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Abstract 

The trajectories of vegetation and landscape dynamics have been redirected globally 

by climate change and land-use change. The drivers and mechanisms of the 

spatiotemporal changes are likely scale dependent and are most probably confounded. 

Himalayan landscapes are under-explored and it is particularly crucial to understand 

the mechanisms and trajectories of the changes they are experiencing and their scale 

relationship for an effective management of these landscapes. This thesis synthesises 

four case studies that have documented spatiotemporal changes in plant assemblages 

driven by climate and land-use change over the last two decades, assessed the 

relationship between alpha diversity (plot-based species richness) and gamma diversity 

(regional species richness) with a focus on scale, and tested the performance of 

weighted averaging (WA) regression and calibration for quantifying the elevational 

changes of species assemblages. 

Studies were conducted in temperate, subalpine, and alpine vegetation at two locations 

in central Nepal. Scale sensitivity of the elevational species richness was assessed by 

treating the alpha diversity of different plant life-forms at different grain sizes and 

areas used for gamma estimation as response variables in a generalised linear model 

[Paper I]. Systematic changes in temporally resurveyed assemblages were analysed by 

ordinations and attributed to climate and land-use change using regression analyses 

[Papers II, III]. WA regression and calibration technique was evaluated by comparing 

the models for different types of temporal datasets [Paper IV]. 

Elevational gamma diversity can significantly predict alpha diversity and the 

relationship is largely scale invariant, although it is slightly less so for woody species. 

At a regional level, climate warming is a major driver of the demonstrated 

spatiotemporal changes, i.e. thermophilisation of plant assemblages. However, land-

use change may confound or counteract the climatic effects at a local or landscape 

level. WA regression and calibration predicts fairly accurately the elevation of the 

plot-based vegetation assemblages. Use of species incidence data may improve the 

accuracy, but species data processing cannot guarantee more accurate calibrations. 
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To conclude, the systematic spatiotemporal changes in plant assemblages over the last 

two decades in central Nepal are significant, are largely irrespective of spatial scale, 

and are most likely related to interactions and feedback mechanisms between climate 

change and land-use change at different spatiotemporal scales. Taxonomic, census, 

and sampling accuracy are crucial in the analyses of temporal changes, especially by 

environmental reconstructions. 
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1. Introduction 

1.1 Succession and disturbance 

Species diversity and composition vary across space and time at different scales 

(MacArthur 1984; Levin 1992; Rosenzweig 1995). The directed temporal changes in 

vegetation in response to changes in environmental factors or removal of a pre-existing 

species assemblage over an ecological time scale is called secondary succession 

(Connell & Slatyer 1977; Miles 1979; Pickett et al. 1987). Successional changes and 

disturbance are major interrelated landscape processes that influence vegetation 

dynamics and continually interact with human activities. In addition to evolutionary 

processes, disturbance also has either a positive or negative effect on species 

composition depending on the intensity, frequency, and spatial scale over which it 

operates. It can be detrimental and thereby alter the natural ecological patterns and 

processes at a fine scale, while at the broader scale, such as at the level of regional 

species pool, it contributes to spatial heterogeneity and temporal niche diversity 

(Luken 1990; Turner et al. 1998; Walker et al. 1999). Vegetation dynamics in an area 

may therefore be characterised over short to intermediate temporal scales by a 

dynamic equilibrium between disturbance regime and the rate of succession under 

operation (Huston 1994). 

Plant assemblages exhibit some form of temporal dynamics at all times and external 

disturbances can modify the trajectory of this natural variation (Preston 1960; Luken 

1990). Ecological succession thus continues to remain a central theme in ecological 

research in this era of ever-expanding human impacts and rapid landscape changes 

(Pickett et al. 2009; Meiners et al. 2015). There have been complex interactions 

between people and natural landscapes across the globe since the origin of humans 

(Luken 1990). However, anthropogenic impacts on natural landscapes have intensified 

over the past few centuries around the world, significantly altering the natural features 

of most landscapes (Foley et al. 2005; MEA 2005). As well as these severe 

anthropogenic disturbances, there has been unprecedented climatic change at different 

spatial and temporal scales around the world, with an especially warmer atmosphere 
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and rather erratic fluctuations in precipitation over recent decades (IPCC 2013). 

Evidence so far reveals that rapid changes in the geographical distribution and 

composition of plant assemblages around the globe are driven by anthropogenic 

climate changes (Walther et al. 2002; MEA 2005; Parmesan 2006). Consequently, the 

natural mechanisms and trajectories of temporal vegetation changes in the landscapes 

have been significantly redirected. 

In this context, landscape management interventions have been put into practice 

aiming to restore the direction of disturbance-modified successional changes, a 

practice known as succession management (Luken 1990). Its success rests largely on 

the proper understanding of the successional mechanisms and pathways involved. 

Therefore, understanding the drivers, mechanisms, and trajectories of succession is 

crucial for predicting the responses of species assemblages to environmental changes 

and their future states (Zhou et al. 2014). This is vital for formulating effective 

strategies for long-term successful management or restoration of the landscapes in the 

context of global environmental changes (Meiners et al. 2015). Today, the 

disturbances take place in the context of climate change, which complicates the 

interpretation of the successional mechanisms and pathways. 

Temporal successional changes have mostly been studied by either of two methods: 

space-for-time substitution that uses space as a proxy for time (Pickett 1989; Johnson 

& Miyanishi 2008), and temporally replicated vegetation surveys (Cooper 1923 and 

subsequent expeditions; Peet & Christensen 1980; Buma et al. 2017). Based on 

numerous underlying assumptions, space-for time substitution has been applied in 

ecological modelling to infer past or future trajectories of ecological systems from 

contemporary spatial patterns. The central assumption of the approach is that the 

abiotic and biotic conditions remain constant over the time span of the successional 

change under study, but changes in the vegetation driven by the disturbance regimes 

and other stochastic events are not accounted for (Pickett 1989). Vegetation and 

environmental factors resurveyed over time can solve these shortcomings to some 

extent while analysing the temporal changes. However, inadequacy of the data 

quantity and quality as well as inconsistencies in the survey techniques may hamper 
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the precise quantification of the temporal trends by this technique. Nonetheless, the 

later approach has been applied in this research to quantify changes in species 

composition over time, and the observed changes have been attributed to temporally 

varying stochastic (land-use disturbance) as well as deterministic (climatic) factors. 

Directional temporal changes in plant assemblages in response to climate and land-use 

changes are mostly analysed via formulation of hypotheses. Some of the widely tested 

postulations, as summarised by Lenoir & Svenning (2015) are: (a) A species will shift 

upslope in the mountains to compensate for the increased temperature; (b) A species 

will adapt to the increased temperature to retain its original distributional range; (c) A 

species from extremes of the temperature gradient will go extinct with a rise in 

temperature; (d) A shade-tolerant species will increase whereas an open-habitat 

species will decline in abundance in response to forest canopy closure. 

The plant species in assemblages likely exhibit individualistic responses to 

environmental change (Gleason 1926). Hence, some of the species may shift upward 

in the mountains in response to increased temperature, whereas a few may adapt to the 

increased temperature in the local habitat, and others may shift downward in response 

to interacting land-use factors. Even if we assume static environmental conditions over 

time, the species composition at a place will always change temporally due to on-

going evolutionary processes. As a result, none of the developed models of temporal 

changes would be completely consistent with the empirical data. Therefore, multiple 

hypotheses of temporal changes in vegetation driven by climate and land-use change 

have been formulated for assessing possible responses. The hypotheses are tested by 

developing statistical models based on theoretical principles that are then confronted 

with empirical data. If a model is largely consistent with the empirical data, the 

underlying hypothesis is accepted, otherwise it is considered invalid.  

1.2 Successional mechanisms and scale relations 

Realising its role in vegetation dynamics and ecosystem functioning, succession has 

been at the core of ecological research for over a century (Meiners et al. 2015). 

Debates regarding successional mechanisms are similarly rooted long back to the early 
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1900s (an era of Clements 1916; Gleason 1926), revealing that temporal vegetation 

dynamics is a complex process far from being completely assessed or predicted. The 

Clementsian concept (Clements 1916) views a plant community as a ‘superorganism’ 

that has emergent properties resulting from the organisation of the components into 

communities, and proposes that ecological succession is largely governed by 

deterministic factors. Following the Darwinian theory of evolution, such 

environmental determinism has been adopted in different fields of modern science 

including geography (Johnston 2016). In contrast, the Gleasonian concept (Gleason 

1926) views succession as a consequence of individualistic responses of species to 

their changing environment and of simultaneous stochastic processes. According to 

this concept, the structure and processes of assemblages are viewed as summation of 

those of its constituent species. These two views thus make different predictions 

regarding vegetation composition patterns over space and time. 

Although much is now known about the mechanisms shaping vegetation assemblages, 

uncertainties still exist regarding spatiotemporal variations in the drivers, in the 

underlying mechanisms and trajectories of secondary succession under different types 

of environmental perturbations, and in their cross-scale linkages (Zhou et al. 2014; 

Meiners et al. 2015; Arroyo-Rodríguez et al. 2017). A long-standing debate concerns 

whether the assembly and spatiotemporal dynamics of communities are governed by 

deterministic or stochastic processes (e.g., Hubbell 2001; Tilman 2004; Chase & 

Myers 2011; Bhaskar et al. 2014) or by a combination of both (e.g., Gravel et al. 2006; 

Leibold & McPeek 2006; Adler et al. 2007; Caruso et al. 2011; Måren et al. 2018).  A 

recent consensus is that both deterministic and stochastic processes operate 

simultaneously in the assembly of local communities (Leibold & McPeek 2006; Chase 

2010; Caruso et al. 2011; Chase & Myers 2011), and that the relative importance of 

stochastic (neutral) versus deterministic (niche-based) processes of temporal changes 

is a matter of scale (Fig. 1; Chase 2014; Arroyo-Rodríguez et al. 2017). At a fine scale, 

stochastic processes such as birth and death rates, dispersal, disturbance, and biotic 

interactions become prominent, which moderate the influence of coarse-scale 

environmental factors on species composition (Connor & McCoy 1979; Levin 1992; 

Crawley & Harral 2001). At broader spatial scales, the stochastic variations are 
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averaged out and the influence of niche-based environmental variables such as climate, 

water, and energy increases to shape the vegetation structure and composition (Wiens 

1989; Chase 2014; Arroyo-Rodríguez et al. 2017). Hence, the ecological patterns are 

expected to be more predictable at a broad scale (Wiens 1989; Levin 1992) and reveal 

more clearly the compositional shifts when environmental conditions change.   

Figure 1. Concept of secondary 

succession and its scale relations 

(modified after Arroyo-

Rodríguez et al. 2017). The 

successional process is 

influenced by different types of 

indirect and direct drivers that 

operate simultaneously over 

different scales and interact 

across scales. The interactions 

between the drivers themselves 

and across spatial and temporal 

scales are indicated by arrows. 

Such a scale-dependent variation in the processes and patterns of successional changes 

is thoroughly investigated in this thesis with respect to species richness, and its scale 

sensitivity along an elevation gradient is assessed by varying spatial scale components 

such as grain size (size of the sampling unit), focus (total area sampled by 100 m2 

grain in each 100-m elevation band) and area for regional species richness or 

elevational gamma diversity estimation (extent in central Nepal in each 100-m 

elevation band). The correspondence between the patterns at different grain sizes and 

areas of gamma estimations is analysed to highlight any variation in the patterns and 

their potential drivers from a local to regional scale. 
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1.3 Scale and species diversity patterns 

1.3.1 Overall scale in my research: scale in space and time  

This thesis focuses on the directional temporal changes in plant species composition in 

central Nepal in response to climate change and land-use change along an elevation 

gradient. Elevation thus represents a major spatial component of the research, along 

which, plant species composition and environmental factors exhibit a distinct pattern. 

Temperature also exhibits a spatial trend, i.e. decreases linearly with elevation, in 

addition to a significant temporal trend. Because the sample plots are located along an 

elevation gradient, temporal temperature was extrapolated for the sample plots and 

thus exhibits the same elevational trend as that for the spatially varying temperature. 

Temporal variations in the land-use factors (canopy closure: Paper II, grazing 

reduction: Paper III) also exhibit elevational patterns, where canopy closure increases 

and grazing intensity decreases with elevation. Accordingly, the documented temporal 

changes have also been primarily manifested over space. Therefore, the study 

represents a typical situation of complex space-time interactions. Although attempts 

have been made to partial out analytically the direct effect of the elevation gradient on 

the observed changes [see Papers II, III], spatial and temporal patterns likely remain 

confounded. Depending on the specific objective of the different case studies, the 

overall thesis spans different spatial and temporal extents. 

Spatial scale 

The spatial scale covered by this thesis can be hierarchically categorised into extent, 

focus, and grain size. The regional area of central Nepal between 3900 m and 5000 m 

a.s.l. represents the largest spatial scale (extent) used to estimate the regional species 

richness, i.e. regional elevational gamma diversity [Paper I]. The regional area is 

narrowed down to a focus level by considering the cumulative area of six sample plots 

of 100 m2 grain size in each 100-m elevation band and used to estimate local 

elevational gamma diversity in the landscape [Paper I]. Apart from this, elevational 

changes in the plant species assemblages have been quantified based on the species’ 

elevational ranges in central Nepal [Paper II]. Thus, the regional area in central Nepal 
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in terms of species’ regional elevational ranges has also been used. The temporal 

climatic factors (temperature and precipitation) are also at the regional scale [Papers II, 

III]. The regional climate was extrapolated to the plot-level climate. Sample plots of 

three different sizes (i.e. grain sizes of 1 m2, 16 m2, 100 m2) have been used at the 

local level for sampling vegetation and determining explanatory factors in the 

landscape [Paper I]. Except for Paper I, vegetation sampled at the grain size of 100 m2 

has been used in the analyses [Papers II-IV]. 

Temporal scale 

Vegetation and environmental data replicated over time have primarily been used in 

this thesis. Accordingly, different temporal scales are represented in the case studies 

[Papers I–IV]. Regional species richness in the subalpine–alpine belt of central Nepal 

[Paper I] is based on interpolation of species presences between the extremes of their 

elevation ranges (ranges from Press et al. 2000). Species’ elevation ranges in Press et 

al. (2000) were estimated from herbarium specimens collected from different areas of 

central Nepal between the 1850s and 2000. In this regard, a temporal scale of c. 150 

years is represented in the interpolated species richness. However, an empirical 

temporal scale of c. 2.5‒3 decades has been used in the species datasets [Papers II‒

IV]. Climate and land-use data of the same temporal scale have been used to see if the 

changes in species assemblages are related to any or both of these variables. 

1.3.2 Scale sensitivity of the species diversity patterns 

An influence of spatial scale on biodiversity patterns has long been recognised in plant 

ecology and biogeography (e.g., Arrhenius 1921; Connor & McCoy 1979; Wiens 

1989; Levin 1992; Palmer & White 1994; Crawley & Harral 2001; Rahbek 2005; Field 

et al. 2009). However, in contrast to spatial scale, the role of temporal scale remained 

under-documented until very recently (see Scheiner et al. 2011). The direct influence 

of spatial scale on species richness, i.e. species-area relationship (SAR), is one of the 

best-verified patterns in vegetation ecology and biogeography (Rosenzweig 1995; 

Lomolino 2000; Scheiner et al. 2011). Spatial scale itself, however, is a complex 

variable that consists of several components such as sampling unit, grain, focus, and 
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extent (Palmer & White 1994; Scheiner et al. 2011), and scale-related issues with one 

or more of these components continue to generate concerns. There have been 

uncertainties regarding the grain-size sensitivity of species diversity patterns along 

environmental gradients (e.g., Rahbek 2005; Nogués-Bravo et al. 2008; Belmaker & 

Jetz 2011; Rowe et al. 2015; Tuomisto et al. 2016).  

In addition to the SAR, regional gamma diversity (total species present in a whole 

region; Lomolino 2001) may also influence the local species diversity, i.e. alpha 

diversity, via an indirect effect of area (Rosenzweig & Ziv 1999; Romdal & Grytnes 

2007). It is unclear whether the indirect effect is dependent of spatial scale 

components, i.e. grain size, focus, and area from which regional gamma diversity is 

estimated, or whether it depends on the life-forms of the plant species. Moreover, 

systematic variations in the species diversity patterns among the studies of different 

spatial scales are also likely caused by differences in the methods of study and the 

nature of the quantified data (Kessler et al. 2009). These variations in the patterns due 

to differences in data type and study method remain confounded with those resulting 

from the differences in spatial scale of the studies. Therefore, a standard methodology 

with conceptual consistency is applied in this thesis to explore thoroughly the scale 

dependency of the species diversity patterns. 

Biodiversity patterns are governed by a myriad of proximate (direct) and ultimate 

(indirect) drivers and processes operating over a range of spatial and temporal scales 

(Fig. 1; Levin 1992; Giladi et al. 2011; Arroyo-Rodríguez et al. 2017). At the broadest 

spatial scales and over the longest temporal scales, the proximate drivers such as 

speciation, extinction, migration, biogeographic history, evolutionary history, and 

regional species pool, and the ultimate drivers such as climate, energy, water, and 

topography are more influential (Ricklefs 1987; Hawkins et al. 2003; O'Brien 2006; 

Pärtel et al. 2007; Harrison & Cornell 2008; Field et al. 2009). At finer spatial scales 

and over shorter temporal scale, species diversity is directed by proximate drivers such 

as species’ population dynamics, species interactions, and meso- or micro-climate, and 

by ultimate drivers such as disturbance regimes, soil characteristics, habitat 

heterogeneity, and land-use history (Grime 1973; Pacala 1996; Whittaker et al. 2001; 
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Michalet et al. 2006; Arroyo-Rodríguez et al. 2017). Stochasticity of local factors 

often dampens the strength of the richness-environment relationship at a fine scale 

(Connor & McCoy 1979; Crawley & Harral 2001). Therefore, reasonably different 

patterns of species diversity at different spatial scales might be expected. However, the 

species diversity and their drivers often interact across spatial and temporal scales 

(Fig. 1), and due to this, species diversity patterns and processes across scales are often 

correlated (Fig. 2a) (Zobel 1997; Harrison & Cornell 2008). Patterns at a fine scale and 

their drivers are hence expected to be linked with those at the regional level (Fig. 2b). 

Elevational gradient in plant species richness of Nepal has been studied at regional 

(e.g., Grytnes & Vetaas 2002; Vetaas & Grytnes 2002; Grau et al. 2007; Zhang et al. 

2015) to local scale (e.g., Bhattarai & Vetaas 2003; Carpenter 2005; Bhatta & 

Chaudhary 2009; Bhattarai et al. 2014). The regional patterns are based on the range 

interpolated species richness along an elevation gradient from tropical (60-1000 m 

a.s.l.) to upper alpine or nival (5000-6400 m a.s.l.) zone. However, numerous fine-

scale studies have covered different portions of elevation gradient using various grain 

sizes of 1 m2 to 1000 m2. Broadly, majority of these studies have revealed a humped 

pattern of overall species richness for vascular plants that peak at different elevations, 

whereas a linear declining pattern for woody species along elevation gradient. 

Nonetheless, degree of similarity between these patterns at different scales has not 

been assessed. Therefore, to verify the conjecture, species diversity patterns and 

processes at different spatial scales have been assessed by applying precisely 

comparable datasets and standardised techniques, and an explicit correlation has been 

established between these patterns. The variation in the degree of the correspondence 

between the patterns with the varying grain sizes for plot-based richness and varying 

area for regional richness has been evaluated. 
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Figure 2. (a) Elevational pattern of alpha diversity at different grain sizes; (b) 

Relationship between alpha diversity and gamma diversity (total species richness 

within each 100-m elevation band in a region) of vascular plants along an alpine 

elevation gradient in central Nepal. 

Temporal scale is as influential as spatial scale for biodiversity patterns (Preston 1960; 

Rosenzweig 1998; Adler & Lauenroth 2003) and, depending upon the features of the 

species, diversity at a place varies over a temporal scale of hours to millions of years. 

The successional changes in plant assemblages take place over an ecological time 

scale of decades to millennia (Rosenzweig 1995; Cox & Moore 2007). Following the 

ideas of Preston (1960), Rosenzweig (1998) argued for the first time that similar 

underlying mechanisms create spatial and temporal patterns, and further studies (e.g., 

Adler et al. 2005; White et al. 2006; Soininen 2010) proposed that the influence of 

spatial and temporal scale on species richness patterns is similar. This space-time 

relationship has been a fundamental assumption underlying the analytical approach of 

space-for-time substitution.  

The joint influence of both types of scales on species diversity in a similar fashion has 

been responsible for much of the confusion surrounding the interpretation of 

successional patterns and processes because succession creates both patterns (Fig. 1; 

Huston 1994). A recent idea is that the interaction of the spatial and temporal scales 

affects the species diversity gradient, known as the ‘time-by-area’ interaction (Adler et 
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al. 2005; Fridley et al. 2005; Soininen 2010). This means that spatial and temporal 

scales of a study do not separately influence the species diversity pattern, but act in 

concert as two dimensions of one unified pattern (Adler et al. 2005). Consequently, the 

spatial and temporal patterns are frequently confounded where the temporal dataset is 

embedded in a spatial context or vice versa (Wiens 1989; Dornelas et al. 2013). 

Therefore, in the study of temporal changes, it is important to either assess the 

successional changes in a spatiotemporal context or to partial out the spatial variations 

and consider their contribution to the temporal patterns as measurement and process 

errors (Dornelas et al. 2013).  

In this context, this thesis explores temporal successional trajectories in plant species 

assemblages along an elevation gradient resulted from changes to the environmental 

conditions, i.e. climate and land-use change in the central Himalayan landscape. The 

sample plots are distributed along an elevation gradient and the temporally varying 

species composition as well as explanatory factors exhibit elevational patterns. 

Therefore, although the direct effect of space (elevation gradient) was partialled out 

analytically, patterns over time and space may still be confounded to some extent. 

1.4 Environmental changes and responses of mountain vegetation 

Analyses of climate at different spatial and temporal scales have revealed 

unprecedented climatic changes across the world: in particular, a warmer atmosphere 

and rather erratic fluctuations in precipitation patterns over recent decades (IPCC 

2013). Climate in the Himalayan region is changing at a faster rate than the global 

average and the more pronounced changes have been in the high-elevation regions 

(Shrestha & Aryal 2011; Mountain Research Initiative EDW Working Group 2015; 

Karki et al. 2017). As pronounced, are the anthropogenic land-use changes of different 

forms, such as loss, degradation, and fragmentation of natural habitats, agricultural 

expansion, and land conversion (Foley et al. 2005; MEA 2005). However, the 

temporal climate change and land-use change differ in spatial coverage, frequency, 

and intensity. The climatic changes span over long temporal and wide geographical 

extents, whereas the land-use changes are more intense at smaller spatial extents and 

vary frequently over spatial and temporal scale. 
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Following the global trend, there have been substantial impacts on the natural 

landscapes in the Himalayan region over the past century (Singh & Singh 1992; Khera 

et al. 2001; Goldewijk & Ramankutty 2004; Schlütz & Zech 2004; Miehe et al. 2009; 

Miehe  et al. 2015). Forest clearance, expansion of agricultural lands, overexploitation 

of plant resources, overgrazing, and land abandonment have been the prominent forms 

of land-use in the Nepal Himalaya leading to habitat degradation and fragmentation 

(FAO 2010; GoN-MoFSC 2014). As elsewhere, the land-use drivers in Nepal vary in 

their nature, intensity, and frequency among the country’s physiographic zones. 

Recent trends of forest regrowth and increase in forest cover have been observed in the 

Middle Hills region with the introduction of a community forestry programme 

(Gautam et al. 2002; Niraula et al. 2013). 

In response to recent climate and land-use changes, drastic changes in the geographical 

distribution and composition of plant assemblages have been evident throughout the 

world (MEA 2005; Parmesan 2006). Upslope shifts in mountain plant species have 

been the most commonly observed ecological response of species to increased 

atmospheric temperature (Fig. 3a-3c) (e.g., Parmesan & Yohe 2003; Lenoir et al. 

2008; Chen et al. 2011; Gottfried et al. 2012; Morueta-Holme et al. 2015; Dainese et 

al. 2017). However, climate change is multidimensional and exhibits heterogeneous 

patterns across the world (Garcia et al. 2014). In the mountainous regions, the degree 

of climate driven changes can vary significantly even within a single mountain range 

(Gritsch et al. 2016). This means that the nature, intensity, and frequency of climate 

change may be redistributed from one to the next spatial scale, and therefore, may not 

act uniformly across specific vegetation types and landscapes (Garcia et al. 2014). 

Consequently, the climate driven patterns of vegetation change at the regional scale 

may not necessarily reflect those at a finer scale. Moreover, the response of a species 

to climate change is likely to be individualistic. Therefore, it is worth analysing the 

climatic responses of species assemblages at different spatial scales and geographic 

locations to understand properly the climate directed successional trajectories in 

Himalayan vegetation. 
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Figure 3. Concept of likely responses of species in mountains under climate warming 

and land-use changes (modified from Lenoir & Svenning 2015). Green represents the 

current and brown, the past distribution of species abundance along an elevation 

gradient. (a-c) Elevational shift of species in response to climate warming: (a) crash, 

(b) lean, and (c) march; (d-f) likely influence of simultaneous land-use change on the 

elevational shift in species: (d) compounding, (e) confounding, and (f) counteracting 

the climatic effect. 

Similarly, anthropogenic land-use changes are causing global biodiversity declines 

with an increase in species’ extinction risk and decline in population sizes at local to 

global levels (MEA 2005; Pimm et al. 2014; Tittensor et al. 2014; Newbold et al. 

2015). However, how the species assemblages at a local level are responding to land-

use change is less clear (Newbold et al. 2015). Scenarios developed by MEA (2005) 

reveal with high certainty that habitat loss caused by land-use change will contribute to 

the decline in the local and global diversity of different taxa, especially vascular 

plants. Like the climatic changes, the type, intensity, and frequency of land-use change 

differ significantly among geographic regions and vegetation types. The land-use 

changes and climate changes often exhibit complex confounding, compounding or 

counteracting interactions at different spatial and temporal scales (Goring & Williams 

2017; Guo et al. 2018). (Fig. 3d-3f) Consequently, the climatic responses of the 
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species are often masked and modified [Papers II, III]. Such responses include upward 

range shifts of the species irrespective of climate warming (e.g. Grytnes et al. 2014), 

unexpected downslope range shifts under climate warming (see Lenoir et al. 2010a), 

and frequent lags in the biodiversity changes behind climate warming (e.g. Wu et al. 

2015). In addition, methodological inconsistencies in analysing the climatic responses 

of species (e.g. Dawson et al. 2011) and a paucity of standard data (Grytnes et al. 

2014) may also contribute to the obscured patterns of climate change driven responses. 

Changes in the climate and land-use regimes in the Himalayan region potentially pose 

a serious threat to the unique biodiversity of the region (Salick et al. 2009; Singh et al. 

2011; Shrestha et al. 2012b; GoN-MoFSC 2014). The effects of such environmental 

changes to the Himalayan biodiversity, especially in terms of species composition and 

geographic distribution at different spatiotemporal scales, remain seriously under-

documented. This research is an attempt to address this gap and to develop a more 

complete and real-time understanding of how the ongoing climate changes, together 

with land-use changes at different scales, are driving the successional pathways of the 

Himalayan plant species assemblages.  

1.5 Methodologies 

Alongside the conceptual conjectures, methodological factors such as data sampling 

technique, precision and adequacy in the surveys, quantity and quality of the data, skill 

and expertise of the observer, and analytical techniques are also crucial in exploring 

the spatiotemporal patterns and processes of biodiversity (e.g., Klanderud & Birks 

2003; Archaux et al. 2006; Tingley & Beissinger 2009; Ross et al. 2010; Bhatta et al. 

2012; Kapfer et al. 2016). Inconsistencies or inaccuracies in these factors lead to high 

noise in the vegetation datasets that contribute to potentially spurious patterns being 

found (Jongman et al. 1995; Legendre & Legendre 1998). 

Various analytical techniques, mostly in conjunction with each other, have been 

applied in studying the ecological responses of plant species or assemblages in 

mountains under climate warming. Most of these techniques have been rigorously 

tested and their strengths and limitations regarding the above-mentioned 

methodological issues are well documented. A technique of vegetation-based 
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environmental reconstructions has recently been introduced into modern vegetation 

ecology to study temporal changes in plant assemblages and their environment (e.g., 

Brady et al. 2010; Bertrand et al. 2011; Lenoir et al. 2013; Paper III). The technique 

mostly makes use of the technique of weighted averaging (WA) regression and 

calibration that has been extensively used in making palaeoenvironmental 

reconstructions (Jongman et al. 1995; Birks et al. 2010 and references therein). It is 

based on the principle of space-for-time substitution, where contemporary patterns of 

species composition in relation to their environment are used to infer environmental 

conditions for past vegetation. However, in modern vegetation ecology, the species 

composition and environment of the past are used to infer contemporary 

environmental conditions and any difference in the observed and inferred environment 

gives an estimation of the environmental change. 

Performance of the technique has been tested with numerous transfer functions and 

with different sediment core-based training datasets (Birks et al. 1990; Birks 1994; 

Telford & Birks 2009; Rehfeld et al. 2016). It is perceived as a robust technique for 

palaeoenvironmental reconstructions, but despite being used in modern vegetation 

ecology for the same purpose, robustness of the technique for plot-based vegetation 

datasets has not been tested rigorously. Although plot-based vegetation datasets mostly 

fulfil the basic assumptions of the technique (as summarised by Birks et al. 2010), 

plot-based data differ in several ways (e.g., in spatial and temporal scale of study, the 

method of data collection, the nature of collected data) from the sediment core-based 

data used in palaeoecological studies. These differences may cause differences in the 

nature and degree of species-environment correspondence that ultimately might 

influence the estimation accuracy of the technique. Paper IV in this thesis assesses 

whether the technique can produce environmental estimations for plot-based 

vegetation data and thereby be used to reveal spatiotemporal patterns as reliably as in 

palaeoenvironmental reconstructions. Moreover, it explores whether the technique is 

useful in tackling at least some of the above-mentioned methodological issues in the 

vegetation datasets while analysing the spatiotemporal patterns with respect to 

environmental changes. It has been done thoroughly by comparing the outputs of 

analyses of datasets generated using different sampling techniques, with different plot-

relocation accuracies, quantified on different scales, and with species of different 

frequencies and abundances. 
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2. Objectives 

This research aims to assess the influence of spatial scale components on the 

elevational patterns of plant species richness, and to quantify the climate and land-use 

change driven temporal changes in the plant assemblages of central Nepal under 

different climatic, land-use, and physiographic settings. 

The overall objective underlines the specific research questions formulated in the form 

of four research papers as below: 

• How does scale, i.e. grain size, focus, area for gamma diversity (regional 

richness) estimation influence the elevational gamma–alpha diversity 

relationship of different plant life-forms? [Paper I] 

• Does the elevational pattern of alpine-plant species richness vary across grain 

sizes?  [Paper I] 

• Are there significant changes in species composition from 1993 to 2013 that 

may be attributed to increased temperature and/or land-use change (increasing 

canopy closure)? [Paper II] 

• Are there systematic changes in alpine species assemblages of central Nepal 

that have been driven by climate change and land-use change (changed grazing 

regime) from 1990 to 2014? [Paper III] 

• How does the estimation accuracy of weighted averaging regression and 

calibration vary between species abundance and species incidence datasets, and 

how do species of different frequencies influence the estimation accuracy? 

[Paper IV] 
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3. Study area 

3.1 Location, physiography, and climate 

Depending on the availability of previously surveyed data, distinctiveness of the 

bioclimatic zonation, uniqueness of the vegetation, and evidence of changes in climate 

and land-use regimes, two locations in central Nepal were used for this study (Fig. 4). 

Central Nepal is an ideal place for testing several ecological and biogeographical 

hypotheses. The whole country, especially central Nepal (approximately between 26° 

33ʹ ‒ 29° 40ʹ N latitude and 83° 00ʹ ‒ 86° 30ʹ E longitude), is the transition zone of the 

eastern and western Himalaya (Banerji 1963), where elevation varies from about 100 

m to more than 8000 m above sea level (a.s.l.) over a relatively short south–north 

distance of c 200 km. The complex physiography of Nepal has been stratified into five 

major physiographic zones extending from east to west, namely the Tarai (below 500 

m a.s.l), Siwalik (500 ‒ 1000 m a.s.l.), Middle Hills/ Mountains (1000 ‒ 3000 m a.s.l.), 

High Mountains (3000 ‒ 5000 m a.s.l.), and High Himal (above 5000 m a.s.l.) (Fig. 4; 

LRMP 1986). These zones closely correspond to the seven bio-climatic zones 

identified by Dobremez (1976). The tropical bioclimatic zone is represented within the 

Tarai and Siwalik; subtropical and montane (temperate) zones are represented within 

the Middle Hills; subalpine and alpine bioclimatic zones are represented within the 

High Mountains, and nival (tundra and arctic) zones are represented within the High 

Himal physiographic zone. The country’s complex physiography and sharp elevation 

gradient over a relatively short distance have resulted in a remarkable variation in its 

climate and vegetation (Chaudhary 1998). 

Study area 1 (SA I): Phulchoki Mountain (2200 ‒ 2700 m a.s.l.) is part of the Middle 

Hills (sub-Himalayan) range and is located at the south-eastern periphery of the 

Kathmandu valley (Fig. 4). The region falls within the zone of temperate monsoon 

climate, where about 80% of annual precipitation (about 1900 mm) falls during June‒

September and snowfall is common during winter months. Average monthly 

temperatures in the area range from 6.7 – 18.6 °C (winter) to 16.1 – 25.2 °C (summer). 

Study area 2 (SA II): the Yala and Pansang Mountains within the Langtang National 
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Park (3800 ‒ 5000 m a.s.l.) are part of the High Mountains zone and are located at the 

northern border of central Nepal adjoining the Tibetan Autonomous Region of China 

(Fig. 4). SA II falls within the zone of subalpine/cool to alpine/cold climate (Miehe et 

al. 2015), where ~650 mm precipitation falls annually and snowfall is frequent 

throughout the winter months (Bhatta et al. 2015). Average monthly temperatures in 

the area range from -6.13 ‒ 3.63 °C (winter) to 6.44 ‒ 11.43 °C (summer).  

 

Figure 4. Location map of Nepal (top-right inset) with the study areas coloured in 

mid-blue; map of Nepal with physiographical zones (middle); and part of central 

Nepal (bottom-left insect) showing the study sites (in blue) in the different 

physiographical zones. 
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3.2 Vegetation 

Nepal lies between the Holarctic and Palaeotropical phytogeographical zones, 

respectively to the north and south, is at the crossroads of many floristic regions 

(Takhtajan 1986), and also encompasses differing environments of the Eastern and 

Western Himalaya (Shrestha & Joshi 1996). Thus, Nepal is unique in harbouring the 

vegetation and flora of many phytogeographical provinces and Himalayan regions. 

Several phytogeographic classifications have been proposed for Nepal (e.g., 

Schweinfurth 1957; Banerji 1963; Stainton 1972; Dobremez 1976; Miehe  et al. 2015), 

mainly following the vertical (south–north) physiographic and bioclimatic zonation 

and east–west precipitation-moisture gradient along the Himalayan axis. The detailed 

classifications of Stainton (1972) and Miehe (2015) describe 35 (under six 

phytogeographic divisions) and 30 main forest and vegetation types in Nepal, 

respectively, based on elevational belts, climatic zones, humidity, and major floristic 

composition. These are often grouped into five vegetation zones and 14 major 

vegetation types, mainly based on elevation and climate (Chaudhary 1998; GoN-

MoFSC 2014): (1) tropical zone (below 1000 m a.s.l.; Shorea robusta forest, tropical 

deciduous riverine forest, tropical evergreen forest); (2) subtropical zone (1000–2000 

m a.s.l.; Schima–Castanopsis forest, pine forest, alder forest); (3) temperate zone 

(2000–3000 m a.s.l.; lower temperate mixed broad-leaved forest, temperate mixed 

evergreen forest, upper temperate mixed broad-leaved forest); (4) subalpine zone 

(Abies spectabilis forest, birch–rhododendron forest); and (5) alpine zone (juniper–

rhododendron association, Caragana–Lonicera shrub, alpine meadows). 

Of these, at least seven major vegetation types (lower temperate mixed broad-leaved 

forest, temperate mixed evergreen forest, upper temperate mixed broad-leaved forest, 

Silver fir / Abies spectabilis forest, birch–rhododendron forest, juniper–rhododendron 

association, alpine meadows) of three vegetation zones (temperate, subalpine, alpine) 

are represented within the two study areas. The temperate forests in SA I mainly 

consist of oak–laurel associations, and cover an elevation belt between c. 1000 and 

3000 m a.s.l. in the Himalaya (Miehe  et al. 2015). The study area harbours Quercus 

lanata and Q. semecarpifolia at lower and higher elevations, respectively, as the 
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dominant canopy forming species. Sub-canopy trees such as Ilex dipyrena, Lindera 

pulcherrima, and Rhododendron arboreum are also associated with the oaks. 

Vegetation of SA II consists of subalpine (upper montane) and alpine associations 

(Miehe  et al. 2015). The subalpine vegetation (c. 3000–4000 m a.s.l.) is characterised 

by the predominance of Abies spectabilis, Betula utilis, and Rhododendron 

campanulatum. However, on the drier slopes, Juniperus recurva is associated with the 

shrubby rhododendrons. Alpine vegetation between c. 4000‒4300 m a.s.l. consists of 

dwarf shrubs such as Ephedra gerardiana, Rhododendron lepidotum, R. setosum, and 

herbs in the genera of Anemone, Pedicularis, and Primula. The upper alpine zone 

between c. 4300‒5000 m consists of alpine meadows dominated by graminoids. 

3.3 Land-use regimes 

Plant resources have been an integral part of the livelihoods and culture of people in 

the Himalaya since ancient time; however, substantial impacts on the natural 

vegetation in the region have occurred only over the past century (Khera et al. 2001; 

Schlütz & Zech 2004; Miehe et al. 2009; Shrestha et al. 2012a; Miehe  et al. 2015). 

Forest resources are mainly used for timber, firewood, fodder, non-timber forest 

products (NTFPs), livestock grazing, and for agro-forestry practices, whereas the 

pastures (rangelands) have been used for collection of fodder, medicinal herbs, and 

livestock grazing. Rapid population growth and migration, especially in the low-

elevation regions over the past few decades have resulted in tremendous pressure on 

the forests resources leading to habitat degradation and reduction in the forest area 

(FAO 2010; GoN-MoFSC 2014). Similarly, overgrazing, conversion of the rangelands 

for other uses, overharvesting of the resources, and fire have caused degradation of the 

rangeland habitats. Shrinkage of the rangeland area, together with changes in 

socioeconomic and resource management regimes have jointly contributed to a 

substantial reduction in the traditional livestock grazing practice in the high Himalaya 

(Banjade et al. 2008; Aryal et al. 2015). At the same time, marginal agricultural lands 

in the rural mountainous areas have been abandoned in recent years (GoN-MoFSC 

2014). The land-use disturbance drivers in Nepal vary in their nature, intensity, and 

frequency among the country’s physiographic zones. There has also been an increase 
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in the forest cover over recent years, especially in the Middle Hills, with the 

introduction of a community forestry programme (Gautam et al. 2002; Niraula et al. 

2013). 

As elsewhere in the Himalayan region, substantial anthropogenic impact is evident in 

both the study areas. Oak (Quercus semecarpifolia) forest in SA I was open to the 

public for its use until the mid-1990s. Forest resources such as fodder, firewood, 

timber, and leaf litter were harvested excessively, particularly from the low-elevation 

areas that were relatively more accessible to settlements, and incidences of intentional 

forest fire were also frequent for charcoal production (Shrestha et al. 2012a). As a 

consequence, the forest canopy was severely disturbed (Vetaas 1997). However, with 

the introduction of a community forestry programme in late 1990s, the forest has been 

better managed leading to regrowth of the canopy cover in recent years [see Paper II]. 

Transhumance and agriculture have been the major livelihoods of the inhabitants of 

the Langtang valley (SA II) and surrounding areas. Livestock grazing was especially 

intense in the areas below c. 4500 m a.s.l., but there has been a significant reduction in 

the number of alpine grazing livestock over the recent decades. This has resulted in a 

significant reduction in grazing intensity mainly in the lower alpine regions (3800 – 

4500 m a.s.l.), as observed elsewhere in the high Himalaya (Banjade et al. 2008; Aryal 

et al. 2014; Aryal et al. 2015). Decreases in livestock and crop production, restrictions 

imposed by the Park authorities after designation of the area as a National Park in 

1986, restrictions in the community forests of the surrounding areas lying on the 

transhumance route, and attraction of the local people towards alternative livelihood 

activities such as tourism and foreign employment are the major factors behind the 

declining traditional transhumance practice. These temporal changes in the 

anthropogenic disturbance regimes in both the study areas are regarded as potential 

land-use factors for temporal successional changes in the vegetation of the areas. 

3.4 Climate change 

Climate in the Nepal Himalaya is changing at a faster rate than the global average 

(Shrestha & Aryal 2011; Shrestha et al. 2012b), as observed across the whole 
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Himalaya (IPCC 2013). A rise in atmospheric temperature has been especially evident, 

whereas rainfall has rather irregular temporal trends (Karki et al. 2017). Climate 

change in the Nepal Himalaya is rather heterogeneous spatially due to high mountain 

systems and complex physiography. Climate data from the weather stations nearest to 

the study areas have been used in this thesis. An analysis of 46 years (1968–2013) of 

climate data from the nearest weather station to SA I reveals a significant rise in mean 

annual temperature, although there is no significant temporal trend in the rainfall of the 

region [Paper II]. Similarly, 23 years (1988–2010) of climate data from the nearest 

weather station to SA II reveal a significant increasing temporal trend in mean winter 

minimum temperature and annual precipitation [Paper III]. 
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4. Methods 

This thesis includes four scientific papers [Paper I-IV] based on the case studies 

conducted in temperate, subalpine, and alpine vegetation of the central Nepal. The 

case studies explore the scale-sensitivity of species diversity patterns and also 

document the directional temporal changes in species assemblages in response to 

climate and land-use changes at different spatial and temporal scales. 

4.1 Vegetation resurveys 

A study of the changes in plant species assemblages and their potential drivers is 

mainly based on vegetation resurveys over a decadal temporal scale. Therefore, the 

vegetation data and sampling techniques of the previous studies, i.e. Vetaas (1997) in 

the temperate oak forest (SA I) and Miehe (1990) in the subalpine and alpine 

vegetation (SA II) have largely been adopted here for the resurveys in 2013 (SA I) and 

2014 (SA II). The resurveys are not based on permanent plots or on exact plot 

relocations. Instead, previously surveyed locations were resurveyed using exactly the 

same sampling strategy as the previous survey (Paper II) or sampled systematically 

along multiple transects in the same locations using a representative number (3‒5 plots 

in each 100-m elevation) and size of the plots (10 m x 10 m), and vegetation was 

recorded on a similar scale as in the previous study (Paper III). Data processing was 

performed prior to analyses applying very conservative criteria for the selection of 

sampling units and species for analyses while minimising potential sampling bias, 

taxonomic inaccuracies, and census biases [Papers II, III]. To avoid potential 

taxonomic errors, only those species that were shared between past and present 

surveys [Papers II, III] and had more than two occurrences in either survey [Paper II] 

or had more than 3% frequency in either survey [Paper III] were selected for further 

analyses. Furthermore, estimation bias of cover and abundance was avoided by 

converting the cover-abundance scores to presence (1)–absence (0) for the overall 

ordination analysis [Paper III]. Similarly, potential mismatches in the sampling 

intensity along the elevation gradient [Paper III] were minimised by matching the 
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sampling units of both surveys in each 50-m elevation band with respect to elevation 

and vegetation type. 

4.2 Analytical pathway 

Overall, this research considers space at local to regional scales and a time scale of 

decades to millennia, with complex interactions between them both. The directional 

temporal changes in species assemblages are expected to be confounded with those 

occurring across space of different scales.  

In this context, first, the sensitivity of the elevational patterns of species diversity to 

the components of spatial scales was assessed [Paper I]. For this, the elevational 

patterns of empirical species richness for different plant life-forms at different grain 

sizes were analysed while maintaining consistent sampling strategy, proportion of the 

elevation gradient, and extent of sampling area for the different grain sizes. Then, 

elevational gamma diversity patterns from different areas (estimated by interpolation 

of the species’ elevational ranges) were correlated with the empirical patterns at 

different grain sizes.  

The study of the temporal variation in the composition of plant species assemblages is 

mainly based on the resurvey of the vegetation over a decadal scale. After partialling 

out the direct effects of elevation, observed directional changes in the plant 

assemblages were attributed to potential drivers and their possible interactions over the 

same temporal scale [Papers II, III]. Robustness of the observed patterns of temporal 

changes in response to potential drivers was tested by applying the widely used 

method of weighted averaging (WA) regression and calibration for environmental 

reconstructions [Paper III].  

Finally, using temporally replicated sample datasets of different types (species 

abundance and species incidence datasets of total species; high-frequency species 

only; low-frequency species only), robustness of the WA regression and calibration 

technique for analysing the spatiotemporal changes in vegetation was tested [Paper 

IV]. Assessment of the environmental estimation accuracy is based on the comparison 
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of prediction errors of WA regression and the temporal trends revealed by the 

calibrated environment for the different datasets. 

4.3 Analyses 

4.3.1 Regression 

Different types of regression analyses were performed based on the specific research 

question of the study. Generalised linear models were used to analyse the relationship 

between regional and local species richness patterns, and between empirical species 

richness and elevation gradient [Paper I]. Logistic regression was used to estimate 

elevational shifts in species optima [Paper III]. Linear regression analyses were 

performed to elucidate the change in elevation of the plant species assemblages in 

response to canopy gradient, time period, and locality [Paper II] and in response to 

time and temporal temperature gradient [Papers III, IV]. It was also used to test 

whether the temporal change in species abundance is related to the species’ 

temperature adaptation, optimum elevation change, and shade tolerance [Paper II]. 

4.3.2 Ordination 

Unconstrained as well as constrained ordination analyses were performed to show the 

change in species composition over spatial and temporal gradients [Papers II, III]. 

Correspondence analyses or redundancy analyses (when the length of the main 

gradient in the detrended correspondence analysis was < 2 standard deviation units) 

were also used to test the significance of the explanatory factors of the temporal 

changes [Papers II, III]. The species and site scores of the axis representing the 

temporal gradient were further analysed for temporal trends of compositional changes 

in response to temporally varying explanatory factors [Papers II, III]. 

4.3.3 Analysis of similarity 

A one-way analysis of similarity (ANOSIM) test with Bray-Curtis distance measures 

(Clarke 1993) was used to analyse the extent of change in species composition 

between two times. This analysis is a distance-based nonparametric test of the degree 

of difference between two or more species groups. A similarity percentage (SIMPER) 
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procedure (Clarke 1993) was used to reveal the contribution of each species to 

temporal changes in species composition [Paper III]. 

4.3.4 Weighted averaging (WA) regression and calibration 

The WA regression and calibration technique was used to estimate the current plot-

based elevation (temperature) based on the past species composition and elevation, and 

the measured and estimated elevations of the sample plots were used to analyse the 

elevational shifts in the assemblages [Papers III, IV]. With this technique, WA 

regression first establishes a relationship between historical species composition and 

the environmental variable in question, and this relationship is subsequently used to 

predict the environment for the modern dataset (species composition). The differences 

between the observed and calibrated elevations of the plots of the modern dataset were 

considered to be the elevational shift in species composition. 
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5. Results and discussion 

The directional temporal changes in the plant species composition of central Nepal in 

response to changing climate and land-use regimes have been assessed in terms of 

changes in species’ relative abundance and elevational shifts in species assemblages. 

Scale always becomes an issue when one aims to investigate spatiotemporal patterns 

of species composition or diversity along environmental gradients (Wiens 1989; Levin 

1992; Whittaker et al. 2001). As documented by earlier studies (e.g., Shmida & Wilson 

1985; Ricklefs 1987; van der Maarel 1988; Wiens 1989; Levin 1992; Rosenzweig 

1998), species diversity patterns and their determinants vary with spatial as well as 

temporal scale in a similar fashion, and the influences of spatial and temporal scales on 

species diversity patterns are similar (Adler et al. 2005; Soininen 2010). Consequently, 

the patterns and processes related to temporal and spatial scales remain confounded 

(Wiens 1989; Dornelas et al. 2013) and makes a causal interpretation of the observed 

patterns challenging. 

The sample plots of both surveys are distributed along an elevation gradient and the 

species composition and the explanatory factors therefore exhibit distinct elevational 

patterns. The spatial gradients collapse into an almost single dimension when 

vegetation is sampled using transects along an elevation gradient (Colwell 2011; 

Dornelas et al. 2013), which potentially concords with the temporal gradient in this 

study. Moreover, the temporally replicated vegetation surveys were not based on 

permanent plots, but the previously sampled locations were selectively resurveyed, 

potentially incorporating spatial variations into the temporal data to some extent. This 

is a typical situation for space-time interactions, where the time series is embedded in 

a spatial context and vice versa, and consequently the spatial and temporal patterns 

remain confounded (Dornelas et al. 2013). Before considering the contribution of the 

spatial variations in the observed temporal patterns as a methodological error or 

endorsing these in a spatiotemporal context, it becomes crucial to assess separately the 

influence of spatial scale on the species diversity patterns and processes. This was 

done thoroughly by treating species richness as the main response variable, and 

various components of spatial scale, i.e. grain size, focus, and regional area, as 
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analytical manipulations. The degree of mismatch between elevational patterns of 

species richness across the nested grain sizes and across different areas used for 

regional richness estimation gives an estimation of the influence of spatial scale on the 

species richness patterns and underlying processes [Paper I]. 

5.1 Scale sensitivity of the elevational gradients in species diversity 

Assumptions 

Interpolated plant species richness for Nepal reveals a hump-shaped elevational pattern 

for herbs with maximum richness between 4000 and 4100 m a.s.l. and a pattern of 

linear decline for woody species. Therefore, the elevational gamma diversity (regional 

richness) pattern was a priori formulated as a hypothesis of alpha diversity patterns, 

where all the richness patterns at the regional scale would be revealed at the level of 

grain and focus (area of local gamma estimation). If this is true, a significant linear 

concordance between the local and regional richness would be revealed irrespective of 

grain size, area of gamma estimation, or plant life-form, verifying the scale invariance 

of elevational patterns of species richness. 

In agreement with the hypothesis, the elevational patterns of species richness were 

broadly consistent from the very fine scale (1 m2 grain size) to the regional level, 

implying general scale invariance in the patterns. This is partly in line with the grain 

size-invariant richness patterns documented by previous studies (e.g., Grytnes 2003; 

Nogués-Bravo et al. 2008; Rowe et al. 2015). Scale-invariance in the patterns indicates 

that species diversity of the local habitats adequately represents the patterns and 

processes of regional species richness along an elevation gradient. At all spatial scales, 

the rate of site-to-site species loss increases with elevation, most probably due to a 

decrease in land surface area and length of the growing season with increasing 

elevation of the alpine areas (Körner 2000, 2007). Such a generality in the climate and 

physiography-driven nestedness component of the beta diversity along an elevation 

gradient likely produces the patterns independent of spatial scale. 

Minor but systematic differences are noted in the patterns across the spatial scales, 

especially for the woody species. The patterns become more apparent at coarse grain 
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sizes and with lager areas of regional richness estimation, partly in line with the 

patterns revealed by several coarse-scale studies (e.g., Crawley & Harral 2001; Rahbek 

& Graves 2001; Romdal & Grytnes 2007; Belmaker & Jetz 2011). The coarser scale 

represents better the regional species pool by sampling more completely the species as 

well as habitat diversity in a region (Romdal & Grytnes 2007). As the spatial scale 

decreases, the probability of a species being represented decreases due to an area 

effect, and the environmental conditions at such fine scales also become more 

exclusive (less representative) because the heterogeneity of different environmental 

variables is expressed at different scales (Tuomisto et al. 2016). The uniqueness of the 

environment of such small areas limits species colonisation. At fine scales (1m2 ‒ 16 

m2 grain sizes in this thesis), the number of individuals that can fit within each 

sampling unit becomes small compared to the species pool. Under such conditions, the 

patterns at the fine scale are mainly determined by the density of the individuals that 

can occupy such small areas (Oksanen 1996; Tuomisto & Ruokolainen 2012). Here, 

site-specific non-climatic factors such as fine-scale habitat heterogeneity, soil 

moisture, soil chemistry, and stochastic factors are more influential (Svenning 1999; 

Palmer 2006; Auestad et al. 2008). These factors jointly moderate the strength of the 

relationship between species richness and major environmental determinants and lead 

to a deviation of the local diversity pattern from that at the regional scale (Belmaker & 

Jetz 2011; Rowe et al. 2015). Consequently, the patterns become more stochastic as 

the spatial scale of the grain becomes finer (Watt 1947; Kersaw & Looney 1985). 

In an apparent refutation of the hypothesis, higher scale sensitivity of woody species 

than herbaceous species is likely due to the life-form characteristics of the woody 

species and scale-sensitivity of their major driving factor, i.e. climate. The likelihood 

of recording woody species at a fine scale (1 m2 grain) is consistently low because of 

their large size and low density compared with those of herbs in an alpine region 

(Oksanen 1996). Woody species diversity in high elevation areas is more responsive to 

regional climatic conditions, especially temperature (Wang et al. 2009; Qian 2013) 

than to fine-scale environmental factors. Therefore, the use of a larger spatial scale is 

particularly important for woody species diversity for two main reasons – the larger 

area captures better the sparse woody species density in the high elevation areas and it 
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represents better its driving factors, i.e. habitat diversity and abiotic environmental 

heterogeneity. The observed patterns thus imply that although the overall elevational 

patterns of species richness are largely scale invariant from the plot to regional level, 

they are also, to some extent, affected by variation in the relative influence of the 

causal factors of the spatial scale and by life-form characteristics of the plant species. 

Overall scale invariance in the species richness patterns along an elevation gradient 

implies that species diversity in the alpine region can be reliably studied at different 

spatial scales ranging from 1 m2 grain size to the regional level. Therefore, spatial 

inaccuracies of plot-relocations, variations in the grain sizes used in the surveys, and 

differences in the spatial extents of the sampling area in the landscape are unlikely to 

distort the basic pattern. However, the patterns for woody species are least pronounced 

at the fine scale. Therefore, a representative grain size of 100 m2 has been used in the 

vegetation resurveys for the studies of temporal changes [Papers II, III]. The influence 

of the major spatial component, i.e. elevation gradient on the temporal variation in 

species composition was then partialled out analytically. 

5.2 Temporal changes in plant species composition 

An upward shift of plant species or assemblages has been the most frequently 

documented ecological response of species to contemporary climate change (as 

reviewed by Lenoir & Svenning 2015; Dainese et al. 2017). However, evidence 

accumulated over recent years reveals that this response may not be as pervasive and 

pronounced as previously expected. Several modified responses of plant assemblages 

under climate warming have been attributed to factors such as changed precipitation-

moisture regime, land-use disturbance regime, and biotic interactions (e.g., Bertrand et 

al. 2011; Crimmins et al. 2011; Liang et al. 2016). The role of land-use change may be 

vital in modifying the trajectories of the climate warming-driven temporal changes in 

plant assemblages because such changes often interact with climate change and 

thereby compound or confound or counteract the climatic effects (Dainese et al. 2017; 

Goring & Williams 2017; Guo et al. 2018). Moreover, both the factors are 

multidimensional and heterogeneous over space, and their frequency and intensity may 

be redistributed from one spatial scale to the next. Consequently, their impacts may 
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not be uniform across geographic locations and vegetation types. The causal 

interpretation of the observed changes is always a challenge due to these confounding 

drivers, plus the relative influence of climatic versus land-use disturbance in driving 

the temporal vegetation changes often lacks consensus (e.g., Vittoz et al. 2009; 

Nowacki & Abrams 2015; Pederson et al. 2015; Zhang et al. 2015; Abrams & 

Nowacki 2018). 

The directional temporal changes in the plant assemblages of the temperate oak forest 

and alpine vegetation in central Nepal have been attributed to the temporally varying 

climatic and land-use factors in the region [Papers II, III]. The influence of climate 

change has been assessed in terms of changes in species’ relative abundance and shifts 

in the elevational distribution of species assemblages, whereas the influence of land-

use factors has been interpreted from proxy variables of the ecological attributes of 

species such as shade tolerance and livestock palatability. Temporal change in species 

abundance was analysed individually for each species, while the elevational shift was 

analysed in terms of species assemblages, i.e. shifts in plot-elevations. 

Assumptions 

The null hypothesis assumes no significant systematic temporal changes in the species 

composition of central Nepal. In the case of the rejection of the null hypothesis, two 

alternative hypotheses to be tested are:  

a) Climate change hypothesis: An upslope shift in the species assemblages, i.e. 

‘thermophilisation’ will be observed, whereby an increase in those species with higher 

temperature optima (= lower elevation optima) and a decrease in those species with 

lower temperature optima (= higher elevation optima) takes place in the sample plots.  

b) Land-use change hypothesis: There was a temporal canopy disturbance gradient in 

the temperate oak forest with an increase in canopy closure, especially in the low-

elevation forest (below 2400 m a.s.l.) that was heavily disturbed (open-canopied) in 

the past. The land-use hypothesis therefore assumes ‘mesophication’ of the 

understorey habitat, whereby an increase in the shade-tolerant species and a decrease 

in the shade-intolerant species is predicted.  
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A temporal grazing gradient has been created by reduction in the livestock grazing in 

the subalpine and alpine pastures. It is especially evident in the areas below c. 4500 m 

a.s.l., where the density of the herbivores was high in the past. An overall increase in 

species abundance due to a release of grazing pressure is predicted, especially in those 

areas that were highly grazed in the past. 

Overall, there are significant temporal changes in the species composition of both 

study areas, with the vast majority of species increasing in abundance, although a 

sizeable minority of the analysed species decreased significantly over the past two 

decades. The changes were statistically related to both the explanatory factors, i.e. 

climate warming and land-use change, and accord with the major trends of 

temperature and land-use driven changes across the mountainous areas of the world 

(e.g., Lenoir et al. 2010b; Bai et al. 2011; Gottfried et al. 2012; De Frenne et al. 2013; 

Rumpf et al. 2018). A closer examination of the evident changes, however, reveals 

rather different trends in response to the two explanatory factors and some of the 

patterns are potentially confounded due to interactions between climate change and 

land-use change. 

In agreement with the climate hypothesis, changes in the temperate oak forest are 

explained largely by the trend of climate warming. Here, the abundance of the warm-

adapted species, i.e. species with elevation optima lower than the lowest elevation of 

the sample plots (2200 m a.s.l) increased with a simultaneous decrease in the cold-

adapted species in the plots, i.e. species with elevation optima higher than the 2600 m 

a.s.l. [Paper II]. Accordingly, the changes are manifest as a decrease in the weighted 

average elevation of the sample plots, i.e. species assemblages. Such changes are 

significantly more pronounced in the semi-open canopy forest than in the closed 

canopy forest. In the alpine vegetation, only a few species assemblages (sample plots) 

in the upper alpine belt reveal such an upward shift, probably in response to winter 

climate warming [Paper III]. In these plots, species with elevation optima lower than 

the elevation of sample plot increased whereas those with optima higher than the 

elevation of sample plot decreased. This apparent ‘thermophilisation’ of plant species 

composition in central Nepal is most likely due the species tracking their climate niche 
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under climate warming. This trend is broadly consistent with the patterns of warming-

driven compositional changes across Asia (e.g., Bai et al. 2011; Telwala et al. 2013; 

Agnihotri et al. 2017), Europe, and North America (e.g., Grabherr et al. 1994; Walther 

et al. 2002; Klanderud & Birks 2003; Walther et al. 2005; Felde et al. 2012; Gottfried 

et al. 2012; Rumpf et al. 2018).  

Land-use disturbance-related changes of different magnitudes are evident in the 

species composition of both areas and likely modified the warming-driven changes in 

both areas along the temporal land-use gradients. The warming-driven changes are 

more apparent in the oak forest with its semi-open canopy cover that was heavily 

disturbed and more open in the past compared to those in the closed canopy forest. 

This is an indication that the dense canopy in the closed-canopy forest may have 

moderated the process of thermophilisation by maintaining a cooler understorey 

microclimate (Lenoir et al. 2010b; De Frenne et al. 2013). In partial agreement with 

the land-use change hypothesis, there is a significant increase in shade-tolerant trees 

and bamboo and a decline in the shade-intolerant herbaceous and shrub species. The 

changes are likely driven by the mesophication of the understorey environment due to 

an increase in forest canopy cover. Mesophication is a process that causes structural 

changes to the microenvironment by developing understorey conditions that are 

cooler, more humid, and damp (Nowacki & Abrams 2008), and thereby influences the 

local abundance of species (Nowacki & Abrams 2008; Verheyen et al. 2012). The 

regrowth of the forest canopy most likely altered both resource quantity and 

heterogeneity on the forest floor thus affecting the understorey species (Bartels & 

Chen 2010). Among the changing species, the winners were those that were warm-

adapted as well as shade-tolerant and losers were species that were cold-adapted and 

shade-intolerant. 

The changes directed by the temporal grazing reduction are more pronounced in the 

alpine species composition, as evidenced by an overall increase in species abundance, 

alongside a downhill shift of the vast majority of the species assemblages. The changes 

are even more pronounced in the lower alpine areas where there was a greater decrease 

in livestock grazing intensity. This trend contrasts with that expected under the climate 
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change hypothesis and with the findings of a large number of studies that document 

upslope shifts in species or assemblages under climate warming (e.g., Grabherr et al. 

1994; Klanderud & Birks 2003; Walther et al. 2005; Lenoir et al. 2008; Felde et al. 

2012; Morueta-Holme et al. 2015). In my study, the warmer winter temperature and 

increased annual precipitation most likely interacted with the temporal grazing 

gradient to direct the compositional changes. Both the livestock palatable and 

unpalatable species have increased significantly after reduction of grazing pressure in 

the study areas and the availability of sufficient suitable space, nitrogen, and water 

likely minimised interspecific competition. A temporal increase in winter temperature 

may enhance early spring melting of snow and decrease snow cover, which strongly 

modifies both the physical and thermal environments in alpine areas (Kreyling 2010), 

and an increase in annual precipitation may enhance the water availability and 

potentially reduce warming-driven water stress during summer (Pfeifer-Meister et al. 

2016). These factors together likely resulted in longer growing seasons with warmer 

and more humid conditions in the spring and summer. While these changes acted 

uniformly along the whole elevation gradient, more radical changes in species 

composition are seen towards the lower parts of the elevation gradient (below c. 4500 

m a.s.l.), most likely due to significant reductions in the grazing intensity over time 

that potentially altered the species interactions in these areas. This facilitated the 

expansion of the species’ populations in the lower alpine areas, signifying that the 

changes driven by grazing reduction prevailed over those by climate warming. 

Although the directional compositional changes have been interpreted using the 

ecological attributes and elevational distribution of the species, the changes have been 

confounded to some extent. Among the increasing species in the temperate forest, not 

all the warm-adapted species are shade-tolerant and, vice versa, among the decreasing 

species, not all the cold-adapted species are shade-intolerant. Similarly, not all the 

decreasing alpine species are grazing indicators (nitrophilous) and not all the 

increasing species are grazing palatable species. There might be several alternative 

factors responsible for these variations. Some of the species may be specialised to their 

local microhabitats and track the fluctuations in fine-scale habitat heterogeneity and 

soil conditions rather than the general temperature, moisture, light, and grazing 
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regimes. A consistent response of all species to climate warming cannot be expected 

because of each species’ individualistic climate niche and complex interactions with 

changes in land-use. Land-use change can have any of a confounding or compounding 

or counteracting role in the climate-driven changes of the vegetation (De Frenne et al. 

2013; Goring & Williams 2017), depending largely on the life-history and eco-

physiological features of the species and intensities of the drivers themselves. 

In summary, climate warming at a regional level is a potential driver of changes in 

species composition via thermophilisation. However, the role of land-use change at a 

landscape scale is equally (if not more) influential in driving the temporal changes. 

Land-use change in the form of forest canopy closure and temporal grazing reduction 

may variously interact with climate warming to counteract or confound the changes 

driven by climate warming. Therefore, the magnitude and direction of the temporal 

vegetation changes in central Nepal would be dependent on the intensity as well as the 

frequency of both regional climate warming and land-use changes. 

5.3 Weighted averaging (WA) regression and environmental calibration as a tool 

for quantifying climate-driven elevational shifts in vegetation 

Various analytical and vegetation survey techniques were applied for analysing 

spatiotemporal changes in species composition under changing climate and land-use 

regimes [Papers I–III]. The reliability of the observed patterns and their causal 

interpretations depends strongly on the robustness of the methodological approach 

taken. The importance of the analytical techniques is paramount because each 

technique is based on certain underlying assumptions regarding the spatiotemporal 

dynamics of the species in relation to its environment and has its own strengths and 

limitations regarding the different methodological dimensions. Therefore, the 

methodological factors such as data sampling technique, precision, and adequacy in 

the resurveys, quantity and quality of the data, skill and expertise of the observer, and 

the analytical technique are of key importance (e.g., Klanderud & Birks 2003; Tingley 

& Beissinger 2009; Ross et al. 2010; Kopecký & Macek 2015; Kapfer et al. 2016).  
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Bearing this in mind, a technique of environmental reconstruction recently 

incorporated into modern vegetation ecology (e.g., Brady et al. 2010; Bertrand et al. 

2011; Bertrand et al. 2016) was partly used in this thesis [Paper III] and its 

performance was rigorously tested. Prediction accuracy of the technique was assessed 

mainly by comparing the goodness-of-fit of the WA regression and calibration models 

of species abundance and incidence datasets from the two study areas that exhibited 

pronounced temporal trends [Paper IV]. 

WA regression and calibration reconstructed the environment of the plot-based 

vegetation datasets with a fairly high accuracy. The inferred temporal trends in the 

vegetation and reconstructed environment are supported by ordination analyses that 

reveal significant changes in species composition along the temporal gradient. 

However, an ‘edge effect’ that produces an overestimation of optima at the low end of 

the gradient and an underestimation at the high end was prominent with all the 

analysed datasets. This is most likely caused by the training sets having high 

compositional turnover along the dominant and long spatial gradient (ter Braak & 

Juggins 1993). Monotonic curvilinear deshrinking of WA regression models slightly 

reduced the edge-effects as recommended by previous research (ter Braak & Juggins 

1993). 

The accuracy of WA (average for incidence data) regression is notably higher (smaller 

root mean squared error of predictions (RMSEP)) with the species incidence datasets 

than with the abundance datasets. This difference is likely associated with 

methodological inaccuracies. The datasets based on vegetation surveys by different 

observers may be prone to inconsistencies regarding sampling design and effort, 

census or estimation accuracy, and individual observer’s skills and experience (e.g., 

Archaux et al. 2006; Tingley & Beissinger 2009; Kapfer et al. 2016), ultimately 

contributing to spurious analyses. It is highly unlikely that two different observers with 

different skills and expertise will estimate the same cover-abundance for a species. 

Moreover, species abundance fluctuates remarkably between years due to seasonal 

changes in the weather conditions (Diekmann 2003). Such estimation bias in cover-

abundance datasets produces higher prediction errors in WA regression because 
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inaccuracy in the estimated abundance is incorporated as part of the weighting that is 

given to a species during its WA estimation (WA calculation procedure: ter Braak & 

van Dam 1989). The avoidance of abundance data is therefore sometimes 

recommended for ecological studies that estimate the weighted average or that 

compare the historical and current species composition (Diekmann 1995, 2003). 

Incidence datasets are devoid of such biases because the abundance of each species is 

standardised to 1. Also from a statistical point of view, presence-absence values are 

preferable over the ordinal and partly non-linear scale of cover-abundance values 

(Diekmann 1995). Use of incidence data for WA calculation has been recommended 

by many authors because the quantitative response of a species does not depend only 

on the environmental conditions but also on its growth form (Ellenberg 1991; 

Diekmann 1995 and references therein). Some species grow singly, whereas others 

form extensive populations. The more frequent species are weighted comparatively 

more in WA calculations based on abundance datasets but their higher frequency is 

due to growth-form characteristics rather than a better response to environmental 

conditions. Differences in the sampling procedure may also influence estimation 

accuracies of WA regression. The training set (past dataset) of study area II (Langtang 

region) is based on selective sampling, whereas the modern (current) dataset is based 

on a non-preferential sampling procedure. Such differences in the sampling design can 

produce several important differences in the datasets regarding the representation of 

frequent and infrequent species, species heterogeneity, and species-environment 

concordance (Diekmann et al. 2007; Michalcová et al. 2011; Bhatta et al. 2012), 

ultimately resulting in higher prediction errors in WA regression. 

The trend of the estimation accuracy of the WA regressions with the variously 

processed datasets is rather inconsistent. Broadly, training sets with all species usually 

produced the most accurate (lowest RMSEP) estimations as assessed by the classical 

diagnostics of palaeoenvironmental reconstructions (Birks et al. 1990; Birks 1994); 

however, this was not the case for all the datasets of both study areas. Removal of the 

31 most frequent species from the full training set (175 species) for study area I 

(Phulchoki Mountain) reduced the estimation accuracy compared to that of the total 
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species dataset, whereas estimation accuracy increased when the least frequent 49 

species were removed from the full training set. These findings contrast with those of 

previous studies which find that large prediction errors occur only when the 

commonest and numerically most abundant taxa are included in the WA regression 

(Birks 1994). In the full training sets, the most frequent taxa generally have higher 

taxonomic precision, whereas taxonomic inaccuracy (and hence noise) is more 

associated with the least frequent taxa. Removal of the most frequent species from the 

full training set therefore causes a loss of ecological information, whereas removal of 

the least frequent species intuitively minimises noise within the dataset. Among the 

datasets of study area II, there are 113 species in the 1990 dataset and 121 species in 

the 2014 dataset with less than 5% frequency. Despite a high taxonomic mismatch 

between both datasets due to these species, removal of almost half of the species from 

the dataset contributed to a loss of environmental information associated with some of 

the correctly identified species. Moreover, low-frequency species may sometimes have 

a narrow environmental tolerance and may therefore be an optimal indicator species. 

This suggests that high accuracy in WA regression and environmental calibration 

requires high taxonomic accuracy, together with high spatial, temporal, and 

chronological precision (ter Braak & Juggins 1993; Birks 1994; Birks et al. 2010). 

Accuracy of the calibrated environment was assessed qualitatively and rather 

indirectly by comparing the fitness of the regression models of elevational shifts in 

species assemblages. The models are based on the calibrated and measured elevations 

of the species assemblages (sample plots). The fitness of the models (indicated by 

adjusted r2 of the models) mirrored the estimation accuracy of the WA regressions. 

This means that precise WA regression produces more accurate calibrated 

environmental parameters, which in turn, result in a regression model with higher 

adjusted r2 for better estimating the elevational shift in plant assemblages. Thus, these 

trends indicate that estimation accuracy of the WA regression and environmental 

calibration is significantly influenced by taxonomic precision, census accuracy, and 

the number of taxa included or eliminated during data processing. 
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In summary, WA regression and environmental calibration with plot-based vegetation 

data perform with a fairly high accuracy, although edge-effects may be pronounced, 

which can be reduced to some extent by regression deshrinking procedures. Use of a 

species incidence matrix may improve the estimation accuracy by avoiding the 

estimation or census bias that is more associated with the abundance datasets. Species 

data processing cannot guarantee the most accurate environmental preditions: instead, 

the most optimal environmental reconstruction can be achieved by using the full set of 

species in the datasets. 
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6. Concluding remarks 

This synthesis has assessed the scale relations of species diversity patterns, 

documented the directional temporal changes in plant species assemblages in response 

to temporally varying climate and land-use regimes along an elevation gradient in 

central Nepal, and tested the performance of the weighted averaging regression and 

and calibration technique for quantifying the temporal changes in species assemblages 

and their environment. 

Conclusions drawn from the study are: 

1. The basic elevational pattern of species richness is largely scale invariant and hence 

richness gradients can be reliably studied at different spatial scales from the fine grain 

to the regional level. Any scale sensitivity there is varies slightly according to plant 

life-form, most likely because the relative influence of the environmental determinants 

of different life-forms varies with the spatial scale. Least pronounced patterns, 

especially for woody species at the fine grain size, indicate that species diversity 

sampled using a larger grain size over a larger extent are more appropriate for the 

study of large-scale patterns such as elevational gradients at regional or continental 

scales. 

2. Climate warming is a major determinant of the successional changes via 

thermophilisation of the plant species assemblages at the regional level. However, 

land-use changes may prevail over the climatic effects at the landscape and habitat 

level thereby confounding or counteracting the temporal changes driven by climate 

warming. The trajectories of the successional changes in the vegetation of central 

Nepal therefore depend on the intensity as well as the frequency of both factors at a 

particular spatial scale. 

3. A large proportion of the evident temporal changes in the species composition in 

central Nepal are most likely driven by the complex interactions and feedback 

mechanisms between climate change and land-use change. Therefore, succession 

management in the landscape should focus on the potential interactions between both 

these factors in driving the temporal changes.  
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4. Environmental factors for plot-based vegetation datasets can be calibrated along a 

time scale with fairly high accuracy using weighted averaging regression and 

calibration, but the prediction errors may be high at the endpoints of the environmental 

gradient. Use of a species incidence matrix may improve the estimation accuracy of 

the technique. Species data processing cannot guarantee the most accurate 

environmental predictions: instead, most optimal calibrations can be achieved by using 

the full set of the species in the datasets. Taxonomic precision and census or 

estimation accuracy are of paramount importance in the environmental 

reconstructions. 
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7. Future perspectives 

♦ Nepal Himalaya is a data-deficient region and the discrete ecological data 

generated by the various case studies are of different spatial resolutions and 

sampling schemes, which limit the use of these datasets to document the 

biodiversity components, patterns, and processes at different spatiotemporal 

extents. But because the basic spatial pattern of plant diversity is unlikely to be 

significantly influenced by differences in the spatial scale, these datasets can be 

carefully synthesised to study the spatiotemporal patterns and processes of species 

diversity and composition at larger scales. 

♦ The potential drivers of biodiversity, especially the land-use factors in the region 

are severely under-documented at all scales. This thesis has used qualitative proxy 

variables for land-use change and used climatic variables from nearby weather 

stations. Quantification of the land-use factors using standard techniques is more 

appropriate than using subjective proxy variables. Similarly, atmospheric and soil 

temperatures regularly measured at different spatial and temporal scales would 

give a more precise picture of climate change in the region than the extrapolated 

climate factors. 

♦ A moderating role of forest canopy closure against warmer maximum 

temperatures has been documented. At the same time, the densified canopy and 

sub-canopy layer may affect the understorey by trapping infrared radiation 

(enhancing the daily minimum temperature) and water vapour released from 

evapotranspiration, and by lowering wind speeds (reducing drying effect) thereby 

allowing higher understorey humidity to prevail. Research on the effect of such a 

modified understorey environment on the regeneration and survival of species 

would give a more complete picture of the compositional changes in the forests in 

the context of forest canopy closure and climate warming.  

♦ Land-use changes interact frequently with climate change factors and thereby 

modify the climatic responses of the species. Studies of temporal changes 

focussing more on the potential interaction and feedback mechanisms between 
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climate change and land-use changes from landscape to regional level are 

warranted. This can feed the national and regional biodiversity management 

strategies with cutting-edge scientific information for the restoration and 

sustainable management of the landscapes.  

♦ Testing the robustness of the observed patterns by applying different 

complementary analytical techniques is essential for deducing reliable 

conclusions. And equally important is the use of robust techniques, compatible 

with the nature of the datasets, which can also solve or minimise the potential 

errors in the datasets. Moreover, datasets with high taxonomic precision, 

estimation or census accuracy, and sampling adequacy are of paramount 

importance for elucidating the successional changes in species composition with 

their underpinning causation.  
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