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Abstract

This thesis gives an introduction to how solar panels work and some of the prob-
lems for solar cells that need to be solved. Further, it gives an introduction to
some physical equations that describe the electrical behavior inside the panels. We
try to solve these equations numerically for different parameter values and with
different numerical techniques. An analysis of some of the convergence and stabil-
ity of each numerical system is given, as well as numerical results with numerical
values and plots.

Figure 1: Solar panels at the Department of Engineering, KNUST, Kumasi, Ghana.
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Note to reader

In this thesis, lists with explanations of selected physical terms, nomenclature
and numerical values of physical constants are noted in Appendix C, D and E,
respectively.

All facts that are stated in this thesis that may change with time (for exam-
ple efficiency of a particular solar cell or its prevalence) are facts at the time of
submission: June 1, 2018.

The term "light" refers to photon radiation, regardless of where in the electro-
magnetic spectrum the photon radiation is.

There are different notations for the groups in the periodic table of elements.
Sometimes, group 11− 18 is referred to as group 1− 8, 1B − 8B or IB − VIIIB.
I will refer to these groups as group 11− 18.

Computational and numerical considerations are discussed in MATLAB syntax
in gray boxes.

Calendar dates are written on the form DD.MM.YYYY.

The bibliography is arranged alphabetically and is made according to the APA
6th style.

Appendix F - The excursions to Ghana, is not to be taken into consideration
in the evaluation of this thesis.
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Mathematical notation:

I will let log() denote the natural logarithm unless a sub number is noted, then
that number will be the base for the logarithm.

I let y′ denote spatial differentiation (in one dimension, and let x denote the
spatial variable), and ẏ denote time differentiation (with t as the temporal vari-
able).

I let 0N be a zero column vector of length N and 0 be a scalar zero or a zero-
matrix of appropriate size. I will let 1N denote a column vector of length N with
all elements equal to 1. The matrix IN ∈ RN×N , will denote the identity matrix.

All vectors are written in bold. We define for a vector v = [v1 . . . , vN ] ∈ RN

that v̂ = [v0, . . . , vN ] ∈ RN+1 and ṽ = [v0, . . . , vN+1] ∈ RN+2, unless otherwise
specified.

The element at index (i, j) of matrix A, will be denoted Ai,j. The notation {B}i,j
for a block matrix B, will denote the block at index (i, j) of B. Indices of vectors
or matrices that are composed of two or more expressions will be denoted using
square brackets, for example, the element at (i, j) of the product of matrix A and
B will be denoted [AB]i,j.

The term "Jacobian" will always refer to the Jacobi matrix. The Jacobian of
f(y) with respect to x will be denoted J f(y)

x , and evaluated at a, will be denoted
J f(y)
x (a).

Further notation can be found in Section B.1 and B.2.
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Chapter 1

Introduction

1.1 Introduction to solar panels

A solar panel is an electronic device that converts sunlight into
electricity

A solar panel is made up of smaller units called solar cells. Solar panels and cells
are also called photovoltaic panels and cells. The term "photovoltaic" is a more
precise term, as solar panels sometimes are referred to as devices that use sunlight
to heat water. Also, solar panels may use light from other light sources than the
sun to operate. I will in this thesis use the terms "solar panel" and "solar cell" to
describe devices that convert sunlight into electrical energy.

Solar cells are specialized semiconductor diodes that convert light into electri-
cal current. A solar cell can operate in different ways. The most common way of
constructing a solar cell is to make it with two layers of doped silicon with each
layer injected with different dopants. The main reasons why silicon is the most
used is because silicon-based solar cell technology is the most mature solar cell
technology [19]. Silicon devices also exhibit better properties than other semicon-
ductors at room temperature and it is the most abundant semiconductor element
on Earth [18].

Another way of constructing a solar cell is to make it with organic compound
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consisting of layers of materials that have different electron affinities and ion-
ization potentials [14]. Most organic solar cells are polymer cells. These types
of panels are currently less efficient than silicon solar panels, but they are much
cheaper to produce. The most efficient solar panel, which is a silicon solar cell,
has an efficiency of 46% [8]. For comparison is the most efficient organic solar
13.2% efficient [10].

In this thesis, we will consider these two types of cell structures in particular.
and how to model different flow, potential and charge characteristics. We start
by giving a theoretical introduction to understand the physics of solar panels, and
later introduce the governing equations for semiconductor devices that we will
utilize. These are then solved numerically for different cases.

1.1.1 Electronic band structure

The electronic band structure describes the range of energies that an
electron within a solid may or may not have

This subsection is based on [18], Section 1.4.

One of the most fundamental physical concepts for understanding how solar cells
work is the electronic band structure. This structure describes the different energy
levels in which the electrons in an atom can exist. Due to quantum mechanical
effects, there are different energy levels the electrons can lie in. These quantum
mechanical effects change depending on how close the atoms are. In a silicon solar
cell, however, the silicon atoms are arranged in a lattice. Due to the distance be-
tween each atom in the lattice, the energy levels get distributed in such a way that
they lie in bands. In other words, there are sections of closely packed energy levels
of possible energies in which the electrons around the nucleus can exist. These
bands are called energy bands. Each physical material has different energy bands
and at which energies these bands lie determine a lot of their physical properties.

In an atom, there are different shells that the electrons can be in. The further
away the shell is from the atomic center, the higher energy for the electrons that
lie in that shell. Each shell of the atom has different energy bands in which the
electrons can exist. These shells for the silicon atom can be seen in Figure 1.1.
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Figure 1.1: The atomic model for the silicon atom. The silicon atom has 4 electrons in
its outermost shell, also called valence shell. An atom can have at most 8 electrons in
its valence shell when the valence shell is the third shell from the center. Courtesy of

Popular Science.

Electrons are negatively charged and lack of electrons, called holes, are positively
charged. Although the hole is not a particle, the hole acts as a particle in the
sense that it takes the same amount of energy to move it a certain distance as
it takes moving an electron the same distance. Electrons and holes are charge
carriers. It is the charge carriers that are responsible for the electricity generation
in a silicon solar cell. Only the electrons/holes that lie in the valence shell, the
outermost shell, can be charge carriers.

There are two different energy bands, in particular. in conducting materials that
are of interest. These are the two energy bands nearest to the Fermi level, namely
the valence band and the conduction band. The difference in energy between the
highest energy level of the valence band, known as the maximum valence band
energy, EV , and the lowest energy level of the conduction band, known as the
minimum conduction band energy, EC , is defined as the band gap, Eg ··= EC−EV .
The interval in which the electrons cannot exist is sometimes referred to as the
forbidden gap. An illustration of these energy bands and corresponding bandgaps
can be seen in Figure 1.2.

A material with an overlapping valence and conduction band, in other words, a
material with a band gap of zero, is called a metal. Metal and other materials
with a band gap of zero or close to zero are conductors. Insulators have a band
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Figure 1.2: An illustration of the band gaps for metals, semiconductors, and insulators.
Courtesy of University of Calgary.

gap that is large, and semiconductors have a band gap that lies between that of
a conductor and an insulator, and is normally on the order of 1 eV.

For organic semiconductors, we do not have valence and conduction bands. Elec-
trons and holes in the conduction band in inorganic semiconductors can be con-
sidered free and can thus move freely. In organic semiconductors, however, the
electrons and holes lie in energy wells, named traps, and can jump from trap to
trap. For organic semiconductors, the equivalence to the maximum valence band
energy is what we call highest occupied molecular orbital (HOMO), and the

Figure 1.3: An illustration of the HOMO and LUMO orbitals for an atom. Courtesy of
Wikipedia.

equivalence to the minimum conduction band energy is what we call lowest un-
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occupied molecular orbital (LUMO). An illustration of the HOMO and LUMO
levels can be seen in Figure 1.3.

1.1.2 Semiconductors

A semiconductor is a material that has an electrical conductivity
between that of a conductor and an insulator

A semiconductor is any material whose electrical conductivity is in the range from
10−8 to 104 S/cm [18] (S is the SI unit siemens, a measure of electric conductance).
Although there are some exceptions to this definition, as stated in [17], these
are exceptions that will be given no emphasis in this thesis. Also, there are
different definitions for the conductivity range of semiconductors; in Figure 1.4,
semiconductors are defined as materials in the range from 10−8 to 103 S/cm. In
any case, where specifically this range lies is not of importance for this thesis.

Figure 1.4: Electric conductivity of different materials. Courtesy of Encyclopaedia
Britannica.

The electrical conductivity of semiconductors changes with temperature. Semi-
conductors have the property that the electrical conductivity increases as the
temperature increases, opposite to the property of metals.
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1.1.3 Radiation from the sun

The sun is the power source for solar cells

A solar cell can turn light into electricity by converting light from the sun into
electrical energy. Not all the photon energy that hits the solar panels is converted
into electrical energy; some energy is lost due to different physical constraints in
the panel construction. Also, some of the sunlight never reaches the panels on
Earth due to reflection and diffusion from different gases and particles in the at-
mosphere, like for example air, clouds, smog, dust and sand [7].

The amount of photon energy that makes it through the atmosphere also de-
pends on how long the distance of atmosphere the light has to go through. If the
sunlight rays are perpendicular to Earth’s surface, they have the shortest distance
of atmosphere to go through, and conversely, when the sun is at the horizon, the
light rays have the longest distance of atmosphere to go through. Also, sunlight
at different wavelengths has different energies.

Figure 1.5: The solar spectrum at sea level. The different "valleys" are due to light
absorption from different gases in the atmosphere. The green color represents the
energy range where a crystalline silicon solar cell can absorb energy. Courtesy of

University of Alaska Fairbanks.
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The yellow-red-shade part of Figure 1.5 shows, under standard test conditions,
the power per square meter of sunlight at sea level, adjusted for the different en-
ergies of light in different parts of the spectrum. The green part shows the energy
that can be converted by a silicon panel with a band gap of 1.1 eV. As we see, no
energy is converted above a certain threshold around 1100 nm in photon wave-
length, which is one of the weaknesses of solar panels. As we will see in Subsection
1.1.4, there is an upper limit for the efficiency of a semiconductor solar panel.

1.1.4 Theoretical maximum efficiency

A single-junction solar cell at sea level cannot have an efficiency that
exceeds 33.7%

To discuss efficiency, we first need to look at different setups. For this subsec-
tion, we will only consider cells that only take in direct sunlight, i.e. that the
light has not been concentrated before hitting the cell.

Figure 1.6: Maximum theoretical efficiency vs. band gap for a single junction solar cell.
Courtesy of Wikipedia.

For a single-junction semiconductor cell, there is an upper limit for efficiency
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known as the Shockley–Queisser limit which states that a single-junction cell may
have an efficiency of maximum 33.7%. This theoretical maximum can be attained
only if the upper layer of the solar cell is built with a material with a band gap
of 1.34 eV [15]. A semiconductor cell with several junctions may have a higher
efficiency than a cell with only one junction; with an infinite number of junctions,
the theoretical maximum is 86.8% [6]. These theoretical maxima are for cells at
sea level under standard test conditions.

The most popular solar cell material, silicon, has a band gap of 1.12 eV, lead-
ing to a maximal efficiency of around 32% [18]. These results are experimental
and are plotted in Figure 1.6 with real sunlight at sea level. The data is not
smooth because of absorption of different spectra due to different gases in the
atmosphere. This absorption can also be seen in Figure 1.5.

1.2 How silicon solar cells work

Silicon solar cells work by having two layers of silicon with different
doping, with current carriers that flow from one layer to another and
do work in an external circuit

8



Figure 1.7: An illustration of a typical silicon solar cell. Courtesy of ElProCus.

1.2.1 Doping

Doping is a method of adding an impurity to a pure semiconductor to
change its electrical properties

This subsection is based on [18], Section 1.6.

For a semiconductor, doping is a method where a dopant, another chemical mate-
rial with different chemical properties, is added to a pure semiconductor to change
its electrical properties. An undoped material is called intrinsic and a doped ma-
terial is called extrinsic.

When a dopant that leads to an increase of electrons is introduced, the mate-
rial is n-doped and the material is called the n-type. Conversely, when a dopant
that leads to an increase of holes is introduced, the material is p-doped and the
material is called the p-type.

Silicon cells consist of several layers. There are often two layers of silicon. In
such a case, it is these two layers that are doped. The layers are doped in order to
increase the density of electrons or holes. Silicon is an element in group 14 in the
periodic table of elements. A dopant for silicon is typically an element from group
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Figure 1.8: An illustration of an intrinsic silicon lattice (left), an n-doped silicon lattice
doped with phosphorous (center) and a p-doped silicon lattice doped with boron (right).

Courtesy of Science ABC.

13 or group 15. Elements in group 14 have 4 electrons in the valence shell, and
elements in group 13 and 15 have 3 and 5 electrons in the valence shell, respec-
tively. If an element from group 13 is introduced, then that material will work as
an acceptor, and conversely, if an element from group 15 is introduced, then that
material will work a donor. For most silicon solar cells, the two dopants are boron
(B) and phosphorus (P). The dopants are very scarce in the silicon material, with
a density of around one atom per 106 silicon atoms [7].

1.2.2 The p−n junction

The p−n junction is the interface between the n-type and the p-type
silicon layer

This subsection is based on [19], Section 2.5.
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(a) Illustration of a p−n
junction. The

explanation of the p-type
and n-type layers are for
charge carriers in the

valence shell.

(b) Illustration of a p−n
junction with an applied

voltage.

Figure 1.9: Courtesy of [19].

A p−n junction is formed by joining one layer of an n-type and one layer of a
p-type semiconductor. When the two layers are joined, some of the holes in the
p-type will diffuse and flow from the p-type material to the n-type. Conversely,
some of the electrons in the n-type will diffuse from the n-type material to the
p-type. This leads to a region between the two materials called the depletion
region, where there are no free charge carriers. This leads to an electrical field,
Ê, between the two layers. Thus, there will be a built-in electrical potential, Vbi,
between these two layers. The field, Ê, and the potential, Vbi, will depend on the
materials used. There can also be an externally applied voltage, V , between the
two layers, which leads to an effective potential between the two layers given by
V +Vbi. If the externally applied voltage has an electric field in the same direction
as the electric field caused by the built-in potential, we call it forward bias, and
when the electric field caused by the applied voltage has the opposite direction as
the electric field caused by the built-in potential, we call it reverse bias. The sign
of the potential, V/|V |, will then determine the direction of the flow.
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1.2.3 The process of creating electricity from light

A silicon solar cell converts solar energy into electrical power by con-
verting the energy from photons into excited charges, separating these
charges with an electric field, and transporting them through an exter-
nal circuit

This subsection is based on [19], Section 3.1.

The energy of a photon with frequency, f , is given by hf , where h is Planck’s
constant. When a photon with an energy, hf , hits an electron in the valence band
with an energy lower than the band gap, i.e. when hf < Eg, the photon energy
cannot be absorbed by the electron. When an electron in the valence band gets
hit by a photon with an energy higher than the band gap, however, the electron
jumps to the conduction band. There is then a hole in the valence band where
there used to be an electron. The electron and hole then make up an electron-hole
pair, denoted e−h pair, and also known as an exciton. The closer this pair is to
the p−n junction when created, the better the chances are for this pair to lead to
electrical generation.

Figure 1.10: Illustration of how a solar cell creates electricity from light. Courtesy of
[19].
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If the e−h pair is not recombined, the pair may split up due to the electric field,
Ê. The electron will take the external circuit from the n-type to the p-type, and
the hole will go from the n-type to the p-type through the p−n junction, and thus
the process is completed. After one such collection, there is still an equal number
of electron and holes in each layer, so there is nothing that is "used up" or that
the silicon cell can "run out of".

1.2.4 Problems to be solved with silicon solar cells

There is still a long way to go to optimize silicon solar cell efficiency

The following paragraph is based on [18], Subsection 10.3.1.

There are several electrical losses in silicon solar cells. Some of these come from
metal-finger coverage of the top surface, top-surface reflection loss, and imperfect
light trapping in the cell. There are also losses due to electrical resistance within
the cell.

The problem of electrical losses due to electrical resistance within the cell is what
we will look into and try to solve equations for in Chapter 2.

1.3 How organic solar cells work

Organic solar cells work by having two layers of organic material with
different electron affinity and ionization potential, with current carriers
that do work in an external circuit

1.3.1 Electron affinity and ionization potential

Electron affinity and ionization potential describes how easily an elec-
tron is added or removed, respectively, from an atom
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The following paragraph is based on parts from [14].

A solar panel needs an asymmetry of charge to operate. This asymmetry in
an inorganic solar cell is achieved by doping. In an organic solar cell, however, the
asymmetry is achieved by using two different materials with different affinities for
charge. One material, known as the acceptor, supports negative charge carriers,
i.e. free electrons, whereas the other material, known as the donor, supports pos-
itive charge carriers, i.e. holes. The important properties of these materials are
electron affinity, for acceptors, and ionization potential, for donors.

For donor materials, we define the ionization potential as the energy necessary
to remove an electron from a neutral atom [12]. Conversely, for acceptor materi-
als the electron affinity is defined as the energy that is released when an electron
is added to a neutral atom [5].

1.3.2 The DA interface

The DA interface is the interface between the donor and acceptor layer
in the organic solar cell

This subsection is based on parts from [3].

In an inorganic solar cell, excitons produced has electrons and holes that can
move independently within the cell. In polymer solar cells, however, excitons
produced have electrons and holes that cannot move independently of each other
because they are bound strongly together by coulombic attraction. These excitons
must be split at the DA interface in order to generate electricity. Therefore, the
location and shape of the DA interface play a crucial role in the performance of
an organic solar cell. A useful measure for how long an average charge carrier
can move before it is recombined is the Debye length, defined by the distance
needed to reduce the electric potential by 1/q, where q is the absolute charge of
an electron/hole. The Debye length is often referred to as the distance over which
significant charge separation can occur. This measure of length is also useful in
modeling of silicon solar cells.
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(a) Illustration of the layers in a
typical organic solar cell.

Courtesy of TCI Europe N.V.

(b) Illustration of a photon hitting a polymer
solar cell and creating electricity. 1) photon
absorption, 2) exciton diffusion to the DA
interface, 3) dissociation of exciton into free
charge carriers and 4) drift of free charge
carriers to electrodes. Courtesy of [3].

Figure 1.11

1.3.3 The process of creating electricity from light

An organic solar cell converts solar energy into electrical power by con-
verting photons into excited charges, separating these charges at the
DA interface, and transporting them through an external circuit

This subsection is based on parts from [3].

When a photon, with sufficient energy, is absorbed by either of the donor or
acceptor layer, an exciton is produced. These excitons are strongly bound and
can only diffuse over short distances, around 10 nm, prior to recombination. If an
exciton can diffuse to a DA interface, then the local variation in electron affinity
and ionization potential can split the bound pair. When the exciton has been
split, the free charge carriers can be transported by the internal electric field to-
wards the electrodes and, thus, this current can be used in an external circuit and
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create electrical energy.

1.3.4 Problems to be solved with organic solar cells

There is still a long way to go in order for organic solar cells to compete
with other types of panels in terms of efficiency

This subsection is based on [18], Section 10.4.

In organic solar cells, carrier mobilities are very low because their transport pro-
cesses are dominated by charge carriers that hop, and therefore the thickness of
the upper layer is limited to a few hundred nanometers to achieve low series resis-
tance. However, organic semiconductors show strong absorption of UV-light and
visible regions picking up photons with wavelengths 80 − 200 nm. Thus, only a
100 nm thick upper layer is enough for effective absorption. Currently, the power
conversion efficiency is 13.2% ([18], states 5.7% which is no longer true [10]), but
organic solar cells are an attractive alternative because of their low cost of pro-
duction.

Also, in organic solar cells, the e−h pair upon absorption of a photon of suffi-
cient energy forms a tightly bound state exciton, as mentioned earlier. In general,
only 19% of the excitons dissociate into free carriers, while the remaining exciton
decay via recombination after a short time.
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Figure 1.12: Efficiency of different types of panels through the years. Courtesy of Office
of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy.
Reviewed 30.10.2017, not updated with record efficiency for organic cells [10].

1.4 Poisson’s equation for electrostatics

Poisson’s equation for electrostatics describes the potential field caused
by a given charge

This section is based on [18], Section 2.7.

We define ρ as the space charge density as the sum of charge carrier densities;
ρ ··= q(p − n), where p is the hole concentration and n is the electron concentra-
tion. The electric field, Ê, caused by caused by these charges can be expressed
with the electrostatic potential, φ, as

Ê = −φ′. (1.1)
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We have Poisson’s equation given by

Ê ′ =
|ρ|
ε

(1.2)

where ε is the dielectric permittivity for the specific material. Using (1.1), (1.2)
and the expressions for ρ, we get

φ′′ = −q|p− n|
ε

. (1.3)

1.5 The drift-diffusion model

Drift and diffusion are the two main processes that make the charge
carriers in a solar panel create electricity

This section is based on [18], Section 2.1-2.2.

1.5.1 Drift

Drift current is the transport of carriers when an electric field is applied

The kinetic energy of electrons/holes is given by

1

2
mv2 =

3

2
kBT (1.4)

where m is the effective mass of an electron/hole and vth is the average thermal
velocity. In a semiconductor, a charge carrier will move rapidly in all directions
due to thermal motion. Due to this motion, charge carriers collide with each other
within the silicon lattice. We define the average time between each collision as
mean free time, τ .

When an electric field, Ê, is applied to a semiconductor, each carrier particle
will experience a force, ±qÊ, (− for electrons and + for holes) from the field and
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will be accelerated in a direction during the time between each collision. There-
fore, there will be an additional velocity component called the drift velocity. This
velocity (for an electron) can be obtained from

−qÊτn = mevn (1.5)

where q is the charge of an electron and mn = me is the electron mass. Equation
(1.5) can be rewritten as

vn = −
(
qτn
me

)
Ê. (1.6)

From this, we define the proportionality factor

µn ··=
qτn
me

(1.7)

which is called the electron mobility. We can also define the hole mobility using
mp = me to get

µp ··=
qτp
me

. (1.8)

The electron drift current flux, Jn,drift, is

Jn,drift = qnµnÊ (1.9)

where n is the electron density. By using that

Ê = −φ′ (1.10)

we get

Jn,drift = −qµnnφ′. (1.11)

1.5.2 Diffusion

Diffusion current is the transport of carriers from a high concentration
of carriers to a low concentration
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The diffusion current flow, F , is

F =
kBT

q
µnn

′. (1.12)

The diffusion current will then be

Jn,diffusion = −qF = −q kBT
q

µnn
′ = −µnkBTn′. (1.13)

The quantity kBT/q is known as the thermal voltage.

1.5.3 The drift-diffusion model

The drift-diffusion model is the drift model and the diffusion model
combined

The drift-diffusion model is simply an expression of the total flux as a sum of the
drift and the diffusion flux;

Jn = Jn,drift + Jn,diffusion

= −qµnnφ′ − µnkBTn′

= −µn (qnφ′ + kBTn
′) . (1.14)

We would like to write J independent of charge, because the structure of the
solutions of the differential equations is more important than the scale. Hence,
we define J∗ ··= J/q and get

J∗n = −µn
q

(qnφ′ + kBTn
′)

= −µn
(
nφ′ +

kBT

q
n′
)
. (1.15)

Similarly, for holes, we get

J∗p = −µp
(
pφ′ − kBT

q
p′
)
. (1.16)
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1.6 Recombinations

Recombination is when an electron in a high energy state, feasible to
conduct electrical energy, loses this energy to another form

This subsection is taken from [18], Section 2.3.

For a solar cell in thermal equilibrium, we have that pn = n2
i , where p is the

hole density in the valence band and n is the electron density in the conduction
band, and ni is the carrier density for the intrinsic material. If we introduce excess
carriers to a solar cell such that pn > n2

i , we have a non-equilibrium. The process
of introducing excess carriers is called carrier injection. Most solar cell devices op-
erate by the creation of charge carriers in excess of the thermal equilibrium values.

Whenever the thermal-equilibrium condition is disturbed, i.e. pn 6= n2
i , there will

be processes that will restore the system equilibrium, so that pn = n2
i . In the case

of injection of excess carriers, the mechanism that restores equilibrium is recom-
bination of the injected minority carriers with the majority carriers. Depending
on the recombination process, the energy released from the recombination process
can be emitted as a photon, known as radiative recombination or be turned into
as heat to the lattice.

The recombination is expected to be proportional to the number of electrons
available in the conduction band and holes available in the valence band; that is

R = βnp (1.17)

where β is a proportionality constant and n and p are the charge carrier densities.
In thermal equilibrium, the recombination rate must be equal to the generation
rate, G. So, for an n-type material in equilibrium, we have

G = R. (1.18)

The net rate of change for hole concentration is given by

ṗn = G−R. (1.19)

In steady state, we thus have G = R, which means that the system then is in
equilibrium.
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1.7 Continuity equation

The continuity equation is a combination of the overall effect of drift,
diffusion, and recombination simultaneously

The section is taken from [18], Section 2.4.

The continuity equation for electrostatics is a one-dimensional case of the Di-
vergence Theorem (Gauss’s theorem). It explains that the net flow must be equal
to the sum of all the sources (and sinks) of the flow. For the net flow, when the
sum of sources is zero we have

J ′n − qṅ = 0. (1.20)

When the sum of forces is the net generation rate, the generation rate minus the
recombination rate, we get the general continuity equation for electrostatics

J ′n − qṅ = Gn −Rn. (1.21)

A similar equation for holes is

J ′p + qṗ = Gp −Rp. (1.22)
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Chapter 2

Solving equations for silicon solar cells
- contact resistance

Figure 2.1: Illustration of the solar cell for which we solve equations. Black et al. [2]
are considering the front side silver contact between the silver and the n-type silicon

emitter. Courtesy of [2].

In this chapter, we look at [2], "Mathematical modeling of contact resistance in
silicon photovoltaic cells", by Black et al. In this paper, they consider a silicon
solar cell with silver (Ag) contacts above the glass that lies between the silicon
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nitride and the n-type silicon. The silicon nitride works like an anti-reflective
layer, and the n-type silicon, which they call emitter, is where the electrons that
contribute to electron transport are excited. They want to "analyze a simple
model for electron transport across [the glass layer] based on drift-diffusion equa-
tion equations." They look at solar cells where silver paste is placed on and then
thermally etched into the upper n-type silicon layer. A dilemma that occurs at
the layer between the silver electrode and the silicon emitter is discussed; "the
emitter must be highly doped with phosphorous atoms at the surface" to attain
low contact resistance, but this "leads to an increased amount of e−h recombina-
tion at the front surface", which reduces the solar cell efficiency. Thus, they seek
an "enhanced understanding of the local electron transport mechanism" in order
to develop "silver pastes that achieve low contact resistance" and thus pave the
way for more efficient solar cells.

Formulation of the problem

We want to look at the cross-section of the panel, as sketched in Figure 2.1.
We consider the glass layer that lies between the silicon emitter (n-type) on the
bottom and the silver electrode on the top. Since a cell is typically much bigger in
order of magnitude than the glass thickness, we can ignore the effect on the edges
of the cell and reduce the problem to a one-dimensional spatial problem where the
space variable is the vertical axis of the glass in Figure 2.1. We denote the glass
thickness, L, and let the applied electric potential difference from the top of the
glass layer to the bottom be ϕ. The panel has silver crystallites embedded into
the silicon layer, and silver colloid within the glass itself. These are introduced
to see how these two different materials influence electric conductivity. When
we look at the case when there is silver on both side of the glass, we expect the
electron density to equal of approximately equal on both sides. When we look at
when there is silicon on the bottom, however, we expect the electron density to be
lower for the silicon than for the silver, as silver has more free electrons to conduct
electricity (silver is a conductor, silicon is a semiconductor). By solving different
equations, we want to find a dynamic system where we can tune parameters and
calculate parameters values depending on the given parameters. Subsequently, we
want to look at how different cases for different boundary materials and parameter
values change the resistance through the glass.
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Governing equations

Black et al. look at the drift-diffusion equations and electrostatic potential equa-
tion to study this system. They consider the drift-diffusion equation, Equation
(1.15), described in Subsection 1.5.3:

J(x) = −µn
(
n(x)φ′(x) +

kBT

q
n′(x)

)
(2.1)

and Poisson’s equation for electrostatics, Equation (1.3) as described in Section
1.4. They consider these equations on the interval 0 ≤ x ≤ L in space, where L
is the thickness of the glass. For Poisson’s equation for electrostatics, it is argued
that for an n-type material, the electron mobility, exceeds the hole density by a
factor of 1010 [11], so we can neglect p in Equation (1.3). We thus end up with
the following equation:

φ′′(x) = −qn(x)

ε
. (2.2)

From here on, we omit the notation where we write each variable as a function of
x. Now, a usual nondimensionalization is done to simplify the variables and the
domain; the electrostatic potential is scaled with kBT

q
, and the electron density is

scaled so that the value at x = 1 is unity. The domain is scaled to be 0 ≤ x ≤ 1.
Also, the parameter, ν, is introduced and denotes the ratio between the Debye
length, LD, and the thickness of the glass, L, where we have LD =

√
εkBT

q
√
n(1)

. Also,

the notation is (a bit confusingly) not changed to denote which variables that
correspond to the original variables or the nondimensionalized variables. For
more details on the nondimensionalization, one can look at [2], Section 2.3. We
end up with the following nondimensionalized system:

ν2φ′′ = −n (2.3)
J = −n φ′ − n′ (2.4)

on 0 ≤ x ≤ 1 with boundary conditions

φ(0) = ϕ; φ(1) = 0; n(1) = 1. (2.5)

We now have that n(0) is the ratio between the electron concentration at x = 0
and at x = 1. This value, sometimes denoted α, can be chosen to be given or
a value to be computed (I will use the notation n(0) when we want to compute
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this value and α when this value is used as a boundary condition). In this system
we have n(1) = 1, φ(1) = 0 and ν as fixed values for each case we consider. The
variables n(0), ϕ and J can be either determined or values that we need to cal-
culate (α for n(0) if it is a given value). Since (2.3) and (2.4) is a set of equations
where one equation has a second-order derivative and the other has a first-order
derivative, we should have three boundary conditions. We can then choose if ϕ
or α should be the fixed on beforehand, and then have J as given value. As we
will see later, we can instead have α and ϕ as given values and J as the value
computed. It is more realistic that we can know α and ϕ on beforehand so that
J is the value that we need to compute. Black et al. make a system where α
is given, and then fix ϕ to find J , or vice versa. I will instead first start with a
system that has a given ϕ and J so that n(0) is calculated. In reality, ϕ can easily
be tuned. By building the panels differently, we can have some control over the
values of ν and α, but we can never predetermine J . This means that if we do use
a given fixed J , we can see it as an approach where we know what result we want
and study how we can tune and tweak parameters that yield the desired J . The
approach where we fix four boundary values and then find the flux is considered
in Section 2.4.

In all cases, we consider when this system is in equilibrium, that is, when nothing
changes with time. We can in such a case use that ṅ = 0, and that the generation
is equal to the recombination, Gn = Rn, which by (1.21), means that J ′ = 0,
making J constant in space.

Equation (2.3) and (2.4) make up a coupled set of differential equations, where
(2.4) is non-linear. These equations cannot easily be solved analytically, so we
try to solve them numerically. We discretize in space as described in A.1 by
letting x̃ be the discretization vector of x. We find discrete solutions, φ̃ for
φ, and ñ for n, as functions of x̃, with N + 2 discretization points with spac-
ing ∆ x = (N + 1)−1. We have, as described in A.1, φ̃ = [φ0, . . . , φN+1]T ,
φ̂ = [φ0, . . . , φN ]T , φ = [φ1, . . . , φN ]T and ñ = [n0, . . . , nN+1]T , n̂ = [n0, . . . , nN ]T ,
n = [n1, . . . , nN ]T . Consequently, we have φ0 = ϕ, φN+1 = 0 and nN+1 = 1. We
here use hat and tilde notation to increase readability.

We want to find φ and n by solving (2.3) and (2.4). We discretize these equa-
tions to find and we now seek φ and n̂. Since we have boundary conditions on
both sides for φ for Equation 2.3, we use second-order finite central differences
and hence use Lemma A.1. Since we have a right boundary condition for n in
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Equation (2.3), we use first-order finite forward differences and hence use Lemma
A.3. By Corollary A.2 and A.4, we get the following system in matrix form:

S0 φ+ rφ,S0 = −(∆ x)2

ν2
n (2.6){

diag(F̂+ φ̂+ rφ,F̂+
) + F̂+

}
n̂+ rn,F̂+

= −∆ x J 1N+1 (2.7)

We later consider what happens if we increase the order. We will do this by using
second-order finite forward differences for (2.4), with a first-order approximation
at xN . When we mix orders of finite differences in one system, however, we can-
not be sure what order we get; we can at best get a method with the order of
the highest of the different approximations, and at worst, we get an order of the
lowest of the different approximations. When we use different orders for (2.3) and
(2.4), we will get an order of the lowest of the two.

We look at three different cases for the parameter values. These are stated in
the table below. In the first case, Scenario 1, we look at what happens when we
have all values as unity, somewhat for reference. In the next case, Scenario 2, we
look at what happens in the case when the electron flux is large, J � 1, that
is, we see how a large flux influences the system. In the last case, Scenario 3,
we look at what happens when the Debye length to the glass thickness ratio is
small, ν � 1, where the Debye length is the length over which significant charge
separation can occur. These three scenarios can be considered cases where we look
at the problem physically and see what happens in different limits. These three
scenarios may not represent typical solar cell parameters, but rather give us an
idea for how the electronic properties will be for different limits of the parameters.

Scenario ϕ φN+1 nN+1 J ν

1 1 0 1 1 1

2 100 0 1 70 1

3 0.05 0 1 2×10−4 0.01

We first try to solve for φ, n̂ with ϕ and J as given values, so that we need to
include n0 as an unknown when finding the normalized electron density.
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2.1 Solving using an iteration scheme

We rewrite (2.6) and (2.7), by putting terms on the right side, so that we can
solve for φ and n̂:

S0 φ = −rφ,S0 −
(

∆ x

ν

)2

n (2.8){
diag(F̂+ φ̂+ rφ,F̂+

) + F̂+

}
n̂ = −rn,F̂+

−∆ x J 1N+1 (2.9)

This suggests that we can find φ and n̂ using the following iteration scheme:

φ(k+1) = −S−1
0

(
rφ,S0 +

(
∆ x

ν

)2

n(k)

)
(2.10a)

n̂(k+1) = −
{
diag(F̂+ φ̂

(k+1) + rφ,F̂+
) + F̂+

}−1

(rn,F̂+
+ ∆ x J 1N+1) (2.10b)

For (2.10a), we can consider n as a given value, and for (2.10b), we can consider
φ̂ as a given value. Thus, in each step, we actually solve a linear system.

We use the relative error using the 2-norm between each consecutive itera-
tion. We exit the iteration when the largest relative error (either the error
for φ or for n̂) is less than 10−14. The reason we choose 10−14 is that the
rounding error in MATLAB is less than 10−16. This means that for a point,
x, which is represented on the computer as the floating point of x, fl(x), we
have that |fl(x)− x|/|x| ≤ 10−16. When using the 2-norm, these rounding
errors add up, so 10−14 makes a decent approximation for the maximum
relative error due to rounding errors. If the scheme does not converge in
200 or fewer steps, we also exit the iteration and say that the method does
not converge. I will use these conditions for all further iteration methods.
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In the calculation in (2.10a) and (2.10b), it is best to let φ and n̂ be the
values that solve Equation (2.8) and (2.9), respectively. The system can
then be solved with a faster method, as inverting the matrix and multiplying
may be slower than other solution methods. MATLAB has a built-in code
that tries to find the fastest solution method for a given system. This is
implemented as using backslash, \. So to find x that solves x = A−1y, it
may be faster to solve if implemented as x = A\y.

2.1.1 Convergence analysis of the iteration scheme

We can analyze the iteration scheme by writing it into a fixed-point method. We
want to see if the given values for ν in the different scenarios will lead to conver-
gence, and which other values of ν will give convergence.

We will consider (2.10b) as the fixed-point method. We then want to write n̂
in the form

n̂(k+1) = ĥ2.1(n̂(k)) (2.11)

where ĥ2.1 : RN+1 → RN+1 is some mapping that needs to be a contraction
mapping for the fixed-point iteration to converge. In this case, ĥ2.1 is the right
side of equation (2.10b). For this right side, we have φ̂ as input argument, but we
want to have n̂ as input. We want to analyze the following fixed-point iteration:

n̂(k+1) = ĥ2.1(φ̂(k+1))

= −{diag(F̂+ φ̂
(k+1) + rφ,F̂+

) + F̂+ }−1
(
rn,F̂+

+ ∆ x J 1N+1

) (2.12)

To simplify the analysis, we instead find an expression in the form n = h2.1(φ)
and write it in the form n = h2.1(n). By doing so, we reduce the (N+1)×(N+1)
system in (2.12) to an N × N system and replace F̂+ , φ̂ and 1N+1 with F+ , φ
and 1N , respectively. We then get

n(k+1) = h2.1(φ(k+1))

= −{diag(F+ φ
(k+1) + rφ,F+ ) + F+ }−1 (rn,F+ + ∆ x J 1N) .

(2.13)
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To obtain an expression for n(k+1) with n(k) as input, we substitute φ(k+1) with
the expression in (2.10a):

n(k+1) = h2.1

(
n(k)

)
= −

{
diag

(
F+

[
−S−1

0

(
rφ,S0 +

(
∆ x
ν

)2
n̂(k)

)]
+ rφ,F+

)
+ F+

}−1

(rn,F+ + ∆ x J 1N) (2.14)

We now have a mapping in the form n(k+1) = h2.1(n(k)), which is a fixed-point
iteration. A sufficient and necessary condition for this fixed-point method to con-
verge is that the mapping, h2.1, is a contraction mapping, as stated in Theorem
A.8. We require n(k) ∈ R, k = 1, 2, . . . where R ⊆ R is a complete subset of
R. For a mapping to be a contraction mapping, it is sufficient that the norm of
Jacobian, h2.1(n), is

∥∥∥J h2.1(n)
n (n)

∥∥∥ < 1, ∀n ∈ R, for some norm.

We now omit the iteration index. Using that diag() is a linear operator and
that a minus can be distributed in a matrix inverse, we get

h2.1(n) ={
diag

(
F+ S

−1
0 rφ,S0

)
+ diag

(
F+ S

−1
0

(
∆ x
ν

)2
n
)
− diag (rφ,F+ )− F+

}−1

(rn,F+ + ∆ x J 1N) . (2.15)

It is not straightforward to find the Jacobian of h2.1, so we use Claim B.7 to find
the j-th column of the Jacobian of h2.1(n), for j = 1, . . . , N :

[
J h2.1(n)
n

]
:,j

=

∂
∂nj

{
diag

(
F+ S

−1
0 rφ,S0

)
+ diag

(
F+ S

−1
0

(
∆ x
ν

)2
n
)
− diag (rφ,F+ )− F+

}−1

(rn,F+ + ∆ x J 1N) (2.16)
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We can now use Theorem B.9 to find another expression for the derivative of the
inverse:

[
J h2.1(n)
n

]
:,j

= −
{
diag

(
F+ S

−1
0

(
rφ,S0 +

(
∆ x
ν

)2
n
)
− rφ,F+

)
− F+

}−1

(
∆ x
ν

)2 ∂
∂nj

{
diag

(
F+ S

−1
0 n

)}{
diag

(
F+ S

−1
0

(
rφ,S0 +

(
∆ x
ν

)2
n
)
− rφ,F+

)
− F+

}−1

(rn,F+ + ∆ x J 1N) (2.17)

where we have used that diag() is linear and that terms with no dependence on
n vanish under differentiation. Using Claim B.8 we get

[
J h2.1(n)
n

]
:,j

= −
{
diag

(
F+ S

−1
0

(
rφ,S0 +

(
∆ x
ν

)2
n
)
− rφ,F+

)
− F+

}−1

(
∆ x
ν

)2 {diag ([F+ S
−1
0 ]:,j

)}{
diag

(
F+ S

−1
0

(
rφ,S0 +

(
∆ x
ν

)2
n
)
− rφ,F+

)
− F+

}−1

(rn,F+ + ∆ x J 1N) . (2.18)

We now find a bound for the norm of the Jacobian. In this case, we have an
explicit expression for each column of the Jacobian so it is natural to choose the
1-norm, also known as the "column norm". We then have

∥∥J h2.1(n)
n

∥∥
1

= max
j=1,...,N

∥∥∥[J h2.1(n)
n

]
:,j

∥∥∥
1
. (2.19)

We calculate the 1-norm of column j:

∥∥∥∥[J h2.1(n)
n

]
:,j

∥∥∥∥
1

=

∣∣∣∣∣∣∣∣−{diag(F+ S
−1
0

(
rφ,S0 +

(
∆ x
ν

)2
n
)
− rφ,F+

)
− F+

}−1

(
∆ x
ν

)2
{
diag

([
F+ S

−1
0

]
:,j

)}
{
diag

(
F+ S

−1
0

(
rφ,S0 +

(
∆ x
ν

)2
n
)
− rφ,F+

)
− F+

}−1

(rn,F+ + ∆ x J 1N)||1 (2.20)
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≤∥∥∥∥{diag(F+ S
−1
0

(
rφ,S0 +

(
∆ x
ν

)2
n
)
− rφ,F+

)
− F+

}−1
∥∥∥∥2

1(
∆ x
ν

)2
∥∥∥diag([F+ S

−1
0

]
:,j

)∥∥∥
1

{
‖rn,F+ ‖1 + ∆ x‖J 1N‖1

} (2.21)

=∥∥∥∥{diag(F+ S
−1
0

(
rφ,S0 +

(
∆ x
ν

)2
n
)
− rφ,F+

)
− F+

}−1
∥∥∥∥2

1(
∆ x
ν

)2 ∥∥[F+ S
−1
0 ]:,j

∥∥
∞

{
‖rn,F+ ‖1 + ∆ x‖J 1N‖1

} (2.22)

where we first use (B.23b), (B.23a) and (B.23c) and next Lemma B.12. We can
use that for

(
∆ x
ν

)2 ‖n‖1 � ‖rφ,S0‖1, we have∥∥∥∥∥diag
((

∆ x

ν

)2

F+ S
−1
0 n

)∥∥∥∥∥
1

�
∥∥diag (F+ S

−1
0 rφ,S0

)∥∥
1
. (2.23)

Since glass with silver colloid has a lower electron density than both silver and
silicon, we have that 0 ≤ n(x) ≤ 1, so we can expect that 0 ≤ ni ≤ 1, i = 1, . . . , N .
We can then use that ‖n‖1 ≤ N , ∆ x ∼ 1/N , and ‖rφ,S0‖1 = ϕ, so (2.23) is
satisfied whenever

1

Nν2
� ϕ. (2.24)

An analysis of (2.24) for different cases is discussed later in this subsection. If
(2.24) is satisfied, the expression for the bound for the Jacobian in (2.22) can be
approximated with∥∥∥{diag (F+ S

−1
0 rφ,S0 − rφ,F+

)
− F+

}−1
∥∥∥2

1

(
∆ x
ν

)2 ∥∥[F+ S
−1
0 ]:,j

∥∥
∞

{
‖rn,F+ ‖1 + ∆ x‖J 1N‖1

}
(2.25)

≤

(1 + ∆ xJ N)
(

∆ x
ν

)2 ∥∥[F+ S
−1
0 ]:,j

∥∥
∞

∥∥∥{diag (F+ S
−1
0 rφ,S0 − rφ,F+

)
− F+

}−1
∥∥∥2

1

(2.26)

where we use that nN+1 = 1, J > 0 and ‖1N‖1 = N . We can now substitute ∆ x
with 1/N since ∆ x ∼ 1/N . We then get

(1 + J )
(

1
N ν

)2 ∥∥[F+ S
−1
0 ]:,j

∥∥
∞

∥∥∥{diag (F+ S
−1
0 rφ,S0 − rφ,F+

)
− F+

}−1
∥∥∥2

1
.

(2.27)
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Using MATLAB, I find that maxj=1,...,N

∥∥[F+ S
−1
0 ]:,j

∥∥
∞ ' 1 for N = 102, N = 103

and N = 104, so we can assume it holds for the values of N that we will use. We
now have that a norm bound for the Jacobian of h2.1 that does not depend on j;∥∥∥J h2.1(n)

n

∥∥∥
1
≤ (1 + J )

(
1
N ν

)2
∥∥∥{diag (F+ S

−1
0 rφ,S0 − rφ,F+

)
− F+

}−1
∥∥∥2

1

= 1+J
N2 ν2

∥∥∥{diag (F+ S
−1
0 rφ,S0 − rφ,F+

)
− F+

}−1
∥∥∥2

1
.

(2.28)

We now consider the three different cases for different parameters.

For Scenario 1, I used MATLAB to find∥∥∥{diag (F+ S
−1
0 rφ,S0 − rφ,F+

)
− F+

}−1
∥∥∥

1
' 0.633N (2.29)

so we have that∥∥∥J h2.1(n)
n (n)

∥∥∥
1
≤ 1+J

N2 ν2
(0.633N)2 ≈ 1+J

N2ν2
0.4N2 = 4

5ν2
(2.30)

using that J = 1. So we get convergence for

4

5ν2
< 1 ⇐⇒ 4 < 5ν2 ⇐⇒ ν >

√
4

5
≈ 0.89. (2.31)

So we get convergence for ν > 0.89.

Also, we made the assumption in (2.23) that one term will vanish with large
enough N , requiring that

1

Nν2
� ϕ. (2.32)

For Scenario 1, this is true when N � 1
ϕν2

= 1.26 for νmin, and when N � 1 for
ν = 1, . This is a realistic assumption, as N is generally much larger than ∼ 1.

Now, for Scenario 2, MATLAB experiments show that the norm follows the rela-
tion ∥∥∥{diag (F+ S

−1
0 rφ,S0 − rφ,F+

)
− F+

}−1
∥∥∥

1
' N/100. (2.33)
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With similar calculations, we get convergence for ν > 0.085.

We need again to investigate if the assumption made in (2.23) is realistic with
the given parameter values. We have that (2.24) is fulfilled when N � 1

ϕν2
= 0.7

for νmin and when N � 0.01 for ν = 1. This is, again, a realistic assumption.

Lastly, for Scenario 3, we get∥∥∥{diag (F+ S
−1
0 rφ,S0 − rφ,F+

)
− F+

}−1
∥∥∥

1
' 0.975N. (2.34)

For Scenario 3, we get convergence for ν > 0.975.

Again, we need to check if the assumption in (2.23) is realistic. The condition
in (2.24) is fulfilled when N � 10 for νmin and when N � 2 × 105 for ν. The
assumption for ν is unrealistic as this is a too great number for the computer to
deal with, also, it is not common to have such high discretization numbers for
solving such systems. This means that the value of νmin for Scenario 3 is not a
maximum bound that can be used with confidence.

Solving a system of equations with a matrix system of size N ×N with for
example using Gaussian elimination takes on the O(N3) operations. So for
N � 2 × 105, say N = 107, it will take on the order of 1021 operations to
compute, which requires the computing power and memory of a computer
much better than what an average person uses. Thus, the assumption in
(2.23) in this analysis is entirely unrealistic in normal computations. With
my computer with 4 cores and 2.2 GHz clock speed, it takes around 7 seconds
in MATLAB to solve F+ S

−1
0 , which are sparse matrices, when N = 104.

This means that it would take around a thousand years to compute just
one Gaussian elimination in the system with my computer, if the computer
indeed had the memory for such a computation. When I implemented a
107 × 107 matrix in MATLAB, it stated that a matrix of such a size takes
around one petabyte (1 million gigabytes) to store.

These bounds, νmin, are not strict, but they are bounds that guarantee conver-
gence (maybe not for Scenario 3). We see that for ν = 0.01 in Scenario 3, if
we indeed had νmin = 1.38, the scheme may not converge. Also, we see that the
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convergence of the iteration scheme is independent of the discretization number,
N , as long as (2.24) is satisfied, which is realistic for Scenario 1 and 2. This means
that if the iteration scheme does not converge, we cannot expect that increasing
the number of discretization points will give an increased chance for convergence.
It is the value of ν that is critical for the convergence.

Results from iteration scheme

When using the iteration scheme, we get convergence for Scenario 1 and 2, but
not for Scenario 3 (we exceed 200 iterations). Plots for Scenario 1 and 2 can
be seen in Figure 2.2 and 2.3, respectively. For the bounds found in Subsection
2.1.1, real computations show that the bounds we have confidence in, i.e. the
bounds for Scenario 1 and 2, fit well. For Scenario 1, computations show that the
strict minimum is νmin ≈ 0.14 and for Scenario 2 we get a strict minimum bound
of around νmin ≈ 0.07. The bound for Scenario 2 is surprisingly accurate taken
into consideration that when we find the bound in 2.1.1 we use norm inequalities.
For Scenario 3, we do however get convergence for νmin ≈ 0.23, regardless of the
discretization number. A plot of the result for this value of ν for can be seen in
Figure 2.4.

By the analysis of the fixed-point method, we have convergence (even for Sce-
nario 3) for values of ν greater than the values for νmin, and convergence with the
actual strict bounds, denoted ν∗min. These values are stated in the table below.

Scenario ν νmin ν∗min

1 1 0.89 0.14

2 1 0.085 0.07

3 0.01 0.975 0.23

If we solve for Scenario 3 using second-order finite differences as described in
Lemma A.7, we get convergence (less than 200 iterations) for ν = 0.22, regardless
of the discretization number. This is very close to the results that we get for the
first-order finite difference method. This means that the order of the method does
not influence if the iteration scheme converges or not, and neither does the size
of the discretization number. This is, however, greatly influenced by the value of ν.
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Plots of the results

Figure 2.2: Plot of φ and n against x for Scenario 1. These are results when using the
iteration scheme in Section 2.1 with first-order finite differences.

Figure 2.3: Plot of φ and n against x for Scenario 2. These are results when using the
iteration scheme in Section 2.1 with first-order finite differences.
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Figure 2.4: Plot of φ and n against x for Scenario 3, but with ν = 0.23. These are
results when using the iteration scheme in Section 2.1 with first-order finite differences.

Since we do not get convergence for Scenario 3, we instead seek an iteration
method that is a more secure approach, leading to Newton-Raphson as a natural
choice.

2.2 Solving using Newton-Raphson

The standard formulation of Newton-Raphson is to find the roots of a function.
That is find z such that f2.2(z) = 02N+1. We write the system (2.6), (2.7) to be
in the desired form to solve with the Newton-Raphson method;

S0φ+ rφ,S0 +

(
∆ x

ν

)2

n = 0N (2.35a)

diag(F̂+ φ̂+ rφ,F̂+
)n̂+ F̂+ n̂+ rn,F̂+

+ ∆ x J 1N+1 = 0N+1 (2.35b)

We can write (2.35a) and (2.35b)

S0φ +
(

∆ x
ν

)2
n + rφ,S0 = 0N

(diag(F̂+ φ̂+ rφ,F̂+
) + F̂+ )n̂ + ∆ x J 1N+1 + rn,F̂+

= 0N+1

(2.36)
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We want to solve f2.2(z) = 02N+1, using (2.36), with f2.2(z) as

f2.2(z) =

 S0 0N
(

∆ x
ν

)2
IN

0 diag(F̂+ φ̂+ rφ,F̂+
) + F̂+


︸ ︷︷ ︸

=··G2.2(z)

 φ

n̂

+

 rφ,S0

J∆ x1N+1 + rn,F̂+


(2.37)

with

z =


z1

...

z2N+1

 ··=
 φ

n̂

 ⇐⇒ φ =


z1

...

zN

 , n̂ =


zN+1

...

z2N+1

.

Here, G2.2(z) is a 2× 2 block matrix. We can let {G2.2}1,1 be the upper left block
and so on. Then the first N components of f2.2(z) will be {G2.2}1,1φ+{G2.2}1,2n̂+
rφ,S0 . Similarly, the next N+1 elements of f2.2(z) will be {G2.2}2,2n̂+J∆x1N+1+
rn,F̂+

.

We now find the Jacobian of f2.2(z) by using Claim B.6. We find the first N
rows of the Jacobian by using Claim B.1. We find the next N + 1 rows of the
Jacobian by using Claim B.1 and Claim B.3. We get the following Jacobian of
f2.2(z):

J f2.2(z)
z (z) =

 S0 0N
(

∆ x
ν

)2
IN

diag(n̂)[F̂+ ]:,2:N+1 diag(F̂+ φ̂+ rφ,F̂+
) + F̂+

 (2.38)

We can now solve for z with the following iteration:

z(k+1) = z(k) −
[
J f2.2(z)
z

(
z(k)
)]−1

f2.2

(
z(k)
)
. (2.39)
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The expression in (2.39) can be solved more quickly by solving for d(k) by
letting d(k) be such that

J f2.2(z)
z

(
z(k)
)
d(k) = −f2.2

(
z(k)
)

(2.40)

and then find z(k);

z(k+1) = z(k) + d(k), (2.41)

as described in Subsection A.4.2.

Results from Newton-Raphson

As expected, the Newton-Raphson method converges to the same values as the
method in Section 2.1, for Scenario 1 and 2. This builds confidence in the code we
have developed. We now also get convergence for Scenario 3. However, this con-
vergence only occurs for N > 200. For Scenario 3 we expect n0 ≈ 1; for N = 201,
we get n0 ≈ 883, and we need around N = 1500, before we have n0 < 1.2. This
makes this first-order finite difference a bad choice, so we try a second-order fi-
nite difference method. For Scenario 3, we get convergence for the second-order
approximation for N > 44. A plot of the results for Scenario 3 can be seen in
Figure 2.5.

When we do get convergence, we get that n(0) ≈ 1.05, 0.702, 1.05 for Scenario 1,
2 and 3 respectively. This is in accordance with what we expected.
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Plots of the results

Figure 2.5: Plot of φ and n against x for Scenario 3. These are results when using the
Newton-Raphson method in Section 2.2 with second-order finite differences.

Now that we have a method that converges for all three scenarios, we can look at
different solutions for different values of ν. We can look at ν = 0.6, 0.8, 1, 1.2, 1.4,
and the continuous case when 0.6 ≤ ν ≤ 1.4. For Scenario 1 and 3, we get
significant changes in the system when varying ν, but for Scenario 2, we see
no differences in plots of the electrostatic potential and small differences for the
electron density. The results for these cases are plotted in Figure 2.6, 2.7, 2.8
and 2.9. The plot for the continuous case for Scenario 2 is not included since it
changes very little for the values of ν used.

Figure 2.6: Plot of φ and n against x for different values of ν for Scenario 1,
ν = 0.6, 0.8, 1, 1.2, 1.4. These are results when using the Newton-Raphson method in

Section 2.2 with second-order finite differences.
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Figure 2.7: Plot of n against x for different values of ν for Scenario 2,
ν = 0.6, 0.8, 1, 1.2, 1.4. These values of ν for Scenario 2 change the values of n very
little. The changes for φ are not visible in a plot and are not included. This result is

when using the Newton-Raphson method in Section 2.2 with second-order finite
differences.

Figure 2.8: Plot of φ and n against x for different values of ν for Scenario 3,
ν = 0.6, 0.8, 1, 1.2, 1.4. These are results when using the Newton-Raphson method in

Section 2.2 with second-order finite differences.
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(a) Scenario 1 (b) Scenario 3

Figure 2.9: 3D plot of n as a function of x for different values of ν ∈ [0.6, 1.4]. These
are results when using the Newton-Raphson method in Section 2.2 with second-order

finite differences.

We see that changing the values of ν changes the electron density and electrostatic
potential distribution quite a lot for Scenario 1 and 2. For Scenario 2, however,
there are small changes for the different selected values of ν. We see that for
Scenario 1, different values of ν, changes the values of the left boundary for the
electron density; higher values of ν yield lower values of n(0). We also see that
different values of ν changes the electron density for Scenario 3 quite significantly
where lower values of ν yield lower minimum values for n. We also see that lower
values of ν leads to a higher maximum for φ. This is in accordance with the
Poisson’s equation.

We also consider how the different values of Φ and J influence the left bound-
ary value of n. We choose to look at a continuous case when 0.5 ≤ ϕ ≤ 5 and
0.2 ≤ J ≤ 1.6 and ν = 1. These values are chosen so that we see the depen-
dence of the left boundary of n against the other parameters. The result from
this consideration is plotted in Figure 2.10. As we see, high flux and low applied
potential difference yield a high electron density on the left boundary, whereas,
the opposite yield a low electron density on the left boundary. We also notice
that the left boundary value of n is linear against J and convex against ϕ. Also,
decreasing Φ yields an increase in n(0).
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Figure 2.10: 3D plot of n(0) against ϕ and J for 0.5 ≤ ϕ ≤ 5 and 0.2 ≤ J ≤ 1.6 for
ν = 1. These are results when using the Newton-Raphson method in Section 2.2 with
second-order finite differences. (In the plot, the variable ϕ is denoted Φ because I was

not able to implement ϕ in MATLAB)
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Effective error of finite difference approximations

We now look at the effective order of the finite difference approximations we have
used. We use the method as described in Section A.6, where we have that the
discretization number is given by N = 2d − 1. As mentioned before, the method
for Scenario 3 converges only if we have N > 200, and is a physical solution for
N > 1000 when we use first-order approximations. Therefore, in the table with
the effective order of the finite difference approximation for the first-order approx-
imation, the column for Scenario 3 is left blank except for d = 12. The effective
orders for the first-order finite difference method are given in the table below.

Grid points Order of error for φ Order of error for n̂

d log2

(
e
[d−1]
φ

e
[d]
φ

)
log2

(
e
[d−1]
n

e
[d]
n

)
Scenario Scenario

1 2 3 1 2 3

7 0.8238 0.9540 0.9544 0.4810

8 0.9172 0.9755 0.9763 0.6931

9 0.9598 0.9872 0.9880 0.8193

10 0.9802 0.9934 0.9939 0.8962

11 0.9902 0.9966 0.9970 0.9432

12 0.9951 0.9982 0.9879 0.9985 0.9701 1.1413

We see that that the effective order for d = 7 of n for Scenario 2, is lower than ex-
pected, but increases as d increases. For the second-order finite difference method,
we do not get convergence for d = 5 for Scenario 3, so the space for d = 7 is left
empty. The effective orders when using second-order finite differences are stated
in the table below.
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Grid points Order of error for φ Order of error for n̂

d log2

(
e
[d−1]
φ

e
[d]
φ

)
log2

(
e
[d−1]
n

e
[d]
n

)
Scenario Scenario

1 2 3 1 2 3

7 1.9798 1.8985 1.8904 0.7321

8 1.9970 2.0117 3.0576 1.9448 1.0830 2.8606

9 2.0002 2.0885 2.4851 1.9722 1.3934 1.3466

10 2.0005 2.1047 2.3981 1.9860 1.6351 1.6443

11 2.0004 2.0807 2.3378 1.9930 1.7963 1.7446

12 2.0002 2.0500 2.2504 1.9965 1.8918 1.8431

For this second-order scheme we have used a first-order finite difference near the
right boundary of n. For Scenario 2, we notice that for we do not get an effective
order of 2, unless the discretization number is close to N = 104. We even get
an effective order lower than 1 for d = 7. As we see in Figure 2.11, the results
from the first and second-order finite difference method differ for Scenario 2, in
particular there is a significant difference in the results for where the values of n
make the transition from n ≈ 0.7 to increase rapidly before reaching n = 1. Also,
one of the reasons why we get an effective order of n for the second-order finite
difference method for Scenario 2 that is lower than expected, may be that we have
used a first-order finite difference method at xN .
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Figure 2.11: Plot of n against x using first (blue) and second-order (red) finite
difference methods for Scenario 2 with N=150. These are results when using the

Newton-Raphson method in Section 2.2.

Figure 2.12: Plot of φ against x for different values of discretization numbers for
Scenario 3. For N ≥ 80, there are no visible differences in a plot of solutions. These
are results when using the Newton-Raphson method in Section 2.2 with second-order

finite differences.
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For Scenario 3 the solution when using a second-order finite difference method
changes quite significantly for discretization numbers from 60 to 80. In the calcu-
lation of the effective order when using second-order finite differences for Scenario
3, we use d = 6 ⇐⇒ N = 63, d = 7 and d = 8. As we see in Figure 2.12,
the value d = 6, will give a solution that will be very different from the solution
for d = 7. Therefore, the high effective orders for d = 8 for Scenario 3 are not
surprising.

We notice that the effect that the different scenarios have on the different sys-
tems change the effective order of error. We are therefore in Scenario 3 dependent
on using many grid points. Also, for Scenario 2, where n changes rapidly, it would
be advantageous to have many grid points. If we were considering a system with
more dimensions, a different approach should have been made. For example to
account for the big changes in the values of n near the right boundary in Scenario
2. Such an approach could be either a non-equidistant grid spacing or using a
finite element method.

For Scenario 3 with N = 60, 70, 80, it is hard to see the differences in n; for
plots of solutions for Scenario for N = 60, we have n(0) ≈ 0.19, for N = 70 we
have n(0) ≈ 0.58 and for N = 80, we get n(0) ≈ 0.99. The solutions all look quite
similar except at the left boundary. We therefore only plot the results we get for
φ with these different discretization numbers.

Runtime and number of iterations for convergence

We here look at the iteration scheme in Section 2.1 vs. the Newton-Raphson
method in Section 2.2. We will consider the differences in runtime and difference
in number of iterations for convergence. We will of course only consider Scenario 1
and 2, as Scenario 3 does not yield a convergent method for the iteration scheme.
We consider the second-order finite difference method for both iteration methods.
The results for Scenario 1 and 2 can be seen in the table below. The results for
Scenario 2 when using Newton-Raphson for N = 104 are not included, as these
take a long time to calculate.

We have that for the consistent runtimes (where MATLAB uses approximately
the same time on one iteration each time I run the code), the Newton-Raphson
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method uses around a factor of 10 more seconds to run. We have that the iter-
ation scheme is two iterations, each with a matrix of dimension ∼ N × N , and
that the Newton-Raphson method has a matrix of dimension ∼ 2N × 2N . If the
system is solved used Gaussian elimination, it should take ∼ 2N3 operations for
the iteration scheme and ∼ 8N3 operations for the Newton-Raphson to to solve
the linear system. However, we mostly have diagonal, bidiagonal and tridiagonal
matrices for the iteration scheme, that each take on the ∼ N operations to solve.
For the Newton-Raphson method, however, we have a ∼ 2N × 2N matrix with
elements in the lower left block and upper right block. These elements make the
matrix much less sparse and makes the system much more involved to solve. This
explains the significant differences in runtime for the two iteration methods.

For the number of iterations for the iteration scheme for N = 5×103, the number
of iterations until convergence is 14, in contrast to 12 for the other discretization
numbers. I do not know why we get this result. We need fewer iterations for the
Newton-Raphson method to convergence, especially for Scenario 1, where we need
3 times fewer iteration steps for convergence. This is expected as the iteration
scheme generally takes more number of iterations to converge compared to the
Newton-Raphson method. Also, since the iteration scheme does not converge at
all for Scenario 3, we cannot be certain of how well the scheme converges.

Degree of Runtime for Number of iterations

freedom one iteration to converge

Method Method

Iteration s. Newton-R. Iteration s. Newton-R.

Scenario Scenario

1 2 1 2

1× 102 ∼ 10−3 ∼ 10−3 12 6 4 4

5× 102 ∼ 10−3 ∼ 10−2 12 7 4 5

1× 103 ∼ 10−2 ∼ 2× 10−1 12 7 4 5

5× 103 ∼ 8× 10−1 8.4× 100 14 7 4 5

1× 104 4.5× 100 5.7× 101 12 7 4
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We now want to look at the case where J is not a given value, but rather a
value that either is included in the iteration or a value that is calculated after the
iteration has converged. We first consider when it is included in the iteration.

2.3 Including the flux in the iteration

If we do not know the value of J beforehand, we can calculate it. We want to find
an expression for J . We rewrite (2.4), and get

J = −nφ′ − n′ (2.42)

= −n
(
φ′ +

1

n
n′
)

(2.43)

= −n (φ+ log(n)) (2.44)
⇐⇒

J

n
= − (φ+ log(n))′ . (2.45)

We can now integrate from 0 to 1, using that J ′ = 0, φ(0) = ϕ, φ(1) = 0 and
n(1) = 1: ∫ 1

0

J

n
dx = −

∫ 1

0

(φ+ log(n))′ dx (2.46)

J

∫ 1

0

1

n
dx = −(φ+ log(n))

∣∣∣1
0

(2.47)

= −{0 + log[n(1)]− (ϕ+ log[n(0)])} (2.48)
= ϕ+ log(n(0)). (2.49)

We can now write J as

J =
ϕ+ log[n(0)]∫ 1

0
1
n
dx

. (2.50)
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This means that if J = 0, then ϕ = − log[n(0)], which means that − log[n(0)] is
the built-in chemical potential. We can now find the resistance, R, using Ohm’s
law:

R(n) ··=
ϕ− (− log[n(0)])

J
=
ϕ+ log[n(0)]

J
. (2.51)

Using the Trapezoidal Rule, we can find an expression for J . By Theorem A.9 we
get

J = (ϕ+ log(n0))

[
∆ x

{
1

2

(
1

n0

+
1

nN+1

)
+ 1Tn◦(−1)

}]−1

. (2.52)

Now, including the flux, J , in the Newton-Raphson system, we get the following
function, that we want to solve for f2.3(z) = 02N+2:

f2.3(z) =


S0 0N

(
∆ x
ν

)2
IN 0N

0 diag(F̂+ φ̂+ rφ,F̂+
) + F̂+ ∆ x1N+1

0TN 0TN+1 1


︸ ︷︷ ︸

=··G2.3(z)


φ

n̂

J

+


rφ,S0

rn,F̂+

−ω(n̂)


(2.53)

where ω(n̂) ··= (ϕ+ log(n0))
[
∆ x

{
1
2

(
1
n0

+ 1
nN+1

)
+ 1TNn

◦(−1)
}]−1

.

We now have

z =


z1

...

z2N+2

 ··=

φ

n̂

J

 ⇐⇒ J = z2N+2.

Here G2.3(z) is a 3× 3 block matrix. We can let {G2.3}1,1 be the upper left block
and so on, as before. Now, the last element of f2.3(z) will be {G2.3}3,3J − ω(n̂).

We now find the Jacobian of f2.3(z) by extending (2.38) with an extra row and
column. The Jacobian of the extra column in the second block row is found with
Claim B.1. The last row of the Jacobian is found using Claim B.1 and Corollary
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B.11. We get the following Jacobian of f2.3(z):

J f2.3(z)
z (z) =


S0 0N

(
∆ x
ν

)2
IN 0N

diag(n̂)[F̂+ ]:,2:N+1 diag(F̂+ φ̂+ rφ,F̂+
) + F̂+ ∆ x1N+1

0TN −σ̂(n̂) 1


(2.54)

where

σ̂(n̂) ··=

 1
2

(
1
n0

[1+ϕ+log(n0)]+ 1
nN+1

)
+1TNn

◦(−1)

∆ x n0

[
1
2

(
1
n0

+ 1
nN+1

)
+1TNn

◦(−1)

]2 ϕ+log(n0)

∆ x

[
1
2

(
1
n0

+ 1
nN+1

)
+1TNn

◦(−1)

]2 (n◦(−2)
)T  .

(2.55)

We can then solve the system as described in (2.39).

Results from Newton-Raphson including the flux

The method "converges" for Scenario 1 and 2, but nor for Scenario 3. With
"convergence", we mean that the solutions all tend to one specific value, but we
never reach an iteration where the relative error is less than 10−14. It is the error
of n̂ that does not decrease after a few iterations, and stays at around 10−10, even
for the 200th iteration. Also, we get that the relative error increases and decreases
in a quite random matter, so that we do not know if next iteration will give us a
more accurate solution than the current solution. Since we do not get convergence
in the normal sense, we cannot look at the effective order of error for the finite
difference approximations. The results for Scenario 1 and 2 are plotted in Figure
2.13 and 2.14.

For Scenario 1, we get a value of J that tends towards 1.71 ≈ 1.7 Jin, where
Jin = 1 is the initial guess of J . This value is reached after around 20 iterations.
For Scenario 2, the value of J tends towards 14.8 ≈ 0.21 Jin when Jin = 70. This
value is reached after around 5 iterations. A plot of the values of J in each iter-
ation for Scenario 1 and 2 can be seen in Figure 2.15. For these plots, the flux,
J , fluctuates quite a lot in each iteration, especially in Scenario 1 where we for
several iterations have negative flux. This is non-physical when ϕ > 0, which we
indeed have in Scenario 1.

The results we get are different from what we get when do not change J . For
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example, for Scenario 1 we now get that n(0) > 1.5, which probably is not correct
as the lower boundary is silver, and cannot exceed the silver electron concentra-
tion on the top by such an order. Also, we get for Scenario 2 that n(0) < 0.2 does
indeed fulfill n(0) < 1. The feasibility of this result will depend on how doped the
n-type layer is.
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Plots of the results

Figure 2.13: Plot of φ and n against x for Scenario 1. These are results when using the
Newton-Raphson method in Section 2.3 with second-order finite differences.

Figure 2.14: Plot of φ and n against x for Scenario 2. These are results when using the
Newton-Raphson method in Section 2.3 with second-order finite differences.
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(a) In Scenario 1, J tends towards 1.71 after
19 iterations.

(b) In Scenario 2, J tends towards 14.8 after
4 iterations.

Figure 2.15: Plot of the value of J vs. the number of iterations. These are results when
using the Newton-Raphson method in Section 2.3 with second-order finite differences.

2.4 Differentiating the drift-diffusion equation

We have so far considered the drift-diffusion equation where we need J as a given
fixed value, or as an initial guess. We can differentiate Equation (2.4) to arrive at
an equation without J , so that we can compute J in a post-process using (2.52).
We then need the left boundary for the electron concentration, α, as given and
fixed. By differentiating (2.4) and using that J ′ = 0, we get

n′′ + φ′n′ − n2

ν2
= 0 (2.56)

where we have substituted the expression for φ′′ from (2.4) into the equation. As
before, we discretize (2.56) and write it in matrix form using Lemma A.23. We
then get

(
4S0 + diag (F0φ+ rφ,F0)F0 − 4

(
∆ x

ν

)2

diag(n)

)
n (2.57)

+diag (F0φ+ rφ,F0) rn,F0 + 4rn,S0 = 0. (2.58)
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We now have f2.4(z), that we want to solve for f2.4(z) = 02N , given by

f2.4(z) =

 S0

(
∆ x
ν

)2
IN

0 4S0 + diag (F0φ+ rφ,F0)F0 − 4
(

∆ x
ν

)2 diag(n)


︸ ︷︷ ︸

=··G2.4(z)

 φ

n


(2.59)

+

 rφ,S0

diag (F0φ+ rφ,F0) rn,F0 + 4 rn,S0

 (2.60)

with

z =


z1

...

z2N

 ··=
 φ

n

 ⇐⇒ φ =


z1

...

zN

 ,n =


zN+1

...

z2N

.

We now find the Jacobian of f2.4(z) as before by using Claim B.6. The last
N rows of the Jacobian can be found by using Claim B.2 and Corollary B.5. We
get the following Jacobian of f2.4(z):

[
J f2.4(z)
z (z)

]
:,1

=

 S0

(diag(F0n) + diag(rn,S0))F0

 (2.61)

[
J f2.4(z)
z (z)

]
:,2

=

 (
∆ x
ν

)2
IN

4S0 + diag (F0φ+ rφ,F0)F0 − 8
(

∆ x
ν

)2 diag(n)

 (2.62)

We can then solve the system as described in (2.39) and then find J using (2.52).

Results from differentiated drift-diffusion equation

When differentiating we may lose information about the system. We introduce
this information by adding the left boundary condition for the electron density.
For this method, we get convergence for Scenario 1 and 2 and for Scenario 3 only
when N > 86. However, we do not see a tendency like before where an increase
in discretization points above the convergence threshold gives a more accurate
result, rather, the results appear identical in a plot for N > 87. The results for
Scenario 1, 2 and 3 are plotted in Figure 2.16, 2.17 and 2.18.
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We get the following values of J for Scenario 1, 2 and 3, respectively: 0.9272,
69.75 and 1.82×10−4 when N = 100. Since Black et al. find the applied potential
difference to be ϕ = 1.087 instead of the flux, J , we can see if using ϕ = 1.087
instead of ϕ = 1 for Scenario 1, and ϕ = 0.0507 instead of ϕ = 0.05 for Sce-
nario 3, gives values of J that are more in correspondence with what Black et al.
find. For Scenario 1, when using ϕ = 1.087, we get J ≈ 1.008, which is more
in correspondence for the fixed value, J = 1, that is used in Section 2.1 and 2.2.
For Scenario 3, when using ϕ = 0.0507, we get J ≈ 1.85 × 10−4. This is not as
close to the fixed value that we used for J in Section 2.1 and 2.2: J = 2 × 10−4.
That means that value of J for Scenario 3 changes less when we change ϕ with
an relative order 8× 10−2 as compared to Scenario 1.
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Plots of results

Figure 2.16: Plot of φ and n against x for Scenario 1. These are results when using the
Newton-Raphson method in Section 2.4 with second-order finite differences. These

results are in accordance with [2].

Figure 2.17: Plot of φ and n against x for Scenario 2. These are results when using the
Newton-Raphson method in Section 2.4 with second-order finite differences. These

results are in accordance with [2].
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Figure 2.18: Plot of φ and n against x for Scenario 3. These are results when using the
Newton-Raphson method in Section 2.4 with second-order finite differences. These

results are in accordance with [2].
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Comparison of results using the non-differentiated vs. the
differentiated drift-diffusion equation

For all three scenarios, we get that the values of the electrostatic potential, φ,
are indistinguishable in a plot, whether we use the non-differentiated or the dif-
ferentiated drift-diffusion equation. The differences in the values of the electron
density, n, for Scenario 1 and 2 are plotted in Figure 2.19 and 2.20. For Scenario
1, we also consider the difference in n when we use ϕ = 1, which we have used,
and when we use ϕ = 1.087, which is what Black et al. finds when solving the
system for ϕ.

For Scenario 1, there are some differences, naturally more when we use ϕ = 1
than when we use ϕ = 1.087 which is the accurate result for ϕ when we have
specified the left boundary value. The values for n for Scenario 3 are also indis-
tinguishable in a plot and are thus not included. The difference in values of n
when using the non-differentiated vs. the differentiated equation are for Scenario
2 quite small.

(a) Scenario 1 when using ϕ = 1.087. (b) Scenario 1 when using ϕ = 1.

Figure 2.19: Comparison of the solution of φ and n against x for non-differentiated
(blue) against differentiated (red) drift-diffusion equation for Scenario 1. The

non-differentiated equation has been solved with Newton-Raphson as described in
Section 2.2, and the differentiated equation has been solved using the Newton-Raphson

method as described in Section 2.4. These are results when second-order finite
differences.
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Figure 2.20: Comparison of the solution of φ and n against x for non-differentiated
(blue) against differentiated (red) drift-diffusion equation for Scenario 2. The

non-differentiated equation has been solved with Newton-Raphson as described in
Section 2.2, and the differentiated equation has been solved using the Newton-Raphson
method as described in Section 2.4. These are results when using second-order finite

differences.
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2.5 Results for silicon solar cell - contact resis-
tance

We have found a system that takes the applied potential difference and electron
flux as given values and then finds the left boundary value for the electron den-
sity. We have also considered the electron flux as a variable that can change in
the iteration method. Lastly, we have considered where we know all boundary
values and calculate the flux in a post-process.

For solving our system, we have considered an iteration scheme and different
setups for the Newton-Raphson method. For the iteration scheme, we have found
bounds that guarantee convergence with supplementing strict bounds that are
found experimentally.

Using the Newton-Raphson method, however, gives better chances for conver-
gence when the ratio between the Debye length and the glass thickness is small.
We find that for Scenario 3, the number of discretization points around N = 70
makes a big impact on the outcome of the values. It is shown that the value of ν
impacts the behavior of the system, especially for Scenario 1 and 3. For Scenario
1, the value of ν changes the left boundary value for n, but not for Scenario 2 and
3. The finite difference approximations that we use do indeed give the expected
result for large enough discretization numbers. The Newton-Raphson method also
converges in significantly fewer steps than the iteration scheme, but each iteration
takes longer time, especially for high discretization numbers. We also find that
there are differences between using first and second-order finite differences, but
that for large enough discretization numbers, we get that the differences become
minuscule.

The system changes behavior when we introduce J as a variable that can change
in every iteration. By doing so, we do not get convergence in the sense that the
relative error reaches the order of (combined) rounding error (10−14), but we get
close to 10−10. For Scenario 3, we get values that diverge. For Scenario 1 and
2, however, we get a system that stabilizes and with values of J that approach a
limit. When introducing J , we get different values for the left boundary of n, for
both Scenario 1 and 2.
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When considering the left boundary of n as given, we have arrived a system
where we have differentiated the drift-diffusion equation to make J vanish. We
then make a method that can calculate J after the system has converged. We
see that this system is advantageous when we know the left boundary value of
the electron density, which is realistic when the materials on both boundaries are
the same. For Scenario 1 and 2, we get some differences in the solutions when
using the differentiated drift-diffusion, as compared to the non-differentiated drift-
diffusion. For Scenario 3, we get identical results, in a plot, with this system, as
we get with the non-differentiated system.

The results we have found can be used to model the resistance through the glass
layer we have considered. For Scenario 1, we get a resistance of R = 1.078 when
calculating with the method described in Section 2.2, and we get R = 1.079 when
we use the method from Section 2.4. We see that these two methods give is a
resistance that is relatively close. For Scenario 2, however, we get a resistance of
R = 1.424 when calculating with the method described in Section 2.2, and we get
R = 1.429 when we use the method from Section 2.4. We see that the method
of choice for Scenario 2 is less important for calculating the resistance than it is
for Scenario 1. Lastly, for Scenario 3, we get a resistance of R = 494.0 when
calculating with the method described in Section 2.2, and we get R = 274.7 when
we use the method from Section 2.4. This means that the method we choose when
calculating the resistance for Scenario 3 has a major impact. We also see that it
is the setup in Scenario 1 that gives the least resistance, and the setup in Scenario
2 gives a resistance that is around 30% higher. For Scenario 3, however, we get
a very high resistance. This means that the thickness of the glass plays a major
role for the resistance through it and that thicker glass leads to higher resistance.
Physically, this is reasonable.
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Chapter 3

Solving equations for organic solar
cells - DA-interface

Figure 3.1: Illustration of the domain for which we solve equations. Richardson et al.
are considering the acceptor (left) and donor (right) as two domains. Courtesy of [14].

In this chapter, we look at [14], "Asymptotic solution of a model for bilayer or-
ganic diodes and solar cells", by Richardson et al. A typical problem for organic
solar cells is that the e-h pair can only be separated at the DA-interface as de-
scribed in Subsection 1.3.2. However, the e-h pairs may only diffuse around 10
nm, while the thickness of an organic solar cell "must be around 200 nm thick in
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order to absorb a large proportion of the solar spectrum". To understand how the
electron density, flux and electrostatic potential behaves in an organic solar cell
with a complex shape, we first need to understand how it behaves when the cell
has a simple shape, so they consider a bilayer device where there are "two layers
of material so that the device is planar and the interface is flat".

Formulation of the problem

We want to look at the cross-section of the panel. This cross-section is sketched
in Figure 3.1. We consider the acceptor and donor layer. Since a cell is typically
much bigger in order of magnitude than the thickness of each layer, we can ignore
the effect on the edges of the cell and reduce the problem to a one-dimensional
spatial problem where the space variable is the horizontal axis of the layers in
Figure 3.1. We denote the acceptor layer thickness L and the donor layer thick-
ness M . We let the applied electric potential difference, Φ, go from the left to the
right, that is from x = −L to x = M , and be 0 at x = 0, and of equal magnitude
at x = −L and x = M . We also include the built-in potential, Φbi, named chem-
ical potential in Chapter 2. This means that the electrostatic potential will be
different from what we had in Chapter 2, where we only used the applied potential
difference for the electrostatic potential. So we have a total potential difference of
Φ + Φbi, with the electrostatic potential taking the value (Φ + Φbi)/2 at x = −L,
and −(Φ + Φbi)/2 at x = M . For this model, we consider both positive and nega-
tive values for the applied potential difference. So for Φ/|Φ| = Φbi/|Φbi|, we have
forward bias, and for Φ/|Φ| = −Φbi/|Φbi|, we have reverse bias. We expect this
transition to lead to a change in direction for the electron/hole flux, that is, the
flux value will change sign.

Governing equations

Again, it is the drift-diffusion equation and Poisson’s equation that are the gov-
erning equation here, as they were in Chapter 2. However, in this case, we let
the electron and hole mobility be replaced by the electron affinity, −µn, and the
ionization potential, µp, and these variables are now dependent on space. We now
have that the Poisson’s equation is dependent on both the electron and hole den-
sity. We define the pseudo band gap as Eg ··= µn − µp, as the difference between
the electron affinity and the ionization potential, instead of the energy difference
between the conduction and valence band, like we have for inorganic semiconduc-
tors. The governing equations are the Poisson’s equation for electrostatics given
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by (1.3), and the drift-diffusion equation, given by (1.15) and (1.16), but where
the drift-diffusion equations are scaled with the thermal voltage, kBT/q.

φ′′(x) =
q|n(x)− p(x)|

ε
(3.1)

Jn(x) = −Dn

(
n′(x) +

1

kBT
(µn(x)− qφ(x))′

)
(3.2)

Jp(x) = −Dp

(
p′(x)− 1

kBT
(µp(x)− qφ(x))′

)
(3.3)

on −L < x < M where Dn and Dp is the electron and hole diffusivity, respectively.
We can split up the interval into two intervals that represent the two different
layers. We then have the intervals −L < x < 0 and 0 < x < M . From here
on, we omit the notation where we write each variable as a function of x. In
reality, the electrostatic potential and electron/hole density at the boundaries are
discontinuous [4]. We, therefore, consider −L+ ≤ x ≤ 0− and 0+ ≤ x ≤ M−, so
that the "redefined boundaries" are a part of the domain. Going forward, we write
the boundary values without plus/minus superscript, but we keep in mind that
the boundaries are not exactly on x = −L, 0,M . Richardson et al. now argue that
the ionization potential and electron affinity are then not dependent on space since
it is at the interface that these values change substantially as functions of space.
They also make some arguments for natural choices for boundary values. Then
they nondimensionalize the governing equations. In doing so, they assume that the
panel is perfectly antisymmetric, which yields L = M . They thus −L ≤ x ≤ 0 to
−1 ≤ x ≤ 0 and 0 ≤ x ≤M to 0 ≤ x ≤ 1. They also scale the electrical potential
by the thermal voltage, kBT/q, and reduce the electron and hole density in an
involved manner, which consequently makes these on the scale of ∼ exp(Φbi),
where Φbi now has the nondimensionalized value. We can see the analogy to
Chapter 2 with the case for silicon solar cells where we had that the built-in
chemical potential was on the scale ∼ log[n(0)]. For a more detailed derivation
of the boundary values and nondimensionalization, the reader can look at [14],
Section 2.2-2.4. After nondimensionalizing, we end up with three parameters that
play an important role. The first is δ, the ratio of the recombination rate to the
diffusion rate. This parameter "is crucial in determining the electrical behavior
of the device" as a value of δ that is not very small leads to "current-voltage
characteristics [that] does not have the behavior observed in real devices [13]".
Next is λ, a parameter that is not explained physically by Richardson et al., but
has some analogy to, ν, the ratio between the Debye length and the thickness of
the material. It is given by λ ··= 1

L

√
ε̄kBT
q
√

Π0
, where ε̄ is "similar to the permittivity of
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free space" and Π0 is the scaling factor for the electron and hole densities. Lastly
we have the parameter θ, which is harder to explain what represents. It is given
by θ ··= exp(−Eg/(2kBT ))

λ2ND(u1+u2)
, where ND is a constant related to the jump conditions for

n and p (see [14] and [4] for closer details), u1 and u2 are "appropriately chosen
constants" in the calculation of the recombination. Now, with the assumption
that the cell is antisymmetric, we can use that n(−x) = p(x) and φ(−x) = −φ(x)
for 0 < x < 1. It is then not necessary to look at both n and p, so we consider p.
It is also assumed that the system is in a steady state. We can then use Equation
(3.1) and (3.3). For (3.1), we use that the hole mobility is much greater than
the electron mobility so we can neglect the electron density, similarly to what we
argued in Chapter 2. We then get the same equations as in Chapter 2, except
that n is replaced with p and ν with λ;

φ′′ +
p

λ2
= 0 (3.4)

p′ + pφ′ + J = 0 (3.5)

on 0 ≤ x ≤ 1 with boundary conditions

p(1) = exp

(
Φbi

2

)
; φ(0) = 0; φ(1) = −Φ + Φbi

2
. (3.6)

It is argued that J can be computed from

J = −2δ(p(0)2 − 1)

λ2θ + p(0)
. (3.7)

For this case, we let Φ vary continuously in space with Φmin ≤ Φ ≤ Φmax for two
different scenarios. The following parameters are given:

Scenario Φmin Φmax Φbi δ λ θ

1 −20 0 4 e−8 1 0.4

2 −5 10 4 e−8 1 0.4

We now have equations in the same form as before, so we discretize and use
the same method as in Chapter 2. We do not, however, have any start value for
J , nor do we have the left boundary value of p, so we use the method as described
in Section 2.3. We then use another expression for calculating J . We then need
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to find the derivative of J with respect to p0, where p0 is the discretized value of
p(0);

∂J

∂p0

= −4δp0(λ2θ + p0)− 2δ(p2
0 − 1)

(λ2θ + p0)2 (3.8)

= −2δ(p2
0 + 2λ2θp0 + 1)

(λ2θ + p0)2 . (3.9)

3.1 Results for organic solar cells - DA-interface

The results for Scenario 1 using the method in as described in 2.3 are plotted
in Figure 3.2. As we see, the flux is close to 0 for −10 ≤ Φ ≤ 0. The results
for Scenario 2 are plotted in Figure 3.3. We see that the flux is in the order of
10−3 for −2 ≤ Φ ≤ 10. It is worth noting that for Φ = −4, we do have flux,
but not for Φ = 0, which means that the flux is nonzero when the applied po-
tential difference is zero; the holes are driven by the applied potential, not the
built-in potential. We also see that the flux is quite small for Φ > 0, which means
that the direction of the applied voltage will greatly affect the flow characteristics.

We also look at how different values of the applied potential difference, Φ, af-
fect the values of the electrostatic potential and the hole density. This is plotted
in 3D for Scenario 1 and 2 in Figure 3.4, 3.5, 3.6 and 3.7. For Scenario 1 we
see that the values of p for −20 ≤ Φ ≤ −12 are unrealistically high. The values
of p that correspond to this domain are non-physical. We see that for a certain
value of the applied electrostatic potential difference, we get a hole density that is
unrealistically high, and hence have we found a model that can describe where the
transition from physical to non-physical values lie. As we expect, the electrostatic
potential decreases quite rapidly near x = 0 for Φ = −20, which is in accordance
with the Poisson’s equation. For Scenario 2 we have solutions for Φ and n that
look more similar to what we saw for that of the silicon solar cell in Chapter 2.
We get that the hole density near the left boundary increases quite rapidly as Φ
approaches −5 from above.

We also see some interesting results for how different values of λ, a material prop-
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erty parameter, and δ, the ratio of recombination rate to diffusion rate, change the
system. We consider when λ ∈ [0.2, 1] for the material constant and δ ∈ [e−8, e−2]
for the recombination to diffusion rate. The results for these different parameter
values are plotted in Figure 3.8 and 3.9. For the different parameter values of
λ, we see that the closer λ is to zero, the closer the hole density between the
boundaries is to zero. For the different values of the parameter δ, however, we get
that values of δ closer to zero yield higher values for the left boundary of p.
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Plots of the results

Figure 3.2: Plot of J against Φ for Scenario 1. This result is when using the
Newton-Raphson method in Section 2.3 (with the necessary replacements for Chapter

3) with second-order finite differences. This result is in accordance with [14].

Figure 3.3: Plot of J against Φ for Scenario 2. This result is when using the
Newton-Raphson method in Section 2.3 (with the necessary replacements for Chapter

3) with second-order finite differences. This result is in accordance with [14].
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Figure 3.4: 3D-plot of φ as a function of x for the different values of Φ in Scenario 1.
This result is when using the Newton-Raphson method in Section 2.3 (with the

necessary replacements for Chapter 3) with second-order finite differences. This result
is in accordance with [14].

Figure 3.5: 3D-plot of p as a function of x for the different values of Φ in Scenario 1.
This results is when using the Newton-Raphson method in Section 2.3 (with the

necessary replacements for Chapter 3) with second-order finite differences.
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Figure 3.6: 3D-plot of φ as a function of x for the different values of Φ in Scenario 2.
This result is when using the Newton-Raphson method in Section 2.3 (with the
necessary replacements for Chapter 3) with second-order finite differences.

Figure 3.7: 3D-plot of p as a function of x for the different values of Φ in Scenario 2.
This result is when using the Newton-Raphson method in Section 2.3 (with the
necessary replacements for Chapter 3) with second-order finite differences.
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Figure 3.8: 3D-plot of p as a function of x for different values of λ ∈ [0.2, 1]. This
result is when using the Newton-Raphson method in Section 2.3 (with the necessary

replacements for Chapter 3) with second-order finite differences.

Figure 3.9: 3D-plot of p as a function of x for different values of δ ∈ [e−8, e−2]. This
result is when using the Newton-Raphson method in Section 2.3 (with the necessary

replacements for Chapter 3) with second-order finite differences.
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We also consider how the applied potential difference influences the boundary
value of p and the hole flux. This is plotted in Figure 3.10. Since we have one
value of Φ that corresponds with on value of J , the values for the left boundary of
p is plotted as a line in 3D. We see that as Φ and J approach zero from above, the
left boundary value for p increases. We also see that for J < 0, we have almost a
linear relationship between p(0) and J where lower values of J yield higher values
for p(0). For J > 0, we get a decaying function for p(0) that approaches zero. For
p(0) vs. Φ, however, we have a convex relationship with a form similar to what
we see for the silicon solar case in Chapter 2, as we can see in Figure 2.10.

Figure 3.10: Plot of left boundary value of p against Φ and J in Scenario 2. This result
is when using the Newton-Raphson method in Section 2.3 (with the necessary

replacements for Chapter 3) with second-order finite differences.

Results from the calculations for organic solar cells

We have found a relation between the flux, J , and the applied potential difference,
Φ, for different cases for values of Φ. We have discovered that the values of the
hole density near the left boundary are very high when we approach Φ = −20
from above. For Scenario 2, we find that the left boundary value of the hole den-
sity is close to 0 as Φ approaches 10 from below, and increase quite significantly
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when approaching −5 from above. We have also found that there is a continuous
relation between p(0) and J and between p and φ. Further, it has been shown that
the hole density changes as λ changes; we get higher values for the left boundary
and lower values for the values in the middle of the layer as λ decreases. It also
changes as the ratio of the recombination rate to the diffusion rate, δ, changes,
with higher left boundary values for smaller values of δ.
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Chapter 4

Conclusion and further work

In this thesis, we have found several results for a coupled system with drift-
diffusion and electrostatic potential equations.

For a silicon solar cell, we have looked at the glass layer for a silicon solar cell
and found results for different cases. We have found an iteration scheme system
that takes the potential difference and electron flux as given values and then finds
the left boundary value for the electron density. By using known theorems and
claims that are stated, bounds that guarantee convergence have been found with
supplementing strict bounds that are found experimentally. We have also found
a Newton-Raphson iteration method that we have applied on the same system,
which converges in fewer iteration steps and converges for scenarios where the
iteration scheme does not. We have looked at how different values of the ratio of
the Debye length to the glass thickness influence the desired solutions. We have
made comparisons between different orders of finite differences. A system where
the flux is a variable in the system has also been considered, but with less fortune
than for the other iteration methods. We have also shown that differentiating the
drift-diffusion equation can be useful when we do not know the flux. We have
compared this differentiated equation with the non-differentiated equation for dif-
ferent cases. We have seen how different scenarios and solution methods influence
that value of the resistance that we subsequently want to model.

For the organic solar cell, there has been shown a relation between the flux and
the applied potential difference for different values of the latter. The value of the

75



applied electrostatic potential difference determines many of the properties of the
cell. We have also shown how the different values of the parameters λ influence
the system. We have also looked at how the ratio of the recombination rate to
the diffusion rate changes the values for the hole density.

A good direction for further work would be to prove the norms of the differ-
ent expressions in the analysis of the fixed-point method in Subsection 2.1.1. This
gives a more mathematical and correct way of proving the bounds for the norm
of the Jacobian.

There are several other panel types and cases to consider with this coupled sys-
tem of differential equations. Including several layers of organic material and not
assuming the layers yield symmetric/anti-symmetric values will should a more re-
alistic result. Also, the interfaces between the organic solar cell layers is in reality
not flat, so a two or three-dimensional consideration with different shapes for the
interface would give more realistic results for modeling the current-voltage char-
acteristics.

The cases considered in this thesis have all been on the electrical properties of
the panel itself, not when any light is shown on it. Including radiation and using
the continuity equation can be useful to see how a panel behaves under operation.
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Appendix A

Numerical methods for differential equa-
tions

A.1 Discretizing equations

When solving a differential equation numerically for a variable y as a function
of x in space, on a domain, D ··= {x : a ≤ x ≤ b, x ∈ R}, with boundary ∂D ··=
{a, b}, we discretize by letting the vector ỹ = [y0, . . . , yN+1] ∈ RN+2 represent the
function y in space. We call N the discretization number, which is the number
of points in space in between the boundaries. We then have N + 2 entries of ỹ
where the first and last entry of ỹ is the boundary values of y on ∂D. When we
have N + 2 entries in space for ỹ, we get N + 1 space steps. For this thesis, we
let the step length

(∆ x)i ··= xi − xi−1, i = 1, . . . , N + 1 (A.1)

be constant. We then have

∆ x =
b− a
N + 1

. (A.2)

We can thus define the spatial discretization vector as

x̃ ··= [x0, . . . , xN+1]T where xi ··= a+ i ·∆ x, i = 0, . . . , N + 1. (A.3)
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For the boundary values, on ∂D, we have the elements

y0 ··= y(a); yN+1 ··= y(b) (A.4)

and for the elements in between the boundaries, in D\∂D, we have the elements

yi ··= y(xi), 1 ≤ i ≤ N. (A.5)

We let x be the vector with elements between the boundaries, in D\∂D, with y
corresponding to the vector x. Similarly, we let and x̃ be the vector with elements
in the entire domain, D, with ỹ corresponding to the vector x̃. For notation
purposes, we also let x̂ be the points from and including the left boundary value to
the right boundary value, with ŷ corresponding to the vector x̂. Mathematically,
this means that

x ··= [x1, . . . , xN ]T ; y ··= [y1, . . . , yN ]T ;

x̃ ··= [x0, . . . , xN+1]T ; ỹ ··= [y0, . . . , yN+1]T ;

x̂ ··= [x1, . . . , xN ]T ; ŷ ··= [y1, . . . , yN ]T .

(A.6)

The discrete solution will then be ỹ as a function of x̃.

A.2 Finite difference formulas

In this section we state different finite difference formulas which are approxima-
tions of derivatives at discrete points. In this thesis we only look at derivatives in
one spatial dimension.

The first-order finite forward difference formula for first-order derivatives is given
by

y′i =
−yi + yi+1

∆ x
+O (∆ x) . (A.7)

The second-order finite forward difference formula for first-order derivatives is
given by

y′i =
−3yi + 4yi+1 − yi+2

2 ∆ x
+O

(
(∆ x)2

)
. (A.8)
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The second-order finite central difference formula for first-order derivatives is given
by

y′i =
−yi−1 + yi+1

2 ∆ x
+O

(
(∆ x)2

)
. (A.9)

The second-order finite central difference formula for second-order derivatives is
given by

y′′i =
yi−1 − 2yi + yi+1

(∆ x)2
+O

(
(∆ x)2

)
. (A.10)

A.3 Matrix expressions of certain discretized
differential equations using finite difference
approximations

We consider the differential equation

y′′ = Cz (A.11)

in D ··= {x : a ≤ x ≤ b, x ∈ R} with Dirichlet boundary conditions for y at x = a
and x = b. We can discretize (A.11) as described in A.1 to get

y′′i = Czi (A.12)

with yi = y(i∆ x), zi = z(i∆ x) for i = 0, . . . , N + 1 and ∆ x = 1
N+1

. We can
use finite differences to approximate the derivatives in the differential equation.
With Dirichlet boundary conditions on both sides for y, it is natural to use finite
central differences.

Lemma A.1. Using second-order finite central differences on (A.12), we get
yi−1 − 2yi + yi+1

(∆ x)2
= Czi (A.13)

⇐⇒
yi−1 − 2yi + yi+1 = (∆ x)2 Czi (A.14)

which is defined for i = 1, . . . , N . At x1 and xN , we will have the conditioned
boundary values y0 and yN+1 in the discretized equations.
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We now want to write this in matrix form. We then want the boundary values
separated from the matrix system. The discretized equation at x1 will be

y0 − 2y1 + y2 = (∆ x)2Czi (A.15)

and the discretized equation at xN will be

yN−1 − 2yN + yN+1 = (∆ x)2Czi. (A.16)

We can put y0 and yN+1 in a vector so that they are not a part of the matrix
system we want to write.

Corollary A.2. We now see that the approximations for the differential equation
at xi, i = 1, . . . , N can be written in matrix form as

S0 y + ry,S0 = (∆ x)2Cz (A.17)

with S0, ry,S0 as defined in Section B.2. For this system, y has a discretization
error of O((∆ x)2).

We now consider the differential equation

y′z + z′ = C (A.18)

in D ··= {x : a ≤ x ≤ b, x ∈ R}. We want to solve for z with Dirichlet boundary
condition for z at x = b. We can discretize (A.18) as described in A.1 to get

y′izi + z′i = C (A.19)

with yi = y(i∆ x), zi = z(i∆ x) for i = 0, . . . , N + 1 and ∆ x = 1
N+1

. We can use
finite differences to approximate the derivatives in the differential equation. Since
we have a boundary condition on the right side for z, we can use finite forward
differences.

Lemma A.3. Using first-order finite forward differences on (A.19), we get

−yi + yi+1

∆ x
zi +

−zi + zi+1

∆ x
= C (A.20)

which is defined for i = 0, . . . , N . At xN , we will have the conditioned boundary
value, zN+1, in the discretized equation.
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We can write (A.20) as

(−yi + yi+1)zi − zi + zi+1 = ∆ x C. (A.21)

We want to write this set of equations in matrix form. We then want the condi-
tioned boundary value, zN+1, separated from the matrix system. The discretized
equation at xN will be

(−yN + yN+1)zN − zN + zN+1 = ∆ x C. (A.22)

We can put zN+1 in a vector that so it is not a part of the matrix system we
want to find. We now see that the approximations for the differential equation for
xi, i = 0, . . . , N can be written in matrix form as

diag(F̂+ ŷ + ry,F̂+
)ẑ + F̂+ ẑ + rz,F̂+

= ∆ C1N+1. (A.23)

with F̂+ , ry,F̂+
, rz,F̂+

as defined in Section B.2.
Corollary A.4. We can factorize (A.23) to get{

diag(F̂+ ŷ + ry,F̂+
) + F̂+

}
ẑ + rz,F̂+

= ∆ xC1N+1. (A.24)

For this system, z has a discretization error of O(∆ x).

In MATLAB, it is much faster to compute x ◦ y rather than diag(x)y,
since in the latter expression, the program needs to create the diag-matrix
before multiplication and then matrix multiply. The first expression can
be implemented as

x.*y

If we, however, need to use the diag-matrix, we can use the inte-
grated function diag() in MATLAB and implement the latter expression
as

diag(x)*y

For (A.23), we can use the Hadamard product to compute
diag(F̂+ ŷ + ry,F̂+

)ẑ which will be much faster to compute. For (A.24),
however, we have factorized the terms in front of ẑ. In that case, we
can not use Hadamard notation because F̂+ needs to be added with the
diag-matrix before multiplication.
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We now consider the differential equation

z′′ + y′z′ = C z2 (A.25)

in D ··= {x : a ≤ x ≤ b, x ∈ R}. We want to solve for z with Dirichlet boundary
conditions for z at x = a and x = b. We can discretize (A.25) as described in A.1
to get

z′′i + y′iz
′
i = C z2

i (A.26)

for yi = y(i∆ x), zi = z(i∆ x) for i = 0, . . . , N + 1 and ∆ x = 1
N+1

. We can use
finite differences to approximate the derivatives in the differential equation. Since
we have boundary conditions on both sides for z, it is natural to use finite central
differences.

Lemma A.5. Using second-order finite central differences on (A.19), we get

zi−1 − 2zi + zi+1

(∆ x)2
+
−yi−1 + yi+1

2∆ x
· −zi−1 + zi+1

2∆ x
= C z2

i (A.27)

which is defined for i = 1, . . . , N . At x1 and xN , we will have the conditioned
boundary values z0 and zN+1 in the discretized equations.

We can write (A.27) as

4(zi−1 − 2zi + zi+1) + (−yi−1 + yi+1)(−zi−1 + zi+1)− 4C (∆ x)2 z2
i = 0. (A.28)

We want to write this system in matrix form. We then want the conditioned
boundary values z0 and zN+1 separated from the matrix system. The discretized
equation at x1 will be

4(z0 − 2z1 + z2) + (−y0 + y1)(−z1 + z2)− 4C (∆ x)2 z2
1 = 0. (A.29)

The discretized equation at xN will be

4(zN−1 − 2zN + zN+1) + (−yN−1 + yN+1)(−zN−1 + zN+1)− 4C (∆ x)2 z2
N = 0.
(A.30)

We can put z0 and zN+1 in a vector that so it is not a part of the matrix system
we want to find. We now see that the approximations for the differential equation
for xi, i = 1, . . . , N can be written in matrix form as

4(S0z + rz,S0) + diag(F0y + ry,F0)(F0z + rz,F0)− 4C(∆ x)2z◦2 = 0 (A.31)

with F0, rz,S0 , rz,F0 , ry,F0 as defined in Section B.2.
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Corollary A.6. We can factorize (A.23) to get

{4S0 + diag(F0y + ry,F0)F0 − 4Cdiag(z)} z + 4rz,S0 + diag(F0y + rry ,S0)rz,F0 = 0.
(A.32)

For this system, z has a discretization error of O ((∆ x)2).

We now look at (A.19) to seek approximations for the derivatives that give errors
on the O ((∆ x)2). We can use second-order finite forward differences at xi for
i = 0, . . . , N−1, and first-order finite differences at xN . We then get the following
set of equations:

−3yi + 4yi+1 − yi+2

2∆ x
zi +

−3zi + 4zi+1 − zi+2

2∆ x
= C (A.33)

for i = 0, . . . , N − 1, and

−yN + yN+1

∆ x
zN +

−zN + zN+1

∆ x
= C (A.34)

at xN .

Lemma A.7. Using second-order finite forward differences on (A.19), we get

(−3yi + 4yi+1 − yi+2) zi − 3zi + 4zi+1 − zi+2 = 2∆ x C (A.35)

for i = 0, . . . , N − 1, and

(−yN + yN+1)zN − zN + zN+1 = ∆ x C (A.36)

At xN−1 and xN , we will have the conditioned boundary value, zN+1, in the dis-
cretized equation.

We can write this set of equations in matrix form as

diag

Kŷ +


0N−1

−yN+1

yN+1


 ẑ +Kẑ +


0N−1

−zN+1

zN+1

 = ∆ x

 2 · 1N
1

 · C
(A.37)
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where the matrix, K, is defined as

K ··=



−3 4 −1 0 . . . 0

0 −3 4 −1 . . . 0
... . . . . . . . . . . . . ...

0 . . . 0 −3 4 −1

0 . . . 0 0 −3 4

0 . . . 0 0 0 −1


(A.38)

A.4 Methods for solving non-linear equations

This section is taken from [9], Section 4.9.

When we solve systems of nonlinear equations, we look at methods that solve
equations in the form

f(x) = 0N , f : RN → RN . (A.39)

In this section, we look two methods that solve systems on this form; the fixed-
point method and the Newton-Raphson method.

A.4.1 Fixed-point method

We can rewrite (A.39) to f(x) = x− ξ(x) and consider the fixed-point iteration

x(k+1) = ξ(x(k)), k = 0, 1, 2, . . . (A.40)

We say that ξ : RN → RN is a contraction map on a set R ⊆ RN if there exists
a constant γ with 0 < γ < 1 such that

‖ξ(x)− ξ(x∗)‖ ≤ γ‖x− x∗‖ for all x,x∗ ∈ R (A.41)

for some appropriate vector norm. The convergence of the fixed point can be
analyzed using the following theorem:
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Theorem A.8. (Contraction mapping principle)
Let R ⊆ RN be a complete subset of RN (either bounded and closed, or all of RN).
If ξ : RN → RN is contractive, such as in (A.41), and maps R into R, then

(i) iteration (A.40) is well defined for any x(0) ∈ R and converges to a unique
fixed-point β ∈ R,

lim
k→∞

x(k) = β (A.42)

(ii) for k = 1, 2, 3, ... there holds

∥∥x(k) − β
∥∥ ≤ γk

1− γ
∥∥x(1) − x(0)

∥∥ (A.43)

and ∥∥x(k) − β
∥∥ ≤ γk

∥∥x(0) − β
∥∥ (A.44)

Proof. Proof can be found in [9]

For applications, it is useful to find an estimate for the γ in theorem A.8. We can
find such an approximation by Taylor expanding the mapping function, ξ. Taylor
expanding ξ(x) around x∗ yields

ξ(x) = ξ(x∗) + J ξ(x)
x (x∗)(x− x∗) +O

(
‖x− x∗‖2) . (A.45)

We can thus find an approximation to γ for equation (A.41):

‖ξ(x)− ξ(x∗)‖ =
∥∥J ξ(x)

x (x∗)(x− x∗) +O
(
‖x− x∗‖2)∥∥

≈
∥∥J ξ(x)

x (x∗)(x− x∗)
∥∥ ≤ ∥∥J ξ(x)

x (x∗)
∥∥‖x− x∗‖. (A.46)

Hence, the norm of the Jacobian will give an indicator if the mapping is a contrac-
tion mapping or not, and thus give us an indicator for when a fixed-point methods
converges or not.

87



A.4.2 Newton-Raphson method

The Newton-Raphson method can deal with systems of nonlinear equations by
reducing the nonlinear problem to an infinite sequence of linear problems. By lin-
earizing the current approximation, we end up with a systems of linear algebraic
equations.

We write equation (A.39) more explicitly:

fi(x1, . . . , xN) = 0, i = 1, . . . , N (A.47)

and given an approximation to x(0) to a solution β ∈ RN , the i-th equation in
(A.47) is linearized at x = x(0) by truncating the Taylor expansion of fi at x(0)

after the linear terms which yields the following:

fi(x
(0)) +

N∑
j=1

∂fi
∂xj

(x(0))(xj − x(0)
j ) = 0, i = 1, . . . , N (A.48)

or written in vector form

f(x(0)) + J f(x)
x (x(0))(x− x(0)) = 0. (A.49)

The solution, x, of (A.49) will be taken to be the next approximation. Thus, in
general, starting with an initial approximation x(0), Newton-Raphson’s method
will generate a sequence of approximations x(k) ∈ RN by means of

J f(x)
x (x(k))d(k) = −f(x(k)), k = 0, 1, 2, . . . (A.50)

x(k+1) = x(k) + d(k), k = 0, 1, 2, . . . (A.51)

where we assume that the matrix J f(x)
x (xk) in (A.50) is nonsingular for each k.

This will be the case if J f(x)
x (β) is nonsingular and x(0) is sufficiently close to β.

In that case, the Newton-Raphson’s method converges quadratically to β in the
one-dimensional case, N = 1, that is,

∥∥x(k+1) − β
∥∥ = O

(∥∥x(k) − β
∥∥2
)
as k →∞.

Writing (A.51) in the form

x(k+1) = x(k) −
[
J f(x)
x (x(k))

]−1
f(x(k)), k = 0, 1, 2, . . . (A.52)
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brings out the formal analogy with Newton-Raphson’s method that we know for
a single equation;

x(k+1) = x(k) − f(x(k))

f ′(x(k))
, k = 0, 1, 2, . . . (A.53)

However, it is not necessary to compute the inverse of the Jacobian at each step;
it is more efficient to solve the linear system directly as in (A.50) & (A.51).

A.5 Numerical integration

This section is based on [16], Section 5.2.

In this section we look at how to integrate a function numerically. In particu-
lar we consider the Trapezoidal Rule.

Theorem A.9. (Trapezoidal rule)
Define D = {x : a ≤ x ≤ b, x ∈ R}. Given a discretization vector ỹ = [y0, . . . , yN+1]T ∈
RN+2 that represents y in D with equal spacing, ∆ x = 1

N+1
, and the inner points

y = [y1, . . . , yN ]T ∈ RN , then the integral∫ b

a

y(x)dx (A.54)

can be calculated numerically by the following:

∫ b

a

y(x)dx =
∆ x

2

N+1∑
i=1

yi−1 + yi +O
(
(∆ x)2

)
(A.55)

= ∆ x

{
1

2
(y0 + yN+1) +

N∑
i=1

yi

}
+O

(
(∆ x)2

)
(A.56)

= ∆ x

{
1

2
(y0 + yN+1) + 1TNy

}
+O

(
(∆ x)2

)
. (A.57)
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In MATLAB, it is useful to use the built in sum()-function and it can be
useful to use the Hadamard power. If we for example want to integrate
1/y from a to b, we discretize y with the vector ỹ ∈ RN+2 with equal
spacing from a to b. Noting that the indices of ỹ will start from 1 and end
at N+2 in MATLAB, we can implement the trapezoidal rule for this case as

I = Delta_x*(1/2*(1/y(1)+1/y(N+2))+sum((y(2:N+1)).ˆ(-1)));
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A.6 Analysis of effective order of finite difference
approximations

We want to look at the error for the discretization method for the derivatives.
We look at how much the error changes by doubling the discretization number, or
equivalently, by halving the spacing, ∆x. We hence define Nd ··= 2d−1, d ∈ N. We
have Nd ' 2Nd−1. The spacing will for Nd be ∆x = (b−a)(Nd+1)−1 = (b−a)2−d

and for Nd−1 be ∆x = (b−a)(Nd−1 +1)−1 = (b−a)2−d+1, so the spacing is halved
as the power of 2 for the discretization number is increased by one.

Let ỹ[d] = [y
[d]
0 , . . . , y

[d]
Nd+1]T be the discrete approximation vector of the variable y,

with Nd as discretization number, and let ỹ = [y(x0), . . . , y(xNd+1)]T be the true

solution. The relative error is then defined as e[d] =
‖ỹ[d]−ỹ‖
‖ỹ‖ . As we do not know

ỹ, this error cannot be computed. We instead approximate the error. Such an
approximation is given later in this section. When using a method of order s, we
expect e[d] = O ((∆ x)s). This implies that e[d] ≈

(
1
2

)s
e[d−1]. Solving for s gives

the following approximation for s:

s = log2

(
e[d−1]

e[d]

)
. (A.58)

The reason we use log2, is because the different discretization numbers are powers
of 2.

Given the discretization vector ỹ[d] = [y
[d]
0 , . . . , y

[d]
Nd+1]T with Nd as discretization

number and an equidistant spacing, we can represent the solution for y in space
with the following:

y
[d]
0 y

[d]
1 . . . y

[d]
N y

[d]
N+1

︸ ︷︷ ︸
∆x
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If we have for example d = 3, we have N3 = 23 − 1 = 7. We can represent the
solution with such a discretization number by the following:

y
[3]
0 �

�y
[3]
1 y

[3]
2 �

�y
[3]
3 y

[3]
4 �

�y
[3]
5 y

[3]
6 �

�y
[3]
7 y

[3]
8

︸ ︷︷ ︸
2−3

and for d = 2, N2 = 22 − 1 = 3, we get the representation

y
[2]
0 y

[2]
1 y

[2]
2 y

[2]
3 y

[2]
4

︸ ︷︷ ︸
2−2

We see that every second element (counting from the first element and onward)
of ỹ[d] corresponds to the elements of ỹ[d−1] in space. We can now find an expres-
sion for the discretization error, by finding the relative error between the solution
of every second element of ỹ[d] and every element of ỹ[d−1]. We use the 2-norm
as this is the norm that represents distance in space. We thus get the following
expression for discretization error

e[d]
y
··=

∥∥∥[ y
[d]
0 , y

[d]
2 , . . . , y

[d]
Nd−2, y

[d]
Nd

]− [ y
[d−1]
0 , y

[d−1]
1 , . . . , y

[d−1]
Nd−1−1, y

[d−1]
Nd−1

]
∥∥∥

2∥∥∥[ y
[d]
0 , y

[d]
2 , . . . , y

[d]
Nd−2, y

[d]
Nd

]
∥∥∥

2

(A.59)
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We can calculate the discretization error in MATLAB. We have indices
0, . . . , N + 1 for ỹ, but in MATLAB, indexing starts at 1, so the cor-
responding vectors will have indices 1, . . . , N + 2. By using the syntax
1:2:N+2, we skip every second index. We then find the error by subtracting
the solution for Nd from the solution for Nd−1 in the same place in space.
We can implement the error as

function [error,d1] = ErrorSolution(yN,yN_2,typeNorm)
% yN is the solution for N=2ˆd-1
% yN_2 is the solution for N=2ˆ(d-1)-1
N1 = length(yN)-2; d1 = log2(N+1);
N2 = length(yN_2)-2; d2 = log2(N2+1);
% We first see if the vectors are powers of 2 and consecutive
if round(d1) ~= d1 || d2 ~= d1-1

display(’Vectors must be powers of 2 and consecutive’)
return

end
error =...

norm(( yN(1:2:N1+2) - yN_2(1:N2+2) ),typeNorm)...
/norm(yN(1:2:N1+2),typeNorm);

end

We can now calculate the order for the discretization method, using
the 2-norm, with the following code in MATLAB:

% yN is the solution for N=2ˆd-1
% yN_2 is the solution for N=2ˆ(d-1)-1
% yN_4 is the solution for N=2ˆ(d-2)-1
[errorN ,d] = ErrorSolution(yN,yN_2,2);
[errorN_2,~] = ErrorSolution(yN_2,yN_4,2);
orderOfError = log2( errorN_2/errorN )

% Then orderOfError is the order of error when we use 2ˆd-1
% as discretization number
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Appendix B

On matrices, vectors and specific ex-
pressions

B.1 Some operators and notation

In Section B.1, we let x = [x1, . . . , xN ]T , y = [y1, . . . , yN ]T ∈ RN .

We define the diag-operator, diag(x): RN → RN×N , as

diag(x) ··=


x1 0 . . . 0

0 x2 . . . 0
...

... . . . ...

0 0 . . . xN

 . (B.1)

We notice that the diag()-operator is a linear operator.

The syntax for diag() in MATLAB is diag(), so if we want to diagonalize
x, that is, find diag(x), we write
diag(x)
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We define the Hadamard product (elementwise multiplication) as

x ◦ y ··=


x1y1

x2y2

...

xNyN

 . (B.2)

We notice that the Hadamard product is commutative. Also, we have that
diag(x)y = x ◦ y.

The syntax for Hadamard product in MATLAB is .*, so for x◦y, we write
x.*y

We define the Hadamard power (elementwise power) as

x◦k ··=


xk1

xk2
...

xkN

 . (B.3)

where k ∈ R. Trivially, x◦1 = x.

The syntax for Hadamard power in MATLAB is .ˆ, so for x◦k, we write
x.ˆ k

We define the Kronecker-delta tensor as

δi,j =

 1, i = j

0, otherwise
(B.4)
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B.2 Matrices and vectors frequently occurring

In this thesis, the following matrices and vectors frequently occur:

S0 ··=



−2 1 0 . . . 0

1 −2 1 . . . 0
... . . . . . . . . . ...

0 . . . 1 −2 1

0 . . . 0 1 −2


; F0 ··=



0 1 0 . . . 0

−1 0 1 . . . 0
... . . . . . . . . . ...

0 . . . −1 0 1

0 . . . 0 −1 0


; (B.5)

F+ ··=



−1 1 0 . . . 0

0 −1 1 . . . 0
... . . . . . . . . . ...

0 . . . 0 −1 1

0 . . . 0 0 −1


; F̂+ ··=

 −1 1 0TN−1

0N F+

 ; (B.6)

ry,S0
··=


y0

0N−2

yN+1

 ; ry,F0
··=


−y0

0N−2

yN+1

 ; (B.7)

ry,F+
··=

 0N−1

yN+1

 ; ry,F̂+
··=

 0N

yN+1

 . (B.8)

with S0, F0, F+ ∈ RN×N , F̂+ ∈ R(N+1)×(N+1) and with ry,S0 , ry,F0 , ry,F+ ∈ RN ,
ry,F̂+

∈ RN+1 and where y is defined on a ≤ x ≤ b with y0 ··= y(a) and yN+1 ··=
y(b).
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B.3 The Jacobian and derivative of certain
expressions

Here, I will give general claims for the Jacobian and derivatives of certain expres-
sions that are noted in the thesis.

In section B.3, we let A, B ∈ RN×N be matrices, x, y ∈ RN be vectors, and
let i, j = 1, . . . , N .

Claim B.1. The Jacobian, J , with respect to x of Ax is

J Ax
x = A. (B.9)

Proof. The i-th row of Ax will be

[Ax]i =
N∑
k=1

Ai,kxk.

The (i, j)-th element of the Jacobian of Ax with respect to x will be

[
J Ax
x

]
i,j

=
∂[Ax]i
∂xj

=
N∑
k=1

Ai,k δj,k = Ai,j

so we have

J Ax
x = A.

Claim B.2. The Jacobian, J , with respect to y of diag(By)Ax is

J diag(By)Ax
y = diag(Ax)B. (B.10)
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Proof. The i-th row of diag(By)Ax will be

[diag(By)Ax]i =

(
N∑
l=1

Bi,l yl

)(
N∑
m=1

Ai,mxm

)
=

(
N∑
m=1

Ai,mxm

)(
N∑
l=1

Bi,l yl

)
.

The (i, j)-th element of the Jacobian of diag(By)Ax with respect to y is given by

[
J diag(By)Ax
y

]
i,j

=
∂[diag(By)Ax]i

∂yj
=

(
N∑
m=1

Ai,mxm

)(
N∑
l=1

Bi,l δl,j

)

=

(
N∑
m=1

Ai,mxm

)
Bi,j

so we have

J diag(By)Ax
y = diag(Ax)B

Claim B.3. The Jacobian, J , with respect to y of diag(Âŷ)x̂,
where Â ∈ R(N+1)×(N+1), x̂ ··= [x0, . . . , nN ]T , ŷ ··= [y0, . . . , yN ]T and y0 is a con-
stant, is

J diag(Âŷ)x̂
y = diag(x̂)Â:,2:N+1. (B.11)

Proof. The i-th, row of diag(Âŷ)x̂ will be, for i = 1, . . . , N + 1

[diag(Âŷ)x̂]i =

(
N∑
l=0

Âi,l+1 yl

)
xi−1 = xi−1

(
N∑
l=0

Âi,l+1 yl

)
.

The (i, j)-th element, i = 1, . . . , N+1, j = 1, . . . , N , of the Jacobian of diag(B̂ŷ)x̂
with respect to y is given by[

J diag(Âŷ)x̂
y

]
i,j

=
∂[diag(Âŷ)x̂]i

∂yj
= xi−1

(
N∑
l=0

Âi,l+1δl,j

)
= xi−1Ai,j+1
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so we have

J diag(Âŷ)x̂
y = diag(x̂)Â:,2:N+1

Claim B.4. The Jacobian, J , with respect to x of x◦k is

J x◦k

x = k diag(x◦(k−1)). (B.12)

Proof. The i-th row of x◦k will be [
x◦k
]
i

= xki .

The (i, j)-th element of the Jacobian of x◦k with respect to x is given by

[
J x◦k

x

]
i,j

=
∂
[
x◦k
]
i

∂xj
= k xk−1

i δi,j

so we have

J x◦k

x = k diag(x◦(k−1))

Corollary B.5. By Claim B.4, the Jacobian, J , with respect to x of diag(x)x is

J x◦k

x = 2x. (B.13)

Proof. We have that diag(x)x = x◦2. Using k = 2 in Claim B.4 proves the
corollary.

Claim B.6. Let z = [x; y] with z1 ··= x and z2 ··= y. The Jacobian, J , with
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respect to z of the block matrix system {A(z)}1,1 {A(z)}1,2

{A(z)}2,1 {A(z)}2,2

 x

y

 (B.14)

is

J =

 {A(z)}1,1 + ∂{A(z)}1,1
∂x

x+ ∂{A(z)}1,2
∂x

y
... {A(z)}1,2 + ∂{A(z)}1,1

∂y
x+ ∂{A(z)}1,2

∂y
y

{A(z)}2,1 + ∂{A(z)}2,1
∂x

x+ ∂{A(z)}2,2
∂x

y
... {A(z)}2,2 + ∂{A(z)}2,1

∂y
x+ ∂{A(z)}2,2

∂y
y


(B.15)

Proof. The vector function of the matrix system will have the following block
entry at index l, l = 1, 2:

2∑
k=1

{A(z)}l,kzk

and hence the Jacobian at block position (l,m), l,m = 1, 2, will have the following
entry

Jl,m =
∂

∂zm

2∑
k=1

{A(z)}l,kzk

=
2∑

k=1

(
∂

∂zm
{A(z)}l,k

)
zk + {A(z)}l,k

∂

∂zm
zk

=
2∑

k=1

∂{A(z)}l,k
∂zm

zk + {A(z)}l,kδm,k.

which is what we wanted to prove.

Claim B.7. Given a matrix, A, and a vector, v, that both depend on a variable
vector, x, then the j-th column of the Jacobian of Av with respect to x will be[

J Av
x

]
:,j

=
∂A

∂xj
v + A

∂v

∂xj
. (B.16)
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Proof. The Jacobian of Av at position (i, j) is

[
J Av
x

]
i,j

=
∂ [Av]i
∂xj

=
∂

∂xj

N∑
k=1

Ai,k vk =
N∑
k=1

∂Ai,k
∂xj

vk + Ai,k
∂vk
∂xj

.

The i-th element of ∂A
∂xj
v + A ∂v

∂xj
will be[

∂A

∂xj
v + A

∂v

∂xj

]
i

=
N∑
k=1

∂Ai,k
∂xj

vk + Ai,k
∂vk
∂xj

which is the element of the Jacobian at position (i, j).

Claim B.8. The derivative of diag(Ax), with respect to xj is

∂

∂xj
diag(Ax) = diag(A:,j). (B.17)

Proof. The element at index (i, i) of (∂/∂xj) diag(Ax) is[
∂

∂xj
diag(Ax)

]
i,i

=
∂

∂xj

N∑
k=1

Ai,kxk =
N∑
k=1

Ai,kδk,j = Ai,j

and the element at index (i, i) of diag(A:,j) is [diag(A:,j)]i,i = Ai,j.

Theorem B.9. This theorem is taken from [1]
The derivative with respect to x of the inverse of a matrix, A, with elements that
depend on x, is

∂A−1

∂x
= −A−1∂A

∂x
A−1 (B.18)

Proof. The definition of the inverse is A−1A = I. We differentiate with respect to
x using the product rule and get ∂A−1

∂x
A+A−1 ∂A

∂x
= 0. By rearranging, we get the

desired result.
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Claim B.10. The derivative with respect to yi, i = 0, . . . , N , of

f(ŷ) =
C + log(y0)

∆ x
[

1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
] , (B.19)

where y = [y1, . . . , yN ]T , ŷ = [y0, . . . , yN ]T , and yN+1 is a given boundary value
and C is a constant, is

∂f(ŷ)

∂yi
=



1
2

(
1
y0

[1+C+log(y0)]+ 1
yN+1

)
+1TNy

◦(−1)

∆ x y0

[
1
2

(
1
y0

+ 1
yN+1

)
+1TNy

◦(−1)

]2 , i = 0

C+log(y0)

∆ x y2i

[
1
2

(
1
y0

+ 1
yN+1

)
+1TNy

◦(−1)

]2 , i = 1, . . . , N

(B.20)

Proof. The derivative of f(ŷ) with respect to y0 is

∂f(ŷ)

∂y0

=
∆ x

[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]

∂
∂y0

[C + log(y0)]{
∆ x

[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]}2

−
[C + log(y0)] ∂

∂y0
∆ x

[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]

{
∆ x

[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]}2
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=
∆ x

[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]

1
y0
− [C + log(y0)] ∆ x

[
−1

2

(
1
y20

)]
{

∆ x
[

1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]}2

=

1
y0

{[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]

+ [C + log(y0)]
(

1
2y0

)}
∆ x

[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]2

=

1
2

(
1
y0

[1 + C + log(y0)] + 1
yN+1

)
+ 1TNy

◦(−1)

∆ x y0

[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]2 .

Next, the derivative of f(ŷ) with respect to yi, i = 1, . . . , N , is

∂f(ŷ)

∂yi
= −

[C + log(y0)] ∂
∂yi

∆ x
[

1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]

{
∆ x

[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]}2

=
[C + log(y0)] y−2

i

∆ x
[

1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]2

=
C + log(y0)

∆ x y2
i

[
1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]2 .

Corollary B.11. The Jacobian, J , with respect to ŷ, of

f(ŷ) =
C + log(y0)

∆ x
[

1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
] (B.21)

is  1
2

(
1
y0

[1+C+log(y0)]+ 1
yN+1

)
+1TNy

◦(−1)

∆ x y0

[
1
2

(
1
y0

+ 1
yN+1

)
+1TNy

◦(−1)

]2 C+log(y0)

∆ x

[
1
2

(
1
y0

+ 1
yN+1

)
+1TNy

◦(−1)

]2 (y◦(−2)
)T 
(B.22)
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Proof. The (1, j)− th element of the Jacobian of f(ŷ) with respect to ŷ is given
by [

J f(ŷ)
ŷ

]
1,j

=
∂f(ŷ)

∂yj

By Claim B.10, the derivative of f(ŷ) with respect to y0, is the first element in
expression (B.22), and thus proves the first expressions of the Jacobian. Again,
using Claim B.10, the next N elements of the Jacobian are(

C+log(y0)

∆ x y21

[
1
2

(
1
y0

+ 1
yN+1

)
+1TNy

◦(−1)

]2 . . . C+log(y0)

∆ x y2N

[
1
2

(
1
y0

+ 1
yN+1

)
+1TNy

◦(−1)

]2
)

=
C + log(y0)

∆ x
[

1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]2

(
y−2

1 . . . y−2
N

)

=
C + log(y0)

∆ x
[

1
2

(
1
y0

+ 1
yN+1

)
+ 1TNy

◦(−1)
]2

(
y◦(−2)

)T

B.4 Matrix and vector norms

There are some norm identities that are useful in the analysis of the Jacobian
of a fixed-point method. For this section, we let A,B ∈ RN×N be matrices and
x,y ∈ RN be vectors.

The following inequalities hold for matrix/vector norms:

‖A+B‖ ≤ ‖A‖+ ‖B‖; ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (B.23a)
‖AB‖ ≤ ‖A‖‖B‖;

∣∣xTy∣∣ ≤ ‖x‖‖y‖ (B.23b)

‖Ax‖ ≤ ‖A‖‖x‖ (B.23c)
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Lemma B.12. Given a vector x ∈ RN , the following norm identity holds:

‖diag(x)‖1 = ‖x‖∞ (B.24)

Proof. The definition of the matrix 1-norm of ‖diag(x)‖1 is

‖diag(x)‖1
··= max

i=1,...,N

N∑
j=1

|[diag(x)]i,j| = max
i=1,...,N

|[diag(x)]i,| (B.25)

= max
i=1,...,N

|x| =: ‖x‖∞ (B.26)
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Appendix C

List of physical terms

Name Explanation

band

conduction - The energy range for a free charge carrier

energy - Ranges of energy that an electron within a solid
may or may not have

- gap The range between two energy bands

valence - The highest energy a charge carrier can have
without being free

bias

forward- When the electric field caused by the applied
voltage has the same direction as the electric field
caused by the built-in potential

reverse- When the electric field caused by the applied
voltage has the opposite direction as the electric
field caused by the built-in potential

charge carrier A particle with an electric charge that can con-
duct electricity; for this thesis, they are electrons
and holes
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Name Explanation

conductor A material that conducts electric current well,
i.e. a material with a low resistivity

DA-interface The interface between the donor and acceptor
material in an organic diode

Debye length The distance over which significant charge sepa-
ration can occur

depletion region An insulating region between two doped semicon-
ductor materials where the charge carriers have
been diffused away, or have been forced away by
an electric field

diode A two-terminal electronic component that con-
ducts electricity primarily in one direction

dopant The material which is added to the semiconduc-
tor to dope the material

effective mass The mass that an object seems to have when re-
sponding to forces

electron A negatively charged charge carrier

- affinity The energy released when an electron is added
to a material

electronic band structure The structure that describes the different energy
levels in which the electrons can exist

emitter Another name for n-type semiconductor material
in a solar cell

exciton An electron-hole pair that is bound by Coloumb
attraction

Fermi level The highest energy level for electrons at aboslute
zero temperature

hole A lack of a hole and a positively charged charge
carrier
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Name Explanation

insulator A material that conducts electric current poorly,
i.e. a material with high resistivity

ionization potential The energy necessary to remove an electron from
a neutral atom

mean free time The average time between each collision of a
charge carrier

metal A material with a band gap of zero, and which is
a conductor

mobility Describes how strongly the motion of an elec-
tron/hole is influenced by an applied electric field

nucleus The dense region of protons and neutrons in the
center of the atom

organic compound Virtually any chemical compound that contains
carbon

p-n junction The interface between the p-doped and n-doped
material in a semiconductor diode

permittivity

- of free space It is the capability of the vacuum to permit elec-
tric field lines

dielectric - The measure of resistance that is encountered
when forming an electric field in a particular ma-
terial

photovoltaic An adjective that indicates that something con-
verts light into electricity. I use the term "solar"
instead of "photovoltaic" in this thesis

polymer A molecule composed of many repeated subunits

semiconductor A material which has conductive properties be-
tween that of an insulator and a conductor
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Name Explanation

doped - A semiconductor with different electrical prop-
erties than the original semiconductor because
a material that has different chemical properties
has been added

extrinsic - A doped semiconductor

intrinsic - A non-doped semiconductor

n-doped - A doped semiconductor that has more electrons
per atom than the intrinsic type of the material

p-doped - A doped semiconductor that has more holes per
atom than the intrinsic type of the material

shell The different shells of energy levels of electrons
in an atom

valence - The outermost electron shell of the atom

silicon An element which is a semiconductor and has
symbol chemical Si

solar

- cell An electronic device that converts sunlight into
electricity

- panel Several solar cells make up one solar panel

space charge density The sum of charge carrier densities

thermal voltage The relationship between the flow of electric cur-
rent and the electrostatic potential across a p–n
junction

velocity

average thermal - The average velocity of a charge carrier has due
to thermal motion

drift - The average velocity of a charge carrier has due
to an electric field
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Appendix D

Nomenclature

Symbol Explanation

Ê Electric field

f· The function for which we use Newton-Raphson to find the
roots

F0 The matrix that represents the finite central difference for first
order derivatives

F+ The matrix that represents the finite forward difference for first
order derivatives

G· The block matrix we use when solving with Newton-Raphson

h Planck’s constant

h· The mapping function we have for the fixed-point method

J Electron or hole flux

J Jacobi matrix

kB Boltzmann constant

L Thickness of glass for the silicon solar cell case, thickness of
acceptor layer in the organic solar cell case

LD Debye length when considering a silicon solar cell
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Symbol Explanation

M Thickness of donor layer in the organic solar cell

mn Effective electron mass

mp Effective hole mass

n Electron concentration

n Discretization vector for electron concentration in between the
boundaries in the domain

n̂ Discretization vector for electron concentration in the entire
domain excluding the right boundary value

ñ Discretization vector for electron concentration in the entire
domain

N Discretization number

p Hole concentration

p0 Discretization variable for left boundary value for hole concen-
tration

q Electron/hole charge

r·,· Boundary value vector

S0 The matrix that represents the finite central difference for sec-
ond order derivatives

t Time variable

T Temperature

vn Electron drift velocity

vp Hole drift velocity

x Spatial variable

x Discretization vector for spatial variable in between the bound-
aries in the domain

x̃ Discretization vector for spatial variable in the entire domain

112



Symbol Explanation

z Variable used when solving systems of equations with Newton-
Raphson

α Ratio between left and right boundary condition for n when
considering a silicon solar cell

δ Ratio of recombination rate to diffusion rate

δ·,· Kronecker-Delta tensor

∆ x Spatial step length

ε Dielectric permittivity

θ Parameter for organic solar cell depending on cell properties
and temperature when considering an organic solar cell

λ Parameter for organic solar cell depending on cell properties
and temperature when considering an organic solar cell

µn Electron mobility

µp Hole mobility

ν Ratio between Debye length, LD, and the glass thickness, L,
when considering a silicon solar cell

ρ The space charge density

τ Mean free time

φ Electrostatic potential

φ Discretization vector for electrostatic potential in between the
boundaries in the domain

φ̂ Discretization vector for electrostatic potential in the entire
domain excluding the right boundary value

φ̃ Discretization vector for electrostatic potential in the entire
domain

ϕ Applied electric potential when considering a silicon solar cell
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Symbol Explanation

Φ Applied electric potential when considering an organic solar
cell

Φbi Built in electric potential when considering an organic solar
cell
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Appendix E

Values of physical constants

Symbol Numerical value Unit

h 6.63× 10−34 J s

kB 1.38× 10−23 J K−1

me 9.11× 10−31 kg

q 1.60× 10−19 C
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Appendix F

The excursions to Ghana

In my master program at the Department of Mathematics at the University of
Bergen, I have had the opportunity to travel to National Insitute of Mathemat-
ical Science (NIMS) at Kwane Nkrumah University og Science And Technology
(KNUST) in Kumasi, Ghana. NIMS has over a 5 year period in part been funded
by the Petroleum Geo Services through the Norwegian Academy of Science and
Letters. With funding from BKK, a local power company in Bergen, we visited
NIMS two times as a part of the COMPCON project, a collaboration between the
Department of Mathematics at the University of Bergen and NIMS in Kumasi.
The project aims to initiate research within solar energy, and for use in Ghana in
particular.

(a) Photo from the KNUST campus. (b) From the KNUST campus. On the right
are LED street lights which consume less

energy than traditional light bulbs.

Figure F.1

117



At the Department of Engineering at KNUST, they have a research project on
solar panels with solar panels and devices that measure irradiance and air temper-
ature. Several different types of solar modules are installed, both different types
of silicon solar panels and different types of non silicon solar panels. The mea-
surements from these devices are saved, to see if the energy output is according
to the expected output for each particular type of panel, and for other research
purposes.

Figure F.2: The different solar installation at at the Department of Engineering at
KNUST.

The first excursion to NIMS was in January 2017, with Professor Tor Sørevik,
Einar Eimhjellen and I. In addition to conduct research on solar cell theory and
statistical data, we visited a 20MW solar park in Onyandze close to Winneba,
Ghana. The solar park was installed and operated by the Chinese power company
BXC. All the the panels in the park were imported from China and were cheaper
than many other options. The low prize was in part due to that fact that the
panels were produced in a manner that is more polluting that was allowed in EU,
in terms of both production and use, that is, solar panels can not be produced
in such a manner in the EU, and these panels were not allowed to be imported
into the EU. We visited the park during the Hamattan, a season in Sub-Saharan
Africa in which there is dust from the Sahara desert in the atmosphere which
blocks much of the radiance, and also settles on the ground, and hence on the
panels, to further decrease the irradiance on the panels.
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(a) (b)

Figure F.3: Solar panels in the solar park in Onyandze covered with dust during
Hamattan.

The second excursion to NIMS was in May 2018, with Professor Tor Sørevik, Einar
Eimhjellen, Benjamin Widerøe, Karoline Lekve and I. During this visit, Einar and
I presented the results from our master project, and Benjamin and Karoline pre-
sented their outlook for their master projects. We also had the opportunity to

(a) A microgrid installation in Kofihwikrom,
with the local medical clinic in the

background.

(b) The power converter room with batteries
for electrical storage.

Figure F.4

visit two microgrid solar panel installations, which are small independent power
installation that has solar panels that produce electrical energy and this power
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is sent only to a few houses that are close to the source, so that less infrastruc-
ture is needed. This can be very useful for small rural villages. In particular we
visited two installations close to Kumasi that were both installed by Black Star
Energy, who provide energy to 15 local villages in total. We visited one instal-
lation in Kofihwikrom which provided energy to 45 houses and one local medical
clinic. We also visited another installation in Daban which provided energy for 62
houses. They have installed batteries in the power converter room, so that they
could deliver power also at night. The systems are so reliable that the people in
these villages have a more reliable power source than the people connected to the
state owned grid.

Ghana is a country with around 29 million inhabitants and has a dire and growing
need for electric power. During the first visit we had frequent power flickers. We
were told not to leave the air-condition on while we were out of the room, and not
to leave the water heater on, unless we needed warm water right now. During our
second visit, we had to change plans for accommodation, because the guest house
we had planned to stay at had a power outage that they were unable to fix. Also,
at another guest house, we had several power outages. Ghana has an outdated
power production and power grid infrastructure. The power production can be
updated with more solar parks, both parks that send electricity to the main grid,
and with microgrids that need less infrastructure.

(a) LED street lights powered by solar panels
along a main road in Ghana.

(b) Drying of cocoa beans in Kofihwikrom.
Most of the houses in Kofihwikrom and

Daban are clay huts.

Figure F.5
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(a) Group Photo from the second excursion.
In the back from the left: Dr. Peter,

Benjamin, Isaiah, Michael, Einar, Anas. The
middle row from the left: Patricia, Richard,
Daniel (author), Joshua, Kofi. In the front
from the left: Reindolph, Phebe, Karoline,

Frank, Esi, Isaac, Prof. Tor.

(b) Einar and Hisham taking a closer look at
the solar panels in the solar park in

Onyandze.

Figure F.6

(a) Selling products along the streets in
Ghana is common.

(b) Photo from Accra, a city in fast growth
and in need of an increasing amount of

electric energy.

Figure F.7
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