediction pipeline. This is a detailed model of the training and               
prediction steps in the uORFome pipeline shown in figure 6. First a Random forest model is                
trained from CDS’ ribo-seq features as positive set and trailers ribo-seq features as negative              
set. Then the uORFs ribo-seq features are inserted into this classifier, and uORFs are              
predicted. These predictions are sent into the ribo-filter, that only accepts the uORFs that              
were predicted with more than 0.7 (70% certainty). Also the Ribo filter takes in the sequence                
features of the uORFs, the uORFs are grouped by stop codon position, such that all uORFs                
with same stop codon position are in the same group. One uORF per group is chosen, as                 
the biggest with more than 20 reads on the start codon. A sequence classifier is trained on                 
these as positive, and a random sampling as negative set. All candidate uORFs were then               
predicted on by their sequence features. Lastly CAGE-predictions are combined with this            
predicted to set give the resulting uORF prediction.  
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I then predicted translated uORFs using the same 8 ribo-seq/RNA-seq features for uORFs             
instead of CDS’ and trailers.  
 
The second random forest was trained with the sequence features of the uORFs. I used the                
predictions from the ribo-seq model as input for the second random forest. A filter was added                
to reduce false positives. All uORFs was grouped by stop codon, so that all uORFs with the                 
same stop codon were in the same group. If the group had a uORF that had more than 20                   
reads overlapping the start codon and the ribo-seq prediction had a probability of at least 70                
%, it would be inserted in the positive training set. A random set 3 times bigger than the                  
positive set was chosen from the remaining uORFs not in the positive training set.  
 
The splitting and training parameters of the data was equal to the first. 
 
By this model I predicted on all candidate uORFs, by their sequence features: 
{ distance to CDS, length of uORF, fraction length, Kozak score, relative frame to CDS, if                
uORF overlaps CDS, uORF rank order}  
 
A prediction for each of the 5 ribo-seq tissues was made, and stored in the database.  
It is important to note that since I had 5 tissues of ribo-seq, 5 models were made. One for                   
each ribo-seq tissue combined with sequence features. The final sequence model is made             
by combining these 5 tissue specific models into one. They were included by taking the               
union of the 5 sets. 
 
 model#: The sequence model by tissue 
inal sequence model model1 ∪ model2 ∪  model3 ∪  model4 ∪  model5F =   

 
Lastly to get the final prediction, I combined the results from the sequence prediction and our                
earlier CAGE leader annotation (the logical tables of uORFs per Tissue), to give a final atlas                
of which uORFs were predicted in each of the 122 tissues. Since both tables were               
represented as logicals, a simple intersection operation gave the final prediction, one            
uORF-prediction per tissue.  
 
redicted uORFs F inal sequence model ∩ uORF  predicted by CAGE P =   

Validating uORF prediction 
 
As an example validation, I tested to see if the best experimentally verified uORFs from the                
literature was found by our prediction. To do this I accessed uORFdb, and found articles on                
experimental validation of uORFs in the ATF4 

10, the ABCC2 
31and the ADH5 gene 

32. The                
reason I only choose three genes, was because I had to manually backtrack the original               
papers of the uORF predictions, analysing their results. There are no list of genomic              
coordinates of the uORFs in uORF db, only the number of uORFs per transcript, and most of                 
the articles did not include genomic positions of the uORFs.  
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The procedure I followed was the same for all three genes, here are the steps explained for                 
ATF4.  
 
The ATF4 gene (Ensembl transcript id: ENST00000396680) has 3 well documented uORFs.            
One of them are only 6 base pairs long, so it would not be found by our uORF prediction,                   
since it filters out all uORFs smaller than 12 base pairs. The article with the experiments on                 
ATF4 was published in 2000, november. An older transcript annotation was used, so the              
leaders were not the same length as the current model (GRch38 patch 79). I then               
transferred the coordinates of the uORFs in the the original article to our coordinates (the               
older annotation had a 4 base pair extension in the beginning compared to new annotation).               
By comparing the start sites of the uORFs, as shown in figure 8. From this I could see if our                    
database found any uORFs with hits on those locations for the two remaining uORFs in the                
ATF4 gene.  
 
 

 
Figure 8: Finding coordinates of uORFs in the ATF4 gene from old annotation to new               
annotation. a) old annotation by original experimental article. b) Our transferred coordinates            
for the new annotation. uORF 1 must be deleted, since it is only 6 base pairs long. For                  
ATF4 the new transcript annotation was shifted by -4, so the transcript coordinates of uORF               
2 for GRch38 annotation would be 88-4 = 84.  
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We also tried to validate uORFs from the ABCC2 gene (transcript ENST00000370449) and             
the ADH5 gene (transcript ENST00000626055) the same way as ATF4, backtracking the            
articles to the original genomic positions of the uORFs. 
  

Comparison of Predicted uORFs 
Finally I did a comparison between our predicted translated uORFs and the predicted             
translated uORFs in the Bayesian classifier from McGillvary et al., explained in the             
introduction. I downloaded the supplements and found the table of predicted uORFs            
(supplements table 5 of top 10 % predicted uORFs). I then converted this to a bed file and                  
used the ncbi assembly conversion tool: NCBI Genome Remapping Service, since they used             
an older assembly version. Conversion was done from hg19 to hg38. From the total 18880               
uORFs in theirs list, 13040 uORFs were converted to our assembly. I then compared these               
uORFs to see how many were also in our prediction. McGillvary’s pipeline is based on a                
much smaller dataset, but in the results and discussion section I will compare and discuss               
these.  
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Results 
In this section I will present the findings of my uORF classifier and the differential regulation                
of uORFs across tissues. All the data visualized in the results are either stored in the                
database or modification based on that data, of which all the code is available. 
 
The results will be divided in the following 3 subjects: 
 

1. Predictions and annotation of translated uORFs 
2. Results from 5’ leader reannotation using CAGE data 
3. Differential uORF usage across tissues 

 
In addition I will show a comparison with the pipeline of McGillvary et al. and an analysis of                  
the uORFs in the ATF4 gene.  

Finding uORFs from leader sequences 
Searching the human leader sequences for uORFs with the considered start codons (ATG             
and near-cognate ones), I found 2,242,885 unique potential uORFs. These will be called             
candidate uORFs, to separate them from our predicted set of active uORFs. 
On average a leader sequence had 12 uORFs, and each gene had 115 uORFs. The number                
of candidate uORFs is much higher than expected from the literature, which is likely a result                
of the broad start codon definition of 10 possible start codons, in addition to including               
overlapping uORFs with the same stop codon. This set of 2,242,885 unique uORFs,             
represented the set of candidates for our prediction model.  
 

Feature Value 

Number of unique candidate uORFs 2,242,885 

Average uORFs per transcript 12 ∓ 27 

Average uORFs per Gene 115 ∓ 212 

Average uORF length 113  ∓ 132 

Average number of exons per uORF 1.19 ∓ 0.45 

Table 1: Features of the set of all candidate uORFs. The number of unique uORFs, the                 
average number of uORFs per transcript and gene is shown, together with average length              
and number of exons per uORF. It is important to remember these are the uORFs that are                 
candidates for prediction of translation, not the prediction it self.  
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Change in TSS for leader sequences and uORF usage 
To verify that using CAGE gives variability in uORF usage in tissues, we did several               
validations. From the CAGE data there was 122 tissues with at least one replicate in the                
1863 experiments. Using the 1863 CAGE-experiments the TSS of the 5’ leader sequences             
were reassigned and stored in the database. By comparing to the original leader annotation,              
I checked how leaders were affected in each tissue.  
 
Figure 9A) shows the number of candidate uORFs per tissue in the top 20 tissues with the                 
most uORFs. The Turquoise part of the bars represent the set of uORFs that are present in                 
all of the tissues. The red part of the bars represent the remaining uORFs found in the                 
tissue. Each tissue contained on average 1,117,106 uORFs (48.5% of all candidate uORFs),             
and the maximum amount of uORFs was found in blood, which had a total of 1,594,398                
uORFs (65.8 % of all candidate uORFs).  
 
In figure 9 B) the changes in leader lengths over all tissues are shown. The figure shows                 
how the leader size of the 78423 leaders in the human genome change on average over the                 
122 tissues. A positive value means on average over all tissues, this leader increases its               
length by CAGE reannotation. On average a leader increased by 16 bases with a standard               
deviation of 138 bases. The high standard deviation reflects the differential uORF usage in              
tissues. 
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Figure 9: A) Number of uORFs by sequence per tissue. Figure showing top 20 tissues               
according to number of uORFs. Turquoise colour represents uORFs that are included in all              
tissues, while red represents the uORFs that varies between tissues. B) Change of leader              
sequence lengths from CAGE data between tissues. X-axis is cut on -500,500 for clarity. A               
few leaders changed their length by as much as -10,000. 
 
 
The annotated leaders had an average length of 236 ∓ 264, and the CAGE leaders were on                 
average extended by 16 bases upstream to an average leader length of 252 ∓ 297. Only an                 
average of a 2855 leaders did not change its TSS per tissue. This shows that CAGE have a                  
strong effect on the TSS position in the tissues.  
 
I also tried to analyse read depth per CAGE library and the number of reads on the genomic                  
locations that were assigned as the new TSS. The libraries contained on average 251,362              
reads that must be distributed for the 78k leaders in the human genome. The genomic               
position of the newly assigned TSS had an average of 19 reads, (the median was 5). See                 
table 2.  
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Feature Value 

Average change in leader length from 
CAGE  

16 ∓ 138 (6.7 % ) increase in length  

CAGE-reads on new TSS  
(quantile summary) 

Min.  1st Qu.  Median Mean 3rd Qu.  Max.  
   2         3             5          19       10     6,625 

Average Transcripts affected by CAGE 75,568 (96.3 %) 

Average Genes affected by CAGE 21,215 (81.5 %) 

Average number of reads per CAGE library 251,362 

Table 2: Modifications of leader sequences by CAGE data. Features are average per 
CAGE-experiment. By affected, it is meant that the TSS is reassigned.  
 
 

Predicting translated uORFs 
The previous section describes the result from cataloguing all candidate uORFs, but only a              
small subsets of these are translated and ‘active’. The final prediction was made of a               
combination of two random forest classifiers. The results from each step will be shown in the                
details below. 

Ribo-seq model:  
In the ribo-seq classifier, based on CDS and trailers, one classifier was made for each of the                 
5 different tissues from the ribo-seq data. The random forest models gave a total of 74,847                
uORFs predicted as translated. The tissue with most uORFs was fibroblast, with 33,859             
uORFs found. See table 2 column 2 for mean squared error values for the ribo-seq model.  

Sequence and CAGE model:  
From these 5 ribo-seq models, I trained 5 sequence models. I used the predictions from the                
previous models to classify the uORFs based on sequence features. With these 5 new              
models, I overlapped all of them with the CAGE tables for those tissue (existence tables               
true/false).  
The final model was then defined as all uORFs predicted by any of these 5 models. When                 
combining the random forest models with the CAGE tissue data, I found a total of 21766                
uORFs predicted. With an average of 13,966 uORFs (64.1% of positively predicted) per             
tissue. There are 9,997 (45.9% of the total number of predicted) uORFs present in all               
tissues. See table 2 column 3 for mean squared error values for the Sequence model.  
 
The mean squared error (MSE) for the two models are shown in table 2. I will use the name                   
active for predicted translated uORFs. 
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Tissue Ribo-seq model Sequence model 

Brain 0.019 0.156 

Fibroblast 0.020 0.149 

kidney 0.018 0.164 

Ovary 0.029 0.152 

Prostate 0.031 0.165 

Table 3: MSE in random forest models per tissue. Each model have 5 tissue variants, the 
sequence model of brain is trained on ribo-seq model of brain and so on.  
 
There is a clear difference in the confidence levels in the models, since the first model is                 
trained on CDS and second on uORFs. 
The important features for this prediction will be described next.  

Features of the two classifiers 
After running the classifier pipeline, a relative importance was found in the model, for how               
important each feature was for the classifier. The ribo-seq features are described in table 4,               
and sequence features in table 5.  
 
 

Rank of Feature Feature name Relative importance 

1 ORFscore 1.00 

2 Entropy 0.34 

3 Translational efficiency 0.30 

4 IO score* 0.29 

5 Disengagement score 0.13 

6 Floss 0.10 

7 RSS** 0.09 

8 RRS*** 0.05 

 
Table 4: Relative importance ranking of uORF ribo-seq features from prediction. It can be              
noted that this is the average importance from the 5 ribo-seq models. *Inside outside score.               
**Ribosome stalling score. *** Ribosome release score.  
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As seen by the importance of the ribo-seq features in table 4, the periodic features               
ORFscore and entropy have the highest impact on the model. It should be noted that               
features related to the end region of the uORF are less important, including RSS, RRS and                
disengagement score.  
 

Rank of Feature Feature name Relative importance 

1 Distance to CDS 1.00 

2 Kozak sequence score 0.82 

3 uORF order in Tx 0.74 

4 Start codon 0.70 

5 Fraction length* 0.69 

6 Length of uORF 0.61 

7 Stop Codon 0.22 

8 In frame with CDS 0.21 

9 uORF overlapping CDS 0.04 

Table 5: Relative importance ranking of uORF sequence features from prediction. It can be 
noted that this is the average importance from the 5 sequence models. *Fraction length, the 
size of the uORF relative to the transcript  
 
For the sequence features, distance to CDS is the most important feature. This means the               
distance from uORF stop site to CDS start site is the strongest indicator of translation for the                 
uORFs. This is a somewhat surprising finding since this information is not likely to be               
available to a scanning ribosomes. The Kozak sequence score, which describes the initiation             
context of the uORFs, is, as expected, a strong feature with a relative importance of 0.82.                
Another interesting finding is that while distance to CDS is important, overlap with the CDS is                
the least important feature. 
 
To get a clear view of differences between our predicted translated subset and the uORF               
candidate set, I compared metrics between the sets. I checked how the most important              
features varied between the predicted translated uORFs and the set of candidate uORFs.             
Start codon usage was one of the features with the largest change in its distribution, as seen                 
in figure 10 A). The change in the distribution is strongly skewed towards increased ATG               
usage. The frequency of the low quality start codons AAG and AGG are almost non-existent               
in the predictions and a good indication that our classification is of high quality. Furthermore,               
our predicted distribution is in accordance with earlier finding of a ATG/CTG bias in uORFs               
33. I also checked the Stop codon usage, figure 10 C/D). Compared to the start codon usage,                 
there was no significant difference between candidate set of uORFs and predicted active             
uORFs. The Kozak sequence score of CDS’, active uORFs and predicted non-active uORFs             
is shown in figure 10 E). The active uORFs have a Kozak score more similar to the CDS,                  
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compared with the predicted non-active ones. This is again indicating that our ribo-seq             
predictions gives predictions of high quality. The distance between the stop site of the uORF               
and the start site of the CDS is shown in figure 10 F). It is interesting to note that predicted                    
active uORFs are much closer to the CDS, even though overlapping the CDS was an               
uninformative feature in the sequence model. This relationship between distance to CDS            
and overlap with CDS will be revisited in the discussion.  
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Figure 10: A) Start codon usage in all candidate uORFs. B) Start codon usage in uORFs                
predicted to be active. C) Stop codon usage in all candidate uORFs. D) Stop codon usage in                 
all uORFs predicted active. E) Kozak score comparison between cds and prediction.            
Predicted active uORFs and CDS’ have a more similar Kozak distribution than predicted             
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non-active uORFs. F) The distance between the stop site of the uORF and the start site of                 
the CDS.  
 
As a final test for bias in the model, I checked the correlation for each ribo-seq feature with                  
the length of the uORFs. Only the RRS score had a significant correlation, of 72 %. Since                 
RRS is the number of reads of uORF divided by number of reads on the trailer normalized                 
by length this is mainly a result of very few ribo-seq reads overlapping the trailer. This score                 
will therefore be highly dependent on the length of the uORF.  

Effect of translated uORFs on CDS 
A way to measure the effect of uORFs on the CDS is to see how the presence of uORFs                   
affects the translational efficiency (TE) of the CDS. Figure x describes the variance in TE for                
CDS’ in transcripts that contains predicted translated uORFs and CDS with no predicted             
translated uORFs. Figure 11 shows a small, but significant difference in TE of the CDS               
between active and non-active uORFs. The graph has a cutoff for included CDS’, such that               
all CDS’ with RNA-seq FPKM < 0.5 is filtered out.  

 
Figure 11: Variation in CDS translational efficiency by cds’ with predicted active uORFs vs              
predicted non-active uORFs. The CDS te values are of log scale. There is a statistical               
significant difference between the predicted active and non-active group with a p-value of             
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1.0e-11 (Welch Two Sample t-test). The graph shows a filtered version where all CDS’ with               
RNA-seq FPKM < 0.5 are filtered out. This filtering does not affect the conclusion in any way.  

Tissue variance 
Even though 21,766 uORFs were predicted to be translating, the variance of uORF usage              
between tissues were high with a standard deviation of 1,072 uORFs between tissues. In              
figure 12 A) the number of uORFs predicted for 20 tissues are shown. These are the 20                 
tissues with most uORFs predicted. In figure 12 B), the overlap of uORF usage between               
ovary and brain is shown. They have an overlap of 11523 uORFs (76.7 % of all predicted                 
uORFs in ovary, and 81.1 % of all predicted uORFs in brain).  

 
Figure 12: A) Number of predicted uORFs per tissue. Figure showing top 20 tissues              
according to number of uORFs. Turquoise colour represents uORFs that are included in all              
tissues, while red represents the uORFs that varies between tissues. B) Overlap between             
prediction of uORFs in Ovary and Brain tissues. They have an overlap of 11523 uORFs. 
 
As for the ranking of the tissues with most predicted active uORFs (figure 12A), the results                
showed a similar orderings as the candidate uORFs by tissues in figure 9 A). While blood is                 
the top tissue in both rankings, some tissues like heart change their rank position.  
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uORF variance between cancerous and healthy cell-lines.  
To see if there were any variance between uORF usage in healthy and cancerous cell lines                
in the same tissues. We compared differential uORF usage between health brain cell-lines             
and glioblastoma (a type of brain cancer), see figure 13.  

  
Figure 13: Overlap between predicted active uORFs in glioblastoma and healthy brain            
tissue. An overlap of 10,501 uORFs (89.8 % of all prediction uORFs in healthy brain tissue                
and 74.7 % of all predicted active uORFs in Glioblastoma) 
 
The Glioblastoma sample had a lot more predicted uORFs compared to healthy brain tissue.              
Glioblastoma have 14,057 predicted uORFs compared to 11,698 uORFs in the healthy brain             
tissue. The number of uORFs not shared by the tissues were therefore different, at 3,556 for                
glioblastoma. I will talk about the implications of these differences in the discussion.  

Comparison with other uORF predictions 
To assess how the prediction corresponds to other studies of uORF prediction, I compared              
our results to that of McGillvary et al. From their total number of 18880 predicted translated                
uORFs in the GRCh19 annotation, I used the NCBI assembly conversion tool to recover              
13040 of them in the newest human annotation (GrCH38). All of which were included in our                
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initial catalog of candidate uORFs. When comparing predicted active uORFs, the           
intersection was reduced to 1675 uORFs contained in both sets ( 12 % of all predicted active                 
uORFs by McGillvary et al.). See figure 14 A). 
 
I hypothesized that a reason for this small intersection, could be a difference in start codon                
usage between the classifiers. I therefore compared the start codon usage between the             
predictions, shown in figure 14 B).  
 

 
Figure 14: A) Overlap between prediction pipelines. A total overlap of 1675 uORFs. B)               
Start codon distribution in uORFome prediction and McGillivray prediction. Height of each            
bar is the percentage of total the total prediction set, scale is set so 0.2 = 20%. There is a                    
clear difference in number of ATG’s and CTG’s used. * A few of the uORFs in the uORFome                  
prediction was filtered out in the comparison, because of a difference in definition of uORF               
for the two predictions.  
 
As shown in figure 14 B) the start codon distributions differ. While my uORFome pipeline               
have many more ATGs, McGillivray’s pipeline have more CTGs. It can also be noted that               
they choose to exclude AAG and AGG from the pipeline. The comparison will be continued               
in the discussion.  

Example of validating uORF predictions 
 
Very few uORFs have been experimentally validated. One example of validation is in the              
ATF4 gene that harbors 3 uORFs. Out of these only 2 uORFs can be found by our pipeline (                   

42 



 

since the first uORF is only 6 base pairs long). Both of these are predicted to be translated                  
(table 6). I also checked our prediction set for any predicted false positive uORFs in ATF4.                
The result showed that there were 25 candidate uORFs in the ATF4 gene, but only the 2                 
experimentally verified uORFs were predicted as translated by our prediction. That is out of              
25 candidate, all 25 were predicted correctly (2 as translated, and 23 and non translated). 
 
Another example is the ABCC2 gene, where experimental validation has validated 1            
translated uORF. This uORF is found in my prediction set, but I also found 2 additional                
uORFs, these however were not checked in the experiment so it is not validated whether               
these are false positives or novel translated uORFs.  
Finally, for the ADH5 gene, the experimental validation found 2 candidate uORFs out of              
which one was validated in experiments. The other one was not tested for translation. Our               
prediction is in accordance with this and the uORF they found to be translated I also predict                 
to be translated.  
 
 

Gene symbol uORF ID Predicted translated Experimentally 
validated 

ATF4 chr22,+,39520586 6 ✕* ✓ 

ATF4 chr22,+,39520648 
12 

✓ ✓ 

ATF4 chr22,+,39520747 5 
;39521354 175 

✓ ✓ 

ABCC2 chr10,+,99782699 
48 

✓ ✓ 

ABCC2 chr10,+,99782708 
39 

✓ Not checked in 
experiment 

ABCC2 chr10,+,99782740 
69 

✓ Not checked in 
experiment 

ADH5 chr4,-,99088703 33 ✓ ✓ 

Table 6: Example of comparison between predicted uORFs in database and experimental            
validation. The 5th and 6th uORF (ABCC2) were not checked in the article for signs of                
translation, so there is no data to say our prediction is correct or not for these. It can be of                    
interest to see that the uORF 5 and 6 have the same stop codon position. * This uORF is                   
only 6 bases long, while our pipeline only checks uORFs that are at least 12 bases long.  
 
 
As a visual confirmation, I created a browser window with tracks from the ATF4 gene and its                 
uORFs. In figure 15 the tracks of the uORFs in ATF4, overlapped with a displayed ribo-seq                
library from a fibroblast cell-line. All three uORFs have a strong ribo-seq signal over their               
start codon supporting the translation of these uORFs. Furthermore, the ribo-seq signal of             
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uORF 1 is stronger than the ribo-seq signal of the CDS. Something that points to how                
important these uORFs might be for these transcripts. From the overlap of uORF 3 with the                
CDS it is difficult to know what part of the ribo-seq signal over uORF 3 is from the CDS and                    
what is from the uORF itself. This creates a potential bias in the model. 
 

Figure 15: Browser snapshot of ATF4 uORFs. The tracks are combined with ribo-seq from              
fibroblast (SRR592954). The ribo-seq Forward track shows the distribution of ribo-seq reads            
, (in blue). The uORF predictions track shows the genomic positions of the uORFs. The gene                
models show the three different transcripts of the ATF4 gene. The beige and dark red               
rectangles are exons, the grey arrow bars are introns.  
 
Here, I have shown results from my uORFome pipeline using ORFik and other tools. In the                
next chapter I will discuss these interesting findings and their implications. 
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Discussion 
 
 
In this thesis I have developed a method for identifying uORFs both from ribo-seq and               
sequence based metrics and used it to comprehensively catalogue the human uORFs and             
the tissue-specific regulation of these. Specifically, I used the combination of these models             
to predict translated uORFs on the entire FANTOM5 data set, encompassing the largest             
resource of 5’ leader annotation across tissues, primary cells and cell lines. I have compared               
variance in uORFs usage between tissues and between healthy and cancerous cell lines.             
Finally, I have compared my prediction with the set of uORFs identified by McGillivray et al.                
and investigated experimentally validated uORFs, focusing on the ATF4 gene. The small            
validation set of uORFs I found from uORFdb is not sufficient to provide a statistical               
validation for our prediction, but can serve as a proof of concept that from the set of 2.2                  
million candidate uORFs, the predicted set of 21,766 (0.1 % of the candidate set) presents a                
functionally relevant subset. This suggests that my method for uORF identification has the             
potential to extend the current uORF annotation significantly and provides a sound basis for              
further experimental validations. 
 
Here I will discuss general thoughts on the results, the limitations of the approach and               
potential improvements. 
 

CAGE and 5’ leader annotation 
A major computational task addressed in this thesis, is the efficient identification of uORFs in               
a large sequence reference. The KMP-algorithm created for uORFs in ORFik can search the              
entire human transcriptome for uORFs in a matter of seconds. Since I include non-canonical              
start codon ORFs in our definition of uORF, our candidate set of uORFs becomes very large.  
 
By integrating published ribo-seq and RNA-seq libraries from a number of human tissues             
and cell-lines with precise annotation of transcription start sites from the FANTOM5 atlas, I              
was able to map the human uORFome and its variance across tissues at an unprecedented               
scale. The contribution of precise TSS annotations to inform differential uORFome usage is             
depicted in figure 9. The number of uORFs predicted to be active in all tissues was 9,997                 
(45.9% of the total number of predicted uORFs). This suggests that a substantial number is               
under regulatory control and could have an impact on the translation of the CDSs. 
 

Prediction of uORFs 
 
From the results, it is shown that the tissues that have more candidate uORFs, also have                
more predicted active uORFs. The correlation in the number of uORFs in the candidate set               
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by tissues in figure 9 A) and the number of predicted active uORFs per tissue in figure 12 A)                   
is clear. The more candidate uORFs a tissue has, the more predicted uORFs it should get.  
 
As can be seen from the metrics, figure 10, our predicted uORFs have features closer to                
what would expect from translated uORFs, compared to the uORF candidate set. The             
codons known not to be efficient initiation sites (AAG/AGG) are almost entirely absent in the               
set of  predicted active uORFs shown in figure 10 B). 
 
Our classifiers used many different features, some of which are more likely biologically             
relevant than others. The variable importance of features derived in the classification step             
(shown in table 4 & 5), allowed me to rank the features according to their relative                
importance. Based on these results, features relying on periodic signals like ORFscore and             
entropy were better predictors than pure counting or ratio metrics. It is also interesting that               
the metrics that focus on the downstream region of the uORF, like Ribosome Stalling Score               
and Ribosome Release Score, are weighted as less important in the classifiers, as can be               
seen in table 4. I hypothesize that good periodic feature scores are harder to generate by                
random chance especially given signal noise, and are therefore better predictors of            
biologically relevant uORFs. 
 
Somewhat surprisingly, the distance of a candidate uORF to its associated downstream            
CDS was one of the most informative features. A statistical reason for this results, is that the                 
importance ranking is affected when features used to train the model correlate. The distance              
from uORF stop site to CDS start site is always negative for uORFs going into the CDS. In                  
some sense the model therefore does not need overlap with CDS as a feature, it is already                 
included in the distance feature.  
 
I hypothesize that since the information about the distance to the CDS is unavailable to               
scanning and translating ribosomes, its importance is likely caused by some indirect effect             
like evolutionary constraints. For instance it could indicate that proximal uORFs have a             
higher usage of ATG as start codon, since our model biases towards ATG uORFs (figure 10                
A/B). From an evolutionary perspective, it might be that uORFs are being “tested” for              
functionality through translation, because some will be close enough to the CDS to have an               
effect. As depicted for the ATF4 gene in figure 15 the uORF that is actually regulating the                 
CDS, is uORF 3., i.e.the uORF that overlaps the CDS, while the two others merely regulate                
the 3rd one.  
 

Comparison to other uORF predictions 
 
The set of predicted active uORFs had little overlap with the uORF prediction of McGillivray               
et al. As shown in figure 14 A), the overlap is only 12 %. This could be related to differences                    
in how translated uORFs were identified. McGillivray et al. mainly focus on sequence-based             
features and amino acid content, whereas my uORFome pipeline stresses the importance of             
ribo-seq and RNA-seq derived features. It can be noted that the pipeline created by              
McGillivray et al. uses a peptide database to get expression levels of different uORFs in               
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tissues instead of CAGE. A drawback of using peptide databases instead of CAGE is that               
uORFs upstream of the original TSS annotation can never be included, since they are not               
searched for in the peptide databases. uORFs have been found not to be conserved on the                
amino acid level, making it less useful to use amino acids metrics in the model 34. As                 
explained in the introduction section, uORFs primary functional mechanism is through           
releasing ribosomosomes. There is no functional peptide needed to make this happen,            
which McGillivray et al use as their primary metric of uORF function.  
 
Compared to the predicted by McGillvary et al. our prediction finds a much higher fraction of                
ATG uORFs. I sought to avoid start codon biases by intentionally excluding this feature from               
the first stage of model training which included mainly features derived from RNA-seq and              
ribo-seq datasets. However, as a large proportion of annotated CDS begin with an ATG as               
start codon, the model could have implicitly captured this property from other correlated             
features. From the sequence prediction model on uORFs it can be seen that it is distance to                 
CDS and not start codon that is the most important feature for the random forest model.                
MacGillivray et al., use a large set of protein expression level features that are used in the                 
final model, while my model focuses more on ribo-seq features like ORFscore. So the low               
overlap in the predictions might come from McGillvary’s use of protein expression level             
metrics.  
 

General discussion 
 
A primary focus of this thesis have been tissue specific uORF usage. This was done using                
CAGE. However, there is potentially a bias in our method of finding the best CAGE tag per                 
leader sequence. If a leader sequence has two equally strong CAGE tags, (same number of               
reads), the most upstream one is chosen by default. This biases our leaders towards longer               
lengths. It is also possible that if two equally strong CAGE tags exists,there are actually two                
different leader variants in the same gene. A leader sequence could also have one isoform               
that is highly transcribed, and one that is less transcribed. In our pipeline, the downstream               
CAGE tag will always be filtered out on a per experiment basis. I tried to alleviate this                 
problem by using as many replicates in the tissues as I could find. Since I have a total of                   
1863 CAGE experiments, on a per tissue level at least 2 experiments should contain the               
uORF.  
 
There is also a potential issue in allowing several uORFs to have the same genomic stop                
codon position but different start codons positions. The strongest ribo-seq feature in our             
prediction was found to be ORFscore. A set of uORFs all sharing the same stop codon                
position will all be in the same reading frame, therefore their ORFscore will correlate. If the                
first uORF is always translated, it means the other can never be translated (since they share                
stop codon), but our pipeline will most likely predict several of these as translated. A possible                
solution would be to always choose the longest uORF, but this could lead to functional small                
uORFs being lost in the model.  
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There are also some potential statistical issues with some of the features, e.g. ORFscore is a                
scoring of the periodicity of reads on the first frame relative to the two others. On a small                  
uORF, e.g. 4 codons, the random chance of getting a good ORFscore is higher than on a                 
bigger uORF. A 3 codon uORF only need reads to hit on the positions {1,4,7}, to get a good                   
score. While a longer uORF must hit on {1,4,7,10,13,..}. The smaller the uORF is, the fewer                
reads it needs to get a good score. As a defense for using these metrics, looking at the                  
figure 15 for uORF tracks in the ATF4 gene. uORF1 has a very strong spike on the start                  
codon. That means the ORFscore will be very high. This shows the point of why the filter                 
between my ribo-seq and sequence classifiers filters by reads over the start codon, as seen               
in figure 7.  
 
Translational efficiency is one of the most popular features for representing predicted            
translation rate. A problem with TE is that it is combined by ribo-seq and RNA-seq               
experiments that are not from the same cell. Usually they are from biological replicates of the                
same cell-line using similar experimental protocols. The variance in mRNA expression levels            
between these two biological replicates could give the matching a low quality, e.g. the time               
of day or extracellular environments of the two cells. By using large amounts of replicates in                
this pipeline, I have tried to address this issue.  
 
As seen from my validation on the experimentally verified ATF4 uORFs in table 6, uORF1               
was not in the candidate set of uORFs. The reason was that the length of the uORF was                  
only 6 bases. To avoid too many false positives I excluded all uORFs with size less than 12                  
bases. Future analyses of the data presented here could incorporate statistical methods to             
remove noise in ribo-seq datasets 

35 . This could be implemented into ORFik, to make a                
prediction for uORFs down to just a start codon and stop codon (6 bases).  
  
From my definition of a uORF, it must either use ATG or a one base variation of ATG as start                    
codon. There is a possibility that some leader sequences translate regions where another             
codon is used as start codon than my set, these will not be found 36.  
 
An important distinction must be noted between translation and function (an effect on             
phenotype). In this thesis I have predicted translation, not function. The article of McGillivray              
et al. with a similar uORF prediction, claims function with the title: “A comprehensive catalog               
of predicted functional upstream open reading frames in humans” 20. McGillivray et al. also              
differentiate between function and translation, by stating: “Study of uORF translation and            
function was historically limited to the experimental evaluation of individual uORFs”. In the             
claim of function, McGillivray et al.’s article states: “Measurement of comparative frequency            
of mutation among uORF start codons was taken as a measure of evolutionary conservation              
and functional significance of predicted positive uORFs”. McGillivray et al. also performed a             
blast search of the predicted translated uORFs for peptide products in the THISP database,              
in addition to a search for single nucleotide variants to verify possible mutations in uORFs.               
This was used to claim functionality of uORFs. However, this leads to a misleading definition               
of function in the title, what they can claim is that they have made a catalogue with evidence                  
of translation, from ribo-seq and protein databases. Only a small set of these are additionally               
possibly functional uORFs by mutation databases of single nucleotide variants. 
 

48 

https://paperpile.com/c/H1sGgK/bLHoI
https://paperpile.com/c/H1sGgK/Wgwf
https://paperpile.com/c/H1sGgK/yeJ6d


 

Mutations in the start codon of uORFs can lead to health issues 
37. McGillivray et al. use of                  

single nucleotide variants (SNV) is interesting. They search the SNV databases for hits on              
the start codons of the predicted translated uORFs. Combining the knowledge of a predicted              
translated uORF and a possible SNV’s at the start codon of that uORF gives a possibility                
find uORFs that can lose its start codon in cancerous cell-lines. I could do a similar approach                 
in my prediction. An even stronger method would be to combine the SNV data with an                
evolutionary conservation score for each uORF. That is, if the uORF is highly conserved              
between species, and cancerous cell lines have mutations in those uORFs, it would be a               
stronger indicator of possible functional change.  
 
To investigate within tissue variance of predicted active uORFs, I tested two cell-lines in              
brain. The results showed that Glioblastoma had 3556 uniquely predicted active uORFs            
relative to the healthy brain tissue. This gives an example of possible translational regulation              
between cell-lines and offers interesting prospects for further analyses. 
 
 

Conclusion and future prospects 
 
This project can be seen as a stepping stone to a better understanding of uORFs at the                 
transcriptome-wide level, but several improvements are possible to make the results more            
robust.  
 
Apart from challenges in data integration and interpretation, the prediction of uORFs and             
analysis of large genome scale datasets requires specialized software that can effectively            
exploit compute resources and allow e.g. for parallelization of tasks. 
 
ORFik was made with this in mind, and is able to handle large data sets. The main                 
bottlenecks are the Bioconductor packages GenomicRanges and GenomicFeatures, that         
have not implemented methods for big data extraction in all our needed cases. As an               
example is the method countOverlaps() in the package GenomicFeatures, which on a            
ribo-seq set of 5GB running on 2.2 million candidate uORFs, can fill up 2TB of ram quite                 
quickly. These big datasets had to be split in smaller sets and then combined together. I                
have contributed with recommendations for future improvements on these packages and           
discussed these with the team at the Bioconductor core so this is likely to improve in the                 
future.  
 
An important improvement would be a more statistically rigorous selection of CAGE peaks             
when assigning new TSSs. There have been attempts of similar ideas, like the bioconductor              
package cageR 

38 where they utilise clustering and noise modelling of the CAGE reads to               
predict the TSS per genomic window (window specified by user). This package was not used               
by my pipeline, but their ideas could be implemented in a similar manner into ORFik.  
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ORFik contains several ribo-seq metrics described in this thesis like TE and ORFscore,             
since this is a collection of features used in the scientific community, the metrics should be                
able to reduce the noise in the ribo-seq libraries. Still, improvements in filtering could be               
made. Some packages have tried to implement stronger filters for periodic noise of ribo-seq              
reads, like the python package ribodeblur 39. This would lead to a stronger predictive power,               
especially for small uORFs.  
 
This atlas can be used as a basis for validation experiments and lead researchers towards               
possible explanations for observed uORF regulation. To have an atlas with tissue variance             
could potentially save time before deciding what experiment to run. ORFik also makes it              
easy to make pipelines for new datasets and species, creating an easy to use and               
standardized tool for cataloguing uORFs and deriving the rules of uORF-mediated           
regulation.  
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Supplements 

CAGE libraries 
 
For information of the CAGE data, see the FANTOM5 project: 
FANTOM5 OSC CORE (contact: Al Forrest for more information) 40. 
 

Ribo-seq and RNA-seq libraries 
 
GEO accession numbers for all ribo-seq and RNA-seq data sets used in this thesis, 
including all reference articles for experiments 41,42,43,23,43,44,45,46.  
 
 
Ribo-seq Ribo-seq RNA-seq RNA-seq 
GSM1495244 GSM1020244 GSM1606106 GSM869046 
GSM1495249 GSM1020247 GSM1606099 GSM869038 
GSM1495245 GSM1020246 GSM1606100 GSM869044 
GSM1495250 GSM1020249 GSM1606109 GSM869036 
GSM1495246 GSM1331345 GSM1606110 GSM869042 
GSM1495251 GSM1331349 GSM1606111 SRS476841 
GSM1495247 GSM1331344 GSM1606112 SRS476840 
GSM1495252 GSM1331348 GSM1606113 SRS476849 
GSM1464095 GSM1331343 GSM1606114 SRS476848 
GSM1464101 GSM1331347 GSM1606107 SRS476845 
GSM1444166 GSM1331342 GSM1606108 SRS476844 
GSM1444180 GSM1331346 GSM869041 SRS476843 
GSM1020235 GSM1606101 GSM869047 SRS476842 
GSM1020234 GSM1606102 GSM869039 SRS476851 
GSM1020238 GSM1606103 GSM869045 SRS476850 
GSM1020236 GSM1606104 GSM869037 SRS476847 
GSM1020237 GSM1606105 GSM869043 SRS476846 
GSM1020245  GSM869040  
Supplementary table 1: The GEO accession numbers of all Ribo-seq and RNA-seq 
experiments used for uORF metrics and creating the uORF classifier. There are 35 pairs of 
ribo-seq and RNA-seq experiments, 70 experiments in total. The first listed ribo-seq 
experiment links to the first listed RNA-seq experiment etc.  
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