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Abstract

LowMC is a symmetric block cipher designed for fully homomorphic encryption. This
thesis focuses on Martin Albrecht’s implementation of the cipher in the FHE library HElib,
and how his implementation can be improved when encrypting a single plaintext. We have
succeeded in getting faster encryption by changing the packing of the plaintext bits and
focusing on a rotation-based linear layer. When only encrypting a single plaintext Albrecht’s
implementation takes 217.17 seconds, while our alternative implementation takes 11.53
seconds.
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Chapter 1

Introduction

Every day, millions of people share sensitive information through the internet. Passwords,
credit card numbers, and social security numbers are examples of data that could lead to
severe consequences if fallen into the wrong hands. How can we prevent others from taking
a peek at our private details, while still allowing insight for a select few? What happens
when the ones who are meant to process our information, cannot be trusted? Is it possible to
perform computations on data without having direct access to it?

When storing data in the cloud today, clients are forced to put trust in their cloud providers.
Is it possible to eliminate this demand? In this thesis, we will discuss how encryption, or
more specifically fully homomorphic encryption (FHE), can be a solution to this problem.
Efficiency concerning practical applications has been an issue often raised regarding FHE.
However, we believe that with this thesis we have taken a step closer to solving this concern.

1.1 Encryption

Encryption is the process of scrambling a message such that only the intended recipient
is capable of retrieving the original message. The intended receiver gets a ’key’ which
unscrambles the encrypted message or, in other words, decrypts it. It is crucial that the key
does not fall into the wrong hands, as anyone in possession of it is capable of decrypting
the encrypted message. We often refer to the decryption key as the private key, as it is kept
private from the rest of the world. When encrypting a message, we also use a key. Depending
on the encryption used, it varies whether this key is kept private or not.

How safely the message is encrypted is reliant on the encryption scheme used. An
encryption scheme consists of three algorithms; one that transforms a message (plaintext)
into a scrambled message (ciphertext), one that decrypts the ciphertext back to the plaintext,
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and one that generates the keys used for encryption and decryption. Though the different
encryption schemes vary considerably, the majority of them follow Kerckhoffs’ principle.

In 1883, Auguste Kerckhoffs published two articles in the French "Le Journal des
Sciences Militaires" stating six design principles for military ciphers.

1. The system must be indecipherable at least in practice, if not mathematically.

2. The system must not be required to be secret, and it must be able to fall into the hands
of an enemy without inconvenience.

3. The encryption key for the system must be capable of being stored and communicated
without the help of written notes, and to be changed or modified at the will of the
communicating parties.

4. The system must be capable of being applied to communications via telegraph (the
prevailing technology of the time).

5. Equipment and documents for the system must be portable, and their usage and function
must not require the gathering or collaboration of several people.

6. The system must be easy to use, requiring neither mental strain nor the knowledge of a
long series of rules to implement it.

Not all of the six principles remain relevant in modern times, but the second principle still
stands strong today. The basic idea behind the second principle is that all details around the
encryption scheme, except for the secret key, should be public without destroying the security
of the scheme. If the components of the scheme become public, it should not compromise
the entire scheme. In current times encryption schemes are made available to the public
before being used, this is to catch any flaws in the scheme before being deployed in real
applications.

To get a better understanding of encryption schemes and their security we will give two
examples of previously used historical ciphers; the Caesar cipher, and the substitution cipher.

Caesar Cipher

One of the most well-known encryption schemes is the Caesar cipher. The Caesar cipher is
named after Julius Caesar (100-44 BC), who according to the historian Suetonius used the
cipher when sending letters of military significance. In the Caesar cipher, every letter in the
original message shifts with a fixed number of positions.
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Table 1.1 Caesar cipher with 3 position shift

Table 1.1 shows how the letters in the English alphabet shifts in a Caesar cipher with a
right shift of 3. The top row represents the letters in the original message, and the bottom row
represents the letters after the encryption. Given the message "SECRET MESSAGE," we can
use this table to see that it encrypts to "VHFUHW PHVVDJH." To decrypt the message, we
would shift the letters in the encrypted message in the opposite direction. Had the message
been encrypted with a Caesar cipher with a right shift of 7 positions, we would decrypt the
encrypted message with a left shift of 7 positions.

In every encryption scheme, we have a keyspace which refers to the set of all possible
keys. In the Caesar cipher, the key is the number of positions in which we shift the letters.
The keyspace would, therefore, contain 25 unique keys since there are 25 ways we can shift
the letters of the alphabet without getting the same output. A shift of 50 positions would be
the same as a shift of 24. Due to this limited keyspace, it is easy to perform a brute-force
attack to find the original message. In a brute-force attack, we would try all possible keys
until we find the right one. With the Caesar cipher having only a keyspace of 25 keys this
would take a short time even with pen and paper.

Substitution Cipher

The Caesar cipher is a particular type of substitution cipher. Where in the Caesar cipher a
letter shifts, the substitution cipher replaces a letter. It is not essential whether the letter is
replaced by another letter, a symbol, a group of symbols or a group of letters, as long as the
replacement is one-to-one, meaning each letter has its unique replacement.

The keyspace for the substitution cipher is much larger than for the Caesar cipher.
Since every letter has a unique replacement, the keyspace for the English alphabet contains
26! ≈ 288 keys. The size of the keyspace makes it challenging to run a brute-force attack,
even with the most powerful computers we have today. However, it is possible to run
frequency analysis to break the cipher.

Frequency analysis is the study of how often letters or symbols repeat in a ciphertext.
Most languages are built in such a way that some letters are used more often than others.
In the English language the three most frequently used letters are ’E,’ ’T,’ and ’A,’ while
’Z,’ ’Q,’ and ’X’ are the least frequently used. By studying the frequencies in the ciphertext
and comparing them with the known frequencies of the letters in our alphabet, we can make
some assumptions on what parts of the plaintext may be. There is no guarantee that the
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frequency analysis will work; however, it has a high chance of success when the plaintext is
long enough. The substitution cipher is typically broken quite quickly when the plaintext has
more than 500 letters.

While neither the Caesar cipher nor the substitution cipher is safe enough to use today,
there are plenty of safe-to-use encryption schemes that have taken their places. Two prominent
examples are AES (Advanced Encryption Standard) and RSA (Rivest-Shamir-Adleman),
where AES is a symmetric cipher, and RSA is an asymmetric cipher [11].

1.1.1 Asymmetric vs. Symmetric Encryption

Encryption schemes are divided into two categories; asymmetric, and symmetric encryption.
In symmetric encryption, both the sender and the receiver possess the same key, and the key
is used both for encrypting and decrypting messages. In asymmetric encryption, there are
two keys, a private and a public key. The public key is used for encryption, while decryption
is done with the private key.

Symmetric Encryption

We categorise symmetric encryption in two groups; stream ciphers and block ciphers.
A stream cipher is an encryption algorithm that encrypts a single plaintext bit at a time.

The given key is used to produce an arbitrarily long stream of pseudorandom bits, also called
a keystream, that is continuously added bit by bit with the plaintext to produce the ciphertext.
For the stream cipher to remain secure, it is essential that the keystream remain unpredictable
and never reused. If the keystream becomes predictable, the stream cipher becomes insecure.

While the stream cipher is not 100% secure in the information theoretical sense, it is
modelled after a cipher that is unbreakable, the one-time pad. The keystream in the one-time
pad is not generated from a given key but is the actual key, which means that the key is at
least as large as the plaintext. One of the essential features of the one-time pad is that the
key must be truly random, unlike the stream cipher which has a pseudorandom keystream.
The one-time pad is unbreakable because for every conceivable plaintext, there is a key that
decrypts the given ciphertext into the particular plaintext. The attacker might as well guess
the plaintext itself and gets no information from the ciphertext

Though the one-time pad provides an unbreakable cipher, it is quite troublesome to use.
Creating a truly random key can be quite tricky, especially since we are not able to reuse it,
and the key can be difficult to send because of its size.

While the stream cipher encrypts a single plaintext bit at a time, the block cipher encrypts
a set number, or a block, of plaintext bits at a time. Instead of using a keystream, a key of
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predetermined length is chosen when encrypting the plaintext. The typical block length used
in practice is either 128 bits, such as in AES, or 64 bits, such as in DES (Data Encryption
Standard) or Prince [5]. Because the block cipher works on a chunk of data, it requires more
memory than the stream cipher that encrypts a single bit at a time. As well as needing more
memory, the block cipher is also more prone to errors. If one bit of an encrypted block is
damaged, the whole block will be decrypted incorrectly. If the same happens with the stream
cipher, only a single bit will be damaged.

Asymmetric Encryption

Historically most encryption schemes have been symmetric ciphers. It was not until 1976
that Whitfield Diffie, Martin Hellman, and Ralph Merkle publicly introduced asymmetric
encryption [11]. The problem with the symmetric ciphers was the key exchange. To securely
communicate with a symmetric cipher, the secret key had to be exchanged over a secure
channel. Most of the time the communicating parties had to exchange the key physically,
which was very unpractical and was not always safe. By creating an asymmetric scheme,
Diffie and Hellman made it possible to share the symmetric encryption key over an insecure
line.

In asymmetric encryption, also referred to as public-key encryption, each party has two
keys, a public, and a private key. The public key is shared with the rest of the world, while the
private key is kept secret. The public key is used for encryption of a message, and only the
corresponding private key can be used to decrypt the message. The private key can also be
used to encrypt a message, where the public key decrypts it, however, this is used in digital
signatures and not in encryption schemes.

The asymmetric encryption takes longer time than the symmetric encryption. It is
therefore preferred to use symmetric encryption when communicating over the Internet. As
mentioned, the symmetric encryption has problems regarding the key exchange, but this can
be solved using the asymmetric encryption. If Alice wants to share a symmetric encryption
key with Bob, she could encrypt it using Bob’s public key. Bob would then be the only one
who could obtain the symmetric encryption key since he is the only one who has the private
key. This process is what happens in the Transport Layer Security protocol. Previously it had
been difficult to obtain a secure line of communication between strangers over the Internet,
as the shared private key had to distributed between the communicating partied ahead of time.
With asymmetric encryption this is no longer required.

Asymmetric encryption can also help to provide non-repudiation in essential documents
or messages. Non-repudiation is the property which prevents a sender of a message to
change the content of the message after it is sent or deny being the actual sender. With
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digital signatures, both the identity of the sender and the original content of the message is
verifiable.

1.2 Fully Homomorphic Encryption

In 1978 Rivest, Adleman and Dertouzos first introduced the idea of fully homomorphic
encryption [12]. In their paper they addressed one of the main limitations of encryption; a
system working with encrypted data can store or retrieve the encrypted data for the user, but
if they want to perform any operations on the data it must first be decrypted. Rivest, Adleman,
and Dertouzos were quite optimistic about finding a solution to this problem. They believed
there existed encryption functions that would permit encrypted data to be operated on without
having to be decrypted. In the paper these special encryption functions were called "privacy
homomorphisms," but today we refer to them as fully homomorphic encryption schemes.

Various encryption schemes throughout the years have been able to permit operations
on encrypted data. The operations we have in mind are addition and multiplication. Earlier
schemes only respected one of the operations, and we define these schemes as homomorphic
encryptions concerning either addition or multiplication. Homomorphic encryption schemes
allow either multiplication or addition to be performed on the ciphertext, that when decrypted
would give the identical result if those same operations had been applied on the plaintext. The
unpadded version of RSA and ElGamal are encryptions that are homomorphic concerning
multiplication, and we show this for the case of RSA.

The unpadded version of RSA cryptosystem works in the following way.

1. Select two distinct primes, p and q

2. Calculate n = pq

3. Calculate φ(n) = (p−1)(q−1)

4. Choose an e such that 1 < e < φ(n) and gcd(φ(n),e) = 1

5. Find d such that d ≡ e−1(mod φ(n))

The public key is e, the private key is d, the plaintext is m, and the ciphertext is c.

ENCRYPTION: Enc(m)≡ c ≡ me(mod n)

DECRYPTION: Dec(c)≡ m ≡ cd(mod n)



1.3 Problem statement of the thesis 7

Let m1 and m2 be two arbitrary plaintexts, with e as the public key, and d as the private key.

Enc(m1) ·Enc(m2) = me
1(mod n) ·me

2(mod n) = me
1 ·me

2(mod n) =
(me

1 ·me
2)(mod n) = (m1 ·m2)

e(mod n) = Enc(m1 ·m2)
(1.1)

As we can see from equation 1.1 it does not matter if we encrypt the plaintexts first and
then multiply them together or if we multiply the plaintexts first and then encrypt them,
the outcome will be the same. The scheme is therefore homomorphic with respect to
multiplication. The same cannot be said regarding addition, as seen in equation 1.2.

Enc(m1)+Enc(m2) = me
1(mod n)+me

2(mod n) = me
1 +me

2(mod n)
= (me

1 +me
2)(mod n) ̸= (m1 +m2)

e(mod n) = Enc(m1 +m2)
(1.2)

It was not until 2009 that the first fully homomorphic encryption scheme was published
by Craig Gentry, using lattice-based cryptography [7]. Unlike the earlier homomorphic
encryption schemes, which only allow either multiplication or addition to be applied on
the ciphertexts, the fully homomorphic encryption scheme allows both. By managing both
multiplication and addition, the scheme can handle any operations applied on the ciphertexts,
such that when the result is decrypted it would give the same output as if the same operations
had been done on the plaintext. Though Gentry managed to solve the problem, there was one
major drawback with his solution. The encryption was very inefficient and had, therefore,
little practical use.

Since 2009 there have been made many improvements on fully homomorphic encryption.
One of the schemes that proved to be more efficient than Gentry’s original scheme was the
BGV cryptosystem. The BGV cryptosystem was published in 2011 by Brakerski, Gentry,
and Vaikuntanathan [6]. While the system was still suffering from significant performance
costs, it was closer to practical use. In 2013 the BGV encryption scheme was implemented
in Halevi and Shoup’s homomorphic encryption library, HElib [8].

1.3 Problem statement of the thesis

This thesis examines how the combination of a symmetric cryptosystem and FHE can increase
efficiency. We will take a closer look at the LowMC symmetric encryption scheme, that is
designed primarily for use with FHE. Up until now, Martin Albrecht is the only person, to
the best of our knowledge, who has tested the LowMC encryption in the HElib library where
his implementation encrypts multiple plaintexts in parallel. Though this is effective when
we have a set of plaintexts that we would like to encrypt simultaneously, many applications
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need to encrypt only a single plaintext as quickly as possible. Is it possible to implement the
LowMC scheme such that the encryption of a single plaintext will be more efficient than it is
with Albrecht’s method?



Chapter 2

Fully Homomorphic Encryption

2.1 What is FHE?

As mentioned in Section 1.2, fully homomorphic encryption makes it possible to perform
arbitrary operations on encrypted data, without having to decrypt it. This unique trait can be
very useful in applications that are reliant on high security.

A widely talked about use for FHE is in cloud computing. Clients of cloud providers
often have sensitive data and are reluctant to send it unencrypted to the cloud. Examples of
this may be medical data, business sensitive data, identification data, and so on. A possibility
would be encrypting the data before uploading it to the cloud. However, this would be
counterproductive if the data needs to be decrypted to perform computations on it. The
current solution to the problem is sending the decryption key along with the encrypted data.
Access to the decryption key allows the cloud provider to decrypt the data and perform
operations on it; however, it is not an optimal solution when the client does not trust the
cloud provider. FHE offers a solution that lets the cloud perform operations on the encrypted
data without having access to the decryption key, which removes the client’s need to trust the
cloud provider.

In 2009 Craig Gentry constructed the first FHE scheme in his dissertation [7], proving
it theoretically possible to achieve. Gentry’s starting point is a "somewhat" homomorphic
encryption scheme. This scheme can apply some operations on the ciphertext, while still
being able to decrypt it correctly. However, it can only handle a certain number of operations
before the decryption becomes incorrect. The limitation in the number of operations can be
attributed to the noise in the ciphertext.
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2.1.1 Noise

Noise is a small random value that is added to the ciphertext while encrypting to enhance
security. The noise also increases when we perform operations on the ciphertext. Since
there is a maximum limit of how significant the noise can be before the decryption of the
ciphertext becomes incorrect, there is also a limit of how many operations we can perform
on the ciphertext.

We now present a simple scheme, to get a better understanding of the noise and how it
increases. The following is a simple symmetric encryption scheme over the integers.

1. Pick an odd number k as the private key

2. Pick random q and r, where r ≪
√

k

The plaintext m ∈ {0,1}, and the ciphertext c is produced and decrypted as follows:

ENCRYPTION: Enc(m) = c = kq + 2r + m

DECRYPTION: Dec(c)≡ m ≡ c(mod k)(mod 2)

In the decryption process, we reduce the ciphertext modulo k, which leaves us with the
remainder, 2r +m. When the remainder is reduced modulo 2, the plaintext is the only value
left. When the ciphertext is reduced to the plaintext alone, the decryption is correct and has
not been affected by the noise. The value 2r is the noise in this example. If the noise were to
increase to more than k, the decryption would fail. The reason for this is that when reducing
the ciphertext modulo k, the remainder would be something different than 2r +m, making it
impossible to decrypt to the original plaintext.

If we look at the two operations, addition and multiplication, we can see that the noise
produced differs between the operations. Let m0 and m1 be two plaintext bits and c0 and c1

be two ciphertext bits, where
c0 = kq0 + 2r0 + m0

c1 = kq1 + 2r1 + m1

ADDITION

c0 + c1 = k(q0 + q1) + 2(r0 + r1) + (m0 + m1)

MULTIPLICATION

c0 · c1 = k(kq0q1 +2r1q0 +m1q0 +2r0q1 +m0q1)+2(2r0r1 +m1r0 +m0r1)+m0m1.
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When looking at the addition of c0 and c1 we can see that their sum is a ciphertext that
encrypts m0 +m1. The same goes for the multiplication of c0 and c1 where the product is
a ciphertext that encrypts m0 ·m1. Using these observations, we therefore know that the
homomorphic property is present in this scheme.

When comparing noise from the addition, 2(r0 + r1), with the noise from the multiplica-
tion, 2(2r0r1 + m1r0 + m0r1), we can conclude that the multiplication operation is a lot
more expensive than the addition operation. Where the noise terms from the ciphertexts in
the addition operation are only added together, the noise terms from the ciphertexts in the
multiplication operation are multiplied together. After n additions the noise will have a linear
growth, r ·n, while after n multiplications the noise will have exponential growth, rn.

2.1.2 Bootstrapping

To transform this "somewhat" homomorphic encryption scheme into a fully homomorphic
scheme the noise must be reduced while still maintaining the homomorphic property of the
ciphertext. Gentry proposed his bootstrapping technique as a solution to this problem. By
taking the decryption algorithm for the encryption scheme and converting it into a circuit
with the ciphertext and the encryption of the private key as input, the outcome of the circuit
would be a recryption of the ciphertext. If the decryption circuit is cheap enough to evaluate,
then the output ciphertext will have less noise than the input ciphertext.

Figure 2.1 illustrates a decryption circuit of a scheme where C = (c0 . . . cn−1) is an
encryption of a single plaintext bit, m ∈ {0,1}, and k = (k0 . . . kl−1) is the associated key.
The operations are done on single bits.

c0 c1 c2 . . . cn−2 cn−1 k0 k1 k2 . . . kl−2 kl−1

⊕ ⊕
⊗

⊗
m

Fig. 2.1 Decryption circuit of a scheme, operations are done on single bits.
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In the bootstrapping process both the bits of the ciphertext C and the associated key K
will be encrypted with a public key, Pk.

Enc(C,Pk) =C∗ = (c∗0 . . . c∗n−1)

Enc(K,Pk) = k∗ = (k∗0 . . . k∗l−1)

C∗ and k∗ will both be used as input to the new decryption circuit that is being evaluated
homomorphically.

c∗0 c∗1 c∗2 . . . c∗n−2 c∗n−1 k∗0 k∗1 k∗2 . . .k∗l−2 k∗l−1

+
+

×

×

m∗

Fig. 2.2 Decryption circuit being evaluated homomorphically, operations are done on ele-
ments of some mathematical ring.

By encrypting the bits of the ciphertext and the key and run the homomorphic decryption
circuit on them, we can remove all previous noise. The only noise that will remain is the
noise introduced in the decryption circuit itself. A scheme is said to be bootstrappable if it
can evaluate its decryption circuit homomorphically, and handle one additional operation
without the noise growing too big. The problem with most schemes is that they are not able
to evaluate their decryption circuit homomorphically. The decryption circuit can be very
deep and costly, which will lead to a significant amount of noise being introduced to the
ciphertext when the decryption circuit is evaluated. The noise added after going through
the bootstrapping process may be so large that the decryption would fail on the recrypted
ciphertext.

There have been some attempts at decreasing the noise added in the decryption circuit,
such as augmenting the circuit, but this may affect the security of the scheme. Gentry’s
scheme could not handle its decryption circuit; however, he fixed this by adding "hints" about
the secret decryption key in the public encryption key [7]. Introducing this information made
the decryption circuit simpler, and the entire scheme became bootstrappable.
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2.2 Using FHE in Practice

As mentioned, FHE has been widely discussed regarding its use within cloud computing. By
eliminating the need to hand over the decryption key to the cloud provider, the clients do not
have to trust their cloud provider.

Fig. 2.3 Two different methods of extracting data from the cloud, based on the encryption of
the data. Both end in the same result.

Figure 2.3 depicts two different approaches to extracting the result of some operation
done on encrypted data, without giving the cloud provider access to the decryption key.

The green coloured path represents encrypting the data without FHE. In this approach,
the client has to download and decrypt the entire data set from the cloud provider before they
can perform operations on it. While the cloud provider only has to store the data, the client
has to do most of the work.

The blue coloured path represents encrypting data with FHE. By using this approach,
most of the work is handed over to the cloud provider. If a client asks for the result of an
operation done on a specific part of the data, the cloud provider can perform the operations
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on the ciphertexts and get an encrypted result. While still encrypted under FHE, the cloud
provider will send only the result to the client who has to decrypt it themselves.

In Figure 2.3 the data is encrypted using FHE; however, not all applications are capable
of performing this type of encryption. FHE requires a lot of processing powers, which not all
devices may have. Is there a way such that devices with low processing power can store data
encrypted under FHE in the cloud, without having to perform the FHE encryption itself?

Fig. 2.4 How devices with low processing power passes the task of encrypting data with FHE
to the cloud.

A proposed solution is shown in Figure 2.4. The user encrypts the data P with the
encryption key K using a symmetric cipher and produces C, as shown in the red bordered box
on the left. In this example, the data is encrypted with the symmetric cipher LowMC. The
reason a symmetric cipher is chosen is that it is a lot cheaper to use than FHE and asymmetric
encryption. For a device with low processing power, this attribute can be quite helpful.

The ciphertext C is then sent to the cloud, where it is the cloud provider that again
encrypts it, but now using FHE. The user, using FHE, encrypts the key K with the same
public key used by the cloud provider and produces K∗. The FHE encryption of the key
K needs only to be done once, and the encryption does not necessarily have to be done by
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the device that encrypts the plaintext P. After being sent to the cloud, the key K∗ is passed
through a homomorphic LowMC decryption circuit alongside the data C∗ as input.

The output from the circuit is the original plaintext P from the user, encrypted with FHE.
With this procedure, the user does not have to encrypt the data using FHE, as this task is left
to the cloud provider. The user only has to encrypt the data using a symmetric cipher and
encrypt the key using FHE, which both take little processing power.

2.3 HElib and BGV

HElib is a software library, created by Shai Halevi and Victor Shoup [8, 9], that implements
homomorphic encryption. The specific scheme used in the library is the Brakerski-Gentry-
Vaikuntanathan (BGV) scheme [6].

2.3.1 (Levelled) FHE without Bootstrapping

The BGV scheme is a levelled FHE without bootstrapping. A scheme without bootstrapping
must have its multiplicative depth of the circuits specified before being created. By removing
the need for bootstrapping the performance improves, however, the security is dependent on
the predetermined parameters of the scheme.

Parameters of the scheme

Table 2.1 gives a brief description of the parameters needed to initiate a BGV scheme in
HElib. In HElib the parameter m represents a specific modulus, however, to avoid confusion
with a different parameter, which will later be defined, this parameter will be represented by
LWE dim instead of m.

Parameter Description
LWE dim a specific modulus

p plaintext base [default=2]
r lifting [default=1]
L number of primes in the modulus chain

(i.e., the number of levels in the scheme)
c number of columns in the key-switching matrices
B bits per level

Table 2.1 Parameters in HElib that must be chosen by the user.
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The user-defined parameters in Table 2.1 will effect several other parameters in the BGV
scheme in HElib, such as security level, the number of slots s, and the size of each element
in a slot, d. We will focus only on the field F2 as the plaintext space containing exclusively
the elements 0 and 1, so we always have p = 2 and r = 1.

2.3.2 Slots

HElib stores the plaintext in an array, where the size of the array is dependent on the
predetermined parameters of the scheme,

s =
φ(LWE dim)

d
.

Every position in the array represents a slot. The elements in each slot can be elements over
the finite field F2d .

The reason HElib uses an array to store the plaintext is that the BGV scheme supports
SIMD (Single Instruction Multiple Data) operations. SIMD allows us to encrypt multiple
plaintext bits in a single ciphertext object, where the number of encrypted bits in the ciphertext
object is referred to as the number of slots. We will use the notation

C = {(p1, p2, . . . , ps)}

to illustrate that ciphertext object C encrypts the plaintext bits p1, p2, . . . , ps.
The homomorphic operations in HElib are applied slot-wise. This means that given two

ciphertext objects
Ca = {(a1, a2, . . . , as)}

Cb = {(b1, b2, . . . , bs)}

adding or multiplying them homomorphically would produce the following

Ca +Cb = {(a1 ⊕b1, . . . , as ⊕bs)}

Ca ×Cb = {(a1 ⊗b1, . . . , as ⊗bs)}

where ⊕ is the regular XOR bitwise operation and ⊗ is the regular AND bitwise operation.
By combining HElib’s property of slots and the slot-wise operations, we can use ciphertext

objects to encrypt multiple bits and perform several operations simultaneously. Instead of
having to encrypt each of the plaintext bits a1, a2, . . . , as and b1, b2, . . . , bs in their
own ciphertext objects, we are able to encrypt them in only two ciphertext objects and
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multiply/add them together homomorphically using a single operation. This can be very
useful when implementing a decryption circuit homomorphically, since operations done
during decryption are simple and repeated many times. Thus it is easy to take advantage of
the parallelism offered by HElib and the BGV scheme.





Chapter 3

LowMC

LowMC (Low Multiplicative Complexity) is a family of block ciphers proposed by Martin
Albrecht et al., designed for FHE [4]. The goal is to minimise the number of multiplications,
while still having a secure cipher. In FHE multiplications will cause much more substantial
growth in noise than addition. Therefore, a cipher with low multiplication complexity can be
a lot more efficient to evaluate homomorphically.

3.1 Description of LowMC

There are multiple variants of the LowMC block cipher, which differ based on how we choose
the following parameters; the block size n, the key size k, and the number of S-boxes per
round m. Despite these differences, the LowMC block cipher variants have many shared traits.
Every LowMC cipher starts with a key whitening before continuing with the encryption
rounds, where the rounds are built the same for every LowMC cipher variant. The encryption
round consists of an S-box layer, an affine layer (which contains a linear layer and a constant
addition), and a key addition.

3.1.1 S-box layer

The S-box layer in the LowMC block cipher is quite special since the S-boxes do not have
to cover the whole cipher block. The number of S-boxes, m, in the S-box layer will differ
between the various versions of LowMC ciphers.

While there are no strict rules for how many S-boxes we should use, having too few will
affect the security, and having too many may affect the efficiency of the cipher. The number
of rounds in the LowMC cipher compensates the number of S-boxes. With few S-boxes the
number of rounds increases and with many S-boxes the number of rounds decreases.
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Algebraic Normal Form of S-box

S0(A,B,C) = A ⊕ BC
S0(A,B,C) = A ⊕ B ⊕ AC

S0(A,B,C) = A ⊕ B ⊕ C ⊕ AB

Fig. 3.1 Description of S-box.

In the S-box layer, the cipher block passes through the m S-boxes, with 3 bits per S-box.
The bits that do not pass through any of the S-boxes remain unchanged in this layer. Every
S-box has three multiplications, as shown in figure 3.1, with a single multiplication in each
output. Though the S-box is minimal, it retains the necessary non-linear properties.

3.1.2 Linear layer

In the linear layer, the cipher block is multiplied with a binary matrix of size n× n. The
matrices differ for each round, and the LowMC cipher does not have any strict restrictions
on the matrices, except that they have to be invertible to make it possible to decrypt the
ciphertext. It is, however, recommended that the matrices be either chosen at random or
generated using the keystream from the Grain stream cipher [4]. Later in this thesis, we will
propose predetermined matrices that work efficiently with HElib, without compromising the
security.

3.1.3 Constant addition

In the encryption round, a constant binary vector of length n is added to the cipher block.
The vectors differ from each round and are randomly chosen.

3.1.4 Key addition

In the encryption round, the subkey for the round, a binary vector of length n, will be added
to the cipher block. The keys, which differ for each round, are constructed by multiplying
the master key, of length k, with a random binary matrix, of size n× k. The round keys used
in the encryption rounds will, therefore, have a length of n.
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Fig. 3.2 Down-scaled LowMC with n = 12 and m = 3.

Figure 3.2 displays the first round of a down-scaled LowMC cipher, with a block size
of twelve bits and three S-boxes. The plaintext bits that we want to encrypt are represented
by p0, . . . , p11 and the resulting ciphertext bits are represented by c0, . . . ,c11. In this cipher,
the S-boxes cover 75% of the cipher block, where the last three plaintext bits are not passed
through any S-boxes.

Though we are interested in evaluating the decryption circuit of the LowMC block cipher
homomorphically, the encryption and decryption circuits are so similar that there would be
little difference between evaluating the two. We have chosen to focus on the encryption
circuit, something Martin Albrecht also decided to do in his paper, and will in the following
only discuss homomorphically evaluating the LowMC encryption circuit.
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Block size n # of S-boxes m Key size k # of rounds r
256 49 80 12
128 31 80 12
64 1 80 164

1024 20 80 45
1024 10 80 85
256 63 128 14
196 63 128 14
128 3 128 88
128 2 128 128
128 1 128 252

1024 20 128 49
1024 10 128 92
512 66 256 18
256 10 256 52
256 1 256 458

1024 10 256 103

Table 3.1 Proposed variants of the LowMC block cipher.

Table 3.1 presents the different proposed variants of the LowMC block cipher. Albrecht
focused on five different variants in his HElib implementation of LowMC [2], which are
all marked in red in Table 3.1. We will focus mainly on his implementation of the LowMC
cipher with block size 128, 31 S-boxes, key size 80, and 12 rounds. Our implementations
will be similar to this variant, except that it has 32 S-boxes instead of 31. The reason for this
alteration will be explained later in the thesis.

3.2 Martin Albrecht’s implementation

Figure 3.2 shows how a single plaintext is being encrypted with the LowMC block cipher,
however it is possible to encrypt multiple plaintexts at the same time. As previously men-
tioned the BGV scheme in the HElib library supports packing multiple plaintext bits in a
single ciphertext object. Using this attribute in HElib, Martin Albrecht presented a method
to homomorphically encrypt multiple plaintexts in parallel. In Albrecht’s method, he packs
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p0 = (p0,0 p0,1 p0,2 p0,3 p0,4 p0,5 p0,6 p0,7 p0,8 p0,9 p0,10 p0,11)

p1 = (p1,0 p1,1 p1,2 p1,3 p1,4 p1,5 p1,6 p1,7 p1,8 p1,9 p1,10 p1,11)

p2 = (p2,0 p2,1 p2,2 p2,3 p2,4 p2,5 p2,6 p2,7 p2,8 p2,9 p2,10 p2,11)

p3 = (p3,0 p3,1 p3,2 p3,3 p3,4 p3,5 p3,6 p3,7 p3,8 p3,9 p3,10 p3,11)

p4 = (p4,0 p4,1 p4,2 p4,3 p4,4 p4,5 p4,6 p4,7 p4,8 p4,9 p4,10 p4,11)

c0 = {( p0,0 p1,0 p2,0 p3,0 p4,0 )}
c1 = {( p0,1 p1,1 p2,1 p3,1 p4,1 )}
c2 = {( p0,2 p1,2 p2,2 p3,2 p4,2 )}
c3 = {( p0,3 p1,3 p2,3 p3,3 p4,3 )}
c4 = {( p0,4 p1,4 p2,4 p3,4 p4,4 )}
c5 = {( p0,5 p1,5 p2,5 p3,5 p4,5 )}
c6 = {( p0,6 p1,6 p2,6 p3,6 p4,6 )}
c7 = {( p0,7 p1,7 p2,7 p3,7 p4,7 )}
c8 = {( p0,8 p1,8 p2,8 p3,8 p4,8 )}
c9 = {( p0,9 p1,9 p2,9 p3,9 p4,9 )}
c10 = {( p0,10 p1,10 p2,10 p3,10 p4,10 )}
c11 = {( p0,11 p1,11 p2,11 p3,11 p4,11 )}

Fig. 3.3 Martin Albrecht’s packing of plaintext bits.

the encrypted plaintext bits of multiple plaintexts, into the ciphertext objects in a particular
manner.

Figure 3.3 shows how five plaintexts, p0, p1, p2, p3, and p4 would be packed into
ciphertext objects using Albrecht’s method. As we can see from the figure, twelve ciphertext
objects are used, the same amount as the number of bits in each plaintext. Instead of packing
each encrypted plaintext bit in its own ciphertext object, the plaintext bits that occur in the
same position in every plaintext, p0, p1, p2, p3, and p4, are packed in the same ciphertext
object. Had the plaintext bits been encrypted individually into their ciphertext object, the
number of ciphertext objects used would be 12×5 = 60 instead of the 12 that are used in
this scenario.

By using this packing technique, Albrecht can perform homomorphic operations on
multiple plaintexts at the same time. However, since each ciphertext object contains bits from
all the plaintexts, specific built-in methods of HElib cannot be used. One of these methods is
the matrix-vector multiplication. If this method were to be used, bits from different plaintexts
would affect each other, which is something we would not want to happen. Though Albrecht
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cannot use all the built-in methods in HElib, his method needs only the homomorphic addition
and multiplication methods to be able to encrypt homomorphically in HElib.

3.2.1 m4ri

M4ri stands for "Method of the 4 Russians" and is a library for fast arithmetic with dense
matrices over F2, written by Martin Albrecht, Gregory Bard and William Hart [3]. In
Albrecht’s implementation of LowMC in HElib, he uses the library m4ri for the matrix-vector
multiplications in the affine layer instead of the straightforward method. The library m4ri
has a runtime of O( n2

logn), unlike the straightforward method which has a run-time of O(n2).
With a block size 128, m4ri becomes 7 times faster than the straight-forward method.

3.2.2 Results

Table 3.2 shows the runtimes of Albrecht’s implementation of the LowMC block cipher in
HElib[2]. As mentioned in Chapter 2 the parameter LWE dim stands for a specific modulus,
while s stands for the number of slots in the ciphertext object. The time spent on evaluating
the entire LowMC procedure is represented by eval, and the time spent on evaluating the
S-box layers is represented by S-box.

From Table 3.2 we can see that block wise Albrecht’s method is quite fast, though the
total time spent on the entire LowMC encryption does take at least a couple of minutes.
Most of the time is spent on the S-box layers, which take up around 72%-77% of the total
encryption evaluation time.

In January 2018 Albrecht updated his code for the implementation of the LowMC cipher
to the current HElib API. The implementation with LWE dim = 14351 was run using his
updated code, alongside the updated HElib library from January 2018. The implementation
with LWE dim = 13981 was run using Albrecht’s old code for the implementation of LowMC,
which was from January 2015. This implementation used a version of the HElib library that
was dated back to April 2014.

LWE dim s S-box eval eval per block(eval
s ) Security level

14351 504 173.04 (s) 240.47 (s) 0.4771 (s) 92
13981 600 166.92 (s) 217.71 (s) 0.3629 (s) 81

Table 3.2 Martin Albrecht’s results from 2018 and 2015 with user-defined HElib parameters
p = 2, r = 1, L = 14, c = 1, B = 28, of the LowMC cipher with n = 128, m = 31, k = 80,
and r = 12.
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Table 3.3 shows the times we got after reconstructing Albrecht’s implementation of the
LowMC cipher in HElib. The runtimes are calculated by averaging the times from ten differ-
ent runs of the LowMC cipher in HElib. When reconstructing Albrecht’s implementation
of the LowMC cipher in HElib we only used his updated code from January 2018, and the
HElib library from March 2018. It is not stated in Albrecht’s documentation which versions
of the GNU MP Bignum (GMP) library and the Number Theory Library (NTL) were used in
his implementation. The libraries we used in our reconstruction were GMP v.6.1.2 and NTL
v.10.5.0.

The reconstructed runtimes are a bit faster than the original ones when LWE dim = 14351,
however, this can be explained by different processing powers. Albrecht had four cores
with a frequency of 2.36GHz, while we had two cores with a frequency of 2.40GHz. The
implemented code does not seem to take advantage of multiple of cores, and the 0.04GHz
difference may have made our reconstruction run faster.

The reconstructed times are a bit slower than the original ones when LWE dim = 13981,
with a lower security level. The original and reconstructed code use different versions of the
HElib library, which may explain the different runtimes as well as the difference in security
level.

LWE dim s S-box eval eval per block(eval
s ) Security level

14351 504 163.79 (s) 236.13 (s) 0.47 (s) 92
13981 600 164.2 (s) 233.16 (s) 0.39 (s) 61

Table 3.3 Reconstruction of Albrecht’s implementation with code from 2018 with user-
defined HElib parameters p = 2, r = 1, L = 14, c = 1, B = 28, of the LowMC cipher with
n = 128, m = 31, k = 80, and r = 12.





Chapter 4

Alternative implementation of LowMC
in HElib

An issue not addressed when discussing Albrecht’s implementation of the LowMC cipher in
HElib is what happens with the LowMC plaintexts after being homomorphically decrypted in
the cloud. After the decryption, the plaintexts will have the same packing as before, however
now encrypted under the fully homomorphic encryption. In Albrecht’s implementation,
multiple bits from different plaintexts are, therefore, stored in the same ciphertext object,
which can be a problem in further processing. Before the cloud can continue their process
of the plaintexts, the bits in the ciphertext objects may have to be rearranged such that each
ciphertext object contains bits from only one plaintext. This rearrangement can be very
time-consuming, making it very inefficient to encrypt multiple plaintexts in parallel. The
authors do not mention this problem in paper [4]. Encrypting a single plaintext at a time
could, therefore, be a better solution.

If we disregard this issue, Martin Albrecht’s implementation is effective when encrypting
multiple plaintexts simultaneously. However what happens when we only want to encrypt
a single plaintext, or very few? The encryption times for Albrecht’s implementation is not
affected by the number of plaintexts we want to encrypt. Therefore encrypting one plaintext
will take roughly the same time as encrypting s plaintexts, when the ciphertext objects have s
slots. We show a real-world example, where it is necessary to encrypt a single plaintext at a
time, instead of multiple.

For many people struggling with diabetes, it can be quite troublesome to keep track
of their glucose levels. In recent years continuous glucose monitoring (CGM) has been
used to help diabetes patients monitor their blood sugar, to manage their disorder better [1].
Patients who use CGM receive a small sensor that is placed right under their skin. This
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sensor measures their glucose levels every five minutes, transmits this data wirelessly to a
local display device (e.g. smartphone) and then sends it encrypted to the cloud.

While many countries have embraced this technology, some countries are hesitant to do
the same because of strict privacy laws [10]. Since the data is decrypted in the cloud, there is
no absolute insurance that the vast amount of medical data is stored safely and it is unclear
who has access to it. FHE can eliminate a lot of the issues regarding storage of sensitive data.
When it is not necessary for the cloud provider to be in possession of the decryption key, the
need for trust in the cloud provider is eliminated.

With CGM it is the local device that is responsible for encrypting the data. Since FHE
requires large amounts of processing power, the local device must encrypt the data using a
symmetric cipher, like the LowMC block cipher. If Albrecht’s implementation of the LowMC
cipher, with n = 128 and s = 600, was used in the HElib library, the cloud provider would
have to wait, 600×5 minutes = 3000 minutes ≈, 2 days to process the 600 ciphertexts from
the local device before starting the decryption circuit. For patients who are dependent on near
real-time results, waiting almost two days would defeat the purpose of the system. The cloud
provider could run the decryption circuit immediately after receiving a single ciphertext and
fill the remaining 599 slots with dummy data, however, this would take approximately the
same amount of time as decrypting 600 ciphertexts and would be a waste of resources. Is it
possible to run the LowMC cipher faster than Albrecht’s implementation, when encrypting a
single ciphertext at a time?

4.1 Parallel S-boxes

As we can see from the results of Albrecht’s implementation, most of the time spent on the
LowMC encryption is used in the S-box layers. The S-box layers cover 72-76% of the entire
time taken for the LowMC encryptions. Our main goal is to lower the time taken on the
S-box layers, for the overall time taken to decrease. Our idea for this challenge is to run
the S-boxes in parallel in each round, instead of evaluating m S-boxes serially. By taking
advantage of the slots in HElib, we can pack the bits into four ciphertext objects, where three
of them will pass through multiple S-boxes simultaneously. Instead of having to pack every
bit into an individual ciphertext object, we can cut down the number of ciphertext objects
used to only four, regardless of the block size.

The crucial part is the way the bits are packed, and we will use a down-scaled version of
the LowMC cipher with n = 12 and m = 3 to present this.
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p = (p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11)

C0 = {(p0 p3 p6)}
C1 = {(p1 p4 p7)}
C2 = {(p2 p5 p8)}

C3 = {(p9 p10 p11)}

Fig. 4.1 Our packing using a down-scaled version of the LowMC cipher with n = 12 and
m = 3.

In Figure 4.1, the plaintext p is used as an example to show how bits from the plaintext
are packed into four different ciphertext objects C0, C1, C2 and C3. The bits that will not
pass through the S-boxes are packed into a single ciphertext object C3. The remaining three
ciphertext objects contain the bits that will pass through the S-boxes. The ciphertext object
C0 contains every third bit starting from p0, C1 contains every third bit starting from p1,
and C2 contains every third bit starting from p2. By encrypting the plaintext bits that will
pass through the same S-box in the same slots in C0, C1, C2, we can evaluate the S-boxes in
parallel.

S-box
C0 +C1 ×C2

C0 +C1 +C0 ×C2

C0 +C1 +C2 +C0 ×C1

Fig. 4.2 Our S-box layer in the alternative implementation of the LowMC cipher in HElib.

Continuing with the example from Figure 4.1, Figure 4.2 shows the implementation of
S-box layer. Because of the packing, we need fewer operations to evaluate the same amount
of S-boxes. Had we used Albrecht’s implementation we would have needed m-times the
operations to evaluate the same amount of S-boxes, and twelve ciphertext objects instead of
four.

It is necessary for efficiency that the S-boxes to cover exactly 3
4 of the cipher block, such

that the last ciphertext object can have the same amount of filled slots as the rest. In our
implemented version of the LowMC cipher with n = 128, we need 32 S-boxes in order for
them to cover 3

4 of n.
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4.2 The linear layer

In the linear layer of the LowMC cipher, the ciphertext objects will be multiplied with a
random binary matrix of size n× n. To do so, we may use HElib’s built-in method, mul.
Initially, we used the method called matMul, however when the HElib library was updated in
February/March 2018 the built-in method matMul was optimised and changed its name to
mul. Our tests have been done using mul, being the faster of the two methods.

The method mul takes a ciphertext object with number of slots s and a matrix of size s× s
and alters the given ciphertext, while it retains the same size. Given a ciphertext object

C = {(a b c)}

and a matrix

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 ,

the method mul alters the given ciphertext object to

C = {(a ·m11 +b ·m21 + c ·m31 a ·m12 +b ·m22 + c ·m32 a ·m13 +b ·m23 + c ·m33)}

= {(a b c) ·M}

Following the syntax of HElib, we also write this as M.mul(C).

Fig. 4.3 Linear layer of the down-scaled LowMC cipher with n = 12 and m = 3.
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Figure 4.3 is a representation of the linear layer in the down-scaled LowMC cipher with
n = 12 and m = 3, where p0, . . . , p11 are the incoming bits and p

′
0, . . . , p

′
11 are the outgoing

bits. We would like to implement this layer in HElib using the method mul, however, because
of our alternative packing, this can be a bit tricky. Since our implementation has divided
the encrypted plaintext bits into four different ciphertext objects, we cannot simply multiply
each of them with a random matrix. Given the incoming plaintext bits pi’s and matrix from
Figure 4.3, we would like to implement a linear layer that produces the p′i’s given in Figure
4.3, while still keeping the same packing as shown in Figure 4.1.

We solved this problem by splitting the incoming matrix into 16 smaller matrices. The
reasoning behind this will be shown in the following two figures, where C0, C1, C2, and
C3 are copies of the incoming ciphertext objects and D0, D1, D2, and D3 are the outgoing
ciphertext objects.

Fig. 4.4 Calculating D0 in the alternative implementation of the down-scaled LowMC cipher
with n = 12 and m = 3.

The last equation in Figure 4.4 shows how the ciphertext object D0 = {(p′0 p′3 p′6)},
in our alternative implementation of the linear layer in HElib, is calculated. The first equation
is the representation of the linear layer from Figure 4.3, and we will use this equation to
explain how the ciphertext object D0 is calculated.

In the matrix from the linear layer representation, the three rows that affect the calculations
of p′0, p′3, and p′6 are extracted to form four smaller 3×3 matrices. The red coloured bits form
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the matrix m0,0, blue bits form m0,1, green bits form m0,2 and the purple bits form the matrix
m0,3. When we look closer at the incoming plaintext bits these matrices are multiplied with,
we can see that when these bits are extracted based on colour, they form the ciphertext objects
C0, C1, C2 and C3. The red coloured incoming plaintext bits are the same bits represented in
C0, the blue bits are represented in C1, the green bits are represented in C2 and the purple
bits are the same as the ones represented in C3. The calculation of ciphertext object D0 can
therefore be rewritten as

D0 = m0,0.mul(C0) + m0,1.mul(C1) + m0,2.mul(C2) + m0,3.mul(C3)

The calculation of ciphertext objects D1 and D2 is done in a similar manner, where
D1 uses the bits affecting the calculation of p′1, p′4, p′7 and D2 uses the bits affecting the
calculation of p′2, p′5, p′8.

Fig. 4.5 Calculating D3 in the alternative implementation of the down-scaled LowMC cipher
with n = 12 and m = 3.

Figure 4.5 presents the calculation of ciphertext object D3 = {(p′9 p′10 p′11)}, which
is approximately the same as when calculating the ciphertext object D0. The main difference
is that the extracted rows from the main matrix and the encrypted plaintext bits from the
incoming ciphertext object, are the ones that affect the calculations of p′9, p′10, and p′11.

We can therefore conclude that our alternative packing, using only four ciphertext objects,
can pass through any arbitrary linear layer using the method mul 16 times. Though the
previous figures 4.3, 4.4 and 4.5 use the down-scaled LowMC cipher with n = 12, this can
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easily be scaled up to the LowMC cipher with n = 128 which is the version we implemented
in HElib.

4.2.1 Timing results

There are multiple values of LWE dim that give the needed number of slots, s = 32, but we
tried finding the LWE dim that gave a good security level with the lowest evaluation time for
the given implementation. The user-defined HElib parameters have a major effect on both
timings and security, and should, therefore, be picked carefully. Almost all of the parameters
are equal to the ones used in Albrecht’s implementation, except for LWE dim, L and m. The
number of slots, m, was increased by one to get a more efficient implementation and the
number of levels in the scheme, L, was increased by one to ensure correct decryption of the
bits.

Table 4.1 shows the results of our alternative implementation of the LowMC cipher using
mul. As we can see the timings for the S-box layer has decreased a great deal, though the
timings for the linear layer has increased considerably. It turns out that the method mul is
quite slow, and the time saved in the S-box layer is not sufficient to justify the time spent in
the linear layer.

LWE dim S-box eval eval per bit(
eval

n
) Security level

26849 12.61 (s) 531.78 (s) 4.15 (s) 127
Table 4.1 Results of implementation using mul in linear layer, with user-defined HElib
parameters p = 2, r = 1, L = 15, c = 1, B = 28, of the LowMC cipher with n = 128, m = 32,
k = 80, and r = 12.

The reason Albrecht’s linear layer was so efficient, was that it used the m4ri library. With
Albrecht’s implementation, only the bits in the same slot positions in the different ciphertext
objects will be added together. In our alternative implementation, we are not able to apply the
m4ri library since the different slots from one ciphertext object need to be mixed. Albrecht
never performs any addition between any of the bits in the same ciphertext object, making it
possible to use the m4ri library.

4.3 Rotation-based linear layer

LowMC does not have any specifications for the matrices in the linear layer, except that they
need to be invertible and should be random to ensure good diffusion. Because we want to
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keep the configuration of the bits in the cipher block for the sake of the S-boxes, we should
look for a linear layer that better fits this organisation. We can try to find an alternative
implementation of the linear layer that is better suited for HElib by taking advantage of the
lack of specifications of the matrices used in the linear layer, and choosing matrices that work
well with the HElib library.

After checking the different built-in methods in HElib, we found the method rotate. The
rotate method takes in two parameters, a ciphertext object C and an integer r, and returns
the ciphertext object C′ where the slots have been cyclically rotated r positions to the right.
Rotating a ciphertext object

C = {(p1, p2, . . . , pn−1, pn)}

by r = 2 with the method rotate, gives

C′ = {(pn−1, pn, p1, p2, . . . , pn−3, pn−2)}.

Since the rotation is cyclic, the encrypted bits pn−1 and pn will continue its rotation to the
beginning of the ciphertext object.

The rotate method is a lot faster than the mul method, and the execution time is indepen-
dent of how many positions we rotate by. We have therefore chosen to use this method to
optimise the linear layer, by proposing specific linear layers for the different rounds. We have
created five unique linear transformations that are repeated as often as necessary to cover all
the rounds in the LowMC cipher.

rotations = [16,8,4,2,1,16,8,4,2,1, . . . ,16,8,4,2,1]
D j

0 = C j
0 +(C j

2 >>> rotations[r])+(C j
3 >>> rotations[r+3])

D j
1 = C j

1 +(C j
0 >>> rotations[r+1])+(C j

3 >>> rotations[r+3])
D j

2 = C j
2 +(C j

1 >>> rotations[r+2])+(C j
3 >>> rotations[r+3])

D j
3 = C j

0 +C j
1 +C j

2 +C j
3 .

(4.1)

Equations 4.1 depicts the linear layer for an arbitrary round j, where the size of the list
rotations is equal to the number of rounds in the LowMC cipher plus three. The ciphertext
objects C j

0 , C j
1 , C j

2 , C j
3 form the input to the linear layer in round j, and D j

0 , D j
1 , D j

2 , D j
3

represent the ciphertext objects after. These rotations and additions can be represented by
multiplying the encrypted plaintext bits with a specific matrix and therefore still follow the
LowMC specifications of the linear layer, except that the matrices are no longer random but
predefined.



4.3 Rotation-based linear layer 35

Fig. 4.6 One of the five proposed matrices for the linear layers

Figure 4.6 represents one of the five 128× 128 matrix representations of the rotation-
based linear layers. The blue pixels represent the 0-bits, while the black pixels represent
the 1-bits. The matrix in Figure 4.6 is quite sparse with few 1-bits, similar to the other four
matrices. This property makes the matrices fitting to use in the decryption process since the
homomorphic decryption circuit is the only one that needs to be implemented, as seen in
Figure 2.4, and should thus be kept as simple as possible.

Fig. 4.7 The inverse of the matrix in Figure 4.6

Figure 4.7 shows the inverse of the matrix in Figure 4.6. Unlike the matrix in Figure 4.6,
the inverse consists of a lot more 1-bits making it quite dense. This property will not cause
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any problem when applying these matrices in the encryption process, since a basic matrix
multiplication outside HElib will not be time-consuming.

4.3.1 Diffusion analysis of the linear layer

According to Shannon, a good cryptosystem holds two essential properties; diffusion, and
confusion. Confusion means that the relationship between the ciphertext and the plaintext
should be complicated and non-linear. In the LowMC cipher, it is the S-box layer that
provides the confusion of the encryption.

Diffusion means that if a single bit in the plaintext changes, this bit should contribute
to several bit changes in the ciphertext. The diffusion property in the LowMC cipher is
achieved in the linear layer. Since we propose specific matrices used in the linear layer in our
implementation of the LowMC cipher, we need to argue they give good diffusion.

We will use the notation C j
i to represent the incoming ciphertext objects in the linear

layer in round j, where i indicates which of the four ciphertext objects is being represented.
D j

i represents the outgoing ciphertext objects of the linear layer.
Continuing with equations (4.1), we will take a closer look at how a single bit difference

introduced in ciphertext object C j
0 will spread from one active S-box to 32 active S-boxes.

After going through the linear layer with the single bit difference in C j
0 , this bit will spread

to D j
0 , D j

1 , D j
3 based on the equations (4.1). Because D j

1 gets influenced by a rotated C j
0 ,

unlike D j
1 and D j

3 , the single bit difference will be placed in different parts of the ciphertext
object than D j

1 and D j
3 . The ciphertext object C j

3 could have been used to cancel out the
one-bit difference introduced by C j

0 in either D j
0 and D j

1 . However, C j
3 rotated is also added

to D j
0 , D j

1 , D j
2 and introduces more one-bit differences than it would manage to cancel out.

Therefore when D j
0 , D j

1 , D j
2 pass through the S-box layers, at least two S-boxes will be

activated by the single bit difference introduced.
In the next round, the one-bit differences existing in C j+1

0 , C j+1
1 , C j+1

3 will be spread
to at least four active S-boxes. Since C j+1

0 and C j+1
3 have their one-bit differences in

different parts of the ciphertext objects, there may be a chance that C j+1
3 rotated may cancel

out the one-bit difference in C j+1
0 which both contribute to D j+1

0 . However C j+1
3 rotated

will introduce a one-bit difference in D j+1
1 and D j+1

2 . Both C j+1
3 and C j+1

1 have their
one-bit difference in the same position, and when they are rotated with different values their
contributions to D j+1

1 and D j+1
2 cannot cancel each other out.

Because of the different rotation amounts in each linear layer, each one-bit difference
will spread to at least two other S-boxes. With this happening in each round, it will take five
rounds for the single bit difference to spread and activate all 25 = 32 S-boxes.
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Our proposed matrices in the linear layer are safe from attacks starting with a one-bit
difference, as long as the cipher has at least five rounds. However, is it possible to introduce
the one-bit difference in the middle of the cipher? If the spread of the bits is the same when
encrypting and decrypting, an attacker can start with a one-bit difference in the fourth round
and move three rounds in both directions with the bits spreading to only 23 = 8 S-boxes in
each direction.

When we look at the matrices used in encryption and decryption, the decryption matrices
are a lot denser. The bit differences will therefore not have the same amount of spread, as the
decryption process will lead to a broader spread of bits. For an attacker to be able to produce
a cipher block with a one-bit difference in the fourth round, they would have to start with a
significant amount of bit differences in the previous round(s).

In conclusion, five rounds of LowMC with our proposed linear layer should be safe
against linear and differential cryptanalysis. Since the actual cipher has twelve rounds, using
our proposed linear layer gives more than sufficient security margin.

4.3.2 Timing results

After running our implementation of the LowMC cipher in HElib, using the linear transfor-
mations given in (4.1), we got the runtimes shown in Table 4.2. The overall time used to
evaluate the cipher homomorphically has decreased considerably, and a rotation-based linear
layer is the best solution for encrypting single plaintexts when using HElib. The code of our
implementation is in Appendix A, and the associated makefile is in Appendix B.

While the alternative linear layer does decrease the runtimes a great deal, we can see from
the table that the user-defined HElib parameters play a huge role when it comes to timing
results and security level. By changing the LWE dim value, from 26849 to 12641, the overall
evaluation time for the encryption is more than halved. While the bits per level, B, does not
seem to have a substantial effect on the timings, the security level considerably decreases
when increasing the B value from 14 to 28.

When LWE dim = 10057, we notice that the security level decreases by a small amount
when changing the value of B from 14 to 28, compared to the other two values of LWE dim.
The change in security level may be attributed to the increased L when B = 14, however,
we cannot explain the sudden need to increase L. The sudden change in parameters help
illustrate how sensitive the BGV scheme is when choosing the values of LWE dim and B.
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LWE dim S-box eval eval per bit(eval
n ) B L Security level

26849 13.86 (s) 26.29 (s) 0.21 (s) 14 15 304
26849 11.84 (s) 22.50 (s) 0.18 (s) 28 13 144
12641 6.09 (s) 11.53 (s) 0.09 (s) 14 15 108
12641 5.40 (s) 10.20 (s) 0.08 (s) 28 13 9
10057 11.16 (s) 32.78 (s) 0.26 (s) 14 25 -3
10057 5.94 (s) 17.83 (s) 0.14 (s) 28 13 -17

Table 4.2 Results of implementation using rotate in linear layer, with user-defined HElib
parameters p = 2, r = 1, c = 1, of the LowMC cipher with n = 128, m = 32, k = 80, and
r = 12.
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Conclusion

Fully homomorphic encryption is still a very new area within cryptography. There have been
many improvements since the first FHE scheme was proposed in 2009, and in years to come
further advances will be made. One of the recent developments has been the use of slots in
the BGV scheme. Each bit used to be encrypted by themselves in a single ciphertext object,
however with the existence of slots it became possible to encrypt multiple bits simultaneously.

The primary focus of this thesis has been on evaluating the encryption circuit of the
LowMC block cipher as efficiently as possible, in the FHE library HElib. With the use of
slots in HElib, we were able to improve evaluation times for the encryption circuit. The
slots in HElib are utilised differently based on the number of plaintexts we would like to
encrypt. If several plaintexts need to be encrypted simultaneously it would be wisest to use
Martin Albrecht’s implementation of the LowMC cipher in HElib, provided the problem of
disentangling all LowMC ciphertexts from each other can be solved. Albrecht packed several
bits from different plaintexts into the same ciphertext object, making it possible to encrypt
multiple plaintexts simultaneously. If there is only a single plaintext, or few, that needs to
be encrypted, then it would be more efficient to use our alternative implementation. In our
implementation we divide a single plaintext into four ciphertext objects, where three of them
contain bits that will pass through the S-boxes, making it possible to run the m S-boxes in
parallel.

Up until now, when designing symmetric ciphers that can be used in FHE, it has been
focused mainly on reducing the number of multiplications in the encryption algorithm. We
believe it would be better to as well take into consideration the actual FHE schemes and
libraries in the design process. By analysing the various methods and their efficiency, ciphers
can be built to use the most efficient methods of the FHE scheme and libraries it was designed
for. In our process of finding a more effective implementation of the LowMC cipher in HElib,
we discovered that the built-in mul method was a lot slower than the rotate method. By
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altering our implementation, in consideration of the BGV scheme and HElib library, we were
able to cut down the evaluation time of the encryption circuit considerably.

When implementing the linear layer of the LowMC cipher, using the method mul, we
only managed to get an encryption time of 531.78 seconds. While the S-box layers only
used 12.61 seconds, most of the time was spent in the linear layer. By switching to the rotate
method, our encryption time decreased to 22.50 seconds. Both of these implementations
applied the same value for two of the user-defined HElib parameters LWE dim = 26849 and
B = 28. However, we were able to further decrease the encryption time to 11.53 seconds by
altering these parameters to LWE dim = 12641 and B = 14.

Through trial and error the user-defined HElib parameters, LWE dim, B, and L, applied in
our alternative implementations of the LowMC cipher were found. Our goal was to find a
combination of these parameters that gave an adequate security level and a decent runtime of
the LowMC encryption circuit. Since we were not able to test all the different combinations,
there may exist a combination of parameters that gives an adequate security level with a
shorter encryption time.

For further work, we propose looking closer at other symmetric ciphers recommended
for FHE use. Though we used the LowMC cipher when working with the BGV scheme and
HElib library, there may be other ciphers that are more efficient when used in HElib. There
may also be other FHE schemes and libraries that suits the LowMC cipher even better. What
is the most optimal combination of a symmetric cipher, FHE scheme, and library?
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Appendix A

Source Code

# i n c l u d e " matmul . h "
# i n c l u d e <iomanip >

v e c t o r < v e c t o r < Ctx t > > subkeys ;
v e c t o r < v e c t o r < Ctx t > > c o n s t a n t s ;
v e c t o r < i n t > r o t a t i o n s = { 1 6 , 8 , 4 , 2 , 1 , 1 6 , 8 , 4 , 2 , 1 , 1 6 , 8 , 4 , 2 , 1 , 1 6 , 8 , 4 , 2 , 1 } ;
i n t nRounds ;
double s b o x _ e l a p s e d _ s e c s = 0 ;
double l i n e a r _ l a y e r _ e l a p s e d _ s e c s = 0 ;
double c o n s t _ a d d _ e l a p s e d _ s e c s = 0 ;
double k e y _ a d d _ e l a p s e d _ s e c s = 0 ;
double r o u n d _ s b o x _ e l a p s e d _ s e c s = 0 ;
double r o u n d _ l i n e a r _ l a y e r _ e l a p s e d _ s e c s = 0 ;
double r o u n d _ c o n s t _ a d d _ e l a p s e d _ s e c s = 0 ;
double r o u n d _ k e y _ a d d _ e l a p s e d _ s e c s = 0 ;

v e c t o r < Ctx t > c o n s t a n t _ a d d i t i o n ( v e c t o r < Ctx t > c i p h e r s , i n t round ) {
f o r ( i n t i = 0 ; i < c i p h e r s . s i z e ( ) ; i ++){

c i p h e r s [ i ] . a d d C t x t ( c o n s t a n t s [ round ] [ i ] ) ;
}
re turn c i p h e r s ;

}

v e c t o r < Ctx t > k e y _ a d d i t i o n ( v e c t o r < Ctx t > c i p h e r s , i n t round ) {
f o r ( i n t i = 0 ; i < c i p h e r s . s i z e ( ) ; i ++){

c i p h e r s [ i ] . a d d C t x t ( subkeys [ round ] [ i ] ) ;
}
re turn c i p h e r s ;
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}

v e c t o r < Ctx t > l i n e a r _ l a y e r ( v e c t o r < Ctx t > c i p h e r s , i n t round ,
c o n s t E n c r y p t e d A r r a y& ea , c o n s t FHEPubKey& pub l i cKey ) {

C t x t c0 ( pub l i cKey ) , c1 ( pub l i cKey ) , c2 ( pub l i cKey ) , cR ( pub l i cKey ) ,
c 0 _ n o n _ r o t a t i o n ( pub l i cKey ) , c 1 _ n o n _ r o t a t i o n ( pub l i cKey ) ,
c 2 _ n o n _ r o t a t i o n ( pub l i cKey ) ;

c0 = c i p h e r s [ 0 ] , c1 = c i p h e r s [ 1 ] , c2 = c i p h e r s [ 2 ] , cR = c i p h e r s [ 3 ] ,
c 0 _ n o n _ r o t a t i o n = c i p h e r s [ 0 ] , c 1 _ n o n _ r o t a t i o n = c i p h e r s [ 1 ] ,
c 2 _ n o n _ r o t a t i o n = c i p h e r s [ 2 ] ;

ea . r o t a t e ( c0 , r o t a t i o n s [ round + 1 ] ) ;
ea . r o t a t e ( c1 , r o t a t i o n s [ round + 2 ] ) ;
ea . r o t a t e ( c2 , r o t a t i o n s [ round ] ) ;
ea . r o t a t e ( cR , r o t a t i o n s [ round + 3 ] ) ;

/ / c0 + ( c2 << r o t a t i o n s [ round ] ) + ( cR << r o t a t i o n s [ round +3])
c i p h e r s [ 0 ] . a d d C t x t ( c2 ) ;
c i p h e r s [ 0 ] . a d d C t x t ( cR ) ;

/ / c1 + ( c0 << r o t a t i o n s [ round +1]) + ( cR << r o t a t i o n s [ round +3])
c i p h e r s [ 1 ] . a d d C t x t ( c0 ) ;
c i p h e r s [ 1 ] . a d d C t x t ( cR ) ;

/ / c2 + ( c1 << r o t a t i o n s [ round +2]) + ( cR << r o t a t i o n s [ round +3])
c i p h e r s [ 2 ] . a d d C t x t ( c1 ) ;
c i p h e r s [ 2 ] . a d d C t x t ( cR ) ;

/ / c0 + c1 + c2 + cR
c i p h e r s [ 3 ] . a d d C t x t ( c 0 _ n o n _ r o t a t i o n ) ;
c i p h e r s [ 3 ] . a d d C t x t ( c 1 _ n o n _ r o t a t i o n ) ;
c i p h e r s [ 3 ] . a d d C t x t ( c 2 _ n o n _ r o t a t i o n ) ;

re turn c i p h e r s ;
}

v e c t o r < Ctx t > sbox ( v e c t o r < Ctx t > c i p h e r s , c o n s t FHEPubKey& pub l i cKey ) {
C t x t s2 ( pub l i cKey ) , s0 ( pub l i cKey ) , s1 ( pub l i cKey ) ;
s2 = c i p h e r s [ 0 ] , s0 = c i p h e r s [ 1 ] , s1 = c i p h e r s [ 2 ] ;

/ / c2 * c3+c1
s0 . m u l t i p l y B y ( c i p h e r s [ 2 ] ) ;
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s0 . a d d C t x t ( c i p h e r s [ 0 ] ) ;

/ / c3 * c1+c1+c2
s1 . m u l t i p l y B y ( c i p h e r s [ 0 ] ) ;
s1 . a d d C t x t ( c i p h e r s [ 0 ] ) ;
s1 . a d d C t x t ( c i p h e r s [ 1 ] ) ;

/ / c1 * c2+c1+c2+c3
s2 . m u l t i p l y B y ( c i p h e r s [ 1 ] ) ;
s2 . a d d C t x t ( c i p h e r s [ 0 ] ) ;
s2 . a d d C t x t ( c i p h e r s [ 1 ] ) ;
s2 . a d d C t x t ( c i p h e r s [ 2 ] ) ;

v e c t o r < Ctx t > outputFromSBoxes ;
outputFromSBoxes . push_back ( s0 ) ;
outputFromSBoxes . push_back ( s1 ) ;
outputFromSBoxes . push_back ( s2 ) ;
outputFromSBoxes . push_back ( c i p h e r s [ 3 ] ) ;

re turn outputFromSBoxes ;
}

v e c t o r < Ctx t > lowmc_round ( v e c t o r < Ctx t > c i p h e r s ,
c o n s t FHEPubKey& publ icKey , c o n s t E n c r y p t e d A r r a y& ea , i n t round ) {

/ / −−−−−−−−−SBOX BEGIN−−−−−−−−−
c l o c k _ t s b o x _ b e g i n = c l o c k ( ) ;
c i p h e r s = sbox ( c i p h e r s , pub l i cKey ) ;
c l o c k _ t sbox_end = c l o c k ( ) ;

/ / −−−−−−−−−SBOX END−−−−−−−−−

/ / −−−−−−−−−LINEAR LAYER BEGIN−−−−−−−−−
c l o c k _ t l i n e a r _ l a y e r _ b e g i n = c l o c k ( ) ;
c i p h e r s = l i n e a r _ l a y e r ( c i p h e r s , round , ea , pub l i cKey ) ;
c l o c k _ t l i n e a r _ l a y e r _ e n d = c l o c k ( ) ;

/ / −−−−−−−−−LINEAR LAYER END−−−−−−−−−

/ / −−−−−−−−−CONSTANT ADDITION BEGIN−−−−−−−−−
c l o c k _ t c o n s t _ a d d _ b e g i n = c l o c k ( ) ;
c i p h e r s = c o n s t a n t _ a d d i t i o n ( c i p h e r s , round ) ;
c l o c k _ t c o n s t _ a d d _ e n d = c l o c k ( ) ;

/ / −−−−−−−−−CONSTANT ADDITION END−−−−−−−−−

/ / −−−−−−−−−Key ADDITION BEGIN−−−−−−−−−
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c l o c k _ t key_add_beg in = c l o c k ( ) ;
c i p h e r s = k e y _ a d d i t i o n ( c i p h e r s , round ) ;
c l o c k _ t key_add_end = c l o c k ( ) ;

/ / −−−−−−−−−Key ADDITION END−−−−−−−−−

r o u n d _ s b o x _ e l a p s e d _ s e c s =
double ( sbox_end − s b o x _ b e g i n ) / CLOCKS_PER_SEC ;

r o u n d _ l i n e a r _ l a y e r _ e l a p s e d _ s e c s =
double ( l i n e a r _ l a y e r _ e n d − l i n e a r _ l a y e r _ b e g i n ) / CLOCKS_PER_SEC ;

r o u n d _ c o n s t _ a d d _ e l a p s e d _ s e c s =
double ( c o n s t _ a d d _ e n d − c o n s t _ a d d _ b e g i n ) / CLOCKS_PER_SEC ;

r o u n d _ k e y _ a d d _ e l a p s e d _ s e c s =
double ( key_add_end − key_add_beg in ) / CLOCKS_PER_SEC ;

s b o x _ e l a p s e d _ s e c s += r o u n d _ s b o x _ e l a p s e d _ s e c s ;
l i n e a r _ l a y e r _ e l a p s e d _ s e c s += r o u n d _ l i n e a r _ l a y e r _ e l a p s e d _ s e c s ;
c o n s t _ a d d _ e l a p s e d _ s e c s += r o u n d _ c o n s t _ a d d _ e l a p s e d _ s e c s ;
k e y _ a d d _ e l a p s e d _ s e c s += r o u n d _ k e y _ a d d _ e l a p s e d _ s e c s ;

re turn c i p h e r s ;
}

void g e t _ c o n s t a n t s ( c o n s t E n c r y p t e d A r r a y& ea , c o n s t FHEPubKey& pub l i cKey ) {
long n = ea . s i z e ( ) ;

f o r ( i n t round = 0 ; round < nRounds ; round ++){
v e c t o r < Ctx t > c o n s t a n t ;

f o r ( long i = 0 ; i < 4 ; i ++) {
v e c t o r < long > v e c t o r _ c o n s t a n t ;
v e c t o r _ c o n s t a n t . r e s i z e ( n ) ;

f o r ( i n t j = 0 ; j < n ; j ++) {
v e c t o r _ c o n s t a n t [ j ] = r and ( ) % 2 ;

}

N e w P l a i n t e x t A r r a y p l a i n t e x t _ c o n s t a n t ( ea ) ;
encode ( ea , p l a i n t e x t _ c o n s t a n t , v e c t o r _ c o n s t a n t ) ;
C t x t c i p h e r _ c o n s t a n t ( pub l i cKey ) ;
ea . e n c r y p t ( c i p h e r _ c o n s t a n t , publ icKey , p l a i n t e x t _ c o n s t a n t ) ;
c o n s t a n t . push_back ( c i p h e r _ c o n s t a n t ) ;
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}
c o n s t a n t s . push_back ( c o n s t a n t ) ;

}
}

void g e t _ s u b k e y s ( c o n s t E n c r y p t e d A r r a y& ea , c o n s t FHEPubKey& pub l i cKey ) {
long n = ea . s i z e ( ) ;

f o r ( i n t round = 0 ; round <= nRounds ; round ++){
v e c t o r < Ctx t > roundKey ;

f o r ( long i = 0 ; i < 4 ; i ++) {
v e c t o r < long > vec to r_ rou ndKey ;
vec to r_ round Key . r e s i z e ( n ) ;

f o r ( i n t j = 0 ; j < n ; j ++) {
vec t o r_ round Key [ j ] = rand ( ) % 2 ;

}

N e w P l a i n t e x t A r r a y p l a i n t e x t _ r o u n d K e y ( ea ) ;
encode ( ea , p l a i n t e x t _ r o u n d K e y , vec to r_ roundKe y ) ;
C t x t c iphe r _ roundKe y ( pub l i cKey ) ;
ea . e n c r y p t ( c iphe r_ roundKey , publ icKey , p l a i n t e x t _ r o u n d K e y ) ;
roundKey . push_back ( c i phe r_ rou ndKey ) ;

}
subkeys . push_back ( roundKey ) ;

}
}

i n t main ( i n t argc , char * a rgv [ ] ) {
long m, p , r , L , c , w, B ;

m=26849;
p =2;
r =1 ;
L=15;
c =1;
w=80;
B=14;
nRounds =12;

/ / c r e a t e t e x t − f i l e t o s t o r e r e s u l t s
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o f s t r e a m m y f i l e ;
s t r i n g s t r e a m f i l e n a m e ;
f i l e n a m e << "m=" << m << " , p=" << p << " , r =" << r <<
" ,L=" << L << " , c=" << c << " ,w=" << w << " ,B=" << B <<
" , nRounds=" << nRounds << " . t x t " ;
m y f i l e . open ( f i l e n a m e . s t r ( ) ) ;

/ / −−−−−−−−−SETUP BEGIN−−−−−−−−−
c l o c k _ t s e t u p _ b e g i n = c l o c k ( ) ;

FHEcontext c o n t e x t (m, p , r ) ;
c o n t e x t . b i t s P e r L e v e l =B ;
bui ldModChain ( c o n t e x t , L , c ) ;
FHESecKey s e c r e t K e y ( c o n t e x t ) ;
c o n s t FHEPubKey& pub l i cKey = s e c r e t K e y ;
s e c r e t K e y . GenSecKey (w / 2 ) ;
addSome1DMatrices ( s e c r e t K e y ) ;
E n c r y p t e d A r r a y ea ( c o n t e x t ) ;
long n s l o t s =ea . s i z e ( ) ;

c l o c k _ t s e t u p _ e n d = c l o c k ( ) ;
/ / −−−−−−−−−SETUP END−−−−−−−−−

m y f i l e << " s l o t s =" << n s l o t s << " , m=" << m << " \ n " ;
m y f i l e << " s e c u r i t y l e v e l =" << c o n t e x t . s e c u r i t y L e v e l ( ) << " \ n \ n " ;

/ / −−−−−−−−−READ DATA BEGIN−−−−−−−−−
c l o c k _ t r e a d i n g _ d a t a _ b e g i n = c l o c k ( ) ;

N e w P l a i n t e x t A r r a y p1 ( ea ) , p2 ( ea ) , p3 ( ea ) , pRes t ( ea ) ;

v e c t o r < long > p l a i n t e x t _ 1 =
{ 1 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 } ;

v e c t o r < long > p l a i n t e x t _ 2 =
{ 0 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 } ;

v e c t o r < long > p l a i n t e x t _ 3 =
{ 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 } ;

v e c t o r < long > p l a i n t e x t _ r e s t =
{ 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 } ;
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encode ( ea , p1 , p l a i n t e x t _ 1 ) ;
encode ( ea , p2 , p l a i n t e x t _ 2 ) ;
encode ( ea , p3 , p l a i n t e x t _ 3 ) ;
encode ( ea , pRest , p l a i n t e x t _ r e s t ) ;

g e t _ c o n s t a n t s ( ea , pub l i cKey ) ;
g e t _ s u b k e y s ( ea , pub l i cKey ) ;

c l o c k _ t r e a d i n g _ d a t a _ e n d = c l o c k ( ) ;
/ / −−−−−−−−−READ DATA END−−−−−−−−−

/ / −−−−−−−−−CTXT ENCRYPTION BEGIN−−−−−−−−−
c l o c k _ t c t x t _ e n c r y p t i o n _ b e g i n = c l o c k ( ) ;

C t x t c1 ( pub l i cKey ) , c2 ( pub l i cKey ) , c3 ( pub l i cKey ) , c R e s t ( pub l i cKey ) ;
ea . e n c r y p t ( c1 , publ icKey , p1 ) ;
ea . e n c r y p t ( c2 , publ icKey , p2 ) ;
ea . e n c r y p t ( c3 , publ icKey , p3 ) ;
ea . e n c r y p t ( cRes t , publ icKey , pRes t ) ;

v e c t o r < Ctx t > c i p h e r s ;
c i p h e r s . push_back ( c1 ) ;
c i p h e r s . push_back ( c2 ) ;
c i p h e r s . push_back ( c3 ) ;
c i p h e r s . push_back ( c R e s t ) ;

c l o c k _ t c t x t _ e n c r y p t i o n _ e n d = c l o c k ( ) ;
/ / −−−−−−−−−CTXT ENCRYPTION END−−−−−−−−−

/ / −−−−−−−−−LOWMC ENCRYPTION BEGIN−−−−−−−−−
c l o c k _ t lowmc_begin = c l o c k ( ) ;

/ / −−−−−−−−−INITIAL KEY ADDITION BEGIN−−−−−−−−−
c l o c k _ t i n i t i a l _ k e y _ a d d i t i o n _ b e g i n = c l o c k ( ) ;
c i p h e r s = k e y _ a d d i t i o n ( c i p h e r s , nRounds ) ;
c l o c k _ t i n i t i a l _ k e y _ a d d i t i o n _ e n d = c l o c k ( ) ;
/ / −−−−−−−−−INITIAL KEY ADDITION END−−−−−−−−−

f o r ( i n t round = 0 ; round < nRounds ; round ++){
m y f i l e << " round " << se tw ( 2 ) << round << " " ;
m y f i l e << " b a s e l e v e l : " << se tw ( 2 )
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<< c i p h e r s [ 0 ] . f i n d B a s e L e v e l ( ) << " " ;

/ / −−−−−−−−−LOWMC ROUND BEGIN−−−−−−−−−
c l o c k _ t r o u n d _ t i m e _ b e g i n = c l o c k ( ) ;
c i p h e r s = lowmc_round ( c i p h e r s , publ icKey , ea , round ) ;
c l o c k _ t round_ t ime_end = c l o c k ( ) ;
/ / −−−−−−−−−LOWMC ROUND END−−−−−−−−−

double r o u n d _ e l a p s e d _ s e c s =
double ( round_ t ime_end − r o u n d _ t i m e _ b e g i n ) / CLOCKS_PER_SEC ;

m y f i l e << " sbox : " << se tw ( 8 )
<< r o u n d _ s b o x _ e l a p s e d _ s e c s << " ( s ) " ;
m y f i l e << " l i n e a r : " << se tw ( 8 )
<< r o u n d _ l i n e a r _ l a y e r _ e l a p s e d _ s e c s << " ( s ) " ;
m y f i l e << " c o n s t _ a d d : " << se tw ( 8 )
<< r o u n d _ c o n s t _ a d d _ e l a p s e d _ s e c s << " ( s ) " ;
m y f i l e << " key_add : " << se tw ( 8 )
<< r o u n d _ k e y _ a d d _ e l a p s e d _ s e c s << " ( s ) " ;
m y f i l e << " t : " << se tw ( 8 )
<< r o u n d _ e l a p s e d _ s e c s << " ( s ) " ;
m y f i l e << " b a s e l e v e l : " << se tw ( 2 )
<< c i p h e r s [ 0 ] . f i n d B a s e L e v e l ( ) << " " ;
m y f i l e << " \ n " ;

}
m y f i l e << " \ n " ;

c l o c k _ t lowmc_end = c l o c k ( ) ;
/ / −−−−−−−−−LOWMC ENCRYPTION END−−−−−−−−−

double s e t u p _ e l a p s e d _ s e c s =
double ( s e t u p _ e n d − s e t u p _ b e g i n ) / CLOCKS_PER_SEC ;

double r e a d i n g _ d a t a _ e l a p s e d _ s e c s =
double ( r e a d i n g _ d a t a _ e n d − r e a d i n g _ d a t a _ b e g i n ) / CLOCKS_PER_SEC ;

double c t x t _ e n c r y p t i o n _ e l a p s e d _ s e c s =
double ( c t x t _ e n c r y p t i o n _ e n d − c t x t _ e n c r y p t i o n _ b e g i n ) / CLOCKS_PER_SEC ;

double i n i t i a l _ k e y _ a d d i t i o n _ e l a p s e d _ s e c s =
double ( i n i t i a l _ k e y _ a d d i t i o n _ e n d − i n i t i a l _ k e y _ a d d i t i o n _ b e g i n )
/ CLOCKS_PER_SEC ;

double l o w m c _ e l a p s e d _ s e c s =
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double ( lowmc_end − lowmc_begin ) / CLOCKS_PER_SEC ;

m y f i l e << se tw ( 2 5 ) << " s e t u p : " << s e t u p _ e l a p s e d _ s e c s << " s " << " \ n " ;
m y f i l e << se tw ( 2 5 ) << " r e a d i n g d a t a : " << r e a d i n g _ d a t a _ e l a p s e d _ s e c s
<< " s " << " \ n " ;
m y f i l e << se tw ( 2 5 ) << " e n c r y p t i o n : " << c t x t _ e n c r y p t i o n _ e l a p s e d _ s e c s
<< " s " << " \ n " ;
m y f i l e << se tw ( 2 5 ) << " i n i t i a l key a d d i t i o n : "
<< i n i t i a l _ k e y _ a d d i t i o n _ e l a p s e d _ s e c s << " s " << " \ n " ;
m y f i l e << se tw ( 2 5 ) << " lowmc : " << l o w m c _ e l a p s e d _ s e c s << " s " << " \ n " ;
m y f i l e << se tw ( 2 5 ) << " s bo xe s : " << s b o x _ e l a p s e d _ s e c s << " s " << " \ n " ;
m y f i l e << se tw ( 2 5 ) << " l i n e a r l a y e r : " << l i n e a r _ l a y e r _ e l a p s e d _ s e c s
<< " s " << " \ n " ;
m y f i l e << se tw ( 2 5 ) << " c o n s t a n t a d d i t i o n s : " << c o n s t _ a d d _ e l a p s e d _ s e c s
<< " s " << " \ n " ;
m y f i l e << se tw ( 2 5 ) << " roundkey a d d i t i o n s : " << k e y _ a d d _ e l a p s e d _ s e c s
<< " s " << " \ n " ;

f o r ( i n t i = 0 ; i < c i p h e r s . s i z e ( ) ; i ++){
i f ( ! c i p h e r s [ i ] . i s C o r r e c t ( ) ) {

m y f i l e << " \ n " << " C t x t i s i n v a l i d : " ;
}

}

m y f i l e . c l o s e ( ) ;
}





Appendix B

Script for Makefile

# c o m p i l e r t o use
CC = g++

# c o m p i l e r o p t i o n s
# −I a r e d i r e c t o r i e s t o s e a r c h f o r i n c l u d e d f i l e s
CFLAGS = −O3 −s t d =c ++14 −w −I . . / HElib / s r c /

# l i n k e r o p t i o n s
# −L p a t h t o s e a r c h f o r l i b c r a r y f i l e s
# − l name of l i b r a r i e s wi th −lTEST w i l l l i n k wi th libTEST . so
LDFLAGS = −L . . / n t l −1 0 . 5 . 0 / s r c / − l n t l −lm −lgmp

# l i s t o f s o u r c e f i l e s s e p a r a t e d by s p a c e
SOURCES = lowmc−h e l i b . cpp

# l i s t o f o b j e c t f i l e s t o l i n k wi th
OBJECTS = $ (SOURCES : . cpp = . o ) . . / HElib / s r c / f h e . a

#name of e x e c u t a b l e t h a t s h o u l d be made
EXECUTABLE = runme

a l l : $ (EXECUTABLE)

%.o : %. cpp
$ (CC) $ (CFLAGS) −c $<

$ (EXECUTABLE ) : $ ( OBJECTS )
$ (CC) $ (CFLAGS) $ ( OBJECTS ) −o $@ $ (LDFLAGS)

c l e a n :
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rm −f $ (EXECUTABLE)
rm −f * . o
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