
University of Bergen

Department of Informatics

Developing data catalogue extensions for
metadata harvesting in GIS

Author:
André Mossige

Long master thesis
June 2018

Acknowledgements

I would like to thank my supervisor Torill Hamre at the Nansen Environmental and
Remote Sensing Center (NERSC) for providing great advice and assistance. She has
always been helpful when I have encountered problems. I would also like to thank
friends and peers from the study hall for incredible support. Finally, I want to thank
my family for continuous encouragement and backing.

i

Abstract

Researchers in geoscience often use several Geographic Information Systems (GIS) to
find and access different types of data for research use. The researchers do not always
know in which GIS their needed data reside, and therefore might spend considerable
amount of time searching for it. A better solution would be a GIS that combines the
data in a single, searchable system. In this thesis we examine how a GIS that combines
data from external data servers aid researchers in doing research. A GIS prototype with
harvesting capabilities for a few commonly used data repositories in the geoscientific field
is presented. First, we interview researchers to know about their GIS usage and problems,
and assess relevant standards, protocols and technology to use in a GIS prototype.
We present the prototype implementation, and demonstrate that it is quicker to use
than searching several data repositories. The evaluation of the prototype show that
the prototype has potential, but that improvements have to be considered, especially in
regard to supporting harvesting from additional types of data repositories.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Acronyms viii

1 Introduction 1

1.1 Background . 1

1.2 Motivation for thesis . 2

1.3 Overall and specific goals . 2

1.3.1 Sub-goals . 2

1.4 Research questions . 3

1.5 Related work . 3

1.6 Outline . 4

2 Background 6

2.1 Problem statement and analysis . 6

2.1.1 Elaboration on goals . 6

2.1.2 Elaboration on research questions 8

iii

2.1.3 Requirements for the GIS prototype 8

2.2 Research methodology . 9

2.3 Analysis of users . 10

2.3.1 Use cases . 10

2.3.2 Problems with current systems . 12

3 Software stack 14

3.1 Definitions . 14

3.1.1 Geographic Information System . 14

3.1.2 History of GIS . 15

3.1.3 GIS components . 15

3.2 Standardisation organisations . 17

3.2.1 Open Geospatial Consortium . 17

3.2.2 Open Archives Initiative . 17

3.3 Standards and protocols . 17

3.3.1 Selection of standards . 18

3.3.2 Metadata protocols . 18

3.3.3 Data access . 23

3.4 GIS alternatives . 26

3.5 Comprehensive Knowledge Archive Network 27

3.5.1 Architecture . 28

3.5.2 Extension mechanism . 29

4 Implementation of GIS prototype 32

4.1 Development environment and methodology 32

4.2 CKAN default installation . 32

iv

4.2.1 Installation procedure . 33

4.2.2 Base configuration . 33

4.3 Enabling geospatial capabilities . 35

4.3.1 Spatial extension . 35

4.3.2 Harvesting extension . 36

4.3.3 Geographic view extension . 39

4.4 Experimenting with custom extensions . 41

4.4.1 Generate and enable extension . 41

4.4.2 Testing the extension . 42

4.5 Customise existing OAI-PMH harvester 43

4.5.1 DIF metadata reader . 44

4.5.2 Harvester overview . 47

4.5.3 Data flow . 49

4.5.4 Various smaller changes . 51

4.6 Implementing TDS harvester . 52

4.6.1 TDS crawler . 52

4.6.2 Harvester overview . 53

4.6.3 Data flow . 54

4.7 Implementation challenges and solutions 56

5 System overview and demonstration 57

5.1 Finding data . 57

5.2 Adding a new harvesting source . 61

5.3 Filter data before retrieval . 63

5.4 Download data . 63

v

5.5 Summary . 63

6 Evaluation 64

6.1 Sub-goals . 64

6.1.1 Overview of standards to build prototype 64

6.1.2 Types of data supported in prototype 65

6.1.3 GIS alternatives as prototype foundation 65

6.1.4 Set up a catalogue service . 65

6.1.5 Implement harvesting capabilities 66

6.1.6 Implement simple geospatial visualisation 67

6.1.7 Evaluation of prototype . 67

6.2 Research questions . 68

6.3 Overall goal . 69

7 Conclusion 70

7.1 Summary of results . 70

7.2 Future work . 71

7.2.1 Perform user testing . 71

7.2.2 Clean up harvested metadata for display 71

7.2.3 Improve display of TDS links harvested with OAI-PMH 72

7.2.4 Improve logic for harvesting periodic measurements 72

7.2.5 Display OPeNDAP access form directly in prototype 72

7.2.6 Improve detection of resource formats 73

7.2.7 Implement harvesting from more data sources 73

7.2.8 General improvements to harvesters 73

vi

7.3 Conclusion . 74

Appendices 75

A Code listings 75

A.1 IHarvester interface . 75

A.2 CKAN configuration file . 76

A.3 ThreddsHarvester implementation . 81

Bibliography 84

vii

List of Acronyms

CGIS Canada Geographic Information System.

CMIP Coupled Model Intercomparison Project.

CMS Content Management System.

CSW Catalogue Service for the web.

DIF Directory Interchange Format.

ESRI Environmental Systems Research Institute.

GIS Geographic Information System.

NERSC Nansen Environmental and Remote Sensing Center.

NIRD National Infrastructure for Research Data.

NMDC Norwegian Marine Data Center.

OAI Open Archives Initiative.

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting.

OGC Open Geospatial Consortium.

OPeNDAP Open-source Project for a Network Data Access Protocol.

SDI Spatial Data Infrastructure.

TDS THREDDS Data Server.

WCS Web Coverage Service.

WFS Web Feature Service.

WMS Web Map Service.

WWW World Wide Web.

viii

Chapter 1

Introduction

1.1 Background

When doing research in geographical sciences, geospatial data has to be analysed. Scien-
tists have to find the data using a computer system, and it is usually downloaded before
analysis. This is of often done through a Geographic Information System (GIS). Such
system is an information system that integrates, stores, edits and, or shares geographic
data.

Data used in geoscientific analysis and assessment originate from a wide range of sensors,
algorithms and models. These sources often output their data with varied resolution
in space and time, and different communities have developed their own formats and
standards used to store it. The data is usually accessed through separate web sites or
portals. For example a scientist may use a specific web site to find data about sea ice,
and a different web site to find oceanographic data. The scientist then have to use both
web sites to find all the needed data. Data is therefore sometimes hard to discover, as
the user have to know where to look for it, and in what web sites to search.

In this thesis, we will investigate how we can harvest data from multiple sources using
open-source frameworks and tooling. We will look at three frameworks to accomplish
this task. The thesis will evaluate these frameworks and select the best one fulfilling a
set of requirements.

In order for a GIS to allow easy discovery and harvesting of data, use of established
standards is crucial. If standards are not used, two GIS will not know how to communi-
cate with each other. For example a system can not know where or how to ask for data
to harvest if a standard is not agreed upon. Such standards include, among others, DIF

1

and ISO 19115 for metadata, NetCDF/CF for data, Solr, OAI-PMH and OGC CSW for
search, and OGC WMS/WFS and OPeNDAP for data access.

1.2 Motivation for thesis

Researchers in geosciences use computer systems daily to aid their scientific work. In-
formation systems are used for calculations and analyses, but also for searching and
retrieving the data needed for those analyses. Data of different type and origin are often
stored in distributed systems managed by different organisations with different APIs.
For example sea ice data collected from the interior Arctic Ocean are stored on one data
server, while sea ice data from the Svalbard region are stored on another server. The
data may be stored in different formats, and the servers may have distinct APIs used to
access them. Hence, a substantial number of the separate systems have to be searched
when researchers look for data needed in their work. Additionally, the researchers have
to be familiar with how all the systems user interfaces work to be able to use them
effectively. Hence, searching for scientific data can be annoying, as it is not of direct
value to the research.

This thesis examines the possibilities of harvesting metadata from different repositories
into one. An optimal solution should gather all metadata automatically, and incorporate
it into one searchable system. The result is a single system that researchers can use to
find all the data they need.

1.3 Overall and specific goals

The main goal of the thesis is stated below. This main goal is split into smaller, more
concrete sub-goals in the next section.

• Build a prototype GIS that acts as a data catalogue and harvests metadata from
multiple sources, supporting the most commonly used, open standards.

1.3.1 Sub-goals

To complete the objective in Section 1.3, we split the overall goal into several concrete
sub-goals.

1. Get an overview of the current relevant standards for building a GIS prototype.

2. Research types of data that should be supported in the prototype.

3. Assess relevant GIS frameworks to use as base for prototype.

2

4. Set up and configure a GIS as a catalogue service.

5. Implement support for relevant protocols and standards used for harvesting data.

6. Implement support for simple visualisation of geospatial data.

7. Evaluate the developed GIS prototype.

1.4 Research questions

The following research questions will help guide the thesis.

• How can a GIS that combines different data and formats within the system, aid a
researcher in doing research?

• How should a systems software architecture be designed to allow extending its
functionality?

1.5 Related work

Scientists in different application domains have studied the use of GIS frameworks as
a foundation for developing data catalogues with capabilities for metadata harvesting.
Scholz et al. (2017) [93] examines the use of a data catalogue to make big data available
to the public for use in smart cities. They propose a prototype using Comprehensive
Knowledge Archive Network (CKAN) for the data catalogue, and an extension to CKAN
that harvests metadata from Hadoop Distributed File System (HDFS) [4]; distributed
storage used for big data.

Fechner and Kray (2014) [83] explores possible tools to use to increase citizen engagement
by providing interactive geo visualisations to the public. They also propose using CKAN
for metadata storage, and using the Web Map Service (WMS) standard for visualisations.

A number of metadata models used in GIS frameworks are researched by Assaf et al.
(2015) [74]. They compare and discuss the models and vocabularies used in the frame-
works, and propose a unified metadata model. The model is based on many of the fields
used in CKAN. The goal is to provide a unified metadata model for common use, to
simplify communication between the GIS frameworks.

Similar to these studies, we will also propose a prototype that is based on an existing GIS
framework, and we will extend its functionality to support our requirements. Different
to the mentioned studies, we will focus on simplifying the discovery process of research
data, a topic suitable for a master thesis.

3

1.6 Outline

We have presented the background and objectives for our work, and will now describe
how we have structured the thesis.

Chapter 1 : Introduction

Introduces the general problem the thesis aims to solve. Gives objectives for a
solution, and presents research questions guiding the thesis.

Chapter 2 : Background

Describes the objectives of the thesis in greater detail. Elaborates on the research
questions from the introduction, and gives requirements for the GIS prototype.
The research methodology used in the thesis is explained. The chapter is closed
with an analysis of potential users of the prototype.

Chapter 3 : Software stack

Gives a technical description of definitions, standards and protocols to be used in
the prototype. An assessment of GIS frameworks are given. The framework to be
used in the prototype is explained in greater detail.

Chapter 4 : Implementation of GIS prototype

Details how we developed the prototype. The prototype foundation is set up and
configured, and the implementation of two extensions are detailed.

Chapter 5 : System overview and demonstration

The prototype is demonstrated and use cases defined in Chapter 2 are examined.
We will carry out the use cases and show the results.

Chapter 6 : Evaluation

An evaluation of the prototype is performed. Thesis objectives are compared with
the results from the prototype. The research questions are answered.

Chapter 7 : Conclusion

We conclude the thesis work. We summarise the results from the prototype, and
explore possible features to implement in future work. The final conclusion is
given.

One appendix is also included.

Appendix A : Code listings

Presents code listings to illustrate the implementation of parts of our prototype.

4

Chapter 2

Background

In this chapter we will look at the use of GIS from the user perspective. We will define
the different types of users relevant to this thesis. Some selected use cases are given,
together with some of the user expressed problems with current GIS use.

Recognizing these researchers’ perspectives will help us understand the context and the
problems that we are trying to solve. In turn, we will build a prototype GIS that aims
to solve the identified problems. These views are gathered from an informal interview
with two researchers that uses GIS daily.

2.1 Problem statement and analysis

Before we go into detail on the users, we will elaborate on the goals and research questions
from Chapter 1, and describe the requirements for the GIS prototype we will develop.
We will then outline the research methodology used in the thesis.

2.1.1 Elaboration on goals

Below, we examine on the sub-goals given in Section 1.3.1 in detail.

1. Get an overview of the current relevant standards for building a GIS
prototype

The prototype we will build relies on communication with other GIS. Therefore it
is necessary to know the relevant standards that are used in the communication

5

between such systems. When developing our prototype we aim to use the most
widely used standards in current GIS. To use these standards effectively we have
to know which to use and how they work.

2. Research types of data that should be supported in the prototype

To scope the amount of work required to build our prototype, we have to restrict
the various types of data that should be supported. We will interview researchers
and examine what types of data they use. Support for data formats typically used
for these types should be implemented.

3. Assess relevant GIS frameworks to use as base for prototype

Developing a fully featured GIS from scratch within the time frame of a master
thesis is unfeasible. Therefore we will use an existing GIS framework as a base
for our prototype. We have to assess the different alternatives available based
on a set of requirements and pick the best one. Some general requirements are
collectively decided with the thesis supervisor. For example the GIS framework
should be open-source and widely used. More requirements appear as we interview
GIS users in Section 2.3.

4. Set up and configure a GIS as a catalogue service

We will install and configure the GIS framework picked from the previous sub-
goal. It should support basic features needed in a catalogue service. For example
it should be able to display datasets in a list, and show detailed information about
each of them. The datasets in the catalogue should be searchable. For example
typical search operations include searching based on geographic area and based on
words that appear in the metadata of a dataset.

5. Implement harvesting capabilities

We will extend the features of the basic catalogue service to support harvesting
of metadata from external data servers. The harvesting should support collecting
metadata with the standards and formats found in the first and second sub-goal.

6. Implement simple visualisation of geospatial data

Simple visualisations of geospatial data should be supported. For example showing
the layers of a geospatial dataset on a map within the browser. Standards and
formats from the first and second sub-goal should be used.

7. Evaluate the GIS prototype

When the GIS prototype is implemented, we evaluate the results, the development
process, and conclude our findings.

6

2.1.2 Elaboration on research questions

In this section we will explain and motivate the research questions from Section 1.4. A
research question is a question that identifies a problem that a thesis aims to solve [77].
The purpose of the research questions is to define the type of research we will be doing
in the thesis, and to specify the thesis objectives. The questions will be answered in
Chapter 6, after we have implemented and demonstrated our prototype.

• How can a GIS that combines different data and formats within the
system, aid a researcher in doing research?

We investigate whether combining data from different sensors into a single GIS is of
help for researchers. Data originate from various sensors, models and algorithms,
which often output their data with different resolution in time and space. The data
may also have different representations, for example lines, sections or polygons.
These different resolutions require that the datasets are stored using different types
of formats, both in terms of resource format and metadata format. Developing a
GIS that supports many different formats are some of the challenges in the thesis.

Finding concrete solutions to how such GIS help researchers is crucial in making
advancements in GIS research, as it would improve the daily work of researchers
in geosciences. The improvements can likewise be applied to other GIS software.

• How should a systems software architecture be designed to allow ex-
tending its functionality?

Computer system requirements differ for many users. However, many general
requirements are similar for different users. When developing software it is often
more efficient to start out with an existing foundation. This foundation already
support the common, general requirements. The base is extended to support the
specific requirements needed. To allow such an extension of functionality, the
system need to have a flexible architecture. Finding out how such an architecture
should be designed is important in developing software that can be used by as
many users as possible, even with different requirements. Therefore, the same
general functionality do not have to be implemented repeatedly.

2.1.3 Requirements for the GIS prototype

We describe the scope of functionality of the GIS prototype. The requirements will guide
us in choosing a GIS framework to use as a base for the prototype. We aim at developing
a prototype that fulfils as many of the requirements as possible.

• Support most widely used standards and protocols used in geosciences

7

The prototype should support standards and protocols related to both geographic
resources and the metadata that describe them. If the prototype do not support
the most used standards, we can not harvest external data sources, and users end
up having to use other GIS to find all the data they need. The specific types of
standards to support will be examined in Chapter 3.

• Searching for datasets

Users should be able to search for the data they need. For example searching for
words appearing in the metadata of the datasets, or searching for datasets within
a certain geographic area. This will allow easier discovery of research data.

• Harvesting capabilities for the most used standards

To be able to search within datasets from distributed data servers, the prototype
have to be able to harvest metadata from those datasets. The standards that
should be used to harvest the data are described Chapter 3.

• Simple spatial visualisation

The prototype should be able to offer simple visualisation of geospatial data. This
will allow users to see if a possible dataset contains the data they need, before they
download it for use.

• Downloading datasets

Users should be able to download datasets. The specific ways of how a user should
be able to to download the datasets will be detailed in Chapter 3.

2.2 Research methodology

Peffers et al. (2007) [92] describes an effective research methodology for use in informa-
tion systems research. The methodology contains six steps:

1. Problem identification and motivation: Identify a problem and justify why a
solution is valuable.

2. Definition of objectives for a solution: Infer the objectives for a solution from
the problem identification and determine what is possible.

3. Design and development: Determine the functionality of the artifact and im-
plement it.

4. Demonstration: Illustrate how the artifact solves the identified problem.

5. Evaluation: Assess how well the artifact solves the problem.

6. Communication: Communicate the problem and solution to others.

8

The structure of the thesis loosely follows this process. We have in previous sections
identified and motivated a problem, and given objectives for a solution. The next chap-
ters will cover the design and implementation, demonstration and evaluation of our GIS
prototype. Before we describe the development of our prototype, we will go into details
of the potential users of our prototype. We will analyse their GIS usage and problems
to be able to tailor our prototype to their needs.

2.3 Analysis of users

As we explained in Section 1.1, the scope of this thesis is related to the discovery of
distributed geographic data, and harvesting its metadata to a centralised location. This
way, a user can access the data originally hosted in different locations, through a single
system.

We conducted an informal interview with two researchers from Nansen Environmental
and Remote Sensing Center (NERSC). An informal interview is an interview where
there is no predefined questions [27]. The advantage to such an interview is that the
interview subject is freely able to give the answers they want, and the interviewer can ask
follow up questions. Therefore the answers are not limited to those of an interview with
prepared questions. Due to time constraints we were not able to interview more than
two researchers. Having more interview subjects would give us a broader perspective,
and therefore get a more realistic view of how researchers use GIS.

The goal of the interview was to examine how climate researchers use GIS, and to find
out what problems, in their opinion, exist when working with these systems. During
this interview we identified two categories of users related the thesis scope.

User category 1 Enters scientific data into data portals (data provider)

User category 2 Fetches and uses data in their analyses (data consumer)

The finished prototype from this thesis will fetch and use data that is already stored on
a different web server. Therefore, we will not focus much on users of category 1, since
the operations these users perform are not directly related to the thesis scope.

2.3.1 Use cases

In the interview we found several use cases that user category 2 performs on a regular
basis. We describe the key use cases next.

9

Find and search for data

The main operation that user category 2 performs is searching for data. This may involve
having to look through many different web sites or data portals, depending on what type
of data is being looked for. For example, one of the users at NERSC mentioned that
they use, among others, the following data sources:

• National Infrastructure for Research Data (NIRD) (former NorStore) [34] often
used for accessing projections from climate models from Nordic countries

• Coupled Model Intercomparison Project (CMIP) [19] for global climate models

• NIRD for reanalysis data

• Norwegian Marine Data Center (NMDC) [33] for marine in situ (on site) data

Filter data before retrieval

The size of certain geographic dataset can be huge. One user reported that one NetCDF
file can be several hundred gigabytes in size. Downloading such data can take a lot
of time. Further, the user might not be interested in all parameters in the dataset.
Therefore it might not be beneficial to download the complete dataset, and the user
would like to somehow filter or restrict the dataset before download. The data can be
restricted by entering some extra information. For example the user can specify the
distinct layers they are interested in, or what time ranges should be included in the
download, or what format is needed.

Some users would like to filter data within the dataset based on location, for example a
dataset can contain data for the whole of Antarctica, but they might only be interested
in a certain region of Antarctica.

Download data

The interviewed users reported that the data analysis is typically done in a separate
desktop application with the data stored locally on their own computer. To achieve this
the data has to be downloaded from the original location before it can be used by the
researchers. The download is done by for example clicking a download button in a web
page. A download of the selected dataset is then started in the browser. Another way
this is achieved is by copying an URL from the GIS, and using the link in the desktop
application that will allow the user to download datasets within it.

10

Analyse data in preferred application

When the data is downloaded locally, the researchers analyse the data in their preferred
applications. This use case is not related to the scope of the thesis, and is therefore not
discussed any further.

2.3.2 Problems with current systems

In this section we will cover some of the problems that the interviewed researchers at
NERSC experienced. When these problems are identified and explained, we will have a
better understanding of the specific problems, and can find solutions that will remove
or reduce these problems in the prototype we will develop.

Having to use different web sites for different data

The main problem the users experienced when searching for data, was having to deal
with several different web sites and data portals. When users need a specific type of
data, they have to search on one web site, for example NIRD. When they need another
type of data, they have to search on a different web site, for example CMIP.

The users often ended up having to look through many of the portals before finding
the right data. The systems were not separated clearly, making it confusing to know in
which system to search for what data. A small part of the problem was that the names
of the data portals did not suggest what data can be found there. For example one user
thought the names CMIP Data Portal and NorStore were not descriptive enough.

Being redirected before being able to download data

Another problem is that the user was redirected from one web site to one or several
others before being allowed to download a dataset. Similarly to problem one, one web
site may list metadata of datasets originally hosted elsewhere. Therefore, it may not
be possible to download the dataset without navigating to the web site that hosts the
actual data.

This results in the user having to adjust to and know how to use many different user
interfaces. It makes it hard for the user to download data efficiently. The user interfaces
often puts the various buttons and different options in different locations on the screen,
making it more time consuming to get used to the various systems.

11

Verifying correct dataset before download

As mentioned in Section 2.3.1, one use case is about downloading a dataset before use.
Since the size of the datasets often is large, the users want to be completely sure that
they are downloading the datasets that they need.

Another use case is about the user restricting the dataset before download, to decrease
its size. When filtering the data, the user is presented with many options. This is a
helpful feature, but users report that it can be confusing at times, due to many options.
Figure 2.1 shows such a user interface. Therefore, sometimes the user did not know if they
had entered the options needed for the filtering they wanted. This sometimes resulted
in too much of the dataset being downloaded, even if they thought they restricted it
properly.

To solve these two problems the user would like a solution where you could do a simple
visualisation to verify that the dataset one has found is the right one, and that it is
filtered correctly. For example the user would specify the parameters needed, and the
visualisation would update and reflect the change, allowing the user to verify correctness.
Another advantage with such a visualisation is that the user can have a look at the
different layers, and see which they need, instead of think which they need.

Figure 2.1: OPeNDAP Dataset Access Form

12

Chapter 3

Software stack

In Chapter 2 we investigated GIS usage from the perspective of users. To fully under-
stand GIS, we also have to look at GIS and how they are built from a technical point
of view. We will define GIS, give a short introduction to the history and explain the
core components. Next, we will describe a set of standards and formats relevant to GIS
prototype we will develop. Further, we will examine concrete frameworks suitable to
build a GIS. When the technology is covered, we can in the next chapters go into detail
about how one constructs a GIS with support for multiple data sources.

3.1 Definitions

3.1.1 Geographic Information System

A Geographic Information System (GIS) is a system that integrates, stores, edits and,
or shares geographic data. A GIS accessed over the World Wide Web (WWW), is often
called a Web-GIS. Such a system does not only constitute of the software itself, but also
the hardware it is run on, the people using it, the organization in which the system is
being used, and the geospatial data that is being used within it [78].

One use case for a GIS is map analysis. In such example, a researcher might put several
maps on top of each other in layers for comparison. For example in urban planning a
layer with a proposed road is put on top of a layer with the current construction, to see
if it would fit. This thesis will focus on another use case, the integration and discovery
part of a GIS: how researchers can effectively search and find the data they need for
their analyses.

13

3.1.2 History of GIS

The evolution of GIS took place in the last half of the 20th century, with rapid advances
in the later years. The first use of the term “Geographic Information System” appeared
in academia in 1968 in a paper [96] by Roger Tomlinson. In this paper Tomlinson
describes a GIS used to store, analyse and manipulate geographic data. The GIS allowed
the use of overlays and measurements to determine the land capabilities in rural Canada.
Tomlinson is in later years regarded as “the father of GIS”. At the same time, in 1964,
important theoretical concepts within spatial data handling was developed at Harvard
by Howard T. Fisher [46].

In the 1970s, the development of the first publicly available GIS started. By the 1980s
many vendors are involved in providing GIS software, for example Bentley Systems
Incorporated with its CAD platform, and Environmental Systems Research Institute
(ESRI). These GIS combined the early GIS features from Canada Geographic Informa-
tion System (CGIS) and organizational features enabled by database structures [39].

Throughout the 1980s, desktop GIS applications appeared for DOS, and for Windows
in the 1990s. These applications helped move GIS from research into commercial use.
With the appearance of the internet, users start exploring possibilities of viewing GIS
data over the Internet. This requires standardisation of data formats and data transfer,
which has become a focus area in the later years. In the 21st century, many open-source
GIS applications exist. Popular examples include GeoServer, GeoNetwork and deegree.

3.1.3 GIS components

Steiniger and Hunter (2011) [94] describe and analyse components of a Spatial Data
Infrastructure (SDI). They conclude that free and open source software exist for all
components required. The components needed in a SDI shown in Figure 3.1 and are
briefly described below. In the next sections we examine the standards and protocols
that the components are based on.

Data Service server serves spatial data and images. GeoServer is a popular web map
server.

Spatial data storage stores the spatial data. This storage is often enabled by in-
stalling extensions to existing general databases. PostgreSQL [45] with the Post-
GIS [68] extensions is often used. A more lightweight alternative is SQLite [55]
with the SpatiaLite [54] extension.

Catalogue registry provides services for the spatial metadata. For example adding,
querying and display of metadata. CKAN [2] and deegree [20] are alternatives.

14

GIS processing server exposes spatial processing functionality. For example map
analysis and transformations. The functionality can be provided by GeoServer [26]
with the OGC Web Processing Service (WPS) [35] standard.

Client used by users for creating, updating (data provider) and analysis of spatial data.
Desktop clients (thick clients) often provide more functionality than browser-based
clients (thin) used for viewing and querying spatial data.

Figure 3.1: Components of a Spatial Data Infrastructure (adapted from [94])

When using a GIS, many or all of the components communicate together to provide the
action a user requests. For example when users search for data, they use their client to
access a catalogue service over the internet. This catalogue service may contain metadata
records about geographic resources harvested from external data servers. When the user
have found the dataset they want to access, the client requests the data from the data
service, which queries the spatial data storage and returns the data. If the user want
to do some analysis on the data, the client might request specific data transformation
actions from a GIS service, which returns the new resource.

15

3.2 Standardisation organisations

Some of the technical standards we will use in the prototype are created by standard-
isation organisations. The primary goal of these organisations are to coordinate the
creation of technical standards. We will give a short introduction to two big standardi-
sation organisations.

3.2.1 Open Geospatial Consortium

The Open Geospatial Consortium (OGC) is an organization consisting of over 500 in-
ternational companies, government agencies and universities. The members cooperate
to create open standards for use in the geospatial community. By collaborating on open
standards, the OGC hope to achieve better interoperability between geospatial services.
When several development teams work on independent online services, the services will
be able to work together. This will in turn increase the possibilities to create complex
spatial information systems [88]. For example, using the Catalogue Service for the web
(CSW) standard [79], a GIS can expose metadata about its spatial data for clients to
use. Without such a standard, clients would not be able to know how to fetch and use
the metadata.

3.2.2 Open Archives Initiative

The Open Archives Initiative (OAI) [36] is an association whose goal is to promote and
develop open interoperability standards. They want to improve access to archives that
contain digital content. Through the OAI interoperability framework, service providers
can expose metadata about their data and services, allowing clients to access and harvest
it freely. In Section 3.3.2 we describe the interoperability framework.

The main work of OAI was aimed at the E-Print community, exposing metadata about
research papers and scholarly work, making them more accessible [37]. However, the
technological foundation of the interoperability framework is independent of content
type. Therefore the framework is applicable to metadata of all digital data.

3.3 Standards and protocols

Standards and protocols can be used to communicate with data repositories. Some of the
standards are used to access metadata describing some resources, while other standards
are used to access actual datasets in a repository. The prototype we will develop would

16

not be able to harvest metadata from multiple data sources if a common standard was
not agreed on. The standards relevant to this thesis are detailed in the following sections.

3.3.1 Selection of standards

Recall some of the data repositories being used by researchers from NERSC from Sec-
tion 2.3.1: NIRD, CMIP and NMDC. By researching the different data sources, we
discovered various methods to be able to access data from them. NMDC provide meta-
data access for example via Open Archives Initiative Protocol for Metadata Harvesting
(OAI-PMH). Much of the data in the mentioned CMIP repository are originally stored
on a THREDDS Data Server (TDS). Instead of harvesting CMIP, we will harvest the
data directly provided by the TDS. Unfortunately, it does not seem that NIRD provide
an easy way to access its data. NIRD do provide open data published in scientific arti-
cles, but access is done by sending a download link by e-mail. We will therefore focus
on harvesting from the two other data repositories, using OAI-PMH and TDS. In the
next sections we describe the standards and protocols potentially needed to be able to
harvest and access data from these sources.

3.3.2 Metadata protocols

Metadata is defined as “data that describe other data” [32]. Geographic metadata is
data that describe other data in the context of geography. For example the metadata
can contain information about the author of a particular dataset, when the dataset was
created, and a short description of the dataset.

For this thesis, the important fields of the metadata is about where the data is hosted
and can be accessed, its format, and what protocol should be used for the access. In the
next sections we will cover the metadata formats and standards that will be used in the
implementation of our prototype.

Directory Interchange Format

The Directory Interchange Format (DIF) is a metadata standard that is used to de-
scribe earth science datasets for communication between information systems [89]. It
contains several mandatory and optional fields. However, as many of the optional fields
should be included to increase the understanding of the dataset. For example DIF can
describe parent and child relationships between resources in a dataset. The DIF fields
are explained in [21]. Some of the most used ones are listed below.

• Entry ID: A unique document identifier of the metadata record.

17

• Entry Title: The title of the dataset.

• Summary: Composed of a required Abstract field, and an optional Purpose field.
They briefly describe the dataset and its purpose.

• Metadata Name: Identifies the current DIF standard. This field is often automat-
ically generated by GIS software.

• Data Center: Contains many sub-fields detailing the data center, organisation or
institution responsible for the dataset.

• Parameters: A set of keywords that represents the dataset. This field is used
when searching and finding datasets in a big collection. The parameters field
must contain several sub-field: category, topic and term. These fields describe the
category and topic of the dataset. The values of these fields are often taken from
a vocabulary. For example values can be Oceans, Land Surface or Paleoclimate,
among others.

• Related URL: Contains URL links pointing to additional information about the
data. For example this field can contain links to access the dataset. A sub-field
URL Content Type must be included that describes the link type. For example
the link type can be GET DATA, describing that the link points to an Open-source
Project for a Network Data Access Protocol (OPeNDAP) service.

Dublin Core

Dublin Core [23] is a metadata format for describing digital resources [64]. The original
specification contains 15 fields. Some of them are title, creator, subject and description.
Dublin Core is less suited for describing geographic resources since it is more generalised
than DIF. An example of the Dublin Core metadata format is shown in Listing 3.1.
Dublin Core is not extensively used in this thesis, and we will not go into more details
about this standard.

1 <oa i dc : dc x s i : schemaLocation=”http ://www. openarch ives . org /OAI/2 .0/ oa i dc←↩
/

2 http ://www. openarch ives . org /OAI/2 .0/ oa i dc . xsd”>
3 <dc : i d e n t i f i e r >
4 http :// thredds . met . no/ thredds / ca ta l og /arome5/ ca ta l og . html
5 </dc : i d e n t i f i e r >
6 <dc : t i t l e >AROME METCOOP 0.5 km</dc : t i t l e >
7 <dc : d e s c r i p t i on>
8 This is the 2m a i r temperature generated by AROME 0.5 km and post
9 proce s sed . This is a r o l l i n g a r ch ive where only the most r e c en t

10 f o r e c a s t is shown . In order to access h i s t o r i c a l data , p l e a s e
11 contact the i n s t i t u t e .
12

18

13 This is a pre l im inary ve r s i on o f the datase t and f u r t h e r ←↩
i n fo rmat ion

14 w i l l be provided in subsequent metadata r e l e a s e s . These metadata ←↩
are

15 cu r r en t l y under development .
16 </dc : d e s c r i p t i on>
17 <dc : c r eator>Norwegian Meteo ro l og i ca l I n s t i t u t e (met . no)</dc : c reator>
18 <dc : coverage>2015−06−18 to </dc : coverage>
19 <dc : r i gh t s>CC BY/NLOD</dc : r i gh t s>
20 <dc : coverage>FIXME</dc : coverage>
21 <dc : sub ject>
22 Atmosphere > Atmospheric Temperature >
23 Sur face Temperature > Air Temperature
24 </dc : sub ject>
25 <dc : sub ject>cl imatologyMeteorologyAtmosphere</dc : subject>
26 </oa i dc : dc>

Listing 3.1: Example of Dublin Core metadata for air temperature measurements

Catalogue Service for the Web

Catalogue Service for the web (CSW) is one part of the Catalogue Services standards
from OGC [79]. The standard defines how a GIS should expose a catalogue of its
metadata records, services and other resources. For example a GIS can expose the
spatial data it has stored, and what service can be used to access it. If the GIS exposes
a service such as WMS, detailed in Section 3.3.3, a client can use this information to get
a preview of the geospatial data for own use.

CSW defines several operations [25, 90]. These operations allow a client to query infor-
mation from a CSW server that will return an XML response with the requested data.
The mandatory operations are:

GetCapabilities lets a client ask for information about a service, including what ser-
vices it can provide and where the client can access those services. For example a
response might include that the server supports GetRecords and GetCapabilities.

DescribeRecord is used to query type information about the information model pro-
vided by a service. For example a client can ask for information about the model
type Record, and receive an XML schema definition for the Record type.

GetRecords performs a search for several records. The client can pass two parameters,
typeName and Constraint, to specify what types of entities should be searched
for, and what constraints should be applied. For example a constraint can be that
a provided string should be included in a specified field in a record.

19

GetRecordById lets a client search for a record by ID. For example the GetRecords
operation might return with references to other records. GetRecordById can then
be used to query these records.

Three optional operations exist: GetDomain, Harvest and Transaction. The first is
used to query runtime information about request parameters. For example a client can
use this operation to discover the allowed values for a specific parameter. The Harvest
operation is used to tell a CSW server to create or update metadata records by harvesting
them from an external location. The Transaction operation is used to create or update
records. This time a metadata record is not pulled into the system by the CSW server
itself, but it is rather pushed to it by a client.

A sample GetCapabilities request is shown below. This example queries a service named
“CSW” at the http://localhost:8080/geonetwork/srv/eng/csw URL. Parts of a
typical response is shown in Figure 3.2. Note the operations the CSW server supports,
and the URL endpoints pointing to them.

http://localhost:8080/geonetwork/srv/eng/csw?request=GetCapabilities&

service=CSW&acceptVersions=2.0.2&acceptFormats=application%2Fxml

Figure 3.2: Example of CSW GetCapabilities response listing supported operations

20

http://localhost:8080/geonetwork/srv/eng/csw

Open Archives Initiative Protocol for Metadata Harvesting

Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is a protocol
for harvesting metadata descriptions into a single archive [38]. This allows us to build a
service based on aggregated metadata from a collection of archives. Actual data resources
are not harvested with OAI-PMH or CSW, only metadata describing it. OAI-PMH
supports various metadata schemas. The most common is Dublin Core (Section 3.3.2).
OAI-PMH has no opinion about the type of resource the metadata describe. For example
OAI-PMH can harvest metadata about sea ice or weather forecasts in different formats.
Similar to CSW, OAI-PMH operates through HTTP with responses in XML.

Figure 3.3: OAI-PMH protocol overview

Figure 3.3 displays an overview of the OAI-PMH protocol. Data providers hold reposito-
ries containing metadata records about some resources. A harvester collects the records
from the providers, using the OAI-PMH protocol. The harvester queries the providers
for their resources, and they return the metadata. The records are stored in a database
that can be exposed through a service provider that is available to clients and other
users on the internet.

The harvester is responsible for several important decisions. For example how often it
should harvest data from a repository, or what happens when a resource is deleted. The
harvester should also not reharvest resources that are already stored in the database.
Harvesters should implement this functionality differently based on types of data stored
in the repositories.

OAI-PMH defines several verbs (operations) that are used to make requests to OAI-

21

PMH repositories [87]. The operations are similar to those of CSW. They are briefly
described below (in alphabetical order).

GetRecord is used to retrieve a single metadata record based on resource identifier.

Identify is used to get information about a repository. For example information about
the supported OAI-PMH version and contact information.

ListIdentifier returns the identifiers that can be harvested from a repository.

ListMetadataFormats lists the available metadata format supported by a repository.
For example Dublin Core and DIF.

ListRecords is used to harvest several records from a repository based on resource iden-
tifiers. Typically the ListIdentifier operation is used to gather the identifiers
first, and then harvest the records with ListRecords.

ListSets is used to get information about the structure of a repository.

3.3.3 Data access

Web Map Service

While CSW and OAI-PMH is related to accessing metadata about resources, Web Map
Service (WMS) is related to the access of raster images of the actual data that a GIS
provides [80]. The protocol includes an interface specifying how the data should be
requested. When some data is requested, a raster image is returned, for example in
JPEG or PNG format.

The client that requests the data can provide some parameters in the request, describing
what data should be returned. For example the client can restrict the geographic area of
the image, which map layers should be included, or the alpha value of the image (useful
for combining layers). WMS include two mandatory operations, and one optional:

GetCapabilities Similar to CSW, this operation return information about the WMS.
For example supported map image formats, what metadata format versions are
supported, available map layers and information about them.

GetMap This operation returns the actual map image. The client can include pa-
rameters to specify the data query. For example map width and height, type of
coordinate reference system, rendering style and image format.

GetFeatureInfo (optional) Allows a client to request additional information about
features in the returned map. For example a user might have returned a raster
image using GetMap. The user then clicks on a specific location on the image, and
the GetFeatureInfo can return information about what is located at that area.

22

An example of a GetMap request is shown below. For example the request specifies the
GetMap operation, that the returned image format should be PNG, and that the image
should be 500 pixels in width and 250 pixels in height. A possible response image is
shown in Figure 3.4.

https://webmap.ornl.gov/ogcbroker/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&

LAYERS=980_13&FORMAT=image/png&STYLES=default&TRANSPARENT=true&SRS=EPSG:4326&

BBOX=-180,-90,180,90&WIDTH=500&HEIGHT=250&TIME=1990-12&EXCEPTIONS=application/

vnd.ogc.se_xml&originator=SDAT

Figure 3.4: Example WMS response

Open-source Project for a Network Data Access Protocol

OPeNDAP is a protocol for accessing remote, distributed research data [49]. OPeN-
DAP includes both server and client software, used for storage and access. The size
of geospatial data is often considerable, and one is not always interested in the whole
dataset (Section 2.3.1). OPeNDAP solves this problem by sub-sampling the data using
constrained queries. Thus, the user can limit the data they are returned.

The data is stored at the server in binary form, that can be accessed via a client over
HTTP. The data is transferred by default in the original binary format. The server also
supports transmitting data in NetCDF, GeoTIFF, JPEG2000, JSON and ASCII format.

Several clients exist for OPeNDAP. For example access via command line or data analysis
packages like Ferret [24]. For this thesis, the relevant client is the browser. By adding

23

https://webmap.ornl.gov/ogcbroker/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=980_13&FORMAT=image/png&STYLES=default&TRANSPARENT=true&SRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=500&HEIGHT=250&TIME=1990-12&EXCEPTIONS=application/vnd.ogc.se_xml&originator=SDAT
https://webmap.ornl.gov/ogcbroker/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=980_13&FORMAT=image/png&STYLES=default&TRANSPARENT=true&SRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=500&HEIGHT=250&TIME=1990-12&EXCEPTIONS=application/vnd.ogc.se_xml&originator=SDAT
https://webmap.ornl.gov/ogcbroker/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=980_13&FORMAT=image/png&STYLES=default&TRANSPARENT=true&SRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=500&HEIGHT=250&TIME=1990-12&EXCEPTIONS=application/vnd.ogc.se_xml&originator=SDAT
https://webmap.ornl.gov/ogcbroker/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=980_13&FORMAT=image/png&STYLES=default&TRANSPARENT=true&SRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=500&HEIGHT=250&TIME=1990-12&EXCEPTIONS=application/vnd.ogc.se_xml&originator=SDAT

‘‘.html’’ to the OPeNDAP URL, the user accesses the OPeNDAP Server Dataset
Access Form. Figure 2.1 shows a number of options to construct our access query. The
options are explained below.

Actions When we have added our constraints we can use these actions to request the
output format we need. Formats supported include ASCII and binary.

Data URL The data URL is the URL used to access the data. As we update our query
constraints, the data URL is updated.

Global Attributes These attributes are used for reference. They apply for the whole
dataset.

Variables Last, the dataset variables are listed. We can enter values for each variable
which will constrain the output dataset. By checking a check box, we can decide
to completely remove variables that we are not interested in from the dataset.

THREDDS Data Server

THREDDS Data Server (TDS) is a web server written in Java that provide both data
access and metadata about scientific data [72]. The web server supports a number of
the standards and protocols used in the scientific communities. Access is provided via
for example OPeNDAP, Web Coverage Service (WCS) [75] for gridded data or access
through HTTP. Visualisation is supported by default via WMS.

One of the advantages of TDS is that it can automatically generate a THREDDS Cat-
alogue based on the contents of the database [59]. This catalogue encodes the data in
XML, where the dataset metadata can be placed. Thus, clients can access the catalogue
to find out what data is available for them to consume, and to determine how to access it.
The XML catalogue can be automatically transcoded into an HTML web site, allowing
it to be easily displayed to a user. The HTML catalogue is shown in Figure 3.5.

Many sensors generate measurements with regular intervals. Each of these measurements
may constitute one data point in a database, and will thus be seen as a single entry in
a catalogue. To avoid cluttering the catalogue, TDS have the ability to create virtual
aggregations of such periodical measurements. Researchers can then access this single
aggregated dataset, and constrain the dataset using OPeNDAP. This achieves better
usability since the user do not have to manually scroll the list of possibly hundreds of
datasets.

24

Figure 3.5: THREDDS Catalogue

3.4 GIS alternatives

We will now examine existing GIS solutions to use as a base for our prototype. The
alternatives should support as many of the requirements given in Section 2.1.3. Other-
wise, the GIS should have a flexible design. This will allow us to use the GIS as a base,
and extend and implement the missing features that are required.

Amorim et al. (2017) [73] have compared GIS for research data management. The
comparison consider architecture, flexible metadata and interoperability of the various
GIS. They list several GIS suitable for research data management. Of those mentioned,
ePrints, DSpace and CKAN are the most popular ones, and are therefore considered
relevant alternatives to our prototype.

According to Amorim et al., these GIS have similar advantages. They are open-source,
are easy to install, and are widely used within both research and governmental insti-
tutions. The systems are flexible, allowing for customizations. However, “due to its
complex architecture, DSpace may require a higher level of expertise when dealing with
custom features” [73]. The systems have various default support for open standards
and protocols. Amorim et al. concludes that CKAN may be advantageous to the other
alternatives. We will therefore use CKAN as the foundation for our prototype.

25

3.5 Comprehensive Knowledge Archive Network

Comprehensive Knowledge Archive Network (CKAN) is an open-source Python based
data management system. CKANs purpose is to aid in the process of sharing, publishing,
finding and using data [2]. CKAN support storage of simple data, for example HTML,
CSV and JSON. Bigger data resources are not hosted in CKAN, for example several
terabytes big NetCDF files are not appropriate. In these cases its metadata is stored
instead.

The metadata stored do not have to be manually entered into the CKAN instance itself,
but can be harvested from other sources or other CKAN instances. The harvesting is
enabled by CSW, OAI-PMH and TDS, explained in Section 3.3.2. Thus, CKAN is a
GIS that can be used to solve the problem about standardizing how data is discovered.
Because data from many different sources are discoverable and searchable from elsewhere
than it is originally hosted, the user do not have to search multiple data sources before
the required data is found.

As mentioned, CKAN is open-source. This has many added benefits. For example,
CKAN has an active developer and user community. The people behind the community
provide great support, through mailing lists [8] and GitHub issues [14]. CKAN is also
used by many governmental institutions, as a web page to find open data. For exam-
ple www.data.gov is created with CKAN. Figure 3.6 illustrates some of what can be
achieved. The home page lets the user view data for different topics, and download the
data needed. Free text searching and display of the latest latest added record is also
supported.

Figure 3.6: U.S. Government open data homepage

26

www.data.gov

3.5.1 Architecture

One of CKANs greatest advantages is its modular architecture. The design is displayed
in Figure 3.7. Routes, views, business logic, models and API are split according to the
concept of separation of concerns, in a layered architecture [7]. The main components
are described below. Only the components relevant to this thesis are included.

Figure 3.7: CKAN architecture (adapted from [7])

Routes The routes define the relationships between URLs and their corresponding
views. For example when a client visits http://<hostname>/harvest, the router
determines that the harvesting user interface should be rendered.

Views The views handle requests and serve a response by rendering the HTML to the
user client. Access checks can be used to define what views or parts of views should
be shown to users that have different access rights. Extensions can create their
own views, and can incorporate them wherever needed.

27

http://<hostname>/harvest

Logic The logic includes the business logic and background tasks in CKAN. For ex-
ample the business logic include a method for creating a dataset entry that will
be displayed in the list of datasets. We will see in later chapters that we create a
harvester extension that calls this method (via the API) to create datasets of the
harvested data.

Models The model layer contains the data that is stored in CKAN. For example the
spatial metadata is stored in a PostgreSQL database, and it is indexed by Solr.
Extensions can access the model layer to query the database and retrieve needed
data.

API The API provides a way of programmatically accessing the CKAN logic externally,
outside of CKAN. For example we can list all datasets stored within from the API,
and use for other purposes.

Extensions Separate extensions can be installed to customize and extend CKANs fea-
tures. Extensions can hook into and modify all parts of CKAN. This extension
mechanism is explained in detail in Section 3.5.2.

3.5.2 Extension mechanism

CKAN does not provide many advanced geospatial features by default, as its base instal-
lation is simple. Many of the required features are provided by extensions. Currently
over 200 CKAN extensions have been created by the community. These extend the
default features of CKAN [12]. For example one extension adds the possibility to do
location search within geospatial data, while another adds features to harvest metadata
from other CKAN instances. In this section we will examine how CKAN extensions
work in general.

Plugin interfaces

To make an extension modify the standard functionality of CKAN, it has to implement
one or several of the CKAN plugin interfaces [42]. The CKAN core will call the im-
plementation of these interfaces, therefore changing its functionality [69]. For example
the interface IRoutes contains methods for modifying the CKAN routes, letting exten-
sions create new web pages with new content. Relevant interfaces for our GIS prototype
include IHarvester, IResourceView and possibly others. These will let us implement
custom harvesters, and create view renderings for the data that we harvest.

28

Plugin toolkit

Another alternative for extensions to get access to the CKAN core is to use the plugin
toolkit [44, 6]. The plugin toolkit is a Python module containing methods, classes and
exceptions from the CKAN core. It provides a get action() method that extensions
can use to call internal methods from the CKAN Action API [3]. The Action API is
an API that exposes CKANs core functionality for use by clients and extensions. The
methods returned by get action() are considered safe to use, as they are backwards
compatible with earlier CKAN versions.

Exception handling

The plugin toolkit also provides exceptions to use for error handling [5]. For example
if an extension tries to call a method from the Action API that it is not authorised to
use, it can be handled by exceptions from the plugin toolkit. An example of exception
handling is shown in Listing 3.2. If a user without administrator rights try to access the
list of all members, an exception is thrown, and an explanatory message is returned.

1 try :
2 members = t o o l k i t . g e t a c t i o n (’ member l i s t ’) (
3 da t a d i c t={ ’ id ’ : ’ cu ra to r s ’ , ’ ob j e c t t ype ’ : ’ user ’ })
4 except t o o l k i t . ObjectNotFound :
5 # The cura to r s group doesn ’ t e x i s t .
6 return { ’ s u c c e s s ’ : False ,
7 ’msg ’ : ”The cu ra to r s groups doesn ’ t ex i s t , so only sysadmins ←↩

”
8 ” are author i zed to c r e a t e groups . ”}

Listing 3.2: Handling exceptions in a CKAN extension

Required extensions for prototype

Since the standard installation of CKAN is not directly suitable for publishing geospatial
data, we will enable these features through extensions. The extensions we will install as
a starting point for our prototype are:

• ckanext-spatial: To enable general geospatial features, such as supporting CSW.

• ckanext-harvest: To enable harvesting metadata from external repositories, and
implement custom harvesters.

29

• ckanext-geoview: To enable rendering of geospatial data.

In addition, we will implement two custom extensions to support harvesting of other data
formats. The installation of the three mentioned extensions, and the implementation of
our own extensions are described in the next chapter.

30

Chapter 4

Implementation of GIS prototype

In this chapter we describe how we implement our GIS prototype. We will set up
the default CKAN installation, and show that it does not fulfill all of our use cases.
Hence, we will enable spatial capabilities by installing various existing extensions. These
extensions support many of our use cases out of the box, but not all of them. The missing
features will be implemented in our own extensions. Before we implement these, we will
experiment with CKANs extension mechanism to figure out how it works. Finally we
will present the implementation of our custom extensions.

4.1 Development environment and methodology

The setup of CKAN and the development of its extensions were done using an agile
approach. We focused on producing working software, and adapting the code to chang-
ing requirements. The development were done in a iterative and exploratory way. We
focused on testing several different solutions quickly and choosing the best one, instead
of extensively researching literature for the optimal solution first. Thus, we get practical
experience with the solutions, and are more likely to find its advantages and disadvan-
tages. This follows from concepts in lean thinking [82]. Implementations are done in a
virtual machine with Ubuntu 14.04 that were set up using Vagrant [65]. The extensions
are developed in the editor Vim [66].

4.2 CKAN default installation

We start by setting up and configuring the default installation of CKAN. This installa-
tion of CKAN is usable as a general Content Management System (CMS) [18]. We will

31

later enable geospatial capabilities for it to be suited for use as a GIS.

4.2.1 Installation procedure

CKAN can be installed in several ways. For development of CKAN, the CKAN devel-
opers recommend installing CKAN from source [11]. This can be done by cloning the
source code from the git repository [13], and compiling it. For our use cases, we do not
have to modify the core source code of CKAN itself, but write extensions. Therefore, we
do not have to install from the source code, but can install the CKAN base from a pre
built package with a Linux package manager. In August 2017, version 2.7.0 of CKAN
was the newest, which is the one we will install. The installation steps are summarised
in [28].

To manage CKAN and its dependencies separately from our daily use computer, we will
set up a virtual machine and run the installation inside it. We create a virtual machine
with Ubuntu 14.04 using Vagrant. Vagrant will automatically download and set up the
operation system for us. We then install CKANs dependencies, some of which include:

• Apache2: web server to serve web pages to clients

• NGINX: used as reverse proxy (load balancing, caching common requests)

• Redis: in memory database used as message broker for harvesters

• Pylons: Python web framework (is in deprecation process)

• Flask: Python web framework (to replace Pylons)

• nose: Python testing framework

• SQLAlchemy: object relational mapping

• PostgreSQL: database

• Solr: search platform

Finally, we download the CKAN debian package that contains the CKAN software itself,
and install it with the Ubuntu package manager.

4.2.2 Base configuration

After installing CKAN, we have to make some configurations for the setup to work
properly. We create database tables where CKAN will keep its persistent data. We

32

also need separate Linux users on the virtual machine with special permissions to read
and write to the database tables. We create two users, one user to run CKAN, and
another to access the PostgreSQL database. If the CKAN user is being compromised in
a malicious attack, the contents in the database is not accessible by the same user.

For the search functionality to work properly, we also have to configure Apache Solr [53].
Apache Solr is a platform that handles search operations. Features include for example
fast, full-text search capabilities and it is flexible so it can be configured for several
different use cases [52]. We will provide Solr with a customized Solr schema from the
CKAN source code that it will use to be able to search within geospatial data [9]. Both
PostgreSQL and Solr is also run on the virtual machine mentioned earlier.

Figure 4.1 shows the front page of the finished base installation. The base CKAN
installation includes typical features of content management systems:

• Register user accounts and join organizational groups.

• List and publish simple content like tabular data, text documents and images.

• Search within published content.

• Programmatically access CKAN through the Action API.

Figure 4.1: Front page of CKAN base installation

33

These features are a good start for our GIS prototype, but we have to extend the base
installation to be able to utilise geospatial features. For example the current installation
does not support harvesting any metadata from external data servers, a feature required
in our prototype.

4.3 Enabling geospatial capabilities

Three extensions exist which provide some of the geospatial functionality we need.
ckanext-spatial [17], ckanext-harvest [16] and ckanext-geoview [15] are detailed
in the next sections. These extensions are installed using pip [41], a tool for installing
Python packages, and then enabled in the global CKAN configuration file (Listing A.2).
Some of these extensions have various extra dependencies, that need to be installed us-
ing methods specific to the operation system being used. For example the harvesting
extension depends on a Redis in-memory database that has to be installed manually.

4.3.1 Spatial extension

We enable geospatial capabilities by installing the extension ckanext-spatial. The
extension adds a spatial field to the CKAN database schema [17]. This allows us to
perform spatial searches within the CKAN database, an important operation for users
to find the data they need. For example users can search for datasets originating from
a specified geographic area. Storing geographic objects in the database is enabled by
PostGIS [68], an extension to PostgreSQL.

Support for CSW is included with the spatial extension using pycsw [86], a python
implementation of OGC CSW [86]. CSW allows our prototype to import resources from
other CSW servers using a CSW harvester, as well as exposing the resources to external
systems and users. Two other harvesters are included in addition to the CSW harvester,
one for harvesting from Web Accessible Folders [1] containing metadata documents, and
one for importing single metadata documents from an URL in the ISO-19139 metadata
standard. Validators are implemented in these harvesters. They verify that the format
of imported metadata records are correct.

These three extensions make use of a harvester interface that is provided by ckanext-

harvest. Therefore, to be able to use the harvesters and develop custom ones, we will
install the harvesting extension.

34

4.3.2 Harvesting extension

We need a mechanism to be able to fetch metadata from external locations. It will allow
our users to browse datasets that are not directly hosted at our prototype. If the original
datasets are changed in the external location, the update will automatically be reflected
across the locations where it has been imported. Therefore the user does not have to
verify that the dataset is up to date across all the different hosting locations.

The spatial extension provides harvesters for a few standards, but we want to be able
to develop harvesters for TDS and OAI-PMH as well. To develop such harvesters, the
general harvesting extension ckanext-harvest have to be installed. This extension can
not do any harvesting itself, but it provides some of the components required to do it.
For example it provides an interface that will connect harvesters to the CKAN core using
the publish-subscribe pattern.

Publish-subscribe pattern

The harvesting mechanism use the publish-subscribe pattern to manage communication
between several harvesters and the harvesting extension. In the publish-subscribe pat-
tern [47], a publisher publishes messages to topics on a queue. The harvesting extension
can use Redis [51] or RabbitMQ [50] for the messaging queues. Harvesters interested
in topics can subscribe to them, and will be notified when a new message has been
published. The subscribers can then consume the message. The pattern is shown in
Figure 4.2.

Figure 4.2: Publish-subscribe pattern

We use Redis as the message broker to store messages for the different topics, and to
notify the subscribers when new messages have been published. The harvester extension
publishes a message to the Redis queue when a new harvest source has been added. The
advantage to this pattern is that an arbitrary amount of harvesters can subscribe to the
Redis queues, and be notified if any sources with their data type has been added, and

35

respond accordingly. Users can add and remove harvesters (subscribers) dynamically.
Without the Redis queue, the harvesting extension would have to be aware of all the
specific harvesters available. Because the publishers and subscribers do not know about
the existence each other, the coupling is kept low.

Harvester interface

The harvesting extension provides an interface, IHarvester, that each harvester must
implement to be notified when new harvest sources are added. An overview of the
interface and its relations to the harvesters provided by the spatial extension is shown in
Figure 4.3. The complete interface is shown in Listing A.1. The harvesters inherit from
SpatialHarvester, a class that provide some common methods for harvesting spatial
data. The SpatialHarvester inherit from HarvesterBase, that provide some general
helper methods for harvesters. Last, the harvesters inherit from SingletonPlugin, a
base class for extensions where a singleton [84] instance of the class is created when the
extension is loaded.

Figure 4.3: General harvester classes and interfaces

36

Developers can choose between several strategies when implementing a harvester. Inde-
pendent of the chosen strategy, all extensions must explicitly or implicitly inherit from
SingletonPlugin. The most straightforward way to create a harvester is to imple-
ment IHarvester and develop the harvester logic oneself. Another solution is to extend
HarvesterBase, implicitly implementing IHarvester. Using this method, we can access
the helper methods in HarvesterBase. A third option is used by the included harvesters
in the spatial extensions. They extend SpatialHarvester, and therefore access both
spatial helper methods and methods from HarvesterBase.

Harvesting stages

The mandatory methods we have to implement are info, gather stage, fetch stage

and import stage. The info method returns a description of the harvester. The actual
harvesting of metadata is implemented in the three other methods. Signaling that a
harvest should run is done either by a user manually clicking a “Reharvest” button in
the prototype user interface, or by a periodic timer. When this happens, a harvest job
is created, and published to a Redis gather queue. A worker will consumer the jobs on
this queue, and start the first of the three harvesting stages.

• Gather : Gather all the resource identifiers for the resources that should be im-
ported. For a CSW server this stage would query the GetRecords operation. The
method is responsible for publishing the resource identifiers to the Redis fetch
queue, signaling that new resources should be fetched.

• Fetch: The fetch method is run for every resource identifier that is published to the
Redis fetch queue. Using the resource identifier, the fetch method fetches the actual
resource metadata. For a CSW server this stage would query the GetRecordById

operation. The fetch stage will return true if the harvest ran successfully, and false
otherwise. If true is returned, the harvester extension will start the import stage.

• Import : The import stage is responsible for transforming the fetched resources to
CKAN fields, and store them in the CKAN database. Steps include parsing the
data, validating it and creating the CKAN dataset to be displayed to the users.

The gather and fetch stages are run in backgrounds jobs, constantly waiting for new
data to harvest. These processes are typically started from a command line interface. In
a production environment these processes are managed by for example Supervisor [58],
a process control and monitoring system. Supervisor can then restart the processes if
they stop.

The import stage should be run periodically, removing datasets that were fetched in the
fetch stage with errors. If the fetch stage is run successfully, the import stage is run

37

automatically. Therefore, the separate, periodic execution of the import stage can be
run for example once every day, with the intention to clean up harvest jobs that returned
with an error.

New harvest source flow

Figure 4.4 shows a simplified sequence diagram of how a new harvest source is created
in our prototype with the harvesting extension. When a user opens the user interface
to add a new source to harvest, the CKAN core queries the harvesting extension for a
list of supported harvesters. The user then enters the necessary information about the
harvester, such as the source URL. When the data source is saved, the CKAN core calls
the harvesting extension to create it. The harvesting extension simply proxies the call
back to the create package action in the CKAN Action API. This action will create a
dataset package; how datasets and harvest sources are represented in CKAN.

Finally, the harvest source is persisted in the PostgreSQL database. At this stage a
harvest source is simply created, but no metadata is harvested yet. For this we need to
implement a custom harvester, or enable one of the existing ones. The implementation
of such harvesters are explained in Section 4.5 and Section 4.6.

Figure 4.4: Adding a new source to harvest

4.3.3 Geographic view extension

Rendering of geospatial resources is not included in the spatial extension. These views
have to be provided by a separate extension, ckanext-geoview [15]. The viewers in this

38

extension are implemented using OpenLayers [40] or Leaflet [29], and provides rendering
support for various formats and protocols. These are listed below.

• Web Map Service (WMS)

• Web Feature Service (WFS)

• Web Map Tile Service (WMTS)

The extension can also render data in GeoJSON, Geography Markup Language (GML)
and Keyhole Markup Language (KML). We can implement the interface IResourceView [43]
to create viewers that render new formats.

Figure 4.5 shows how the geographic view extension renders a WMS service. Several
base maps (base layers) can be added, and chosen in the dialog to the right in the view.
In this dialog we can also select and deselect the various layers that the service provide.

Figure 4.5: Rendering a WMS service with the geographical view extension

39

4.4 Experimenting with custom extensions

Before we start developing harvesters, it is useful to experiment with the extension
mechanism beforehand. We do this to learn how extensions work in practise, and to
gain insight in how to effectively develop the actual harvesters. Without experimenting
with extensions first, we might start developing a harvester using bad practises, and
might end up having to do a complete rewrite of the harvester at a later stage. Using
the experimenting approach, we can make these early mistakes without any loss.

4.4.1 Generate and enable extension

In the base installation of CKAN, a configuration for a Python virtual environment [67]
is included. Such a virtual environment is a self-contained directory with a specific
Python version installed. In this environment specific versions of Python libraries are
also installed. Using the self-contained environment, CKAN and its dependencies are
kept separate from other installations.

Inside the CKAN virtual environment, we can run the command paster create to gen-
erate an empty extension, with all required directories and files.

ckanext-our-test-extension/

ckanext/

init .py

our-test-extension/

init .py

plugin.py

ckanext our-test-extension.egg-info/

setup.py

The relevant source for our extension will reside in the our-test-extension directory.
In that directory we can create a simple plugin.py, as seen in Listing 4.1. For now
the file contains a single print statement, that we will use to verify that our extension
is enabled and working. We will see in Section 3.5.2 how we can access the CKAN core
and customise its features.

1 import ckan . p lug in s as p lug in s
2
3 class TestExtension (p lug in s . S ing l e tonP lug in) :
4 print (’ This i s our t e s t ex tens i on ! ’)

Listing 4.1: Plugin class with single print statement

40

We add the path and class name of our plugin in setup.py on lines 17-20 as seen in
Listing 4.2. This will define our plugin class as the entry point for our extension. When
we enable the extension in the global CKAN configuration file, it will be referenced
with the name test, pointing to the TestPlugin class in the ckanext namespace, as
defined on line 14. If our extension requires specific dependencies, these are defined in
the install requires list on line 15. This is kept empty for now.

1 from s e t up t oo l s import setup , f i nd package s
2 setup (
3 name= ’ ’ ’ ckanext−t e s t ’ ’ ’ ,
4 v e r s i on=’ 0 . 0 . 1 ’ ,
5 d e s c r i p t i o n= ’ ’ ’ Test e x t ens i on ’ ’ ’ ,
6 l o n g d e s c r i p t i o n=’ ’ ,
7 u r l=’ https : // github . com/andrmos/ckanext−t e s t ’ ,
8 author= ’ ’ ’ Test user ’ ’ ’ ,
9 author emai l= ’ ’ ’ u ser@tes t . com ’ ’ ’ ,

10 l i c e n s e=’AGPL’ ,
11 c l a s s i f i e r s = [] ,
12 keywords= ’ ’ ’CKAN t e s t ’ ’ ’ ,
13 packages=f ind package s (exc lude=[’ c on t r i b ’ , ’ docs ’ , ’ t e s t s ∗ ’]) ,
14 namespace packages=[’ ckanext ’] ,
15 i n s t a l l r e q u i r e s = [] ,
16 inc lude package data=True ,
17 en t r y po i n t s= ’ ’ ’
18 [ckan . p l u g i n s]
19 t e s t=ckanext . t e s t . p l u g in : TestPlug in
20 ’ ’ ’
21)

Listing 4.2: Extension configuration

We use the setup.py file for installing our test extension. This is done by running the
command python setup.py develop. Last, we enable our extension by adding it in the
global CKAN configuration file, production.ini. When we reload CKAN, the plugin
prints This is our test extension! to the CKAN logs.

4.4.2 Testing the extension

To write and run tests for our extension, we create a test.ini configuration file in the
ckanext-our-test-extension/ directory. This file will contain configuration options
that will be used when running tests. We will also create a new directory, ckanext-our-
test-extension/tests/, where our tests will reside. In this directory we can create a
python file test our-test-extension.py. This file will contain all our test methods.

41

Nosetests will run all methods with “test” as part of the method name. We add a unit
test named using the unit test naming convention. It contains a simple assertion to
verify that the tests are running correctly. The test is shown in Listing 4.3.

Executing the command
nosetests -v --ckan --with-pylons=test.ini ckanext/our-test-extension/tests

will run the test, and give the output in Listing 4.4. In a real extension, we would add
several unit tests. For example a real unit test for a harvesting extension could create
a harvest job object from a harvest source, and assert that both of their identifiers are
the same. We will now start developing the extensions needed to achieve our goals from
Section 1.3.

1 def t e s t on e p l u s on e shou l d equa l two () :
2 a = 1
3 b = 1
4 a s s e r t a + b == 2

Listing 4.3: Simple unit test

1 t e s t ou r−t e s t−extens i on . t e s t on e p l u s on e shou l d equa l two . . . ok
2
3 −−
4 Ran 1 t e s t in 0 .000 s
5
6 OK

Listing 4.4: Unit test output

4.5 Customise existing OAI-PMH harvester

A harvester for OAI-PMH exists [91] that we will use as a starting point for our harvester,
and modify to our needs. This harvester uses pyoai [48], a Python implementation of a
OAI-PMH client and server. An example of how one could use pyoai in our extension
to fetch resource identifiers from an OAI-PMH repository is shown in Listing 4.5. We
import the client, and provide it with the repository URL and a MetadataRegistry.
The MetadataRegistry contains MetadataReaders used for parsing the XML responses
of pyoai. Last, we call one of the OAI-PMH operations. More options can be provided
to the client to customise its behaviour.

42

1 import oaipmh . c l i e n t
2 c l i e n t = oaipmh . c l i e n t . C l i en t (
3 ’www. example . com ’ ,
4 metadata r eg i s t ry
5)
6
7 for header in c l i e n t . l i s t I d e n t i f i e r s (metadataPref ix=’ d i f ’) :
8 r e s o u r c e i d = header . i d e n t i f i e r ()
9 # Do something wi th r e s ou r c e i d . . .

Listing 4.5: OAI-PMH Client usage example

The OAI-PMH harvester is missing some features we need. For example it only provides
support for metadata in Dublin Core format [22]. We need support for DIF as well, since
it is better suited for geographic data. Additionally, it does not handle configurations
entered by users well, and crashes if no configuration is provided.

4.5.1 DIF metadata reader

The first step is to implement support for reading metadata in DIF. The MetadataReader
class in metadata.py contains the business logic for reading metadata from an OAI-PMH
repository. It uses the lxml toolkit [30] to parse metadata. lxml adds Python bindings
to the C libraries libxml2 [70] and libxslt [71], that provide efficient XML parsing. The
MetadataReader locates specific fields in the metadata using XPath evaluations, and sets
its value to fields that will be displayed in the web interface in our prototype. Listing 4.6
shows how the metadata reader maps Dublin Core metadata to CKAN fields. On line 3,
the title field is set to the text content of the child element of oai dc:dc: dc:title.
A simplified example of how the XML might look is shown in Listing 4.7.

1 oa i d c r e ad e r = MetadataReader (
2 f i e l d s={
3 ’ t i t l e ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : t i t l e / t ext () ’) ,
4 ’ c r e a t o r ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : c r e a t o r / text () ’) ,
5 ’ sub j e c t ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : sub j e c t / text () ’) ,
6 ’ d e s c r i p t i o n ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : d e s c r i p t i o n / text () ’) ,
7 ’ pub l i s h e r ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : pub l i s h e r / text () ’) ,
8 ’ ma inta ine r ema i l ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/ oa i : ma inta ine r ema i l / t ext←↩

() ’) ,
9 ’ c on t r i bu to r ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : c on t r i bu to r / text () ’) ,

10 ’ date ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : date / text () ’) ,
11 ’ type ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : type/ text () ’) ,
12 ’ format ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : format / text () ’) ,
13 ’ i d e n t i f i e r ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : i d e n t i f i e r / t ex t () ’) ,
14 ’ source ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : source / text () ’) ,

43

15 ’ language ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : language / text () ’) ,
16 ’ r e l a t i o n ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : r e l a t i o n / text () ’) ,
17 ’ coverage ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : coverage / text () ’) ,
18 ’ r i g h t s ’ : (’ t e x tL i s t ’ , ’ o a i d c : dc/dc : r i g h t s / t ext () ’)
19 } ,
20 namespaces={
21 ’ oa i d c ’ : ’ http ://www. openarch ives . org /OAI/2 .0/ oa i dc / ’ ,
22 ’ oa i ’ : ’ http ://www. openarch ives . org /OAI/2 .0/ ’ ,
23 ’ dc ’ : ’ http :// pur l . org /dc/ e lements /1 .1/ ’
24 }
25)

Listing 4.6: Metadata reader for Dublin Core

1 <oa i dc : dc>
2 <dc : t i t l e >AROME METCOOP 0.5 km</dc : t i t l e >
3 </oa i dc : dc>

Listing 4.7: Dublin Core metadata example

Additional metadata readers can be implemented in the script metadata.py. These
readers have to be registered with the pyoai client that the extension uses. The registra-
tion of those readers are done in create metadata registry(), shown in Listing 4.8.
When we have created our own metadata reader for DIF, it is registered as shown on
line 6. The ‘oai dc’ and ‘dif ’ strings are keys used to identify the metadata readers. The
OAI-PMH client is given the registry upon initialisation, and chooses metadata reader
based on resource formats available (ListMetadataFormats OAI-PMH operation).

1 from metadata import oa i d c r eade r , d i f r e a d e r
2
3 def c r e a t e me t ada t a r e g i s t r y (self) :
4 r e g i s t r y = MetadataRegistry ()
5 r e g i s t r y . r e g i s t e rReade r (’ oa i d c ’ , o a i d c r e ad e r)
6 r e g i s t r y . r e g i s t e rReade r (’ d i f ’ , d i f r e a d e r)
7 return r e g i s t r y

Listing 4.8: Registration of metadata readers

We create our own metadata reader for DIF in the script metadata.py. Part of our
reader is shown in Listing 4.9. The complete reader is not shown due to the amount of
fields in DIF.

44

1
d
if

r
e
a
d
e
r

=
M

e
ta

d
a
ta

R
e
a
d
e
r
(

2
f
ie

ld
s
=
{

3
#

B
a
s
ic

in
fo

4
”
E
n
tr
y

ID
”
:

e
v
a
l
b
u
il
d
e
r
(
’
t
e
x
t
L
is

t
’
,

[
’E

n
tr
y

ID
’
,

’
t
e
x
t
(
)
’
])

,
5

”
E
n
t
r
y

T
it
le

”
:

e
v
a
l
b
u
il
d
e
r
(
’
t
e
x
t
L
is

t
’
,

[
’
E
n
t
r
y

T
it
le

’
,

’
t
e
x
t
(
)
’
])

,
6 7

#
D
a
ta

s
e
t

c
it
a
t
io

n
8

”
D
a
t
a

S
e
t

C
it
a
t
io

n
/
D
a
t
a
s
e
t

C
r
e
a
t
o
r
”
:

e
v
a
l
b
u
il
d
e
r
(
’
t
e
x
t
L
is

t
’
,

[
’
D
a
t
a
s
e
t

C
r
e
a
t
o
r
’
,

’
t
e
x
t
(
)
’
])

,
9

”
D
a
t
a

S
e
t

C
it
a
t
io

n
/
D
a
t
a
s
e
t

T
it
le

”
:

e
v
a
l
b
u
il
d
e
r
(
’
t
e
x
t
L
is

t
’
,

[
’
D
a
t
a
s
e
t

T
it
le

’
,

’
t
e
x
t
(
)
’
])

,
1
0

”
D
a
t
a

S
e
t

C
it
a
t
io

n
/
D
a
t
a
s
e
t

R
e
le
a
s
e

D
a
t
e
”
:

e
v
a
l
b
u
il
d
e
r
(
’
t
e
x
t
L
is

t
’
,

[
’
D
a
t
a
s
e
t

R
e
le
a
s
e

D
a
t
e
’
,

’←
↩

t
e
x
t
(
)
’
])

,
1
1

”
D
a
t
a

S
e
t

C
it
a
t
io

n
/
D
a
t
a
s
e
t

R
e
le

a
s
e

P
la

c
e
”
:

e
v
a
l
b
u
il
d
e
r
(
’
t
e
x
t
L
is

t
’
,

[
’
D
a
t
a
s
e
t

R
e
le

a
s
e

P
la

c
e
’
,

’←
↩

t
e
x
t
(
)
’
])

,
1
2

”
D
a
t
a

S
e
t

C
it
a
t
io

n
/
D
a
t
a
s
e
t

P
u
b
li
s
h
e
r
”
:

e
v
a
l
b
u
il
d
e
r
(
’
t
e
x
t
L
is

t
’
,

[
’
D
a
t
a
s
e
t

P
u
b
li
s
h
e
r
’
,

’
t
e
x
t
(
)
’←

↩
])

,
1
3

”
D
a
t
a

S
e
t

C
it
a
t
io

n
/
V
e
r
s
io

n
”
:

e
v
a
l
b
u
il
d
e
r
(
’
t
e
x
t
L
is

t
’
,

[
’
V
e
r
s
io

n
’
,

’
t
e
x
t
(
)
’
])

,
1
4

1
5

#
.
.
.

1
6

}
,

1
7

n
a
m
e
sp

a
c
e
s=
{

1
8

’
d
if

’
:

’
h
t
t
p
s
:/

/
g
cm

d
.
n
a
sa

.
g
o
v
/
A
b
o
u
tu

s
/
x
m
l/

d
if
/
’

1
9

}
2
0

)

L
is

ti
n

g
4.

9:
P

ar
t

of
D

IF
m

et
ad

at
a

re
ad

er

45

The DIF metadata from data sources we harvest does not contain any XML names-
pace [63]. Therefore we can not parse the DIF metadata the same way it is done with
Dublin Core. A query looking for the text of an element with the name title any-
where within the XML looks like this: //*[name()=‘title’]/text(). The problem of
handling elements with identical name is described later in Section 4.7. We have imple-
mented a separate method that creates such queries, as they tend to be long if written
manually. The logic to construct such XPath queries are shown in Listing 4.10.

1 # Bui lds an XPath based on a l i s t o f e lements , ex : //∗ [name()=’ t i t l e ’] /←↩
t e x t ()

2 # For XML pars ing wi thout namespaces
3 def xpath bu lder (elms) :
4 path = ””
5 for i , elm in enumerate (elms) :
6 if i == len (elms) − 1 :
7 path += ”/”
8 path += elm
9 else :

10 path += ” //∗ [name ()=’”
11 path += elm
12 path += ” ’] ”
13 return path
14
15
16 def e v a l b u i l d e r (f i e l d t y p e , elms) :
17 return (f i e l d t y p e , xpath bu lder (elms))

Listing 4.10: Evaluation and XPath builder

4.5.2 Harvester overview

The relationship between the OAI-PMH harvester and the other harvesters are shown
in the class diagram in Figure 4.6. We have omitted methods and attributes that are
irrelevant to the implementation of the OAI-PMH harvester. The relationships in the
diagram are complex as the CSWHarvester, WAFHarvester and DOCHarvester from the
spatial extension uses multiple inheritance. A simpler strategy is chosen for the OAI-
PMH harvester.

46

F
ig

u
re

4.
6:

O
A

I-
P

M
H

h
ar

ve
st

er
cl

as
s

d
ia

gr
am

47

OaipmhHarvester inherits from HarvesterBase, a generic base class that implements
the IHarvester interface. The HarvesterBase provide helper methods that are useful
for harvesters. For example the create or update package() method creates a new
dataset package if it does not already exist, or it updates an existing one. Such methods
are helpful since the logic is the same for most harvesters, and they do not end up
cluttering the logic of the specific harvesters.

The logic for making the OAI-PMH requests reside in Client, a class provided by
pyoai. This class contains implementations for the ListIdentifiers and GetRecord

operations, among others, in OAI-PMH. Recall the code in the example in Listing 4.5.

The MetadataRegistry and MetadataReader classes contain the logic for parsing XML
data and transforming them to Python objects. The registry contain several metadata
readers, that are implemented in the MetadataReader class. The registry is used by
the Client to parse the XML responses it receives. Two instances of Client is used in
OaipmhHarvester: one in gather stage and one in fetch stage.

4.5.3 Data flow

Figure 4.7 presents a sequence diagram of how the OAI-PMH harvester works. It shows
its connection to the CKAN core and the general harvester extension from Section 4.3.2.
The diagram is simplified, displaying the most relevant interactions within the harvester.

The harvesting procedure is started manually by a user clicking a button in the user
interface or by a timer. For example a harvest can be scheduled to start automati-
cally every 6 hours. The harvester extension receives the click event, and creates a
HarvestJob with name OAI-PMH, that is published to the Redis gather queue. Our
OAI-PMH harvester is subscribed to the gather queue, and is therefore notified when
new HarvestJobs are created. When it is notified, the gather stage is started, and calls
the OAI-PMH repository with the ListIdentifiers operation. The operation returns
the resource identifiers to fetch. Note 1 and 2 in Figure 4.7 refers to several other calls
that are made in the gather stage, but are omitted to simplify the sequence diagram.
For example MetadataReader objects are registered to a MetadataRegistry that is pro-
vided to the pyoai client. The returned resource identifiers are published to the Redis
fetch queue.

The fetch stage is started when our harvester is notified of the resource identifiers pub-
lished to the fetch queue. A GetRecord request based on a resource identifier is made,
and the resource is returned. An example of how a GetRecord request looks is shown
below.
http://arcticdata.met.no/metamod/oai?verb=GetRecord&metadataPrefix=dif

&identifier=urn:x-wmo:md:no.met.arcticdata.test3::ADC met-arome-0p5km

48

F
ig

u
re

4
.7

:
S

eq
u

en
ce

d
ia

gr
am

of
O

A
I-

P
M

H
h

ar
ve

st
er

49

A DIF metadata format is requested for a resource with identifier urn:x-wmo:md:no.

met.arcticdata.test3::ADC met-arome-0p5km. Several other calls are also done in
the fetch stage, but these are omitted from Figure 4.7 to simplify the diagram.

If no errors are returned by the fetch stage, the import stage is started. This stage
transforms the returned resources into appropriate fields for use and display in the
prototype. When a resource is transformed, it is saved to the CKAN database, and a
call to package create is made. This call is simply proxied to the CKAN core using
the plugin toolkit. A CKAN dataset is now created that can be displayed in the web
interface.

4.5.4 Various smaller changes

Support several resources in a dataset

We also had to do some smaller miscellaneous changes to the OAI-PMH harvester. For
example it only supported adding a single resource to a dataset. If we request the
metadata in Dublin Core format, we would only receive a link to a TDS catalogue. This
way, the link to the TDS catalogue would be displayed in the prototype. To access the
data, the user would have to navigate to the data catalogue first, before being able to
access the links to WMS and OPeNDAP.

In DIF, in addition to a link to the TDS catalogue, we also receive direct links to
WMS and OPeNDAP services. We would like to store all these resources in a single
CKAN dataset. As a result, the user can directly choose how they want to access the
data, without navigating to the TDS catalogue first. A simplified implementation of the
extract resources() method is shown in Listing 4.11.

1 def e x t r a c t r e s o u r c e s (self , u r l s , content) :
2 if self . md format == ’ d i f ’ :
3 r e s ou r c e s = []
4 if u r l s :
5 try :
6 r e s ou r c e f o rmat s = self . e x t r a c t f o rma t s (content)
7 except (IndexError , KeyError) :
8 # Raise error . . . Omitted from l i s t i n g .
9 for index , u r l in enumerate (u r l s) :

10 r e s ou r c e s . append ({
11 ’name ’ : content [’ Related URL/Desc r ip t i on ’] [index] ,
12 ’ r e s ou r c e type ’ : r e s ou r c e f o rmat s [index] ,
13 ’ format ’ : r e s ou r c e f o rmat s [index] ,
14 ’ u r l ’ : u r l
15 })
16 return r e s ou r c e s

50

Listing 4.11: Extracting resources in DIF format

Detecting resource types

We need a way to detect the formats of resources in DIF. When CKAN is provided
the type of a resource, it can render the types in different views. For example a WMS
service should be of type wms. When CKAN receives a WMS service, it knows that it
should use the geographic view extension and render the WMS viewer. The detection
of resource types is done by checking the content of the access URL. For example if the
URL contains wms, it is a WMS service, if it contains dods, it is a OPeNDAP service,
and if it contains catalog, it is a TDS catalogue resource. This is a naive implementation
and should be improved to be more robust in future work.

4.6 Implementing TDS harvester

The TDS harvester is similar to the OAI-PMH harvester in terms of structure, since
they both implement the same harvester interface. Software exist for fetching datasets
from a TDS catalogue. Our TDS harvester will be based on this software.

4.6.1 TDS crawler

The TDS harvester is based on thredds crawler [61]. This Python package crawls and
parses TDS catalogues recursively using depth-first search, and stores the datasets as
Python objects. The complete metadata of the datasets in a data catalogue is accessible
directly as XML. We can parse the metadata XML with lxml. The crawler supports
many options, such as filtering by dataset name with Python regular expressions and
ignoring certain datasets based on file type or creation date. We can also customise the
number of workers (processes) used for crawling a catalogue, to improve performance. A
short example of how to crawl a TDS catalogue with thredds crawler is demonstrated
in Listing 4.12. The code would fetch all datasets from ‘‘www.example.com’’ created
after January 1st 2018, and might print the output similar to line 6 and onwards.

1 from th r edds c raw l e r . crawl import Crawl
2 c = Crawl (’www. example . com ’ , a f t e r=datet ime (2018 , 1 , 1))
3 print (c . da ta s e t s [0] . name)
4 print (c . da ta s e t s [0] . s e r v i c e s)
5

51

6 SVIM ocean h indcas t a r ch ive
7 [{
8 ’ u r l ’ : ’www. l ink−to−wms−endpoint . com ’ ,
9 ’name ’ : ’wms ’ ,

10 ’ s e r v i c e ’ : ’WMS’
11 }]

Listing 4.12: Example use of the TDS crawler

4.6.2 Harvester overview

Figure 4.8 shows a class diagram of the TDS harvester, giving an overview of its imple-
mentation. We have omitted other harvesters and classes to simplify the diagram. The
ThreddsHarvester inherits from HarvesterBase, which implements the IHarvester

interface as in the OAI-PMH harvester. The Crawl class is used by the harvester and is
provided by the TDS crawler. Crawl is responsible for crawling the TDS catalogues, and
return the datasets for use in the harvester. The LeafDataset class represents datasets
in a TDS catalogue. The private methods in ThreddsHarvester are specific to this
harvester. These methods are primarily used for modifying the datasets returned by
Crawl to conform to the CKAN dataset package schema. Refer to Listing A.3 for the
complete implementation of ThreddsHarvester.

Figure 4.8: TDS harvester class diagram

52

4.6.3 Data flow

A sequence diagram of harvesting from a TDS catalogue is shown in Figure 4.9. The
diagram is simplified to show the most relevant operations. Identical to other harvesters,
this sequence diagram features gather stage, fetch stage and import stage. Because
crawling a data source for data is done in a single pass (unlike OAI-PMH which requests
identifiers first and then fetches the resources afterwards), the implementation of a TDS
harvester is simpler.

The harvesting is started equivalent to the OAI-PMH harvester. When the TDS har-
vester is notified of a new harvest job, the crawling of the data catalogue is started
using thredds crawler. The TDS catalogue returns all resources requested. The re-
turned data is added to a Python directory, with fields conforming to the CKAN package
schema.

Instead of publishing just the resource identifiers to the fetch queue, the complete re-
sources are published. In this scenario, the gather stage also performs the tasks of the
fetch stage. Therefore, the fetch stage simply returns true. If an error happens in the
gather stage, resources will not be published to the fetch queue, and the fetch stage will
not start.

When the fetch stage returns true, the import stage is started. Since the datasets
returned by the TDS catalogue is already transformed to the CKAN schema, the import
stage simply calls the package create operation to create the dataset for display in the
prototype. Last, the dataset is persisted in the CKAN database.

53

F
ig

u
re

4.
9:

T
D

S
h

ar
ve

st
er

se
q
u

en
ce

d
ia

gr
am

54

4.7 Implementation challenges and solutions

A few complications took considerable time to figure out how to solve. When the solution
was found, they required minor code changes to be fixed. These errors would less likely
occur with more experience with CKANs extension mechanism and Python development
in general. We will explain some of the challenges we encountered when implementing
CKAN extensions, and how they were solved.

1. One of the problems encountered were related to accessing the metadata of datasets
returned by thredds crawler version 1.5.3. After crawling a TDS catalogue with
the Crawl class, we try to access the returned metadata using dataset.metadata.
This raised an exception:

Assertion error: invalid proxy at 123123123892

We did not find a complete explanation of why this exception is raised. The stack
trace of the error reveals that it might be related to lxml. A series of Stack Overflow
posts [57, 56] and bug reports[31, 62] indicate that the following is likely to have
caused the problem.

The error is raised by lxml, used for parsing XML in thredds crawler. Re-
call that lxml provides Python bindings to the C libraries libxml2 and libxslt.
When lxml parses XML, it represents the parsed XML as C data structures.
Additionally, thredds crawler uses multiple threads to crawl data catalogues.
thredds crawler returns lxml.etree.Element classes, using the C representa-
tion of the element. When these elements are accessed outside of the worker
process in our harvester extension, the according C representation of the elements
cannot be found, and the error is raised.

The issue was fixed in a new release of thredds crawler, version 1.5.4 [60], released
16th of March 2018. In this version, thredds crawler does not store the lxml.

etree.Element class directly, but instead deserializes the element to a string with
etree.tostring(metadata). We can access the string in our extension without
issues, since we no longer implicitly try to access the C representation outside its
process.

2. Another problem was also related to parsing XML. Normally XML should con-
tain namespaces [63] to be able to distinguish between XML elements with the
same name. Responses in Dublin Core format from OAI-PMH contained names-
paces and were easy to parse with lxml. Responses from TDS and OAI-PMH
in DIF format did not contain any namespaces for the metadata. Therefore it
had to be parsed with a different syntax. Instead of simply accessing elements
with for example oai dc:dc/dc:title/text(), we have to use for example //

*[name()=’title’]/text(). This syntax is longer for deeply nested structures,
where you have to define the complete XPath from the root node. The queries are
more confusing to read and understand, and tend to be long as seen in Listing 4.9.

55

Chapter 5

System overview and
demonstration

In this chapter we will demonstrate the implemented GIS prototype. The use cases from
Section 2.3.1 will be carried out and illustrated. We will examine the problems from
Section 2.3.2, and evaluate how or if they are improved in Chapter 6. Some example
datasets have been harvested from various external locations for the prototype to contain
some content.

5.1 Finding data

The first use case is to find data. On the home page of the prototype (Figure 4.1), the
user is immediately presented with an easy accessible search bar. If new datasets have
been published recently, these are listed on the front page for easy navigation. We can
enter the separate dataset page by clicking on “Datasets” at the top of the screen.

The dataset page is demonstrated in Figure 5.1. On this page all datasets available to
a specific user is listed. The search bar lets us search the database using any words
contained in the dataset fields. For example if we search for “sea ice”, we will return
datasets consisting of sea ice data. Figure 5.2 shows the search results. On the left we
can further refine our search by selecting one or several filters. We can exclude datasets
based on filters like owner organisations, groups, tags, formats and licenses.

56

Figure 5.1: Prototype dataset page

Figure 5.2: Searching for a dataset containing sea ice data

57

Clicking on the dataset title leads us to the dataset details page, as shown in Figure 5.3.
Here we can examine the resources and the metadata of the dataset. Some of the
displayed metadata fields are redundant, and some can be joined together. This is an
area that can be improved in future versions of the prototype. Clicking on “Access to
WMS service” brings us to the page shown in Figure 5.4.

Figure 5.3: Ice charts from national ice services dataset page

58

Figure 5.4: Preview of WMS service

59

5.2 Adding a new harvesting source

We have not implemented a separate button for entering the page that lets us view
and add new harvest sources. This should ideally be included in a future version. By
navigating to the URL http://<host-domain>/harvest, we get an overview of the
added harvest sources. The page is shown Figure 5.5.

Figure 5.5: List of harvest sources

Clicking on the “Add Harvest Source” button brings us to the form to create a new
harvest source. This is demonstrated in Figure 5.6. On this page the user have to fill in
the necessary information. The most important information is the source URL and type.
The list of supported harvest types are shown based on the harvesters that are enabled
in the prototype. Our implemented harvesters are listed at the bottom: THREDDS
Server and OAI-PMH. The configuration field lets the user pass settings to the differ-
ent harvesters, to customise its operation and functionality. We have not implemented

60

http://<host-domain>/harvest

support for any customisations in our harvesters. This could be done in future versions.
For example a field to manually choose the metadata format the OAI-PMH harvester
should use could be useful. The user can also decide how often the source should be
harvested with the Update frequency field. For example it can be harvested every day,
every month or by manually clicking the “Reharvest button”. When “Save” is clicked,
the harvest source is saved to the database, ready to be harvested. When datasets are
successfully imported, they will be displayed in the dataset list described in Section 5.1.

Figure 5.6: Page to add a new harvest source

61

5.3 Filter data before retrieval

Filtering and restricting a dataset before retrieval is enabled by OPeNDAP. We navigate
to the dataset we are interested in, and if the dataset is accessible by OPeNDAP, we
click “Access to OPeNDAP service”. We are then redirected to the OPeNDAP access
form (described in Section 3.3.2) where we can modify the access query.

This operation has room for improvement. Just like in some other GIS, the user is
redirected back and forth between considerably different looking pages before they get
access to the data. An improvement could be to implement the OPeNDAP access form
in the prototype user interface itself. Instead of being redirected to a separate page,
the user could modify the query in the prototype, and would perform the query and get
a response. This is possible since the OPeNDAP access form simply updates an URL
based on the entered data that the user can use. The same could be achieved within the
prototype. We will come back to this improvement in Chapter 6 and 7.

5.4 Download data

Downloading data can be performed several ways. For example resources harvested
from TDS often provide URLs pointing to FTP servers. This link can be clicked on
directly from the prototype user interface, and a download will start. If the size of the
resource data is several gigabytes or terabytes, users often want to use OPeNDAP to
download parts of a dataset, as explained in the previous section. The URL pointing
to the OPeNDAP service could also be copied by the user and pasted in their preferred
desktop application, if it supports it.

5.5 Summary

All use cases given in Section 2.3.1 are implemented. The user can search for data, filter
it with OPeNDAP, download it, and visualise it with WMS.

62

Chapter 6

Evaluation

One of the last steps of the research methodology of Peffers et al. (2007) [92] is to evaluate
an artifact: our prototype. The evaluation will form a basis for future work. We will
examine if our prototype solves the problems identified in Section 2.3.2, and compare the
observed results from Chapter 5 with the objectives of the thesis given in Section 1.3.1.
The research questions from Section 1.4 are then answered. We conclude the chapter by
reviewing the overall goal of the thesis.

6.1 Sub-goals

We begin by evaluating the achievement of the sub-goals.

6.1.1 Overview of standards to build prototype

We performed an interview with two researchers to determine the data sources they
use. We then researched what standards and protocols the data sources used to allow
harvesting of them. We found that DIF and Dublin Core were appropriate for metadata.
We used CSW, OAI-PMH and TDS for harvesting the metadata records. WMS and
OPeNDAP was used for access to the geospatial datasets.

Steiniger and Hunter (2011) [94] describes several additional technical standards and
protocols that are important for distribution of spatial data. For example Web Feature
Service (WFS), WCS, ISO 19115 and ISO 19119 are mentioned. Due to time constraints,
it was unfeasible to implement support for these additional standards. Because of CK-
ANs flexible architecture, it would be possible to develop extensions that would allow

63

CKAN to support these standards. Such task is appropriate for future work.

6.1.2 Types of data supported in prototype

By interviewing the two researchers from NERSC we found that harvesting metadata
from OAI-PMH repositories in Dublin Core and DIF, and harvesting TDS was sufficient
for the thesis. The researchers used other data from other repositories as well. These
repositories did not support access via OAI-PMH or TDS. Due to time constraints, we
focused on implementing harvesting with the mentioned standards only. In retrospect,
we could have interviewed more researchers to get a more realistic view of the types of
data that are used the most.

6.1.3 GIS alternatives as prototype foundation

Amorim et al. (2017) [73] examined software for use as a research content management
system. A number of GIS were discussed. The three most popular alternatives from
the paper were considered. Amorim et al. recommended CKAN for many reasons, as
outlined below.

Because CKAN is open-source and has an active developer community, it is easy to get
help to solve problems. CKAN is used by many government institutions, and therefore
gives a good indication that it is well suited for our prototype. The architecture of
CKAN is flexible with a solid extension mechanism and open API. Hence, we can easily
add extra functionality that is needed. Last, CKAN is written in Python, a high-level
language that is relatively easy to use. For these reasons, CKAN was chosen to be used
as the foundation for our prototype.

6.1.4 Set up a catalogue service

The objective of this sub-goal was to install and configure a metadata catalogue service
using CKAN as a foundation. Since CKAN is not directly usable for storing geospatial
metadata by default, extra features have to be supported by extensions. We installed
three extensions: ckanext-spatial, ckanext-harvest and ckanext-geoview.

After installing these extensions, some of the prototype requirements were already ful-
filled. For example users were able to search for datasets with the built in search func-
tionality. The functionality were enabled by Solr. The search lets the user search for
words appearing in the metadata of all datasets.

We mentioned in Section 4.3.1 that the spatial extension would allow users to search for

64

datasets based on their geographic location. However, after further inspection, we did
not finish all steps needed to enable this type of search operation. A special spatial field
defining the bounding box of some dataset had to be manually added to the dataset
metadata for this to work. We did not realise this until the end of the thesis work.
Therefore this functionality is not finished. This should be addressed in a future version.

We experienced that some parts of the CKAN documentation was confusing. For ex-
ample several guides exist for installing CKAN, but it is not apparent at first which
one to follow when we want to develop extensions. Since CKAN is a relatively complex
system, the documentation is extensive. The documentation is scattered around, and is
sometimes hard to keep track of where to look for information. However, after working
with the documentation and becoming familiar with it, it is relatively easy to use.

Some support for harvesting metadata were provided by the harvesting extension. For
example importing datasets using CSW was possible. However, harvesting from OAI-
PMH and TDS had to be implemented in our own extensions.

6.1.5 Implement harvesting capabilities

Developing extensions for CKAN was a generally pleasant experience. The objective
of this sub-goal was to implement capabilities to harvest external data sources. This
was achieved by developing two extensions: one to harvest OAI-PMH repositories, and
one to harvest records from TDS. The result is that researchers can potentially use our
prototype to find needed data without having to search using many different GIS. This
will improve the time needed for researchers to search for data.

The IHarvester interface we had to implement for custom harvesters was hard to under-
stand at first. For example knowing the parameter types we had available in the methods
and what fields they contained was badly documented. We therefore spent a consider-
able amount of time using Python to print to the command line both the type and value
of the parameter fields to be able to understand and implement all functionality.

We had some problems with metadata records not always conforming to their metadata
standard. For example sometimes mandatory fields were missing. We had a similar
problem with data sources using different versions of metadata standards. In some
versions some fields are mandatory, and others are not.

The TDS crawler was not as robust as we would hope. For example sometimes the
OPeNDAP URL for a resource did not work. When we tried to access them via the
prototype user interface we are presented with a “404 not found” error for some re-
sources. This error might be related to the problem of resources not providing us with
the expected fields. This should be corrected in future versions.

65

Of the data sources mentioned by researchers, only CSW, TDS and OAI-PMH can
be harvested. We have not implemented harvesting from NIRD. Harvesting from this
repository should be implemented in future work.

6.1.6 Implement simple geospatial visualisation

Simple visualisation of for example WMS were supported out of the box with ckanext-

geoview. The visualisation is very simple, and can be improved. For example there is
no legend that describe the various layers of a dataset, except displaying the names of
the layers. This could be improved in future work. Additionally, it is sometimes hard to
distinguish between the different layers, as their colour and opacity are not adjustable.

6.1.7 Evaluation of prototype

The aim of this sub-goal was to evaluate the finished prototype. The evaluation is done
in this chapter. We conclude that all requirements from Section 2.1.3 are implemented
to some or full extent:

• Support most widely used standards and protocols

The reader is referred to Section 6.1.1 for status.

• Searching for datasets

Searching is provided by Solr. A user can search for words that appear in the
metadata of datasets. We started developing search based on geographic area,
which is not fully implemented at this stage.

• Harvesting capabilities for the most used standards

We implemented support for harvesting OAI-PMH repositories in Dublin Core and
DIF and harvesting TDS. Refer to Section 6.1.5 and Section 7.2.7 for details.

• Simple spatial visualisation

The prototype can visualise resources using WMS. This requirement is fully im-
plemented.

• Downloading datasets

Downloading of datasets are provided via FTP and OPeNDAP. This is imple-
mented per the requirement. Ideas for further improvements are given in Sec-
tion 7.2.5.

66

6.2 Research questions

We try to answer the research questions defined in Chapter 1. The questions address
research topics related to the overall and specific goals of the thesis. The questions
guided the thesis work by keeping the goal of the thesis clear: simplifying the discovery
of research data. The discussion below aims to answer the research questions, and gives
links to relevant literature.

• How can a GIS that combines different data and formats within the
system, aid a researcher in doing research?

A GIS that harvests external data repositories help researchers in several ways.
Only having one system to use simplifies the process of searching for data. The
researchers do not have to manually search every possible source for data. Addi-
tionally, they do not have to spend time to get used to the different user interfaces
that different data sources use. Researchers can then spend more time doing actual
research, than to look for data to use in it.

When researchers have to use several GIS to find their data, the various systems
often provide exporting methods with distinct download formats. If only having
a single GIS to use, that system could give options to convert a dataset to many
formats before download [95]. This would give a more standardised experience to
the user by giving the opportunity to export the data in the formats needed.

A single GIS could in a similar fashion provide processing for datasets before
exporting it. This could be helpful by for example cleaning up a dataset before
download, removing unneeded parameters [97].

• How should a systems software architecture be designed to allow ex-
tending its functionality?

Developing software that has a flexible architecture allowing for extending is a
whole research area in itself [81, 76]. We will answer the research question con-
sidering how CKANs architecture allows for extensibility. The CKAN developers
do not recommend extending CKAN by modifying its source code directly. In-
stead it lets code that is separated from the source code hook into most parts of
CKAN. We can modify CKAN by accessing the CKAN business logic using its
open API, as well as implementing provided interfaces and inheriting from existing
classes. This way, functionality can be changed in a controlled way, compared to
changing the source code directly. The modular architecture ensures low coupling
and high cohesion, since extensions are kept separate from CKAN itself and only
communicates with the CKAN source code when needed.

67

6.3 Overall goal

We have successfully developed a GIS prototype that harvests metadata from external
resources. It supports harvesting data repositories with most commonly used standards.
These include CSW, OAI-PMH and TDS. The harvested datasets are searchable, and
can be visualised using WMS. Researchers at NERSC also use data from repositories
not allowing harvesting using any of the implemented harvesting methods. For exam-
ple NIRD can not be harvested in the prototype. For the prototype to be improved,
harvesting from this repository should be developed.

We have mentioned the achievement of some of the use cases from Section 2.3.1 in the
previous sections. Finding and searching for data, filtering data with OPeNDAP, and
downloading it with OPeNDAP and FTP is supported in the prototype. We will discuss
some of these use cases further in Section 7.2.

Some of the expressed problems with GIS given from users in Section 2.3.2 are improved
with our prototype. Having to deal with many web sites to find needed data is partly
solved. Instead of searching for data in both CMIP and NMDC, users can search within
our prototype only. Users still have to use other web sites to search for data from
NIRD. The problem of being redirected to other web sites for download and access
of actual data is partly improved. Users are still being redirected to the OPeNDAP
access form to download data. Download via FTP works without being redirected,
since users click the FTP link in our prototype and a download is immediately started.
Verifying correct dataset using visualisations before download is also partially improved.
The prototype can visualise data with WMS, and display the different layers a dataset
contains. However, the core of the problem is related to visualising a dataset after
restricting it with OPeNDAP. This is not supported in the prototype. We will come
back to the unsolved problems in Section 7.2

68

Chapter 7

Conclusion

This last chapter concludes our thesis. We give a summary of the current status of our
GIS prototype and thesis work. We then list ideas for improvements that would have
been implemented if we have had more time. These tasks should be considered for future
work. Last, we give a final conclusion to the overall thesis, what we have achieved and
what the author has learnt.

7.1 Summary of results

A GIS prototype that can harvest metadata from external data sources is developed. We
began by selecting a number of standards and protocols commonly used in the geoscien-
tific field. By reviewing their specifications, we learnt about how the different standards
function. Different GIS frameworks were considered, and we determined CKAN to be
the best foundation for our prototype. We built competence in CKAN, especially the
extension mechanism. Next we set up and configured the default CKAN installation,
and installed three extensions to enable geospatial capabilities.

We implemented two extensions, one that can harvest data from OAI-PMH reposito-
ries, and one to harvest TDS. The prototype supports searching for harvested data,
simple visualisations of the data using WMS, and downloading the data with FTP or
OPeNDAP.

In the thesis we have documented the process of developing the prototype. The finished
prototype was demonstrated and evaluated. We evaluated the prototype by reviewing
the sub-goals defined for the thesis. We also studied relevant literature and answered
the research questions.

69

7.2 Future work

The GIS prototype can be improved. In this section we will explore some of the pos-
sible areas that could be considered for future work, and explain how we would have
approached a solution. Accurately estimating the amount of work a programming task
requires is complicated and challenging [85]. We will try to give a rough indication of the
amount of work required to implement the following tasks. These estimations are based
on our own experience with CKAN and its extension mechanism. A developer address-
ing these features would need similar experience with CKAN, relevant GIS standards
and Python knowledge.

7.2.1 Perform user testing

We planned to perform user testing of the prototype. Due to time constraints we eval-
uated the prototype from our own perspective instead. Performing user testing on real
users would provide us with real feedback and evaluation. The feedback would be more
valuable than our own evaluation. This should be a priority for future work. Testing
could include collecting metrics of common tasks. For example measuring the time it
takes for a user to find a certain dataset. The metrics collected from the prototype
should be compared with metrics from current GIS. This would give evidence on the
performance of the prototype.

7.2.2 Clean up harvested metadata for display

In the current prototype we directly display metadata returned from harvested reposi-
tories. This means that for example metadata fields with identical values are displayed
several times. For example in DIF the fields Personnel/Role sometimes appear several
times with the same values. The redundant fields should be removed from the user in-
terface. Other fields could also be combined for better visibility. For example the fields
first name and last name do not have to be displayed separately. The list of metadata
fields are sorted alphabetically, meaning that the first name and last name will not be
displayed next to each other.

There appears to be several ways to approach the development of this feature. For
example there is an interface IResourceView that could be implemented for all the
different resources that we harvest. In the interface we would define how a specific
resource would be displayed. Another approach would be to implement another interface
IDatasetForm, that would allow extra metadata field to be displayed. The advantage
to this interface is that it includes methods for validating the metadata fields before
display. In general this feature should not take long to implement, maybe one or two
days.

70

7.2.3 Improve display of TDS links harvested with OAI-PMH

Occasionally resources harvested from an OAI-PMH repository only provide access via a
link to a TDS catalogue. This catalogue may contain further links to OPeNDAP, WMS
or FTP. The consequence is that the user have to navigate between different web pages
before they can access the data.

This could be fixed in an implementation similar as in the previous problem. For ex-
ample a special resource view for TDS links could be created with the IResourceView

interface. Logic for fetching the access links from the TDS data catalogue would have
to be developed. The amount of work required for this task should take longer than
the previous one. Some additional logic is required to harvest the TDS catalogue before
display. Some challenging corner cases might come up while implementing the feature.
For example what to do if the TDS link points to several datasets, and not only one.

7.2.4 Improve logic for harvesting periodic measurements

TDS catalogues are often used for storing periodic measurements. For example a single
folder in a TDS catalogue could contain several hundred resources. Harvesting all of these
resources for display in the prototype might not be necessary. A better solution might
be to only harvest the single aggregated resource with all the periodic measurements
combined.

This task could be completed in a few days time. The thredds crawler contains logic
for choosing what resources should be harvested based on a regular expression. This
expression could be used to ignore resources that do not contain the word “Aggregated”.
This word is used for the aggregated dataset that TDS creates when automatically
combining periodic measurements. A boolean option in the prototype user interface
to create new harvest sources could be added to let the user choose if all the separate
periodic resources should be harvested individually or not.

7.2.5 Display OPeNDAP access form directly in prototype

If users want to access a dataset using OPeNDAP they have to navigate to the OPeNDAP
access form using the link displayed in the prototype. Researchers expressed that having
to navigate between many web pages were annoying. We could interview researchers and
ask if this is a feature that they would want. If so, a separate resource view for OPeNDAP
access forms could be implemented with the IResourceView interface. The result would
be that users do not have to navigate to the separate OPeNDAP web page first. The
access form would be displayed directly in our prototype instead. Implementing this
view would require more work than previous tasks. We estimate it would take around a

71

couple of weeks to finalise an OPeNDAP access form.

7.2.6 Improve detection of resource formats

We mentioned in Chapter 4 that we used a simplistic approach when detecting types of
resources harvested from OAI-PMH repositories. Currently we check the resource URLs
to determine its type. For example if the URL contains “wms” then it is a WMS service.
This could be improved to be more robust. The amount of work required for this task
should be relatively little. We estimate it would take a couple of days using the following
solution.

For example in DIF, additional information is provided that could be used to determine
type. The fields Type, SubType and Description could be used. For example the
Type field can contain “OPENDAP DATA (DODS)”, giving a better indication that the
resource is to an OPeNDAP access form. This is more robust as the resource URL can
now change without our format detection breaking.

7.2.7 Implement harvesting from more data sources

We have only implemented harvesting from TDS and OAI-PMH. Support for a number
of other data sources should be developed for the GIS to be usable. For example in the
interview with researchers from NERSC, NIRD was a data source that was also being
used daily.

Research should be done beforehand to check if it is possible to harvest these data
sources. For example if they provide any open APIs, or if they use any open-source
standards allowing harvesting from them. If so, a new harvesting extension could be
developed. If not, it might not be possible to harvest from these sources. The next step
could then be to contact the maintainers or developers of the data sources and start a
dialog about opening up access to them.

Considerably amount of work would be required to implement harvesters for new types
of data sources. Amount of work would differ for various types of data sources, but at
least a few weeks per data source.

7.2.8 General improvements to harvesters

Last, we briefly mention some general improvements that should be done to the har-
vesters we implemented. For the prototype to be usable, the harvester processes should

72

be managed by a process manager like Supervisor. Right now they are started manually
from the command line. By using Supervisor, the jobs would be running constantly and
harvest data sources.

Better error handling should also be implemented, so that the code is easier to debug
when errors occur. Simple error handling, or no error handling at all is currently im-
plemented. The code should be refactored, moving related logic into own methods and
classes to make it more readable. Additionally, more tests should be written to verify
the correctness of the code.

7.3 Conclusion

We have created a functional GIS prototype that can harvest metadata records from
various external data servers. The prototype helps researchers by simplifying the process
of finding research data. The prototype is still a work in progress. Support for harvesting
additional data servers and other implementation improvements are necessary.

When developing a GIS that harvests metadata, we assume that repositories always
provide a way for us to access their data. This is a radical assumption, and is not
always true. Once there is a data source that do not provide means of harvesting from
it, researchers potentially have to use several GIS to find their data anyway. This is
a problem of standardisation: it is challenging, or impossible, to get everyone to agree
on using the same standards. This is because different requirements exist for different
problems, resulting in a need for different standards. A solution to this problem is
outside the scope of the thesis.

The research and development process has been a learning process for the author. GIS
software has been a completely new field, and learning how the relevant technical stan-
dards and protocols work have been a challenge. The specifications for these are very
technical, and are hard to read. Building knowledge in an existing code base written in a
new programming language and reading documentation to solve problems have been en-
gaging. During the implementation process the author has become more knowledgeable
in Python.

73

Appendix A

Code listings

A.1 IHarvester interface

The IHarvester interface describes methods that CKAN extensions must implement
to perform harvesting operations. The details of IHarvester can found at the GitHub
page of ckanext-harvest [16].

1 from ckan . p lug in s . i n t e r f a c e s import I n t e r f a c e
2
3 class IHarves te r (I n t e r f a c e) :
4 ’ ’ ’
5 Common har v e s t i n g i n t e r f a c e
6 ’ ’ ’
7
8 def i n f o (self) :
9 ’ ’ ’

10 : r e tu rns : A d i c t i ona r y wi th the ha r v e s t e r d e s c r i p t o r s
11 ’ ’ ’
12
13 def v a l i d a t e c o n f i g (self , c on f i g) :
14 ’ ’ ’
15 : param h a r v e s t o b j e c t i d : Config s t r i n g coming from the form
16 : r e tu rns : A s t r i n g wi th the v a l i d a t e d con f i g u r a t i on op t i ons
17 ’ ’ ’
18
19 def g e t o r i g i n a l u r l (self , h a r v e s t o b j e c t i d) :
20 ’ ’ ’
21 [o p t i ona l]
22 : param h a r v e s t o b j e c t i d : Harves tObjec t id
23 : r e tu rns : A s t r i n g wi th the URL to the o r i g i n a l document
24 ’ ’ ’
25

74

26 def ga the r s t ag e (self , h a rv e s t j ob) :
27 ’ ’ ’
28 : param ha r v e s t j o b : HarvestJob o b j e c t
29 : r e tu rns : A l i s t o f Harves tObjec t i d s
30 ’ ’ ’
31
32 def f e t c h s t a g e (self , h a r v e s t ob j e c t) :
33 ’ ’ ’
34 : param ha r v e s t o b j e c t : Harves tObjec t o b j e c t
35 : r e tu rns : True i f s u c c e s s f u l , ’ unchanged ’ i f noth ing to import ←↩

a f t e r
36 a l l , Fa l se i f not s u c c e s s f u l
37 ’ ’ ’
38
39 def impor t s tage (self , h a r v e s t ob j e c t) :
40 ’ ’ ’
41 : param ha r v e s t o b j e c t : Harves tObjec t o b j e c t
42 : r e tu rns : True i f the ac t i on was done , ”unchanged” i f the o b j e c t ←↩

didn ’ t
43 need ha r v e s t i n g a f t e r a l l or Fa lse i f t h e r e were e r ro r s←↩

.
44 ’ ’ ’

Listing A.1: IHarvester interface

A.2 CKAN configuration file

production.ini contains global configuration options for CKAN. For example it spec-
ifies the locations of the PostgreSQL database and Solr. All configuration options avail-
able is found in the CKAN documentation [10].

1 #
2 # CKAN − Pylons con f i g u r a t i on
3 #
4 # These are some o f the con f i g u r a t i on op t i ons a v a i l a b l e f o r your CKAN
5 # ins tance . Check the documentation in ’ doc/ con f i g u r a t i on . r s t ’ or at the
6 # fo l l ow i n g URL fo r a d e s c r i p t i o n o f what they do and the f u l l l i s t o f
7 # av a i l a b l e op t i ons :
8 #
9 # ht t p :// docs . ckan . org /en/ l a t e s t /maintaining / con f i g u r a t i on . html

10 #
11 # The %(here) s v a r i a b l e w i l l be r ep l a ced wi th the parent d i r e c t o r y o f ←↩

t h i s f i l e
12 #
13
14 [DEFAULT]
15

75

16 # WARNING: ∗THIS SETTING MUST BE SET TO FALSE ON A PRODUCTION ENVIRONMENT←↩
∗

17 debug = f a l s e
18
19 [s e r v e r : main]
20 use = egg : Paste#ht t p
21 host = 0 . 0 . 0 . 0
22 port = 5000
23
24 [app : main]
25 use = egg : ckan
26 f u l l s t a c k = true
27 ca che d i r = /tmp/%(ckan . s i t e i d) s /
28 beaker . s e s s i o n . key = ckan
29
30 # This i s the s e c r e t token t ha t the beaker l i b r a r y uses to hash the ←↩

cook i e sen t
31 # to the c l i e n t . ‘ pa s t e r make−con f i g ‘ g enera t e s a unique va lue f o r t h i s ←↩

each
32 # time i t g enera t e s a con f i g f i l e .
33 beaker . s e s s i o n . s e c r e t = gf58Qr7VeoJ7W100ZU+/sPejh
34
35 # ‘ pas t e r make−con f i g ‘ g enera t e s a unique va lue f o r t h i s each time i t ←↩

genera t e s
36 # a con f i g f i l e .
37 app ins tance uu id = dc90e53b−c055−417 f−8d6c−1439d00a3f91
38
39 # repoze . who con f i g
40 who . c o n f i g f i l e = %(here) s /who . i n i
41 who . l o g l e v e l = warning
42 who . l o g f i l e = %(ca che d i r) s /who log . i n i
43 # Sess ion t imeout (user l o gged out a f t e r per iod o f i n a c t i v i t y , in seconds←↩

) .
44 # Inac t i v e by d e f au l t , so the s e s s i on doesn ’ t e xp i r e .
45 # who . t imeout = 86400
46
47 ## Database S e t t i n g s
48 sqla lchemy . u r l = po s t g r e s q l : // ckan de f au l t : pas s@loca lhos t / ckan de f au l t
49
50 #ckan . da t a s t o r e . w r i t e u r l = p o s t g r e s q l :// c k an d e f a u l t : pa s s@ loca l ho s t /←↩

d a t a s t o r e d e f a u l t
51 #ckan . da t a s t o r e . r e ad u r l = p o s t g r e s q l :// d a t a s t o r e d e f a u l t : pa s s@ loca l ho s t /←↩

d a t a s t o r e d e f a u l t
52
53 # PostgreSQL ’ f u l l −t e x t search parameters
54 ckan . da ta s to r e . d e f a u l t f t s l a n g = eng l i s h
55 ckan . da ta s to r e . d e f au l t f t s i nd ex me thod = g i s t
56
57 ## Si t e S e t t i n g s
58
59 ckan . s i t e u r l = http : / / 1 9 2 . 1 6 8 . 3 3 . 1 0 : 8 0
60 #ckan . u se py l ons re sponse c l eanup midd l eware = true
61

76

62 ## Author i za t i on S e t t i n g s
63
64 ckan . auth . anon c r ea t e da ta s e t = f a l s e
65 ckan . auth . c reate unowned dataset = f a l s e
66 ckan . auth . c r e a t e d a t a s e t i f n o t i n o r g a n i z a t i o n = f a l s e
67 ckan . auth . u s e r c r e a t e g r oup s = f a l s e
68 ckan . auth . u s e r c r e a t e o r g a n i z a t i o n s = f a l s e
69 ckan . auth . u s e r d e l e t e g r oup s = true
70 ckan . auth . u s e r d e l e t e o r g a n i z a t i o n s = true
71 ckan . auth . c r e a t e u s e r v i a a p i = f a l s e
72 ckan . auth . c r e a t e u s e r v i a web = true
73 ckan . auth . r o l e s t h a t c a s c ad e t o s ub g r oup s = admin
74
75
76 ## Search S e t t i n g s
77
78 ckan . s i t e i d = de f au l t
79 s o l r u r l = http : / / 1 2 7 . 0 . 0 . 1 : 8 9 8 3 / s o l r
80
81
82 ## Redis S e t t i n g s
83
84 # URL to your Redis ins tance , i n c l u d i n g the database to be used .
85 ckan . r e d i s . u r l = r e d i s : // l o c a l h o s t :6379/0
86 # Backend f o r ckanext−harve s t
87 ckan . harves t .mq. type = r ed i s
88
89
90 ## CORS Se t t i n g s
91
92 # I f cors . o r i g i n a l l o w a l l i s true , a l l o r i g i n s are a l l owed .
93 # I f f a l s e , the cors . o r i g i n w h i t e l i s t i s used .
94 # ckan . cors . o r i g i n a l l o w a l l = t rue
95 # cors . o r i g i n w h i t e l i s t i s a space separa ted l i s t o f a l l owed domains .
96 # ckan . cors . o r i g i n w h i t e l i s t = h t t p :// example1 . com h t t p :// example2 . com
97
98
99 ## Plug ins S e t t i n g s

100
101 # Note : Add ‘ ‘ da tas tore ‘ ‘ to enab l e the CKAN DataStore
102 # Add ‘ ‘ datapusher ‘ ‘ to enab l e DataPusher
103 # Add ‘ ‘ resource proxy ‘ ‘ to enab l e r e sorce proxy ing and ge t←↩

around the
104 # same o r i g i n p o l i c y
105 ckan . p lug in s = s t a t s t ex t v i ew image view r e c l i n e v i ew re source proxy ←↩

geo view spat i a l metadata s p a t i a l q u e r y harves t ckan harve s t e r ←↩
c sw harve s t e r doc ha rve s t e r wa f ha rve s t e r th r edd s ha rv e s t e r ←↩
oaipmh harvester

106
107 # Define which v iews shou ld be crea t ed by d e f a u l t
108 # (p l u g i n s must be loaded in ckan . p l u g i n s)
109 ckan . views . d e f au l t v i ew s = image view text v i ew r e c l i n e v i ew geo view
110

77

111 # Customize which t e x t formats the t e x t v i ew p l ug in w i l l show
112 #ckan . prev iew . j son fo rmat s = json
113 #ckan . prev iew . xml formats = xml rd f r d f+xml owl+xml atom rs s
114 #ckan . prev iew . t e x t f o rma t s = t e x t p l a i n t e x t / p l a i n
115
116 # Customize which image formats the image view p l ug in w i l l show
117 #ckan . prev iew . image formats = png jpeg jpg g i f
118
119 ## Front−End S e t t i n g s
120 ckan . s i t e t i t l e = CKAN
121 ckan . s i t e l o g o = /base / images /ckan−l ogo . png
122 ckan . s i t e d e s c r i p t i o n =
123 ckan . f av i con = /base / images /ckan . i c o
124 ckan . g r ava t a r d e f au l t = iden t i c on
125 ckan . preview . d i r e c t = png jpg g i f
126 ckan . preview . l oadab l e = html htm rd f+xml owl+xml xml n3 n−t r i p l e s t u r t l e ←↩

p l a i n atom csv tsv r s s txt j son
127 ckan . d i sp l ay t imezone = s e rv e r
128
129 # packa g e h i d e e x t r a s = f o r s e a r c h i n d e x on l y
130 #pa c k a g e e d i t r e t u r n u r l = h t t p :// another . f ron tend / da t a s e t/<NAME>
131 #package new re tu rn ur l = h t t p :// another . f ron tend / da t a s e t/<NAME>
132 #ckan . recaptcha . v e r s i on = 1
133 #ckan . recaptcha . pu b l i c k e y =
134 #ckan . recaptcha . p r i v a t e k e y =
135 #l i c e n s e s g r o u p u r l = h t t p :// l i c e n s e s . o p end e f i n i t i on . org / l i c e n s e s / groups /←↩

ckan . j son
136 # ckan . t emp l a t e f o o t e r end =
137
138
139 ## In t e r n a t i o n a l i s a t i o n S e t t i n g s
140 ckan . l o c a l e d e f a u l t = en
141 ckan . l o c a l e o r d e r = en pt BR ja i t cs CZ ca es f r e l sv s r s r@ la t i n no sk←↩

f i ru de p l n l bg ko KR hu sa s l l v
142 ckan . l o c a l e s o f f e r e d =
143 ckan . l o c a l e s f i l t e r e d o u t = en GB
144
145 ## Feeds S e t t i n g s
146
147 ckan . f e ed s . authority name =
148 ckan . f e ed s . date =
149 ckan . f e ed s . author name =
150 ckan . f e ed s . au tho r l i nk =
151
152 ## Storage S e t t i n g s
153
154 #ckan . s t o r a g e pa t h = /var / l i b /ckan
155 #ckan . max re source s i z e = 10
156 #ckan . max image s ize = 2
157
158 ## Datapusher s e t t i n g s
159
160 # Make sure you have s e t up the DataStore

78

161
162 #ckan . datapusher . formats = csv x l s x l s x t s v a p p l i c a t i o n / csv a p p l i c a t i o n /←↩

vnd .ms−e x c e l a p p l i c a t i o n /vnd . openxmlformats−o f f i cedocument .←↩
spreadshee tml . s h e e t

163 #ckan . datapusher . u r l = h t t p : //127 . 0 . 0 . 1 : 8800/
164 #ckan . datapusher . a s s ume t a s k s t a l e a f t e r = 3600
165
166 # Resource Proxy s e t t i n g s
167 # Preview s i z e l im i t , d e f a u l t : 1MB
168 #ckan . re source proxy . m a x f i l e s i z e = 1048576
169 # Size o f chunks to read/ wr i t e .
170 #ckan . re source proxy . chunk s i z e = 4096
171
172 ## Ac t i v i t y Streams S e t t i n g s
173
174 #ckan . a c t i v i t y s t r e ams en a b l e d = true
175 #ckan . a c t i v i t y l i s t l i m i t = 31
176 #ckan . a c t i v i t y s t r e am s ema i l n o t i f i c a t i o n s = true
177 #ckan . ema i l n o t i f i c a t i o n s s i n c e = 2 days
178 ckan . h i d e a c t i v i t y f r om u s e r s = %(ckan . s i t e i d) s
179
180
181 ## Email s e t t i n g s
182
183 #emai l t o = errors@example . com
184 #error emai l f rom = ckan−errors@example . com
185 #smtp . s e r v e r = l o c a l h o s t
186 #smtp . s t a r t t l s = False
187 #smtp . user = username@example . com
188 #smtp . password = your password
189 #smtp . mai l from =
190
191
192 ## Logging con f i g u r a t i on
193 [l o g g e r s]
194 keys = root , ckan , ckanext
195
196 [hand le r s]
197 keys = conso l e
198
199 [f o rmat t e r s]
200 keys = gene r i c
201
202 [l o g g e r r o o t]
203 l e v e l = WARNING
204 hand le r s = conso l e
205
206 [l ogge r ckan]
207 l e v e l = INFO
208 hand le r s = conso l e
209 qualname = ckan
210 propagate = 0
211

79

212 [l ogge r ckanex t]
213 l e v e l = DEBUG
214 hand le r s = conso l e
215 qualname = ckanext
216 propagate = 0
217
218 [hand l e r c on so l e]
219 class = StreamHandler
220 args = (sys . s tde r r ,)
221 l e v e l = NOTSET
222 formatte r = gene r i c
223
224 [f o rma t t e r g en e r i c]
225 format = %(asct ime) s %(levelname)−5.5 s [%(name) s] %(message) s

Listing A.2: Global CKAN configuration file

A.3 ThreddsHarvester implementation

ThreddsHarvester contains the core logic of the TDS harvester we developed.

1 from ckan . l o g i c import g e t a c t i o n
2 from ckan . model import Se s s i on
3 from ckanext . harves t . model import HarvestObject , HarvestObjectExtra
4 from ckanext . harves t . ha rv e s t e r s import HarvesterBase
5 from th r edds c raw l e r . crawl import Crawl
6 from hash l i b import sha1
7 from datet ime import datet ime
8 import j s on
9 import uuid

10 import t raceback
11
12
13 class ThreddsHarvester (HarvesterBase) :
14
15 def i n f o (self) :
16 return {
17 ’name ’ : ’ thredds ’ ,
18 ’ t i t l e ’ : ’THREDDS Server ’ ,
19 ’ d e s c r i p t i o n ’ : ’A harve s t e r that can read data and s e r v i c e s ’
20 ’ from a THREDDS se rv e r . ’
21 }
22
23 def ga the r s t ag e (self , h a rv e s t j ob) :
24 print (’THREDDS harve s t e r ga th e r s t ag e ’)
25 c = Crawl (
26 ha rv e s t j ob . source . ur l ,
27 a f t e r = datet ime . today ())

80

28
29 if not c . da ta s e t s :
30 self . s a v e g a t h e r e r r o r (’No da ta s e t s found f o r %s ’ % ←↩

ha rve s t j ob . source . u r l)
31 return []
32
33 print (’THREDDS crawle r found %d data s e t s ’ % len (c . da ta s e t s))
34 for datase t in c . da ta s e t s :
35 i d s = []
36 # Generate GUID based on da t a s e t id
37 guid = sha1 (datase t . id . encode ()) . hexd ige s t ()
38 package d i c t = self . c r e a t e p a c k a g e d i c t (datase t)
39 content = j son . dumps(package d i c t)
40 obj = HarvestObject (
41 guid=guid ,
42 job=harves t j ob ,
43 content=content ,
44 ex t ra s =[HarvestObjectExtra (key=’ s t a tu s ’ , va lue=’new ’)←↩

])
45 obj . save ()
46 i d s . append (obj . id)
47
48 return i d s
49
50 def f e t c h s t a g e (self , h a r v e s t ob j e c t) :
51 # Fetching a l r eady done in g a t h e r s t a g e .
52 # thr edd s c r aw l e r does not f e t c h IDs and content in d i f f e r e n t ←↩

s t a g e s .
53 return True
54
55 def impor t s tage (self , h a r v e s t ob j e c t) :
56 print (’THREDDS harve s t e r impor t s tage ’)
57 try :
58 package d i c t = j son . l oads (ha r v e s t ob j e c t . content)
59 self . upda t e cu r r en t ob j e c t (ha r v e s t ob j e c t)
60 self . s e t owne r o rg (ha rve s t ob j e c t , package d i c t)
61
62 # Save r e f e r ence to the package o f the o b j e c t
63 ha rv e s t ob j e c t . package id = package d i c t [’ id ’]
64 ha r v e s t ob j e c t . add ()
65
66 Se s s i on . execute (’SET CONSTRAINTS ←↩

ha r v e s t ob j e c t p a ckag e i d f k e y DEFERRED’)
67 Se s s i on . f l u s h ()
68
69 self . c r e a t e o r upda t e package (
70 package d ict ,
71 ha rv e s t ob j e c t
72)
73 Se s s i on . commit ()
74 return True
75 except :
76 self . s a v e o b j e c t e r r o r (

81

77 ’ Exception in import s tage ’ ,
78 ha rv e s t ob j e c t
79)
80 traceback . p r i n t e x c ()
81 return False
82
83 def s e t owne r o rg (self , ha rve s t ob j e c t , package d i c t) :
84 context = {
85 ’ user ’ : self . ge t user name () ,
86 ’ i gnore auth ’ : True ,
87 }
88 sou r c e da t a s e t = ge t a c t i o n (’ package show ’) (
89 context ,
90 { ’ id ’ : h a r v e s t ob j e c t . source . id}
91)
92 owner org = sou r c e da t a s e t . get (’ owner org ’)
93 if owner org :
94 package d i c t [’ owner org ’] = owner org
95
96
97 def upda t e cu r r en t ob j e c t (self , h a r v e s t ob j e c t) :
98 ’ ’ ’
99 Get the l a s t harve s t ed o b j e c t f o r t h i s source and f l a g i t

100 as not curren t anymore .
101 Flag new harve s t o b j e c t as curren t .
102 ’ ’ ’
103 p r ev i ou s ob j e c t = Ses s i on . query (HarvestObject) \
104 . filter (HarvestObject . guid == ha rv e s t ob j e c t . guid) \
105 . filter (HarvestObject . cur r ent is True) \
106 . f i r s t ()
107
108 if p r ev i ou s ob j e c t :
109 p r e v i ou s ob j e c t . cur rent = False
110 p r e v i ou s ob j e c t . add ()
111
112 # Flag t h i s o b j e c t as curren t
113 ha rv e s t ob j e c t . cur rent = True
114 ha rv e s t ob j e c t . add ()
115
116 def c r e a t e p a c k a g e d i c t (self , da tase t) :
117 r i g h t s = str (datase t . metadata . xpath (” //∗ [name ()=’documentation ’] [←↩

@type=’ r i g h t s ’] / t ex t () ”) [0])
118 summary = str (datase t . metadata . xpath (” //∗ [name ()=’documentation←↩

’] [@type=’summary ’] / t ext () ”) [0])
119 author = str (datase t . metadata . xpath (” //∗ [name ()=’ pub l i s h e r ’] / ∗ [←↩

name ()=’name ’] / t ext () ”) [0])
120 author emai l = str (datase t . metadata . xpath (” //∗ [name ()=’ pub l i s h e r←↩

’] / ∗ [name ()=’ contact ’] / @email”) [0])
121
122 package d i c t = {}
123 # We need to e x p l i c i t l y prov ide a package ID
124 package d i c t [’ id ’] = str (uuid . uuid4 ())
125 package d i c t [’name ’] = package d i c t [’ id ’]

82

126 package d i c t [’ t i t l e ’] = datase t . name
127 package d i c t [’ notes ’] = summary
128 package d i c t [’ l i c e n s e i d ’] = r i g h t s
129 package d i c t [’ author ’] = author
130 package d i c t [’ author emai l ’] = author emai l
131
132 self . add r e s ou r c e s (dataset , package d i c t)
133 self . a d d e x t r a f i e l d s (dataset , package d i c t)
134 return package d i c t
135
136 def add r e s ou r c e s (self , dataset , package d i c t) :
137 formats = []
138 package d i c t [’ r e s ou r c e s ’] = []
139 for s e r v i c e in datase t . s e r v i c e s :
140 r e sou r c e = {
141 ’name ’ : s e r v i c e [’name ’] ,
142 ’ r e s ou r c e type ’ : s e r v i c e [’ s e r v i c e ’] . lower () ,
143 ’ format ’ : s e r v i c e [’ s e r v i c e ’] . lower () ,
144 ’ u r l ’ : s e r v i c e [’ u r l ’]
145 }
146 package d i c t [’ r e s ou r c e s ’] . append (r e sou r c e)
147 formats . append (s e r v i c e [’ s e r v i c e ’] . lower ())
148 package d i c t [’ formats ’] = formats
149
150 def a d d e x t r a f i e l d s (self , dataset , package d i c t) :
151 # Fie l d s not in CKAN schema
152 serv ice name = str (datase t . metadata . xpath (” //∗ [name ()=’←↩

serviceName ’] / t ex t () ”))
153 au tho r u r l = str (datase t . metadata . xpath (” //∗ [name ()=’ pub l i s h e r←↩

’] / ∗ [name ()=’ contact ’] / @url”) [0])
154 data format = str (datase t . metadata . xpath (” //∗ [name ()=’dataFormat←↩

’] / t ex t () ”) [0])
155
156 ex t ra s = []
157 ex t ra s . append ((’Data format ’ , data format))
158 ex t ra s . append ((’ Author URL’ , au tho r u r l))
159 ex t ra s . append ((’ S e rv i c e name ’ , se rv ice name))
160 package d i c t [’ e x t r a s ’] = ex t ra s

Listing A.3: Implementation of ThreddsHarvester

83

Bibliography

[1] https://geo-ide.noaa.gov/wiki/index.php?title=Web_Accessible_Folder.
Accessed: 29.05.18.

[2] About ckan. https://ckan.org/about/. Accessed: 12.04.18.

[3] Action api reference. http://docs.ckan.org/en/latest/api/index.html#

api-reference. Accessed: 19.04.18.

[4] Apache hadoop homepage. https://hadoop.apache.org/. Accessed: 30.05.18.

[5] Ckan - exception handling. http://docs.ckan.org/en/ckan-2.7.3/extensions/
tutorial.html#exception-handling. Accessed: 30.04.18.

[6] Ckan - the plugins toolkit. http://docs.ckan.org/en/ckan-2.7.3/extensions/
tutorial.html#the-plugins-toolkit. Accessed: 30.04.18.

[7] Ckan code architecture. http://docs.ckan.org/en/latest/contributing/

architecture.html. Accessed: 24.04.18.

[8] ckan-dev – ckan development discussions. https://lists.okfn.org/mailman/

listinfo/ckan-dev. Accessed: 12.04.18.

[9] Ckan documentation - install and configure solr. http://docs.ckan.

org/en/latest/maintaining/installing/install-from-package.html#

install-and-configure-solr. Accessed: 29.05.18.

[10] Ckan documentation: Configuration options. http://docs.ckan.org/en/latest/
maintaining/configuration.html. Accessed: 24.05.18.

[11] Ckan, download and install. https://ckan.org/download-and-install/. Ac-
cessed: 17.04.18.

[12] Ckan extensions. http://extensions.ckan.org/. Accessed: 12.04.18.

[13] Ckan github. https://github.com/ckan/ckan. Accessed: 09.05.18.

84

https://geo-ide.noaa.gov/wiki/index.php?title=Web_Accessible_Folder
https://ckan.org/about/
http://docs.ckan.org/en/latest/api/index.html#api-reference
http://docs.ckan.org/en/latest/api/index.html#api-reference
https://hadoop.apache.org/
http://docs.ckan.org/en/ckan-2.7.3/extensions/tutorial.html#exception-handling
http://docs.ckan.org/en/ckan-2.7.3/extensions/tutorial.html#exception-handling
http://docs.ckan.org/en/ckan-2.7.3/extensions/tutorial.html#the-plugins-toolkit
http://docs.ckan.org/en/ckan-2.7.3/extensions/tutorial.html#the-plugins-toolkit
http://docs.ckan.org/en/latest/contributing/architecture.html
http://docs.ckan.org/en/latest/contributing/architecture.html
https://lists.okfn.org/mailman/listinfo/ckan-dev
https://lists.okfn.org/mailman/listinfo/ckan-dev
http://docs.ckan.org/en/latest/maintaining/installing/install-from-package.html#install-and-configure-solr
http://docs.ckan.org/en/latest/maintaining/installing/install-from-package.html#install-and-configure-solr
http://docs.ckan.org/en/latest/maintaining/installing/install-from-package.html#install-and-configure-solr
http://docs.ckan.org/en/latest/maintaining/configuration.html
http://docs.ckan.org/en/latest/maintaining/configuration.html
https://ckan.org/download-and-install/
http://extensions.ckan.org/
https://github.com/ckan/ckan

[14] Ckan github issues page. https://github.com/ckan/ckan/issues. Accessed:
12.04.18.

[15] ckanext-geoview - geospatial viewer for ckan resources. https://github.com/ckan/
ckanext-geoview. Accessed: 12.04.18.

[16] ckanext-harvest - remote harvesting extension. https://github.com/ckan/

ckanext-harvest. Accessed: 23.04.18.

[17] ckanext-spatial - geo related plugins for ckan. http://docs.ckan.org/projects/

ckanext-spatial/en/latest/. Accessed: 18.04.18.

[18] Content management system definition. http://www.businessdictionary.com/

definition/content-management-system-CMS.html. Accessed: 09.05.18.

[19] Coupled model intercomparison project (cmip). https://pcmdi.llnl.gov/mips/

cmip/about-cmip.html. Accessed: 22.05.18.

[20] deegree homepage. https://www.deegree.org/. Accessed: 19.05.18.

[21] Directory interchange format (dif) writer’s guide. https://gcmd.gsfc.nasa.gov/
add/difguide/index.html. Accessed: 14.05.18.

[22] Dublin core metadata element set, version 1.1: Reference description. http://

dublincore.org/documents/dces/. Accessed: 14.05.18.

[23] Dublin core metadata initiative specifications. http://dublincore.org/

specifications/. Accessed: 24.04.18.

[24] Ferret homepage. http://ferret.pmel.noaa.gov/Ferret/. Accessed: 29.05.18.

[25] Geonetwork csw service. https://geonetwork-opensource.org/manuals/2.10.

4/eng/developer/xml_services/csw_services.html. Accessed: 14.05.18.

[26] Geoserver homepage. http://geoserver.org/. Accessed: 29.05.18.

[27] Informal interviewing. http://www.qualres.org/HomeInfo-3631.html. Accessed:
19.05.18.

[28] Installing ckan from package. http://docs.ckan.org/en/ckan-2.7.0/

maintaining/installing/install-from-package.html. Accessed: 17.04.18.

[29] Leaflet homepage. https://leafletjs.com/. Accessed: 28.05.18.

[30] lxml - xml and html with python. http://lxml.de/. Accessed: 24.04.18.

[31] lxml bug report: ” elements cannot be pickled”. https://bugs.launchpad.net/

lxml/+bug/736708. Accessed: 14.05.18.

85

https://github.com/ckan/ckan/issues
https://github.com/ckan/ckanext-geoview
https://github.com/ckan/ckanext-geoview
https://github.com/ckan/ckanext-harvest
https://github.com/ckan/ckanext-harvest
http://docs.ckan.org/projects/ckanext-spatial/en/latest/
http://docs.ckan.org/projects/ckanext-spatial/en/latest/
http://www.businessdictionary.com/definition/content-management-system-CMS.html
http://www.businessdictionary.com/definition/content-management-system-CMS.html
https://pcmdi.llnl.gov/mips/cmip/about-cmip.html
https://pcmdi.llnl.gov/mips/cmip/about-cmip.html
https://www.deegree.org/
https://gcmd.gsfc.nasa.gov/add/difguide/index.html
https://gcmd.gsfc.nasa.gov/add/difguide/index.html
http://dublincore.org/documents/dces/
http://dublincore.org/documents/dces/
http://dublincore.org/specifications/
http://dublincore.org/specifications/
http://ferret.pmel.noaa.gov/Ferret/
https://geonetwork-opensource.org/manuals/2.10.4/eng/developer/xml_services/csw_services.html
https://geonetwork-opensource.org/manuals/2.10.4/eng/developer/xml_services/csw_services.html
http://geoserver.org/
http://www.qualres.org/HomeInfo-3631.html
http://docs.ckan.org/en/ckan-2.7.0/maintaining/installing/install-from-package.html
http://docs.ckan.org/en/ckan-2.7.0/maintaining/installing/install-from-package.html
https://leafletjs.com/
http://lxml.de/
https://bugs.launchpad.net/lxml/+bug/736708
https://bugs.launchpad.net/lxml/+bug/736708

[32] Metadata definition. https://www.thefreedictionary.com/metadata. Accessed:
24.04.18.

[33] Nmdc data catalog. http://metadata.nmdc.no/UserInterface/#/. Accessed:
22.05.18.

[34] Norstore research data archive. https://archive.norstore.no/. Accessed:
22.05.18.

[35] Ogc wps 2.0.2 interface standard corrigendum 2. http://docs.opengeospatial.

org/is/14-065/14-065.html. Accessed: 19.05.18.

[36] Open archives initiative. https://www.openarchives.org/. Accessed: 27.05.18.

[37] Open archives initiative organization - mission statement. https://www.

openarchives.org/organization/. Accessed: 27.05.18.

[38] Open archives initiative protocol for metadata harvesting homepage. https://www.
openarchives.org/pmh/. Accessed: 14.05.18.

[39] Open source gis history. http://wiki.osgeo.org/wiki/Open_Source_GIS_

History. Accessed: 15.05.18.

[40] Openlayers homepage. https://openlayers.org/. Accessed: 28.05.18.

[41] pip 10.0.01 documentation. https://pip.pypa.io/en/stable/. Accessed:
23.04.18.

[42] Plugin interfaces reference. http://docs.ckan.org/en/ckan-2.7.3/extensions/
plugin-interfaces.html. Accessed: 25.04.18.

[43] Plugin interfaces reference. http://docs.ckan.org/en/latest/extensions/

plugin-interfaces.html#ckan.plugins.interfaces.IResourceView. Ac-
cessed: 12.04.18.

[44] Plugins toolkit reference. http://docs.ckan.org/en/latest/extensions/

plugins-toolkit.html. Accessed: 19.04.18.

[45] Postgresql homepage. https://www.postgresql.org/. Accessed: 29.05.18.

[46] Professor howard taylor fisher: Short biography of a pioneer. https:

//web.archive.org/web/20071213234339/http://www.gis.dce.harvard.

edu/fisher/HTFisher.htm. Accessed: 24.04.18.

[47] Pub/sub - redis documentation. https://redis.io/topics/pubsub. Accessed:
07.05.18.

[48] pyoai github. https://github.com/infrae/pyoai. Accessed: 20.04.18.

86

https://www.thefreedictionary.com/metadata
http://metadata.nmdc.no/UserInterface/#/
https://archive.norstore.no/
http://docs.opengeospatial.org/is/14-065/14-065.html
http://docs.opengeospatial.org/is/14-065/14-065.html
https://www.openarchives.org/
https://www.openarchives.org/organization/
https://www.openarchives.org/organization/
https://www.openarchives.org/pmh/
https://www.openarchives.org/pmh/
http://wiki.osgeo.org/wiki/Open_Source_GIS_History
http://wiki.osgeo.org/wiki/Open_Source_GIS_History
https://openlayers.org/
https://pip.pypa.io/en/stable/
http://docs.ckan.org/en/ckan-2.7.3/extensions/plugin-interfaces.html
http://docs.ckan.org/en/ckan-2.7.3/extensions/plugin-interfaces.html
http://docs.ckan.org/en/latest/extensions/plugin-interfaces.html#ckan.plugins.interfaces.IResourceView
http://docs.ckan.org/en/latest/extensions/plugin-interfaces.html#ckan.plugins.interfaces.IResourceView
http://docs.ckan.org/en/latest/extensions/plugins-toolkit.html
http://docs.ckan.org/en/latest/extensions/plugins-toolkit.html
https://www.postgresql.org/
https://web.archive.org/web/20071213234339/http://www.gis.dce.harvard.edu/fisher/HTFisher.htm
https://web.archive.org/web/20071213234339/http://www.gis.dce.harvard.edu/fisher/HTFisher.htm
https://web.archive.org/web/20071213234339/http://www.gis.dce.harvard.edu/fisher/HTFisher.htm
https://redis.io/topics/pubsub
https://github.com/infrae/pyoai

[49] Quickstart - opendap. https://opendap.github.io/documentation/

QuickStart.html. Accessed: 15.05.18.

[50] Rabbitmq homepage. https://www.rabbitmq.com/. Accessed: 28.05.18.

[51] Redis homepage. https://redis.io/. Accessed: 28.05.18.

[52] Solr features. https://lucene.apache.org/solr/features.html. Accessed:
18.04.18.

[53] Solr homepage. https://lucene.apache.org/solr/. Accessed: 18.04.18.

[54] Spatialite homepage. https://www.gaia-gis.it/fossil/libspatialite/index.
Accessed: 29.05.18.

[55] Sqlite homepage. https://sqlite.org/index.html. Accessed: 29.05.18.

[56] Stack overflow post: ”how to fix lxml assertion error”. https://stackoverflow.

com/questions/29570715/how-to-fix-lxml-assertion-error. Accessed:
14.05.18.

[57] Stack overflow post: ”lxml assertionerror: invalid element
proxy”. https://stackoverflow.com/questions/31028087/

lxml-assertionerror-invalid-element-proxy. Accessed: 14.05.18.

[58] Supervisor: A process control system. http://supervisord.org/. Accessed:
09.05.18.

[59] Thredds catalogs. https://www.unidata.ucar.edu/software/thredds/

current/tds/catalog/index.html. Accessed: 09.05.18.

[60] thredds crawler commit 87c561d. https://github.com/ioos/thredds_crawler/

commit/87c561d99edf2725e596a83caba8a400d5461ef7. Accessed: 08.05.18.

[61] thredds crawler github. https://github.com/ioos/thredds_crawler. Accessed:
02.05.18.

[62] thredds crawler issue: ”cannot retrive dataset metadata”. https://github.com/

ioos/thredds_crawler/issues/23. Accessed: 14.05.18.

[63] Understanding xml namespaces. https://msdn.microsoft.com/en-us/library/

aa468565.aspx. Accessed: 09.05.18.

[64] Using dublin core. http://dublincore.org/documents/usageguide/. Accessed:
14.05.18.

[65] Vagrant homepage. https://www.vagrantup.com/. Accessed: 17.04.18.

[66] Vim - the ubiquitous text editor. https://www.vim.org/. Accessed: 08.05.18.

87

https://opendap.github.io/documentation/QuickStart.html
https://opendap.github.io/documentation/QuickStart.html
https://www.rabbitmq.com/
https://redis.io/
https://lucene.apache.org/solr/features.html
https://lucene.apache.org/solr/
https://www.gaia-gis.it/fossil/libspatialite/index
https://sqlite.org/index.html
https://stackoverflow.com/questions/29570715/how-to-fix-lxml-assertion-error
https://stackoverflow.com/questions/29570715/how-to-fix-lxml-assertion-error
https://stackoverflow.com/questions/31028087/lxml-assertionerror-invalid-element-proxy
https://stackoverflow.com/questions/31028087/lxml-assertionerror-invalid-element-proxy
http://supervisord.org/
https://www.unidata.ucar.edu/software/thredds/current/tds/catalog/index.html
https://www.unidata.ucar.edu/software/thredds/current/tds/catalog/index.html
https://github.com/ioos/thredds_crawler/commit/87c561d99edf2725e596a83caba8a400d5461ef7
https://github.com/ioos/thredds_crawler/commit/87c561d99edf2725e596a83caba8a400d5461ef7
https://github.com/ioos/thredds_crawler
https://github.com/ioos/thredds_crawler/issues/23
https://github.com/ioos/thredds_crawler/issues/23
https://msdn.microsoft.com/en-us/library/aa468565.aspx
https://msdn.microsoft.com/en-us/library/aa468565.aspx
http://dublincore.org/documents/usageguide/
https://www.vagrantup.com/
https://www.vim.org/

[67] Virtual environments and packages. https://docs.python.org/3/tutorial/

venv.html. Accessed: 20.04.18.

[68] What is postgis? http://postgis.org/. Accessed: 12.04.18.

[69] Writing extensions tutorial. http://docs.ckan.org/en/ckan-2.7.3/

extensions/tutorial.html. Accessed: 25.04.18.

[70] The xml c parser and toolkit of gnome. http://xmlsoft.org/. Accessed: 24.04.18.

[71] The xslt c library for gnome. http://xmlsoft.org/XSLT/. Accessed: 24.04.18.

[72] Thredds data server 4.6. https://www.unidata.ucar.edu/software/thredds/

current/tds/TDS.html, 2015. Accessed: 10.04.18.

[73] Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha da Silva, and Cristina
Ribeiro. A comparison of research data management platforms: architecture, flex-
ible metadata and interoperability. Universal Access in the Information Society,
16(4):851–862, Nov 2017.

[74] Ahmad Assaf, Raphaël Troncy, and Aline Senart. Hdl-towards a harmonized dataset
model for open data portals. In USEWOD-PROFILES@ ESWC, pages 62–74, 2015.

[75] Peter Baumann. Ogc wcs 2.0 interface standard—core. Open Geospatial Consor-
tium: Wayland, MA, USA, 2010.

[76] Keith Bennett, Paul Layzell, David Budgen, Pearl Brereton, Linda Macaulay, and
Malcolm Munro. Service-based software: the future for flexible software. In Software
Engineering Conference, 2000. APSEC 2000. Proceedings. Seventh Asia-Pacific,
pages 214–221. IEEE, 2000.

[77] Wayne Booth. The craft of research. University of Chicago Press, Chicago, 2008.

[78] Kang-Tsung Chang. Geographic Information System. John Wiley & Sons, Ltd,
2016.

[79] Open Geospatial Consortium. Catalogue service homepage. http://www.

opengeospatial.org/standards/cat. Accessed: 24.04.18.

[80] Jeff de La Beaujardiere. Opengis R© web map server implementation specification.
Open Geospatial Consortium Inc., OGC, pages 06–042, 2006.

[81] Yucong Duan, Yuan Cao, and Xiaobing Sun. Various “aas” of everything as a ser-
vice. In Software Engineering, Artificial Intelligence, Networking and Parallel/Dis-
tributed Computing (SNPD), 2015 16th IEEE/ACIS International Conference on,
pages 1–6. IEEE, 2015.

[82] Thomas R Eisenmann, Eric Ries, and Sarah Dillard. Hypothesis-driven en-
trepreneurship: The lean startup. 2012.

88

https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
http://postgis.org/
http://docs.ckan.org/en/ckan-2.7.3/extensions/tutorial.html
http://docs.ckan.org/en/ckan-2.7.3/extensions/tutorial.html
http://xmlsoft.org/
http://xmlsoft.org/XSLT/
https://www.unidata.ucar.edu/software/thredds/current/tds/TDS.html
https://www.unidata.ucar.edu/software/thredds/current/tds/TDS.html
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat

[83] Thore Fechner and Christian Kray. Georeferenced open data and augmented inter-
active geo-visualizations as catalysts for citizen engagement. JeDEM-eJournal of
eDemocracy and Open Government, 6(1):14–35, 2014.

[84] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns.
1995. Reading, Massachusetts: Addison-W esley. ISBN 0-201-63361-2.

[85] T. Capers Jones. Estimating Software Costs. McGraw-Hill, Inc., New York, NY,
USA, 2 edition, 2007.

[86] Tom Kralidis. pycsw, metadata publishing just got easier. http://pycsw.org/.
Accessed: 2018-04-23.

[87] Carl Lagoze and Herbert Van de Sompel. The open archives initiative: Building
a low-barrier interoperability framework. In Proceedings of the 1st ACM/IEEE-CS
joint conference on Digital libraries, pages 54–62. ACM, 2001.

[88] Markus Lupp. Open Geospatial Consortium, pages 815–815. Springer US, Boston,
MA, 2008.

[89] NASA. Directory interchange format (dif) standard, August 2017. Accessed
10.04.18.

[90] Douglas Nebert, Arliss Whiteside, and P Vretanos. Opengis catalogue services
specification. Implementation Specification, 2007.

[91] openresearchdata. openresearchdata/ckanext-oaipmh: Oai-pmh harvester for
ckan. https://github.com/openresearchdata/ckanext-oaipmh, 2016. Accessed:
24.04.18.

[92] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A
design science research methodology for information systems research. Journal of
management information systems, 24(3):45–77, 2007.

[93] Robert Scholz, Nikolay Tcholtchev, Philipp Lämmel, and Ina Schieferdecker. A
ckan plugin for data harvesting to the hadoop distributed file system. 2017.

[94] Stefan Steiniger and Andrew JS Hunter. Free and open source gis software for
building a spatial data infrastructure. Geospatial free and open source software in
the 21st century, pages 247–261, 2012.

[95] Jianzhi Tang, Yingchao Ren, Chongjun Yang, Lei Shen, and Jun Jiang. A webgis for
sharing and integration of multi-source heterogeneous spatial data. In Geoscience
and Remote Sensing Symposium (IGARSS), 2011 IEEE International, pages 2943–
2946. IEEE, 2011.

[96] Roger F. Tomlinson. A geographic information system for regional planning. 1968.

89

http://pycsw.org/
https://github.com/openresearchdata/ckanext-oaipmh

[97] Fubao Zhu, Jinmei Yang, and Qianqian Guo. Emergency gis system based on gml
and multi-source spatial data. In Communication Software and Networks (ICCSN),
2011 IEEE 3rd International Conference on, pages 86–90. IEEE, 2011.

90

	Acknowledgements
	Abstract
	Contents
	List of Acronyms
	Introduction
	Background
	Motivation for thesis
	Overall and specific goals
	Sub-goals

	Research questions
	Related work
	Outline

	Background
	Problem statement and analysis
	Elaboration on goals
	Elaboration on research questions
	Requirements for the GIS prototype

	Research methodology
	Analysis of users
	Use cases
	Problems with current systems

	Software stack
	Definitions
	Geographic Information System
	History of GIS
	GIS components

	Standardisation organisations
	Open Geospatial Consortium
	Open Archives Initiative

	Standards and protocols
	Selection of standards
	Metadata protocols
	Data access

	GIS alternatives
	Comprehensive Knowledge Archive Network
	Architecture
	Extension mechanism

	Implementation of GIS prototype
	Development environment and methodology
	CKAN default installation
	Installation procedure
	Base configuration

	Enabling geospatial capabilities
	Spatial extension
	Harvesting extension
	Geographic view extension

	Experimenting with custom extensions
	Generate and enable extension
	Testing the extension

	Customise existing OAI-PMH harvester
	DIF metadata reader
	Harvester overview
	Data flow
	Various smaller changes

	Implementing TDS harvester
	TDS crawler
	Harvester overview
	Data flow

	Implementation challenges and solutions

	System overview and demonstration
	Finding data
	Adding a new harvesting source
	Filter data before retrieval
	Download data
	Summary

	Evaluation
	Sub-goals
	Overview of standards to build prototype
	Types of data supported in prototype
	GIS alternatives as prototype foundation
	Set up a catalogue service
	Implement harvesting capabilities
	Implement simple geospatial visualisation
	Evaluation of prototype

	Research questions
	Overall goal

	Conclusion
	Summary of results
	Future work
	Perform user testing
	Clean up harvested metadata for display
	Improve display of TDS links harvested with OAI-PMH
	Improve logic for harvesting periodic measurements
	Display OPeNDAP access form directly in prototype
	Improve detection of resource formats
	Implement harvesting from more data sources
	General improvements to harvesters

	Conclusion

	Appendices
	Code listings
	IHarvester interface
	CKAN configuration file
	ThreddsHarvester implementation

	Bibliography

