
University of Bergen

Master Thesis

Improved Combinatorial Bounds and Enumerators for the
Connected Vertex Cover and Independent Feedback

Vertex Set Problems

Author:
Thomas Wingsternes

Supervisor:
Daniel Lokshtanov

June 1, 2018

Abstract

In this thesis we shall study both the maximum number of minimal connected
vertex covers and the maximum number of minimal independent feedback vertex
sets in graphs. A subset S of the vertices of a graph G is a vertex cover if every
edge in G is incident to some vertex in S. A vertex cover S in a graph G is
a connected vertex cover if the subgraph of G induced by S is connected. A
connected vertex cover S is a minimal connected vertex cover if no proper subset
of S is also a connected vertex cover. A subset S of the vertices of a graph G
is a feedback vertex set if the removal of S from G yields an acyclic graph. A
feedback vertex set S in a graph G is an independent feedback vertex set if there
are no edges in G which have both endpoints in S. An independent feedback
vertex set S is a minimal independent feedback vertex set if no proper subset of
S is also an independent feedback vertex set.

Golovach et al. [1] showed that there are at most 1.8668n minimal connected
vertex covers in a graph on n vertices, and that these can be enumerated in
time O(1.8668n). Furthermore, it was shown by Agrawal et al. [2] that there
are at most 1.7485n minimal independent feedback vertex sets in a graph on n
vertices. The authors of [2] also showed that this bound is algorithmic, that the
set of all minimal independent feedback vertex sets in an n-vertex graph can be
enumerated in time O∗(1.7485n), where the O∗-notation supresses polynomial
factors.

We present an upper bound 2 · 1.7076n on the number of minimal connected
vertex covers in a graph on n vertices. We also present new bounds on the
maximum number of minimal independent feedback vertex sets in a graph. In
particular, we show that for a graph on n vertices, there are at most 1.7229n min-
imal independent feedback vertex sets, and that there exists an n-vertex graph
which contains 1.5067n minimal independent feedback vertex sets. We show
that the upper bounds we achieve are algorithmic by presenting an algorithm
which enumerates all minimal connected vertex covers in time O∗(1.7076n), and
an algorithm which enumerates all minimal independent feedback vertex sets in
time O∗(1.7229n), where n is the number of vertices in the input graph.

To my loving parents, Torbjørn and May Britt.

Acknowledgements

First and foremost, I would like to thank my supervisor, Daniel. His guidance
has been invaluable, and I must thank him for all the conversations we have had;
they have been tremendously helpful while writing this thesis. I am also very
grateful to my classmates, both for their support and for their good friendship.
Finally, I would like to thank my father Torbjørn, and my partner Evy-Ann,
for their love and support.

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Mathematical Notation . 5

2.1.1 Asymptotic Notation . 5

2.2 Set Theory . 5

2.2.1 Set Operations . 6

2.3 Graph Theory . 7

2.3.1 Graphs . 7

2.3.2 The Neighborhood and Degree of a Vertex 7

2.3.3 Subgraphs and Graph Isomorphism 8

2.3.4 Multigraphs . 8

2.3.5 Paths, Cycles and Connectivity 9

2.3.6 Trees and Spanning Trees 9

2.3.7 Independent sets and Bipartite Graphs 9

2.3.8 Feedback Vertex Sets . 9

2.3.9 Vertex Covers . 10

2.4 Computational Problems . 10

i

2.5 Algorithms . 10

2.5.1 Algorithmic Complexity 11

2.5.2 Polynomial Delay . 12

2.6 Branching Algorithms . 12

2.6.1 Upper Bounding the Number of Solutions of an Instance . 13

Branching vectors and their branching factors 15

An approach to upper bounding the number of solutions
of an enumeration problem 15

Addition of branching vectors 15

3 Improved Combinatorial Bounds for the Connected Vertex Cover
Problem 17

3.1 Introduction . 17

3.2 Improving the Upper Bound . 18

3.2.1 Reduction Rules and Halting Rules 18

3.2.2 Branching Rules . 23

Branching Rule Analysis 24

3.2.3 Special Instances . 28

3.2.4 An Improved Upper Bound 33

4 Improved Combinatorial Bounds for the Independent Feedback
Vertex Set Problem 36

4.1 Introduction . 36

4.2 Improving the Lower Bound . 36

4.3 Improving the Upper Bound . 41

4.3.1 Reduction Rules and Halting Rules 42

4.3.2 Branching Rules . 48

ii

Branching Rule Analysis 51

4.3.3 Special Instances . 55

4.3.4 An Improved Upper Bound 59

5 Conclusion 63

5.1 Open Problems . 63

5.2 Future Work . 64

iii

Chapter 1

Introduction

Graphs are interesting mathematical objects which are often very useful in mod-
eling real-world problems. A graph consists of a set of vertices, and a set of edges
between these vertices. In real-world applications, the vertices of a graph typi-
cally represent some object from the problem domain, and an edge between two
vertices indicates that the objects corresponding to these vertices have some
kind of relationship.

In the field of computer science and graph theory, much research has been
dedicated to the problem of finding subsets of the vertices of a graph which
have some specific property. For instance, in the Vertex Cover problem, one
asks if there exists a subset of the vertices of size at most k such that every edge
of the input graph is incident to some vertex in the subset. Another example is
the Feedback Vertex Set problem. In this problem, we are given as input
an integer k and a graph G, and the question is whether there exists a subset of
the vertices of size at most k whose removal from G results in an acyclic graph.

Another well-studied problem is the problem of determining the maximum num-
ber of vertex subsets of a graph which can have some given property, as a
function of the number of vertices in the graph. To make the problem more
interesting, we typically require that the subsets are inclusion-wise minimal or
inclusion-wise maximal with respect to the given property. To see why, consider
the following. An independent set S in a graph G is a subset of the vertices
of G such that there are no edges in G which have both endpoints in S. An
independent set S is a maximal independent set if no proper superset of S is
also an independent set. Now, consider an n-vertex graph G in which there are
no edges. Since there are no edges in G, all subsets of the vertices of G are inde-
pendent sets, and there are therefore 2n independent sets in G. However, there
is only one maximal independent set in G, the set which contains all vertices
of G. Can there exist graphs on n vertices in which the number of maximal

1

independent sets is exponential in n? The answer is yes, and we shall see an
example of such a graph shortly.

First, a complete graph is a graph in which there is an edge between every
pair of vertices. We denote the complete graph on n vertices by Kn. Consider
the n-vertex graph G composed of n/3 disjoint copies of K3. We provide an
illustration of G in Fig. 1.1. Any maximal independent set in G must contain
exactly one vertex from each copy of K3. As there are 3 vertices to choose
from within each copy, and n/3 copies from which we must choose exactly one
vertex, there are 3n/3 maximal independent sets in G. Interestingly, 3n/3 is the
maximum number of maximal independent sets in a graph on n vertices, an
acclaimed result of Moon and Moser [3].

. . .

n/3 copies

Figure 1.1: G is composed of n/3 disjoint copies of K3.

Closely related to the problem of upper bounding the number of subsets having
some given property is the problem of enumerating these subsets efficiently.
If we can construct an algorithm that enumerates all subsets which have some
given property, then an upper bound on the number of such subsets follows from
the running time of the algorithm. For instance, Fomin et al. [4] constructed an
algorithm for listing all minimal dominating sets of an n-vertex graph in time
O(1.7159n). As an immediate consequence of this, the authors proved that
every graph on n vertices contains at most 1.7159n minimal dominating sets.

Very often, enumeration algorithms are branching algorithms. The key to upper
bounding the running time of a branching algorithm is usually to obtain a lower
bound on the amount of progress made by the algorithm in each step of the
execution. For graph problems, a simple and natural measure of progress is the
number of vertices in the graph. However, a more involved choice of measure
can have a significant impact on the worst-case running time one arrives at
when analyzing the algorithm. In the preliminary version [5] of their paper [4],
Fomin et al. had shown an upper bound of 1.7697n on the number of minimal
dominating sets in a graph on n vertices. Through a more careful choice of
measure, the authors were able to reduce their previous result of 1.7697n in
[5] to the upper bound 1.7159n achieved in [4]. The method of focusing on
the choice of measure, rather than extending an algorithm with more and more
rules, is known as Measure & Conquer.

2

Another interesting upper bound with respect to the dominating sets of a graph
is the upper bound of Lokshtanov et al. [6] on the maximum number of minimal
connected dominating sets in a graph. Lokshtanov et al. proved that there exists
a constant ε > 10−50 such that every graph on n vertices has at most O(2(1−ε)n)
minimal connected dominating sets, thereby breaking the trivial barrier of 2n.
Furthermore, Couturier et al. [7] substantially improved the upper bound on
the number of minimal dominating sets, for several classes of graphs. Other
important results in the area of combinatorial bounds on the number of vertex
subsets with given properties include [8, 9, 10].

In this thesis we shall study the maximum number of minimal connected vertex
covers and the maximum number of minimal independent feedback vertex sets
in graphs. A subset S of the vertices of a graph G is a vertex cover if every
edge in G is incident to some vertex in S. A vertex cover S in a graph G is
a connected vertex cover if the subgraph of G induced by S is connected. A
connected vertex cover S is a minimal connected vertex cover if no proper subset
of S is also a connected vertex cover. A subset S of the vertices of a graph G
is a feedback vertex set if the removal of S from G yields an acyclic graph. A
feedback vertex set S in a graph G is an independent feedback vertex set if there
are no edges in G which have both endpoints in S. An independent feedback
vertex set S is a minimal independent feedback vertex set if no proper subset of
S is also an independent feedback vertex set.

Golovach et al. [1] described a branching algorithm for enumerating all minimal
connected vertex covers of a graph, and showed that there are at most 1.8668n

minimal connected vertex covers in a graph on n vertices, and that these can
be enumerated in time O(1.8668n). The authors of [1] also presented a lower
bound example, showing that there exists an n-vertex graph which contains

3
n−1
3 minimal connected vertex covers. It was later shown by Ryland [11] that

there exists a graph on n vertices which contains 1.51978n minimal connected
vertex covers.

Agrawal et al. [2] showed that there are at most 1.7485n minimal independent
feedback vertex sets in a graph on n vertices. Unfortunately, the proof was
omitted from [2] due to space constraints. However, through personal commu-
nication, we have obtained the longer, unpublished version [12] of [2], which
contains the proof. In [12], Agrawal et al. showed that the bound is algorith-
mic, that the set of all minimal independent feedback vertex sets in an n-vertex
graph can be enumerated in time O∗(1.7485n), where the O∗-notation supresses
polynomial factors.

We shall build upon the algorithm of Agrawal et al. [2, 12] and show that there
are at most 1.7229n minimal independent feedback vertex sets in a graph on n
vertices, and further, that these can be enumerated in time O∗(1.7229n). Using
a similar approach, we shall show that there are at most 2 · 1.7076n minimal
connected vertex covers in a graph on n vertices, and that we can enumerate

3

the set of all minimal connected vertex covers in time O∗(1.7076n). We shall
also show that there exists a graph which contains 1.5067n minimal independent
feedback vertex sets.

The remainder of this thesis is organized as follows. In Chapter 2 we will
introduce the notation and terminology that we will be using throughout the
thesis. We present our results in Chapter 3 and Chapter 4. In Chapter 3,
we shall present our first result, the upper bound 2 · 1.7076n on the number
of minimal connected vertex covers in a graph on n vertices. In Chapter 4
we present a lower bound example which shows that the maximum number
of minimal independent feedback vertex sets in an n-vertex graph is at least
1.5067n, and further, we present an improved upper bound 1.7229n on the
number of minimal independent feedback vertex sets in a graph on n vertices.
We note that we arrived at the results presented in Chapter 4 before arriving at
the results presented in Chapter 3. We have chosen to present the upper bound
on the number of minimal connected vertex covers before preseting the upper
bound on the number of minimal independent feedback vertex sets, because we
feel that the proof of the former is not as involved as the proof of the latter. We
conclude the thesis with a few open problems and some suggestions for future
work in Chapter 5.

4

Chapter 2

Preliminaries

In this thesis we assume that the reader has knowledge of propositional logic.
We refer the reader to [13] for an introduction to this topic.

2.1 Mathematical Notation

We denote the real numbers by R, the positive real numbers by R+, and the
natural numbers N.

2.1.1 Asymptotic Notation

Let f and g be functions from the real numbers to the real numbers. If there
exists a constant c > 0 and a real number n0 such that for every n ≥ n0 we
have f(n) ≤ cg(n), then we write f(n) = O(g(n)), and we say that g(n) is an
asymptotic upper bound of f(n). If f(n) = O(poly(n) · g(n)), for some poly-
nomial poly(n), then we write f(n) = O∗(g(n)). In other words, O∗-notation
supresses polynomial factors.

2.2 Set Theory

A set is an unordered collection of distinct elements. By distinct, we mean
that every element in the set appears only once. A multiset S is an unordered
collection of elements in which we allow the same element to occur more than

5

once. The number of times the element x occurs in S is called the multiplicity
of x in S.

Let A and B be sets. By x ∈ A, we state that the element x is a member of
the set A, and that A contains x. Conversely, by x /∈ A we mean that x is not
a member of A. If the set A is entirely contained in the set B, we say that A
is a subset of B, and we denote this by writing A ⊆ B. Formally, A ⊆ B if
and only if for every x ∈ A we have x ∈ B. Two sets A and B are equal if and
only if they are subsets of one another, that is, A = B if and only if A ⊆ B
and B ⊆ A. If A ⊆ B and A 6= B, then we say that A is a proper subset of B,
written A ⊂ B.

The cardinality of a set A is the number of elements in A, and is denoted by |A|.
If A has no elements, then we say that A is the empty set. We use the symbol
∅ to denote the empty set. The elements of a set may themselves be sets. The
power set of a set S, denoted P(S), is the set of all subsets of S.

2.2.1 Set Operations

We often use a mathematical notation called set-builder notation when we de-
scribe sets of elements. A set S described in set-builder notation typically has
the form S = {x | P (x)}, where P (x) is a predicate, and S is then the set of
all elements x for which P (x) holds. We now define the union, intersection and
set difference operations. The union of two sets A and B, A ∪ B, is the set
containing every element of A and every element of B. The intersection of A
and B, A ∩ B, is the set containing every element that is both in A and in B.
Finally, the set difference of A and B, A\B, is the set containing every element
of A that is not in B. Formally,

A ∪B = {x | x ∈ A ∨ x ∈ B}
A ∩B = {x | x ∈ A ∧ x ∈ B}
A \B = {x | x ∈ A ∧ x /∈ B}

We may express the union or intersection of k sets S1, S2, . . . , Sk in a compact
manner by writing

⋃k
i=1 Si, or

⋂k
i=1 Si, respectively. That is,

k⋃
i=1

Si = S1 ∪ S2 ∪ . . . ∪ Sk

k⋂
i=1

Si = S1 ∩ S2 ∩ . . . ∩ Sk

If A ∩ B = ∅, then A and B are said to be disjoint. A partition of a set S is a
collection of non-empty pairwise disjoint subsets of S whose union is S. More

6

precisely, a partition of S is a collection of non-empty sets S1, S2, . . . , Sk such
that for every i 6= j we have Si ∩ Sj = ∅, and

⋃k
i=1 Si = S. The cartesian

product of two sets A and B is the set

A×B = {(a, b) | a ∈ A, b ∈ B}

A binary relation on a set A is a set R ⊆ A × A. We say that a relation R on
a set A is symmetric if for every x, y ∈ A it holds that (x, y) ∈ R if and only if
(y, x) ∈ R.

2.3 Graph Theory

2.3.1 Graphs

Formally, a graph is a pair G = (V,E), where V is the set of vertices in G, and
E ⊆ V × V is the set of edges in G. For a graph G we often denote the set of
vertices of G by V (G), and the set of edges of G by E(G). If (u, v) ∈ E(G),
then we say that u is adjacent to v. In this thesis we will concern ourselves only
with undirected graphs. An undirected graph is a graph G for which E(G) is
symmetric.

2.3.2 The Neighborhood and Degree of a Vertex

If e = (u, v) is an edge, then we say that e is incident to u and v, and that u and
v are the endpoints of e. We may also say that e is the edge between u and v, or
that e is the edge from u to v. Further, when (u, v) ∈ E(G) we say that u and
v are neighbors. We denote the set of neighbors of a vertex v by N(v). That is,
N(v) = {u ∈ V (G) | (u, v) ∈ E(G)}. We refer to N(v) as the neighborhood of
v. The closed neighborhood of v is the set N [v] = N(v) ∪ {v}. If G is a graph,
v ∈ V (G) and N [v] = V (G), then we say that v is a universal vertex. In other
words, a vertex is universal if it is adjacent to every other vertex in the graph.
If G is a graph on n vertices, and every vertex of G is universal, then G is the
complete graph on n vertices. We denote the complete graph on n vertices by
Kn. The degree of a vertex v, denoted d(v), is the number of neighbors of v.
That is, d(v) = |N(v)|. If d(v) = 0, then we say that v is an isolated vertex.
By δ(G) and ∆(G) we denote the minimum degree and the maximum degree of
the graph G, respectively. Formally,

δ(G) = min{d(v) | v ∈ V (G)}
∆(G) = max{d(v) | v ∈ V (G)}

Often, when we are dealing with multiple graphs and it is not clear from context
to which graph we are referring to, we may subscript N(·) and d(·) to remove

7

ambiguities. Thus, NG(v) and dG(v) will refer to the neighborhood of v in the
graph G, and to the degree of v in the graph G, respectively.

2.3.3 Subgraphs and Graph Isomorphism

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′), such that V ′ ⊆ V
and E′ ⊆ E. Let G be a graph, and let S ⊆ V (G). Let ES be the set of edges
that have both endpoints in S, i.e., let ES = {(u, v) ∈ E(G) | u, v ∈ S}. We call
G[S] = (S,ES) the subgraph of G induced by S. In other words, the subgraph
of G induced by S is the subgraph obtained from G by removing all vertices of G
that are not in S and all edges of G which have at least one endpoint in V (G)\S.
In many problems we look for a subset of the vertices of a graph whose removal
yields a graph with some special properties. Again, let S ⊆ V (G). By G−S we
denote the subgraph of G obtained by removing all vertices of S and all edges
of G that have at least one endpoint in S. That is, G − S = G[V (G) \ S]. We
shall overload this operation by allowing the removal of sets of edges as well.
If S ⊆ E(G), then by G − S we mean the subgraph (V,E \ S). If e is an edge
in a graph G = (V,E), then G/e denotes the graph obtained by contracting e.
Formally, G/(u, v) = (V ′, E′), where

V ′ = (V \ {u, v}) ∪ {w}
E′ = E(G− {u, v}) ∪ {(w, x) | (u, x) ∈ E(G)} ∪ {(w, x) | (v, x) ∈ E(G)}

Another operation we shall need is edge subdivision. Let (u, v) ∈ E(G). When
we subdivide the edge (u, v), we obtain a new graph

G′ = (V ∪ {w}, (E \ {(u, v)}) ∪ {(u,w), (v, w)})

Let G and H be graphs. If there exists a bijection f : V (G)→ V (H) such that
for every u, v ∈ V (G) we have (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H),
then we say that G is isomorphic to H.

2.3.4 Multigraphs

Thus far we have been discussing simple graphs. We shall also be working with
multigraphs. In a multigraph the set of edges is a multiset of multisets, thus
allowing the presence of both multi-edges and self-loops, which we now define
formally. Let G be a multigraph, then a multi-edge in G is an edge e ∈ E(G)
of multiplicity m ≥ 2, and a self-loop on a vertex v ∈ V (G) is an edge (v, v).
In other words, a multi-edge is an edge that occurs more than once between
the same pair of vertices, and a self-loop is an edge that begins and ends at the
same vertex.

8

2.3.5 Paths, Cycles and Connectivity

A path in a graph G is a sequence of distinct vertices P = (v1, v2, . . . , vk),
such that (vi, vi+1) ∈ E(G) for i = 1, 2, . . . , k − 1. We say that P is a path
between v1 and vk. If (v1, v2, . . . , vk) is a path in G, and (vk, v1) ∈ E(G), then
(v1, v2, . . . , vk, v1) is a cycle in G. Let G be a multigraph and let e be some
edge in G. The endpoints of e form a cycle in G if e is a self-loop, or if e is a
multi-edge. If a graph has no cycles, then it is acyclic. We say that a graph
G is connected if for every pair of vertices u, v ∈ V (G), there exsists a path
between u and v. We note that a graph with no vertices is then connected. Let
G be a graph, let v ∈ V (G), and let Cv be the set of vertices u for which a path
between u and v exists. That is, let

Cv = {u ∈ V (G) | there exists a path between u and v}

We say that Cv is a connected component of G. If a graph has more than one
connected component, then it is disconnected.

2.3.6 Trees and Spanning Trees

A tree is a connected acyclic graph. If G is a graph in which every connected
component is a tree, then G is a forest. Let G = (V,E) be a graph, then a
spanning tree of G is a subgraph T = (V,E′) of G such that T is a tree. Note
that the set of vertices of T is the same as the set of vertices of G. We say that
E′ forms a spanning tree in G. We often refer to the vertices of a tree as the
nodes of the tree.

2.3.7 Independent sets and Bipartite Graphs

An independent set in a graph G is a set S ⊆ V (G) such that for every u, v ∈ S
we have (u, v) /∈ E(G). If there exists a partition (A,B) of V (G) such that both
A and B are independent sets, then we say that G is bipartite, and that (A,B)
is a bipartition of the graph.

2.3.8 Feedback Vertex Sets

Let G be a graph, and let S ⊆ V (G). If G− S is a forest, then S is a feedback
vertex set in G. If S is a feedback vertex set and S is independent, then S is an
independent feedback vertex set. If S is an independent feedback vertex set and
there exists no X ⊂ S such that X is an independent feedback vertex set, then
S is a minimal independent feedback vertex set in G.

9

2.3.9 Vertex Covers

Let G be a graph, and let S ⊆ V (G). Let (u, v) ∈ E(G). If u ∈ S or v ∈ S,
then we will say that S covers the edge (u, v). Let Z ⊆ E(G). If S covers every
edge (u, v) ∈ Z, then S covers Z. If S covers E(G), then S is a vertex cover in
G. That is, a vertex cover in a graph G is a set S ⊆ V (G) such that for every
(u, v) ∈ E(G) we have u ∈ S or v ∈ S. If S is a vertex cover in G and G[S] is
connected, then S is a connected vertex cover in G. If S is a connected vertex
cover in G and there exists no X ⊂ S such that X is a connected vertex cover
in G, then S is a minimal connected vertex cover in G.

2.4 Computational Problems

In this section we introduce three types of computational problems: decision
problems, search problems and enumeration problems. Before doing so, we
provide some preliminary definitions. An alphabet Σ is a non-empty finite set of
symbols, and a string over Σ is a sequence of symbols from Σ. If w is a string,
then |w| denotes the length of w, that is, the number of symbols in the sequence.
By Σ∗, we denote the set of all possible strings over Σ. A language over Σ is a
set of strings L ⊆ Σ∗.

A decision problem is a language L over some alphabet Σ. Let L ⊆ Σ∗ be a
decision problem, and let w ∈ Σ∗ be some string. If w ∈ L, then we say that w
is a yes instance of L, otherwise we say that w is a no instance of L. A search
problem is a function f : Σ∗ → P(Σ∗). Likewise, we define an enumeration
problem as a function f : Σ∗ → P(Σ∗). Note that although the definition of a
search problem is the same as the definition of an enumeration problem, we will
be using these terms in different contexts. In particular, we will see that solving
a search problem is not the same as solving an enumeration problem. We will
use the following terminology when discussing search problems or enumeration
problems. Let f be a search problem or an enumeration problem, and let w ∈ Σ∗

such that f(w) is non-empty. We call f(w) the set of feasible solutions of w,
and we call a member s of f(w) a solution of w.

2.5 Algorithms

In this section we discuss what it means to solve the various computational
problems introduced in Section 2.4, and we introduce algorithms, along with
algorithmic complexity, and finally, polynomial delay in the context of enumer-
ation algorithms.

10

The notion of algorithms can be formalized by a mathematical model of com-
putation known as the Turing machine. However, for our purposes it will be
sufficient to think of an algorithm as a procedure for solving some computational
problem. We refer the reader to [14] for an introduction to Turing machines. Our
algorithms accept as input some string w, called the instance, and yield some
output upon halting. Note that we can encode any object as a string. Thus, by
instance, we often mean the object represented by the input string. We will use
the terms instance, problem instance and input instance interchangeably. Let A
be an algorithm, and let w be a string, then A(w) denotes both the application
of A to w, and the output of A when applied to w.

What it means to solve a problem naturally depends on what that problem is.
We will consider what it means to solve a decision problem, a search problem,
and an enumeration problem, respectively. An algorithm for a decision problem
is typically called a decider. Given as input some instance w, a decider outputs
either yes or no. Formally, a decider A of a decision problem L ⊆ Σ∗ solves L
if for any instance w ∈ Σ∗, A outputs either yes or no, and it holds that w is a
yes instance of L if and only if A outputs yes when applied to w.

An algorithm for a search problem f : Σ∗ → P(Σ∗), is an algorithm A that
given an instance w ∈ Σ∗ outputs some s ∈ Σ∗. Formally, A solves f if for any
instance w ∈ Σ∗ such that f(w) 6= ∅, A(w) ∈ f(w), and for any instance w ∈ Σ∗

such that f(w) = ∅, A concludes that w has no solution.

An algorithm for an enumeration problem is often called an enumerator. On
encountering a feasible solution of the input instance, an enumerator typically
outputs the solution immediately. However, for our purposes it will be more
convenient to think of an enumerator as an algorithm that outputs the set
of all feasible solutions of the input instance. That is, given as input some
instance w ∈ Σ∗, an enumerator A for an enumeration problem f : Σ∗ → P(Σ∗)
will output some S ∈ P(Σ∗). Whereas it is sufficient that an algorithm for a
search problem finds one solution of the input instance, an algorithm for an
enumeration problem must find all solutions of the input instance. Formally, A
solves f if for any instance w ∈ Σ∗, A(w) = f(w). If A solves f , then we say
that A enumerates f .

2.5.1 Algorithmic Complexity

The complexity of an algorithm A is the amount of computational resources A
requires when applied to some instance, in the worst-case scenario. We distin-
guish between the space complexity and the time complexity of an algorithm.
Let A be an algorithm. The space complexity of A is a function f : N → N,
where f(n) is the maximum amount of computer memory used by A when
applied to any instance of length n. Similarly, the time complexity of A is a
function g : N→ N, where g(n) is the maximum number of elementary computer

11

instructions executed by A when applied to any instance of length n.

Let f, g : R → R+ such that f(n) = O(g(n)), and let A be an algorithm with
time complexity f(n), then we say that A runs in time bounded by g(n), or
that the running time of A is bounded by g(n).

2.5.2 Polynomial Delay

Let f : Σ∗ → P(Σ∗) be an enumeration problem, and let A be an algorithm
that enumerates f . In the following, we let sk denote the k’th solution output
by A. A is said to have polynomial delay if for any instance w where f(w) 6= ∅,
it holds that

i. A outputs the first feasible solution s1 ∈ f(w) within time bounded by a
polynomial in |w|

ii. If si−1, si ∈ f(w), then the time that elapses between when si−1 and si is
output is bounded by a polynomial in |w|

iii. A outputs no solution more than once

2.6 Branching Algorithms

In this section we give a brief introduction to the paradigm of Branch & Reduce
in the context of enumeration problems. We discuss what comprises a branching
algorithm for an enumeration problem, how to prove the correctness of such
algorithms, and how a branching algorithm for a particular enumeration problem
can be used to give an upper bound on the number of solutions of a problem
instance. We refer the reader to the book of Fomin and Kratsch [15] for a more
detailed introduction to branching algorithms.

Branching is an algorithmic technique in which an instance is solved by decom-
posing the instance into subproblems, recursively solving these subproblems,
and then combining the solutions of these subproblems into a solution of the
original instance. As branching is based on recursion, it is paramount that the
subproblems we produce are smaller than the original instance, otherwise the
algorithm could potentially never halt. The measure of an instance I is a func-
tion µ : Σ∗ → N that is bounded by some function of natural parameters of I.
It is, in essence, a measure of the size of an instance. We describe branching
algorithms in terms of reduction rules, halting rules and branching rules. In the
following, let f : Σ∗ → P(Σ∗) be an enumeration problem.

12

A reduction rule is a computable function which takes as input an instance I
and outputs a reduced instance I ′. By reduced, we mean that µ(I ′) < µ(I).
Recall that f(I) and f(I ′) is the set of feasible solutions of I and the set of
feasible solutions of I ′, respectively. We say that R is safe if there exists a
function g : Σ∗ → Σ∗ such that f(I) ⊆ g(f(I ′)), where g(f(I ′)) is the image of
f(I ′) under g. A halting rule H is a computable function which takes as input
an instance I and outputs some H(I) ∈ P(Σ∗). H is correct if H(I) = f(I).

A branching rule B is a computable function that given an instance I outputs
r ≥ 2 subproblems I1, I2, . . . , Ir such that r is bounded by µ(I) and for i =
1, 2, . . . , r we have µ(Ii) < µ(I). We say that B is safe if there exists functions
gi : Σ∗ → Σ∗, such that f(I) ⊆

⋃r
i=1 gi(f(Ii)). In this thesis, all branching rules

will have r ≤ 4.

Given as input some instance I, a branching algorithm either applies a reduc-
tion rule, a halting rule, or a branching rule. When the algorithm applies a
halting rule, it solves the input instance outright and outputs f(I). When
the algorithm applies a reduction rule or a branching rule, the algorithm first
generates r subproblems I1, I2, . . . , Ir, where r = 1 when a reduction rule is
applied, and r ≥ 2 when a branching rule is applied. After generating the
subproblem(s), the algorithm calls itself recursively on I1, I2, . . . , Ir, obtaining
f(I1), f(I2), . . . , f(Ir). It then computes ζ =

⋃r
i=1 gi(f(Ii)), and thereafter out-

puts f(I) = {s | P (s), s ∈ ζ}, where the predicate P (s) holds if and only if
s ∈ f(I).

When we discuss a branching algorithm, we will refer to the reduction rules,
halting rules and branching rules of the algorithm collectively as the rules of the
algorithm. The correctness of a branching algorithm follows from the safeness of
its reduction rules and branching rules, and the correctness of its halting rules,
together with a proof that for any instance I, some rule of the the branching
algorithm will apply to I.

2.6.1 Upper Bounding the Number of Solutions of an In-
stance

We shall now describe an approach to upper bounding the number of solutions
|f(I)| of any problem instance I, for any enumeration problem f : Σ∗ → Σ∗.
We will need the following lemma.

Lemma 2.1. Let f : Σ∗ → Σ∗ be an enumeration problem, and let A be a
branching algorithm which enumerates f . We assume that all halting rules of
A are correct, and that all reduction rules and branching rules of A are safe.
Further, we assume that for any instance I, some rule of A is applicable to I.
Suppose that there exists x, a ∈ R such that x, a ≥ 1 and the following holds.

13

a) For every branching rule B of A, if I1, I2, . . . , Ir are the subproblems output
by B when applied to an instance I, then there exists integer constants di > 0
such that µ(Ii) ≤ µ(I)− di, for i = 1, 2, . . . , r, and Σri=1x

−di ≤ 1.

b) For every instance I to which some halting rule of A applies, it holds that
|f(I)| ≤ axµ(I).

Under this assumption, we have |f(I)| ≤ axµ(I), for any instance I.

Proof. Let I be the set of all instances of f , and let

f(µ) = max{|f(I)| | µ(I) ≤ µ, I ∈ I}

In order to prove our claim, we will prove by induction on µ that f(µ) ≤ axµ.
We note that for any instance I ∈ I, we have |f(I)| ≤ f(µ(I)). Since we assume
that |f(I)| ≤ axµ(I) whenever I is an instance to which some halting rule applies,
the base case holds. Suppose that for every l < µ, we have f(l) ≤ axl. Let I be
an instance of measure µ(I) = µ.

Case 1: Some reduction rule R applies to I. Let I ′ = R(I) be the re-
duced instance, then µ(I ′) < µ. Since R is safe, we have |f(I)| ≤ |f(I ′)|.
Thus, by the induction hypothesis,

|f(I)| ≤ |f(I ′)| ≤ axµ(I′) ≤ axµ

Case 2: Some halting rule H applies to I. By assumption, |f(I)| ≤ axµ.

Case 3: Some branching rule B applies to I. Suppose B outputs the sub-
problems I1, I2, . . . , Ir when applied to I. Since B is safe, we have

|f(I)| ≤ |f(I1)|+ |f(I2)|+ . . .+ |f(Ir)|
≤ Σri=1ax

µ(Ii)

≤ Σri=1ax
µ(Ii) · xµ · x−µ

≤ axµ · Σri=1x
µ(Ii)−µ

Recall that we assume that there exists di > 0 such that µ − µ(Ii) ≥ di,
for i = 1, 2, . . . , r, and that Σri=1x

−di ≤ 1. Thus,

|f(I)| ≤ axµ · Σri=1x
µ(Ii)−µ ≤ axµ · Σri=1x

−di ≤ axµ

In every case we have |f(I)| ≤ axµ. Since I was an arbitrary instance of
measure µ, it holds that |f(I)| ≤ axµ whenever I is an instance that attains
|f(I)| = f(µ). Thus, f(µ) ≤ axµ, and the proof is complete.

14

Branching vectors and their branching factors

Let di > 0 be constants, for i = 1, 2, . . . r. Let B be a branching rule that
generates r ≥ 2 subproblems of measure at most µ − d1, µ − d2, . . . , µ − dr
when applied to any instance of measure µ ≥ max{d1, d2, . . . , dr}. We call
(d1, d2, . . . , dr) the branching vector of B. We define the branching factor of a
branching vector (d1, d2, . . . , dr) to be

τ(d1, d2, . . . , dr) = min{α | Σri=1α
−di ≤ 1 ∧ α ≥ 1, α ∈ R}

Observe that τ(d1, d2, . . . , dr) is the unique positive real root of

x−d1 + x−d2 + . . .+ x−dr = 1

When a branching algorithm applies a branching rule with branching vector
(i, j), we say that the algorithm (i, j)-branches.

An approach to upper bounding the number of solutions of an enu-
meration problem

From Lemma 2.1, we obtain the following approach to upper bounding the
number of solutions of a problem instance, for any enumeration problem f .
First, we describe a branching algorithm A which enumerates f . We then show
that all reduction rules and branching rules are safe, and that all halting rules
are correct, and further, that for any instance I, some rule of A is applicable to
I. Thereafter we analyze each branching rule separately and obtain a system B
of branching vectors. Then we obtain an upper bound βµ(I) on the number of
solutions output by any halting rule when applied to an instance I. Finally, we
choose

x = max
{

max{τ(~b) | ~b ∈ B}, β
}

By Lemma 2.1, we then have that |f(I)| ≤ xµ(I), for any instance I of f . We
will apply this approach in chapters 3 and 4, when we upper bound the number
of minimal connected vertex covers in a graph, and the number of minimal
independent feedback vertex sets in a graph, respectively.

Addition of branching vectors

Let A be a branching algorithm, and let B1 and B2 be branching rules with
corresponding branching vectors (i, j) and (k, l), respectively. Let I be an in-
stance to which B1 applies, and let I1 and I2 be the subproblems output by B1

when applied to I, then µ(I1) ≤ µ(I) − i, and µ(I2) ≤ µ(I) − j. Consider an
application of B2 to I1, and let I11 and I12 be the subproblems output by B2,
then µ(I11) ≤ µ(I1)−k ≤ µ(I)− (i+k), and µ(I12) ≤ µ(I1)− l ≤ µ(I)− (i+ l).

15

Suppose A always applies B2 to I1. We then obtain a branching rule B′ which
outputs the subproblems I11, I12 and I2 when applied to I. The branching vec-
tor corresponding to B′ is ~b′ = (i+ k, i+ l, j). We note that we could explicitly
add the new rule B′, and remove the rule B1, from the set of branching rules
of A. However, we shall not be adding B′ to the set of branching rules of A,
rather, we shall only add the branching vector ~b′ corresponding to B′ to the
system of branching vectors of A. We call this addition of branching vectors.
We illustrate addition of branching vectors in Fig. 2.1.

I

I1 I2

I11 I12

(a) A applies B1 to I, generating the sub-
problems I1 and I2. A then always applies
B2 to I1, generating the subproblems I11
and I12.

I

I11 I12 I2

(b) An application of B′ to I generates the
subproblems I11, I12 and I2.

Figure 2.1: Addition of branching vectors.

16

Chapter 3

Improved Combinatorial
Bounds for the Connected
Vertex Cover Problem

3.1 Introduction

In this chapter we present an improved upper bound on the maximum number
of minimal connected vertex covers in a graph.

Definition 3.1. Let G be a graph, and let M ⊆ V (G). Let S be a connected
vertex cover in G. If M ⊆ S, then S is a M -cvc in G.

If S is a M -cvc in G and there is no X ⊂ S such that X is a M -cvc in G, then
S is a minimal M -cvc in G. Observe that a minimal M -cvc is not necessarily a
minimal connected vertex cover in G. To see this, let G = ({u, v}, {(u, v)}) be
a graph, and note that {u, v} is a minimal {u, v}-cvc in G, but not a minimal
connected vertex cover in G, since both {u} and {v} are connected vertex covers
in G. We will let CG(M) denote the set of all minimal M -cvc in G. We note
that CG(∅) is then the set of all minimal connected vertex covers in G.

Let G be a graph. If E(G) = ∅, then CG(∅) = {∅}. That is, G has exactly one
minimal connected vertex cover, the empty set. Otherwise, let (u, v) ∈ E(G) be
any edge in G. If S ∈ CG(∅), then we must have u ∈ S or v ∈ S, thus

CG(∅) ⊆ CG({u}) ∪ CG({v})

We make the following observation.

17

Observation 3.2. Let a and c be constants such that c ≥ 1 and a > 0, and
let G be a graph on n vertices. If |CG(M)| ≤ acn whenever M 6= ∅, then
|CG(∅)| ≤ 2acn.

We claim that for any graph G on n vertices and M ⊆ V (G) such that M 6= ∅,
we have |CG(M)| ≤ 1.7076n. By Observation 3.2, if our claim holds, then there
are at most 2 · 1.7076n minimal connected vertex covers in any n-vertex graph.

3.2 Improving the Upper Bound

In order to prove our claim, we will apply the approach described in Section
2.6.1. We now establish some notation which we will be using throughout this
chapter. We adopt the notation of Agrawal et al. [2]. Let G be a graph, and
let M ⊆ V (G). We let U = V (G) \M . We shall refer to vertices in M as
marked vertices, and to vertices in U as unmarked vertices, and we shall refer
to edges for which both endpoints are marked as marked edges. We let uv and
mv denote the number of unmarked neighbors of v and the number of marked
neighbors of v, respectively. That is, mv = |N(v) ∩M |, and uv = |N(v)| −mv.
We define the measure of an instance I = (G,M) to be

µ(I) = µ(G,M) = w1 |U |+ w2 |M |

where w1, w2 ∈ N such that w1 > w2 > 0. Observe that

µ(I) = w1 |U |+ w2 |M |
≤ w1(|U |+ |M |)
≤ w1 |V (G)|

In the following we will always assume that M 6= ∅. We will now construct a
branching algorithm which enumerates all M -cvc of any graph G, for non-empty
M ⊆ V (G). We shall call this algorithm EnumMcvc. We apply the rules of
EnumMcvc in ascending order, according to the numbering of the rules. That
is, we always attempt to apply rule i before applying rule j > i. Therefore, if
we apply rule j to some instance (G,M), then we can always assume that rule
i < j does not apply to (G,M).

3.2.1 Reduction Rules and Halting Rules

We will now describe the reduction rules and the halting rules of EnumMcvc.

Reduction Rule 3.1. If there exists some vertex v ∈ U such that d(v) = 0,
then replace the instance (G,M) with the instance (G− {v},M).

18

Reduction Rule 3.1 removes a single unmarked vertex from the graph, and thus
reduces the measure by w1.

Halting Rule 3.2. If G is disconnected, then output ∅.

Reduction Rule 3.3. If there exists some edge (u, v) ∈ E(G) such that u, v ∈
M , then let G′ = G/(u, v), and let M ′ = (M \ {u, v}) ∪ {w}, where w is the
vertex obtained by contracting (u, v), and replace the instance (G,M) with the
instance (G′,M ′).

With respect to Reduction Rule 3.3, when we contract an edge e, we shall not
keep any multi-edges or self-loops obtained by contracting e. Since Reduction
Rule 3.3 contracts a single marked edge, an application of Reduction Rule 3.3
will reduce the measure by w2.

Observation 3.3. If (G,M) is an instance to which none of rules 3.1-3.3 apply,
then M is an independent set.

Halting Rule 3.4. If M = V (G), then output M .

Reduction Rule 3.5. If there exists some vertex v ∈ U such that G − {v} is
disconnected, then replace the instance (G,M) with the instance (G,M ∪ {v}).

An application of Reduction Rule 3.5 will reduce the measure by w1 − w2 > 0,
since Reduction Rule 3.5 marks a single unmarked vertex.

Observation 3.4. If (G,M) is an instance to which none of rules 3.1-3.5 apply,
then G− {v} is connected, for every v ∈ U .

Reduction Rule 3.6. If there exists some vertex v ∈ U such that d(v) = 1,
then replace the instance (G,M) with the instance (G− {v},M).

Reduction Rule 3.6 removes a single unmarked vertex from the graph. An
application of Reduction Rule 3.6 therefore reduces the measure by w1.

We shall now prove that reduction rules 3.1, 3.3, 3.5 and 3.6 are safe, and that
halting rules 3.2 and 3.4 are correct. Let (G,M) be some instance, and let R
be some reduction rule. Let (G′,M ′) = R(G,M) be the instance obtained by
applying R to (G,M). In order to show that R is safe, we must show that
there exists a function g such that for any S ∈ CG(M), there exists a solution
S′ ∈ CG′(M ′) such that g(S′) = S.

Lemma 3.5. Reduction Rule 3.1 is safe.

Proof. Let (G,M) be an instance to which Reduction Rule 3.1 applies, and let
v ∈ U be the vertex we remove from the graph, then (G−{v},M) is the instance
output by Reduction Rule 3.1 when applied to (G,M). We let g(S) = S be

19

the function which maps a solution of the reduced instance to a solution of the
input instance. Let S ∈ CG(M), and let G′ = G − {v}. In order to show that
Reduction Rule 3.1 is safe, we must show that S ∈ CG′(M) as well. Observe
that since E(G′) = E(G), S is a M -cvc in G′. Suppose S /∈ CG′(M), and let
X ⊂ S be a M -cvc in G′. Again, since E(G′) = E(G), X is a M -cvc in G,
contradicting our assumption that S is a minimal M -cvc in G. We see that if
S ∈ CG(M), then S ∈ CG′(M) as well, and Reduction Rule 3.1 is therefore
safe.

Lemma 3.6. Halting Rule 3.2 is correct.

Proof. Let (G,M) be an instance to which Halting Rule 3.2 applies, then G
is disconnected. We must show that CG(M) = ∅. Suppose not, and let S
be a minimal M -cvc in G. Let C ⊆ V (G) be a connected component in G,
and let v ∈ C. If v ∈ U , then d(v) ≥ 1, as otherwise Reduction Rule 3.1
would have applied to (G,M). Thus, if v ∈ U , then there must be some edge
(u, v) ∈ E(G[C]) which S covers. That is, if v ∈ U , we must have S ∩C 6= ∅. If
v ∈ M , then v ∈ S, since M ⊆ S. Therefore, if v ∈ M , we must have S ∩ C as
well. Let C1 and C2 be two connected components in G, then S ∩ C1 6= ∅ and
S ∩ C2 6= ∅. However, this implies that G[S] is disconnected, which contradicts
our assumption that S is a M -cvc in G. We conclude that CG(M) = ∅.

Lemma 3.7. Reduction Rule 3.3 is safe.

Proof. Let (G,M) be an instance to which Reduction Rule 3.3 applies. Suppose
(u, v) ∈ E(G) is the edge we contract, then u, v ∈ M . Let w be the vertex
obtained by contracting the edge (u, v), then

(G′,M ′) = (G/(u, v), (M \ {u, v}) ∪ {w})

is the instance obtained by contracting (u, v). Let g(S′) = (S′ \ {w}) ∪ {u, v}.
We will show that for every S ∈ CG(M) there exists some S′ ∈ CG′(M ′) such
that g(S′) = S. Let S ∈ CG(M), and note that since u, v ∈M and M ⊆ S, we
have u, v ∈ S. Let S′ = (S \ {u, v}) ∪ {w}, then g(S′) = S. In order to show
that Reduction Rule 3.3 is safe, we must show that S′ ∈ CG′(M ′).

We first introduce some auxiliary notation. Let EX(H) denote the set of edges
in the graph H which are incident to some vertex in X ⊆ V (H). That is, we let

EX(H) = {(x, y) | {x, y} ∩X 6= ∅, (x, y) ∈ E(H)}

We note that

E(G) ∩ E(G′) = E(G) \ E{u,v}(G) = E(G′) \ E{w}(G′)

We will now show that S′ ∈ CG′(M ′). Note that since S covers E(G), the set
(S \ {u, v}) ∪ {w} covers

(E(G) \ E{u,v}(G)) ∪ E{w}(G′) = E(G′)

20

That is, S′ covers E(G′). Since G′[S′] is obtained by contracting an edge in
the connected graph G[S], we have that G′[S′] is connected as well. Finally,
since M ⊆ S, we have M ′ ⊆ S′, and S′ is thus a M ′-cvc in G′. Suppose
S′ /∈ CG′(M ′), then there must be some X ′ ⊂ S′ such that X ′ is a M ′-cvc in
G′. Let X = g(X ′) = (X ′ \ {w})∪{u, v}, and note that when X ′ ⊂ S′, we have
X ⊂ S. We will show that X is a M -cvc in G, contradicting the minimality of
S. Since X ′ covers E(G′), the set (X ′ \ {w}) ∪ {u, v} covers

(E(G′) \ E{w}(G′)) ∪ E{u,v}(G) = E(G)

Thus, X is a vertex cover in G. Since G′[X ′] is connected, then so is G[X],
and lastly, since M ′ ⊆ X ′, we have M ⊆ X. We see that X is a M -cvc in
G, which is not possible, since S is a minimal M -cvc in G. Our assumption
that S′ /∈ CG′(M

′) leads to a contradiction, and we therefore conclude that
S′ ∈ CG′(M ′), and thus that Reduction Rule 3.3 is safe.

Lemma 3.8. Halting Rule 3.4 is correct.

Proof. Let (G,M) be an instance to which Halting Rule 3.4 applies, we then
have M = V (G). We must show that CG(M) = {V (G)}. Observe that since
Halting Rule 3.2 does not apply to (G,M), we know that G is connected, and
therefore also that M is a M -cvc in G. Clearly, there is no S ⊂ M such that
M ⊆ S, thus M = V (G) is a minimal M -cvc in G. We have CG(M) = {V (G)},
and Halting Rule 3.4 is therefore correct.

Claim 3.9. Let (G,M) be an instance to which none of rules 3.1-3.4 apply,
then |V (G)| ≥ 2 and δ(G) ≥ 1.

Proof. Since Halting Rule 3.2 does not apply to (G,M), we know that G is
a connected graph. Recall that we always assume that M 6= ∅. Since Halting
Rule 3.4 does not apply to (G,M), we know that M ⊂ V (G), and therefore that
U 6= ∅. Since U 6= ∅ and M 6= ∅, we have that |V (G)| ≥ 2. Let v ∈ U , and let
u ∈M . Since G is connected, there is a path P between u and v. The existence
of P implies that d(v) ≥ 1, and that d(u) ≥ 1. Since we have d(v) ≥ 1 for every
v ∈ U , and d(u) ≥ 1 for every u ∈ M , we have δ(G) ≥ 1. Thus, |V (G)| ≥ 2,
and δ(G) ≥ 1, and the claim holds.

Lemma 3.10. Let G be a connected graph, and let S be a connected vertex
cover in G. If there is some v ∈ V (G) such that G− {v} is disconnected, then
v ∈ S.

Proof. Suppose not, and let C1 and C2 be two connected components in G−{v}.
Let u ∈ C1 such that (u, v) ∈ E(G), and let w ∈ C2 such that (v, w) ∈ E(G).
Since v /∈ S, we must have u,w ∈ S, otherwise S would not cover the edges
(u, v) and (v, w). However, there is no path between u and v in G[S], thus G[S]
is not connected, a contradiction.

21

Lemma 3.11. Reduction Rule 3.5 is safe.

Proof. Let (G,M) be an instance to which Reduction Rule 3.5 applies. Suppose
v ∈ U is the vertex we mark, then (G,M ∪ {v}) is the instance output by
Reduction Rule 3.5. We let g(S) = S be the function which maps a solution
of the reduced instance to a solution of the input instance. Let S ∈ CG(M),
and let M ′ = M ∪ {v}. In order to show that Reduction Rule 3.5 is safe, we
must show that S ∈ CG(M ′) as well. We will first show that S is a M ′-cvc in
G. Since G is already a connected vertex cover in G by assumption, we need
only show that M ′ ⊆ S. We know that v ∈ S, by Lemma 3.10. Since M ⊆ S
and v ∈ S, we have M ′ ⊆ S as well, and S is thus a M ′-cvc in G. Suppose that
S /∈ CG(M ′), and let X ⊂ S be a M ′-cvc in G. X must exist, since S is not
minimal. However, when X is a M ′-cvc in G, X is also a M -cvc in G, since
M ⊆ M ′. Thus, our assumption that S /∈ CG(M ′) contradicts our assumption
that S ∈ CG(M). We conclude that when S ∈ CG(M), we have S ∈ CG(M ′)
as well, and Reduction Rule 3.5 is therefore safe.

Lemma 3.12. Let I = (G,M) be an instance to which none of rules 3.1-3.5
apply. If there is some v ∈ U such that N(v) = {u}, then u ∈M .

Proof. First, observe that since Halting Rule 3.2 does not apply to I, we know
that G is connected. Now, suppose u /∈ M . We then have u, v ∈ U . Since we
always assume that M 6= ∅, and since u, v ∈ U , we know that there must be
some vertex w ∈ V (G) \ {u, v}. Since G is connected, and since N(v) = {u},
we therefore know that d(u) ≥ 2. However, if d(u) ≥ 2, then G − {u} is
disconnected. Since Reduction Rule 3.5 does not apply to I, we know that
there can be no x ∈ U such that G−{x} is disconnected. Hence, since G−{u}
is disconnected, we cannot have u ∈ U , which contradicts our assumption that
u /∈M . Thus, u ∈M , and the proof is complete.

Lemma 3.13. Reduction Rule 3.6 is safe.

Proof. Let (G,M) be an instance to which Reduction Rule 3.6 applies. Suppose
v ∈ U is the vertex we remove from the graph, and let u ∈ N(v). (G− {v},M)
is the instance output by Reduction Rule 3.6. We let g(S) = S be the function
which maps a solution of the reduced instance to a solution of the input instance.
Let S ∈ CG(M), and let G′ = G − {v}. In order to show that Reduction Rule
3.6 is safe, we must show that S ∈ CG′(M) as well. We will first show that S is
a M -cvc in G′. Since E(G′) ⊂ E(G), and since S covers E(G), S covers E(G′)
as well. Further, since G[S] is connected, then so is G′[S], and S is therefore
a M -cvc in G′. Suppose S /∈ CG′(M), then there must be some X ⊂ S such
that X is a M -cvc in G′. Observe that E(G) = E(G′)∪{(u, v)}. We know that
X covers E(G′). In order to show that X covers E(G), we must show that X
covers (u, v) as well. Note that by Lemma 3.12, we have u ∈ M , and therefore
u ∈ X. Thus, X covers E(G). Since G′[X] is connected, G[X] is connected as

22

well, and X is therefore a M -cvc in G, which contradicts the minimality of S.
We conclude that when S ∈ CG(M), we must have S ∈ CG′(M), and Reduction
Rule 3.6 is therefore safe.

Claim 3.14. Let I = (G,M) be an instance to which none of rules 3.1-3.6
apply, then δ(G) ≥ 2.

Proof. Suppose not, then there must be some v ∈ V (G) such that d(v) = 1,
since δ(G) ≥ 1, by Claim 3.9. Observe that since Reduction Rule 3.6 does not
apply to I, there exists no x ∈ U such that d(x) = 1. Since δ(G) ≥ 1, we
therefore know that d(x) ≥ 2 whenever x ∈ U . Since d(v) = 1, we must have
v ∈ M . Let u ∈ N(v). By Observation 3.3, M is independent. Thus, since
v ∈M , we must have u ∈ U . We established that d(x) ≥ 2, for any x ∈ U . We
therefore know that d(u) ≥ 2. However, observe that if d(u) ≥ 2, then G− {u}
is disconnected. Since Reduction Rule 3.5 does not apply to I, we must have
u ∈M . We have u ∈ U and u ∈M , and U ∩M = ∅, a contradiction.

3.2.2 Branching Rules

Let I = (G,M) be an instance, and let v ∈ U . When we branch on v, we output
two subproblems I1 and I2, where

I1 = (G,M ∪ {v})
I2 = (G− {v},M ∪N(v))

We shall refer to I1 as the subproblem obtained by selecting v, and to I2 as the
subproblem obtained by discarding v. We will now describe the branching rules
of EnumMcvc.

Branching Rule 3.7. If there exists some vertex v ∈ U such that d(v) ≥ 3
and mv > 0, then branch on v.

Branching Rule 3.8. If there exists some vertex v ∈ U such that d(v) ≥ 3
and there is some u ∈ N(v) such that d(u) = 2, then branch on v.

Branching Rule 3.9. If there exists some v ∈ U such that d(v) = 2 and
mv = 1, then branch on v.

Lemma 3.15. Branching rules 3.7, 3.8 and 3.9 are safe.

Proof. Let B be one of branching rules 3.7, 3.8 or 3.9. Let I = (G,M) be an
instance to which B applies, and let v ∈ U be the vertex we branch on, then
I1 = (G,M∪{v}) and I2 = (G−{v},M∪NG(v)) are the subproblems output by
B, corresponding to selecting v and discarding v, respectively. We let g1(S) = S
be the function which maps a solution of I1 to a solution of I, and g2(S) = S

23

be the function which maps a solution of I2 to a solution of I. Let S ∈ CG(M).
We must show that S ∈ CG(M ∪{v}) or S ∈ CG−{v}(M ∪NG(v)). We consider
two scenarios:

Case 1: v ∈ S. If v ∈ S, then S is a (M ∪{v})-cvc in G. We must show that S
is a minimal (M ∪ {v})-cvc in G. Suppose not, and let X ⊂ S such that
X is a (M ∪ {v})-cvc in G. Since X is a (M ∪ {v})-cvc in G, X certainly
is a M -cvc in G, which contradicts the minimality of S. We must have
S ∈ CG(M ∪ {v}).

Case 2: v /∈ S. If v /∈ S, then we must have NG(v) ⊆ S, otherwise S would not
be a vertex cover in G. Since NG(v) ⊆ S, we have M ∪NG(v) ⊆ S, and
S is therefore a (M ∪NG(v))-cvc in G. Further, S is a (M ∪NG(v))-cvc
in G− {v}, because if v /∈ S, then (G− {v})[S] must be connected, since
G[S] is connected. Suppose for the sake of obtaining a contradiction that
S /∈ CG−{v}(M∪NG(v)), and let X ⊂ S such that X is a (M∪NG(v))-cvc
in G − {v}. Observe that since X is a (M ∪ NG(v))-cvc in G − {v}, we
have M ∪NG(v) ⊆ X, by definition of (M ∪NG(v))-cvc. In particular, we
have NG(v) ⊆ X, which means that for any (u, v) ∈ E(G) we have u ∈ X.
Therefore, since X covers E(G − {v}), X covers E(G) as well. Clearly,
M ⊆ X, and X must be a M -cvc in G, contradicting our assumption that
S was a minimal M -cvc in G. Thus, S ∈ CG−{v}(M ∪NG(v)).

We see that if S ∈ CG(M), then S ∈ CG(M ∪{v}) or S ∈ CG−{v}(M ∪NG(v)),
which is what we had to prove. We conclude that branching rules 3.7, 3.8 and
3.9 are safe.

Branching Rule Analysis

We will now analyze branching rules 3.7, 3.8 and 3.9. Our goal is to obtain a
system of branching vectors. Before we begin to analyze each branching rule
separately, we will make some general observations. Let I = (G,M) be an
instance, and let v ∈ U be some vertex. We are interested in a lower bound on
the decrease in measure as we select or discard v. In order to quantify this lower
bound, we must know how selecting or discarding v affects both the number of
unmarked vertices, and the number of marked vertices.

Suppose we select v, and let I ′ = (G′,M ′) be the resulting subproblem. Clearly,
the number of unmarked vertices decreases by 1, and the number of marked
vertices increases by 1, as the unmarked vertex v is marked. However, for
every u ∈ NG(v) ∩M , we obtain a marked edge (u, v) in G′. Now, recall that
Reduction Rule 3.3 contracts marked edges, and note that a single application
of Reduction Rule 3.3 decreases the number of marked vertices by 1. Since G′

contains mv such edges, Reduction Rule 3.3 is applied repeatedly mv times to

24

I ′, and the number of marked vertices therefore effectively decreases by mv− 1.
Thus, selecting v reduces the measure by w1 + (mv − 1)w2. We note that
w1 + (mv − 1)w2 > 0 for mv ≥ 0, since w1 > w2.

Suppose now that we discard v. Let I ′ = (G′,M ′) be the resulting subproblem.
As v is removed from the graph, the number of unmarked vertices decreases by
1. Moreover, discarding v will mark every unmarked neighbor of v. There are uv
such neighbors, thus the number of unmarked vertices further decreases by uv,
while the number of marked vertices increases by uv. Consequently, discarding
v reduces the measure by (uv + 1)w1−uvw2. Again, note that w1 > w2 implies
that (uv + 1)w1 − uvw2 > 0 for any uv ≥ 0. That is, the decrease in measure is
always positive.

Branching Rule 3.7
Consider an application of Branching Rule 3.7 to some instance I = (G,M),
and let v ∈ U be the vertex we branch on. Since selecting v reduces the measure
by w1 +(mv−1)w2 and discarding v reduces the measure by (uv+1)w1−uvw2,
the branching vectors corresponding to Branching Rule 3.7 are

(w1, 3w1 − 2w2) for uv ≥ 2,mv = 1

(w1 + w2, 2w1 − w2) for uv ≥ 1,mv = 2

(w1 + 2w2, w1) for uv ≥ 0,mv ≥ 3

Branching Rule 3.8
We now analyze Branching Rule 3.8. Let I = (G,M) be an instance to which
Branching Rule 3.8 applies, and let v ∈ U be the vertex we branch on. Recall
that selecting and discarding v reduces the measure by w1 + (mv − 1)w2 and
(uv+1)w1−uvw2, respectively. We know that uv = d(v) and mv = 0. Therefore,
selecting v reduces the measure by at least w1 − w2, and discarding v reduces
the measure by at least (d(v) + 1)w1 − d(v)w2.

We let X be the set of all neighbors of v which have degree exactly 2, that is,

X = {x ∈ N(v) | d(x) = 2}

Claim. X is an independent set.

Proof. Suppose not, then there is some (u,w) ∈ E(G) such that u,w ∈ X.
Since N [u] = N [w] = {u, v, w}, and since d(v) ≥ 3, we know that G − {v} is
disconnected. However, we know that since Branching Rule 3.8 is applicable to
(G,M), Reduction Rule 3.5 is not, which implies that v ∈ M , a contradiction.

25

v

X Y

Figure 3.1: Branching Rule 3.8. Every vertex in Y is either already marked, or
will be marked by Reduction Rule 3.5 after we discard v.

We let n2 = |X|. Let Y =
⋃
x∈X N(x) \ {v}, and observe that for every y ∈ Y ,

we have that G − {v, y} is disconnected, thus we know that either y ∈ M or
that Reduction Rule 3.5 will apply to y if we discard v. See Fig. 3.1. Observe
that since X is independent, we know that Y 6= ∅. We note that since v ∈ U ,
G−{v}must be connected, by Observation 3.4. We can therefore be certain that
Halting Rule 3.2 will not apply to the instance obtained by discarding v. Since
every x ∈ X is incident to some y ∈ Y , we know that for every x ∈ X, after we
discard v, we will obtain a marked edge (x, y), for some y ∈ Y . Further, we know
that every such edge will be contracted by Reduction Rule 3.3. In other words,
after we discard v, we know that X will be removed from the graph. Therefore,
discarding v reduces the measure by at least (d(v) + 1)w1− d(v)w2 +n2w2. We
consider two cases: n2 = d(v) and n2 < d(v).

Case 1: n2 = d(v). Since n2 = d(v) ≥ 3, discarding v reduces the measure by
at least

(d(v) + 1)w1 − d(v)w2 + n2w2 = (d(v) + 1)w1 − d(v)w2 + d(v)w2

= (d(v) + 1)w1

≥ 4w1

The branching vector corresponding to the case of n2 = d(v) is therefore

(w1 − w2, 4w1)

Case 2: n2 < d(v). We know that n2 ≥ 1, by definition of Branching Rule 3.8.
Since n2 ≥ 1 and d(v) ≥ 3, discarding v will reduce the measure by at
least

(d(v) + 1)w1 − d(v)w2 + n2w2 ≥ (d(v) + 1)w1 − d(v)w2 + w2

≥ 4w1 − 2w2

Let I ′ = (G′,M ′) be the instance obtained by selecting v. Since n2 < d(v),
we know that there is some u ∈ NG′(v) that satisfies d(u) ≥ 3 and mu = 1

26

in I ′. Observe that none of rules 3.1-3.6 are applicable to I ′. Consequently,
the algorithm will apply Branching Rule 3.7 to u following the selection of
v. When we select u, the measure is reduced by w1+(mu−1)w2 = w1, and
when we discard u, the measure is reduced by (uu+1)w1−uuw2, which is
at least 3w1 − 2w2. That is, we can (w1, 3w1 − 2w2)-branch immediately
after selecting v. By addition of branching vectors, we obtain (w1 − w2) + w1︸ ︷︷ ︸

select v, then select u

, (w1 − w2) + 3w1 − 2w2︸ ︷︷ ︸
select v, then discard u

, 4w1 − 2w2︸ ︷︷ ︸
discard v

thus, the branching vector corresponding to the case of n2 < d(v) is

(2w1 − w2, 4w1 − 3w2, 4w1 − 2w2)

Branching Rule 3.9
Finally, consider an application of Branching Rule 3.9 to some instance I =
(G,M). Let v ∈ U be the vertex we branch on, and let N(v) = {x, y}, where
x ∈ M and y ∈ U . Note that by Claim 3.14, we have δ(G) ≥ 2. Since
Branching Rule 3.8 does not apply to I, and since δ(G) ≥ 2, we know that
d(y) = 2. Consider the neighborhood of y. Since d(y) = 2, there are two cases:
N(y) = {v, x} (Fig. 3.2), or N(y) = {v, z} for z 6= x (Fig. 3.3).

v

y

x

Figure 3.2: Branching Rule 3.9, case of N(y) = {v, x}.

Let us first consider the case of N(y) = {v, x}. When we select v the measure
first decreases by w1 − w2 as v is marked. Since v has a marked neighbor x,
we know that Reduction Rule 3.3 will contract (v, x) after v is marked, further
reducing the measure by w2. After we contract (v, x), the degree of y will be
1, and Reduction Rule 3.6 will thus remove y from the graph, decreasing the
measure by w1 for a total of 2w1. When we discard v, the measure decreases by
2w1 − w2 as v is removed from the graph and y is marked. Reduction Rule 3.5
then contracts (x, y), reducing the measure by another w2. In total, discarding
v reduces the measure by 2w1, and the branching vector corresponding to the
case of N(y) = {v, x} is thus

(2w1, 2w1)

We now consider the case of N(y) = {v, z}, where z 6= x. When we select v, the
measure is reduced by w1 as v is marked and (v, x) is subsequently contracted

27

xv

y z

Figure 3.3: Branching Rule 3.9, case of N(y) = {v, z}.

by Reduction Rule 3.3. When we discard v, the measure first decreases by
2w1 − w2 as v is removed from the graph and y is marked. Since G− {v, z} is
disconnected, we know that z is either already marked, or that Reduction Rule
3.5 will mark z after we remove v from the graph. In any case, after we remove
v from the graph, we will contract the edge (x, y) and reduce the measure by
w2. Thus, discarding v reduces the measure by at least 2w1, and the branching
vector corresponding to the case of N(y) = {v, z} is therefore

(w1, 2w1)

Branching Vectors
Branching Rule Case Branching Vector

3.7
uv ≥ 2, mv = 1 (w1, 3w1 − 2w2)
uv ≥ 1, mv = 2 (w1 + w2, 2w1 − w2)
uv ≥ 0, mv ≥ 3 (w1 + 2w2, w1)

3.8
n2 = d(v) (w1 − w2, 4w1)
n2 < d(v) (2w1 − w2, 4w1 − 3w2, 4w1 − 2w2)

3.9
N(y) = {v, x} (2w1, 2w1)
N(y) = {v, z} (w1, 2w1)

Table 3.1: Branching rules and their corresponding branching vectors, parame-
terized by w1 and w2.

See Table 3.1 for a summary of branching rules and their corresponding branch-
ing vectors, parameterized by w1 and w2.

3.2.3 Special Instances

When proving the upper bound of 1.7485n on the number of minimal inde-
pendent feedback vertex sets in a graph on n vertices, Agrawal et al. [2, 12]
introduced special instances and showed that there is a one-to-one correspon-
dence between the solutions of a special instance and the spanning trees of an
auxiliary graph corresponding to the special instance. It turns out that special

28

instances are very useful in proving an upper bound on the number of minimal
connected vertex covers of a graph as well.

In this section we shall provide the definition of a special instance, and we shall
show that if (G,M) is an instance to which none of rules 3.1-3.9 apply, then
(G,M) is a special instance. We shall also introduce the final halting rule of
EnumMcvc, which the algorithm will apply to special instances, and we shall
obtain an upper bound on the number of solutions of a special instance. We
note that some of the following lemmata and their proofs have been copied from
Agrawal et al. [12], with some modularization, minor alterations and expanded
calculations added for clarity. More precisely, we have copied lemmata 3.17,
3.27 and 3.28 from [12].

Definition 3.16. Let G be a graph, and let M ⊆ V (G). If G is connected,
and δ(G) ≥ 2, and for every v ∈ U we have d(v) = 2, and M and U are both
independent, then we say that (G,M) is a special instance.

Lemma 3.17. [2, 12] Let I = (G,M) be a special instance, then |U | ≥ |M |.

Proof. Since I is a special instance, we know that d(v) = 2 for every v ∈ U ,
and that d(v) ≥ 2 for every v ∈ M . Further, we know that G is bipartite
with bipartition (U,M), which implies that Σv∈Ud(v) = Σv∈Md(v). Now, since
d(v) = 2 for every v ∈ U , we have Σv∈Ud(v) = 2 |U |, and since d(v) ≥ 2 for
every v ∈M , we have Σv∈Md(v) ≥ 2 |M |. Thus,

2 |U | = Σv∈Ud(v) = Σv∈Md(v) ≥ 2 |M |

That is, |U | ≥ |M |, and the proof is complete.

Corollary 3.18. Let I = (G,M) be a special instance, and let n be the number
of vertices in G, then |M | ≤ 1

2n.

To see that Corollary 3.18 holds, first note that n = |U |+ |M |. Since |U | ≥ |M |,
we have |U |+ |M | ≥ 2 |M |, or equivalently, n ≥ 2 |M |, thus |M | ≤ 1

2n.

Definition 3.19. Let I = (G,M) be a special instance, and let S ⊆ U . In the
context of special instances, we say that

ES = {(x, y) | x, y ∈ N(v), v ∈ S}

is the set of edges corresponding to S.

With respect to Definition 3.19, we keep multi-edges in ES . We note that none
of the edges corresponding to S ⊆ U are present in the special instance itself.
They are, however, present in the special graph corresponding to that special
instance, which we now define.

29

Definition 3.20. Let I = (G,M) be a special instance. We call Gsp = (M,EU)
the special graph corresponding to I.

Lemma 3.21. Let I = (G,M) be a special instance, and let S ⊆ U , then
G[S ∪M] is connected if and only if the graph (M,ES) is connected.

Proof. We will first prove that the forward direction holds. Suppose G[S∪M] is
connected, and letm1,ml ∈M . Let P be a path betweenm1 andml inG[S∪M].
Since M and U are both independent, we have P = (m1, u1,m2, . . . , ul−1,ml),
where ui ∈ U and mi ∈ M . We note that since N(ui) = {mi,mi+1}, we have
(mi,mi+1) ∈ ES , for i = 1, 2, . . . , l − 1. Therefore, by removing all unmarked
vertices from P , we obtain a path P ′ = (m1,m2, . . . ,ml) in (M,ES). Thus, for
every u, v ∈ M there is a path between u and v in (M,ES), and (M,ES) is
therefore connected.

We will now prove that the reverse direction holds as well. Suppose (M,ES) is
connected. Let G′ be the graph obtained by subdividing every edge in (M,ES),
then G′ is connected. Observe that G′ is isomorphic to G[S ∪M]. Therefore,
since G′ is connected, G[S ∪M] is connected as well.

Corollary 3.22. Let (G,M) be a special instance, and let Gsp be the special
graph corresponding to (G,M), then Gsp is a connected graph.

Corollary 3.22 follows from Lemma 3.21, since G = G[U ∪M], and since G is
connected whenever (G,M) is special.

Lemma 3.23. Let I = (G,M) be a special instance, then M is a vertex cover
in G.

Proof. Since I is special a special instance, we have that both U and M are
independent sets. Let e = (u, v) be some edge in G, and observe that since U
and M are independent, e must have one endpoint in U , and the other endpoint
in M . Consequently, every edge in G is incident to M , and M therefore covers
E(G).

Lemma 3.24. Let I = (G,M) be a special instance, and let Gsp = (M,EU) be
the special graph corresponding to I. Let S ⊆ U , then S ∪M ∈ CG(M) if and
only if ES forms a spanning tree in Gsp.

Proof. For the forward direction, suppose S ∪M ∈ CG(M), and that ES does
not form a spanning tree in Gsp . That is, we assume that (M,ES) is not a tree.
Since (M,ES) is not a tree, it must hold that there is some cycle in (M,ES),
since (M,ES) is connected by Lemma 3.21. Let e = (m1,m2) ∈ ES such that
(M,ES) − e is connected, i.e., let e be an edge in Gsp whose removal does not
disconnect Gsp . We know that e exists, since (M,ES) has a cycle. Let u ∈ S

30

such that N(u) = {m1,m2}, that is, let u be the vertex in S corresponding
to the edge e. We note that (M,ES) − e = (M,ES\{u}). Since (M,ES\{u})
is connected, then so is G[(S \ {u}) ∪M], by Lemma 3.21. Now, observe that
by Lemma 3.23, M covers E(G), thus (S \ {u}) ∪M is a M -cvc in G, which
contradicts the minimality of S ∪M in G. The forward direction holds.

For the reverse direction, suppose ES forms a spanning tree in Gsp . We will
show that S ∪M is then a minimal M -cvc in G. By Lemma 3.23, S ∪M is
a vertex cover in G, and by Lemma 3.21, G[S ∪M] is connected as well. It is
therefore sufficient to show that S ∪M is minimal. Suppose not, i.e., suppose
there is some v ∈ S ∪M such that (S ∪M) \ {v} is a M -cvc in G. Clearly,
v ∈ S and (S ∪M) \ {v} = (S \ {v}) ∪M , since otherwise M 6⊆ (S ∪M) \ {v}.
Since G[(S \ {v}) ∪M] is connected, (M,ES\{v}) is also connected. However,
this is impossible, since (M,ES) was a tree by assumption. This concludes the
proof.

Corollary 3.25. Let I = (G,M) be a special instance, and let Gsp be the special
graph corresponding to I, then there is a one-to-one correspondence between
CG(M) and the set of all spanning trees of Gsp.

Corollary 3.25 follows from Lemma 3.24 and the fact that there is a one-to-one
correspondence between U and E(Gsp).

In the following, let EnumST be an algorithm which takes as input a graph H,
and then enumerates all spanning trees of H.

Halting Rule 3.10. If (G,M) is a special instance, then output the set

{S ∪M | ES ∈ EnumST(Gsp), S ⊆ U}

where Gsp is the special graph corresponding to (G,M), and EnumST(Gsp) is
the set of all spanning trees in Gsp.

Lemma 3.26. Halting Rule 3.10 is correct.

Lemma 3.26 follows from Lemma 3.24.

Lemma 3.27. [2, 12] Let H be a connected graph on n ≥ 2 vertices and m
edges, then there are at most

(
2m
n

)n
spanning trees in H.

Proof. Grimmett [16] showed that there are at most 1
n

(
2m
n−1

)n−1

spanning trees

in any connected graph on n vertices and m edges. Thus, in order to prove the
claim, we must show that

1

n

(
2m

n− 1

)n−1

≤
(

2m

n

)n
31

We note that

1

n

(
2m

n− 1

)n−1

= (2m)n · 1

2mn
·
(

1

n− 1

)n−1

and further, that

(2m)n · 1

2mn
·
(

1

n− 1

)n−1

≤ (2m)n ·
(

1

n

)n
⇐⇒

1

2mn
·
(

1

n− 1

)n−1

≤
(

1

n

)n
Since H is a connected graph, we must have m ≥ n− 1, thus

1

2mn
·
(

1

n− 1

)n−1

≤ 1

2n(n− 1)
·
(

1

n− 1

)n−1

=
1

2n
·
(

1

n− 1

)n
Observe that

1

2n
·
(

1

n− 1

)n
≤
(

1

n

)n
⇐⇒(

n

n− 1

)n
≤ 2n ⇐⇒(

n

n− 1

)n−1

≤ 2n

(
n− 1

n

)
⇐⇒(

1 +
1

n− 1

)n−1

≤ 2(n− 1) (3.1)

and that

lim
n→∞

(
1 +

1

n− 1

)n−1

= e

For n = 2, (3.1) clearly holds. For n ≥ 3, we have 2(n− 1) ≥ 4 > e. Therefore,
for n ≥ 2, it holds that

1

n

(
2m

n− 1

)n−1

≤
(

2m

n

)n
and the proof is complete.

Lemma 3.28. [2, 12] Let I = (G,M) be a special instance, and let n = |V (G)|,
then

|CG(M)| ≤
(

2α

1− α

)(1−α)n

where |M | = (1− α)n, and 1
2 ≤ α ≤ 1.

32

Proof. We first note that by Corollary 3.18, we have (1 − α)n ≤ 1
2n, which

implies α ≥ 1
2 . Let ζ(H) denote the number of spanning trees in the graph H.

By assumption |M | = (1 − α)n, therefore |U | = αn. Since Gsp is a connected
graph on |M | = (1− α)n vertices and |U | = αn edges, we have

ζ(Gsp) ≤
(

2αn

(1− α)n

)(1−α)n

=

(
2α

1− α

)(1−α)n

by Lemma 3.27. By Corollary 3.25 there is a one-to-one correspondence between
minimal M -cvc in G and spanning trees in Gsp , thus

|CG(M)| = ζ(Gsp) ≤
(

2α

1− α

)(1−α)n

Claim 3.29. Let I = (G,M) be an instance to which none of rules 3.1-3.9
apply, then I is a special instance.

Proof. We know that G is connected, since Halting Rule 3.2 does not apply to
I. Since Reduction Rule 3.3 does not apply to I, M must be an independent
set. Further, since none of rules 3.1-3.6 are applicable, we know that δ(G) ≥ 2,
by Claim 3.14. Thus, in order to show that I is a special instance, it is sufficient
to show that U is independent, and that d(v) = 2, for every v ∈ U . Recall that
we always assume that M 6= ∅.

Let u ∈M and let v ∈ N(u), then v ∈ U , since M is independent. We know that
d(v) = 2, as otherwise Branching Rule 3.7 would have applied to I. Moreover,
since d(v) = 2 and v has a marked neighbor u, it must hold that mv = 2, since
mv = 1 implies that Branching Rule 3.9 would have applied to I. In other
words, whenever v ∈ U is adjacent to some u ∈M , we know that d(v) = 2 and
that mv = 2. Consequently, since G is connected and M 6= ∅, we know that
d(v) = mv = 2, for every v ∈ U . That is, U is an independent set in which
every vertex has degree exactly 2, which is what we had to show.

3.2.4 An Improved Upper Bound

Lemma 3.30. Let I be an instance, then some rule of EnumMcvc is applicable
to I.

Proof. If one of rules 3.1-3.9 apply to I, then the claim holds, and there is
nothing to prove. Suppose none of rules 3.1-3.9 apply to I, then I is a special
instance, by Claim 3.29. Since I is a special instance, we know that Halting
Rule 3.10 will apply to I. The proof is complete.

33

Lemma 3.31. Let G be a graph on n vertices, and let M ⊆ V (G) such that
M 6= ∅, then |CG(M)| ≤ 1.7076n.

Proof. We have presented a branching algorithm EnumMcvc which enumerates
all minimal M -cvc of a graph G, for non-empty M ⊆ V (G). By lemmata 3.5,
3.7, 3.11 and 3.13, all reduction rules are safe, and by Lemma 3.15, all branching
rules are safe. Further, by lemmata 3.6, 3.8 and 3.26, all halting rules are correct.
We know that for any instance I, some rule of EnumMcvc will apply to I, by
Lemma 3.30.

We let the measure of an instance (G,M) be µ(G,M) = 42 |U | + 25 |M |. We
present the branching vectors of EnumMcvc and their corresponding branching
factors in Table 3.2, for w1 = 42 and w2 = 25. Let x = 1.01282, and note that
for each branching vector ~b, we have τ(~b) ≤ x.

Let (G,M) be an instance to which some halting rule applies. We will show
that |CG(M)| ≤ xµ(G,M). If Halting Rule 3.2 or Halting Rule 3.4 applies to
(G,M), then

|CG(M)| ≤ 1 ≤ xµ(G,M)

Suppose that Halting Rule 3.10 applies to (G,M), and let n be the number of
vertices in G. Let 1

2 ≤ α ≤ 1, and let |M | = (1− α)n. We have

µ(G,M) = 42 |U |+ 25 |M |
= 42αn+ 25(1− α)n

= n(17α+ 25)

By Lemma 3.28,

|CG(M)| ≤ max
1
2≤α≤1

{(
2α

1− α

)(1−α)n
}
≤ max

1
2≤α≤1

(

2α

1− α

) (1−α)µ(G,M)
17α+25

We have max

1
2≤α≤1

{(
2α

1−α

) 1−α
17α+25

}
= 1.01282 ≤ x, thus |CG(M)| ≤ xµ(G,M).

We see that whenever (G,M) is an instance to which some halting rule applies,
it holds that |CG(M)| ≤ xµ(G,M). By Lemma 2.1, we have

|CG(M)| ≤ 1.01282µ(G,M)

Thus, for any graph G on n vertices and M ⊆ V (G) such that M 6= ∅,

|CG(M)| ≤ 1.01282µ(G,M) ≤ 1.0128242n ≤ 1.7076n

This concludes the proof.

34

Branching Vectors
Branching Rule Case Branching Vector cµ c42n

3.7
uv ≥ 2, mv = 1 (42, 76) 1.012178µ 1.6627n

uv ≥ 1, mv = 2 (67, 59) 1.011079µ 1.5885n

uv ≥ 0, mv ≥ 3 (92, 42) 1.010952µ 1.5801n

3.8
n2 = d(v) (17, 168) 1.010743µ 1.5665n

n2 < d(v) (59, 93, 118) 1.012819µ 1.7074n

3.9
N(y) = {v, x} (84, 84) 1.008286µ 1.4143n

N(y) = {v, z} (42, 84) 1.011523µ 1.6181n

Table 3.2: Branching vectors and their corresponding branching factors, for
measure µ(G,M) = 42 |U |+ 25 |M |.

With respect to the proof of Lemma 3.31, we note that we arrived at the weights
w1 = 42 and w2 = 25 of the measure programmatically. That is, for every
possible combination of values of w1 and w2 in the range [1, 100) for which
w1 > w2, we computed the branching factor of every parameterized branching
vector of EnumMcvc, along with the upper bound β on |CG(M)| for a special
instance (G,M). The values of w1 and w2 which attained the smallest maximum
among the branching factors and β were w1 = 42 and w2 = 25.

Theorem 3.32. There are at most 2 · 1.7076n minimal connected vertex covers
in any graph on n vertices.

Theorem 3.32 follows from Lemma 3.31 and Observation 3.2. We note that since
all reduction rules and branching rules of EnumMcvc can be implemented to
run in time polynomial in the measure of the input instance, and since the
spanning trees of a graph can be enumerated with polynomial delay, we can
enumerate all minimal connected vertex covers of an n-vertex graph in time
O∗(1.7076n). We end this chapter with an important observation.

Remark 3.33. Consider Table 3.2, and in particular the branching vector cor-
responding to Branching Rule 3.8, case of n2 < d(v). The branching factor
of this branching vector is substantially worse than the branching factor of any
other branching vector in Table 3.2. Therefore, if we are to attempt further im-
provements on the upper bound, then we must somehow eliminate this branching
vector from the system.

35

Chapter 4

Improved Combinatorial
Bounds for the Independent
Feedback Vertex Set
Problem

4.1 Introduction

In this chapter we present improved combinatorial bounds on the maximum
number of minimal independent feedback vertex sets in a graph. We improve
the lower bound and the upper bound on the maximum number of minimal
independent feedback vertex sets in a graph in Section 4.2 and Section 4.3,
respectively.

4.2 Improving the Lower Bound

By virtue of the following example from [2], Agrawal et al. showed that the
maximum number of minimal independent feedback vertex sets in any graph
on n vertices is at least 3n/3. Let n be a positive multiple of 3, and let G be a
graph on n vertices such that G has n/3 connected components, each of which
induces a K3. In order to construct a minimal independent feedback vertex set
in G we must select exactly one vertex from each component of G, and within
each component there are 3 choices for which vertex to select. Thus, as there

36

are n/3 components in G, there are in total 3n/3 minimal independent feedback
vertex sets in G. We provide an illustration of the graph G in Fig. 4.1.

. . .

C1 C2 Cn/3

Figure 4.1: The depicted graph G has 3n/3 minimal independent feedback vertex
sets, where n = |V (G)|. Here, Ci denotes the i’th component of G.

Let H be a graph on a vertices, and let x be the number of minimal independent
feedback vertex sets in H. Further, let G be a graph on n = ta vertices, such
that G has t connected components C1, C2, . . . , Ct, where G[Ci] is isomorphic
to H, for i = 1, 2, . . . , t. Any minimal independent feedback vertex set in G
has the form S =

⋃t
i=1 Si, where Si ⊆ Ci is one of the x minimal independent

feedback vertex sets in G[Ci]. In other words, in order to obtain a minimal
independent feedback vertex set S in G, one must select a minimal independent
feedback vertex set Si from each individual component Ci of G. Since each
component Ci presents x choices for Si, and since there are t components, there
are in total xt = xn/a = (x1/a)n minimal independent feedback vertex sets in
G. For a graph G on a > 0 vertices, we define

ρ(G) = x1/a

where x is the number of minimal independent feedback vertex sets in G. We
make the following observation.

Observation 4.1. If there exists some graph G on a > 0 vertices such that
ρ(G) ≥ c, for some constant c, then the maximum number of minimal indepen-
dent feedback vertex sets in any graph on n vertices is at least cn.

nauty and Traces are programs for computing automorphism groups of both
undirected an directed graphs. Using the geng program contained in the gtools
program suite included in the nauty and Traces package, we generated the set
of all non-isomorphic graphs on n ≤ 11 vertices, and then maximized ρ(·) over
this set, using brute force to count the number of minimal independent feedback
vertex sets in each graph. We present the graph which attained the maximum
in Lemma 4.2. We refer the reader to [17] for a description of the algorithms
behind nauty and Traces.

Lemma 4.2. There exists a graph G which attains ρ(G) ≥ 1.4752.

37

Proof. Let w ∈ N such that w ≥ 2, and let G = (V,E) be a graph, where

V = {L,R} ∪
w⋃
i=1

{li, ri}

E =

w⋃
i=1

{(L, li), (li, ri), (ri, R)}

We depict G in Fig. 4.2. Let S be a minimal independent feedback vertex set in
G which is disjoint from {L,R}, then there is some j such that {lj , rj}∩S = ∅,
and for every i 6= j we have |S ∩ {li, ri}| = 1. There are w choices for j,
and for each choice of j, there are 2w−1 ways in which S may intersect with
the remaining {li, ri}. Thus, there are in total w · 2w−1 minimal independent
feedback vertex sets in G which are disjoint from {L,R}. We note that the
number of vertices in G is 2 + 2w. If we let w = 12, then ρ(G) ≥ 1.4752. This
concludes the proof.

Regarding the proof of Lemma 4.2, a natural way of arriving at w = 12 is to

maximize the function (w · 2w−1)
1

2+2w . We have

max
w≥2

{
(w · 2w−1)

1
2+2w

}
≈ 1.47526

at w ≈ 11.832.

L R

l1

l2

lw

r1

r2

rw

...

Figure 4.2: ρ(G) ≥ 1.4752 for w = 12.

Ryland [11] discovered a graph which can be used to show that 1.51978n is a
lower bound on the maximum number of minimal connected vertex covers in

38

any graph on n vertices. Through personal communication, we learned that
Ryland had arrived at the graph presented in Lemma 4.2 independently, and
further discussion revealed that this graph had equally many minimal connected
vertex covers and minimal independent feedback vertex sets, which we found
interesting. We learned that using the graph from Lemma 4.2, one can construct
a larger graph G which can be used to show an improved lower bound on
the maximum number of minimal connected vertex covers in a graph. Out of
curiosity, we decided to evaluate ρ(G), and we were enthusiastic to see that
ρ(G) ≥ 1.5067. We present the graph G in Lemma 4.3.

Lemma 4.3. There exists a graph G which attains ρ(G) ≥ 1.5067.

Proof. Let w ∈ N such that w ≥ 2, and let G = (V,E) be a graph, where

V = {U,D,L,R} ∪
4⋃
i=1

w⋃
j=1

{lij , rij}

E = EL ∪ ER

EL =

w⋃
j=1

{(U, l1j), (l1j , l2j), (l2j , L), (L, l3j), (l3j , l4j), (l4j , D)}

ER =

w⋃
j=1

{(U, r1j), (r1j , r2j), (r2j , R), (R, r3j), (r3j , r4j), (r4j , D)}

We depict G in Fig. 4.3. We let

V1 = {U,R} ∪
w⋃
i=1

{r1i, r2i}

V2 = {U,L} ∪
w⋃
i=1

{l1i, l2i}

V3 = {D,L} ∪
w⋃
i=1

{l3i, l4i}

V4 = {D,R} ∪
w⋃
i=1

{r3i, r4i}

and we let Gi = G[Vi], for i = 1, 2, 3, 4. Let H be the graph presented in the
proof of Lemma 4.2 such that H contains 2 + 2w vertices, and observe that
Gi is isomorphic to H, for i = 1, 2, 3, 4. We shall not count every minimal
independent feedback vertex set in G, but rather we shall provide a sufficient
lower bound on the number of minimal independent feedback vertex sets in G.
Let M = {U,D,L,R}, and let S be a minimal independent feedback vertex set
in G which is disjoint from M , then there must be some 1 ≤ i ≤ 4 such that
the following holds.

39

a) There exists X ⊆ Vi\M such that Gi−X is disconnected, X is independent,
and X ⊆ S.

b) For every j 6= i, there exists a minimal independent feedback vertex set Sj
in Gj such that Sj ∩M = ∅, and Sj ⊆ S.

c) S = X ∪
⋃
j 6=i Sj .

Observe that if (a) does not hold, then there exists vi ∈ V (G) \ S such that

(R, v1, v2, U, v3, v4, L, v5, v6, D, v7, v8, R)

is a cycle in G − S. Further, note that if (b) does not hold, then there exists
some j 6= i for which Gj−S contains a cycle, which implies that G−S contains
a cycle as well. Thus, in order to obtain a minimal independent feedback vertex
set in G which is disjoint from M , we must choose some 1 ≤ i ≤ 4, and then
some independent set X ⊆ Vi \M such that Gi − X is disconnected. There
are 2w ways to choose such a set X from Vi \M . Thereafter, for all j 6= i,
we must choose a minimal independent feedback vertex set Sj in Gj such that
Sj∩M = ∅. Since Gj is isomorphic to H, there are w·2w−1 minimal independent
feedback vertex sets of Gj which are disjoint from M . We see that there are in
total

4 · 2w · (w · 2w−1)3 = 24w−1 · w3

minimal independent feedback vertex sets in G which are disjoint from M .
We note that the number of vertices in G is 4 + 8w. If we let w = 6, then
ρ(G) ≥ 1.5067. This concludes the proof.

With respect to the proof of Lemma 4.3, we note that we obtained w = 6 by

maximizing the function (24w−1 · w3)
1

4+8w .

40

U

D

L R

l11

l21

l31

l41

l1w

l2w

l3w

l4w

r11

r21

r31

r41

r1w

r2w

r3w

r4w

. . .

. . .

. . .

. . .

Figure 4.3: ρ(G) ≥ 1.5067 for w = 6.

Theorem 4.4. The maximum number of minimal independent feedback vertex
sets in any graph on n vertices is at least 1.5067n.

Theorem 4.4 follows from Lemma 4.3 and Observation 4.1.

4.3 Improving the Upper Bound

In this section we present an improved upper bound on the maximum number
of minimal independent feedback vertex sets in a graph.

Definition 4.5. Let G be a graph, and let M ⊆ V (G). Let S be an independent
feedback vertex set in G. If S ∩M = ∅, then S is an M -ifvs in G.

If S is an M -ifvs in G and there is no X ⊂ S such that X is an M -ifvs in G, then
S is a minimal M -ifvs in G. We denote the set of all minimal M -ifvs of a graph
G by IG(M). We note that IG(∅) is then the set of all minimal independent
feedback vertex sets in the graph G.

Definition 4.6. Let G be a multigraph, and let M ⊆ V (G). If it holds that for
every multi-edge (u, v) ∈ E(G) we have u ∈ M or v ∈ M , and that for every
self-loop (v, v) ∈ E(G) we have v ∈ M , then we will say that (G,M) is a nice
instance.

We note that for any simple graph G and M ⊆ V (G), (G,M) is a nice instance.

41

Observation 4.7. If there is some constant c ≥ 1 such that |IG(M)| ≤ cn for
any nice instance (G,M), where n = |V (G)|, then there are at most cn minimal
independent feedback vertex sets in any simple graph on n vertices.

In order to upper bound the maximum number of minimal independent feed-
back vertex sets in a graph, we will obtain an upper bound on |IG(M)|, for
any nice instance (G,M). We will obtain our upper bound by applying the
approach described in Section 2.6.1. Thus, we dedicate the remainder of this
chapter to constructing a branching algorithm EnumMifvs which takes as input
a nice instance (G,M) and enumerates all minimal M -ifvs of G. The algorithm
EnumMifvs builds upon the algorithm of Agrawal et al. [2, 12].

We adopt the notation of Agrawal et al. [2]. Let I = (G,M) be an instance.
We let U = V (G) \ M . We shall refer to vertices in M as marked vertices,
and to vertices in U as unmarked vertices, and we shall refer to edges for which
both endpoints are marked as marked edges. We let mv = |N(v) ∩M |, and
uv = |N(v)| −mv, for any v ∈ V (G). We define the measure of I to be

µ(I) = µ(G,M) = w1 |U |+ w2 |M |

where w1, w2 ∈ N such that w1 > w2 > 0. Note that we are using the same
notation and measure as in Section 3.2. In this section however, if we have
v ∈ M , then v cannot belong to the solution, whereas in Section 3.2, if v ∈ M
then v must belong to the solution. We will be choosing values for w1 and w2

at the end of this section which will differ from the values chosen at the end of
Section 3.2.

We apply the rules of EnumMifvs in ascending order, according to the num-
bering of each rule. In the following, unless we state otherwise, we shall assume
that any instance (G,M) under consideration is a nice instance. Since we are
working with multigraphs, we let G/e denote the graph obtained from G by
contracting the edge e and keeping all multi-edges and self-loops. Observe that
this is in contrast to Section 3.2, where any multi-edge or self-loop obtained by
contracting an edge was discarded.

4.3.1 Reduction Rules and Halting Rules

We will now describe the reduction rules and the halting rules of EnumMifvs.

Reduction Rule 4.1. If there exists some v ∈ V (G) such that d(v) ≤ 1, and
there is no edge e incident to v such that e is a self-loop or a multi-edge, then
replace the instance (G,M) with the instance (G− {v},M).

An application of Reduction Rule 4.1 removes a single vertex v from the graph.
If v ∈ U , then the measure is reduced by w1, and if v ∈M , then the measure is

42

reduced by w2. Thus, an application of Reduction Rule 4.1 reduces the measure
by at least w2.

Reduction Rule 4.2. If there is some edge (u, v) ∈ E(G) such that u, v ∈M ,
then let G′ = G/(u, v), and let M ′ = (M \ {u, v}) ∪ {w}, where w is the vertex
obtained by contracting (u, v), and replace the instance (G,M) with the instance
(G′,M ′).

Since Reduction Rule 4.2 contracts a single marked edge, an application of
Reduction Rule 4.2 will reduce the measure by w2.

Observation 4.8. If (G,M) is an instance to which rules 4.1-4.2 do not apply,
then M is an independent set.

Reduction Rule 4.3. If there is some v ∈ U for which there is some u ∈
M such that (u, v) is a multi-edge, then replace the instance (G,M) with the
instance (G− {v},M ∪N(v)).

An application of Reduction Rule 4.3 will reduce the measure by at least w1.

Halting Rule 4.4. If G[M] contains a cycle, output ∅.

Halting Rule 4.5. If G is acyclic, then output {∅}.

Halting Rule 4.6. If G contains K4 as an induced subgraph, then output ∅.

Claim 4.9. If (G,M) is an instance to which rules 4.1-4.4 do not apply, then
G contains no self-loops and no multi-edges, and δ(G) ≥ 2.

Proof. We shall first prove that (G,M) contains no self-loops and no multi-
edges. Suppose not, and let e ∈ E(G) such that e is a self-loop or a multi-edge.
Recall that we always assume that (G,M) is a nice instance. Let us first assume
that e is a self-loop. We let e = (v, v), for some v ∈ V (G). Since (G,M) is a nice
instance, we know that v ∈M . However, if v ∈M , then G[M] contains a cycle
(v, v). We know that this is not possible, because G[M] must be acyclic, since
Halting Rule 4.4 is not applicable to (G,M). Therefore, we must have v ∈ U ,
which contradicts our assumption that (G,M) is a nice instance. Since e cannot
be a self-loop, e must be a multi-edge. We let e = (u, v) for some u, v ∈ V (G).
Since (G,M) is a nice instance, we know that u ∈ M or v ∈ M . If u, v ∈ M ,
then G[M] contains a cycle (u, v, u), another contradiction. Thus, without loss
of generality we must have u ∈ M and v ∈ U . However, if u ∈ M and v ∈ U ,
and (u, v) is a multi-edge, then Reduction Rule 4.3 would be applicable to
(G,M), which it is not. We must therefore have u, v ∈ U , which contradicts our
assumption that (G,M) was a nice instance. We see that when (G,M) is an
instance to which rules 4.1-4.4 do not apply, then G contains no self-loops and
no multi-edges. Now, observe that since there are no self-loops and no multi-
edges in G, and since Reduction Rule 4.1 is not applicable to (G,M), we know

43

that δ(G) ≥ 2, because if there was some v ∈ V (G) such that d(v) ≤ 1, then
there would be no self-loop or multi-edge incident to v, and hence Reduction
Rule 4.1 would be applicable to (G,M), contradicting our assumption that none
of rules 4.1-4.4 apply to (G,M).

We shall now prove that reduction rules 4.1, 4.2 and 4.3 are safe, and that
halting rules 4.4, 4.5 and 4.6 are correct.

Lemma 4.10. Reduction Rule 4.1 is safe.

Proof. Let (G,M) be an instance to which Reduction Rule 4.1 applies, and let
v ∈ V (G) be the vertex we remove from the graph, then (G − {v},M) is the
instance output by Reduction Rule 4.1 when applied to (G,M). We let g(S) = S
be the function which maps a solution of the reduced instance to a solution of
the input instance. Let S ∈ IG(M). In order to show that Reduction Rule 4.1
is safe, we must show that S ∈ IG−{v}(M). We know that S is an M -ifvs in
G−{v}, since (G−{v})−S must be acyclic whenever G−S is acyclic. We must
show that S is a minimal M -ifvs in G− {v}. Suppose not, and let X ⊂ S such
that X is an M -ifvs in G − {v}. Observe that since dG(v) ≤ 1 and there is no
edge e which is incident to v such that e is a self-loop or a multi-edge, v cannot
participate in any cycle in G. Since X is an M -ifvs in G− {v}, (G− {v})−X
is acyclic. However, so is G−X, because v does not participate in any cycle in
G. Consequently, X is an M -ifvs in G as well, which contradicts the minimality
of S in G. Thus, we must have S ∈ IG−{v}(M). We conclude that Reduction
Rule 4.1 is safe.

Lemma 4.11. Let G be a graph, and let (u, v) ∈ E(G), then G is acyclic if and
only if G/(u, v) is acyclic.

Proof. We let w be the vertex obtained by contracting (u, v). We shall first
show that the forward direction holds. Suppose that G is acyclic, but that
G/(u, v) contains some cycle C. If C does not contain w, then C is a cycle in
G as well, contradicting our assumption that G is acyclic. We therefore assume
that C does contain w. If C is a self-loop (w,w), then either (u, u) or (v, v) is a
self-loop in G, or (u, v) is a multi-edge in G. In either case, G contains a cycle,
a contradiction. If C is a multi-edge between w and some x ∈ NG/(u,v)(w), then
one of (u, x, u), (v, x, v) and (u, v, x, u) must be a cycle in G. Thus, C is neither
a self-loop nor a multi-edge. Let x and y be the neighbors of w in C, and note
that x, y ∈ NG(u) ∪NG(v). There are two cases which we must consider:

Case 1: x, y ∈ NG(u), or x, y ∈ NG(v). If x, y ∈ NG(u), then we obtain a cy-
cle in G by replacing w with u in C. The same argument holds for the
case of x, y ∈ NG(v); simply replace w with v instead of u.

44

Case 2: Without loss of generality x ∈ NG(u) and y ∈ NG(v). We obtain
a cycle in G by replacing w with the edge (u, v) in C.

We provide an illustration of the latter case in Fig. 4.4. Our assumption that
G/(u, v) contains a cycle contradicts our assumption that G is acyclic, and
G/(u, v) must therefore be acyclic.

We shall now show that the reverse direction holds as well. Suppose that
G/(u, v) is acyclic, but that G contains some cycle C. The cycle C either
contains only u or only v, or it contains both u and v, because if neither u nor
v is in C, then C is a cycle in G/(u, v) as well. We must consider two cases:

Case 1: C contains exactly one of u and v. Suppose C contains u, but not
v. We obtain a cycle in G/(u, v) by replacing u with w in C. Correspond-
ingly, if C contains v, but not u, replacing v with w in C yields a cycle in
G/(u, v).

Case 2: C contains both u and v. Observe that it is safe to assume that
(u, v) is not a multi-edge, because if it was, then we would have a self-
loop (w,w) in G/(u, v), which cannot be the case, since G/(u, v) is acyclic.
Thus, there must be some path between u and v that does not use the edge
(u, v). We know that there is no z ∈ V (G) for which (u, z, v) is a path,
because this would imply that (w, z) is a multi-edge in G/(u, v). Thus, let
x ∈ NG(u) and y ∈ NG(v) such that (u, x, . . . , y, v) is a path between u
and v, and note that (x, . . . , y) is a path between x and y in G/(u, v). Since
(w, x), (w, y) ∈ E(G/(u, v)), and since there is a path (x, . . . , y) between
x and y in G/(u, v), (w, x, . . . , y, w) is a cycle in G/(u, v).

Our assumption thatG contains a cycle contradicts our assumption thatG/(u, v)
is acyclic, and G must therefore be acyclic. Both the forward direction and the
reverse direction of the proof hold, and the proof is complete.

45

w

x y

(a) The cycle C in G/(u, v).

u v

x y

(b) The cycle obtained in G by re-
placing w with the edge (u, v) in
C.

Figure 4.4: If x ∈ NG(u) and y ∈ NG(v), then we obtain a cycle in G by
replacing w with the edge (u, v) in C.

Lemma 4.12. Reduction Rule 4.2 is safe.

Proof. Let (G,M) be an instance to which Reduction Rule 4.2 applies. Suppose
(u, v) ∈ E(G) is the edge we contract, then u, v ∈ M . Let w be the vertex
obtained by contracting the edge (u, v), then

(G′,M ′) = (G/(u, v), (M \ {u, v}) ∪ {w})

is the instance obtained by contracting (u, v). We let g(S) = S be the function
which maps a solution of the reduced instance to a solution of the input instance.
Let S ∈ IG(M). In order to show that Reduction Rule 4.2 is safe, we must show
that S ∈ IG′(M ′) as well.

We will first show that S is an M ′-ifvs in G′. We note that since S is disjoint
from M , and since w /∈ S, S is disjoint from M ′ as well. Since u, v, w /∈ S, we
have G[S] = G′[S]. Therefore, since S is an independent set in G, S must also
be an independent set in G′. Now, observe that since u, v /∈ S, we have that

(G/(u, v))− S = (G− S)/(u, v)

That is, G′ − S = (G − S)/(u, v). Since G − S is acyclic, (G − S)/(u, v) must
be acyclic as well, by Lemma 4.11. Thus, G′ − S is acyclic, and S is an M ′-ifvs
in G′.

We must show that S is a minimal M ′-ifvs in G′. Suppose not, and let X ⊂ S
such that X is an M ′-ifvs in G′. We will show that X must be an M -ifvs in G as
well, which will contradict the minimality of S. We know that S is independent
in G, and that S ∩M = ∅. Since X ⊂ S, it then follows that X is independent
in G, and that X ∩M = ∅. Thus, in order to show that X is an M -ifvs in G,
we need only show that G −X is acyclic. Since u, v /∈ S and X ⊂ S, we must
have u, v /∈ X, and thus

(G/(u, v))−X = (G−X)/(u, v)

46

I.e., G′ −X = (G −X)/(u, v). Since G′ −X is acyclic, (G −X)/(u, v) is also
acyclic. Further, since (G − X)/(u, v) is acyclic, it must hold that G − X is
acyclic, by Lemma 4.11. We see that X is an M -ifvs in G, which contradicts our
assumption that S is a minimal M -ifvs in G. Thus, we must have S ∈ IG′(M ′).
We conclude that Reduction Rule 4.2 is safe.

Lemma 4.13. Reduction Rule 4.3 is safe.

Proof. Let (G,M) be an instance to which Reduction Rule 4.3 applies, and let
v ∈ U be the vertex we remove from the graph, then (G − {v},M ∪ N(v)) is
the instance output by Reduction Rule 4.3 when applied to (G,M). We let
g(S′) = S′ ∪ {v} be the function which maps a solution of the reduced instance
to a solution of the input instance. Let S ∈ IG(M), let G′ = G − {v}, and let
M ′ = M∪N(v). In order to show that Reduction Rule 4.3 is safe, we must show
that there exists some S′ ∈ IG′(M ′) such that g(S′) = S. Let u ∈ N(v) ∩M
such that (u, v) is a multi-edge. Since S∩M = ∅, we must have v ∈ S, otherwise
(u, v, u) would be a cycle in G − S, contradicting our assumption that S is a
feedback vertex set in G. Now, let S′ = S \ {v}, and note that g(S′) = S.
We will show that S′ ∈ IG′(M

′). We will first show that S′ is an M ′-ifvs in
G′. Since v ∈ S and S is independent, we have S ∩ N(v) = ∅. Thus, since
S ∩M = ∅, we have S ∩ (M ∪ N(v)) = S ∩M ′ = ∅. Finally, since S′ ⊂ S,
we have S′ ∩M ′ = ∅ as well. Clearly, since S is independent, then so is S′. In
order to show that S′ is an M ′-ifvs in G′, what remains is to show that S′ is a
feedback vertex set in G′. Observe that

G− S = (G− {v})− (S \ {v}) = G′ − S′ (4.1)

Thus, G − S = G′ − S′, which implies that G′ − S′ is acyclic. We see that S′

is an M ′-ifvs in G′. Suppose S′ /∈ IG′(M ′), then there must be some X ′ ⊂ S′

such that X ′ is an M ′-ifvs in G′. Let X = g(X ′) = X ′∪{v}. Since X ′ ⊂ S′, we
have X ⊂ S. Observe that (4.1) holds when we replace S and S′ with X and
X ′, respectively. Thus, since G′ −X ′ is acyclic, G−X is acyclic as well, which
contradicts our assumption that S is a minimal M -ifvs in G. We conclude that
S′ ∈ IG′(M ′), and therefore also that Reduction Rule 4.3 is safe.

Lemma 4.14. Halting Rule 4.4 is correct.

Proof. Let (G,M) be an instance to which Halting Rule 4.4 applies, then G[M]
contains a cycle. In order to show that Halting Rule 4.4 is correct, we must
show that IG(M) = ∅. Suppose not, and let S ∈ IG(M). Consider G−S. Since
S ∩M = ∅, G[M] is a subgraph of G − S, and any cycle in G[M] is therefore
also a cycle in G − S. Thus, since G[M] contains a cycle, so does G − S, a
contradiction. S cannot exist, and we must have IG(M) = ∅.

Lemma 4.15. Halting Rule 4.5 is correct.

47

Proof. Let (G,M) be an instance to which Halting Rule 4.5 applies, then G is
acyclic. In order to show that Halting Rule 4.5 is correct, we must show that
IG(M) = {∅}. Clearly, if G is acyclic, then G−∅ is acyclic, and thus ∅ ∈ IG(M).
Since ∅ ∈ IG(M), there cannot exist any S 6= ∅ such that S ∈ IG(M), since
∅ ⊂ S. Thus, IG(M) = {∅}, and Halting Rule 4.5 is correct.

Lemma 4.16. Halting Rule 4.6 is correct.

Proof. Let (G,M) be an instance to which Halting Rule 4.6 applies, then G
contains K4 as an induced subgraph. In order to show that Halting Rule 4.6
is correct, we must show that IG(M) = ∅. Suppose not, and let S ∈ IG(M).
Let C ⊆ V (G) such that G[C] is isomorphic to K4. Observe that since S
is independent, |S ∩ C| ≤ 1. Suppose S ∩ C = ∅, then G[C] is a subgraph of
G−S. However, G[C] is isomorphic to K4, and G−S therefore contains a cycle,
a contradiction. Suppose instead that S ∩ C = {x}, and note that G[C \ {x}]
is isomorphic to K3. Since G[C \ {x}] is a subgraph of G− S, G− S contains a
cycle. We have S ∈ IG(M), yet in every scenario G−S contains a cycle. Thus,
S cannot exist, and IG(M) must therefore be empty.

4.3.2 Branching Rules

Let I = (G,M) be an instance, and let v ∈ U . When we branch on v, we output
two subproblems I1 and I2, where

I1 = (G− {v},M ∪N(v))

I2 = (G,M ∪ {v})

We shall refer to I1 as the subproblem obtained by selecting v, and to I2 as the
subproblem obtained by discarding v. We will now describe the branching rules
of EnumMifvs.

Branching Rule 4.7. If there exists some vertex v ∈ U such that d(v) ≥ 3
and mv > 0, then branch on v.

Branching Rule 4.8. If there exists some vertex v ∈ U such that d(v) ≥ 3
and there is some u ∈ N(v) such that d(u) = 2, then branch on v.

Branching Rule 4.9. If there exists some v ∈ U such that d(v) ≥ 3 and
N [v] 6= Cv, where Cv is the connected component of G containing v, then branch
on v.

Branching Rule 4.10. If there exists some v ∈ U such that d(v) = 2 and
uv > 0, then branch on v.

Lemma 4.17. Branching rules 4.7, 4.8, 4.9, and 4.10 are safe.

48

Proof. Let B be one of branching rules 4.7, 4.8, 4.9 or 4.10. Let I = (G,M) be
an instance to which B applies, and let v ∈ U be the vertex we branch on, then
B outputs I1 = (G− {v},M ∪NG(v)) when we select v, and I2 = (G,M ∪ {v})
when we discard v. We let g1(S′) = S′ ∪ {v} be the function which maps a
solution of I1 to a solution of I, and g2(S) = S be the function which maps a
solution of I2 to a solution of I. Let S ∈ IG(M). We must show that there
either exists some S′ ∈ IG−{v}(M ∪ NG(v)) such that g1(S′) = S, or that we
have S ∈ IG(M ∪ {v}). There are two cases which we must consider:

Case 1: v ∈ S. Let S′ = S \ {v}, and note that g1(S′) = S. We will show that
S′ ∈ IG−{v}(M∪NG(v)). We will first show that S′ is an (M∪NG(v))-ifvs
in G − {v}. Now, if G − S is acyclic, then so is (G − {v}) − S′, and S′

is therefore a feedback vertex set in G − {v}. Since S is independent, S′

is independent as well. Furthermore, since v ∈ S, we know that S must
be disjoint from NG(v), and thus that S′ must be disjoint from NG(v) as
well. Thus, since S ∩M = ∅, we have S′ ∩M ∪NG(v) = ∅. We see that
S is an (M ∪ NG(v))-ifvs in G − {v}. We must now show that S′ is a
minimal (M ∪NG(v))-ifvs in G−{v}. Suppose not, and let X ′ ⊂ S′ such
that X ′ is a (M ∪NG(v))-ifvs in G−{v}. Let X = g1(X ′) = X ′∪{v}, and
note that since X ′ ⊂ S′, we have that X ⊂ S. We shall show that X is
an M -ifvs in G, which will contradict our assumption that S is a minimal
M -ifvs in G. Observe that since

(G− {v})−X ′ = G−X ′ ∪ {v} = G−X

and since (G−{v})−X ′ is acyclic, G−X is acyclic as well. Since v ∈ S,
we know that v /∈ M . Therefore, since X ′ ∩ (M ∪ NG(v)) = ∅, we have
X ∩ (M ∪ NG(v)) = ∅ as well. Since X ∩ NG(v) = ∅, and since X ′ is
independent, X must also be independent. We see that X is an M -ifvs in
G, a contradiction. We must have S ∈ IG−{v}(M ∪NG(v)).

Case 2: v /∈ S. Since S is disjoint from M , and since v /∈ S, we know that S is
disjoint from M ∪{v} as well. Thus, S is an (M ∪{v})-ifvs in G. Suppose
S /∈ IG(M ∪ {v}), and let X ⊂ S such that X is an (M ∪ {v})-ifvs in G.
Clearly, if X is an (M ∪ {v})-ifvs in G, then X is an M -ifvs in G as well,
contradicting our assumption that S is a minimal M -ifvs in G. We must
have S ∈ IG(M ∪ {v}).

We see that if S ∈ IG(M), then there either exists some S′ ∈ IG−{v}(M∪NG(v))
such that g1(S′) = S, or we have S ∈ IG(M ∪ {v}), which is what we had to
prove. We conclude that branching rules 4.7, 4.8, 4.9 and 4.10 are safe.

Claim 4.18. Let I = (G,M) be an instance to which none of rules 4.1-4.7
apply, and let v ∈ U such that d(v) ≥ 3, then none of rules 4.1-4.6 will apply to
the instance (G,M ∪ {v}).

49

Proof. We let I ′ = (G,M∪{v}). We will give a proof by contradiction. Suppose
some rule R among rules 4.1-4.6, does apply to I ′. Observe that since we were
unable to apply Branching Rule 4.7 to I, we know that mv = 0. Clearly, R
cannot be Reduction Rule 4.1 or Reduction Rule 4.3, because by Claim 4.9, G
contains no self-loops and no multi-edges, and δ(G) ≥ 2. Furthermore, rule R
cannot be Reduction Rule 4.2, because mv = 0. Since G[M] is acyclic, and since
G contains no self-loops and no multi-edges, and further, since mv = 0, we know
that G[M ∪ {v}] must be acyclic as well. In other words, R cannot be Halting
Rule 4.4. Lastly, we know that G is not acyclic, and that G does not contain
K4 as an induced subgraph, because neither Halting Rule 4.5 nor Halting Rule
4.6 were applicable to I. Therefore, halting rules 4.5 and 4.6 cannot be applied
to I ′ either. We have exhausted all cases, and see that none of rules 4.1-4.6 can
be applied to I ′.

Claim 4.19. Let I = (G,M) be an instance to which none of rules 4.1-4.8
apply, and let v ∈ U . If d(v) ≥ 3, then δ(G[Cv]) ≥ 3, where Cv is the connected
component of G containing v.

Proof. For the sake of obtaining a contradiction, let us assume that there is some
vertex u ∈ Cv such that d(u) < 3. We know that δ(G) ≥ 2, from Claim 4.9, and
therefore also that d(u) = 2. Let P be a path between u and v, and let x be the
first unmarked vertex along P which has degree at least 3. Note that x must
exist, since the vertex v is in P . Consider the vertex z occuring immediately
before x in P . Since x was the first unmarked vertex of degree at least 3 to occur
along P , we know that either z ∈M , or d(z) = 2. However, note that if z ∈M ,
then Branching Rule 4.7 is applicable to x, and if d(z) = 2, then Branching Rule
4.8 is applicable to x. By assumption, none of rules 4.1-4.8 are applicable to I,
and we therefore know that we must have z ∈ U , and that d(z) ≥ 3. However,
this contradicts our assumption that x was the first unmarked vertex of degree
at least 3 to occur along P . We conclude that δ(G[Cv]) ≥ 3, and the proof is
complete.

Claim 4.20. Let I = (G,M) be an instance to which none of rules 4.1-4.9
apply, then we have d(v) = 2, for every vertex v ∈ U .

Proof. By Claim 4.9, we have δ(G) ≥ 2. Suppose there is some vertex v ∈ U
such that d(v) ≥ 3, and let Cv be the connected component G containing v.
By Claim 4.19, we must have δ(G[Cv]) ≥ 3. Since Branching Rule 4.9 does not
apply to I, there can be no vertex u ∈ Cv such that u is not universal in Cv.
That is, for every u ∈ Cv we have N [u] = Cv. Since δ(G[Cv]) ≥ 3, G[Cv] must
therefore contain K4 as an induced subgraph. This is not possible, because
Halting Rule 4.6 would then have applied to I. Our assumption that there is
some v ∈ U such that d(v) ≥ 3 leads to a contradiction. Thus, as δ(G) ≥ 2, we
conclude that for every v ∈ U we have d(u) = 2.

50

Branching Rule Analysis

We will now analyze branching rules 4.7, 4.8, 4.9 and 4.10. We note that if
one of branching rules 4.7, 4.8, 4.9 or 4.10 can be applied to (G,M), then rules
4.1-4.6 cannot. We therefore know that if we are able to apply some branching
rule to (G,M), then by Observation 4.8, M is an independent set, and by Claim
4.9, G contains no self-loops and no multi-edges, and δ(G) ≥ 2.

Let I = (G,M) be an instance, and let v ∈ U be some vertex. When we select v,
v is removed from the graph, and the neighborhood of v is marked. Thus, when
we select v, the measure is reduced by (uv +1)w1−uvw2. When we discard v, v
is marked, and we obtain a marked edge (u, v) for every u ∈ NG(v) ∩M . Since
v has mv marked neighbors, Reduction Rule 4.2 will be applied successively mv

times after we discard v, and each application decreases the measure by w2.
Thus, when we discard v, the measure is reduced by w1 + (mv − 1)w2.

Branching Rule 4.7
Suppose that Branching Rule 4.7 is applied to some instance I = (G,M), and
let v be the vertex we branch on, then d(v) ≥ 3 and mv > 0. Since selecting and
discarding v reduces the measure by (uv + 1)w1 − uvw2 and w1 + (mv − 1)w2,
respectively, the branching vectors corresponding to Branching Rule 4.7 are

(3w1 − 2w2, w1) for uv ≥ 2,mv = 1

(2w1 − w2, w1 + w2) for uv ≥ 1,mv = 2

(w1, w1 + 2w2) for uv ≥ 0,mv ≥ 3

Branching Rule 4.8
Consider now an application of Branching Rule 4.8 to an instance I = (G,M),
and let v ∈ U be the vertex we branch on, then d(v) ≥ 3 and there is at least
one vertex u ∈ NG(v) such that d(u) = 2. Observe that since Branching Rule
4.8 applies to I, we know that Branching Rule 4.7 does not, and therefore that
mv = 0. Correspondingly, we have uv = d(v). We let n2 denote the number of
neighbors of v which have degree 2.

Let (G′,M ′) be the instance obtained by selecting v, and observe that for every
vertex u ∈ NG(v) we have dG′(u) = 1. Thus, after we select v, Reduction Rule
4.1 will apply n2 times, and each application will remove some marked vertex
from the graph. Therefore, when we select v we will reduce the measure by

(uv + 1)w1 − uvw2 + n2w2 = (d(v) + 1)w1 − d(v)w2 + n2w2

When we discard v, the measure is reduced by w1 − w2, since mv = 0. We
consider two cases with respect to n2:

51

Case 1: n2 = d(v). Since n2 = d(v) ≥ 3, selecting v reduces the measure by at
least

(d(v) + 1)w1 − d(v)w2 + n2w2 = (d(v) + 1)w1 − d(v)w2 + d(v)w2

= (d(v) + 1)w1

≥ 4w1

The branching vector corresponding to the case of n2 = d(v) is

(4w1, w1 − w2)

Case 2: n2 < d(v). By definition of Branching Rule 4.8, we have n2 ≥ 1. Now,
since n2 ≥ 1 and d(v) ≥ 3, selecting v will reduce the measure by at least

(d(v) + 1)w1 − d(v)w2 + n2w2 ≥ 4w1 − 2w2

Let I ′ = (G,M ∪ {v}) be the instance obtained by discarding v. When
we discard v, v is marked and the measure decreases by w1−w2. Observe
that by Claim 4.18, none of rules 4.1-4.6 will apply to I ′. Since n2 < d(v),
there must be some u ∈ N(v) such that d(u) ≥ 3. Thus, after discarding
v, we know that the algorithm will branch on some vertex u ∈ N(v) which
satisfies d(u) ≥ 3 and mu = 1. That is, after discarding v, we know that
the algorithm will (3w1 − 2w2, w1)-branch on some vertex u ∈ N(v). By
addition of branching vectors, the vector

(4w1 − 2w2, 4w1 − 3w2, 2w1 − w2)

is the branching vector corresponding to the case of n2 < d(v).

Branching Rule 4.9
We will now analyze Branching Rule 4.9. Let I = (G,M) be an instance to
which Branching Rule 4.9 applies, let v ∈ U be the vertex we branch on, and let
Cv be the connected component of G containing v. We have that d(v) ≥ 3 and
that N [v] 6= Cv. We note that since we were unable to apply Branching Rule
4.7 to I, we know that mv = 0, and therefore also that uv = d(v). Observe that
by Claim 4.19, we have δ(G[Cv]) ≥ 3.

Let I ′ = (G,M ∪ {v}) be the instance obtained by discarding v. When we
discard v, v is marked and the measure decreases by w1 −w2. After discarding
v, there will be some u ∈ N(v) for which d(u) ≥ 3 and mu = 1. We note that
by Claim 4.18, none of rules 4.1-4.6 will apply to I ′. Therefore, after we discard
v, the algorithm will (3w1 − 2w2, w1)-branch on some u ∈ N(v) which satisfies
d(u) ≥ 3 and mu = 1. The branching vector corresponding to discarding v and
then branching on u is the vector

(4w1 − 3w2, 2w1 − w2)

52

Let N2(v) denote the set of vertices at distance 2 from v in G, i.e.,

N2(v) =

 ⋃
u∈N(v)

N(u)

 \N [v]

Since N [v] 6= Cv and δ(G[Cv]) ≥ 3, we know that N2(v) 6= ∅, and that for every
w ∈ N2(v) we have d(w) ≥ 3. When we select v, the measure decreases by

(d(v) + 1)w1 − d(v)w2 ≥ 4w1 − 3w2

We shall consider the subproblem I ′ = (G′,M ′) obtained by selecting v.

Claim. If some rule R among rules 4.1-4.6 applies to I ′, then R must be
Reduction Rule 4.2.

Proof. Since we have δ(G[Cv]) ≥ 3, we know that dG′(u) ≥ 2 for all u ∈ NG(v),
which implies that we cannot apply Reduction Rule 4.1 to I ′. It is further
implied that δ(G′) ≥ 2, and consequently that G′ must contain some cycle.
Therefore, Halting Rule 4.5 cannot be applied to I ′ either. We note that by
Claim 4.9, G does not contain any self-loops or multi-edges, and for that reason,
neither does G′, which implies that Reduction Rule 4.3 does not apply to I ′.
Clearly, G′ cannot contain K4 as an induced subgraph when G does not contain
K4 as an induced subgraph, and Halting Rule 4.6 is therefore not applicable to
I ′. Thus far, we have established that none of rules 4.1, 4.3, 4.5 or 4.6 can be
applied to I ′. Suppose for the sake of obtaining a contradiction that Halting
Rule 4.4 is applicable to I ′, but Reduction Rule 4.2 is not, and let C be some
cycle in G′[M ′]. We know that C cannot be a self-loop, because G′ does not
contain any self-loops. Consequently, there must exist x, y ∈M ′ such that x and
y participate in C and (x, y) ∈ E(G′). However, this implies that Reduction
Rule 4.2 is applicable to I ′, which we have assumed not to be the case. We
have obtained our contradiction, and conclude that if some rule R among rules
4.1-4.6 applies to I ′, then R must be Reduction Rule 4.2.

We will now consider two cases with respect to I ′:

Case 1: Reduction Rule 4.2 does not apply to I ′ When Reduction Rule
4.2 does not apply to I ′, we know that the algorithm will apply Branching
Rule 4.7 to I ′ and branch on some w ∈ N2(v) which satisfies dG′(w) ≥ 3
and mw > 0. We provide an illustration of this scenario in Fig. 4.5.
Recall from our analysis of Branching Rule 4.7 that the branching vectors
corresponding to branching on w are

(3w1 − 2w2, w1) for uw ≥ 2,mw = 1

(2w1 − w2, w1 + w2) for uw ≥ 1,mw = 2

(w1, w1 + 2w2) for uw ≥ 0,mw ≥ 3

53

The branching vectors corresponding to selecting v and then branching on
w are therefore

(7w1 − 5w2, 5w1 − 3w2)

(6w1 − 4w2, 5w1 − 2w2)

(5w1 − 3w2, 5w1 − w2)

Hence, the branching vectors of Branching Rule 4.9 corresponding to the
case in which Reduction Rule 4.2 does not apply to I ′ are

(7w1 − 5w2, 5w1 − 3w2, 4w1 − 3w2, 2w1 − w2) for uw ≥ 2,mw = 1

(6w1 − 4w2, 5w1 − 2w2, 4w1 − 3w2, 2w1 − w2) for uw ≥ 1,mw = 2

(5w1 − 3w2, 5w1 − w2, 4w1 − 3w2, 2w1 − w2) for uw ≥ 0,mw ≥ 3

Case 2: Reduction Rule 4.2 does apply to I ′. Since an application of Re-
duction Rule 4.2 decreases the measure by w2, we know that selecting
v will reduce the measure by 4w1 − 3w2 + w2 = 4w1 − 2w2. Thus, the
branching vector of Branching Rule 4.9 corresponding to the case in which
Reduction Rule 4.2 does apply to I ′ is

(4w1 − 2w2, 4w1 − 3w2, 2w1 − w2)

v

w

N2(v)

(a) The instance I = (G,M).

w

N2(v)

(b) The subproblem I ′ = (G′,M ′)
obtained by selecting v

Figure 4.5: When Reduction Rule 4.2 does not apply to I ′, we know that the
algorithm will apply Branching Rule 4.7 to I ′ and branch on some w ∈ N2(v)
which satisfies dG′(w) ≥ 3 and mw > 0.

Branching Rule 4.10
Finally, let I = (G,M) be an instance, and consider an application of Branching
Rule 4.10 to I. Let v ∈ U be the vertex we branch on, then d(v) = 2 and
uv ∈ {1, 2}.

54

Case 1: uv = 1. Let x, y ∈ N(v) such that x ∈ M and y ∈ U . By Claim 4.20
we have d(y) = 2. Since d(y) = 2, selecting v will reduce the measure
by 2w1, as the removal of v from the graph will cause Reduction Rule
4.1 to remove y in the next step as well. When we discard v the mea-
sure is reduced by w1 + (mv − 1)w2 = w1. Thus, the branching vector
corresponding to the case in which uv = 1 is

(2w1, w1)

Case 2: uv = 2. Let x, y ∈ N(v), then x, y ∈ U . By Claim 4.20 we have
d(x) = d(y) = 2. Therefore, by selecting v we will reduce the measure by
3w1, as x and y will be removed from the graph by Reduction Rule 4.1
following the removal of v. When we discard v, the measure is reduced by
w1 − w2. Thus, the branching vector corresponding to the case in which
uv = 2 is

(3w1, w1 − w2)

Branching Vectors
Branching Rule Case Branching Vector

4.7
uv ≥ 2, mv = 1 (3w1 − 2w2, w1)
uv ≥ 1, mv = 2 (2w1 − w2, w1 + w2)
uv ≥ 0, mv ≥ 3 (w1, w1 + 2w2)

4.8
n2 = d(v) (4w1, w1 − w2)
n2 < d(v) (4w1 − 2w2, 4w1 − 3w2, 2w1 − w2)

4.9

uw ≥ 2,mw = 1 (7w1 − 5w2, 5w1 − 3w2, 4w1 − 3w2, 2w1 − w2)
uw ≥ 1,mw = 2 (6w1 − 4w2, 5w1 − 2w2, 4w1 − 3w2, 2w1 − w2)
uw ≥ 0,mw ≥ 3 (5w1 − 3w2, 5w1 − w2, 4w1 − 3w2, 2w1 − w2)

Case 2 (4w1 − 2w2, 4w1 − 3w2, 2w1 − w2)

4.10
uv = 1 (2w1, w1)
uv = 2 (3w1, w1 − w2)

Table 4.1: Branching rules and their possible branching vectors, parameterized
by w1 and w2.

See Table 4.1 for a summary of branching rules and their possible branching
vectors, parameterized by w1 and w2.

4.3.3 Special Instances

In Section 3.2.3 we introduced special instances, as defined by Agrawal et al.
in [2, 12]. Let (G,M) be an instance, and recall that if G is connected, and
δ(G) ≥ 2, and for every v ∈ U we have d(v) = 2, and M and U are both
independent, then we say that (G,M) is a special instance. Furthermore, recall

55

that if (G,M) is a special instance, then for S ⊆ U ,

ES = {(x, y) | x, y ∈ N(v), v ∈ S}

is the set of edges corresponding to S, and Gsp = (M,EU) is the special graph
corresponding to (G,M). We keep multi-edges in ES .

We will now show that if (G,M) is an instance to which none of rules 4.1-4.10
apply, then for every connected component C of G, the instance (G[C],M∩C) is
a special instance. We will also introduce the final halting rule of EnumMifvs,
which the algorithm will apply to instances in which every connected component
corresponds to a special instance, and further, we shall obtain an upper bound
the number the number of solutions of such instances. We note that lemmata
4.21, 4.22 and 4.27 and their proofs have been copied from Agrawal et al. [12].

Lemma 4.21. [2, 12] Let I = (G,M) be a special instance, and let S ⊆ U ,
then S is an M -ifvs in G if and only if Gsp − ES is a forest.

Proof. For the forward direction, suppose that S is an M -ifvs in G, but Gsp−ES
has a cycle C = (m0,m1, . . . ,ml,m0). For every edge (mi,m(i+1) mod (l+1)), for
i = 0, 1, . . . , l, there is a vertex ui ∈ U\S such thatN(ui) = {mi,m(i+1) mod (l+1)}.
Therefore, whenever (m0,m1, . . . ,ml,m0) is a cycle in Gsp − ES , we have that
(m0, u0,m1, . . . ,ml, u0) is a cycle in G − S. Thus, the existence of C implies
that G − S has a cycle, which contradicts our assumption that S is an M -ifvs
in G, and the forward direction therefore holds.

For the reverse direction, suppose Gsp −ES is a forest, and that S is not an M -
ifvs in G. Since S is not an M -ifvs in G, G−S must contain some cycle C. Since
U and M are both independent, the cycle C must alternate between marked
and unmarked vertices. Let u ∈ U \S be some unmarked vertex participating in
C, and let m1,m2 ∈M be the neighbors of u in C, then N(u) = {m1,m2}, and
thus (m1,m2) ∈ EU\S , where EU\S = E(Gsp −ES). Therefore, by removing all
unmarked vertices from C, we obtain a cycle C ′ in Gsp−ES , which is impossible,
since Gsp−ES is a forest. We conclude that if Gsp−ES is a forest, then S is an
M -ifvs in G. Both directions of the proof hold, and the proof is complete.

Lemma 4.22. [2, 12] Let I = (G,M) be a special instance, and let S ∈ IG(M),
then EU\S forms a spanning tree in Gsp.

Proof. First, recall that Gsp is connected, by Corollary 3.22. Since S is an M -
ifvs in G, we have that Gsp − ES is a forest, by Lemma 4.21. If Gsp − ES is
connected as well, then Gsp − ES is a tree, which means that EU\S forms a
spanning tree in Gsp . We will show that Gsp − ES is connected. Suppose not,
and let C ⊆ M be one of at least two components in Gsp − ES . Consider the
partition (C,M \C) of V (Gsp). There must be some edge (m1,m2) ∈ EU such
that m1 ∈ C and m2 ∈M \C, otherwise the graph Gsp would not be connected.

56

Let u be the vertex corresponding to the edge eu = (m1,m2), that is, let u ∈ U
such that N(u) = {m1,m2}. Since Gsp − ES is disconnected, we must have
eu ∈ ES , and therefore also u ∈ S. Note however that by adding the edge eu to
Gsp −ES , we connect two acyclic components, which cannot introduce a cycle.
That is, Gsp − (ES \ {eu}) = Gsp − ES\{u} is a forest, and by Lemma 4.21,
S \ {u} is therefore an M -ifvs in G, which contradicts the minimality of S. We
conclude that Gsp − ES = (M,EU\S) is both acyclic and connected, and thus
that EU\S forms a spanning tree in Gsp .

Lemma 4.23. Let I = (G,M) be a special instance, and let S ⊆ U . If EU\S
forms a spanning tree in Gsp, then S ∈ IG(M).

Proof. Suppose (M,EU\S) is a tree, but S /∈ IG(M). By Lemma 4.21, since
(M,EU\S) = Gsp −ES is a forest, we have that S is an M -ifvs in G. Therefore,
since S /∈ IG(M), S must not be minimal. Let X ⊂ S such that X is a minimal
M -ifvs in G. Observe that when X ∈ IG(M), we have that EU\X forms a
spanning tree in Gsp , by Lemma 4.22. That is, (M,EU\X) is a tree. However,
since X ⊂ S, we know that |X| < |S|, and in turn that

|M | − 1 =
∣∣EU\S∣∣ < ∣∣EU\X ∣∣ = |M | − 1

which is not possible. Since our assumption that S /∈ IG(M) leads to a contra-
diction, we must have S ∈ IG(M) whenever EU\S forms a spanning tree in Gsp .
The proof is complete.

Corollary 4.24. Let I = (G,M) be a special instance, then there is a one-to-
one correspondence between IG(M) and spanning trees in Gsp.

Corollary 4.24 follows from lemmata 4.22 and 4.23.

Lemma 4.25. Let (G,M) be a special instance, and let Gsp be the special graph
corresponding to (G,M). Let ζ(Gsp) denote the set of all spanning trees in Gsp,
then

IG(M) = {S | EU\S ∈ ζ(Gsp), S ⊆ U}

Lemma 4.25 follows from lemmata 4.22 and 4.23.

In the following, let EnumST be an algorithm which takes as input a graph H,
and then enumerates all spanning trees of H. Further, let Ci denote the i’th
component of G, and let Gi = G[Ci], Mi = M ∩ Ci, and Ui = Ci \Mi.

Halting Rule 4.11. If (Gi,Mi) is a special instance, for all Gi, then compute

ζi = {Si | EUi\Si ∈ EnumST((Mi, EUi)), Si ⊆ Ui}

where (Mi, EUi) is the special graph corresponding to (Gi,Mi), for i = 1, 2, . . . , k,
k being the number of connected components in G, and output the set

{S | S =

k⋃
i=1

Si, Si ∈ ζi}

57

Lemma 4.26. Halting Rule 4.11 is correct.

Proof. Let (G,M) be an instance to which Halting Rule 4.11 applies, and sup-
pose that G has k ≥ 1 connected components, then the instance (Gi,Mi) is

special, for i = 1, 2, . . . , k. If S ∈ IG(M), then S =
⋃k
i=1 Si, where Si ⊆ Ui is a

minimal Mi-ifvs in Gi. Thus,

IG(M) = {S | S =

k⋃
i=1

Si, Si ∈ IGi(Mi)}

When applied to (G,M), Halting Rule 4.11 first computes

ζi = {Si | EUi\Si ∈ EnumST((Mi, EUi)), Si ⊆ Ui}

for 1 ≤ i ≤ k, and then outputs the set

{S | S =

k⋃
i=1

Si, Si ∈ ζi}

Since (Gi,Mi) is a special instance with corresponding special graph (Mi, EUi),
we know that ζi = IGi(Mi), by Lemma 4.25. Halting Rule 4.11 is therefore
correct.

Lemma 4.27. [2, 12] Let I = (G,M) be a special instance, and let n = |V (G)|,
then

|IG(M)| ≤
(

2α

1− α

)(1−α)n

where |M | = (1− α)n, and 1
2 ≤ α ≤ 1.

Lemma 4.27 follows from the proof of Lemma 3.28 and Corollary 4.24. That
is, one can show that Lemma 4.27 holds by giving a proof near identical to the
proof of Lemma 3.28.

Lemma 4.28. Let x ∈ R such that x ≥ 1, and suppose that |IG(M)| ≤ xµ(G,M)

whenever (G,M) is a special instance, then it holds that for any instance (G,M)
to which Halting Rule 4.11 applies, we have |IG(M)| ≤ xµ(G,M).

Proof. We will prove by induction on µ(G,M) that the claim holds. Our base
case occurs when (G,M) is a special instance, in which case the claim holds by
assumption. Suppose that for any l < µ, we have that |IG(M)| ≤ xl, whenever
(G,M) is an instance of measure µ(G,M) ≤ l and Halting Rule 4.11 applies to
(G,M). Let (G,M) be an instance of measure µ(G,M) = µ, and suppose that
Halting Rule 4.11 is applicable to (G,M). We must consider two cases:

58

Case 1: G is connected. Since G is connected, the instance (G,M) is special,
and we know by assumption that |IG(M)| ≤ xµ.

Case 2: G is disconnected. Suppose that G has k ≥ 2 connected compo-
nents, and note that µ(Gi,Mi) < µ, for i = 1, 2, . . . , k. Let S ∈ IG(M),

then S =
⋃k
i=1 Si, where Si ∈ IGi(Mi). We therefore have

|IG(M)| ≤
k∏
i=1

|IGi(Mi)| ≤
k∏
i=1

xµ(Gi,Mi) ≤ xΣki=1µ(Gi,Mi)

where

xΣki=1µ(Gi,Mi) ≤ xΣki=1w1|Ui|+w2|Mi|

≤ xw1Σki=1|Ui|+w2Σki=1|Mi|

≤ xw1|U |+w2|M |

≤ xµ

That is, we have |IG(M)| ≤ xµ, and the claim holds.

We have |IG(M)| ≤ xµ in both cases, and therefore conclude that the lemma
holds.

Claim 4.29. Let I = (G,M) be an instance to which none of rules 4.1-4.10
apply, then (G[C],M ∩C) is a special instance, for every connected component
C of G.

Proof. By Claim 4.9, we know that δ(G) ≥ 2. Further, since none of rules
4.1-4.9 are applicable to I, we know by Claim 4.20 that for every v ∈ U , we
have d(v) = 2. Observe that since Branching Rule 4.10 does not apply to I,
we know that for every v ∈ U we have d(v) = mv = 2, which implies that U is
an independent set. By Observation 4.8, M is an independent set as well. We
have established that U and M are both independent, that δ(G) ≥ 2, and that
for any v ∈ U , we have d(v) = 2. Therefore, for every connected component C
of G, the instance (G[C],M ∩ C) is special. This concludes the proof.

4.3.4 An Improved Upper Bound

Lemma 4.30. Let I be an instance, then some rule of EnumMifvs is appli-
cable to I.

Proof. If one of rules 4.1-4.10 apply to I, then the claim holds, and there is
nothing to prove. Suppose none of rules 4.1-4.10 apply to I. We then know

59

that for every connected component C of G, (G[C],M ∩C) is a special instance,
by Claim 4.29. Consequently, Halting Rule 4.11 will apply to I. The proof is
complete.

Lemma 4.31. Let (G,M) be a nice instance, and let (G′,M ′) be an instance
output by some reduction rule or branching rule of EnumMifvs when applied
to (G,M), then (G′,M ′) is a nice instance.

Proof. Observe that the only rule of EnumMifvs which introduces new edges
is Reduction Rule 4.2. However, Reduction Rule 4.2 will only contract an edge
(u, v) if we have u, v ∈ M . We therefore know that whenever an application
of Reduction Rule 4.2 introduces a new edge e, at least one endpoint of e is
marked. Thus, no rule of EnumMifvs can introduce an edge for which both
endpoints are unmarked. Therefore, since (G,M) is a nice instance, (G′,M ′)
must be a nice instance as well. This concludes the proof.

Lemma 4.32. Let G be a graph on n vertices, and let M ⊆ V (G) such that
(G,M) is a nice instance, then |IG(M)| ≤ 1.7229n.

Proof. We have presented a branching algorithm EnumMifvs which enumer-
ates all minimal M -ifvs of a nice instance (G,M). By lemmata 4.10, 4.12 and
4.13, all reduction rules are safe, and by Lemma 4.17, all branching rules are
safe. Further, by lemmata 4.14, 4.15, 4.16 and 4.26, all halting rules are correct.
We know that for any instance I, some rule of EnumMifvs will apply to I, by
Lemma 4.30.

We let the measure of an instance (G,M) be µ(G,M) = 272 |U |+ 151 |M |. We
present the branching vectors of EnumMifvs and their corresponding branching
factors in Table 4.2, for w1 = 272 and w2 = 151. Let x = 1.002002, and note
that for each branching vector ~b, we have τ(~b) ≤ x.

Let (G,M) be an instance to which some halting rule applies. We will show
that |IG(M)| ≤ xµ(G,M). If Halting Rule 4.4, Halting Rule 4.5 or Halting Rule
4.6 applies to (G,M), then

|IG(M)| ≤ 1 ≤ xµ(G,M)

Suppose Halting Rule 4.11 applies to (G,M). We will make use of Lemma 4.28
in order to show that we have |IG(M)| ≤ xµ(G,M). However, we must first show
that for any special instance I ′ = (G′,M ′) we have |IG′(M ′)| ≤ xµ(G′,M ′). We
let n be the number of vertices in G′. Let 1

2 ≤ α ≤ 1, and let |M ′| = (1− α)n,
then |U ′| = αn, where U ′ = V (G′) \M ′. We have

µ(G′,M ′) = 272 |U ′|+ 151 |M ′|
= 272αn+ 151(1− α)n

= n(121α+ 151)

60

By Lemma 4.27,

|IG′(M ′)| ≤ max
1
2≤α≤1

{(
2α

1− α

)(1−α)n
}
≤ max

1
2≤α≤1

(

2α

1− α

) (1−α)µ(G′,M′)
121α+151

We have max

1
2≤α≤1

{(
2α

1−α

) 1−α
121α+151

}
= 1.002002 ≤ x, thus |IG′(M ′)| ≤ xµ(G′,M ′).

Since |IG′(M ′)| ≤ xµ(G′,M ′), for any special instance (G′,M ′), we know that
if Halting Rule 4.11 applies to (G,M), then we have |IG(M)| ≤ xµ(G,M), by
Lemma 4.28. We see that if (G,M) is an instance to which some halting rule
applies, then |IG(M)| ≤ xµ(G,M).

By Lemma 2.1, we have

|IG(M)| ≤ 1.002002µ(G,M)

Thus, for any nice instance (G,M),

|IG(M)| ≤ 1.002002µ(G,M) ≤ 1.002002272n ≤ 1.7229n

where n = |V (G)|. This concludes the proof.

Branching Vectors
Branching Rule Case Branching Vector cµ c272n

4.7
uv ≥ 2, mv = 1 (514, 272) 1.001827µ 1.6430n

uv ≥ 1, mv = 2 (393, 423) 1.001701µ 1.5878n

uv ≥ 0, mv ≥ 3 (272, 574) 1.001719µ 1.5954n

4.8
n2 = d(v) (1088, 121) 1.001599µ 1.5444n

n2 < d(v) (786, 635, 393) 1.001898µ 1.6749n

4.9

uw ≥ 2,mw = 1 (1149, 907, 635, 393) 1.002002µ 1.7229n

uw ≥ 1,mw = 2 (1028, 1058, 635, 393) 1.001978µ 1.7117n

uw ≥ 0,mw ≥ 3 (907, 1209, 635, 393) 1.001983µ 1.7143n

Case 2 (786, 635, 393) 1.001898µ 1.6749n

4.10
uv = 1 (544, 272) 1.001771µ 1.6181n

uv = 2 (816, 121) 1.001927µ 1.6883n

Table 4.2: Branching vectors and their corresponding branching factors, for
measure µ(I) = 272 |U |+ 151 |M |.

Similarly to the proof of Lemma 3.31, we found the values of w1 and w2 in the
proof of Lemma 4.32 through a programmatic approach.

Theorem 4.33. There are at most 1.7229n minimal independent feedback vertex
sets in any graph on n vertices.

61

Theorem 4.33 follows from Observation 4.7 and Lemma 4.32. We note that since
all reduction rules and branching rules of EnumMifvs can be implemented to
run in time polynomial in the measure of the input instance, and since the
spanning trees of a graph can be enumerated with polynomial delay, we can
enumerate all minimal independent feedback vertex sets of an n-vertex graph
in time O∗(1.7229n).

Remark 4.34. Observe that the only bad branching vectors of EnumMifvs are
the branching vectors corresponding to Branching Rule 4.9, more specifically, the
case of Branching Rule 4.9 in which Reduction Rule 4.2 does not apply to the
instance obtained by selecting v. If we wish to extend EnumMifvs in an attempt
to achieve a tigher upper bound, then we must remove these branching vectors
from the system.

62

Chapter 5

Conclusion

Using the technique of branching in conjunction with a non-trivial measure,
we have given improved bounds on both the maximum number of minimal
connected vertex covers and the maximum number of minimal independent
feedback vertex sets in a graph. We have shown that there are at most 2 ·
1.7076n minimal connected vertex covers in a graph on n vertices, and that
these can be enumerated in time O∗(1.7076n). Moreover, we have shown that
the maximum number of minimal independent feedback vertex sets in a graph
on n vertices is at least 1.5067n, but no more than 1.7229n, and further, that
the set of all minimal independent feedback vertex sets of an n-vertex graph can
be enumerated in time O∗(1.7229n). We conclude this thesis with a few open
problems and some suggestions for future work.

5.1 Open Problems

The lower bound on the maximum number of minimal connected vertex covers
in an n-vertex graph is 1.51978n, by a result of Ryland [11]. Can we tighten
the gap between the lower bound 1.51978n and the upper bound 2 · 1.7076n

on the maximum number of minimal connected vertex covers in a graph on n
vertices? Likewise, can we tighten the gap between the lower bound 1.5067n

and the upper bound 1.7229n on the maximum number of minimal independent
feedback vertex sets in an n-vertex graph?

63

5.2 Future Work

It is possible that for some other choice of measure function, we can obtain
better upper bounds without having to extensively modify the EnumMcvc or
EnumMifvs algorithm. Alternatively, with respect to obtaining a better upper
bound on the number of minimal connected vertex covers in a graph, we can try
to find some way to avoid Branching Rule 3.8, case of n2 < d(v). We are quite
confident that if we can eliminate the corresponding branching vector from the
system of branching vectors of EnumMcvc, then we can adjust the weights of
the measure and obtain a better upper bound. Similarly, consider the branching
vectors of EnumMifvs corresponding to the case of Branching Rule 4.9 in which
Reduction Rule 4.2 does not apply to the instance obtained by selecting v. These
branching vectors attain substantially greater branching factors than the other
branching vectors of EnumMifvs. If we can eliminate these branching vectors
from the system, then we should be able to further improve the upper bound
on the number of minimal independent feedback vertex sets by adjusting the
weights of the measure.

64

Bibliography

[1] P. A. Golovach, P. Heggernes, and D. Kratsch, “Enumeration and max-
imum number of minimal connected vertex covers in graphs,” CoRR,
vol. abs/1602.07504, 2016.

[2] A. Agrawal, S. Gupta, S. Saurabh, and R. Sharma, “Improved Algorithms
and Combinatorial Bounds for Independent Feedback Vertex Set,” in 11th
International Symposium on Parameterized and Exact Computation (IPEC
2016) (J. Guo and D. Hermelin, eds.), vol. 63 of Leibniz International
Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 2:1–2:14,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[3] J. W. Moon and L. Moser, “On cliques in graphs,” Israel Journal of Math-
ematics, vol. 3, pp. 23–28, Mar 1965.

[4] F. V. Fomin, F. Grandoni, A. V. Pyatkin, and A. A. Stepanov, “Combi-
natorial bounds via measure and conquer: Bounding minimal dominating
sets and applications,” ACM Trans. Algorithms, vol. 5, pp. 9:1–9:17, Dec.
2008.

[5] F. V. Fomin, F. Grandoni, A. V. Pyatkin, and A. A. Stepanov, “Bounding
the number of minimal dominating sets: A measure and conquer approach,”
in Algorithms and Computation (X. Deng and D.-Z. Du, eds.), (Berlin,
Heidelberg), pp. 573–582, Springer Berlin Heidelberg, 2005.

[6] D. Lokshtanov, M. Pilipczuk, and S. Saurabh, “Below all subsets for min-
imal connected dominating set,” CoRR, vol. abs/1611.00840, 2016.

[7] J.-F. Couturier, P. Heggernes, P. van ’t Hof, and D. Kratsch, “Minimal
dominating sets in graph classes: Combinatorial bounds and enumeration,”
Theoretical Computer Science, vol. 487, pp. 82 – 94, 2013.

[8] F. V. Fomin, S. Gaspers, A. V. Pyatkin, and I. Razgon, “On the mini-
mum feedback vertex set problem: Exact and enumeration algorithms,”
Algorithmica, vol. 52, pp. 293–307, Oct 2008.

65

[9] J.-F. Couturier, P. Heggernes, P. van ’t Hof, and Y. Villanger, “Maximum
number of minimal feedback vertex sets in chordal graphs and cographs,” in
Computing and Combinatorics (J. Gudmundsson, J. Mestre, and T. Viglas,
eds.), (Berlin, Heidelberg), pp. 133–144, Springer Berlin Heidelberg, 2012.

[10] S. Gaspers and M. Mnich, “Feedback vertex sets in tournaments,” in Algo-
rithms – ESA 2010 (M. de Berg and U. Meyer, eds.), (Berlin, Heidelberg),
pp. 267–277, Springer Berlin Heidelberg, 2010.

[11] I. Ryland, “New lower bounds on the maximum number of minimal con-
nected vertex covers,” 2017.

[12] A. Agrawal, S. Gupta, S. Saurabh, and R. Sharma, “Improved Algorithms
and Combinatorial Bounds for Independent Feedback Vertex Set.” Personal
communication, 2017.

[13] K. H. Rosen and K. Krithivasan, Discrete mathematics and its applications.
McGraw-Hill Education, 2015.

[14] M. Sipser, Introduction to the Theory of Computation. International Thom-
son Publishing, 1st ed., 1996.

[15] F. V. Fomin and D. Kratsch, Exact exponential algorithms. Springer, 2010.

[16] G. Grimmett, “An upper bound for the number of spanning trees of a
graph,” Discrete Mathematics, vol. 16(4), pp. 323 – 324, 1976.

[17] B. D. McKay and A. Piperno, “Practical graph isomorphism, {II},” Journal
of Symbolic Computation, vol. 60, no. 0, pp. 94 – 112, 2014.

66

