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Abstract 

This master thesis is a collaboration between Technology Centre Mongstad (TCM) and 

University of Bergen. The project is to develop a method to accurately predict total 

inorganic carbon, total alkalinity and density using spectroscopy and multivariate data 

analysis. These variables can be used to determine the CO2-loading and MEA 

concentration. 

The CO2 concentrations in the atmosphere have been increasing since the 19th century; 

the increase has been affected by anthropogenic CO2 emissions. The most significant 

source of anthropogenic CO2 is the combustion of fossil fuels, especially in large power 

plants. The use of post-combustion CO2 capture at large power plants can decrease the 

amount of emissions drastically. Monoethanolamine (MEA) has been extensively studied 

as an aqueous solvent to use in CO2 capture and is a good choice for this purpose. Other 

solvents have not been this extensively studied. Therefore it is not sure which solvent 

that is the best choice yet.  

This thesis aims to use multivariate data analysis to create models that can be used for 

prediction of the compounds in the MEA-solution at different times in the process. Three 

response variables are chosen, total inorganic carbon (TIC), total alkalinity (TOT_ALK) 

and density. TIC can be used to find the CO2 concentration, TOT_ALK for finding the amine 

concentration and the density is correlated to the CO2-loading.  

The three response variables are predicted using partial least squares (PLS) models, 

preprocessing of the data is done with extended multiplicative signal correction (EMSC) 

or Savitzky-Golay differentiation. Outlier detection has been performed with principal 

component analysis (PCA). The achieved models have good predictive abilities, with 

small prediction errors and residuals.  
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1 Introduction 

The buildup of CO2 and other greenhouses gases in the atmosphere has led to a rise in the 

temperature of the earth, causing what is known as the greenhouse effect [1, p. 165-166]. 

This increase of CO2 is mainly due to anthropogenic emissions, where the most significant 

sources are burning of fossil fuels and large power plants. To decrease the emissions, the 

CO2 can be captured, stored and used for other purposes.  

The capture of CO2 from flue gas can be performed by using a chemical solvent that 

absorbs the CO2 [1, p. 253-254]. The CO2 is captured by this chemical agent and later 

released to be compressed, transported or stored. The chemical solvent being used must 

be regeneratable so that it can be used multiple times. The most commonly used agent 

for CO2 capture is Monoethanolamine (MEA) and diethanolamine; they have a high water 

solubility and the ability to absorb high amounts of gas. The required heating of the 

solvent to release the CO2 is relatively little compared to other chemical solvents, which 

makes the regeneration process more accessible and can be done at lower temperatures 

than the alternatives. Because of their high absorption capability, over 95% recovery of 

CO2 can be accomplished using MEA.  

Amine scrubbing is a technology used in the capture of CO2 [2]. In a typical system design 

for a power plant, the flue gas is passed through the absorber, containing the aqueous 

amine. The amine absorbs the CO2 and travels to the desorber where the solution is 

heated using water vapor until the amine releases the CO2. The process is then repeated, 

using the regenerated amine.  

The use of multivariate methods and analysis, while the process is happening, can be a 

significant advantage, especially if new mixtures or methods are tested for the process, 

that way the process can be stopped if problems are detected [3]. The way things are now 

these problems are not detected until the problem has occurred and may already have 

caused huge problems.  

Several spectroscopic methods have been studied, determining if they are suited for this 

use. ATR-FTIR has shown to have good applicability and is applied as spectroscopic 

method in this thesis. ATR-FTIR used together with regression analysis, and partial least 

squares (PLS) have given satisfying predictions with small deviations. 
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2 Spectroscopy 

2.1 The Electromagnetic Spectrum 

The term light refers to all wavelengths or frequencies of electromagnetic radiation, both 

the visible light and the radiation that cannot be seen, but whose effect can be measured 

[4]. The entire range of wavelengths and frequencies comprises the electromagnetic 

spectrum. The spectrum is divided into regions according to increasing frequency, which 

is displayed in figure 2-1.  

 

Figure 2-1 The electromagnetic spectrum [5]. The highlighted area is the visible part of the spectrum, 

and the grey area is the part of the electromagnetic radiation that cannot be seen 

The infrared region is between the microwaves and the visible light, whereas the near-

infrared region is located closest to the visible light in wavelength and is defined as the 

region from 780 – 2500 nm (nanometers) [5, p. 364]. The highlighted region is the visible 

light, reaching from 400 nm – 700 nm. 

The light behaves both as a particle and a wave and can be seen as either, depending on 

the property being measured [6]. As a wave, light has the properties wavelength and 

frequency. Frequency 𝑣 is the number of waves that passes a given point per second given 

in s-1, or more commonly called Hertz (Hz). Wavelength 𝜆 is the distance between two 

corresponding positions of head-to-head waves.  
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The velocity of light in a vacuum is a constant and is the product of frequency and 

wavelength:  

c = v ∙  λ                         Equation 2-1 

where c is the speed of light in vacuum (3 x 108 m/s). 

Wavelength and frequency are inversely proportional, meaning that long wavelengths 

give low frequencies and opposite. In vibrational spectroscopy the use of wavenumber 

units is more commonly used, wavenumber is linear with energy and defined as follows 

[14]: 

v̅ =
1

λ
=  

v

c
                        Equation 2-2 

where 𝑣̅ is the wavenumber.  

As a particle, the light behaves like a particle of energy, called a photon. This represents 

the energy in the electromagnetic spectrum, and is given by the Bohr equation: 

E = h ∙ v =  
hc

λ
                        Equation 2-3 

where h is Planck’s constant (6.626 x 10-34 Js). 

2.2 Vibrational Spectroscopy 

The study of the interaction between electromagnetic radiation (light) and matter is 

called spectroscopy. The intensities of absorption or emission of radiation at one or more 

specific wavelengths are measured [6].  

When a molecular, or atomic, system absorbs or emits light, the system moves from one 

quantized energy level to another. The difference in energy levels must, according to the 

Bohr frequency condition, be equal to the light emitted or absorbed. This principle is used 

in spectroscopy to review the energy levels of matter and displays how matter and energy 

interact.  

When the radiation interacts with the sample, the electrons are excited to a higher energy 

state than before the interaction. If the excited electrons emit photons and thus relaxing 

to a lower state, emission is observed.  
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Reflection or transmission can be observed depending on the specifications of the sample 

surface. Medium difference is the most trivial and effective reason for reflection, while a 

sample that is transparent at the given wavelength will lead to the radiation passing 

through the sample. The different interactions are displayed in figure 2-2.  

 

 

Figure 2-2 Interactions of light and matter, adapted from [5]. Displaying reflected, transmitted, emitted 

and scattered radiation 

A photon striking the outer layer of an atom can only be absorbed if the amount of energy 

is precisely equal to the energy differences between the high and low quantum energy 

levels.  

The different spectroscopic techniques consider the different interactions between the 

photons and the electrons in molecules and atoms, and spectroscopy can thus give 

valuable, complex and definite information about the interactions in the substance being 

studied.  

Preprocessing of vibrations spectroscopy spectra are essential; the spectra can contain 

multiplicative or additive effect that will make the interpretation and analysis difficult 

and may lead to wrong conclusions [7]. The goal of the preprocessing is to remove these 

unwanted effects. In a quantitative chemical analysis of complex samples from 

spectroscopy, unwanted light scattering effects are often present and complicate the 

analysis [8]. These unwanted effects occur due to physical variation in the samples, 

differences in particle shape and size, sample surface and packing and so on.  



5 
  

In some cases, a simple multiplicative effect of the light scattering occurs, like a change of 

optical path length, which will change the scale of the whole spectrum by a given factor. 

Additive effects in the form of a simple baseline shift can under some conditions be 

observed. These simple cases of pure multiplicative and additive effect of light scattering 

are rare, and an oversimplification. A complex system will most likely have both effects 

present, which needs to be corrected before further analysis.  

2.3 Infrared Spectroscopy 

The chemical bonds that hold molecules together are never at rest but vibrate 

continuously [6].  These vibrational movements induce absorption in the infrared region. 

The infrared radiation can also excite rotational movements of molecules, giving 

rotational bands, which are overlaid on the vibration bands.  

Samples analyzed by IR spectroscopy must have a dipole moment, so solids, liquids, and 

gases can be studied by this technique. The molecules in the samples are identified by 

determination of the chemical structure according to the frequencies of the absorbed IR 

radiation.  

Vibrations in the molecule that lead to a change in the dipole moment can be recorded; 

there are two types of molecular vibrations that can lead to this: bending and stretching. 

The different types of bending and stretching are represented in the figure 2-3. 

In IR spectroscopy the relationship between the incident and transmitted radiation and 

the concentration of the sample is given by Beer-Lambert law. Empirically it has been 

found that the transmitted intensity varies with the length and molar concentration of 

the sample [10, p. 479-480]:  

A =  εcL                         Equation 2-4 

Where A is the absorbance, ε is the molar absorption coefficient, and L is the length. The 

molar absorption coefficient depends on the frequency of the incident radiation and has 

the greatest value where the most intense absorption is.  

The spectrum of the sample being analyzed is found by plotting the absorbance or 

transmittance versus the wavenumber [11, p. 13-15]. The energy differences between the 

excited and ground state are proportional to the wavenumber.  
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Figure 2-3 Molecular vibrations, displaying both stretching and bending [9] 

2.3.1 Fourier Transform Infrared Spectroscopy 

The interferometer is an optical device consisting of an IR-source, a beam splitter, and 

two mirrors, one moving and one fixed [12]. The incident light from the source is split by 

the beam splitter, and one half is sent to each of the two mirrors. The beam is then 

reflected by the mirrors and recombine at the beam splitter before it goes through the 

sample and travels to the detector. This principle is displayed in figure 2-4.  

 

Figure 2-4 Principle of the interferometer [12] 
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Since one of the mirrors are moving, the distance the beam has to travel varies, this 

difference in travel is called optical path difference (OPD). The intensity of the beam is 

the highest at zero path difference when the mirrors are at the same distance from the 

beam splitter, the beams now interfere constructively. A low-intensity beam occurs when 

the light beams from the mirrors are out of phase and interfere destructively. Complete 

destructive interference is achieved when the path difference is an integer + ½ multiple 

of the wavelength. The interferogram is a plot over the intensity of the beams over the 

OPD.  

The interferogram obtained using an interferometer must be transformed to become a 

readable spectrum. The spectrum is a representation of the intensity over wavenumber 

or frequency, and to do this conversion Fourier transform (FT) can be used [12].  

The Fourier Transformation is a mathematical method that transforms the interferogram 

to a spectrum. The conventional spectrum is produced by breaking down the 

interferogram into sine waves for each wavelength of the light. The method involves 

integration of the original data between zero and maximum path difference; the signal is 

converted from intensity over a given time to intensity with respect to frequency.  

2.3.2 Attenuated Total Reflectance Infrared Spectroscopy 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) is a 

favorable choice for examining samples containing water; this is a surface 

characterization technique where the IR light enters a specific ATR crystal [6]. This 

crystal provides attenuated total reflectance (ATR) of the IR beam inside the crystal. The 

crystal is in contact with the sample and provides internal reflections of the IR beam. 

From these internal reflections, evanescent waves that penetrate the sample are formed. 

These waves enter the sample at a depth of 0.5-2 µm, causing IR radiation and interaction 

with the sample, resulting in an ATR-FTIR spectrum of the sample. The principle of the 

ATR-FTIR spectrometer is shown in figure 2-5, displaying the reflection angle and the 

evanescent waves. The sample is place directly on the crystal.  ATR-FTIR can be used to 

analyze the surface of a sample, and the penetration depth can be changed by changing 

the reflection angle. 
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Figure 2-5 Principle of ATR-IR, where α is the reflection angle [6] 

In ATR-IR one usually uses mid-range IR beams because of the fingerprint region. This 

region contains molecule-specific molecular vibrations and can be used to identify 

compounds in the sample.  

Another advantage with ATR-FTIR is that the sample preparation is more 

straightforward than for IR, the sample is placed directly on the crystal. The amount of 

sample needed for this spectroscopic method is minimal, and there is no need to destroy 

a sample.  

Since ATR-FTIR is based on the use of evanescent waves the sensitivity is not as good as 

for the transmission methods. This is because in the transmission technique the waves 

pass through the sample while for the evanescent wave technique the waves only touch 

the surface of the sample. As a result, the evanescent wave method only examines a small 

part of the sample, while the transmission method allows for analyzing the whole sample, 

both bulk and surface.  

2.3.3 Interpretation of Spectra 

A disadvantage of IR-spectroscopy is the large absorption of O-H from water, which 

potentially can bury signals from other compounds in the aqueous solution. If the samples 

contain water, ATR-FTIR spectroscopy is a better choice.  

The most significant region of the IR-spectrum is from 4000-665 cm-1 [13]. In the high-

frequency region, the stretching vibrations for the most important functional groups are 

found.  
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Amines show broad, moderate absorption in the low-frequency region, especially in the 

region ensuing 950 cm-1, which can be seen in figure 2-6., in the form of C-NH2 

absorption. The fingerprint portion of the spectrum, from 1300 – 900 cm-1 is often 

complex, with interacting vibration modes. This region has unique absorption for every 

molecular specie and can be used to identify which compounds are present in the 

samples.  

O-H is one for the most important functional groups, and the stretching of O-H produces 

a broad band in the region 3700 to 3600 cm-1 [14]. The stretching of the inorganic 

compounds in the aqueous amine solutions (see section 3.2), are found in the region from 

2000 to 900 cm-1. The organic carbons, in form of C-H stretching are identified in the 

region enclosing 2900 cm-1, these are often buried by the O-H peak, making it hard to 

identify them.  

The stretching vibrations described in figure 2-6 are the most important when studying 

solutions of aqueous MEA present during the CO2 capture process (more in section 3.2). 

 

Figure 2-6 ATR-FTIR spectrum of a sample of aqueous MEA solution, fully loaded with CO2, displaying the 

most important stretching vibrations. Based on [13, 14] 
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3 CO2 Capture  

One of the major causes of global warming is the increase in the global CO2 concentration 

in the atmosphere, alongside the increase of other greenhouse gases [15]. This increase 

in the CO2 concentration is due to human activities, such as the use of fossil fuels, and has 

been found to be the leading cause of climate change. The chief source of anthropogenic 

CO2 emissions is through the burning of natural gases and coal.  

Numerous techniques for CO2 capture exist and are classified into four groups: pre-

combustion, post-combustion, oxy-fuel combustion and electrochemical separation [16]. 

Post-combustion CO2 capture is the technique with the highest potential since it can be 

retrofitted to already existing power plants.  

In post-combustion capture, the technology is retrofitted to the existing power plants, 

and the CO2 is captured after the fossil is burnt. The process uses chemical absorption, 

physical adsorption or membranes to capture the CO2. High energy requirements are 

related to the chemical absorption, due to the regeneration of the solvents and loss during 

the absorption. Monoethanolamine (MEA) has been used for decades to capture CO2 and 

is extensively studied [17].  Aqueous MEA solutions can absorb CO2 at low pressure with 

acceptable absorption/desorption kinetics.  

3.1 Amines  

Amines are compounds where one or more of the hydrogen atoms in the ammonia 

molecule has been replaced with an organic group [18]. Amines are divided into primary, 

secondary or tertiary amines, depending on the number of organic groups bonded to the 

nitrogen atom. Amines with organic groups that are not too large are soluble in water.  

MEA is a primary amine containing one organic group and is soluble in water. MEA has a 

hydroxyl group, also making it a primary alcohol. MEA is a weak base and can be used 

directly in industrial processes, e.g. for removal of acidic gases like CO2 [19].  
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3.2 CO2 Capture Using Amines 

 

Figure 3-1 Schematic presentation of an amine scrubbing unit [3] 

The principle of CO2 capture using amine scrubbing is demonstrated in figure 3-1. The 

flue gas flows through the absorber, countercurrent to the amine solution, where the CO2 

is absorbed via chemical reactions with the amine solution [17]. The CO2 is now absorbed 

by the amines, as a part of the liquid solution. The liquid stream of amine solution and 

CO2 then moves over to the stripper (desorber); here the solvent is regenerated, and the 

CO2 is released into a gas stream, containing water vapor and CO2. The amines are 

regenerated through heating, when the amines are heated they release the CO2, and the 

amines can then be used again. During the regeneration in the stripping column 

degradation products can form, which will affect the amines ability to absorb CO2 [2]. The 

compounds can also affect the equipment, in the form of for example corrosion. The gas 

stream containing CO2  and water vapor is cooled down, and the water condensed [17]. 

Pure CO2 can now be produced for storage and transport.  

During the CO2 capture in aqueous amines, two amine molecules react with one CO2 

molecule, which forms a carbamate ion and a protonated amine. This limits the loading 

capacity to 0.5 mole CO2 per mole amine. The overall reaction is as follows:  

2 MEA + CO2  → MEACOO− + MEAH+                     Equation 3-1 
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The process can happen in a single-step direct mechanism or a two-step zwitterion 

mechanism. Recent studies have determined that this happen in a zwitterion mechanism 

[20]. This zwitterion mechanism includes the formation of a zwitterion as an 

intermediate, undergoing deprotonation by another MEA which then forms carbamate 

and protonated MEA. The underlying reactions to achieve the overall reaction are 

presented in Appendix A.  

When studying the CO2 capture process and the compounds present at different stages of 

the process, samples are taken [21]. One set of samples are taken after the solvent has 

passed through the absorber, these samples contain MEA and absorbed CO2, and are 

called CO2 rich samples. These samples are fully loaded with CO2, and also contain 

products formed in the absorption process. Another set of samples are taken after the 

regeneration of the solution in the desorber and contains mostly MEA and are called CO2 

lean samples; these samples also contain the same byproducts as the rich samples. The 

only difference between lean and rich samples is the amount of CO2, the difference in CO2 

concentration gives the samples different properties, like viscosity and density. Because 

of this difference analysis has to be performed separately for lean and rich samples.  

Figure 3-2 displays the spectra of one lean and one rich sample. The difference between 

the samples is largest in the fingerprint region to the right, where the rich sample has a 

higher intensity of absorption. This is the region where the inorganic carbons absorb 

radiation (see section 2.3.3). The rich samples are fully loaded with CO2 and byproducts 

from the absorption process, these compounds are inorganic carbons, and is the reason 

for the higher intensity.  

The region around 950 cm-1 display a big difference between the two samples and is 

where the C-NH2 absorption appear [13]. The C-NH2 is MEA, and there is more pure MEA 

in the lean samples, resulting in a higher intensity for the lean samples here.  
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Figure 3-2 ATR-FTIR spectra for one lean (in black) and one rich (in red) sample, presenting the 

difference between the two 

Information about the concentration of MEA and the CO2-loading is vital when analyzing 

the CO2 capture process [22]. The use of different approaches can be implemented to 

achieve this information, online process monitoring using ATR-FTIR is one of them. 

The analysis of the total alkalinity (TOT_ALK) is used to find the concentration of MEA in 

the solution, while the total inorganic carbon (TIC) in the solution is used for determining 

the CO2 concentration. The difference in density between the lean and rich samples says 

something about the amount of absorbed CO2; the density is correlated to the CO2-loading 

(mole CO2 / mole MEA). Information about these compounds during the process will give 

a better understanding of the process, and also make it possible to monitor how much 

CO2 is removed from the flue gas. The monitoring of the solution after it has passed 

through the desorber is vital in order to avoid degradation products, which will reduce 

the ability to capture CO2 [2].  
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4 Multivariate Data Analysis 

Multivariate data analysis is the use of different methods for analysis of data containing 

many variables [23]. In large datasets it can be difficult to extract the important 

information, spectroscopy is one example of where the datasets are massive. 

Chemometrics uses advanced mathematical and statistical methods for planning and 

optimizing processes and to extract relevant information from the data.  

In the ensuing chapters the following notation is used: 

Bold font and upper-case letter: 𝐗 = matrix 

Bold font and lower-case letter: 𝐱 = vector 

Bold font and raised to the power of T: 𝐗T= matrix transposition  

4.1 Decomposition of the Matrix 

Data can be presented in a matrix, called the observation matrix [23]. This matrix 

contains all the information and can be decomposed into rows, containing I objects, and 

columns containing J variables. This makes up the matrix 𝐗 with the size I × J. 

 

Figure 4-1 Decomposition of the original data matrix into variable and objects space [24] 
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This matrix can be looked at in two ways: either from the objects’ point of view or the 

variables’ [24].  By plotting all object vectors in a J dimensional space where the axes are 

the J variables we get the variable space. By plotting the variable vectors in an I 

dimensional space where the axes represent the I objects we get the object space. The 

two spaces are displayed in figure 4-1.   

All the information in the dataset can be found in the object and variable space. The two 

spaces can be used to find correlations and similarities in the objects and variables; this 

can be done by studying the correlation between two objects m and n: 

cos φ =
𝐗m

T ×𝐗n

‖𝐗m‖×‖𝐗n‖
                        Equation 4-1 

If this angle equals 0°, the objects are perfectly positively correlated, if the angle is 90° 

the objects do not contain any overlapping information. If the angle is 180°, the objects 

are perfectly negatively correlated. The angle and distance between objects in this plot 

can be used to find information about correlation and similarity between objects. The 

same applies to variables. When the number of objects, and axes, exceeds two, this 

graphical display is no longer possible.  

4.2 Preprocessing 

Preprocessing of data is performed to remove effects that do not represent physical, 

chemical or biological aspects of the data [7]. Data coming straight from the instrument 

can contain noise, baseline differences, scattering or other features clouding the 

significant information.  

When examining data using multivariate calibration models, preprocessing is crucial. 

When preprocessing is not performed the unwanted parts of the data, like noise, will be 

mixed with the important information [25]. 

Which preprocessing needed depends on the data, the instrument and which mathematic 

model is to be used in further examinations. For vibrational spectroscopy preprocessing 

can be divided into two groups: filtering methods and model-based methods. The filtering 

methods transform the spectra into a presumably better version, by for instance 

differentiation or normalization. The model-based methods allow for evaluation and 

separation of the physical and chemical variations in the spectra.  



16 
  

4.2.1 Baseline Correction 

A spectrum can be expressed as a function of the concentrations, the pure spectra and the baseline 

[7]:  

𝐱T =  ∑ yk𝐜k + 𝐠(v̅)                       Equation 4-2 

where 𝐱T is the spectrum, 𝑦𝑘is the concentration for component k, 𝐜kis the pure spectra 

for component k and 𝐠(v̅) is the baseline.  

A correct correction of the baseline will reduce the number of significant variables 

needed in the decomposition and will make the interpretation of data more accessible. 

The baseline can be expressed as:  

𝐠(v̅) =  b0 + b1v̅ + b2v̅2 + ⋯                       Equation 4-3 

By differentiation, one can remove additive baselines, and by double differentiation, a 

sliding baseline can be removed if it is linear. By additive baseline, or offset, one refers to 

the spectra being move either up or down in relation to each other.  

4.2.2 Normalization 

When examining chemical data, one is often only interested in relative amount. In that 

case, normalization can be used to remove the effect of the total sample size, this a 

multiplicative correction [7]. Normalization transforms the data in such a manner that 

they can be compared, by for instance giving them the same size or length.  

4.2.3 Differentiation and Smoothing 

As mentioned before differentiation can be used to remove baselines, but it can also be 

used to smooth the data to reduce the noise [26]. Savitzky-Golay is a numerical method 

which performs both differentiation and smoothing of the data. Numerical differentiation 

refers to differentiation of each point of the data and can only be used on continuous data.  

The method is based on the principle of least squares, which states: a set of points are to 

be fitted to a curve: 

h(v̅)=b0+b1v̅+ b2v̅+ b3v̅3                                       Equation 4-4 
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The coefficients, b, are to be chosen so that when the v̅s are put into the equation the 

square of the differences between calculated numbers h and the actual numbers are as 

small as possible.  

When using Savitzky-Golay, a window size is chosen, with size from 5-25 using only odd 

numbers. The points in the window are then fitted to the curve in equation 4-4, and when 

the values for the coefficients are found the derivative of the midpoint of the window is 

calculated; this will be the point in the smoothed version of the data. The window is then 

moved one step at the time until it has covered all the points. This procedure will reduce 

the noise in the data with approximately the square root of the window size.  

The plots will be more challenging to interpret after performing smoothing and 

differentiation, as can be seen in figure 4-2. 

 

Figure 4-2 Display of spectra before and after differentiation, of first and second degree [14]. 



18 
  

4.2.4 Multiplicative Signal Correction 

Multiplicative signal correction (MSC) is an algorithm which can be used to remove 

additive and multiplicative contributions from an interfering signal [27]. The method can 

also be used to remove offsets and baseline effects and to normalize the data. When using 

FTIR spectroscopy to create spectra of a sample, one can get an undulating background. 

This background can be removed using extended multiplicative signal correction 

extended multiplicative signal correction (EMSC).  

The basic idea of MSC has been extended to EMSC, which can be used for correction of, 

e.g., water vapor, sample thickness, CO2, temperature and salt concentrations. EMSC has 

extended flexibility which takes into consideration more selective correction for different 

kinds of unwanted effects which cannot be corrected with other conventional 

preprocessing techniques. It is also a reliable tool for correction of additive baseline 

effects, multiplicative scaling effects, and interference [28].  

Every spectrum in 𝐗 can be written as: 

𝐱0 =  b0 + b1𝐱r + 𝐞                        Equation 4-5 

Where 𝒙𝑟 is a reference spectrum, usually the average spectrum. The coefficients are 

found by linear regression. The original spectrum is now corrected using these 

coefficients, giving the corrected spectrum 𝐱c: 

𝐱c =
𝐱0−b0

b1
                         Equation 4-6 

this must be done individually for each spectrum.  

In the extended version (EMSC) the reference spectrum is fitted to a polynomial: 

𝐱0 =  b0 + b1𝐱r + b2v̅ +  b3v̅2 + 𝐞                    Equation 4-7 

where 𝑣̅ is the specific wavenumber.  

The corrected spectrum is now given by: 

𝐱c =
𝐱0−b0− b2v̅− b3v̅2

b1
                      Equation 4-8 
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4.3 Principal Component Analysis  

In exploratory analysis, the primary goal is interpretation of the data [29]. The intention 

is to describe the system using as few variables (called principal components in PCA) as 

possible and make graphs that are easy to interpret but contain much information. 

Principal component analysis (PCA) is a useful tool for doing this. 

The first principal component (PC1) is the linear combination of the original variables 

that explain most of the variation in the original observation matrix [30]. The columns 

(variables) of 𝐗 can be denoted 𝒙𝑗(j=1, 2, ..., J) and are vectors in the I-dimensional space. 

These 𝒙-variables can be written as a linear combination:  

𝐭 = 𝐰𝟏 𝐱𝟏 + ⋯ +  𝐰𝐣 𝐱𝐣                                         Equation 4-9 

𝐭 is a linear combination of the 𝐱-vectors and are called score vectors. 𝐰 is the unit vector 

with elements, called the weights, which has the same direction as the 𝐱-vectors.  

Since the goal of PCA is to create a model with fewer variables than the original matrix, 

the target is to find a vector 𝐭 containing as much as possible of the variation relevant to 

the problem. When the first PC has been found, the information explained by this PC is 

removed from the observation matrix and PC2 can be extracted. PC1 and PC2 are 

orthogonal, meaning that the scalar product is zero and they do not contain any 

overlapping information.  

After extracting PC2, the same procedure can be performed, and PC3 can be extracted. 

This process can be carried out until the total rank is equal to the rank of 𝐗, but since the 

goal is to reduce the number of variables, we stop before this. The number of necessary 

PCs to explain all the variation can be determined by using a simple rule of thumb: when 

a component explains less than 
100%

𝐽
 it should not be included.  

Principal component analysis on a data matrix can be expressed like this: 

𝐗 = 𝐓𝐏𝐓 + 𝐄 =  𝐗̂ + 𝐄                    Equation 4-10 

Where 𝐓 is a (I × A) matrix containing orthogonal score vectors 𝐭 and 𝐏 is a (J × A) matrix 

containing the orthogonal loadings. E is the residual matrix, containing the information 
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not explained by T and P. A is the total number of principal components. This 

decomposition of the PCA is displayed in figure 4-3.   

 

Figure 4-3 Decomposition of the matrix in PCA. The residual matrix and the model approximation has the 

same dimension as the original data matrix. Adapted from [30] 

4.3.1 Scores and Loadings  

When exploring the data, the terms scores and loading are very helpful. The scores can 

be found by projecting the objects in 𝐗 on the PCs: 𝐭j = 𝐗𝐰𝐣. For PCA, the loadings (𝐩j ) 

are equal to the weights (𝐰j), meaning that the scores, loadings and weights are 

orthogonal. The scores have different lengths, which are proportional with how much of 

the variance in 𝐗 they explain. Hence the score plot can be used to interpret how good a 

set of PCs are for the given data set [30]. The score plot is commonly made as a scatter 

plot, with the PCs on the axes.  

When visualizing and interpreting the data, the score and loading plots are essential [6]. 

The scores can be plotted in many ways; the scatter plot is one. The scatter plot is made 

with the principal components on the axes. In a scatter plot of the scores, the distance and 

angle between objects can quickly be evaluated and based on the spread of the scores the 

importance of the principal component can be assessed. This plot can also be used to 

identify outliers in the data set (section 4.3.3) [30].  

By plotting the scores and loadings in the same plot, the biplot is attained. The biplot can 

be used to examine the model as a whole and gives an overview of which variables explain 

which objects.  
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When determining if a PC is important, we look at the explained variance by the 

component. This is because the amount of information in a component is strongly 

associated with the amount of explained variance.  

The importance of a component in PCA can be evaluated using the eigenvalues. The 

loadings are the eigenvectors of 𝐗T𝐗, which is the cross-product matrix. The normalized 

scores are equal to the eigenvectors of the 𝐗𝐗𝐓matrix. The matrix 𝐓T𝐓 gives a diagonal 

matrix, with the eigenvalues of  𝐗T𝐗 along the diagonal. The eigenvalues are proportional 

with the explained variance by the PC. The bigger the eigenvalues, the bigger the 

importance of the PC.  

4.3.2 Residual Standard Deviation  

The decomposition of the data matrix gives scores, loadings and a residual matrix. The 

residual matrix contains the noise. The residuals can be found by extracting the part of 

the data explained by the principal components from the original data [30]: 

𝐞i
T =  𝐱i

T − ∑ 𝐭ia𝐩ia
TA

a=1                     Equation 4-11 

Where 𝒆𝑖 is the residual vector for sample i after being fitted to the model. Residual 

standard deviation (RSD) is a measure of how good a model is, and can be calculated in 

the following way [31]: 

RSD =  √𝐞i
T𝐞i

I−A
                      Equation 4-12 

Where I is the total number of variables, and A is the total number of principal 

components. Residual standard deviation gives a measure of the accuracy of the variable 

in consideration to the model, meaning how far from the model the variable is.  

4.3.3 Outliers  

Outliers are samples that for some reason behave differently than the other samples [30]. 

There can be different reasons for this; the sample can for example simply be wrong or 

mismeasured.  The outliers can disturb further investigations and should be corrected or 

removed. Outlier detection is an essential part of the multivariate analysis. The outliers 

can be detected by using, for instance, the score plot or RSD vs. leverage plot [31].  
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Leverage is calculated for each sample and is a measure of how much influence an object 

has on the model. Leverage is calculated by the following equation [29]: 

hiA =
1

I
+ ∑

tia
2

λa

A
a=1                      Equation 4-13 

Where 𝑡𝑖𝑎 is the score value for component i for principal component a, and 𝜆𝑎 is the 

corresponding eigenvalue. The leverage is always between zero and one, where a high 

value means that the sample is far from the average sample and thus a possible outlier. 

By studying the RSD vs. Leverage plot, one can examine how well the principal 

components describes the system [31]. Small outliers will have low values for leverage 

and high values for RSD. High RSD values means that the sample is different from the 

modeled samples. High values for both leverage and RSD arguments for the sample being 

an outlier, and it should be removed. From the RSD vs. Leverage plot in figure 4-4 

samples 31 and 32 can be identified as outliers. 23 is identified as a possible small outlier 

and should be examined further.  

 

Figure 4-4 RSD vs. Leverage plot used to detect outliers 

When performing outlier detection, one should not only use the RSD vs. Leverage plot, 

the RSD limit for rejecting samples may be to narrow [31]. This can occur when the 

number of variables is large, the collinearity between the variables is strong (which is the 

case for spectral data) or replication of samples in the calibration set [33].  
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These effects will exaggerate the degrees of freedom, resulting in to narrow RSD limits. 

The narrow limits lead to samples being classified as outliers, even though they are not.  

In the score plot, one will usually see a cluster of the samples, and the outliers will lie 

outside of this collection [30]. Before removing the outlier, it is essential to check if this 

is, in fact, an outlier. This can be done by examining the original data set and the 

preprocessed data set, the preprocessing may correct the outlying nature of the sample, 

so this is important before removing samples identified as possible outliers. If the sample 

that has been detected as an outlier has a considerable influence on the data, the sample 

should be removed so that the model is not affected by it; this may lead to the wrong 

model and poor prediction.   

From the score plot in figure 4-5 two objects are identified as outliers, 21970 and 21972. 

After these outliers are removed a new score plot should be made to investigate if more 

outliers appear now that the two objects with large deviation, and thus considerable 

influence, on the model, is removed.  

 

Figure 4-5 Score plot of component 1 versus component 2 after performing PCA. The ellipse is provided 

by Sirius 11.0, and objects outside this are identified as outliers 
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A normal plot function of the scores can be used to indicate outlying objects, as these will 

deviate from the straight line expected in such a plot. Figure 4-6 presents such a normal 

plot, and objects 31, 32 and 34 deviate from the straight line and are therefore identified 

as outliers.  

 

Figure 4-6 Scores vs. Objects normal plot for the first component, describing most of the variation 

(95.5%) in the data 

4.3.4 Multiple Linear Regression  

The relationship between a set of x-variables and one or more response variables y can 

be determined using predictive modeling, e.g., by using a model where the y-variables are 

described by the x-variables and the noise is left in the residuals [24]: 

y = f(x1, x2, … , xJ) + ey                    Equation 4-14 

The function can be explained using a linear polynomial: 

y =  b0 + b1x1 + b2x2 + ⋯ +  bJxJ + ey                  Equation 4-15 

Where bi(j=0, 1, 2, ..., J) are the regression coefficients which describe the effect of the 

corresponding term. 𝑒𝑦 is the residual in y. This can also be expressed in matrix form: 

𝐲 = 𝐗𝐛 +  𝐞y                      Equation 4-16 
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Multiple linear regression can now be used to calculate the regression coefficients from 

the following equation: 

𝐛 =  (𝐗T𝐗)−1𝐗T𝐲 =  𝐗+𝐲                    Equation 4-17 

4.4 Partial Least Squares  

Partial least squares (PLS) is a regression approach with the aim to find a model that 

shows that one or more response variables can be explained by a set of predictor 

variables [24].  

PLS deals with both 𝐗 and 𝐘 data, where 𝐗 is the raw data, in the case of spectroscopy it 

contains the spectra, and 𝐘 contains the responses. The data in the matrices are related 

to each other, and the objects are presented in both 𝐗 and 𝐘 space. The PLS model then 

gives the relation between the two, based on the covariance.  

While PCA is based on the criterion of maximum variance for the decomposition step, PLS 

uses another criterion. PLS expresses the response as a function of a given set of variables 

based on the collinearity between them by calculating a normalized weight vector based 

on the response y and the data matrix X: 

𝐰PLS,1
T =

𝐲T𝐗

‖𝐲T𝐗‖
                                                        Equation 4-18 

The scores for the PLS components are calculated successively by projecting the variables 

𝐗 on 𝐰PLS,1, the loadings are found by projecting 𝐗 on the resulting scores. The predictive 

power of each component is checked using cross-validation (section 4.4.2). After the first 

PLS component has been found, the part of X explained by this is removed and the process 

is carried out again, calculating the second PLS component.  

4.4.1 Model Validation 

Root mean square error of prediction (RMSEP) can be used for assessing model quality. 

The value can be found with the following equation [33]: 

RMSEP =  √∑ (yi− yî)2I
i=1

I
                    Equation 4-19 
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Where yî is the predicted values and yi is the original values, I is the total number of 

samples. A model is concluded to be good if the RMSEP value is low compared to the 

measured values yi. 

4.4.2 Cross-Validation 

Cross-validation can be used to determine the number of significant components to 

include in the model and says something about the predictive ability of the model [33]. 

The method leaves out one or more samples, and a PLS model with 1, 2, …, A components 

are made calculating the predictive ability for the left-out samples. The method is then 

repeated leaving out another set of samples, the predicted residual error sum of squares 

(PRESS) is calculated, and the lowest value of PRESS establishes how many components 

to include in the model. PRESS can be calculated with the following formula [34]: 

PRESSa = ∑
(yi−(ŷ(i),a)i)2

I

I
i=1                    Equation 4-20 

where yi is the ith element of y and  ŷ(i),a is the estimate of y from PLS with a components 

when the ith observation has been eliminated.  

From this the root mean squared error of cross-validation (RMSECV) can be calculated 

with: 

RMSECVa =  √
PRESSa

I
                     Equation 4-21 

The RMSECV value can be evaluated in the same way as the RMSEP, a low value 

compared to the measured values indicate that the model is going to perform well. The 

RMSECV values are calculated for each component a, and by plotting these the RMSECV 

plot is obtained. This plot can be used for determination of how many components to 

include in the model, when the value decreases by including component, the component 

should be included. When the RMSECV value ceases to decrease by including it, the 

component should not be included.  
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4.4.3 Double Cross-Validation  

Double cross-validation separates the data into two nested loops, one outer loop and one 

inner loop [35]. The objects in the outer loop are split randomly into a calibration set and 

a test set which is then used to estimate the prediction performance of the model made 

from the calibration set on the test set. The inner loop consists of a calibration set like the 

outer loop, and cross-validation is used to find the number of components to include in 

the PLS model.  

In a repeated double cross-validation this procedure is repeated many times, classically 

100 times, in a repetition loop with different random splits of the objects every time.   

The available predicted y-values and test sets are increased using double cross-

validation, and thus the prediction ability of the model can be better evaluated.  

The double cross-validation gives the RMSEP value for each component and an overall 

value for the model with the optimal number of components. Double cross-validation is 

a good way to evaluate models when there all the available samples have been used to 

build the model, and no validation set is accessible.  

4.4.4 Coefficient of Multiple Determination  

The coefficient of multiple determination can be used to determine how good a model is. 

It determines the proportion of explained variation by the model [36, p. 686]. The 

coefficient is given by: 

R2 = 1 −
SSE

SST
                      Equation 4-22 

SSE is a measure of how much variation in y is left unexplained by the model. SST is the 

total sum of squares, capturing the sum of squares about the horizontal line. SSE and SST 

can be calculated with the following formulas [36, p. 631-633]: 

SSE =  ∑(yi − ŷi)
2                                       Equation 4-23 

SST =  ∑(yi − y̅)2                                      Equation 4-24 

where 𝑦̂𝑖 is the predicted value for 𝑦𝑖 and 𝑦̅ is the average of all 𝑦𝑖.  
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The value of 𝑅2 is between zero and one, where a value of one means that the fitted model 

explains all the observed variation [36, p. 686]. The value of 𝑅2 can be inflated by 

including to many components in the model, this will give a high value even though the 

model is not necessarily very good.  

To avoid this problem the adjusted coefficient of multiple determination (Ra
2) can be used 

in addition to R2. The adjusted coefficient considers that its value may be high just 

because the number of predictors is high relative to the amount of data. Ra
2 will decrease 

if the number of predictors included in the model is large relative to the amount of data. 

Ra
2 is given by: 

Ra
2 = 1 −

I−1

I−(A+1)

SSE

SST
                     Equation 4-25 

The value of Ra
2 can be equal to R2, but never higher. A similar value of the two coefficients 

points to the model being good, while a big difference between the two is a red flag and 

the chosen model probably has too many predictors relative to the amount of data.  

4.4.5 Variable Selection 

When predicting a response from a data set, multivariate calibration models are 

commonly applied [37]. These models can handle large data sets where the number of 

variables exceeds the number of samples. Even though the models can handle this, it can 

be an advantage to reduce the number of variables to make interpretation simpler and 

the predictions better. Variable selection is a method that can be used to do this, and it 

can also improve the statistical properties of the data. Variable selection can also be an 

advantage for computational reasons.  

Variable selection is very sensitive to outliers because it is based on assessing minor 

differences in the model. Variable selection is an iterative method, meaning the analysis 

is performed stepwise until satisfactory results are obtained.  

Variable selection can remove variables with little variation or variables that are similar. 

When there are variables that are similar the removal of some of these is a simple way to 

reduce the total number of variables.  
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After performing the variable selection, the predictions will in most cases not improve, 

but since the number of variables is reduced the further analysis using multivariate 

calibration models will be more straightforward and give better results. Variable 

selection can be affected by the application of preprocessing, so preprocessing should 

always be performed before the variable selection to avoid this.  

After variable selection, a new model will be built with the variables chosen. This model 

is then compared to the model from before variable selection, to check if the variable 

selection improved the model. In the case where the model does not improve, one should 

go back and check if it was due to bad choices of variables to remove.  

4.4.5.1 Variable Importance for Projection  

Variable importance for projection (VIP) gives a measure of how much a variable 

contributes to describing two sets of data: the dependent and the independent variables 

[38]. The VIP values are given as follows: 

VIPj=√
∑ Wja

2  SSYa∙JA
a=1

SSYtotal∙A
                                                  Equation 4-26 

This gives the VIP value for variable j, Wja is the weight for variable j and component a. 

𝑆𝑆𝑌𝑎 is the sum of squares of explained variance for component a and J is the total number 

of variables. 𝑆𝑆𝑌𝑡𝑜𝑡𝑎𝑙  is the total sum of squares of explained variance and A is the total 

number of components.  

Given a one-dimensional Y space, y, the total sum of squares is given as: 

SSYa =  𝐛a
2𝐭a

T𝐭a                     Equation 4-27 

SSYtotal = 𝐛2𝐓T𝐓                                      Equation 4-28 

where b is the vector of coefficients from the PLS inner relation, T is the scores matrix 

for X.  

The weights from PLS reflects on the covariance between two variables, in this case, the 

dependent and independent [37]. By using these weights in the calculation of VIP, the 

importance of the information in respects to the modeling of the dependent variables can 

be assessed.  
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As a rule of thumb, a VIP value below one indicates a non-important variable. Variables 

with a VIP less than one should however not just be removed, the data set must be 

examined to check whether removing variables based on this criterion is a good idea. 

Usually, one should set a lower value for VIP, and start by removing only these, and then 

asses the model quality. This method can be repeated until the model is satisfying.  

4.4.5.2 Selectivity Ratio 

Another technique of variable selection that can be used is selectivity ratio (SR), which is 

the ratio between the explained variance of each variable and residual variance. A high 

SR-value indicates that the variable has good predictive performance.  

The SR-value can be derived with the following formula [39]: 

SRi =
vexplained,i

vresidual,i
 (i = 1,2,3 … )                  Equation 4-29 

where vexplained,i is the explained variance for variable i and vresidual,i is the residual 

variance for the same variable i.  

Since both SR and VIP are calculated individually, the values can be represented in the 

same way as the spectra. The SR-plot can be used to identify the most important regions 

in the spectra, meaning the regions with the highest SR-values [40]. A high SR-value 

indicates that there is a strong correlation between the given variable and the dependent 

variable.  
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5 Method 

5.1 Software 

The multivariate data analysis is done in Sirius version 11.0 (Pattern Recognition Systems 

AS, Bergen, Norway). 

MATLAB R2017b (The MathWorks, Natick, Massachusetts, USA) is used for sorting the 

samples.   

OMNIC 9.8 Spectra Software (Thermo Scientific, Waltham, Massachusetts, USA) is used to 

examine the spectra during the measurements, and transformation of the spectra after 

the measurements are done.  

5.2 Measurements 

The infrared measurements in this thesis were done with a Nicolet iS 50 FTIR 

Spectrometer with an ATR diamond. The spectral range for the spectrometer is 15 – 

27.000 cm-1 and a spectral resolution better than 0.09 cm-1. The measurements were 

completed in the laboratory for spectrometry at the Department of Chemistry, University 

of Bergen.  

The samples are provided by TCM, 279 samples consisting of lean and rich samples. 

Differences in the individual samples can be observed based on color-differences, the 

color ranges from light yellow to dark brown. The darker samples contain more 

degradation products than the ones with a lighter shade. Since the instrument used to 

measure the absorption of the samples was ATR-FTIR no preprocessing of the samples 

was necessary.  

The measurements are made in the range from 400 to 4000 cm-1, with 32 scans and a 

collection length of 47 seconds. The samples are collected with format %Reflectance, 

which is transformed to log(1/R) (absorbance) using OMNIC Spectra Software. 

The measurements are done on the samples straight out of the fridge, a drop of the 

sample is placed on the crystal, and the measurements are made. Only a small number of 

samples, about 10, were removed from the fridge at a time.  
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The temperature was not monitored during the measurements, and no replicated 

measurements are made to examine how different temperatures of the samples would 

affect the results. Between every sample, the area is cleaned with water and dried, the 

background spectra are then checked and confirmed to be equal before starting the 

measurements on a new sample. Every 30. minutes a new background spectrum is taken. 

Response variable for the samples, in the form of measurements of different 

characteristics of the samples, was provided by TMC, and the measurements were 

performed by them. The responses were the organized and matched with the belonging 

samples, which showed that not all the responses had enough measurements to be used 

in the modeling. Only tree responses are modeled in this thesis; total inorganic carbon 

(TIC), total alkalinity (TOT_ALK) and density. These responses are explained in detail in 

chapter 3.2 and the modeling is described the ensuing sections. 

5.3 Multivariate Data Analysis 

The multivariate data analysis is performed in Sirius. The data with the chosen response 

variable is imported into Sirius and analysis is carried out. The analysis is done for lean 

and rich separately, and with one response variable at the time.  

TCM provided responses for the samples and using an in-house MATLAB code the 

samples are sorted, and the responses are organized with the correct sample. The 

samples are also sorted into lean and rich samples, depending on where in the process 

the sample is collected (chapter 3.2).  

5.3.1 Building Models and Predicting Responses 

The first step of multivariate data analysis is exploratory analysis and outlier detection, 

using PCA. A model is built including all the objects and variables in the dataset except 

the response variable. The outliers are now detected using the score plot, RSD vs. 

Leverage and normal plot of the scores. If the score plot indicated one or more objects 

being large outliers, i.e., showing large deviations from the rest of the objects, they should 

be removed first. After removing the most substantial outliers, another model is made to 

identify smaller outliers.  
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In the exploratory analysis, the raw spectra of the samples are investigated before and 

after outlier detection, making sure that there are no more deviating samples.  

If the spectra show a spread after the outlier detection, preprocessing is needed before 

building a model. After the preprocessing is done, outlier detection is performed as 

described over, and the number of outliers is compared. The number of outliers can be 

reduced after preprocessing because the preprocessing can correct the outlying behavior 

of the object.  

After the outliers are detected, and if the data contains enough samples, the data are split 

into two sets. One training set and one validation set, the training set is used to build the 

model, and the validation set is used to test the prediction abilities of the model. When 

the dataset does not contain enough data to make two separate sets, the model is built 

using all the data and is validated based on the information from the regression analysis 

and double cross-validation. If and when more samples become available, the model can 

be validated using these.  

The models are built using PLS regression analysis. For each model ten components are 

extracted, with the given response as the dependent variable, using 100 iterations for the 

cross-validation. The model is then analyzed to find the optimal number of components 

to include in the model. This analysis is done based on the model dimensions plot from 

Sirius, which shows the RMSECV values for each component. A component should be 

included if the RMSECV value for the model decreases by including it. The cross-

validation value is also important when determining how many components to include 

in the model; the value should be below one.  

After determining how many components to use, the model performance can be 

investigated. This is done using the Predicted vs. Measured plot, which show how well 

the model predicts the measured values for the response, this plot should give a close to 

linear plot with little spread. This plot gives the RMSECV value for the model.  

The response residuals are also used when investigating the model; this plot shows the 

residuals of the responses. Using the normal plot function, this plot should be a straight 

line passing through y = 0.5, which means that the data are normally distributed, and the 

model is good. 
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The normal plot of the scores is investigated, and it should display a straight line. If this 

line is not straight, but show, e.g. polynomial behavior, another preprocessing technique 

should be investigated. There should not by any objects lying away from the straight line, 

these will be identified as outliers.  

If the plots mentioned above point to the model performing well, the objects in the 

validation set can be fitted to the model. When fitting the objects, the identified outliers 

are omitted, these are identified as objects not behaving like the rest of the data, and the 

model is not expected to be able to predict these accurately.  

How well the model performs is now evaluated using the same plots as used for 

investigating the model in the regression analysis, as described above. When fitting the 

objects in the validation set to the model, the Predicted vs. Measured plot is the most 

interesting. This shows how well the model predicts the objects that were not included 

when building the model. The plot also gives the RMSEP value, which should be similar 

to the RMSECV value, and small compared to the measured value, to conclude that the 

model is good. 

 Sirius provides a report, giving the predicted values and the prediction error for each 

object, if the results are satisfying the model is concluded to be good and able to predict 

the given response. If the results are not satisfying, one can go back and try, e.g. variable 

selection to see if this can improve the model. If the variable selection does not improve 

the model, one can also try and narrow the window of wavelengths used; the window 

should be chosen based on where the compounds connected to the response variable has 

the highest intensity of absorption.   

A model is built for each preprocessing technique, and then all the models are compared 

to find the model with the best predictive abilities. The conclusion is made based on the 

number of outliers and components, the cross-validation values, the coefficient of 

multiple determination and the RMSEP values.  
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6 Results and Discussion   

 

Figure 6-1 All lean and rich samples 

Figure 6-1 shows a plot of all the spectra from all the samples. The most substantial 

differences in the samples are observed in the fingerprint region from 1700 to 800 cm-1. 

The broad peak to the left is due to the content of water in the samples and is O-H 

stretching, which has a strong and broad absorption in the region 3400 to 3200 cm-1 [13].  

 

Figure 6-2 Fragment of lean and rich spectra 
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The close up of the fingerprint region in figure 6-2 displays the most complex part of the 

spectra, and where most variation is found. Here, a clear difference between the lean and 

reach samples can be observed, especially in the region enclosing 950 cm-1. This is where 

the C-NH2 absorption appear, which is MEA [13]. The lean samples have a higher intensity 

in this range because it contains more pure MEA than the rich samples (see section 3.2).  

The rich samples are collected after the solution has passed through the absorber, and 

thus contain CO2. The inorganic carbons absorb radiation in the region from 1600 to 1300 

cm-1, leading to higher intensity for the rich samples in this range (see section 2.3.3). 

6.1 Lean Samples 

In the following description, the models presented for each response is the best one. 

Several approaches were tried out and investigated as well, but these models are not 

presented here. The models are made using a small window of the spectrum, the part of 

the spectrum showing most variation and containing most of the information about the 

samples. The window chosen varies for each response variable, depending on what the 

response describes.  

 

Figure 6-3 Spectrum of all lean samples 
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From the spectrum (figure 6-3), it is observed that the region from 2500 to 1800 cm-1 

and 700 to 400 cm-1 contain noise. These regions were excluded when building all the 

models. The preprocessing methods used requires continuous data; the preprocessing is 

therefore performed before removing these regions.   

6.1.1 Total Inorganic Carbon 

Total Inorganic Carbon (TIC) is be used to determine the concentration of CO2 and is, 

therefore, an interesting response to explore, and a useful variable to be able to predict. 

The dataset contains 70 samples with responses, with an average TIC value of 1.23 

mole/kg.  

The spectral region used when building a model for this response where chosen based on 

where the inorganic carbons have high intensity in the spectrum, the selected window is 

from 1670 to 1000 cm-1 [13].  

The raw spectra of all the samples in figure 6-4 show a spread, especially in the largest 

wavenumbers. This indicates that some sort of preprocessing is needed to obtain a good 

model.  

 

Figure 6-4 Fragment of raw spectra for the lean samples used to build a model with TIC as response 

variable 
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PCA has successfully been employed for identifying outliers; the model is built based on 

the entire dataset, excluding the response variable. The results are given below.  

 

a) Score plot from the first PCA model, components 1 and 2 

 

b) Score plot from the second PCA model, after removal of extreme outliers 

Figure 6-5 Score plots using component one and two from the two PCA models, used for outlier 

detection. The ellipse is provided by Sirius, and objects outside this are identified as outliers 
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Figure 6-6 RSD vs. Leverage with two components obtained from PCA, used for outlier detection. This 

plot is made after the most extreme outliers are removed, to identify smaller outliers 

 

Figure 6-7 Normal plot of the scores for component one, used for outlier detection. Objects deviating 

from the straight line are identified as outliers. This plot is made after the most extreme outliers are 

removed 

The score plot in figure 6-5 a shows two samples with a significant deviation from the 

others (object 21431 and 20991), meaning that they have a big influence on the model. 
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The two outliers are removed, and a new model is made to identify smaller outliers. Score 

plot from the second PCA, displayed in figure 6-5 b, shows no outliers.  

The RSD vs. Leverage plot in figure 6-6 is from the model after the two extreme outliers 

are removed, and shows one outlier, sample 21665, having high values for RSD and low 

values for leverage, indicating it is a small outlier. The normal plot of the scores for 

component 1 in figure 6-7 shows some objects deviating from the straight line; these are 

outliers. In total thirteen outliers has been identified and are presented in table 6-1. 

Table 6-1 Outliers identified using PCA 

Identified outliers 

20797, 20988, 20991, 21042, 21129, 21240, 21255, 21260, 21261, 21265, 21431, 

21455, 21665 

After the outlier detection, the dataset is divided into a training set and a validation set. 

The models are built based on the training set, and the validation set is used to validate 

the model. The outliers are not included in either data sets; the model is not expected to 

model these since they deviate from the rest of the objects.  

Two of the preprocessing techniques used both gave satisfactory results: second order 

EMSC and Savitzky-Golay with second order differentiation, a window size of 25 and a 

third-degree polynomial. Based on the number of outliers, cross-validation values, and 

prediction abilities it was concluded that the use of EMSC gave the best results, the 

validation parameters for both models are presented in table 6-2.  

When performing Savitzky-Golay as preprocessing the outlier detection has to be 

completed after the preprocessing, the outlying nature of the objects may be corrected 

by the preprocessing. The outlier detection after preprocessing resulted in more outliers 

than before, which supports the conclusion of EMSC being the best model. These outliers 

are not presented here.  

The results for the model after EMSC preprocessing is presented here, the results for the 

model based on Savitzky-Golay preprocessing is attached in Appendix B1. 
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Figure 6-8 Spectra for the chosen region of wavenumbers after performing second-order EMSC as 

preprocessing 

From the plot in figure 6-8, it can be observed that the spread of the spectra has 

decreased after preprocessing with second-order EMSC. EMSC is a good technique for 

removing these physical effects in the samples. The plot displays the training set after 

removal of the outliers.  

 

Figure 6-9 RMSECV-plot for the first three components in the PLS model. Used to determine the number 

of components to include in the model, the yellow bar indicates that two components should be included 
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The model dimensions plot (figure 6-9) presents the RMSECV values for the first three 

components extracted and suggests that two components should be included in the 

model. The weighted regression coefficients in figure 6-10 show the RMSECV values for 

the two components, and also display that the components describe the data and not 

noise. The Predicted vs. Measured plot from the regression analysis showed good 

linearity, and a promising RMSECV value when two components are included, this plot is 

not presented here. The standard deviation of the cross-validation values (CsvSD), 

displayed in table 6-2, indicate that the two components should be included, and further 

analysis is carried out using two components.  

 

Figure 6-10 Weighted regression coefficients for the two components included in the PLS model 

The model dimensions plot for the Savitzky-Golay model suggested that three 

components should be included, and the weighted regression coefficients showed that 

the components described mostly the data. These plots are can be found in Appendix B1. 

The RMSECV value for the last component included in this model was 0.016, which is 

lower than for the EMSC model. However, the cross-validation value for the last 

component was much higher, at a value of 0.78 in comparison to 0.20 for the EMSC model.  

Subset: df, Reg. Coeff. - RMSECV = 0.087, 1 Comp

Subset: df, Reg. Coeff. - RMSECV = 0.019, 2 Comp
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Figure 6-11 Predicted vs. Measured for the validation set, displaying the RMSEP value, R2 and Ra
2 

The Predicted vs. Measured plot in figure 6-11 shows that the model accurately predicts 

the objects in the validation set. The coefficient of multiple determination is almost one, 

which means that the model describes virtually all the variation. The adjusted coefficient 

has the same value, which confirms that the number of components is correct, and 

indicate that the model can be trusted.   

 

Figure 6-12 Predicted and Measured for the validation set, displaying good compliance between the 

predicted and measured values 

Predicted vs Measured for TIC TIC, RMSEP = 0.020, Comp. 2
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The Predicted and Measured plot (figure 6-12) show that the predicted and measured 

values are approximately the same. The model has an average prediction error of 1.2% 

and small residuals, which is good. The RMSECV value from the regression analysis is 

0.019, the fact that this value is very similar to the RMSEP value is a good sign, and points 

to the model being good. The RMSEP value for the model is 0.020, which is about 1-2% of 

the TIC values, verifying that the model is making acceptable predictions. 

The RMSEP value for the Savitzky-Golay model was the same as for the EMSC model but 

based on the overall analysis of the number of components, cross-validation values and 

number of outliers the EMSC model is concluded to be the best model. Validation 

parameters for both models are presented in the table below.  

Table 6-2 Validation parameters for the model with TIC as dependent variable 

Validation parameters EMSC Savitzky-Golay 

Explained information, 

dependent variable 

99.21% 99.89% 

Cross-validation on last 

component, CsvSD 

0.20 0.78 

Number of components in 

the model 

2 3 

RMSECV 0.019 0.016 

RMSEP 0.020 0.020 

R2 0.990 0.992 

Adjusted R2 0.990 0.991 

Average residual (absolute 

value)  

0.016 0.019 

Average prediction error 1.24% 1.22% 

The average prediction error and residuals are calculated based on the report of the 

regression analysis after the model has been used to predict the data in the validation set.   
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6.1.2 Density 

The density is correlated to the CO2-loading, making it an interesting response variable 

to study. The CO2-loading is given by moles CO2/moles amine so that the density will 

increase as the amount of CO2 in the sample increases. The density is given in kg/m3, and 

the average value for density in this dataset is 1073.5 kg/m3. 

When using density as response the first model was built using all the wavenumbers, 

except the noisy parts. Different preprocessing techniques were used, and several models 

were made. To achieve the best possible model, the window of wavenumbers where 

narrowed down, ending up with a window from 1670 to 1000 cm-1. When narrowing 

down this window the prediction abilities of the models built for different windows and 

the SR-plot was used. The SR-plot is attached in Appendix B2. The final window of 

wavenumbers is presented in the figure 6-13 below. The spectra show quite a lot of 

spread, which is reduced by preprocessing and removal of outliers.  

The dataset contains 129 samples with responses, which is enough samples to make two 

big datasets. The samples are split into a training set and a validation set after outlier 

detection; the outliers are not included in either set.  

 

Figure 6-13 The fragment of the raw spectra for the lean samples used to build a model with density as 

response variable 
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Different methods of preprocessing were tried, but the one that gave the best result was 

second order Savitzky-Golay with a window size of 25 fitting the objects to a third-degree 

polynomial. The conclusion of which model was the best one was based on the number 

of components included in the model, the cross-validation values, the number of outliers, 

the RMSEP value and the ability to predict the samples in the validation set.  

 

Figure 6-14 Spectra for the chosen region of wavenumbers, for the samples in the training set, after 

performing second-order Savitzky-Golay with a window of 25 and a third-degree polynomial as 

preprocessing 

The spectra are after preprocessing are displayed in figure 6-14, and as can be observed 

in the plot, the interpretation becomes harder after performing differentiation by second-

order Savitzky-Golay.  

Since Savitzky-Golay is a preprocessing technique that can correct the outlying nature of 

an object, the outlier detection was performed after preprocessing; the identified outliers 

are presented in table 6-3. Outlier detection was performed using the score-plot, RSD vs. 

Leverage and Scores vs. Objects obtained from PCA. The most substantial outliers are 

removed first, to make sure that smaller outliers can be identified, the large outliers will 

influence the model in such a way that the smaller outliers might be buried. The plots 

used for the outlier detection can be found in Appendix B2.  
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Table 6-3 Outliers identified using PCA 

Identified outliers 

20991, 21431, 21665, 21786, 21830, 21916, 21936, 21969, 21971, 21990 

Figure 6-15 RMSECV-plot for the first four components extracted in the PLS model. Used to determine 

how many components to include in the model, the yellow bar indicate that three components should be 

included 

 

Figure 6-16 Weighted regression coefficients for the three components included in the model 

Subset: Lean_Density_Training_Set, Reg. Coeff. - RMSECV = 5.806, 1 Comp

Subset: Lean_Density_Training_Set, Reg. Coeff. - RMSECV = 1.933, 2 Comp

Subset: Lean_Density_Training_Set, Reg. Coeff. - RMSECV = 1.657, 3 Comp
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As can be seen from the model dimensions plot in figure 6-15 the suggested number of 

components to include in the model is three. The weighted regression coefficients in 

figure 6-16 shows the RMSECV values for the three components, and also display that 

the components describe mostly data and not only noise. The RMSECV value decreases 

for the first three components, which leads to the conclusion of including three 

components in the model. The cross-validation values for the components are also taken 

into consideration when deciding how many components to include, and confirms that 

three components should be used, the value of the third component is presented in table 

6-4. The calibration plot from the regression analysis shows god linearity when including 

three components, and a promising RMSECV value. This calibration plot is not presented 

here.  

 

Figure 6-17 Predicted vs. Measured for the validation set, displaying the RMSEP value, R2 and Ra
2 

The Predicted vs. Measured plot (figure 6-17) show a good correlation between the 

predicted and measured values, with a coefficient of multiple determination of 0.977 and 

an adjusted coefficient with the same value. This means that 97.7% of the variation is 

described by the model, and since the coefficients have the same value as the number of 

components included in the model is correct.  

The RMSEP value for this model is higher than for the TIC model, but still small compoare 

to the measured values,  this is expected considering that the values for density are higher 

than the values for TIC.  
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The average prediction error for the model is 0.11%, which means that the model 

predicts the density with very satisfyingly accuracy. From the Predicted vs. Measured plot 

one can observe two samples (21104 and 21455) that lie a little further from the straight 

line, these are not identified as outliers, but they have deviating behavior from the rest of 

the samples. The deviation is more likely because of a mistake during the measurements, 

or a mistype when the value is typed in than the model being wrong.  

Table 6-4 Validation parameters for the model with density as dependent variable 

Validation parameters  

Explained information, dependent 

variable 

99.83% 

Cross-validation on last component, 

CsvSD 

0.86 

Number of components in the model 3 

RMSECV 1.657 

RMSEP 1.574 

R2 0.977 

Adjusted R2 0.977 

Average residual (absolute value)  1.243 

Average prediction error  0.115% 

The average prediction error and residuals are calculated based on the report of the 

regression analysis after the model has been used to predict the data in the validation set.   

The RSD plot in figure 6-18 confirms that the model is decent, the plot should be a 

straight line and pass through 0.5, which it does.  

In summary, the model can accurately predict the density, with small residuals and 

prediction error. The RMSECV and RMSEP value are similar, and both calibration and 

prediction curves show good linearity. The RMSEP value is in the 0-1% range of the 

density values, leading to the conclusion that the model is excellent.  
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Figure 6-18 Normal plot of the residual standard deviation after for the objects in the validation set 

6.1.3 Total Alkalinity 

Total alkalinity (TOT_ALK) is determined by titration with HCl. It is used to determine the 

concentration of amines in the solution and is expected to have a higher value in the lean 

samples than in the rich samples (chapter 3.2). The dataset contains 64 samples and 

responses, with an average TOT_ALK value of 4.8 mole/kg.  

Several approaches were tested for this dataset and several windows of wavenumbers. 

The regions of wavenumbers that gave the best results were: 3000 to 2800 cm-1, 1680 to 

1280 cm-1 and 1100 to 1000 cm-1. These regions of wavenumbers were found based on 

where the organic carbons absorb IR; the C-H stretch is in the region of 2927 – 2864 cm-

1 and the other regions were detected using the SR-plot [14]. Predictions of amine 

concentration in an aqueous sample have been determined using PLS before, using 

approximately the same spectral regions [42].  

The spectra of the chosen wavenumbers are displayed in figure 6-19, the spectra have a 

spread in the mid-region, which is removed with preprocessing. The preprocessing 

techniques used demands that the data is continuous, the preprocessing was therefore 

performed before the spectra were split into these regions.  
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Figure 6-19 The fragment of raw spectra for the lean samples used to build a model with TOT_ALK as 

response variable 

Outlier detection was performed using the score plots, RSD vs. Leverage and normal plot 

of the scores from PCA. Three sizable outliers are detected in the score plot, these are 

removed first, and a new model is made to identify smaller outliers. The outliers are 

presented in table 6-5, and the plots used for outlier detection is attached in Appendix 

B3.  

Table 6-5 Outliers identified using PCA 

Identified outliers  

20961, 20966, 20967, 20988, 20991, 21129, 21260, 21431, 21462, 21665, 21699, 

21786 

The first models that were built described very little of the dependent variable, TOT_ALK, 

so the response variable was investigated closer. The normal plot shows that the 

response variable is not normally distributed, as can be seen in figure 6-20, which 

explains why it is so difficult to model. 
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Figure 6-20 Normal plot of the response variable TOT_ALK 

Preprocessing in the form of ½ root transform was performed on the response, which 

made it normally distributed, as seen in figure 6-21.  

 

Figure 6-21 Normal plot of the response variable after preprocessing with root ½  

New models are now made, and the results have improved, the description of the 

dependent variable has increased by more than 50%.  
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After analysis of the models made, it is concluded that the dataset is not large enough to 

split it into a training set and a validation set. The prediction abilities of the models made 

with the training set are not good, and especially not the coefficients of multiple 

determination, with values around 0.30. Which means that only about 30% of the 

variation in the samples can be described by the model, as can be seen on the plots as 

well, which are scattered (attached in Appendix B3). The model did, however, have a 

decent RMSEP value, but the model was not able to predict the values deviating from the 

average, which can be observed in the Predicted and Measured plot (attached in 

Appendix B3).   

Therefore, the entire dataset is used to build the model, and the model is validated using 

double cross-validation and the results from the regression analysis.  Proper validation 

of the model can be performed as soon as more data becomes available.  

The best models were obtained using second-order Savitzky-Golay and second order 

EMSC, and the best model is concluded to by with second-order Savitzky-Golay with a 

window of 21 and a third-degree polynomial. The conclusion was made based on the 

number of components, RMSECV values, and cross-validation values. Only the best model 

is presented here.  

The spectra after preprocessing are presented in figure 6-22. The part of the spectra 

from 3000 to 2800 cm-1 seems to be filled with noise, but a model was built where this 

region was omitted, but the prediction abilities did not improve compared to the model 

were this area was included. The area is therefore included in the model, and the results 

are presented below.  
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Figure 6-22 Spectra of the chosen region of wavenumbers after performing second-order Savitzky-Golay 

with a window of 21 and a third-degree polynomial as preprocessing 

 

Figure 6-23 RMSECV-plot for the first four components extracted. Used to determine how many 

components to include in the model, the yellow bar indicates that three components should be included 

The model dimensions plot (figure 6-23) suggest that three components should be 

included in the model, this is confirmed by the weighted regression coefficients in figure 

6-24. The weighted regression coefficients show that the first component mainly 

describes the data, component two and three describe some noise, but they are included 

in the model based on the RMSECV values and the cross-validation values. 

RMSECV +/- 0.310 Percentiles.(Minimum: 0.024 - Comp. 3) (p-Value= 0.270)

Number of Components

R
M

S
E

C
V

 (
T

O
T

_A
L

K
 )

1 2 3 4  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 Dep.Var TOT_ALK 



55 
  

A component should be included in the model as long as the RMSECV value decreases by 

including it, which it does for the third component.  

 

Figure 6-24 Weighted regression coefficients for the three components included in the model 

 

Figure 6-25 Predicted vs. Measured from the regression analysis, displaying the RMSEC-value  

The calibration curve in figure 6-25 has good linearity when including three 

components, and the RMSECV value is 0.024, which means that the model should give 

satisfactory predictions.  

Subset: Lean_Tot_Alk_Training_Set, Reg. Coeff. - RMSECV = 0.033, 1 Comp

Subset: Lean_Tot_Alk_Training_Set, Reg. Coeff. - RMSECV = 0.026, 2 Comp

Subset: Lean_Tot_Alk_Training_Set, Reg. Coeff. - RMSECV = 0.024, 3 Comp
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The cross-validation values are below one, which is one of the demands for a component 

to be included in the model. The amount of described independent and dependent 

information, presented in table 6-6, by the components is not as high as desired, but the 

performance of the model is still decent.  

The plot in figure 6-25 is for the model after the response variable has been 

preprocessed with root ½, and the RMSECV improved a lot after this was done. Before 

the preprocessing of the response, the RMSECV value was 0.111, and the Predicted vs. 

Measured plot is more scattered, as can be seen in figure 6-26. The cross-validation 

values for the model with no preprocessing of the response had higher values as well, 

which lead to the conclusion that the model with the preprocessed response is favorable.  

The validation parameters for the model after preprocessing of the response is presented 

in table 6-6.  

Both models had the same number of outliers, and even though the model with no 

preprocessing of the response only has two components the RMSECV value improved in 

such a magnitude that the model after preprocessing is assumed to have much better 

prediction abilities and is the favorable one.  

 

Figure 6-26 Predicted vs. Measured from the regression analysis when the response variable is not 

preprocessed. Only two components are included in this model 
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Table 6-6 Validation parameters for the model with TOT_ALK as dependent variable 

Validation parameters  

Explained information, dependent 

variable 

78.66% 

Cross-validation on last component, 

CsvSD 

0.77 

Number of components in the model 3 

RMSECV 0.024 

RMSEP, from double cross-validation 0.024 

Double cross-validation was used as a model evaluation and resulted in a RMSEP value of 

0.024, which is the same as the RMSECV value from the regression analysis. The Predicted 

vs. Measured plot from the double cross-validation is presented in the figure 6-27 and 

looks very similar the one from the regression analysis in figure 6-25.  

 

Figure 6-27 Predicted vs. Measured from double cross-validation, displaying the RMSEP-value 

Based on the analysis of the models presented here, it is concluded that a model built 

based on the preprocessed response, and all the objects give the best model. With a 

RMSEP value of about 0.5% of the measurement ranges from double cross-validation the 

model should be capable of making satisfactory predictions.  

Predicted vs Measured,(3 Comp), Median RMSEP = 0.024
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Good linearity can be observed in the calibration plots when the entire dataset was used 

to build the model; this linearity was not present when the data was split in two, 

confirming the choice to include the entire dataset in the regression analysis.  

6.2 Rich Samples 

For each response several models have been made and analyzed, only the best ones are 

presented here. From figure 6-28, the same observation as for the lean samples can be 

made: there are two regions with noise. These regions are not used in the modeling; the 

areas are 2500 to 1800 cm-1 and 700 to 400 cm-1. 

 

Figure 6-28 All the rich spectra 

6.2.1 Total Inorganic Carbon 

The dataset contains 37 samples with response values, the response values are given in 

moles/kg and has an average value of 2.23 mole/kg for this dataset. This is, as expected, 

a higher value than for the lean samples because the rich samples contain more CO2 from 

the absorption process (see section 3.2). 
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The total inorganic carbon is expected to be modeled best in the areas where the 

inorganic carbon has the highest intensity of absorption. The window of wavenumbers 

was chosen based on this and the spectral region used for modeling is from 1670 to 1000 

cm-1 [13]. The chosen window is displayed in figure 6-29 below, based on this it can be 

observed that there are some deviating spectra, these are probably outliers and will be 

removed in the exploratory analysis or by preprocessing.  

 

Figure 6-29 Fragment of raw spectra for the rich samples used to build a model with TIC as response 

variable 

The score plots, RSD vs. Leverage and Scores vs. Objects plots obtained from PCA is used 

for outlier detection. The score plots show three large outliers, these are removed first, 

and a new model is made. The model changes dramatically after removal of these, and 

smaller outliers can now be detected. The plots used in this analysis is attached in 

Appendix C1. The detected outliers are presented in table 6-7.  

Table 6-7 Outliers identified using PCA 

Identified outliers  

20400, 20941, 21029, 21431, 21578, 21664, 21970, 21972, 21975, 21989, 21991, 

22023 
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After trying different preprocessing techniques, second order EMSC resulted in the best 

model. This conclusion was made based on several factors: the RMSEP values, cross-

validation values, number of components included in the models and how much 

dependent information was explained by the components. The results from the other 

models are not presented here.   

 

Figure 6-30 Spectra of the chosen region of wavenumbers after performing second-order EMSC as 

preprocessing 

The spectra after the preprocessing and removal of outliers are presented in figure 6-30, 

which displays that the spread of the data is severely decreased, which is a good base for 

building a model.  

The dataset with the samples corresponding to the response TIC is tiny, only containing 

37 samples, and the entire dataset was therefore used to build the model, which later can 

be tested on a validation set once more samples are available.  

The first model described 64.71% of the dependent variable and gave a decent RMSECV 

value, but to try and get the amount of described information higher variable selection 

was performed. The variable selection performed was VIP, removing variables with VIP 

less than 0.5.   
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The model was then evaluated to make sure that the variable selection improved the 

model. The cross-validation value for the first component dropped drastically and a 

decrease of the cross-validation value for the second component led to the conclusion 

that the variable selection improved the model. A reduction in the RMSECV value 

confirmed this conclusion.  

Variable selection with a higher VIP limit was also tested, but this did not improve the 

model further. The validation parameters for the model from before and after variable 

selection are presented in table 6-8. The results presented below are for the model after 

performing variable selection.  

 

Figure 6-31 RMSECV-plot for the first four components extracted. Used to determine the number of 

components to include in the model, the yellow bar indicates that two components should be included 

The model dimensions plot in figure 6-31 advice to include two components in the 

model, the cross-validation values for the components support this. Two components are 

therefore included in the model, resulting in decent linearity in the calibration plots and 

a decent RMSECV value.  
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Figure 6-32 Predicted vs. Measured from the regression analysis, displaying the RMSECV value 

The Predicted vs. Measured plot from the regression analysis is a measure of the models’ 

ability to predict the objects that are used to make the model. Because of the lack of a 

validation set for this model, the validation is based on the results of the regression 

analysis. The RMSECV value is small compared to the measured values, which is a good 

sign. The calibration plot in figure 6-32 does not show as good linearity as desired, but 

other models and techniques did not improve this. The model is therefore concluded to 

be tolerable and is expected to make adequate predictions.  

The score-plot in figure 6-33 shows that there are no outliers, even though the Predicted 

vs. Measured show some spread in the objects. The TIC values are very small, which 

explains why the objects look to be spread, a small deviation from the straight line will 

look more extreme when the values are of such small magnitude.  

Predicted vs Measured,(2 Comp), RMSECV = 0.046
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Figure 6-33 Score plot for component 1 and 2, obtained from the regression analysis 

Figure 6-34 displays the Response residuals; this plot should be a straight line and pass 

through y = 0.5 for a model to be good. As can be observed, the objects have lined up an 

approximately linear line. The graph shows some objects lying further to the left than the 

rest, even though they are on the line straight line. The same type of clustering can be 

observed in the Predicted vs. Measured plot above; the objects seem to be in two groups, 

one to the left and one to the right. The same clusters can be seen in the score plot. This 

grouping of the objects may be due to the small number of samples to build the model 

and, and a model containing more samples would probably smooth out the spread.  
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Figure 6-34 Normal plot of the response residuals from the regression analysis 

Table 6-8 Validation parameters for the model with TIC as dependent variable 

Validation parameters  

Explained information, dependent 

variable 

64.71% 

Cross-validation on last component, 

CsvSD 

0.70 

Number of components in the model 2 

RMSECV 0.049 

Explained information, dependent 

variable after variable selection 

73.42% 

Cross-validation on last component, 

CsvSD after variable selection  

0.68 

Number of components in the model after 

variable selection  

2 

RMSECV after variable selection 0.046 

RMSEP, double cross-validation 0.046 
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A model evaluation using double cross-validation was carried out to validate the model. 

The obtained results confirm the conclusion made about the performance of the model. 

The model dimensions plot from the double cross-validation is presented in figure 6-35 

and suggest two components should be included in the model and gives the minimum 

RMSECV value at 0.0457 which is the same result as for the regression analysis.  

From the double cross-validation, a Predicted vs. Measured plot is also obtained, 

presented in figure 6-36, this plot gives a RMSEP value of 0.046, which also confirms the 

conclusions made about the predictive abilities from the regression analysis.  

 

Figure 6-35 RMSECV-plot obtained from the double cross-validation, indicating that two components 

should be included in the model 
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Figure 6-36 Predicted vs. Measured from double cross-validation, displaying the RMSEP-value 

In summary, the amount of described variation in the dependent variable is not as high 

as desired, but the validation parameters are still adequate, and the predictions are 

expected to be tolerable. The RMSEP value from the double cross-validation is in the 1-

2% range of the TIC values, meaning that the model is expected to have small prediction 

errors and residuals.  

6.2.2 Density 

The dataset consists of 99 CO2 rich samples and responses, which gives a good base for 

building a model and is enough to split the data into a training set and a validation set.  

The density is given in kg/m3, and the average value for density in this dataset is 1128 

kg/m3, which is higher than for the lean samples. This is because the rich samples contain 

more CO2 than the lean samples, and this affects the density of the samples (more in 

section 3.2).  

The density model was first built based on the entire range of wavenumbers, excluding 

the ones identified as noisy. Since the density models for the lean samples had the best 

prediction ability in the region from 1670 to 1000 cm-1, this area was also investigated 

for the rich samples. This region resulted in the best model here as well, based on the 
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RMSEP values, cross-validation values, and overall prediction abilities. The model based 

on this region is the only one presented here. 

From the spectra in figure 6-37 below it is observed some spread and some deviations, 

which is expected to be removed using outlier detection and preprocessing.  

 

Figure 6-37 Fragment of raw spectra for the rich samples used to build a model with density as response 

variable 

Outlier detection using Score plots, RSD vs. Leverage and Scores vs. Objects from PCA 

showed that the dataset contains 12 outliers, presented in table 6-9. The most extreme 

outliers were removed first, and then new models were made to detect smaller outliers.  

The plots used to identify the outliers are attached in Appendix C2.  

Table 6-9 Outliers identified using PCA 

Identified Outliers 

20914, 20915, 20990, 21430, 21664, 21829, 21845, 21915, 21952, 21970, 21972, 

2189 
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Figure 6-38 Spectra of the chosen region of wavenumbers after performing second-order EMSC as 

preprocessing  

Different preprocessing techniques were tested, and the models evaluated. Based on the 

results the most promising model was when using EMSC of the second order, the 

conclusion was made based on the RMSEP, cross-validation values and the number of 

outliers. The results from this model are presented here; the other models are not 

presented here. The plot in figure 6-38 shows the samples in the training set after 

preprocessing and removal of outliers and show that the spread in the spectra decreased 

after preprocessing.  

 

Figure 6-39 RMSECV-plot for the first eight components extracted, the yellow bar indicates that six 

components should be included 
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The model dimensions plot in figure 6-39 suggests that six components should be 

included in the model. The weighted regression coefficients in figure 6-40 show that 

some noise is included in the last two components but considering the RMSECV value and 

cross-validation values, the fifth and sixth components were included in the model. The 

inclusion of these two components also improved the RMSEP value for the model. 

 

Figure 6-40 Weighted regression coefficient for the six components included in the PLS model 

The validation set was then used to evaluate the model; the model gave good predictions 

of the objects in the validation set. The RMSEP value is 0.649 which is an excellent value 

considering that the density values are big. The Predicted vs. Measured is displayed in 

figure 6-41 and presents an approximately straight line with small deviations. The 

average prediction error for the model is 0.046%, and the residuals are small. 

The coefficient of multiple determination and the adjusted coefficient has the same value, 

which confirms that the choice of including six components in the model was right. With 

a value of 0.991, the coefficient of multiple determination states that 99.1% of the 

variation in the data has been described by the model.  
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Figure 6-41 Predicted vs. Measured for the validation set, displaying the RMSEP value, R2 and Ra
2 

 

Figure 6-42 Normal plot of the residual standard deviation 

The normal plot of the RSD (figure 6-42) for the validation set show some deviation from 

the straight line, these objects were examined further, using the score plot and the normal 

plot of the scores, but were not found to be outliers (these plots are not presented here). 

The model was also able to predict these with small errors, but of all the samples, these 

have the most significant deviations which explain why they deviate from the straight 

line. The overall validation parameters for the model is presented in the table below.  
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Table 6-10 Validation parameters for the model with density as dependent variable 

Validation parameters for the PLS model   

Explained information, dependent 

variable 

99.76% 

Cross-validation on last component, 

CsvSD 

0.83 

Number of components in the model 6 

RMSECV 0.749 

RMSEP 0.649 

R2 0.991 

Adjusted R2 0.991 

Average prediction error 0.046% 

Average residual (absolute value)  0.525 

The model is concluded to be good based on the overall results presented above. A small 

prediction error is achieved, and very small residuals considering the values are of such 

magnitude. The RMSECV value from regression analysis and the RMSEP value based on 

the prediction of the objects in the validation set is very similar, which also confirms that 

the model has good predictive performance. The RMSEP value is about 0.5% of the 

density values, which is an excellent result.  

6.2.3 Total Alkalinity 

The window chosen to be used for building this model is where the organic compounds 

absorb radiation. The C-H stretch for organic compounds is in the region 2927 – 2864 cm-

1 [13]. The region from 1680-1280 cm-1 and 1100-1000 cm-1 are also included based on 

the SR-plots which showed that these are the essential wavenumbers. The chosen 

spectral regions are displayed in figure 6-43.  

The dataset for TOT_ALK was meager; it contains only 32 samples, so the entire dataset 

was used to build a model. There are no data left to use as a validation set; validation was 

therefore performed using the results from the regression analysis and double cross-

validation. The average value of TOT_ALK is 4.6 mole/kg for the rich samples, which is a 

slightly lower than for the lean samples (more in section 3.2).  
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Figure 6-43 Fragment of raw spectra for the lean samples used to build a model with TOT_ALK as 

response variable 

Several different preprocessing techniques have been tested and evaluated, second order 

Savitzky-Golay with a window of 21 and a third-degree polynomial gave the best results. 

This conclusion was made based on the RMSECV values, cross-validation values, the 

number of outliers and the number of components included in the models.  

Savitzky-Golay needs continuous spectra, so the preprocessing was performed before the 

data was narrowed to the chosen regions. The outlier detection is performed after the 

preprocessing, which resulted in fewer outliers than when performed before. The 

outliers were identified using score plots, RSD vs. Leverage and Scores vs. Objects 

obtained from PCA (attached in Appendix C3). The most extreme outliers are removed 

first, as this will dramatically change the model. The twelve identified outliers are 

presented in the table 6-11. 

Table 6-11 Outliers identified using PCA 

Identified outliers 

20400, 20438, 20712, 20821, 21539, 21578, 21664, 21882, 21887, 21970, 21972, 

21989 
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After preprocessing with Savitzky-Golay, the spectra look very different, as can be seen 

in figure 6-44. The region in the highest wavenumbers show some noise, same as for the 

lean samples, and a model without this region was investigated. The model with this area 

included resulted in the best model and is the one displayed here. 

 

Figure 6-44 Spectra for the chosen region of wavenumbers after performing second-order Savitzky-

Golay with a window of 21 and a third-degree polynomial as preprocessing 

 

Figure 6-45 RMSECV-plot for the first four components extracted, the yellow bar indicates that one 

component should be included 
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Figure 6-46 Weighted regression coefficients for the first four components extracted 

The model dimensions plot in figure 6-45 suggest that one component should be 

included in the model, but after investigating the weighted regression coefficients, the 

RMSECV values and cross-validation values for each component, it was concluded to 

include three components in the model. Investigation of the Scores vs. Objects, score plots 

and Predicted vs. Measured plots also suggested that three components should be 

included in the model.  

The weighted regression coefficient plots in figure 6-46 show that the components 

describe some noise, and the amount of described independent information by the 

components is only about 50% in total when using three components but using other 

preprocessing techniques and variable selection did not improve the model. Other 

windows of wavenumbers were also tested, but this did not result in better models. 

Because the dataset contains so few variables, the number of variables after removing the 

outliers is even smaller, and it is probably not enough data to create a better model.  
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Figure 6-47 Predicted vs. Measured from regression analysis, displaying the RMSECV value 

 

Figure 6-48 Normal plot of the response residuals from the regression analysis 

The Predicted vs. Measured plot (figure 6-47) from the regression analysis looks good 

and display a good correlation between the predicted and measured values with a decent 

RMSECV value. The response residuals are investigated as well, displayed in figure 6-48, 

and shows good linearity which together with the Predicted vs. Measured plot leads to 

the conclusion that the model is performing satisfyingly. The validation parameters for 

the model is presented in table 6-12.  
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Table 6-12 Validation parameters for the model with TOT_ALK as dependent variable 

Validation parameters  

Explained information, dependent 

variable 

94.52% 

Cross-validation on last component, 

CsvSD 

0.98 

Number of components in the model 3 

RMSECV 0.088 

RMSEP, from double cross-validation 0.088 

R2 0.995 

Adjusted R2 0.994 

  

 

Figure 6-49 Predicted vs. Measured from double cross-validation, displaying the RMSEP value, R2 and Ra
2 

From the double cross-validation, a Predicted vs. Measured plot (figure 6-49) is achieved 

and confirms the conclusions from the regression analysis. The coefficient of multiple 

determination and the adjusted coefficient is approximately the same, which also argues 

for a decent model with the right number of components. The RMSEP value from the 

double cross-validation and the RMSECV value from the regression analysis is equal and 

is about 1% of the measured values of TOT_ALK, which also argues for a good model.  
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7 Conclusion  

This thesis aimed to build models that were able to predict total inorganic carbon, total 

alkalinity, and density. Multivariate data analysis methods have been utilized to examine 

the data and create models that can accurately predict the responses. Preliminary 

analysis of all the samples showed a significant difference in the lean and rich samples, 

which lead to the conclusion to build separate models for the lean and rich samples.   

The results from PCA of all the samples in the dataset showed that the score plots 

effectively can be employed to identify objects with deviating behavior. The models were 

built using regression PLS and optimized using variable section in the form of SR and VIP. 

Analysis of the different models showed that the models were better on narrow windows 

of wavenumbers, based on where the compounds being analyzed had the most intense 

absorption. For each response, the same region gave good results for the lean and rich 

samples. The region used for TIC is 1670 to 1000 cm-1, which is chosen based on the 

stretching vibrations of the inorganic carbons. TOT_ALK is modeled using three regions, 

based on the absorption of organic carbons; 3000 to 2800 cm-1, 1680 to 1280 cm-1 and 

1100 to 1000 cm-1. The models for density gave the best results in the fingerprint region 

of the spectrum; 1670 to 1000 cm-1. 

Chemical absorption is extensively studied, especially using amines. Most researchers 

have focused on the MEA-concentration and CO2 concentration, while few models exist 

for the responses explored in this thesis. The use of ATR-FTIR spectrometry and 

multivariate analysis to study the MEA- and CO2 concentration has been explored before 

and has provided good results [42]. The PLS models are built using mean centering and 

normalization as preprocessing, using two regions of the spectra. The spectral regions 

used was 2730 to 3760 cm-1 and 770 to 1760 cm-1, which corresponds to the regions used 

in this thesis. The results from the PCA showed groupings of the samples, depending on 

the concentration of CO2 and MEA. The same groupings are found on the samples used in 

this thesis when studying the score plots for both lean and rich samples.  

Preprocessing of the spectra was needed to avoid effects that do not represent the 

chemical variation, EMSC and Savitzky-Golay were found to be methods that improved 

the model performance significantly.  
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The models for TIC, for both lean and rich samples, was made with data preprocessed 

with second-order EMSC. The model for the lean samples was made with a training set 

and validated using the objects omitted from the training set. The resulting model had a 

prediction error of 1.2% and small residuals, and with a RMSEP value of 1-2% of the 

measurement ranges, the model is concluded to be good.  

The dataset for the rich samples was meager, and all objects were included in the 

calibrations. This model was optimized using variable selection, in the form of VIP, which 

improved the results. Validation was done with double cross-validation, which gave a 

RMSEP value equal to the RMSECV from the regression analysis, ranging from 1-2% of 

the TIC values. The model is expected to perform well on new samples.  

For the rich samples density was predicted with a prediction error of 0.05%, resulting in 

great predictions and small residuals. Second order EMSC was applied as preprocessing. 

The density predictions for the lean samples was not as good, but still satisfying, with a 

prediction error of 1.2%. The preprocessing used for this model was second order 

Savitzky-Golay.  

The two datasets for TOT_ALK were too small to be divided into training sets and 

validation sets, so the models are made with all the objects available. Both lean and rich 

samples are preprocessed using second-order Savitzky-Golay. The model for the rich 

samples gave equal RMSECV and RMSEP values, about 2% of the measured values, 

obtained from regression analysis and double cross-validation, respectively. 

 For the lean samples, the response variable was transformed with root ½ to achieve 

normal distribution. This resulted in equal RMSECV and RMSEP values, of 0.024, which is 

about 0.5-1% of the measured values, which is a satisfying result. Both models look 

promising and are expected to perform well on other samples, but without validations 

set, it is difficult to conclude that the models will perform well.   

In summary, the use of ATR-FTIR spectroscopy equipped with multivariate data analysis 

has proved to be satisfactory techniques to monitor the compounds present during the 

CO2 capture process using amines. This approach is capable of predicting the responses 

with reasonably good accuracy and will be a good tool in the online reaction monitoring, 

improving the knowledge and monitoring of the process while it is happening.  
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7.1 Further Work  

Three of the datasets did not have enough samples to be divided into a training set and a 

validation set, so these models were validated using the results from regression analysis 

and double cross-validation. When more samples become available, these models should 

be tested to see if they have as good prediction abilities as assumed. Moreover, if not, 

more samples should be included, and new models should be made, which hopefully will 

give models capable of making satisfactory predictions. 

The degradation products from the absorption process have not been studied in this 

thesis because there were not enough data to do this. Continued work should include 

studying these and making models for predicting how much degradation product is in the 

solvent after using it several times, the presence of degradation products can reduce the 

solvents abilities to absorb CO2 and should, therefore, be monitored during the process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 
  

8 References 

[1] Baird, C. & Cann, M. C. (2012). Environmental chemistry (5th ed). New York: W.H. 

Freeman and Co. 

[2] Dutcher, B., Fan, M. & Russell, A.G. (2015). Amine-based CO2 capture technology 

development from the beginning of 2013 - A Review. Acs Applied Materials & 

Interfaces, 7(4), 2137–2148. 

[3] Kachko, A., Ham, L. V., Bardow, A., Vlugt, T. J. & Goetheer, E. L. (2016). Comparison of 

Raman, NIR and ATR-FTIR spectroscopy as analytical tools for in-line monitoring of 

CO2 concentration in an amine gas treating process. International Journal of 

Greenhouse Gas Control, 47, 17-24. 

[4] Ball, D. W. (2006). The electromagnetic spectrum. In Field guide to spectroscopy (Vol. 

FG08). Bellingham, Washington: SPIE Press, p. 6. 

[5] Nortvedt, R. & Kvaal, K. (1996). Vurdering av næringsmiddelkvalitet. In: R., Nortvedt, 

F., Brakstad, O. M., Kvalheim & T., Lundstedt, Anvendelse av kjemometri innen forskning 

og industri (pp. 363-379). Oslo: Tidsskriftforlaget Kjemi.  

[6] Koç, M. & Karabudak, E. (2017) History of spectroscopy and modern micromachined 

disposable Si ATR-IR spectroscopy. Applied Spectroscopy Reviews, 53(5), 420-438. 

[7] Karstang, T. V. (1996). Forbehandling av Data. In: R., Nortvedt, F., Brakstad, O. M., 

Kvalheim & T., Lundstedt, Anvendelse av kjemometri innen forskning og industri (pp. 

129-144). Oslo: Tidsskriftforlaget Kjemi.  

[8] Martens, H., Nielsen, J.P. & Engelsen, S.B. (2003). Light scattering and light absorbance 

separated by extended multiplicative signal correction. Application to near-infrared 

transmission analysis of powder mixtures. Analytical chemistry, 75(3), 394–404. 

[9] Olawumi, T. T. (n.d.). Schematic representation of the different molecular vibration 

modes showing bending and stretching vibrations. Retrieved April 23, 2018, from 

https://www.researchgate.net/figure/Schematic-representation-of-the-different-

molecular-vibration-modes-showing-bending-and_fig9_275583514.  

[10] Atkins, P. W. & Paula, J. D.  (2014). Atkins physical chemistry (10th ed.), Oxford: 

Oxford University Press. 



81 
  

[11] Larkin, P. (2011). Infrared and Raman spectroscopy: principles and spectral 

interpretation. Amsterdam Netherlands: Elsevier. 

[12] Sun, D. (2009). Fourier Transform Infrared (FTIR) Spectroscopy. In Infrared 

spectroscopy for food quality analysis and control. Amsterdam: Academic 

Press/Elsevier. 

[13] Silverstein, R. M., Webster, F. X. & Kiemle, D. J. (2005). Infrared spectrometry. In 

Spectrometric identification of organic compounds (7th ed.). Hoboken, NJ: John Wiley 

& Sons. 

[14] Stuart, B. H. (2004). Infrared spectroscopy: Fundamentals and applications. 

Chichester, West Sussex: Wiley. 

[15] Creamer, A. E. & Gao, B. (2015). Carbon dioxide capture: An effective way to combat 

global warming. Cham, Switzerland: Springer International Publishing.  

[16] Kenarsari, S. D., Yang, D., Jiang, G., Zhang, S., Wang, J., Russell, A. G., . . ., Fan, M. (2013). 

Review of recent advances in carbon dioxide separation and capture. The Royal 

Society of Chemistry, 3, 22739-22773. 

[17] Stowe, H. M. & Hwang, G. S. (2017). Fundamental understanding of CO2 capture and 

regeneration in aqueous amines from first-principles studies: recent progress and 

remaining challenges. Industrial & Engineering Chemistry Research, 56(24), 6887–

6899. 

[18] Eğe, S. N. (2004). Organic chemistry: Structure and reactivity (5th ed.). Boston, MA: 

Houghton Mifflin.  

[19] Weissermel, K. & Arpe, H-J. (2003). Industrial Organic Chemistry (4th ed.). Weinheim, 

Germany: Wiley-VCH. 

[20] Hwang, G. S., Stowe, H. M., Paek, E., & Manogaran, D. (2014). Reaction mechanism of 

aqueous Monoethanolamine with carbon dioxide: A combined quantum chemical and 

molecular dynamics study. Physical Chemistry Chemical Physics, 17(2), 831-839. 

 

 



82 
  

[21] Tati, P., Buschle, B., Milkowski, K., Akram, M., Pourkashanian, M. & Lucquiaud, M. 

(2018). Flexible operation of post-combustion CO2 capture at pilot scale with 

demonstration of capture-efficiency control using online solvent measurements. 

International Journal of Greenhouse Gas Control, 71, 253-277. 

[22] Einbu, A., Citfja, A. F., Grimstvedt, A., Zakeri, A. & Svendsen H.F. (2012). Online 

analysis of amine concentration and CO2 loading in MEA solutions by ATR-FTIR 

spectroscopy. Energy Procedia, 23, 55–63. 

[23] Kvalheim, O. M. (1996). Fra data til informasjon. In: R., Nortvedt, F., Brakstad, O. M., 

Kvalheim & T., Lundstedt, Anvendelse av kjemometri innen forskning og industri (pp. 

53-65). Oslo: Tidsskriftforlaget Kjemi.  

[24] Rajalahti, T. & Kvalheim, O. M. (2011). Multivariate data analysis in pharmaceutics: 

A tutorial review. International Journal of Pharmaceutics, 417(1-2), pp.280–290. 

[25] Rinnan, Å. (2014). Pre-processing in vibrational spectroscopy when, why and how. 

Analytical Methods, 6(18), 7124–7129. 

[26] Steinier, J., Termonia, Y. & Deltour, J. (1972). Smoothing and differentiation of data 

by simplified least square procedure. Analytical Chemistry, 44(11), 1906-1909. 

[27] Byrne, H. J., Knief, P., Keating, M. E. & Bonnier, F. (2016). Spectral pre and post 

processing for infrared and Raman spectroscopy of biological tissues and cells. 

Chemical Society Reviews, 45(7), 1865–1878. 

[28] Afseth, N. K. & Kohler, A. (2012). Extended multiplicative signal correction in 

vibrational spectroscopy, a tutorial. Chemometrics and Intelligent Laboratory Systems, 

117, 92–99. 

[29] Isaksson, T. & Næs, T. (1996). Prinsipal komponent analyse. In: R., Nortvedt, F., 

Brakstad, O. M., Kvalheim & T., Lundstedt, Anvendelse av kjemometri innen forskning 

og industri (pp. 145-151). Oslo: Tidsskriftforlaget Kjemi.  

[30] Bro, R. & Smilde, A.K. (2014). Principal component analysis. Analytical Methods, 6(9), 

2812–2831. 

[31] Tranter, R.L. (2000). Design and analysis in chemical research. Sheffield: Sheffield 

Academic Press. 



83 
  

[32] Grung, B. & Kvalheim, O. M. (1994). Rank determination of spectroscopic profiles by 

means of cross validation. Chemometrics and Intelligent Laboratory Systems, 22(1), 

115-125. 

[33] Stordrange, L., Libnau, F. O., Malthe-Sørenssen, D. & Kvalheim, O. M. (2002). 

Feasibility study of NIR for surveillance of a pharmaceutical process, including a study 

of different preprocessing techniques. Journal of Chemometrics, 16(8‐10), 529–541. 

[34] Gil, J.A. & Romera, R. (1998). On robust partial least squares (PLS) methods. Journal 

of Chemometrics, 12(6), pp.365–378. 

[35] Filzmoser, P. et al., 2009. Repeated double cross validation. Journal of Chemometrics, 

23(4), 160–171. 

[36] Devore, J. L. & Berk, K. N. (2012). Modern Mathematical Statistics with Applications, 

New York, NY: Springer. 

[37] Andersen, C.M. & Bro, R. (2010). Variable selection in regression—a tutorial. Journal 

of Chemometrics, 24(11‐12), 728–737. 

[38] Farrés, M., Platikanov, S., Tsakovski, S. & Tauler, R. (2015). Comparison of the 

variable importance in projection (VIP) and of the selectivity ratio (SR) methods for 

variable selection and interpretation. Journal of Chemometrics, 29(10), 528–536. 

[39] Kvalheim, O. M., Chan, H., Benzie, I. F., Szeto, Y., Tzang, A. H., Mok, D. K. & Chau, F. 

(2011). Chromatographic profiling and multivariate analysis for screening and 

quantifying the contributions from individual components to the bioactive signature 

in natural products. Chemometrics and Intelligent Laboratory Systems, 107(1), 98–

105. 

[40] Rajalahti, T., Arneberg, R., Kroksveen, A. C., Berle, M., Myhr, K. & Kvalheim, O. M. 

(2009). Discriminating variable test and selectivity ratio plot: quantitative tools for 

interpretation and variable (biomarker) selection in complex spectral or 

chromatographic profiles. Analytical Chemistry, 81(7), 2581–90. 

[41] Jackson, P., Robinson, K., Puxty, G. & Attalla, M. (2009). In situ Fourier Transform-

Infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine 

solutions. Energy Procedia, 1(1), 985–994. 



84 
  

9 Appendices 

A. CO2 Capture Reactions  

The steps of CO2 capture using MEA, with the zwitterion mechanism [15]: 

a) CO2 binding with MEA, and formation of the zwitterionic adduct: 

MEA + CO2 → MEA+COO−  

b) Formation of carbamate and solvated proton, by deprotonation: 

MEA+COO− + H2O → MEACOO− + H3O+  

c) Formation of protonated MEA: 

MEA + H3O+ + MEACOO− → MEAH+ + H2O + MEACOO−  

d) Formation of carbamic acid:  

MEACOO− + H3O+ → MEACOOH + H2O  
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B. Lean Samples  

1. Total Inorganic Carbon 

Results from the regression analysis using Savitzky-Golay as preprocessing: 

 

Figure 9-1 Score plot for component 1 and 2, obtained from PCA. The ellipse is provided by Sirius and is 

used to identify outliers, objects lying outside is identified as outliers. Objects 20991 and 21431 are 

outliers 

 

Figure 9-2 Scores vs. Objects for component 1, objects deviating the straight line are identified as outliers 

DataSet: Lean_TIC, Subset: Lean_TIC_Training_Set, Scores 1 vs 2
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Figure 9-3 Weighted regression coefficients for the three components included in the model. Displaying 

that the coefficients describe data and not just noise 

 

Figure 9-4 RMSECV-plot for the first four component extracted. Used to determine the number of 

components to include in the model, the yellow bar indicate that three components should be included 

Subset: Lean_TIC_Training_Set, Reg. Coeff. - RMSECV = 0.044, 1 Comp

Subset: Lean_TIC_Training_Set, Reg. Coeff. - RMSECV = 0.020, 2 Comp

Subset: Lean_TIC_Training_Set, Reg. Coeff. - RMSECV = 0.016, 3 Comp

RMSECV +/- 0.310 Percentiles.(Minimum: 0.016 - Comp. 3) (p-Value= 0.147)
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Figure 9-5 Predicted vs. Measured for the validation set, displaying the RMSEP value, R2 and Ra
2 

2. Density 

 

Figure 9-6 SR-plot used to determine which window of wavenumbers to use when building the model 

Predicted vs Measured for TIC TIC, RMSEP = 0.020, Comp. 3
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Figure 9-7 Score plot for component 1 and 2 from PCA, the ellipse is provided by Sirius, and objects lying 

outside this is identified as outliers 

 

Figure 9-8 RSD vs. Leverage using two components, obtained from PCA. Used for outlier detection 

DataSet: Lean_Density, Subset: Lean_Density_All, 2 Comps. (98.5%)
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Figure 9-9 Scores vs. Objects for the first component, used for outlier detection. Objects disobeying the 

straight line are identified as outliers 

3. Total Alkalinity 

 

Figure 9-10 Score plot for component 1 and 2, used for outlier detection. The objects outside the ellipse 

is identified as outliers 

Scores vs Objects, Comp. 1 (94.2%)
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Figure 9-11 RSD vs. Leverage using two components, used for outlier detection 

 

Figure 9-12 Scores vs. Objects for component 1, objects deviating the straight line are identified as 

outliers 

DataSet: Lean_Tot_Alk, Subset: Lean_Tot_Alk_All, 2 Comps. (98.1%)
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Figure 9-13 Predicted vs. Measured for the model built when the data was split into training set and 

validation set, displaying the RMSEP value, R2 and Ra
2 

 

Figure 9-14 Predicted and Measured for the model built when the data was split into training set and 

validation set. Displaying that the predictions only is able to predict the average values of the measured 

values 
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C. Rich Samples  

1. Total Inorganic Carbon 

 

Figure 9-15 Score plot for component one and two, used for outlier detection. The objects outside the 

ellipse are identified as outliers 

 

Figure 9-16 RSD vs. Leverage for two components, used for outlier detection 

DataSet: RICH_TIC, Subset: Rich_Tic_All, Scores 1 vs 2
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Figure 9-17 Scores vs. Objects component one, objects deviating the straight line are identified as 

outliers 

2. Density 

 

Figure 9-18 Score plot for component one and two, used for outlier detection. Objects outside the ellipse 

are identified as outliers 

Scores vs Objects, Comp. 1 (70.6%)
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Figure 9-19 RSD vs. Leverage using two components, used for outlier detection 

 

Figure 9-20 Scores vs. Objects normal plot component one. Objects disobeying the straight line are 

identified as ouliers 
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3. Total Alkalinity 

 

Figure 9-21 Score plot for component one and two, used for outlier detection. Objects outside the ellipse 

are identified as outliers 

 

Figure 9-22 RSD vs. Leverage for two components, used for outlier detection 

DataSet: RICH_TOT_ALK, Subset: alle, Scores 1 vs 2
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Figure 9-23 Scores vs. Objects 

 

Scores vs Objects, Comp. 1 (87.3%)

Comp. 1 (87.3%)
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