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Abstract 

Planctomycetes represent a phylum of bacteria that possess peculiar characteristics. 

These include reproduction by budding, crateriform structures, rosette formation and 

an intricate cellular plan. They are considered important contributors in the global 

carbon and nitrogen cycle and have in recent years been proposed to have potential 

for various biotechnological applications. The Planctomycetes are ubiquitous bacteria, 

and has been reported in diverse and extreme environments, both terrestrial and 

aquatic. These extreme environments include cave ecosystems, as well as ice and 

glacier ecosystems. However, these reports have been based solely on molecular 

studies, and no Planctomycetes have been described in axenic culture from either cave 

or frozen environments. In this study the presence of Planctomycetes in perennial ice 

from the Svarthammarhola ice cave is elucidated. Drilled ice cores from the distinct 

layered ice mass were collected. Thawed ice was used as inoculum in enrichments for 

isolation of Planctomycetes strains. Isolated strains were then subjects for 

characterization, utilizing molecular and cultivation-based techniques. Four 

Planctomycetes strains were obtained in axenic culture, and all strains showed both 

morphological and physiological differences. Phylogenetic analyses of the strains’ 16S 

rRNA gene revealed that 3 of the strains shared phylogenetic similarities of 99 and 

98%, and their closest described species was 90% similar. The fourth strain was 88 and 

87% similar towards the other strains, and displayed 90% similarity towards its closest 

described relative, thus the isolated strains represent two novel genera, within the 

phylum Planctomycetes.  

To elucidate the strains’ ability to produce bioactive molecules, two of the strains were 

screened against the two cancerous cell lines Molm13 and PC3, as well as the normal 

healthy rat kidney cell line, NRK. Aqueous and organic compounds were extracted 

from cell cultures and used to treat the cell lines for 72 hours. The cell lines were then 

investigated for apoptosis induced by the extracts. The screening revealed that the 

strains were able to produce compounds with intermediate cytotoxicity towards the 

human AML cell line Molm13. Thus, displaying that the strains might be able to 

produce bioactive molecules that provide advantages towards other organisms 

competing for resources in their indigenous environment. 
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1. Introduction 

1.1 Cave Systems 

Caves can be defined as “any natural space below the surface that extends beyond the 

twilight zone, and that is accessible to humans” (Northup and Lavoie, 2001). Several 

different types of caves exist, and they are classified according to bedrock type and 

formation methods (Palmer, 1991). Caves formed in limestone and other calcareous 

rocks, and lava tubes in basaltic rocks are the most common type of caves (Northup 

and Lavoie, 2001). Other cave types such as gypsum, granite and ice also exist, but 

their distribution is more limited. There are many caves spread across the face of our 

planet, however only a few of these have been studied. In Europe and North America 

alone, it is estimated that only 50% of all caves have been explored. Considering the 

entire globe, only about 10% of all caves have been discovered (Lee et al. 2012), where 

only 350 have been described in detail (Onac and Forti, 2011). Caves represent a type 

of natural, rocky subsurface habitat that host some of the most exotic landscapes, 

minerals and mineral formations (White, 1988; Ford and Williams, 2007; Palmer, 

2007), as well as microorganisms (Culver and Pipan, 2009).  

1.1.1 Cave Formation 

There are several types of caves, and their formation is usually caused by the 

dissolution of sedimentary rocks (Palmer, 2007; White and Culver, 2000). One type of 

cave is Karst caves, which are formed by the presence of soluble rocks, where systems 

of cracks and fissures are developed by aggressive water flow that dissolves the 

soluble rocks (Ford and Williams, 1989; Kruber, 1915; Sokolov, 1962; Thornbury, 1954). 

Another type is tectonic caves, these caves form as the bedrock shifts along cracks and 

faults in the Earth’s crust, creating openings and fractures as the bedrock moves. There 

are also thermokarst caves, which forms in rocks containing ice (Kotlyakov, 1984). The 

cavity formation is caused by small amounts of ice that are frozen inside rocks and 

creates cracks and fissures. The shape of this ice is determining the shape of the cavity.  

There are also glacial caves, which can be formed inside the ice, firn, and the snow of 

glaciers or snowfields (Ezhov, 1990; Mavlyudov, 1992, 2006, 2018). Causes for the cave 
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formation are the same as for karst caves, except for the chemical dissolution of rocks, 

which in glacial cavities are caused by ice thermoerosion (Mavlyudov, 2018) 

1.1.2 Ice Caves 

Ice caves are caves hosting perennial ice accumulations and are considered the most 

enigmatic and least well-known part of the global cryosphere (Persoiu and Lauritzen, 

2018). They occur in places were the combination of cave morphology and climate 

conditions make favourable habitats for the formation of ice and allows it to persist. 

Ice caves have proven to be sensitive to today’s increasing global temperatures and 

climatic changes. In fact, many of present-day ice caves are threatened by these 

factors, which are jeopardizing their existence in the future (Kern and Persoiu, 2013). 

This is very unfortunate considering that they hold valuable information regarding 

historical climate variations, as well as possibly hosting valuable biodiversity (Persoiu 

and Lauritzen, 2018; Purcarea, 2018).  

1.1.3 Cave Glaciation 

For development of perennial ice inside a cave certain conditions from the outside 

climate and the cave climate must be fulfilled. It is necessary that the temperature 

outside the cave is below 0°C at least some part of the year.  Inside the cave, the air 

and rocks must also have temperatures below 0°C.  Ice can also form if there is a 

difference in temperature between the rock and the outside air, as well as when 

bedrock temperatures are above 0°C. Flow of external air can still cool the cave walls 

to freezing temperatures during winter months and force the formation of ice 

(Mavlyudov, 1989, 2008). The nature of the cavity determines the air circulation in the 

cave, as well as which zones of the cave remains cooled (Mavlyudov, 1994). It is in such 

cooling zones that the mean annual air temperature (MAAT) and the rock temperature 

are below 0°C, and lower than other areas of the cave. These zones are favourable 

areas for ice development. For the formation of ice to happen it is also necessary for 

the frozen cavity to be penetrated by water. Ice formation occurs when the heat 

brought in by the water is less than the cold reserve in the cave (Mavlyudov, 2018). 

The morphology, distribution, ice reserve and ice mass balance are defined by the 

amount of water entering the cave. 
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Most perennial ice hosting caves have a MAAT higher than 0°C, therefore certain 

requirements regarding climate must be met to either maintain ice, or for the 

formation of new or more ice in the cave. One requirement is that there is 

undercooling during winter months, the other, a mechanism for the preservation of 

negative temperatures during summer months. Undercooling can be achieved by 

conductive heat transfer, driven by temperature differences between the cave and the 

outside environment. The cooling of a cave can also be achieved by pressure 

fluctuations, gravitational settling, and by diphasic flow due to water circulation 

(Persiou, 2018). 

1.1.4 Svarthammarhola Ice Cave 

Svarthammarhola (N67.13′E15.31′ at 295 m a.s.l.) is an ice cave located near Fauske, 

north of the Arctic circle, in Norway. It is the largest ice cave in Fennoscandia and 

contains the largest cave chamber (300x90x40 m/lwh) in this region, possibly also in 

Northern Europe (Lauritzen et al., 2018). The cave has two major entrances (Figure 

1.1), one situated at 245 m a.s.l and the other at 295 m a.s.l. It is described as a simple 

dynamic cave, with congelation ice accumulation and ablation near the lower 

entrance, driven by Balch-ventilation, with the availability of intruding water 

(Luetscher and Jeannin, 2004; Lauritzen et al., 2018). Near the lower entrance is a 

horizontal tunnel where the ice mass is situated (Figure 1.1). The ice mass has a 

horizontal surface which is 160 m long and 25 m wide, with an exposed flat surface of 

3350 m2. Near the downstream end there is an 18 m high ablation wall into a lower 

gallery where the ice is exposed (Figure 1.1). An ablation tunnel (3 m in diameter) has 

formed under the ice, penetrating the ablation wall (Lauritzen et al., 2018). From the 

lowest lobe in the western ablation wall to the top surface of the present ice the total 

maximum stratigraphic thickness of the ice mass is 27 m.  
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Figure 1.1: Svarthammarhola, plan. E: Major entrances. Red dots, data logger stations; ice 
block extents: blue, 2016 (Sampling site), 1970; green: oldest extent (of unknown age) as 
traved by cryogenic precipitates. Source: Lauritzen et al., 2018. 

 

Over the past decades since the cave first was discovered in 1969, there has been 

some significant changes to the cave. The first cave survey lead by Heap (1970), 

reported on a much more extensive ice surface than present today (5450 m2) 

(Lauritzen et al., 2018). The large ice surface at the upstream end is the part that have 

been impacted the most. Especially during the 1980s when it disintegrated and 

transformed into an ice dammed lake, which disappeared completely (Lauritzen et al., 

2018). In 1976, photographs were taken of the ice, these were used to compare the ice 

in 2016. It was revealed that the downstream ice was reduced with about 5 m and the 

upstream end close to 2 m (Lauritzen et al., 2018). Measurements from 2005 to 2011, 

combined with historical data, reveals that the ice surface has declined with an 

average rate of 0,11-0,15 m/year since 1975 (Lauritzen et al., 2018). In the oblation 

wall, organic matter like plant remains and sediments occurs at various levels in the ice 

mass. By using 14C dating of plant fragments it has been revealed that the base of the 

ice mass can be dated back to AD 1365 ± 75, making the base of the ice mass <650 

years old (Lauritzen et al., 2018). As previously mentioned Svarthammarhola is 
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significantly affected by Balch-ventilation, with winds of up to 8 m/s (Baastad, 2006; 

Lauritzen et al., 2018). The wind direction depends on the difference in temperature 

between the cave and the surface. When the cave is warmer than the surface the wind 

moves in the cave’s upward direction (chimney effect), when the cave is colder than 

the surface, the wind moves downwards. Between these two conditions, a significant 

oscillation is displayed by the wind (Baastad, 2006; Lauritzen et al., 2018). Based on 

ventilation the energy flux of the cave was calculated to be -421 GJ between 2005 and 

2006 (Baastad, 2006), meaning that the cave consumed energy and that the ice mass 

was ablating (Lauritzen et al., 2018). Lauritzen and collaborates (2018) states that: 

“From the historical data, the ice mass appears to have ablated monotonically, and 

possibly at an increasing rate since the cave was discovered in 1969”. 
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1.2 Cave Microbiology 

1.2.1 History of Cave Microbiology 

There has been an increased interest in microbial communities from dark and frozen 

environments over the past decade. However, prior to 1997, only a few publications 

described the microbiology of caves, were most of these studies were based on 

microscopic descriptions of cultured bacteria (Faust, 1949; Caumartin, 1963; Brigmon 

et al., 1994; Rusterholtz and Mallory, 1994; Mikell et al., 1996). Between the 1900s to 

the 1940s there was an emphasis to whether saltpetre and carbonate speleothems 

was a microbial component to cave formation or of microbial origin as secondary 

nitrate deposits (Faust, 1949; Hess, 1900; Dudich, 1932; Høeg, 1949). From 1960s to 

early 1990s the focus of cave microbiology turned into the cultivation and linking 

microbial processes to mineralogical phenomena (Caumartin, 1963; Thrailkill, 1964; 

Smyk and Drzal, 1964; Went, 1969; Caumartin, 1968; Hubbard et al., 1986). Besides 

these main focuses microbial cave research has made efforts in describing metabolism 

related to food web structure and development of cave ecosystems. These earlier 

studies lead to the conclusion that microorganisms could not have an important role in 

most caves, and that they would typically be inactive or in low biomass due to nutrient 

limitations. It has also been emphasized that microorganisms in caves have identical or 

similar functions, to those in soil communities (Caumartin, 1963; Northup and Lavoie, 

2001; Barton and Northup, 2007). 

1.2.2 Conditions for Microbial Life in Caves 

Living in the subsurface differs in many ways from life on the surface. There are both 

advantages and disadvantages connected to subsurface microbial life. The organisms 

are living in the dark and cannot benefit from the sunlight energy. On the other hand, 

they are protected from the damaging effects caused by ultraviolet radiation, extreme 

weather conditions, desiccation and temperature fluctuations. The cave environment 

is relatively stable and represents a unique subset of the deep subsurface environment 

on Earth (Boston et al., 2001). All caves are different when it comes to biological, 

chemical and physical characteristics (Onac and Forti, 2011). Rock type and its physical 

and chemical properties, including the geological and hydrologic characteristics, are 

influencing the diversity of organisms found in cave systems (Engel, 2015). The trophic 
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structure is often less complex in caves than in other surface environments due to 

absence of light, stable temperatures and humidity, as well as low variations in 

nutrient sources (Ghosh et al. 2017). Although nutrients are limited in caves, diverse 

microorganisms have been reported (Cheeptham, 2013; Culver and Pipan, 2009). 

Carbon and other nutrients are obtained by cave microorganisms primarily by two 

mechanisms. One being the conversion of inorganic carbon to organic carbon by 

photosynthesis or chemosynthesis performed by autotrophs. The other being 

heterotrophic assimilation of already existing organic carbon (Engel, 2015). Near the 

entrance there will be a possibility for photosynthesis, however, deeper and darker 

into the cave, the presence of photosynthetic autotrophs will diminish (Ghosh et al., 

2017; Barton, 2015; Cheeptham, 2013). Microorganisms can be brought deep inside 

the cave by wind and water, as reported by Ogórek and collaborators, were fungal 

spores from the same species were found both deep inside and outside an ice cave in 

Slovakia (Ogórek et al., 2017). When brought deep into the cave by wind or water the 

microorganisms may not survive the conditions but can still be preserved and retain 

their genetic information (Engel, 2015). Some shallow cave systems can also provide 

allochthonous energy and nutrients by the penetration of the subsurface by plant 

roots. In this way, dissolved or particulate organic matter can be provided to the 

subsurface (Engel, 2015). Alterations in the method and the amount of surface 

materials supplied to the cave ecosystems can result in energy and nutrient limitations 

and can further lead to oligotrophic conditions in some caves (Poulson and Lavoie, 

2000). Microorganisms are known to be at the energetic and nutritional base of the 

cave ecosystems. However, microbial diversity and the microorganisms’ role in cave 

ecosystems have not been fully understood. Many types of caves have been 

discovered and studied worldwide, yet our knowledge about colonization, diversity 

and metabolic function is very limited (Lee et al., 2012). 

1.2.3 Microorganisms from Cold Environments 

The Earth can be regarded a cold planet. Ocean covers 70% of the Earth and deep 

water with temperatures below 5°C makes up the majority of the ocean. In addition to 

this, large parts of the biosphere are periodically permanently frozen and as much as 

24% of the exposed land surface of the Northern Hemisphere are permanently frozen 
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(Zhang et al., 2003). The microorganisms that live in these permanently cold 

environments are referred to as psychrophiles and their habitats vary from the deep 

ocean, the polar regions, glaciers, caves and to the upper atmosphere (Feller and 

Gerday, 2003; Feller, 2013) 

Microorganisms found in these areas are cold adapted and considered psychrophilic, 

which means that they grow optimally in temperatures less than 15°C. Psychrotolerant 

organisms are organisms that survive at temperatures below 0°C but grow optimally at 

20-25°C (Morita, 1975). Over the course of time these microorganisms have evolved 

several adaptive strategies to maintain their vital metabolic functions under such 

extreme conditions (D’amico et al., 2006). Life in cold and icy environments depends 

on several adapted traits to counter stress factors like low temperatures, pH 

fluctuation, high osmotic pressure and limited nutrient availability (D’amico et al., 

2006; Margesin and Miteva, 2011; De Maayer et al., 2014). These factors will place 

physiochemical constraint on cellular functions by negatively influencing cell integrity, 

as well as water viscosity, solute diffusion rates, membrane fluidity, enzyme kinetics 

and macromolecular interactions (Rodrigues and Tiedje, 2008; Piette et al., 2011). This 

have led to the evolution of several adaptations on the cellular level, including 

production of cryoprotectants and antifreeze proteins such as glycine and betaine 

which lowers the cytoplasmic freezing point, protecting against ice crystal formation in 

the cytoplasm (Casanueva et al., 2010; Cowan, 2009). Some psychrophiles also 

produce antifreeze or ice binding proteins that bind to ice crystals accumulated in the 

cell and lowers their freezing point (Celik et al., 2013).  

In the recent years, the main emphasis of microorganisms in cold environments has 

been on their mechanisms of adaptation, as well as their structural and functional 

diversity in these environments (Price, 2007; Priscu et al., 2007; Margesin and Miteva, 

2011; Gunde-Cimerman et al., 2012). These frozen environments include polar ice 

sheets and glaciers (Miteva et al., 2004; Lanoil et al., 2009; Rehakova et al., 2010; 

Anesio and Laybourn-Parry, 2012), permafrost (Rivkina et al., 2004), mountain glacier 

forefields (Lapanje et al., 2012; Zumsteg et al., 2012), frozen lakes (Felip et al., 1995), 

sea ice (Deming, 2002), Arctic (Varin et al., 2010; Adams et al., 2014) and Antarctic 

permanent lake ice (Priscu et al., 1998; Dieser et al., 2010; Murray et al., 2012). 
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Antarctic volcanic ice caves on Mount Erebus has recently been studied, focusing on 

the microbial communities. The study revealed low bacterial diversity as well as low 

fungal diversity (Tebo et al., 2015).  

1.2.4 Ice Cave Microbiology 

Ice caves are represented by unique and secluded icy habitats with light-deprived 

ecosystems of low nutrient content and constant low temperatures, that contrast to 

other parts of the Earth’s cryosphere (Purcarea, 2018). The first report of 

microorganisms in an ice cave can be dated back to 1949, when Pop (1949) detected 

the presence of nitrifying bacterial communities in sediments in the Scărișoara ice cave 

in Romania. In 2003, Margesin and collaborates isolated the first bacterial strain from 

an ice cave in the Austrian alps (Margesin et al., 2003, 2004). Microbial research 

involving ice caves have since then been very limited, however, recently, the 

Scărișoara ice cave has been host of several recent studies on microbial communities. 

In 2013 Hillebrand-Voiculescu and co-workers did cultivation experiments on one-year 

old ice stalagmites in the cave, and reported cultured strains affiliating to the 

Pseudomonas, Bacillus and Paenibacillus genera. One year later the presence of 

bacterial and eukaryotic SSU rRNA were reported in samples collected from 1400 and 

900-year-old ice block layers (Hillebrand-Voiculescu et al., 2014). Since then cultured 

characterization of cultured bacteria from sequential ice has been done using PCR-

DGGE, finding bacterial amplicons belonging to Gammaproteobacteria, Firmicutes, 

Bacteroidetes and Actinobacteria, with varying distribution along the chronological ice 

layers (Iţcuş et al., 2016). 

1.2.5 The Importance of Studying Ice Caves 

The inaccessibility and the limited impact on human daily life and the environment, 

have led to a constrained interest in microbial cave research (Purcarea, 2018). 

However, this reduced interest has paradoxically lead to conserved microbial diversity 

in these caves. There is now a growing interest to revisit these habitats, much due to 

recent studies on potential drug discovery and antibiotic resistance of cave 

microorganisms (Pawlowski et al., 2016; Ghosh et al., 2017). Microorganisms found in 

caves have also displayed various enzymatic and antimicrobial activities, that contrast 
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to those observed in other extreme environments (Barton, 2006; Cheeptham, 2013; 

Lavoie, 2015; Man et al., 2015).  

At the same time, frozen and cold environments have been proposed as habitats 

hosting microbial communities with potential for numerous biotechnological 

resources. Especially enzymes derived from cold-adapted prokaryotes is proving to be 

ideal tools for several biotechnological applications. This includes applications in many 

diverse industries like food and beverages, pharmaceuticals, detergents and 

biosurfactants, biofilm removal, personal care and cosmetics, molecular biology, 

diagnostics, therapeutics and is still spreading to new areas of the industry (Huston, 

2008; Karan et al., 2012; Perfumo et al., 2018; Antranikian et al., 2004; Muller-Greven, 

et al., 2012; Awazu et al., 2011; Celik and Yetis, 2012; Fornbacke and Clarsund 2013; 

Barroca et al., 2017).  

We are considered to live in a ‘post antibiotic era’ (Alanis, 2005) with an increasing 

number of reports of multi-resistant pathogenic bacteria, where few or no antibiotics 

are available (Wright, 2016). However, antibiotic resistance mechanisms predate our 

use of antibiotics, and is an ancient and naturally occurring phenomenon, widespread 

in the environment (D’Costa et al., 2011). Antibiotic resistance can occur through a 

variety of molecular mechanisms, including decreased drug permeability, active efflux, 

alteration or bypass of the drug target, antibiotic-modifying enzymes, and 

physiological states such as biofilm. These mechanisms are often classified as either 

mechanisms that have evolved specifically to detoxify specific antibiotics, or 

mechanisms that are intrinsic to specific bacteria that have the effect of resistance, but 

not targeted to an individual antibiotic (Wright, 2016). To minimize the development 

of antibiotic resistant pathogens, there is a need for both understanding the 

mechanisms behind the resistance and the discovery of new antibiotic compounds 

(Andersson, 2003). Today most antimicrobial compounds are derived from tropical and 

warm environments, therefore, compounds deriving from cold-adapted 

microorganisms are likely to be different from many of the classes of antimicrobials 

currently in use (Borchert et al., 2017). Hence, researchers turn to other environments, 

cold and dark environments. In the past decade several novel antimicrobials have been 

discovered in cold- adapted microorganisms, including synoxazolidinone A and B 
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(Tadesse et al., 2010), serraticin A (Sánchez et al., 2010), subtilomycin (Phelan et al., 

2013) and lobophorin H and I (Pan et al., 2013).  

Ice caves could host very interesting microbiomes from a biotechnological point of 

view, considering that ice caves represent dark, cold and preserved communities of 

microorganisms. Recently, ice caves were also recognized as a proxy for paleoclimate 

reconstruction (Persoiu and Onac, 2012), this means that studying the ice cave 

microbiome can lead to discovery of microbial biomarkers for climate variations 

(Purcarea, 2018). Very few microbiological studies have been performed on ice caves. 

Based on the biotechnological potential of microorganisms from cave ecosystems and 

cold environments, ice caves could be a good habitat for microorganisms possessing 

traits of biotechnological value. 
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1.3 Planctomycetes 

Planctomycetes are a division of peculiar bacteria within the PVC superphylum that 

also include Verrucomicrobia, Chlamydiae and Lentisphaerae, as well as the candidate 

phyla Poribacter (Wagner and Horn, 2006). Planctomycetes were at first described as 

eukaryotes (Gimesi, 1924), but was later acknowledged as bacteria (Hirsch, 1972), and 

were first isolated in pure culture by Staley (1973). Despite this, proposals have been 

made that Planctomycetes share some sort of evolutionary link with eukaryotes 

(Fuerst and Sagulenko, 2011; Forterre and Gribaldo, 2010; Devos and Reynaud, 2010). 

Much due to their intricate cellular plan and that their genomes encode proteins with 

high structural similarity to membrane coat proteins in eukaryotes, which no other 

bacteria or archaea do (Santarella-Mellwig et al., 2010). 

1.3.1 Phylogeny 

Planctomycetes are known for having large genomes (Jeske et al., 2013; Kim et al., 

2016), like Roseimaritima ulvae (8,130 MB) (Faria et al., 2017), Singulisphaera 

acidiphila (9,76 MB) (Kulichevskaya et al., 2008), and Zavarzinella formosa with a 

genome size of 9,86 MB (Kulichevskaya et al., 2009). The branching of the bacterial 

tree of life has been subject to much debate regarding Planctomycetes. Together with 

thermophiles, Planctomycetes has been proposed as some of the deepest branching 

bacteria (Stackebrandt et al., 1984; Brochier and Philippe, 2002). In recent years, 

Planctomycetes have been proposed to belong at the deepest branch among the phyla 

of the domain bacteria in the tree of life (Jun et al., 2010; Fuerst and Sagulenko, 2011), 

as shown in Figure 1.2. 
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Figure 1.2: A tree of representatives of the domains Bacteria, Archaea and Eykarya, 
constructed by comparing feature frequency profiles of whole proteomes, and showing a 
deep-branching position for Planctomycetes relative to other bacterial phyla. The colouring of 
branches indicates ‘supraclass’ groups, which are defined by statistical support values of >82, 
except for in the Archaea, for which there are three clear clades according to this analysis. The 
numbers indicate the jack-knife monophyly index (%). Source: Fuerst and Sagulenko, 2011. 

 

Planctomycetes together with Verrucomicrobia and Chlamydiae (PVC) has consistently 

been recovered as a monophyletic group in trees, based on different phylogenetic 

estimation methods (Wagner and Horn, 2006; Pilhofer et al., 2008; Kamneva et al., 

2010). The phylum of Planctomycetes branches into two different classes; 

Phycisphaerae and Planctomycetia. These further branches into 4 different orders, 6 

families, 35 genera and 58 described species, where 18 of these have the status as 

Candidatus (NCBI Taxonomy Browser, retrieved 6.5.18). 
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1.3.2 Distribution in the Environment 

Since their first discovery, Planctomycetes have been observed in a wide range of 

terrestrial and aquatic habitats. These habitats include marine, hypersaline, 

hyperthermal, brackish and fresh water, as well as in many terrestrial environments 

including soils and acidic environments (Fuerst 1995; Neef et al., 1998; Schlesner, 

1994; Lage and Bondoso, 2012). They have been found in biofilms on kelp and 

seaweed surface (Bengtsson and Øvreås, 2010; Fukanaga et al., 2009; Lage and 

Bondoso, 2011; Burke et al., 2011; Kim et al., 2016), and in association with several 

eukaryotic organisms like prawns, sponges and crabs (Fuerst et al., 1991, 1997; 

Pimentel-Elardo et al., 2003; Kohn et al., 2016). Planctomycetes have also been found 

in cave environments (Pašić et al., 2009; Borsodi et al., 2012; De Mandal et al., 2014), 

as well as in cold environments like glaciers, sea ice and on Mt. Erebus, Antarctica 

(Rysgaard and Glud, 2004; Zeng et al., 2013; Boetius et al., 2015; Tebo et al., 2015; 

Yang et al., 2016). 

1.3.3 Physiology 

Most Planctomycetes are chemoheterotrophic aerobes, and are considered 

oligotrophs that grow slowly (Fuerst, 2017). There have also been reports of 

Planctomycetes isolated and cultured anaerobically with sulphur, that probably 

ferment carbohydrates (Elshahed et al., 2007). The majority of Planctomycetes 

described in axenic culture are mesophilic, however, thermophile species have also 

been reported (Giovannoni et al., 1987; Slobodkina et al., 2016). One of these species 

are I. pallida, isolated from a hot spring, and has a maximum growth temperature of 

55°C (Giovannoni et al., 1987). Several acidophilic strains have been reported from 

acidic wetlands in Russia (Kulichevskaya et al., 2007, 2008; Dedysh and Kulichevskaya, 

2013). Among these are S. acidiphila and S. paludicola which are capable of growth at 

pH as low as 4,2. There are several reports of Planctomycetes inhabiting marine 

microalgae, which have been used as both a source of inoculum for isolation, and as 

growth media (Bengtsson and Øvreås 2010; Lage and Bondoso, 2014). They are 

believed to have a central role in algal heteropolysaccharide degradation including 

exopolysaccharides produced by other bacteria (Fuerst, 2017).  
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Some Planctomycetes are anammox bacteria and possess the ability to oxidize 

ammonium anaerobically and autotrophically (Kartal et al., 2012; van Niftrik and 

Jetten, 2012). These Planctomycetes possess anammoxosomes, compartments where 

the ammonium oxidation takes place and has been called a ‘bacterial mitochondrion’ 

(Jogler, 2014; Neumann et al., 2014).  

A much wider diversity of Planctomycetes have been recorded by molecular methods 

than recorded based on axenic cultures (Yilmaz et al., 2015). This suggests that a much 

wider physiological diversity may be explored and applied in the future (Fuerst, 2017). 

1.3.4 Cell Morphology 

Members of the Planctomycetes division possess a number of morphological traits 

distinguishing them from other bacteria, such as non-prosthecate stalks, crateriform-

like structures, budding reproduction and rosette formation (Fuerst, 1995). At the 

same time some species and strains display fimbria, fascicles and holdfast-structures 

(Fuerst, 1995).  

Crateriform structures have been reported to be homogeneously distributed over the 

cell surface of Planctomycetes (Fuerst, 1995), and has an average opening of 35 nm, 

except around the neck where the budding happens (Santarella-Mellwig et al., 2013). 

Recently, nuclear pore-like structures have been found in Gemmata obscuriglobus. 

These pore-like structures were found to occur in internal membranes and are similar 

to the nuclear pores found in eukaryotes (Sagulenko et al., 2017).  

Most Planctomycetes display a distinctive cell structure, where spherical, ovoid, 

ellipsoidal, tear-drop and pear-like shapes are the most common (Fuerst, 1995). Non-

prosthecate stalks are observed in some species and are used as holdfast structures, 

either for the cells to adhere to a surface, or for cells to attach to one another and 

form rosette formations (Figure1.3 a and b) (Fuerst, 1995). Some Planctomycetes also 

display flagella which are often sheathed and originating from a cellular pole (Fuerst, 

1995). 
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Figure 1.3: Planctomycetes cell arrangement. A) Cells attach to one another via non-
prosthecate stalks and form rosette formations. B) Rosette formation with cells attaching to 
the surface via their stalks. Figures have been made based on data from Fuerst, 1995. 

 

1.3.5 Cell Division and Life Cycle 

One of the hallmark traits of the Planctomycetes are that they reproduce by a budding 

process (Fuerst, 1995). Most Planctomycetes have budding reproduction from a 

reproductive pole, although there have been reports of budding occurring from the 

side of the cell (Christian Jogler, personal communication, May 10, 2017). 

Planctomycetes are thought to lack the FtsZ protein (Glöckner er al., 2003), which are 

considered an important protein for binary fission (Margolin, 2000). As opposed to 

division by binary fission, budding reproduction is a process where a small bud forms 

at one end of the mother cell. As the bud grows, the size of the mother cell remains 

the same, while the bud enlarges. When the bud reaches about the same size as the 

mother cell, the bud detaches (Tekniepe et al., 1981). A significant difference to 

reproduction by binary fission is that the mother cell often has different properties 

than the bud. This is represented in Figure 1.4, where the life cycle of a typical 

Planctomycetes cell is illustrated. A Pirellula-like, flagellated cell attaches to a surface 

before budding reproduction follows, producing a flagellated swarmer cell (Franzmann 

and Skerman, 1984; Tekniepe et al., 1981). 

A) B) 
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Figure 1.4: Generalized life-cycle for Planctomycetes. Mature swarmer cell fastens to surface 
by its holdfast-structure, followed by budding from a reproductive pole. The daughter cell 
matures and develops flagella, before budding is completed, and the daughter cell becomes 
swarmer cell. (Based on Fuerst, 1995; Franzmann and Skerman, 1984; Tekniepe et al. 1981). 

In 2009, Lee and collaborates showed that the life cycle of Gemmata obscuriglobus is a 

complex process. The formation and development of the bud starts from a 

reproductive pole. As the bud grows, chromosomal nucleoid DNA is transported to the 

daughter cell. The transferred DNA is initially naked and not surrounded by a 

membrane. Eventually a complete nucleoid envelope is formed, consisting of two 

closely apposed membranes, deriving from the intracytoplasmic membranes of both 

the mother and daughter cell. Budding reproduction can be performed repeatedly by a 

single mother cell (Lee et al., 2009). 

1.3.6 Cell Plan 

Planctomycetes were thought to possess a compartmentalized cytosol, separated by 

an intracytoplasmic membrane that makes up the paryphoplasm and pirellulosome 

(Lindsay et al., 1997). However, this has been challenged by recent studies (Speth et 

al., 2012; Santarella-Mellwig et al., 2013; Boedeker et al., 2017). The planctomycetal 

cell plan is now thought to be of a more Gram-negative nature (Boedeker et al., 2017), 

than previously assumed (Fuerst and Sagulenko, 2011). Recent studies have shown 

that Planctomycetes possess a typically Gram-negative cell envelope with an outer 
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membrane, a peptidoglycan layer and a cytoplasmic membrane (Jeske et al., 2015). 

Their cytoplasm is an enclosed compartment in its entirety that follows the outer 

shape of the cell with invaginations of enlarged periplasm (Figure 1.5), rather than 

being fully compartmentalized (Boedeker et al., 2017). The only exceptions are 

anammox Planctomycetes, which possess anammoxosomes (Jogler, 2014). The 

invaginations of the periplasm have shown to be interconnected, however, the 

occurrence of the invaginations vary from cell to cell, and species to species (Boedeker 

et al., 2017). In 2013, Santarella-Mellwig and collaborates showed that the 

Planctomycete Gemmata obscuriglobus are not compartmentalized as invaginations in 

the membrane are not closed, but rather interconnected on a three-dimensional basis 

(Santarella-Mellwig et al., 2013).  

 

Figure 1.5: Overview of the planctomycetal cell plan. Showing tendency of massive 
invaginations. Crateriform structures, anammoxosome (only applicable for anammox 
Planctomycetes), enlarged peroplasm, outer membrane, peptidoglycan layer, cytoplasmic 
membrane, cytoplasm, ribosomes and fibrous structures. Source: Boedeker et al., 2017. 
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1.3.7 Cell Wall 

The planctomycetal cell wall have been of much debate over the past decades. Initially 

Planctomycetes was thought to have a proteinaceous cell wall (König et al., 1984; 

Liesack et al., 1986), as well as lacking peptidoglycan and the ability to synthesize the 

FtsZ protein essential for cell division (Fuerst and Sagulenko, 2011; Jogler et al., 2012; 

Pilhofer et al., 2008). Planctomycetes were also suggested to support endocytosis-like 

uptake of macromolecules into the paryphoplasma of the species Gemmata 

obscuriglobus (Santarella-Mellwig et al., 2010), which would be the first occurrence of 

a vesicle-based uptake system outside the eukaryotic domain (Lonhienne et al., 2010; 

Jermy, 2010). This supplemented to the link between Planctomycetes and eukaryotes. 

In 2006, Wagner and Horn described Planctomycetes as Gram-negative bacteria, 

although it has been pointed out that their cell plan differs from the classical Gram-

negative cell plan (Fuerst and Sagulenko, 2011; Devos, 2014). In recent years, 

peptidoglycan has been found in several Planctomycetes even though the bacterial cell 

division protein FtsZ is absent (van Teeseling et al., 2015; Jeske et al., 2015), 

questioning the previous consensus. Other studies have shown that it is possible for 

bacterial cell division in the absence of the FtsZ protein (Leaver et al., 2009), and 

peptidoglycan has also been found in Chlamydiae, which also lacks the FtsZ protein 

(Pilhofer et al., 2013). Recent bioinformatic studies and chemical analysis has proposed 

a more Gram-negative cell plan (Speth et al., 2012; Mahat et al., 2015). In 2017 an 

extensive study by Boedeker and collaborates, utilizing both bioinformatic and 

microscopic techniques, supported a more typical Gram-negative cell plan for 

Planctomycetes than previously assumed (Fuerst and Sagulenko, 2011). Where they 

emphasize that a Gram-negative cell plan challenges the existence of an endocytosis-

like process (Boedeker et al., 2017). They point out that there still is a notable 

difference between the planctomycetal cell plan and a traditional Gram-negative one. 

Whereas most Gram-negative bacteria produce outer membrane vesicles 

(Schwechheimer and Kuehn, 2015), invaginations in their outer membrane and 

formation of periplasmic vesicles is stopped by its asymmetrical architecture and the 

peptidoglycan cell wall (van Teeseling et al., 2015; Jeske et al., 2015; Boedeker et al., 

2017).   
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1.4 The importance of Planctomycetal Studies 

Planctomycetes have been proposed to possess several traits of biotechnological value 

(Fuerst, 2017). Much due to their large genome sizes, as well and their ecological role. 

From an evolutionary point of view, Planctomycetes are especially interesting because 

of their deep phylogenetic branching in the bacterial domain (Fuerst and Sagulenko, 

2011).  

1.4.1 Potential Producers of New Antibiotics 

We are entering an era were the need to find new ‘natural’ antibiotics to fight 

multidrug resistant pathogens is of the utmost importance. The discovery of new 

antibiotic compounds correlates to the phylogenetic distance between the 

microorganism under study and the known producers (Müller and Wink, 2014). This 

means that bacteria with a phylogenetically distinct lineage could be a good source for 

secondary metabolites and antibiotic compounds. The most potent antibiotic 

producers are also characterized by large genomes, often more than 8 MB, and 

complex life styles (Müller and Wink, 2014). Taking this into consideration, 

Planctomycetes could potentially be excellent producers of novel antibiotic 

compounds. Recent discoveries have proven that Planctomycetes are able to produce 

antibiotics and antifungal molecules and their potential in biotechnological 

applications have been shown through genome mining (Donadio et al., 2007; Jeske et 

al., 2013; Graça et al., 2016; Boedeker et al., 2017).  

1.4.2 Role in Ecosystems Exploited for Biotechnological Purposes  

As previously mentioned, Planctomycetes are found in a wide range of environments, 

and are of clear environmental importance as they are known to play key roles in 

global carbon and nitrogen cycles (Fuerst and Sagulenko, 2011; Kartal et al., 2013). This 

knowledge has led to exploitation of metabolic processes for biotechnological 

application. For example, the use of anammox Planctomycetes in wastewater 

treatment, where they anaerobically oxidize ammonium (Kartal et al., 2013). This has 

been utilized in large industrial scale bioreactors (van Niftrik and Jetten, 2012). 

Furthermore, the biotechnological application of planctomycetal enzymes such as 

sulfatases as biocatalysts has been demonstrated (Wallner et al., 2005). Also, 

Planctomycetes has been proposed as new models for cell complexity and activities, 
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and is considered a significant source for new lipids, enzymes, and for new types of 

waste remediation technology (Fuerst, 2017).  

1.4.3 Potential for Anticancer Activity 

Cancer is expected to become the leading cause of death in near future (Heron and 

Anderson, 2016). With both an increasing and aging population, new challenges on 

society emerges, in respect to the need for novel therapeutics with less harmful side-

effects. The majority of new developed therapeutics are derived from natural 

compounds (Imhoff et al., 2011). Bacterial groups such as Actinobacteria, 

Myxobacteria, and Cyanobacteria are already well-known producers of bioactive 

secondary metabolites (Jeske et al., 2016). It is known that studying novel bacterial 

phyla can lead to the discovery of new bioactive compounds (Bredholt et al., 2008). 

Therefore, it seems reasonable that Planctomycetes could be a potential source of 

such compounds. In 2016, Jeske et al., showed that planctomycetal strains might be 

able to produce several secondary metabolites and postulated that Planctomycetes 

are an untapped source of novel bioactive molecules (Jeske et al., 2016). 

Planctomycetes have recently been proven to possess secondary metabolite genes and 

clusters that are related to pathways for production of various bioactive compounds, 

including antitumor compunds like epothilone (Graça et al., 2016).   

1.4.4 An Understudied Division of Bacteria 

Despite their importance for environmental microbiology, biotechnology and cell 

biology, few planctomycetal strains has been obtained as axenic cultures. Thus, from a 

phylogenetic point of view the phylum is very undersampled, and only a few 

representatives are taxonomically characterized in detail (Ward, 2010; Fuerst and 

Sagulenko, 2011). As previously mentioned, Planctomycetes has been reported both in 

cave environments and in frozen environments (Pašić et al., 2009; Borsodi et al., 2012; 

De Mandal et al., 2014; Rysgaard and Glud, 2004; Zeng et al., 2013; Boetius et al., 

2015; Tebo et al., 2015; Yang et al., 2016). However, these studies have been based on 

the structure of the microbial communities and not being designated Planctomycetes 

studies. No Planctomycetes has previously been obtained in culture from these 

environments and no planctomycetes have been reported from an ice cave. Cultured 

organisms can provide a substantial amount of information about their role in the 
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environment, as well as making it possible for in vitro studies addressing their potential 

as producers of bioactive molecules.  
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2. Aims 

The aim for this thesis was elucidate the presence and success of Planctomycetes in 

glacier cave ecosystems at the Svarthammarhola Ice Cave in Norway. For this purpose, 

three hypotheses were evaluated in more detail: 

1) Planctomycetes are indigenous members of the glacier cave microbiome 

2) Planctomycetes are active and alive members of the glacier cave microbiome 

3) The production of secondary metabolites permits Planctomycetes to actively 

defend their habitats and resources towards other faster growing 

heterotrophic bacteria 
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3. Sample Material 

The sample material used for this study was obtained from a glacier inside the cave 

Svarthammarhola (N67.13′E15.31′ at 295 m a.s.l.) near Fauske, Norway (Figure 3.1). 

Samples were collected in October 2016 as a part of an expedition lead by Øvreås, 

Lauritzen and Purcarea affiliated to the CaveIce project 

(http://www.ibiol.ro/proiecte/Cavice/trips.htm).  

The cave has two entrances as indicated by arrows in Figure 3.1. Near the lower 

entrance (245 m a.s.l) in a horizontal tunnel, a large ice mass is found, represented by 

the blue area in Figure 3.1. The supposed flat surface of the ice is found to be 3350 m2, 

with a horizontal surface 160 m long and up to 25 m wide (Lauritzen et al., 2018). 

Samples for this study was gathered from this ice mass. 

 
Figure 3.1: Svarthammarhola, plan. E: Major entrances. Red dots, data logger stations; ice 
block extents: blue, 2016 (Sampling site), 1970; green: oldest extent (of unknown age) as 
traved by cryogenic precipitates. Source: Lauritzen et al., 2018. 

 

The ice mass was divided into 7 different layers and sample sites, based on prior 

knowledge about the stratification and dating of the ice (Lauritzen et al., 2018). In that 
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way the samples would represent a chrono sequence, ranging from oldest ice samples 

near the cave floor, and the youngest at the top of the ice mass (Figure 3.2).  

 

Figure 3.2: Sampling site. Showing the foot of the ice mass and how the different layers in the 
ice was divided into sampling sites. Photo: Stein Erik Lauritzen. 

Samples were named P1-7, whereas P1 was taken from the layer closest to the cave 

floor (Figure 3.2), thereby the oldest part of the ice. Sample P7 was taken from the 

layer closest to the top of the ice mass (youngest). An overview of the different 

elevations the samples were collected from, and the samples pH values are 

represented in Table 3.1 

Table 3.1: Sampling details. 

SAMPLE ICE BLOCK ELEVATION 
(m) 

ICE VOLUME 
(L) 

pH 

P1 0.45-0.63 5 8,92 
P2 2.60 – 2.80 4 8,18 
P3 3.77 – 4.06 3 6,8 
P4 6.40 – 6.70 3 6,78 
P5 7.64 - 7.90 3 8,75 
P6 9.03 – 9.30 3 6,57 
P7 12 3 6,44 
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3.1.1 Sample Collection 

At the ice mass, samples were collected as ice cores. This was done by sterilizing the 

surface of the ice using a torch burner. Then, 10 cm of the surface ice was scraped off 

using an ice axe. The new surface was then sterilized by again using a torch burner. Ice 

cores were then drilled from the ice mass, using a modified power drill. The Power drill 

was modified with a hollow cylindrical drill bit, with an internal diameter of 17 mm and 

a length of 10 cm. In that way it was possible to retrieve the ice cores at the drill site. 

The equipment was sterilized using 100% ethanol and a flame between each sample 

being gathered. A flame sterilized spatula was used to remove the ice cores from the 

drill and directly into sterile plastic bottles. For each sample site 2 sterile plastic bottles 

were used (2 L and 1 L). The plastic bottles containing ice cores were kept in a cooling 

bag, were they would remain at temperatures below 0°C in the dark while they were 

transported to the lab at the University of Bergen. An average of 90 ice cores were 

collected from each sampling site.  

At the lab, ice cores were thawed at 4°C in the dark. Upon thawing it was discovered 

that samples P2, P3 and P6 contained a lot of sediments and organic matter (Figure 

3.3). Therefore, these samples were centrifuged, and the remaining pellets of 

sediments and soils was transferred to separate falcon tubes. Thus, dividing the 

samples into P2 and P2S, P3 and P3S, P6 and P6S whereas sample P2S, P3S and P6S 

contained the sediments. Also, sample P1 contained more sample material than the 

others, and was therefore split up into P1a and P1b. 
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Figure 3.3: Sample site P2. This sample site was at the right side of the glacier. The location of 
this sample site was decided as this covers the first dominant organic band located at position 
2,71 m (indicated by arrow). Photo: Stein Erik Lauritzen. 

Five mL of sample was set aside for enrichment and isolation experiments, whilst the 

rest of the samples were used for filtering with Millipore® Sterivex™ filters (Sigma-

Aldrich, Z359920), and then prepared for sequencing using Illumina ‘MiSeq sequencing 

system’.  

3.1.2 Sample Processing 

Thawed samples were filtered through Millipore® Sterivex™ filters with a pore size of 

0,2 µm. This was done by attaching the filters to tubes connected to a MasterFlex 

pump (Cole-Parmer, Chicago, IL, USA), and pump the samples through the filters. 

When the filtration was complete, the filters were stored at -80°C until further DNA 

extraction. 

DNA and RNA were extracted from the filters using the Allprep RNA/DNA extraction kit 

from Qiagen (catalogue no. 80204), following the manufacturer’s instructions. For 

samples P2S, P3S and P6S, which contained soils and sediments, the Mo Bio Power Soil 
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DNA isolation kit (catalogue no. 12888-100) was used, following the manufacturer’s 

instructions.  

Amplification of 16S rRNA gene for analysis of the microbial communities from the ice 

was done using the MiSeq v2 kit (Illumina Inc. CA, USA), with a two-PCR step approach. 

Finally, the samples were sent for sequencing analyses using the Illumina ‘MiSeq 

sequencing system’ (Illumina Inc. CA, USA) at the Norwegian High-throughput 

sequencing centre, Oslo (Norway). 

3.1.3 Planctomycetes Presence in the Ice Mass 

Sequencing of 16S rRNA obtained from thawed ice cores revealed that Planctomycetes 

was present in the ice (Figure 3.4). The highest abundance of Planctomycetes was 

found in samples P1a, P1b and P7, with approximately 10,5, 13 and 10,5% of the reads 

being of planctomycetal origin, respectively. The lowest abundances were found in 

samples P3 and P6, where approximately 2,1% of the reads was Planctomycetes. All 

samples were dominated by sequences belonging to the Planctomycetacia class, while 

Phycisphaerae was the second most represented class. The average of Planctomycetes 

reads in all samples were 6,4%. At the same time, the average for all the filtered 

samples (samples P1a-P7) was 6,6%, while the average for the samples containing soils 

(samples P2S, P3S and P6S) was 5,8%. This indicated a higher presence of 

Planctomycetes in the ice than in the organic layers. 
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Figure 3.4: Showing relative abundance (%) for Planctomycetes classes in the different samples 
from Svarthammarhola ice cave. The highest abundance was found in sample P1b, where 
~13% of the total reads were Planctomycetes. The lowest abundance of Planctomycetes was 
found in samples P3 and P6 (~2,1%). The most abundant class of Planctomycetes in all samples 
were Planctomycetacia.  
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4. Methods 

From the initial sample material from Svarthammarhola ice cave, enrichments were 

prepared in culture media. If Planctomycetes-like cells were to be observed in the 

enrichment cultures, efforts were made to obtain them in axenic cultures. For proper 

diphasic characterization of novel Planctomycetes strains a variety of molecular and 

experimental techniques were used. Also, isolated strains were subjects to be 

screened for bioactive molecules as a part of a project involving Planctomycetes’ 

ability to produce bioactive molecules and induce apoptosis in cancerous cell lines. 

4.1 Enrichment Media 

To stimulate growth of a broad range of Planctomycetes including terrestrial, marine 

and freshwater bacteria, M30 media containing 18% SW was prepared. M30 18% SW 

media is a modified version of M30 (Schlesner 1994), which is a common growth and 

isolation media used for Planctomycetes, where all the essential salts are provided.  

M30 18% SW media was prepared in two solutions, Solution 1 containing the liquid 

components, and Solution 2 containing the solid components. Solution 1 was prepared 

by adding the following (per litre) to a glass flask; 700 mL RO-water, 180 mL aged sea 

water, 20 mL Hutner’s basal salts (Appendix I) (Cohen-Bazire et al. 1957), and 50 mL 

Tris buffer 0.1 M pH 7.5. The solution was then autoclaved. Solution 2 was prepared by 

dissolving 2 g/L N-acetyl-glucosamine, 200 mg/L ampicillin sodium salt, 10 mg/L 

Na2HPO4 x 2H2O, and 1 mL/L Vitamine solution no. 6 10x sol. (Appendix II) (Staley 

1968), in 50 mL RO-water. Solution 2 was filtered through a 0,2 µm filter and then 

added to the autoclaved Solution 1. M30 18% SW media was stored at 5°C in the dark 

When preparing gelrite plates for cultivation the same procedure was followed as for 

the liquid media, only by adding 5 g/L Gelrite (Gellan Gum) to Solution 1 before 

autoclaving. Solution 2 was then added to the autoclaved solution 1 and mixed, before 

20 mL was poured into petri dishes. M30 18% SW plates were made under sterile 

conditions. Plates were stored upside down in sealed plastic bags at 5°C in the dark.  

 

https://link.springer.com/article/10.1007/s10482-013-0019-x#CR6
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4.2 Enrichment and Isolation 

Liquid from the thawed ice cores were added to glass reagent tubes with caps, 

containing 5 mL of liquid M30 18% SW media. Samples were added in dilutions of 1:10 

and 1:100, hence, 500 and 50 µL of sample. Two parallels were prepared for each 

dilution, one kept at 10°C and one at room temperature in the dark. After inoculation 

the glass tubes were capped and wrapped with parafilm to prevent evaporation. The 

inoculations were carefully monitored by light microscopy (Leitz Wetzlar HM-LUX), 

looking for cells with Planctomycetes characteristics. When Planctomycetes-like cells 

were observed, 20, 30 and 50 µL of the inoculum was plated onto M30 18% SW plates 

(gelrite) to obtain single colonies. The same incubation temperatures were used as 

previously. The plates were examined daily and colonies that appeared were studied 

by light microscopy. If colonies that showed Planctomycetes-like characteristics 

appeared, these were re-streaked on fresh plates to get pure single colonies of 

Planctomycetes. Isolated strains were obtained by repeated colony picking and 

streaking on new solid media.  
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4.3 Characterization of Isolated Strains 

To provide characterization of the strains’ morphological and physiological attributes 

several experimental techniques were used. 

4.3.1 Morphological Analysis 

The external morphology of the isolated strains was examined using a Leica DM750 

(Leica microsystems) phase contrast light microscope and photographed with a Leica 

EC3 camera (Leica microsystems) mounted on the light microscope. Phase contrast 3 

was used under a magnification of 100 x. Cell size was determined by measuring cells 

using the same light microscope with a Leica eyepiece HC PLAN 10x/20 BR.M (Leica 

microsystems).  

Internal structures were investigated by examining ultrathin cross sections viewed in a 

Jeol JEM-1230 TEM microscope and photographed using a Gatan Multiscan camera. 

Sample preparation and transmission electron microscopy was carried out at the 

Molecular Imaging Center (Fuge, Norwegian Research Council), University of Bergen. 

All isolated strains were cultivated on M30 18% SW gelrite plates, incubated at room 

temperature for 12 days. Samples were prepared for ultrathin cross sectioning by 

chemical fixation using, 1,5 – 2% glutaraldehyde in 0,1 M Na-cacodylate buffer, then 

1% osmium-tetroxide in 0,1 M Na-cacodulate buffer was added, before being 

embedded in Agar 100 Resin. Ultrathin cross sections were cut and collected on grids, 

before being stained with 1% uranyl-acetate and Reynolds lead-citrate. Samples were 

then loaded into the TEM (Jeol JEM-1230) and photographed (Gatan multiscan 

camera).  

4.3.2 Temperature Range and Optimum 

Temperature optimum and growth range were measured to get a better 

understanding of the different strains most preferred growth conditions. This was 

obtained by cultivating the isolated strains in M30 18% SW at 5°C, 10°C, 15°C, 20°C, 

25°C, 30°C, 35°C and 40°C. Regular M30 18% SW was used as a blank. One hundred mL 

of cell culture were centrifuged in an Avanti® J-26 XP (Beckman Coulter, IN, USA) using 

JA-12 rotors, for 15min at 9500 x g. The supernatant was discarded, and the pellet 

resuspended in 5 mL sterile dH2O. M30 18% SW was then added to washed and 

autoclaved glass reagent tubes in volumes of 4,4 mL. Three parallels were prepared for 
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each isolate at each temperature. Cell suspension were added to the reagent tubes so 

that the optical density (OD) of the inoculated tubes resembled that of 0,05 at 600nm, 

as proposed by Hall et al (2014), using a Spectronic 21 spectrophotometer (Milton 

Roy). The tubes were gently vortexed after the cell suspension was added. 

Uninoculated tubes with M30 18% SW were used as a blank and to calibrate the 

spectrophotometer. The tubes were kept in separate incubators at their respective 

temperatures with shaking at 120 rpm. The cultures’ OD were measured once every 

day using the same spectrophotometer. The tubes were gently vortexed before 

measuring OD to ensure proper homogeneity. The length of incubation varied 

between the different temperatures, depending on the time before the OD started to 

decline and the cultures entering the death phase. Growth curves were plotted in 

Microsoft Excel. Growth rates were calculated using the formula described in Friedrich 

Widdel’s Theory and Measurement of bacterial growth [Equation 1 (Widdel, 2007)]. 

µ =  
ln 𝑂𝐷2 − 𝑙𝑛𝑂𝐷1

𝑡2 − 𝑡1
     (1) 

Growth rate is represented in µ, the last and the first point in the exponential phase is 

represented in OD1 and OD2 with their corresponding time points T1 and T2. The data 

were then plotted in Microsoft Excell. 

4.3.3 Salinity Range and Optimum 

Salinity range and optimum were tested to gain insights to which NaCl concentrations 

the strains found most favourable for growth. Isolated strains were cultivated in M30 

media where aged seawater was substituted with NaCl concentrations of 0%, 0,1%, 

0,5%, 1%, 1,5%, 2%, 2,5%, 3% and 3,5% (w/v), and incubated at 25°C, with shaking at 

120 rpm. The same procedure was the used for preparation and measurements as in 

the procedure used when measuring temperature range. Measurements were done 

daily for 23 days. The data was plotted in Microsoft Excel and growth rates were 

calculated using Equation 1. 

4.3.4 pH Range and Optimum 

pH range and optimum were tested to gain insights to which pH levels the strains 

found most favourable for growth. Isolated strains were cultivated in M30 18% SW 

modified using 1 M HCl and NaOH to adjust the pH. The pH of the media used ranged 



34 
 

from 5 to 9, with intervals of 0,5 measured by using a PHM210 Standard pH meter 

(Radiometer Analytical, CO, USA). The same procedure was then used for preparation 

and measurements as in the procedure used for measuring temperature range. 

Measurements were done daily for 23 days. The data was plotted in Microsoft Excel 

and growth rates were calculated using Equation 1. 

4.3.5 Utilization of Carbon Sources 

The different strains were examined for which carbon sources they could utilize, this 

was done to elucidate the strains ecological role, as well as to characterize them in 

more detail. All strains were cultivated in M30 18% SW, were N-acetyl-glucosamine 

was substituted with different substrates. In the absence of N-acetyl-glucosamine, 0,1 

g/L (NH4)SO4 was added in order to supply nitrogen to the medium. The following 

substrates were added then (0,025% w/v): mannose, L-sorbose, D-raffinose, 

carboxymethyl cellulose, cellulose, D-arabinose, D-cellobiose, D-glucose, D-maltose, 

sucrose, D-fructose, D-galactose, L-rhamnose, chitin, D-mannitol and D-xylose. Media 

containing different carbon sources was pipetted into washed and autoclaved glass 

reagent tubes in volumes of 4,4 mL. One hundred mL of cell culture were centrifuged 

in an Avanti® J-26 XP (Beckman Coulter, IN, USA) using JA-12 rotors, for 15min at 9500 

x g. The supernatant was discarded, and the pellet resuspended in sterile 5 mL dH2O. 

Cell suspension were added to the reagent tubes so that the OD of the inoculated 

tubes resembled that of 0,05 at 600nm as proposed by Hall et al., (2014) when 

performing growth experiments. The OD of the cultures were measured by using a 

Spectronic 21 spectrophotometer (Milton Roy). The tubes were then gently vortexed 

and incubated at 25°C with shaking at 120 r.p.m. Three parallels were prepared for 

each strain for all carbon sources. Uninoculated tubes with M30 18% SW with no 

carbon source were used as negative controls and to calibrate the spectrophotometer. 

When evaluating growth in the tubes a Spectronic 21 spectrophotometer (Milton Roy) 

was used to measure OD. Growth measurements were performed every second day 

until day 8, and then on day 11, 14, 16 and 18. Measurements were plotted in 

Microsoft Excel.  
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4.3.6 Enzymatic Activity 

The enzymatic activities of the isolated strains were analysed using API ZYM 

(bioMérieux, France) to gain insights to which enzymes the strains possess. API ZYM is 

a method developed for the study of enzymatic activities and are based on strips 

containing cupules with different substrates added. The different substrates allow for 

different enzymatic reactions to take place. Enzymatic activities are revealed in the 

strips by coloured reactions when reagents are added. 

One hundred mL of cell culture grown in M30 18% SW was centrifuged at 9500 x g for 

15min in an Avanti® J-26 XP (Beckman Coulter, IN, USA) using JA-12 rotors. The 

supernatant was discarded, and the pellet resuspended in 5 mL dH2O to a turbidity of 

5-6 McFarland (McFarland J, 1907) as described in the manufacturer’s instructions. The 

wells in the incubation box were filled with MilliQ water to supply a humid atmosphere 

before the API ZYM strip were placed in the box. Further, 65 µL of cell suspension were 

pipetted into each cupule in 3 parallel strips and incubated at 25°C for 6 hours. After 

incubation, each cupule was added 1 drop of reagent ZYM A and ZYM B (bioMérieux, 

France). After 5 minutes the strips were placed under light and the strips were scored 

according to the manufacturer’s instructions. 

4.3.7 Antibiotic Resistance and Sensitivity 

All isolated strains were tested for antibiotic resistance and sensitivity. Colonies were 

picked from M30 18% SW plates and prepared in a suspension with dH2O to an 

inoculum density of 0,5 McFarland (McFarland J, 1907) as proposed in the 

manufacturer’s instructions (Oxoid). Then, 50 µL of the inoculum was plated onto 25 

mL M30 18% SW gelrite plates using a sterile glass rod to disperse the inoculum. One 

antibiotics disc was placed in the middle of each plate. The different antibiotics discs 

used was: ampicillin (10 µg), chloramphenicol (10 µg), kanamycin (30 µg), streptomycin 

(10 µg), penicillin G (10 µg), trimethoprim (2,5 µg), ofloxacin (5 µg), erythromycin (10 

µg), vancomycin (5 µg), nalidixic acid (30 µg) and tetracycline (10 µg) (Oxoid 

Microbiology Products, Thermo Scientific). Plates were incubated at room temperature 

in the dark and inhibition zones were measured after 12 days of incubation.  
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4.4 Molecular Based Methods 

The small subunit (SSU) ribosomal 16S rRNA gene is the most commonly used 

phylogenetic marker for microbial diversity studies (Rosello-Mora and Amann, 2001). 

The gene is highly conserved across the three domains and is the most commonly used 

evolutionary chronometer in microbial studies. The use of 16S rRNA gene allows for 

identification of the organism, which 16S rRNA gene is being studied, as well as 

evolutionary and phylogenetic comparison based on differences and changes in the 

16S rRNA gene (Rosello-Mora and Amann, 2001). 

4.4.1 Polymerase Chain Reaction 

In order to gain insight to the phylogenetic relationships of the isolated strains, they 

were prepared for 16S rRNA gene sequencing. Colonies that showed Planctomycetes-

like characteristics was transferred to PCR-tubes containing 10 µL PCR-water by using 

autoclaved toothpicks. The tubes were then kept on an 80°C heat block for 2 minutes 

and then on ice for 2 minutes. This was repeated two times in order to achieve proper 

cell lysis. The lysed cells were further used as template in the preparation of PCR 

product using Planctomycetes specific forward primers. One µL template were added 

to a mastermix containing the following reagents; 10 µL HotStarTaq DNA polymerase, 

0,5µl BSA 100%, 6,5µl PCR water, 1 µL Pla46f 10µM primer (sequence 5’ – 3’, 

GGATTAGGCATGCAAGTC) (Neef et al., 1998) and 1 µL H1542r 10µM primer (sequence 

5’ – 3’, AAGGAGGTGATCCAGCCGCA) (Pantos et al., 2003) per sample.  PCR program for 

the samples were then run on a Veriti™ 96 well thermal cycler (Applied Biosystems, 

CA, USA), and is described in Table 4.1. 

Table 4.1: PCR program for HotStarTaq DNA polymerase with Planctomycetes specific primers. 

Step °C Minutes 

1. 95 15:00 

2.* 95 00:45 

3.* 60 00:45 

4.* 72 01:00 

5. 72 10:00 

6. 4 ∞ 

*Steps 2 to 4 were repeated 30x. 
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The expected PCR product should be around 1500 bp long. PCR products were 

visualized on a 1.5% agarose gel in Tris-acetate-EDTA. For DNA staining, 2 µL GelRedTM 

(10000x in H2O. Biotium) was added to the gel. One µL GeneRuler 1kb DNA ladder 

(Thermo Scientific) was used as ladder, and 3 µL PCR product mixed with 6x loading 

dye was loaded into the wells. The gel was run at 150 V for 40 minutes in gel 

electrophorese, allowing the bands to separate properly. DNA fragments in the gel 

were visualized by using Bio-Rad ChemiDoc™ XRS+ (Bio-Rad, CA, USA) gel dock and 

compared to a GeneRuler 1kb ladder. If the samples showed clear amplicon they were 

selected for further purification of PCR product. 

4.4.2 Purification of PCR Product and Preparation for Sequencing 

PCR products were purified to ensure proper and clean DNA using Illustra™ 

ExoProStar™. Five µL of PCR product was aliquoted into PCR tubes and added 2 µL 

ExoProStar. PCR program for purification of PCR products with Illustra ExoProStar were 

run on a Veriti™ 96 well thermal cycler (Applied Biosystems, CA, USA) for 15 minutes at 

37°C, followed by 15 minutes at 80°C. 

Purified PCR products were then prepared for sequencing with BigDye 3.1. For each 

sample, 1 µL BigDye 3.1, 1 µL sequencing buffer, 3,2 µL primer (1 µM), 5 µL dH2O and 2 

µL purified PCR product was added. The PCR program used for sequencing preparation 

is described in Table 4.2. 

Table 4.2: PCR program for sequence preparation for BigDye 3.1 sequencing 

Step °C Minutes 

1. 96 05:00 

2.* 96 00:10 

3.* 50 00:05 

4.* 60 04:00 

5. 4 ∞ 

*Steps 2 to 4 were repeated 25x. 

The samples were then brought to the Sequencing Facility at the University of Bergen 

(http://www.uib.no/en/seqlab) for SANGER sequencing using a JANUS Automated 

Workstation, PerkinElmer & 3730xl DNA Analyzer (Applied Biosystems). 

http://www.uib.no/en/seqlab
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4.4.3 Phylogenetic Analysis 

In order to investigate and compare the different strains similarities in the 16S rRNA 

gene, the sequences from the different strains were aligned and compared. 

Corresponding sequences (primers Pla46f and H1542r) were aligned and combined 

into a single contig using BioEdit v7.0.5.3 (Hall 1999) and MEGA v7.0.26 (Kumar et al., 

2015). Alignment of the sequences were done using the ClustalW function in the 

BioEdit software (Hall, 1999; Hall 2007). 

Merged sequences of 16S rDNA of isolated strains were analysed using the Nucleotide 

BLAST function available in BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi), to find the 

closest matching 16S rDNA sequences. The Nucleotide BLAST function was also used to 

compare different strains’ 16S rRNA gene sequences for identities.  

4.4.4 Phylogenetic Tree 

A phylogenetic tree was made to compare and visualize the phylogenetic relationships 

of the strains and other sequences of planctomycetal descendance. The tree was built 

using MEGA v7.0.26 (Kumar et al., 2015). Sequences for isolated strains were aligned 

with their 3 most identical hits from BlastN as well as selected Planctomycetes species 

using the BioEdit software (Hall, 1999; Hall, 2007). This was done by using the ClustalW 

function (Thompson et al., 1994). The alignment was then proceeded to MEGA v7.0.26 

and a maximum-likelihood tree was built with Tamura-Nei model (Tamura and Nei, 

1993). The robustness of the tree was weighed using 100 bootstrap replications.  

 

 

 

 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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4.5 Screening for Bioactive Molecules 

Two of the isolated strains from Svarthammarhola ice cave was used in a screening for 

bioactive molecules. This was done as a part of a conjoined project between the 

University of Bergen and the University of Porto, where the experiments took place at 

the Centre for Pharmacy, Department of Clinical Science, University of Bergen. In this 

project extracts from different strains of Planctomycetes from various habitats and 

environments, were examined for their ability to induce apoptosis in cancerous cell 

lines. 

4.5.1 Preparation of Planctomycetes Cultures 

The two strains were cultured for 7 days in 250 mL M30 18% SW at 25°C in a shaking 

incubator at 120 rpm. The cultures were then centrifuged at 10 000 x g for 15 minutes 

at 10°C using an Avanti® J-26 XP (Beckman Coulter, IN, USA) fitted with a JA12 rotor. 

The supernatant was discarded before the pellets were resuspended in sterile dH2O, 

then centrifuged again. This was repeated twice. The pellets were freeze-dried in an 

Edwards Modulyo (IMA Life, Italy) for 18 h with a pressure of approximately 4 x 10-2 

atm and a temperature below -40°C. The freeze-dried pellets were weighed and stored 

at -20° until further processing. 

4.5.2 Preparation of Extracts for Cell Line Experiments 

While being kept on ice, 6 mL of methanol: MiliQ water: chloroform (1:1:1) were 

added to each freeze-dried pellet in falcon tubes. First chloroform, then MiliQ and 

methanol mixed together. One falcon tube without any biomass was also added the 

mixture, to be used as an extraction control. The contents were then sonicated at 

20 000 rpm in two cycles of 30 seconds to ensure homogenization, using a Tempest 

Virtishear I.Q sonicator (Virtis, Gardiner NY) fitted with a 10 mm rotor. The samples 

were cooled on ice in between each cycle. After proper homogenization, the samples 

were left to extract for 1 h at 4°C, including agitation after 30 minutes. The tubes were 

then centrifuged at 2000 rpm for 30 minutes, in that way allowing the samples to 

separate into the organic and the aqueous phases. The bottom phase (Organic) and 

the top phase (Aqueous) was carefully removed by pipetting and transferred to 

different Eppendorf tubes. The remaining contents were then centrifuged again at 

10 000 rpm for 15 minutes, for further separation of the phases, before being 
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transferred to the rest of the extracts. All the extracts were evaporated to dryness in a 

vacuumed centrifuge (Eppendorf concentrator plus, Eppendorf AG, Hamburg, 

Germany). The evaporated extracts were then added 25 µL DMO for each 10 mg of 

initial freeze-dried biomass. For the aqueous extracts 75 µL of MilliQ water was also 

added per 10 mg of initial biomass.  

4.5.3 Preparation of Cell Lines for Screening 

The extracts were tested for their ability to induce apoptosis in 3 different cell lines. 

One being the normal epithelial rat kidney cell line NRK (ATCC no: CRL-6509), which 

would work as a control cell line for healthy normal cells as opposed to the two other 

cell lines. The two other cell lines were the human AML cell line Molm13 (Matsuo et al. 

1997, Quentmeier et al. 2003) and the human prostate cancer cell line PC3 (ATCC no: 

CRL-1435). Molm13 cells were cultured in RPMI medium (Sigma R5886), added 10% 

(w/v) fetal calf serum (Sigma F7524) and 0,2 mM L-glutamine added 50 IU/mL 

penicillin and 0,1 mg/mL streptomycin. Culturing density was about 8 – 80 x 104 

cells/mL and adjusted by adding fresh medium. NRK and PC3 cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM – Sigma D-6429), added 10% (v/v) fetal 

calf serum (Sigma F7524) and 0,2 mM L-glutamine added 50 IU/mL penicillin and 0,1 

mg/mL streptomycin. NRK and PC3 cells are adherent cells, and at 90% confluence, the 

cells were detached by mild trypsin treatment. This was done by discarding of the 

existing medium, leaving only attached cells, before washing the cells two times with 5 

mL PBS. The cells were then added 2 mL PBS and 6 mL trypsin. The cells were then left 

in the incubator at 37°C for 5 minutes. The detached cells were then resuspended 

carefully in 6 mL of fresh medium, before being transferred to a 15 mL Corning tube. 

The tube was then centrifuged at 150 x g and the supernatant discarded, before being 

reseeded in fresh medium with supplements at 40 – 50% confluence. All the cell lines 

were incubated at 37°C in a humidified atmosphere with 5% CO2. All media, serum, 

supplements and reagents were from Sigma-Aldrich, St. Louis, MO, USA.  
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4.5.4 Cytotoxic Assays Using Planctomycetes Extracts 

In 96-well plates, 100 µL cell suspension containing 6000 cells of NRK or PC3 cell line 

were added to each well, 24 h prior to the addition of the extracts. In that way, the 

adherent cells could attach to the substratum. After 24 h the medium was discarded 

carefully by pipetting, before adding 99 µL of fresh medium to the wells for organic 

extracts and 96 µL fresh media to the wells for aqueous extracts. At the same time 

suspensions containing 8 x 104 cells/mL of Molm13 cell line was added to 96-well 

plates. This was done in volumes of 99 µL in wells for organic extract treatment, and 96 

µL in wells for aqueous extracts. For all the cell lines 1 µL of the organic extracts and 4 

µL of the aqueous extracts were added respectively, to 99 µL and 96 µL of cell culture. 

DMSO was used as a solvent control in the same volumes as in the extracts. A negative 

control of 100 µL cell culture was also prepared for each cell line. The spaces between 

the wells were then filled with sterile dH2O to avoid evaporation in the wells. There 

were 3 parallels for each extract treatment prepared for the NRK and PC3 cell lines and 

4 parallels for the Molm13 cell line. All parallels were incubated at 37°C in a humidified 

atmosphere with 5% CO2 for 72 h.  

The viability of the cells was first monitored using the WST-1 assay metabolic assay 

(Roche diagnostics, Catalogue number 11644807001, Germany) following the 

manufacturer’s instructions. Each well containing cells and extracts was added 10 µL of 

the WST-1 reagent, that was previously heated to 37°C. All plates were then placed 

back into the incubator for 2 h. After incubation, the plates were examined using a 

multiwell plate reader with an absorbance of 450 nm and a reference set to 620 nm. 

After WST-1 assays were performed, the wells were added 100 µL fixator, containing 

2% buffered formaldehyde (pH 7,4) added 0,01 mg/L of the DNA-specific fluorescent 

dye, Hoechst 33342. The plates were then left at room temperature for 1 h in the dark. 

Each well in the 96-well plates were then examined using a Nikon Diaphot 300 

fluorescent microscope fitted with a 40x Flu-Phase contrast lens and a DS-Fi3 camera, 

as described by Prestegard et al (2009). The morphology and the nuclei of the cells 

were of special interest, were a condensed nucleus with strong fluorescence would 

represent an apoptotic cell. Three hundred cells from each well were counted and 

used to determine cell death. To calculate an apoptosis percentage in each well, the 
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negative control was taken into consideration. Equation 2 was used to calculate the 

apoptosis percentage with respect to those cells that could have died by natural 

causes. 

𝑥 − (𝑦 (
100 − 𝑥

100 − 𝑦
))    (2) 

Were x being the counted number of apoptotic cells out of 100 cells and y is the 

counted number of apoptotic cells per 100 cells in the negative control. 
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5. Results 

As described in Sample Material (section 3), the ice mass in Svarthammarhola was 

revealed to host Planctomycetes. Samples P1a, P1b and P7 displayed the highest 

abundance of Planctomycetes, while samples P3 and P6 had the lowest abundance 

(Figure 3.4).  

Isolated strains from initial sample enrichments were subject to diphasic 

characterization utilizing both molecular and experimental methods. As well as being 

screened for bioactive molecules by treatment of cancerous cell lines with extracts 

from the strains. 

5.1 Isolation of Strains 

All enrichments were thoroughly examined by phase contrast light microscopy, 

searching for cells with Planctomycetes characteristics, like budding reproduction and 

rosette formation. Several potential isolates were targeted but failed to be isolated 

and characterized. At the end 4 different isolates were obtained from 3 different 

enrichment cultures inoculated with liquid from the thawed ice cores. 

5.1.1 Enrichment Culture P2S 

Strain P2S was isolated from sediments and soils from sample P2 inoculated in M30 

18% SW. After 20 days of enrichment, planctomycetes-like cells were observed in 

enrichment culture P2S, 1:10 dilution, incubated at room temperature. In this 

inoculation yeast like cells were also observed. After the initial enrichment, culture was 

plated on M30 18% SW plates, and pale pink colonies appeared. By inspecting these 

colonies by phase contrast light microscopy, they seemed to contain both 

Planctomycetes-like cells and cells resembling eukaryotic yeast cells, as shown in 

Figure 5.1. The Planctomycetes-like cells showed signs of budding and rosette 

formation (Figure 5.1). Sequencing using Planctomycetes specific forward primer 

(Pla46) for the 16S rRNA gene of the colonies confirmed that it was indeed cells of 

planctomycetal origin. The colonies were re-streaked onto new fresh media until the 

colonies were pure and separated from the yeast-like cells. When the strain appeared 

in pure culture and no yeast-like cells were to be observed, the colour of the colonies 
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seemed more white and pale than previously, as well as having a creamier consistency. 

The strain was named after the sample origin, thus, naming it strain P2S. 

 

Figure 5.1: Showing phase contrast light microscopy images of Planctomycetes-like cells, as 
well as eukaryotic yeast-like cells from enrichment culture P2S, plated on M30 18% SW plates. 
A) Arrow indicating rosette formation in Planctomycetes-like cells. B) Arrow indicating 
Planctomycetes-like cells expressing budding reproduction.  

 

5.1.2 Enrichment Culture P6 

After 23 days of enrichment planctomycetal-like cells were observed in 2 of the 

parallels of enrichment P6, in both parallels kept at 10°C, 1:10 dilution, and at room 

temperature, 1:10 dilution. There were only few cells in each parallel, but those 

observed showed clear signs of rosette formation and the cells displayed the 

characteristic Planctomycetes ovoid cell shape. Enrichments were plated onto fresh 

M30 18% SW plates and pinkish red colonies appeared on the plates from both 

parallels after 10 days. Sequencing of the 16S rRNA gene revealed that both isolates 

were affiliated with Planctomycetes. Colonies were re-streaked until pure strains were 

obtained. The strains isolated from sample P6 kept on room temperature was named 

strain P6.1, and the strain isolated from sample P6 kept on 10°C was named P6.2. 

Strain P6.2 formed very dense colonies appearing to resemble that of a biofilm when 

observed with phase contrast microscopy, whilst strain P6.1 formed smaller 

aggregates of cells which were not as dense as recorded for strain P6.2. On M30 18% 

SW plates strain P6.2 formed large rubber-like colonies with a clear red colour, that 

were hard to pull apart, whereas P6.1 formed smaller colonies with a pink colour.  
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5.1.3 Enrichment Culture P1a 

Planctomycetes-like cells appeared in enrichment culture P1a kept at room 

temperature, in the 1:100 dilution, after 173 days incubation. The enrichment was 

clearly dominated by cells with Planctomycetes characteristics showing clear ovoid-

shaped cells and signs of budding reproduction, as well as rosette formations. 

Enrichments were plated on fresh M30 18% SW plates and 16S rRNA gene sequencing 

of the colonies showed that the colonies were of planctomycetal origin. Colonies were 

re-streaked on fresh media until pure, and named after the sample of origin, thus 

strain P1a. The strain formed pale grey-white colonies with creamy consistency on 

plates.  

5.1.4 Other Enrichment Cultures 

Other enrichment cultures also seemed to contain cells with Planctomycetes 

characteristics. These include enrichment culture P3 kept at room temperature, 

dilutions 1:10 and 1:100, and enrichment culture P2 kept at room temperature, 

dilution 1:100. However, when these were plated onto fresh plates of M30 18% SW, no 

colonies appeared in the gelrite plates. Plating onto new fresh plates were tried 

repeatedly, however no colonies appeared. Therefore, no further attention was given 

to these enrichment cultures.  
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5.2 Cell Morphology 

Both internal and external cell morphology and structure was examined for all 4 

strains. Examination was done both by phase contrast light microscope and by 

transmission electron microscope.  

5.2.1 Strain P1a 

When in pure culture, colonies on solid media of strain P1a appeared grey-white in 

colour with a creamy consistency. In liquid media the strain appeared as a 

homogenized cell suspension, however when entering the stationary phase of culture 

growth, the cells tended to aggregate into flakes that appeared grey-white in colour 

and was suspended in the culture. 

When studied under by phase contrast light microscopy cells of strain P1a appeared to 

group together in large cell aggregates and consortia, in rosette formations or as 

singular swarmer cells, as shown in Figure 5.2a. Cells of strain P1a are spherical to 

ovoid in shape and exhibit budding reproduction, however it is unclear whether 

budding happens from a reproductive pole (Figure 5.4b). The cell size ranged from 0,7 - 

1,2 µm x 0,7 - 0,9 µm and the average size of the cells was calculated to be 1,0 x 0,8 

µm. 

 

Figure 5.2: Phase contrast light microscope images of strain P1a. A) Showing cell aggregates (A) 
and cells arranged in rosette formation (R). bar 10 µm. B) Showing budding cell (B), budding 
does not seem to happen from a reproductive pole. bar 5 µm. 

Ultrathin cross sections of the strain studied by transmission electron microscopy 

showed that strain P1a had cells arranged in rosette formations (Figure 5.3a). 
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Furthermore, cells showed signs of budding, however, this did not seem to happen 

from a reproductive pole (Figure 5.3b). TEM analyses showed that budding occurred 

from the side of the cell, rather than from one of the poles. The daughter cell seemed 

to already have genetic material transferred. Strain P1a displayed large invaginations 

of the periplasm (Figure 5.3c), and the invagination seemed to be surrounded by a 

membrane. Fibrous structures were also observed in strain P1a (Figure 5.3d), as well as 

large crateriform structures. 

 

 

Figure 5.3: Transmission electron micrographs of ultrathin sections of strain P1a. A) Showing 
cells arranged in rosette formation. bar 0,5 µm. B) Showing budding cell with highly condensed 
nucleotide (N) transferred to the daughter cell, fibrous structure (arrow). bar 0,2 µm. C) 
Showing cell of strain P1a with highly condensed nucleotide (N), outer membrane and 
invaginations of periplasm (arrow) surrounded by a membrane (arrow). bar 0,2 µm. D) 
Showing cell with fibrous structures (arrows) and large crateriform structure (C). bar 0,2 µm. 
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5.2.2 Strain P2S 

On M30 18% SW plates strain P2S displayed white colonies with creamy consistency 

that was easy to pick from the plate and to homogenize in liquid culture. When grown 

in liquid media the cells appeared to be dispersed throughout the culture giving a 

white transparent colour to the entire culture.  

When studied under phase contrast microscope strain P2S appeared as single motile 

swarmer cells or in rosette-like formations of no more than 3 cells (Figure 5.4 a and b). 

Cells were spherical and ovoid shaped and showed sign of budding from a 

reproductive pole (Figure 5.4c). Cells in rosette formation and occurrences of two 

swarmer cells seemed to be interconnected via tubular-looking structures (Figure 5.4 b 

and d). Strain P2S did not show any signs of rather large aggregations of cells, when 

most cells appeared as single swarmer cells and in rosette formations of 2 and 3 cells. 

Cells size were measured to range from 0,6 - 1,4 µm x 0,7 - 1,6 µm and the average size 

of the cells was calculated to be 1 x 1,1 µm. 
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Figure 5.4: Showing phase contrast light microscope images of strain P2S. A) Cells appearing as 
swarmer cells (S), or in rosette-like formations (R) of 2 or 3 cells. bar 5 µm. B) Showing cells as 
swarmer cells (S) and in rosette-like formation (R). bar 5 µm C) Showing budding cell (B) and 
cells in rosette-like formation (R). bar 5 µm. D) Showing cells interconnected by tubular-looking 
structure (arrow). bar 3 µm.  

Ultrathin cross sections of strain P2S revealed that the strain exhibited highly 

condensed nucleotides surrounded by an electron dense membrane, indicating the 

presence of ribosomes (Figure 5.5). The strain displayed a clearly defined outer 

membrane, as well as large invaginations of the periplasm that were surrounded by a 

membrane (Figure 5.5 a and b). Figure 5.5b shows that the strain exhibited fibrous 

structures along the outer membrane.  
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Figure 5.5: Transmission electron micrographs of ultrathin sections of strain P2S. A) Showing 
cell with highly condensed nucleotides (N) surrounded by electron dense membrane 
containing ribosomes, as well as a clearly defined outer membrane (OM), Large invaginations 
of the periplasm (arrow) surrounded by a membrane (arrow). bar 0,2 µm. B) Showing cell with 
highly condensed nucleotides (N) and invaginations of the periplasm (arrow, white) 
surrounded by a membrane (arrow, white). Fibrous structures along the outer membrane 
indicated by black arrows. bar 0,2 µm. 
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5.2.3 Strain P6.1 

On solid culture media strain P6.1 formed small pink colonies with rubber-like 

consistency. In liquid culture the strain formed pink aggregates of cells that either sunk 

to the bottom of the container or attached to the container at the surface of the liquid 

media.  

Colonies from plates examined by phase contrast light microscopy showed that cells 

gathered in large aggregates as well as displaying single swarmer cells (Figure 5.6a). 

The cells appeared to have spherical to ovoid shapes and swarmer cells were not 

motile. Budding reproduction was displayed, as shown in Figure 5.6b, and it seems like 

the budding happens from a reproductive pole. The cell size ranged from 0,6 - 1,2 µm x 

0,7 x 1,4 µm and the average size of the cells was calculated to be 0,9 x 1,1 µm. 

 

Figure 5.6: Phase contrast light microscope images of strain P6.1. A) Showing aggregate of cells 
(A) and single swarmer cells (S). bar 10 µm. B) Showing budding reproduction (B) and from 
what seems to be a reproductive pole, and aggregation of cells (A). bar 10 µm and 3 µm for the 
zooming in on the budding.  

TEM analyses of ultrathin sections revealed some cells were arranged in a rosette-like 

formations (Figure 5.7 a and c). The cells appeared to be attached to a joined holdfast 

structure in the centre of the rosette forming cells. Shapes varied from spherical to 

oval. Most of the cells also showed fibrous structures on the outside of the outer 

membrane (OM), as well as highly condensed nucleotides within a nucleoid. The 

majority of the cells displayed an area of low electron density between the OM and the 

cytoplasm, the periplasm. Crateriform structures was observed in many cells (Figure 

5.7b) in connection to the fibrous structures. The cell displayed in Figure 5.7 b and d, 

shows a budding cell, were the genetic material already has been transferred from the 
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mother cell. The budding seems to be happening from a reproductive pole and the bud 

appears to be ready to detach, considering the already established OM, nucleotides 

and cytoplasm.  

 

 

Figure 5.7: Transmission electron micrographs of ultrathin sections of strain P6.1. A) Cells 
showing rosette formation (R) and holdfast structures (HF). bar 1 µm. B) Budding cell, daughter 
cell showing highly condensed nucleotide (N), fibrous structures (F) and outer membrane 
(OM), as well as the budding itself (B). bar 0,2 µm. C) Rosette formation of cells (R) via holdfast 
structures (HF). bar 0,5 µm. D) Budding cell, crateriform structures (arrow) affiliated with 
fibrous structures (F), outer membrane (OM) and highly condensed nucleotides (N). bar 0,2 
µm. 
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5.2.4 Strain P6.2 

Colonies on M30 18% SW plates appeared as big red rubber-like clumps on M30 18% 

SW plates. The colonies were hard to pick from the plates and difficult to homogenize 

when transferred to liquid media. When the strain was grown in liquid culture, the 

cells aggregated and tend to gather at the bottom of the container. It also occurred 

that the cells started to grow and attach to the container, along the surface of the 

liquid media. 

Cells of strain P6.2 were spherical to ovoid shaped and expressed large cell aggregates 

with high cell density as well as swarmer cells in liquid culture (Figure 5.8a). Some cells 

were arranged in rosette-like formations of a few cells, as shown in Figure 5.8a, and 

some cells exhibited budding reproduction from a reproductive pole (Figure 5.8b). The 

cell size ranged from 0,8 - 1,4 µm x 0,8 - 1,6 µm and the average size of the cells was 

calculated to be 1,1 x 1,3 µm.  

 

Figure 5.8: Phase contrast light microscope images of strain P6.2, magnification 100x. A) 
showing budding reproduction (B), rosette formation (R) and cell aggregates (A). bar 10 µm. B) 
Showing aggregation of cells (A), budding reproduction (B) and single swarmer cells (S). bar 5 
µm, and 2 µm for the zooming in on the budding. 

 

As shown in Figure 5.9 a and b, strain P6.2 had cell shapes of a spherical to ovoid 

nature and showed a clearly defined nucleoid with highly condensed nucleotides, 

surrounded by an electron dense membrane, resembling ribosomes. The cells 

displayed a clearly defined outer membrane (OM), with periplasm in the area of low 

electron density between the OM and the cytoplasm. Crateriform structures was 
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observed in connection to fibrous structures (Figure 5.9a). Ribosomes seemed to be 

concentrated around the nucleoid, as well as around invaginations of the periplasm 

and along the cytoplasmic membrane, indicated by arrowhead in Figure 4.9b.  

 

Figure 5.9: Transmission electron micrographs of ultrathin sections of strain P6.2. A) Showing 
cell of strain P6.2 with highly condensed nucleotides (N), crateriform structures (C) connected 
to fibrous structures (arrow). bar 0,2 µm. B) Cross section of cell showing a clearly defined 
outer membrane (OM), fibrous structures (F) along the OM and large invaginations of the 
periplasm (arrow). bar 0,2 µm.  
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5.3 Physiological Characterization  

Various physiological characteristics were investigated, and growth rates were plotted 

to determine the most favourable conditions for growth of the three strains P6.1, P6.2 

and P2S. Growth during the exponential phase was used to calculate the growth rates 

using the formula described by Widdel (2007). Parameters under which growth was 

monitored includes temperature, salinity concentrations (%NaCl w/v) and pH. 

Conditions for growth and growth rates were not investigated for strain P1a because 

this strain was obtained in pure culture at a much later stage than the other strains, 

and thus not enough time for describing as part of this current thesis. 

5.3.1 Temperature Range and Optimum 

Temperature experiments were performed, ranging from 5 – 40°C. Temperature range 

for strains P6.1 and P6.2 were shown to be from 5 to 35 °C, when cultured at 40°C 

both strains exhibited declining optical density (OD) (Figure 5.10). Strain P2S displayed 

growth at temperatures between 5 and 30 °C, including very limited growth at 35 °C 

(µ/day = 0,0115). Negative growth was shown by strain P2S when cultivated at 40 °C. 

Optimum growth for all strains was 25 °C. All 3 strains appear as psychrotolerant due 

to their ability to grow at temperatures as low as 5°C. 

  

Figure 5.10: Growth rates (µ/day) displayed for strains P6.1, P6.2 and P2S when cultivated in 
M30 18% SW with temperatures ranging from 5 to 40 °C. 
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When cultivated at 5°C, all strains exhibited rather slow growth, strains P2S and P6.1 

did not reach the double of initial OD before 13 and 14 days, respectively. Strain P6.2 

used 29 days to double its initial OD. All strain kept a slow growth rate at this 

temperature before starting to enter death phase, strain P2S on day 58, while strains 

P6.1 and P6.2 both enter death phase on day 75. When cultivated at 10 and 15°C, 

strain P2S seemed to be the fastest grower, and reached the highest OD. Strain P6.2 

was the slowest and reached the lowest OD of the strains. When cultivated at 

optimum temperature (25°C), all strains enter exponential phase after day 3. Strain 

P2S reached its highest cell density (OD) on day 10, before it immediately entered the 

death phase. Both strains P6.1 and P6.2 entered stationary phase around day 15, 

before OD slowly declined. At 30°C or higher P6.1 was the fastest growing strain and 

when cultivated at 35°C P2S barely exhibit any growth. The two other strains showed a 

quick burst of growth before rapidly entering the death phase. None of the strains 

displayed any growth when grown on 40°C. When cultivated at temperatures 30 and 

35 °C strains P6.1 and P6.2 tended to grow and attach to the glass tube in the surface 

of the growth media. Therefore, it was necessary to vortex the tubes extra to ensure 

proper homogenization upon measurements.   
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5.3.2 Salinity Range and Optimum 

Strains P6.1 and P6.2 was able to grow from 0 to 0,5% NaCl (w/v). However, strain P6.1 

did show weak growth at 0,5% NaCl (w/v) (µ/day = 0,019), strain P6.2 also showed 

slight growth when cultivated at 1% NaCl (w/v) (µ/day = 0,017). Growth range for 

strain P2S was determined to be between 0 and 3,5% NaCl (w/v), however growth at 3 

and 3,5% NaCl (w/v) was limited, with growth rates of 0,023 and 0,019, respectively. 

Salinity growth optimum for strain P6.1 was between 0 and 0,1% NaCl (w/v), 0,1% NaCl 

(w/v) for strain P6.2 and 0,5% NaCl (w/v) for strain P2S (Figure 5.11).  

 

Figure 5.11: Growth rates (µ/day) displayed for strains P6.1, P6.2 and P2S when cultivated in 
M30 with salinity adjusted to range from 0 to 3,5% NaCl (w/v). 

 

All 3 strains were able to grow when there was no NaCl available, as well as when 

there was NaCl added to the media. This indicates that the strains are halotolerant, 

where strains P6.1 and P6.2 only tolerates low NaCl concentrations (<1% NaCl w/v), 

and strain P2S tolerates NaCl concentrations of up to 3,5% NaCl (w/v).  
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5.3.3 pH Range and Optimum 

Strains P2S, P6.1 and P6.2 were able to grow in pH ranging from 5 to 9 when cultured 

in M30 18% SW when pH was adjusted. Both strains P6.1 and P6.2 showed the highest 

growth rate when cultivated at pH = 7,5, whereas strain P2S displayed the highest 

growth rate when cultivated at pH = 8 (Figure 5.12). The pH optimum of the strains 

indicate that they are neutrophilic but are still able to grow in media as acidic as pH = 

5.  

 

Figure 5.12: Growth rates (µ/day) displayed for strains P6.1, P6.2 and P2S when cultivated in 
M30 18% SW with pH adjusted to range from 5 to 9. 
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5.4 Physiological Attributes 

The physiology of the strains was examined by utilizing different techniques. This 

includes analysis for carbon utilization, enzymatic repertoire and antibiotic resistance 

and sensitivity.  

5.4.1 Utilization of Carbon Sources 

The different strains were cultured with different carbon sources added to growth 

media to gain insights to which carbon sources the different strains were able to 

metabolize. Growth was measured as changes in optical density (OD). Initial OD for 

strains P1a, P6.1 and P6.2 were 0,05 and 0,06 for strain P2S. The growth experiments 

were carried out for 11 days. 

All strains were capable of utilizing a variety of carbon sources, listed in Table 5.1. All 

strains exhibited good growth on N-acetyl-D-glucosamine, D-maltose, D-glucose and D-

cellobiose. Strains P1a, P6.1 and P2S also showed good growth when grown on D-

galactose. P1a and P2S exhibited growth when grown on D-xylose and D-mannose, as 

well as sucrose, L-rhamnose and D-raffinose for strain P2S. Strain P6.1 grew well on 

sucrose, carboxymethyl cellulose, D-xylose, D-mannitol and D-mannose, and displayed 

limited growth on L-sorbose and L-rhamnose. As mentioned, strain P6.2 exhibited 

good growth on N-acetyl-glucosamine, D-maltose, D-glucose and D-cellobiose, but did 

also show some growth on sucrose, D-galactose, D-mannitol and D-mannose, as well 

as slight growth on D-arabinose and D-xylose. Strain P1a also exhibited growth when 

cultured in media containing D-arabinose. 
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Table 5.1: Showing optical density (OD) for strains P1a, P2S, P6.1 and P6.2 when grown on 
different carbon sources. Initial OD for strains P1a, P6.1 and P6.2 was 0,05 and 0,06 for strain 
P2S. Measurements displayed are from day 11 after inoculation. Green indicates strong 
growth, yellow indicates intermediate growth, while red indicated negative growth. 

 

The experiment shows that the strains are capable of utilizing a variety of different 

carbon sources. The control which contained M30 18% SW without any carbon source, 

showed an OD well below the initial OD for all strains, indicating that the cells were not 

metabolizing any remaining carbon from previous cultivation. All strains displayed 

highest OD when grown on reducing sugars, or derivatives from reducing sugars. These 

include N-acetyl-D-glucosamine, as well as D-cellobiose for strain P6.1, and D-maltose 

and D-glucose for strain P2S. Strain P1a exhibited the highest OD when grown on D-

galactose, D-glucose and N-acetyl-D-glucosamine. 

5.4.2 Enzymatic Activity  

The API-ZYM test was used to reveal the enzymatic activities of the strains. API-ZYM 

strips where inoculated with cell suspension and scoring of the strips were done after 

6 h of incubation.  
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The enzymatic repertoire of all strains includes esterase lipase (C8) and naphthol-AS-

BI-phosphohydrolase. Strain P1a was also positive for lipase (C14), esterase (C4), valine 

arylamidase, cystine arylamidase and acid phosphatase (Table 5.2). Strain P2S tested 

positive for alkaline phosphatase, valine arylamidase and α-glucosidase. The enzymatic 

repertoire of strain P6.1 also included alkaline phosphatase, esterase (C4) and leucine 

arylamidase. While strain P6.2 was positive for alkaline phosphatase, esterase (C4), 

leucine arylamidase and valine arylamidase.  

Table 5.2: Showing the enzymatic repertoire tested with API ZYM of strains P1a, P2S, P6.1 and 
P6.2. Green colour indicates positive result, while red indicates negative result. 

 

+, positive; -, negative 

The experiment showed that the strains possess different enzymes. Strain P6.1 and 

P6.2 had identic profiles except that strain P6.1 was negative for valine arylamidase. 

P2S was the only strain positive for α-glucosidase, whereas strain P1a was the only one 

positive for lipase (C14), cystine arylamidase and acid phosphatase. Strain P1a tested 

positive for 7 different enzymes, whereas strain P6.1 tested positive for 5 enzymes. 
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Both strains P2S and P6.2’s enzymatic repertoire includes 6 out of 19 different 

enzymes tested for in this experiment. All strains showed positive results in the 

positive control indicating that the experiment was successful.  

5.4.3 Antibiotic Resistance and Sensitivity 

All strains were tested for their susceptibility towards 11 different types of antibiotics. 

The strains were plated onto fresh media and one antimicrobial disc were placed in the 

middle of each plate, before being incubated at room temperature for 12 days.  

All the strains exhibited resistance towards ampicillin, streptomycin, penicillin G, 

vancomycin and nalidixic acid, as well as showing sensitivity towards erythromycin 

(Table 5.3). Strains P6.1, P6.2 and P2S displayed sensitivity towards chloramphenicol, 

whilst strain P1a was resistant. Tetracycline seem to limit the growth of strains P6.1 

and P2S, whereas the other two strains showed no signs of inhibition zone. Both 

strains P2S and P1a displayed an inhibition zone of 12 and 11 mm, respectively, in the 

presence of ofloxacin. Strain P2S was the only strain that was sensitive towards 

trimethoprim and kanamycin.  

Table 5.3: Antibiotic impact on the growth of strains P1a, P2S, P6.1 and P6.2. Inhibition zone 
measured in mm, resistence (R). Green colour indicates resistance, while red colour indicates 
sensitivity. 

 

R, resistence; inhibition zone measured in mm. 
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Three of the strains were resistant towards more antibiotics than they are sensitive 

towards. Strain P2S was sensitive to 6 out of 11 antibiotics used in this experiment, 

therefore this strain appears to be the most sensitive strain. Strains P1a and P6.2 were 

only sensitive towards 2 out of 11 antibiotics, therefore they are the most resistant 

strains in this experiment. Both strains P6.1 and P6.2 showed the highest sensitivity 

towards erythromycin (10 µg) with an inhibition zone of 12 mm and 10 mm, 

respectively. Strain P2S displayed highest sensitivity towards chloramphenicol (10 µg) 

and erythromycin (10 µg), with inhibition zones of 18 mm.   
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5.5 Phylogeny 

Strains P2S, P6.1, P6.2 and P1a all belong to the kingdom Bacteria, phylum 

Planctomycetes, class Planctomycetia, order Planctomycetales, family 

Planctomycetacea. The assembled 16S rRNA sequences for strain P2S was 1,388 bp, for 

strain P6.1 was 1,392 bp, for strain P6.2 was 1,397 bp and for strain P1a was 1,393 

base pairs long (Appendix III).  

5.5.1 Alignment of the 4 Strains 

Strains P6.1 and P6.2 showed a similarity of 99% in their 16S rRNA sequences. Strain 

P1a showed an 87% similarity towards P2S and P6.2, whilst being 88% similar to P6.1. 

Strain P2S show a 98% similarity to both strains P6.1 and P6.2, as shown in Table 5.4. 

Summarized, strains P6.1, P6.2 and P2S share similarities of 98% or higher between 

each other, whilst strain P1a are 88% or less similar to the other strains in the 16S 

rRNA gene. 

Table 5.4: Showing similarities in the 16S rRNA gene between strains isolated from 
Svarthammarhola Ice Cave. 

 P1a P2S P6.1 P6.2 

P1a 100% 87% 88% 87% 

P2S 87% 100% 98% 98% 

P6.1 88% 98% 100% 99% 

P6.2 87% 98% 99% 100% 

 

Alignment of the 4 strains’ 16S rRNA gene sequences, showed that there are especially 

some regions where there are differences (Supplementary Figure 1). First of all, strains 

P2S, P6.1 and P6.2 display gaps during the first and last 10 bp, where strain P1a does 

not have any gaps. Overall, irregularities in the alignment occur at spread regions 

throughout the 16S rRNA. However, strain P1a show dissimilarities towards the other 

strains mainly in regions 340-380, 720-745 (V4), 900-945 (V5), 1330-1350 and 1370-

1390 (V8). 
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5.5.2 Closest Relatives 

Searches with BlastN revealed that strain P1a’s closest cultured relative was the 

planctomycete strain 292 retrieved from Lake Fuhlensee near Kiel, Germany 

(Griepenburg et al., 1999) with a similarity of 92%. The most similar uncultured 

sequence for strain P1a with a similarity of 99% was the bacterium clone MPB2-197, 

originated from a freshwater lake in east Antarctica, as shown in Table 5.5.  

Table 5.5: Relationship between the 16S rRNA gene sequence of strain P1a and its three 
closest uncultivated (1-3) and its three closest cultivated relatives (4-6) from the NCBI 
database. 

Blast hit Identity Acc. Nr. Reference Habitat 

1. Uncultered bacterium 
clone: MPB2-197 

99% AB630873.1 Nakai et al., 
2012 

Freshwater 
lake, Easte 
Antarctica. 

2. Uncultured 
Planctomycetaceae clone: 
B08-03C 

99% FJ543048.1 Rattray et al., 
2010 

Earthworm 
intestine. 

3. Uncultured 
Planctomycetales clone: 
ROM 42 

99% HE575398.1 Chiellini et al., 
2012 

Purification 
plant, 
Poggibonsi, 
Italy. 

4. Planctomycete strain 292 92% AJ231182.1 Griepenburg et 
al., 1999 

Lake 
Fuhlensee, Kiel 

5. Pirellula sp. Schlesner 678 91% X81947.1
  

Ward et al., 
1995 

Lake 
Fuhlensee, Kiel 

6. Bythopirellula goksoyri 90% NR_118636.1 Storesund and 
Øvreås, 2013 

AMOR, 
Norwegian-
Greenland Sea 

 

Search with BlastN revealed that the closest cultured relative to strain P2S with a 

similarity of 91%, was strain Schlesner 302 obtained from a Fjord Schlei in the Baltic 

Sea (Ward et al., 1995), as shown in Table 5.6. Strain P2S showed 98% similarity to the 

uncultured bacterium clone R1-9 (Chen et al., 2015), as well as 98% similarity to the 

uncultured bacterium clones F11 and 96 (Li et al., 2011; Zhao et al., 2011), both 

affiliated to wastewater in China (Table 5.6).  

 

 

 

https://www.ncbi.nlm.nih.gov/nucleotide/AB630873.1?report=genbank&log$=nucltop&blast_rank=1&RID=9GS8AJ14015
https://www.ncbi.nlm.nih.gov/nucleotide/FJ543048.1?report=genbank&log$=nucltop&blast_rank=2&RID=9GS8AJ14015
https://www.ncbi.nlm.nih.gov/nucleotide/HE575398.1?report=genbank&log$=nucltop&blast_rank=3&RID=9GS8AJ14015
https://www.ncbi.nlm.nih.gov/nucleotide/AJ231182.1?report=genbank&log$=nucltop&blast_rank=34&RID=9DB9Z14X016
https://www.ncbi.nlm.nih.gov/nucleotide/X81947.1?report=genbank&log$=nucltop&blast_rank=133&RID=9DB9Z14X016
https://www.ncbi.nlm.nih.gov/nucleotide/X81947.1?report=genbank&log$=nucltop&blast_rank=133&RID=9DB9Z14X016
https://www.ncbi.nlm.nih.gov/nucleotide/NR_118636.1?report=genbank&log$=nucltop&blast_rank=212&RID=9DB9Z14X016
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Table 5.6: Relationship between the 16S rRNA gene sequence of strain P2S and its three 
closest uncultivated (1-3) and the three closest cultivated relatives (4-6) from the NCBI 
database. 

Blast hit Identity Acc. Nr. Reference Habitat 

1. Uncultured 
Planctomycetacea clone: R1-
9 

98% KP717533.1 Chen et al., 
2015 

Yanshi WWTP, 
China. 

2. Uncultured bacterium 
clone: F11 

98% FJ230909.1 Li et al., 2011 WWTP, Hebei, 
China. 

3. Uncultured bacterium 
clone: 96 

98% JF828764.1 Zhao et al., 
(unpublished) 

Waste water, 
China. 

4. Pirellula sp. Schlesner 302 91% X81942.1 Ward et al., 
1995 

Fjord Schlei, 
Baltic Sea 

5. Rhodopirellula sp. SM49 91% FJ624355.1
  

Winkelmann 
and Harder, 
2009 

Dar Es Salaam, 
Tanzania 

6. Pirellula sp. Schlesner 139 90% X81945.1 Ward et al., 
1995 

Kiel fjord 

 

The most similar uncultured sequence for strains P6.1 with a similarity of 99% was 

bacterium clone BJGMM-3s-145, obtained from Yellow river delta in China (Jia et al., 

unpublished). The strain also showed a 99% similarity to bacterium clones 101-75 and 

F11 (Kim and Crowley, 2007; Li et al.,2011) which originated from tar pits in California, 

USA, and a wastewater treatment in China (Table 5.7). Searches with BlastN in the 

NCBI database also revealed that the closest related cultured specimen for strain P6.1 

was the Pirellula sp. Schlesner 302 strain from Fjord Schlei (Ward et al., 1995), with 

similarities of 92% (Table 5.7).  

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/nucleotide/KP717533.1?report=genbank&log$=nucltop&blast_rank=2&RID=9GX1EHUC014
https://www.ncbi.nlm.nih.gov/nucleotide/FJ230909.1?report=genbank&log$=nucltop&blast_rank=4&RID=B74KYJEX01N
https://www.ncbi.nlm.nih.gov/nucleotide/JF828764?report=genbank&log$=nuclalign&blast_rank=6&RID=F0C2DPK5014
https://www.ncbi.nlm.nih.gov/nucleotide/X81942.1?report=genbank&log$=nucltop&blast_rank=101&RID=9DCNXYK901N
https://www.ncbi.nlm.nih.gov/nucleotide/FJ624355.1?report=genbank&log$=nucltop&blast_rank=146&RID=9DCNXYK901N
https://www.ncbi.nlm.nih.gov/nucleotide/FJ624355.1?report=genbank&log$=nucltop&blast_rank=146&RID=9DCNXYK901N
https://www.ncbi.nlm.nih.gov/nucleotide/X81945.1?report=genbank&log$=nucltop&blast_rank=162&RID=9DCNXYK901N
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Table 5.7: Relationship between the 16S rRNA gene sequence of strain P6.1 and its three 
closest uncultivated (1-3) and the three closest cultivated relatives (4-6) from the NCBI 
database. 

Blast hit Identity Acc. Nr. Reference Habitat 

1. Uncultured bacterium 
clone: BJGMM-3s-145 

99% JQ800921.1 Jia, et al., 
(unpublished) 

Yellow river 
delta, China. 

2. Uncultured bacterium 
clone: 101-75 

99% EF157256.1 Kim and 
Crowley, 2007 

Rancho La Brea 
tar pits, CA, 
USA. 

3. Uncultured bacterium 
clone: F11 

99% FJ230909.1 Li et al., 2011 WWTP, Hebei, 
China. 

4. Pirellula sp. Schlesner 302 92% X81942.1 Ward et al., 
1995 

Fjord Schlei, 
Baltic Sea 

5. Pirellula sp. Schlesner 516 91% X81940.1
  

Griepenburg et 
al., 1999 

Sewage sludge 

6. Planctomycete strain 543 91% AJ231173.1 Griepenburg et 
al., 1999 

Sewage sludge 

 

Strain P6.2 showed 99% similarity towards the uncultured bacterium clones BJGMM-

3s-145, 101-75 and F11 (Table 5.8). The closest related cultured specimens were 

Pirellula sp. Schlesner 302 and Schlesner 516, both with a 91% similarity in the 16S 

rRNA gene. Strain P6.2 also displayed a 90% similarity towards the Planctomycete 

strain 543 obtained by Griepenburg and collaborates (1999) from sewage sludge Table 

5.8).  

Table 5.8: Relationship between the 16S rRNA gene sequence of strain P6.2 and its three 
closest uncultivated (1-3) and the three closest cultivated relatives (4-6) from the NCBI 
database. 

Blast hit Identity Acc. Nr. Reference Habitat 

1. Uncultured bacterium 
clone: BJGMM-3s-145 

99% JQ800921.1 Jia, et al., 
(unpublished) 

Yellow river 
delta, China. 

2. Uncultured bacterium 
clone: 101-75 

99% EF157256.1 Kim and 
Crowley, 2007 

Rancho La Brea 
tar pits, CA, 
USA. 

3. Uncultured bacterium 
clone: F11 

99% FJ230909.1 Li et al., 2011 WWTP, Hebei, 
China. 

4. Pirellula sp. Schlesner 302 91% X81942.1 Ward et al., 
1995 

Fjord Schlei, 
Baltic Sea 

5. Pirellula sp. Schlesner 516 91% X81940.1
  

Griepenburg et 
al., 1999 

Sewage sludge 

6. Planctomycete strain 543 90% AJ231173.1 Griepenburg et 
al., 1999 

Sewage sludge 

 

https://www.ncbi.nlm.nih.gov/nucleotide/JQ800921.1?report=genbank&log$=nucltop&blast_rank=1&RID=9GY9C6D5014
https://www.ncbi.nlm.nih.gov/nucleotide/EF157256.1?report=genbank&log$=nucltop&blast_rank=2&RID=9GY9C6D5014
https://www.ncbi.nlm.nih.gov/nucleotide/FJ230909.1?report=genbank&log$=nucltop&blast_rank=4&RID=B74KYJEX01N
https://www.ncbi.nlm.nih.gov/nucleotide/X81942.1?report=genbank&log$=nucltop&blast_rank=101&RID=9DCNXYK901N
https://www.ncbi.nlm.nih.gov/nucleotide/X81940.1?report=genbank&log$=nucltop&blast_rank=199&RID=9DD3GZDJ01N
https://www.ncbi.nlm.nih.gov/nucleotide/X81940.1?report=genbank&log$=nucltop&blast_rank=199&RID=9DD3GZDJ01N
https://www.ncbi.nlm.nih.gov/nucleotide/X81940.1?report=genbank&log$=nucltop&blast_rank=199&RID=9DD3GZDJ01N
https://www.ncbi.nlm.nih.gov/nucleotide/AJ231173.1?report=genbank&log$=nucltop&blast_rank=210&RID=9DD3GZDJ01N
https://www.ncbi.nlm.nih.gov/nucleotide/JQ800921.1?report=genbank&log$=nucltop&blast_rank=1&RID=9GY9C6D5014
https://www.ncbi.nlm.nih.gov/nucleotide/EF157256.1?report=genbank&log$=nucltop&blast_rank=2&RID=9GY9C6D5014
https://www.ncbi.nlm.nih.gov/nucleotide/FJ230909.1?report=genbank&log$=nucltop&blast_rank=4&RID=B74KYJEX01N
https://www.ncbi.nlm.nih.gov/nucleotide/X81942.1?report=genbank&log$=nucltop&blast_rank=101&RID=9DCNXYK901N
https://www.ncbi.nlm.nih.gov/nucleotide/X81940.1?report=genbank&log$=nucltop&blast_rank=199&RID=9DD3GZDJ01N
https://www.ncbi.nlm.nih.gov/nucleotide/X81940.1?report=genbank&log$=nucltop&blast_rank=199&RID=9DD3GZDJ01N
https://www.ncbi.nlm.nih.gov/nucleotide/X81940.1?report=genbank&log$=nucltop&blast_rank=199&RID=9DD3GZDJ01N
https://www.ncbi.nlm.nih.gov/nucleotide/AJ231173.1?report=genbank&log$=nucltop&blast_rank=210&RID=9DD3GZDJ01N
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Both strains P6.1 and P6.2 showed very similar relatives when searched in the Blast 

database. The only difference was the similarity towards Pirellula sp. Schlesner 302, 

which was 91% for strain P6.2 and 92% for strain P6.1. As well as the Planctomycete 

strain 543, where strain P6.1 showed 91% similarity and strain P6.2 showed 90% 

similarity. 

5.5.3 Phylogenetic Tree 

A phylogenetic tree was made to analyse the phylogenetic distances between the 

strains and their closest related sequences, as well as to analyse their relationship to 

other described species of Planctomycetes. 

Construction of a maximum likelihood tree (Figure 5.13) clustered strains P2S, P6.1 and 

P6.2 into a monophyletic clade, together with their closest uncultured sequences, as 

well as their closest related cultured sequences from Tables 5.6–5.8. The closest 

related described Planctomycetes species for these 3 strains were Rhodopirellula 

baltica from the Baltic Sea with a similarity of 90%, and Rubripirellula obstinata, 

originated from kelp surface with a similarity of 89%. Strain P1a formed a 

monophyletic clade together with its most closely related uncultured and cultured 

sequences (Table 5.5), including Bythopirellula goksoyri, isolated from AMOR in the 

Norwegian-Greenland Sea with a similarity of 90%. The described Planctomycetes 

species included in this tree was chosen to provide an overview of the 

Svarthammarhola strains’ phylogenetic position and their relationship to different 

genera within the Planctomycetes division.  
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Figure 5.13: Maximum likelihood 16S rRNA gene phylogenetic tree showing the relationships 
between strains from Svarthammarhola (highlighted with black dots), their closest uncultured 
and cultured relatives, as well as selected Planctomycetes species (accession numbers shown 
in parenthesis). The tree was based on the Tamura-Nei model (Tamura and Nei, 1993), with 
discrete Gamma distribution used for model of evolutionary rate differences among sites. 
Numbers on the tree refer to bootstrap values, based on 100 replicates. Only values above 
50% are shown. The anammox Planctomycete Candidatus Scalindua wagneri were used as 
outgroup. Bar – 0,05 substitutions per nucleotide position.  
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5.6 Summary of Traits and Comparison to R. obstinata 

The Planctomycetes species Rubripirella obstinata was chosen for comparison of 

morphological and physiological traits for the 4 strains. There were other species with 

higher similarities in the 16S rRNA gene, however the comparison data for R. obstinata 

involved more similar experiments and comparable data. Data for comparison of R. 

obstinata was retrieved from the description performed by Bondoso and collaborates 

(2015). 

Morphologically the Svarthammarhola strain differ from R. obstinata (Table 5.9). Cell 

size are in general smaller and vary more. The smallest cells of R. obstinata are 1,5 x 

1,3 µm, whereas the smallest measured cells from Svarthammarhola are cells from 

strains P2S and P6.1, with a size of 0,6 x 0,7 µm. Strains from Svarthammarhola all 

have spherical to ovoid cells, where R. obstinata have pear-shaped to ovoid cells. 

Strains P2S, P6.1, P6.2 all have the same temperature optimum as R. obstinata, 

however growth range differs, as well as pH range.  

Table 5.9: Comparison of morphological and physiological traits of strains P1a, P2S, P6.1, P6.2 
and R. obstinata. 

Morphology Strain P1a Strain P2S Strain P6.1 Strain P6.2 R. obstinata 

Cell size (µm) 0,7-1,2 x 
0,7-0,9 

0,6-1,4 x 0,7 -
1,6 

0,6-1,2 x 0,7-
1,4 

0,8-1,4 x 0,8-
1,6 

1,5-2 × 1,3-1,7 

Cell shape Spherical to 
ovoid 

Spherical to 
ovoid 

Spherical to 
ovoid 

Spherical to 
ovoid 

Pear shaped to 
ovoid 

Cell arrangement Aggregates, 
rosette or 
single cells 

Rosette of 2-3 
cells or single 
cells 

Aggregates, 
rosette or 
single cells 

Aggregates, 
rosette or 
single cells 

Rosette of 2-
10 cells 

Pigmentation Grey-white White Pink Red Red 

Salinity tolerance NA 0-3,5% NaCL 
(w/v) 

0-0,5% NaCl 
(w/v) 

0-1% NaCl 
(w/v) 

50-125% ASW 

Temperature range (°C) NA 5-35 5-35 5-35 10-30 

Temperature optimum 
(°C) 

NA 25 25 25 25 

pH range NA 5-9 5-9 5-9 6,5-10 

pH optimum NA 8 7,5 7,5 7,5 

NA, not available. 
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Comparison of different carbon sources utilized are displayed in Table 5.10. The 

Svarthammarhola strains are capable of utilizing a broader spectrum of carbon sources 

than R. obstinata, considering the carbon sources used in this experiment.  

Table 5.10: Comparison of carbon sources utilized by strains P1a, P2S, P6.1, P6.2 and R. 
obstinata. 

Carbon source Strain 
P1a 

Strain P2S Strain P6.1 Strain P6.2 R. obstinata 

Sucrose w + + + - 

L-Sorbose - - w - - 

D-Xylose + + + w + 

D-Raffinose - + - - - 

D-Cellobiose + + + + - 

D-Galactose + + + + + 

D-Fructose - w - - + 

D-Mannitol - - + + - 

D-Arabinose + w - w - 

D-Mannose + + + + + 

Carboxymethyl 
cellulose 

- - + - - 

D-Glucose + + + + + 

Cellulose - - - - + 

N-acetyl-D-
glucosamine 

+ + + + + 

D-Maltose + + + + - 

Chitin - - - - NA 

L-Rhamnose w + - - + 

+, positive; -, negative; w, weak; NA, not available. 

 

The enzymatic repertoire of R. obstinata does not differ much from that of the 

Svarthammarhola strains (Table 5.11). No enzymes are displayed by R. obstinata that 

the strains do not possess. However, it does test positive for cysteine arylamidase and 

acid phosphatase which only strain P1a test positive for among the Svarhammarhola 

strains.  
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Table 5.11: Comparison of the enzymatic repertoire of strains P1a, P2S, P6.1, P6.2 and R. 

obstinate tested with API ZYM. 

Enzyme Strain P1a Strain P2S Strain P6.1 Strain P6.2 R. obstinata 

Alkaline 
phosphatase 

- + + + + 

Esterase (C4) + - + + + 

Esterase lipase 
(C8) 

+ + + + + 

Lipase (C14) + - - - - 

Leucine 
arylamidase 

- - + + + 

Valine 
arylamidase 

+ + - + + 

Cystine 
arylamidase 

+ - - - + 

Trypsin - - - - - 

α-chymotrypsin - - - - - 

Acid phosphatase + - - - + 

Naphtol-AS-BI 
phosphohydrolase 

+ + + + - 

α-galactosidase + - - - - 

β-galactosidase - - - - - 

β-glucuronidase - - - - - 

α-glucosidase - + - - - 

β-glucosidase - - - - - 

N-acetyl-β-
glucosaminidase 

- - - - - 

α-mannosidase - - - - - 

α-fucosidase - - - - - 

+, positive; -, negative. 

 

 

 

 

 

 

 

 

  



73 
 

5.7 Screening for Bioactive Molecules 

Strains P6.1 and P6.2 were screened for bioactive molecules. At the time when the 

screening was performed, strain P2S was not obtained in pure culture, and strain P1a 

was not yet discovered. The screening was done as part of a collaborative project 

between the University of Bergen, and the University of Porto. The aim of the Project 

was to screen different strains of Planctomycetes from different habitats for bioactive 

molecules. Extracts from the different strains were obtained, and these were used to 

treat the different cancerous cell lines. The cell lines used was the human AML cell line 

(Molm13) and human prostatic cancer cell line (PC3), as well as the normal rat kidney 

epithelial cell line (NRK) as a control. All the different cell lines were analysed for 

metabolic activity using the WST-1 assay, which measures enzymatic conversion of 

tetrazolium salt into coloured metabolites. However, Planctomycetes, including strains 

P6.1 and P6.2, possess pigmentation that interferes with the WST-1 colorimetric assay, 

therefore results from this assay was not applicable. Consequently, only cytotoxicity 

was assessed by studying the nuclear morphology of the treated cell lines. The results 

from the project now being in the process of being published. The manuscript is 

available in Appendix IV (Calisto et al., 2018). 

5.6.1 Determination of Induced Apoptosis 

Apoptotic cells appeared under the fluorescence microscope as condensed nucleuses 

exhibiting strong fluorescence when stained with DNA-specific dye Hoechst 33342 

(Figure 5.14b). Healthy and viable cells appeared as whole cells without fluorescent 

dye staining their nuclei (Figure 5.14a). The cytotoxic potential of the extracts was 

divided into categories, including high – H (>70% cell death), intermediate – I (40-70% 

cell death), low – L (10-40% cell death) or no (<10% cell death). The different cell lines 

were screened under the microscope for apoptotic nuclei and the percentage of 

apoptotic cells were calculated using Equation 2.  
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Figure 5.14: Comparison of healthy viable and apoptotic Molm13 cells. A) Showing control 
Molm-13 cells treated with only DMSO and no planctomycetal extracts. Providing an indication 
of how healthy and viable cells appeared under fluorescent microscope. B) Showing Molm13 
cells treated with aqueous extracts from strain P6.1, incubated for 72 h. Arrows indicating 
apoptotic cells by distinctive staining of condensed nucleuses.  

 

5.6.2 Cytotoxic Assays 

Both the aqueous and organic extracts from strain P6.1 showed intermediate activity 

towards Molm13 cells, with 64 and 56% cell death, respectively (Figure 5.15). These 

extracts also showed no cytotoxicity towards the PC3 and NRK cell line, except for the 

aqueous extract on PC3 cells, which displayed 12,66% apoptotic cells, hence, low 

cytotoxicity. Strain P6.2 showed intermediate cytotoxicity towards Molm13 in the 

aqueous extracts, and low toxicity in the organic extracts. There was no cytotoxicity 

shown against PC3 cells in either of the extracts and low toxicity was displayed in NRK 

cells for both extracts.  

It was shown that strain P6.1 displayed a higher cytotoxicity than strain P6.2 in both 

extracts. Both strains show higher toxicity in their aqueous extracts towards Molm13 

cells than in the organic extracts. None of the strains showed higher than low 

cytotoxicity towards any of the adherent cell lines, where strain P6.1 showed low 

toxicity towards PC3 cells in the aqueous extracts, and strain P6.2 showed low 

cytotoxicity towards NRK cells in both aqueous and organic extracts. Both strains 

display intermediate cytotoxicity towards Molm13 cells.  
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Figure 5.15: Showing calculated induced apoptosis (%) after 72h treatment on 3 different cell 
lines with both aqueous and organic extracts from strains P6.1 and P6.2. Values represented 
are calculated based on the results from 3 parallels on the PC3 and NRK cell lines and 4 
parallels on the Molm13 cell line.  

 

The screening of these strains’ extracts was performed as part of a collaborative 

project, involving several other strains than strain P6.1 and P6.2. The ability to induce 

apoptosis in Molm13, PC3 and NRK cell lines for all involved strains are represented in 

Appendix IV (Calisto et al., 2018). When the effect of extracts from strains P6.1 and 

P6.2 are compared to the rest of the strains’ extracts, it is clear that they are not the 

most potent producers of bioactive molecules. However, extracts from strains P6.1 

and P6.2 still induce higher percentage of apoptosis towards Molm13 cells than most 

of the extracts from other strains. Only a few of the strains involved in the experiment 

exhibited higher than low toxicity towards the PC3 cell line. The same is applicable for 

the strains’ toxicity towards the NRK cell line.  
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6. Discussion 

Planctomycetes have previously been reported in caves and frozen environments 

(Pašić et al., 2009; Borsodi et al., 2012; De Mandal et al., 2014; Rysgaard and Glud, 

2004; Zeng et al., 2013; Boetius et al., 2015; Tebo et al., 2015; Yang et al., 2016). 

However, these were solely on molecular experiments, and not dedicated 

Planctomycetes studies. Planctomycetes have also never been isolated in axenic 

cultures from either ice or cave ecosystems. 

In the descriptive microbial community analysis (Figure 3.4), it was shown that 

Planctomycetes were present in the ice mass of Svarthammarhola ice cave. Though 

varying abundances from 2,1 – 13% were shown to be present. The dominant group in 

all samples were the Planctomycetacia, but also Phycisphaera were documented. 

In this study 11 thawed ice samples from Svarthammarhola ice cave was used as 

inoculum for enrichment cultures using a modified version of M30 media spanning the 

entire chrono sequence of the ice mass. The M30 media has previously shown to be 

successful in the isolation of Planctomycetes (Schlesner, 1994). The enrichments were 

followed closely by microscopy and 4 novel strains were obtained in pure cultures. 

Further, these 4 strains were subject to diphasic characterization using both molecular 

and conventional cultivational based techniques. Two of the strains were further used 

in a screening assay for bioactive molecules, together with several different 

Planctomycetes strains from various habitats.  
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6.1 Isolation 

Four novel Planctomycetes strains were isolated from the initial enrichment cultures. 

The strains were isolated from enrichment cultures containing sample material from 

samples P1a and P6, as well as soil and organic matter from sample P2, sample P2S. 

Considering the abundances of Planctomycetes in the different samples (Figure 5.2), it 

is not surprising that we find Planctomycetes strains in samples P1a and P2S, given 

their relative abundances of 10,5 and 5,3%, respectively (Figure 3.4). However, in 

sample P6 one of the lowest abundances of Planctomycetes was recorded. Only about 

2,1% of the reads were Planctomycetes. Therefore, it was unexpected that 2 of 4 

strains originated from this sample. Cells with Planctomycetes-like characteristics was 

also observed in enrichment culture P3, where the abundance of Planctomycetes was 

found to be 2,1% (Figure 3.4). However, no axenic Planctomycetes culture was 

obtained from this enrichment culture, as no further growth was detected when the 

cells were transferred to fresh media. 

Initially strain P2S seemed to be growing together with yeast like-cells (Figure 5.1), and 

in some cases the Planctomycetes cells seemed to be attached to the eukaryotic cell, 

almost feeding off them. However, after repeated streaking onto fresh solid media 

strain P2S was obtained in axenic culture. 

Cells of strain P1a was not discovered in the initial enrichment culture before 173 days 

after the initial inoculation. When the strain first was observed, the culture was very 

dense and dominated by Planctomycetes cells. It was still hard to obtain them in 

axenic culture, as they did not respond well when supplemented with fresh media. 

Several different variations of M30 was tried including, M30 18% SW without 

ampicillin and M30 with no aged seawater added. Finally, the strain appeared in 

colonies on M30 18% SW gelrite plates and were further streaked onto fresh media 

until obtained in axenic culture. 
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6.2 Morphology 

All strains displayed different internal and external morphological structure. When 

cultured in liquid media strain P1a appeared to be evenly suspended in the media, but 

in later growth stages formed small flake-like aggregates of cells that appeared grey-

white in colour. In contrast strain P2S was suspended in the liquid media throughout 

incubation and gave the culture a transparent white colour. Strains P6.1 and P6.2 

formed pink and red aggregates that gathered at the bottom of the tubes, as well as 

growing attached to the tubes near the surface of the liquid media. None of the other 

strains displayed any growth attached to the tubes when cultured in liquid media.  

When grown on solid media, strain P1a formed grey-white colonies with creamy 

consistency. This was also true for strain P2S, except that the colour of the colonies 

was white. Strain P6.1 formed small pink colonies that were easy to detach from the 

solid media. In contrast strain P6.2, formed big red colonies that were hard to detach 

from the solid media, as well as hard to homogenize when transferred to liquid media. 

6.2.1 Strain P1a 

When studied by phase contrast light microscopy, strain P1a had cells that appeared to 

be spherical to ovoid in shape. Strain P1a formed mainly large aggregates of cells, but 

swarmer cells were also observed, as well as occurrences of rosette formation and 

budding reproduction (Figure 5.2). Indications of budding reproduction not happening 

from a reproductive pole were raised during phase contrast light microscopy (Figure 

5.2b). This was again observed during transmission electron microscope analysis of the 

strain (Figure 5.3b). This is not the first time non-polar budding reproduction has been 

reported in Planctomycetes (Christian Jogler, personal communication, May 10, 2017). 

Furthermore, TEM analyses revealed that strain P1a had highly condensed nucleotides, 

as well as crateriform and fibrous structures along the outer membrane (Figure 5.3d). 

The cytosol of the strain was situated close in proximity to the outer membrane with 

very thin layer of periplasm (Figure 5.3b, c and d), in contrast to what displayed by 

strains P6.1 and P6.2. Strain P1a exhibited large invaginations of the periplasm 

surrounded by a membrane (Figure 5.3c). The invagination appears as a 

compartmentalized structure, however because of the way the cross sections are cut, 
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it is more likely to be an invagination of the periplasm like described by Boedeker and 

collaborates (2017).  

6.2.2 Strain P2S 

Strains P2S appeared as single motile swarmer cells or in rosette formations of no 

more than 2-3 cells (Figure 5.4). Cells that were arranged in rosette formations seemed 

to be interconnected via tubular-like structure (Figure 5.4), possibly non-prosthecate 

stalks used as holdfast structures, as described by Fuerst (1995). The motile swarmer 

cells moved with “wriggling” motions, indicating the presence of flagella, however no 

such structures were observed when studied under the transmission electron 

microscope. The fact that strain P2S appear as single cells or in rosette formations of 

no more than 3 cells, as well as being motile, might explain how the strain remains 

suspended in liquid culture and not as aggregates as the other strains. TEM analyses of 

strain P2S revealed highly condensed nucleotides, surrounded by electron dense 

material, indicating the presence of ribosomes (Figure 5.5). The strain also displayed 

the same invaginations of the periplasm as strain P1a, also with a clearly defined 

membrane surrounding the invagination. Furthermore, strain P2S exhibited an outer 

membrane situated very close to the cytosol, in the same way as strain P1a.  

6.2.3 Strain P6.1 

When observed by phase contrast light microscopy strain P6.1 showed clear signs of 

rosette formation and budding reproduction (Figure 5.6). The strain also exhibited 

motile swarmer cells, possibly daughter cells, and that the mother cells stay attached 

and arranged in rosette formations, as described by Fuerst (1995). The budding shown 

by the strain seemed to happen from a reproductive pole (Figure 5.6b). Furthermore, 

TEM analyses of the strain revealed that cells arranged in rosette formations were held 

together by holdfast structures (Figure 5.7 a and c). Budding reproduction was 

displayed during TEM analyses (Figure 5.7 b and d), showing budding during the later 

stages due to the already transferred genetic material (Lee et al., 2009). The strain also 

displayed highly condensed nucleotides, as well as well-defined fibrous structures. The 

fibrous structures seemed to be connected to the outer membrane through 

crateriform structures (Figure 5.7d), this match what proposed by Boedeker and 
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collaborates (2017). Strain P6.1 displayed a large space between the outer membrane 

and the cytosol, the periplasm, which differs to what found in strains P1a and P2S.  

6.2.4 Strain P6.2 

Strain P6.2 displayed large, rubber-like colonies on solid media that were hard to 

detach. When studied under phase contrast light microscope strain P6.2 exhibit large 

cell aggregates, were the cells are arranged very dense (5.8). The large aggregates and 

the dense cell arrangement could possibly explain why colonies were hard to detach 

from solid media and to homogenize in liquid culture. Furthermore, phase contrast 

light microscopy revealed that strain P6.2 form rosette formation of several cells, as 

well as budding reproduction (Figure 5.8b). Swarmer cells were also observed, 

however, they did not appear to be motile. Transmission electron microscopy analyses 

revealed that strain P6.2 had highly condensed nucleotides as well as crateriform and 

fibrous structures (Figure 5.9). The strain also displayed large invaginations of the 

periplasm (Figure 5.9b), however, where strains P1a and P2S had a clearly defined 

membrane surrounding the invaginations, strain P6.2 have electron dense material, 

resembling ribosomes, surrounding its invaginations. As for strain P6.1, strain P6.2 also 

have a clearly defined space between the outer membrane and the cytosol. As shown 

by Boedeker and collaborates (2017), this area resembles the periplasm, and it appears 

to be larger in strains P6.1 and P6.2, than in strains P1a and P2S.  

6.3 Physiological Characterization 

Temperature optimum and range were determined for strains P2S, P6.1 and P6.2. 

Strain P1a was not included, because it was obtained in axenic culture at a later stage 

of this study. Temperature optimum for all strains were determined to be 25°C (Figure 

5.10), similar to the closely related R. obstinata (Bondoso et al., 2015). The strains 

were able to grow in temperatures ranging from 5-35°C, however, strain P2S exhibited 

very limited growth at 35°C. The temperature range of the strains indicate that they 

are phychrotolerant (Morita, 1975). The strains were able to grow at temperatures 

both lower and higher than R. obstinata. Growth at low temperatures have previously 

been reported in several Planctomycetes including; R. baltica (5-30°C) (Bondoso et al., 

2015), T. sphagniphila (6-30°C) (Kulichevskaya et al., 2012B), and S. acidiphila (4-33°C) 
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(Kulichevskaya et al., 2008). Growth at higher temperatures have also been recorded 

previously in Planctomycetes, ranging as high as 55°C (Giovannoni et al., 1987).  

The salinity optimum of strains was determined to be 0,1% (NaCl w/v) for P6.1, 

between 0 and 0,1 (NaCl w/v) for P6.2, and 0,5% (NaCl w/v) for strain P2S (Figure 

5.11). Strains P6.1 and P6.2 displayed a salinity growth range between 0 and 0,5% 

(NaCl w/v), while strain P2S were able to grow in salinity concentrations ranging from 0 

to 3,5% (NaCl w/v), indicating that the three strains are halotolerant (Ollivier et al., 

1994). Halotolerance in terrestrial Planctomycetes has previously been recorded 

including; S. paludicola and S. singulisphaera (0-0,5% NaCl w/v) (Kulichevskaya et al., 

2007, 2008), Z. Formosa (0-0,6 NaCl w/v) (Kulichevskaya et al., 2009), and S. rosea (0-

1% NaCl w/v) (Kulichevskaya et al., 2012A). Planctomycetes with high salinity tolerance 

have also been recorded in R. brasiliensis isolated from salt pit water, able to grow in 

salinity concentrations of 10% NaCl (w/v) (Schlesner, 1989). The Svarthammarhola 

strains’ tolerance towards NaCl could be caused by the use of aged seawater in the 

enrichment media, however it is also possible that salts were present in the cave and 

ice mass, especially in the soil and organic matter where strain P2S originated from.  

The pH optimum for growth of strain P6.1 and P6.2 was determined to be at 7,5, while 

strain P2S exhibited the strongest growth when cultivated in media with pH adjusted 

to 8 (Figure 5.12). All strains were able to grow on all the different pH values growth 

were tested, hence a growth range of pH ranging from 5 to 9. The optimum and 

growth range of the strains indicate that they all are neutrophilic (Tortora et al., 2015). 

Considering the pH of the initial ice samples (Table 3.1), the pH optimum of strains 

P6.1 and P6.2 deviate from the pH of the initial sample. The pH of the initial sample 

was 6,57, however the strains might have adapted considering the pH of the 

enrichment media. The pH of sample P2 was 8,18, and the pH optimum for strain P2S 

(pH = 8) does not deviate much from this, however strain P2S was isolated from soils 

and organic matter in sample P2, where pH was not measured. Broad pH growth range 

have previously been recorded in Planctomycetes, the closely related R. baltica has 

been shown able to grow in media with pH ranging from 5,5 to 10,5.  
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6.4 Physiological Attributes 

6.4.1 Utilization of Carbon sources 

It was shown that the Svarthammarhola strains were able to utilize a variety of carbon 

sources. The substrates that seemed to provide the strongest growth for the strains 

was D-cellobiose, D-glucose, N-acetyl-D-glucosamine and D-maltose, as well as D-

galactose for strain P1a (Table 5.1). These are all sugars based on or derived from 

glucose. D-Cellobiose and D- maltose are both disaccharides consisting of two glucose 

molecules, whereas N-acetyl-D-glucosamine is a derivative of glucose. The assimilation 

of these carbons has frequently been reported in Planctomycetes, including; 

Rhodopirellula baltica (Schlesner et al., 2004), Telmatocola sphagniphila 

(Kulichevskaya et al., 2012B), Roseimaritima ulvae and Rubripirellula obstinata 

(Bondoso et al., 2015), as well as in Fuerstia marisgermanicae (Kohn et al., 2016). In 

2015 Bondoso and collaborates (2015) showed that R. ulvae was able to assimilate 15 

out of the 17 carbon sources tested in this experiment. However, utilization of some of 

these substrates was determined by using the GN2 Microplates (Biolog, USA), which is 

not optimized for environmental bacteria.  

The Svarthammarhola strains were also shown to assimilate sucrose, D-galactose and 

D-mannose (Table 5.1). Strain P2S were also able to grow on xylose derived from 

wood, raffinose a trisaccharide and rhamnose, a deoxy sugar, indicating the ability to 

assimilate complex sugars. Planctomycetes have previously been proposed to be able 

to assimilate complex carbon sources (Lage and Bondoso, 2012). Strains P6.1 and P6.2 

also displayed growth when grown on the sugar alcohol D-mannitol which is produced 

by several organisms, including plants (Song and Vieille, 2009). D-Mannitol is also an 

isomer to sorbose, which all the strains exhibited limited growth when cultured in 

(Table 5.1).  

6.4.2 Enzymatic Activity 

By using the API ZYM test strips, it was shown that the Svarthammarhola strains 

possessed different enzymatic activities. However, two enzymes were shown to be 

present in all strains, these include, Esterase lipase (C8) and Naphthol-AS-BI-

phosphohydrolase (Table 5.2). Otherwise alkaline phosphatase was found in all strains 

except P1a. Which is an enzyme common in both eukaryotes and prokaryotes and 
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provides a source of inorganic phosphate when the environment does not provide one 

(Sharma et al., 2014). Also, esterase (C4) and valine arylamidase are found in 3 of the 

strains (Table 4.2). Lipase (C14) was only reported in strain P1a, lipase hydrolyses lipids 

for nutritional purposes and are essential for intracellular processes like transport and 

processing of lipids (Svendsen, 2000). Strain P1a was also the only strain that were 

positive for acid phosphatase, which frees attached phosphoryl groups from other 

substances. Acid phosphatase has a low pH optimum and are used by soil 

microorganisms to access organically bound phosphate (Bull et al., 2002). Strains P1a’s 

negative results for alkaline phosphatase and positive result for acid phosphatase 

might indicate that the strain obtains vital phosphate only from organic sources.  

All strains except P2S tested negative for α-glucosidase (Table 5.2), which is an enzyme 

that breaks down starch and disaccharides into glucose (Chiba, 1997). Considering that 

all strains exhibited good growth when grown in media containing disaccharides 

(sucrose, cellobiose and maltose) this seem a bit strange. At the same time there are 

other enzymes that can be used to in the hydrolysis of disaccharides like maltase and 

sucrase. None of the strains were positive for α-mannosidase, which cleaves the α-

form of mannose (Li, 1966), although all strains displayed growth when cultured in 

media containing mannose.  

When compared to other Planctomycetes, the Svarthammarhola strains, seems to 

have a more limited enzymatic repertoire. Strain P1a had the broadest enzymatic 

repertoire and tested positive for 7 enzymes. Fuerstia marisgermanicae were positive 

for 11 enzymes from the API ZYM test (Kohn et al., 2016), R. obstinata for 7 enzymes 

(Bondoso et al., 2015), and R. baltica were positive for 13 enzymes (Schlesner et al., 

2004).  

6.4.3 Antibiotic Resistance and Sensitivity 

By cultivating the Svarthammarhola strains on M30 18% SW plates with antimicrobial 

susceptibility disks (Oxoid), the resistance and sensitivity of the Svarthammarhola 

strains were displayed. Strains P1a, P6.1 and P6.2 were shown to be resistant towards 

9, 8 and 9, respectively, out of the 11 antibiotics used in this experiment (Table 5.3). 

Strain P2S was resistant towards 5 of the antibiotics. This indicates that the strains 

from Svarthammarhola are Planctomycetes with resistance towards a broad spectrum 
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of antibiotics. Planctomycetes have previously shown to be good representatives for 

broad-spectrum antibiotic-resistant organisms as they are naturally resistant to some 

antibiotic families (Cayrou et al., 2010).  

Planctomycetes has been found to be resistant towards β-lactam antibiotics (Cayrou et 

al., 2010), the same was true for the Svarthammarhola strains, as all of them displayed 

resistance towards ampicillin and penicillin G (Table 5.3). All strains were sensitive 

towards erythromycin which binds to the 50S unit of the bacterial rRNA and inhibits 

protein synthesis, as well as structural and functional processes (Trevor et al., 2015A). 

Furthermore, all strains except strain P1a showed sensitivity towards chloramphenicol, 

which is a bacteriostatic and inhibits protein synthesis by binding to the 23S and 50S 

rRNA, preventing peptide bond formation (Schifano et al., 2013). In 2010, Cayrou and 

collaborates reported that most Planctomycetes were resistant to chloramphenicol, 

this contradicts what found in the Svarthammarhola strains. Strains P6.1 and P6.2 

were the only strains sensitive to tetracycline, which binds to the 30S rRNA and 

prevents the introduction of new amino acids to peptide chains, hence, inhibiting 

protein synthesis (Connell et al., 2003). All strains were also resistant towards 

streptomycin, a protein inhibitor that binds to the 16S and 30S rRNA subunit (Sharma 

et al., 2007), nalidixic acid, a bacteriostatic inhibiting growth by acidification or 

inhibition of DNA gyrase (Trevor et al., 2015B), and vancomycin, which inhibits cell wall 

synthesis in Gram-positive bacteria (Trevor et al., 2015C).   

In this study it has been shown that the strains isolated from Svarthammarhola 

represents antibiotic resistance of a broad spectrum. Especially strains P1a and P6.2 

are of interest, considering that they showed resistance towards 9 out of 11 antibiotics 

used in this study.  
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6.5 Phylogeny 

The 16S rRNA gene was sequenced for all 4 strains by using the Planctomycetes 

specific forward primer Pla46f (Neef et al., 1998) and the general prokaryotic reverse 

primer H1552r (Pantos et al., 2003). This proved successful as almost entire 16S rRNA 

genes was obtained for all strains. Differences in the 16S rRNA gene between the 

strains was displayed, as well as differences towards their closest relatives.  

As shown in Table 5.4, strains P2S, P6.1 and P6.2 displayed 98 and 99% similarity 

towards one another. Despite their genetic similarities, the 3 strains showed 

morphological and physiological differences. The closest cultured relative of the three 

strains was strain Schlesner 302 (Ward et al., 1995), with similarities of 92 and 91% 

(Tables 5.6-8), and the strains’ closest described species were R. baltica and R. lusitana 

(Schlesner et al., 2004; Bondoso et al., 2014), with similarities of 90%. Strain P1a 

showed similarities towards strains P2S, P6.1 and P6.2 of 87, 88 and 87%, respectively 

(Table 5.4). The closest cultured relative of the strain was Planctomycete strain 292 

(Griepenburg et al., 1999), and the closest described species were B. goksoyri 

(Storesund and Øvreås, 2013), with a similarity of 90% (Table 5.5). Considering the 

proposed taxonomic boundaries for genus of cultured bacterial 16S rRNA gene 

sequences being 94,5% (Yarza et al., 2014), strains P2S, P6.1 and P6.2 represent one 

novel genus, while strain P1a represent another novel genus. 

In Figure 5.13, the maximum likelihood 16S rRNA gene phylogenetic tree shows strains 

P2S, P6.1 and P6.2 forming a monophyletic group together with their closest 

uncultured relatives, branching away from strain Schlesner 302, with a bootstrap value 

of 100%. Furthermore, strain P1a forms a monophyletic group together with its closest 

uncultured relatives, branching away from its closest cultured relatives, including B. 

goksoyri. The bootstrap value of the branch was 100%. 

There are always biases included in datasets based solely on one gene. The 

phylogenetic tree reflects the evolution of the 16S rRNA genes but not necessary the 

true phylogeny of the organisms from which the genes are obtained. However, the 16S 

rRNA gene is considered a very slow evolving gene and is conserved across the 

domains (Rosello-Mora and Amann, 2001).  



86 
 

6.6 Screening for Bioactive Molecules 

In this study, the ability of strains P6.1 and P6.2 to induce intermediate apoptosis in 

the cancerous cell line Molm13 was demonstrated (Figure 5.15). The two strains also 

showed low to no toxicity towards the human prostatic cancer cell line PC3 and the 

normal healthy rat kidney cell line NRK. The screening of bioactive molecules for these 

two strains were part of a project including extracts from several Planctomycetes 

strains (Appendix IV). When compared to the other Planctomycetes in this project, the 

extracts from strains P6.1 and P6.2 showed a higher toxicity towards Molm13 cells 

than most of the other strains’ extracts. However, there were also strains that 

displayed higher cytotoxicity than strains P6.1 and P6.2. 

Knowledge regarding bioactive substances in Planctomycetes is very limited. However, 

recently Planctomycetes have been recognized as important producers of bioactive 

compounds by in silico genome mining, as well as molecular screenings. In these 

studies, the presence of genes associated with different pathways for production of 

several bioactive molecules, like the antitumor compound epothilone (Donadio et al., 

2007; Graça et al., 2013; Wang et al., 2014; Graça et al., 2016; Ivanova et al., 2017; 

Vollmers et al., 2017). Therefore, it is very promising that strains P6.1 and P6.2, as well 

as several of the strains included in Appendix IV, showed significant cytotoxic activity 

towards the Molm13 cells.  

The cytotoxicity the extracts from strains P6.1 and P6.2 showed against Molm13 cells 

(Figure 5.15) is especially interesting and can provide indication of how the strains 

interact in the microbial ecosystem of the ice mass in Svarthammarhola ice cave. 

Considering that the strains were rather slow growing, the ability to produce bioactive 

compounds that is cytotoxic to other cells may provide an advantage for the strains in 

their natural habitat. In that way they might be able to compete with other faster 

growing heterotrophic bacteria for resources and habitat. 
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6. Conclusion 

In this study it has been shown that Planctomycetes are present in the ice mass of 

Svarthammarhola ice cave. Four novel Planctomycetes strains were obtained from the 

ice and their characteristics and phylogenetic relationship propose that 

Planctomycetes are indigenous in the cave microbiome. Whether the strains were 

active in the ice mass is hard to say, but they are definitely alive and conserved. By 

screening two of the strains’ extracts for bioactive molecules it has been shown that 

they produce secondary metabolites displaying cytotoxicity. These metabolites can 

possibly be used actively by the strains to defend their habitats and resources towards 

other faster growing heterotrophic bacteria. As these compounds can be used for 

medical purposes, this study shows the importance of targeting extreme and remote 

habitats, like ice caves, as a source for novel bacteria with potential of biotechnological 

applications. It is important to keep studying such environments, as knowledge 

regarding the ecology, metabolism and function of inhabiting organisms can lead to 

discoveries of great societal value.  
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7. Suggestions for Future Work 

In future studies of the Svarthammarhola strains, their genomes should be further 

investigated. A complete genome sequencing of the strains would provide insights to 

their metabolic features as well as their functionality. Furthermore, physiological 

characterization regarding growth conditions was not provided for strain P1a. This 

should be further tested in order to provide a more thorough characterization. It 

would also be interesting to cultivate the strains at temperatures lower than 5°C, and 

even lower than 0°C, to see if the strains can grow in conditions similar to that in 

frozen ice. The strains should also be examined by scanning electron microscopy, to 

further investigate on the presence of flagella, as well as gaining further insights to the 

budding reproduction process. Strain P1a displayed indications of budding occurring 

from the side of the cell, this needs to be further investigated. It would also be 

interesting to elucidate on the strains resistance and sensitivity towards antibiotics, by 

conducting the same experiments using other antibiotics.  

Further studies should also target the bioactive compounds found in the 

Svarthammarhola strains. In that way, gaining insights to which molecules are causing 

the cytotoxicity displayed towards cancerous cell lines used in this study.  
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Supplementary Figures 

 

Supplementary Figure 1.1: Alignment of 16S rRNA gene of strains P1a, P2S, P6.1 and P6.2. 

Alignment was performed in the BioEdit software (Hall, 1999; Hall 2007) using ClustalW. 
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Appendix I: Hutner’s Basal Salts 

Component Amount 

Nitrilotriacetic acid 5 g 

MgSO4 x 7H2O 13,85 g 

CaCl x 2H2O 1,67 g 

NaMoO4 x 2H2O 6,3 mg 

FeSO4 x 7H2O 49,5 mg 

Metal salts solution «44» 50 ml 

Double distilled water 450 ml 

 

Metal salts solution “44” 

Component Amount 

Ethylene diamino tetra acetate (EDTA) 25 mg 

ZnSO4 x 7H2O 109,5 mg 
FeSO4 x 7H2O 50 mg 
MnSO4 x H2O 15,4 mg 
CuSO4 x 5H2O 3,9 mg 
CoCl2 x 6H2O 2,0 mg 
Na2B4O7 x 10H2O 1,8 mg 
Double distilled water 100 ml 
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Appendix II: Vitamin Solution No. 6 – 10x Solution 

Component Amount 

Biotin 4 mg 

Pyridoxine hydrochloride 20 mg 

Thiamine hydrochloride 10 mg 

Ca pantothenate 10 mg 

p-Aminobenzoic acid 10 mg 

Folic acid 4 mg 

Riboflavin 10 mg 

Nicotinic acid 10 mg 

Vitamin B12 0,2 mg 

Double distilled water 100 ml 
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Appendix III: 16S rRNA Gene Sequences 

>P1a 16S rRNA Gene Sequence 

CGGACAGCGGCGAAAGGGAGAGTAACGCGTAGTTATGTACCCTAGGGTCCGGAATAGCCA 

CGGGAAACTGTGGGTAATGCCGGATAACATCCCCGGATCAAAGGTGTGATTCCGCCCTAG 

GAGCAGACTGCGCCCTACTAGCTTGTTGGTGGGGTAATGGCCCACCAAGGCAATGATGGG 

TAGCGGGTGTGAGAGCATGACCCGTCTCACTGGGACTGAGACACTGCCCAGACACCTACG 

GGTGGCTGCAGTCGAGAATCTTCGGCAATGGGCGAAAGCCTGACCGAGCGATGCCGCGTG 

CGGGATGAAGGCCCTCGGGTTGTAAACCGCTGTCGTAGGGGAGGAAGGTTCCGTGAAGAG 

CGGAATTTGACCTATCCTAGGAGGAAGTACGGGCTAAGTTCGTGCCAGCAGCCGCGGTAA 

CACGAACCGTACGAACGTTATTCGGAATTACTGGGCTTAAAGGGTTTGTAGGCGGCCTTG 

TAAGTCAGGTGTGAAAGCCCTCGGCTCAACCGAGGAACAGCGCTTGATACTGCAAGGCTT 

GAGGGAGACAGAGGTAAGCGGAACTGATGGTGGAGCGGTGAAATGCGTTGATATCATCAG 

GAACACCGGTGGCGAAAGCGGCTTACTGGGTCTCTTCTGACGCTGAGGAACGAAAGCTAG 

GGTAGCGAACGGGATTAGATACCCCGGTAGTCCTAGCTGTAAACGATGAGCACTTATCTG 

GGGATCCTCCCATAGGTTCCCGGATGTAGCGAAAGTGTTAAGTGCTCCGCCTGGGGAGTA 

TGGTCGCAAGGCTGAAACTCAAAGAAATTGACGGGGGCTCACACAAGCGGTGGAGGATGT 

GGCTTAATTCGAGGCTACGCGAAGAACCTTATCCAGGTCTTGACATGTACGGATTAACCC 

GGGTGAAAGCCCGGGCCACAGCTTCGGCTGGAACGTGCACAGGTGCTGCATGGCTGTCGT 

CAGCTCGTGTCGTGAGATGTCGGGTTAAGTCCCTTAACGAGCGAAACCCTTGTCTCTAGT 

TGCCAGCGAGTAATGTCGGGGACTCTAGAGAGACTGCCGGTGTTAAACCGGAGGAAGGCG 

GGGATGACGTCAAGTCCTCATGGCCTTTATGACCTGGGCTGCACACGTCCTACAATGGCG 

TCTACAAAGGGAAGCAAGCTCGCGAGAGTAAGCAAATCCCAAAAAGGGCGCCTCAGTTCG 

GATTGCAGGCTGCAACTCGCCTGCATGAAGCTGGAATCGCTAGTAATCGCGGGTCAGCAT 

ACCGCGGTGAATGTGTTCCTGAGCCTTGTACACACCGCCCGTCAAGCCACGAAAATGGGG 

GGGGCTTAAAGCCGCCGTGCCAACCCGCAAGGGAAGCAGGCGTCTAGAGTCAACTCCGTG 

ATTGGGACTAAGT 
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>P2S 16S rRNA Gene Sequence 

CGGCGAAGGGAGAGGAATAAGTAGAAATCTGCCCTCGGGACGGGGATAGCGGTGGGAAAC 

TGCCAGTAATACCCGATAACATCTAAGGATCAAATGGTGTGATTCCGCCTGAGGATGAGT 

CTACTTCCTATTAGCTTGTTGGTGTGGTAATGGCTCACCAAGGCAACGATGGGTAGCGGG 

TGTGAGAGCACGATCCGCCTCACTGGGACTGAGACACTGCCCAGACACCTACGGGTGGCT 

GCAGTCGAGAATCTTCGGCAATGGGGGAAACCCTGACCGAGCGACGCCGCGTGCGGGATG 

AAGGCCTTCGGGTTGTAAACCGCTGTCGTAAGGGAACAAATCCACTGGGGTACTCCCCTT 

TGGTTGAGTGATCTTAGGAGGAAGGACGGGCTAAGTTCGTGCCAGCAGCCGCGGTAAGAC 

GAACCGTCCGAACGTTATTCGGTATTACTGGGCTTAAAGAGTTCGTAGGCGGCCCAGACA 

GGTCAGATGTGAAATCCCTCGGCTCAACCGAGGAATTGCGTTTGAAACCGTCAGGCTTGA 

GGGAGATAGAGGTGAGCGGAACAGATGGTGGAGCGGTGAAATGCGTTGATATCATCTGGA 

ACACCGGTGGCGAAAGCGGCTCACTGGATCTTTTCTGACGCTGAGGAACGAAAGCTAGGG 

TAGCGAACGGGATTAGATACCCCGGTAGTCCTAGCCGTAAACGATGAGCACTAGTCTGTG 

GGGACCCTCACATCCTCTCGGACGTAGCGAAAGTATTAAGTGCTCCGCCTGGGGAGTATG 

GTCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCTCACACAAGCGGTGGAGGATGTGG 

CTTAATTCGAGGCTACGCGAAGAACCTTATCCTAGTCTTGACATGCTTAAGAATCTCTCT 

GAAAGGAGAGAGTGCCTTCGGGAACTTTTGCACAGGTGCTGCATGGCTGTCGTCAGCTCG 

TGTCGTGAGATGTCGGGTTAAGTCCCTTAACGAGCGAAACCCTTATCTTTAGTTGCCAGC 

GAGTAATGTCGGGGACTCTAGAGAGACTGCCGGTGTTAAACCGGAGGAAGGTGGGGATGA 

CGTCAAGTCCTCATGGCCTTTATGACTAGGGCTGCACACGTCCTACAATGCGGCATACAA 

AGGGAAGCAAACCCGCGAGGGGGAGCAAACCCCACAAAGTGTCGCTCAGTTCGGATTGCA 

GGCTGCAACTCGCCTGCATGAAGTTGGAATCGCTAGTAATCGCGGGTCAGCATACCGCGG 

TGAATGTGTTCCTGAGCCTTGTACACACCGCCCGTCAAGCCACGAAAGTTGGGGGGGCCC 

GAAGTCGCTAAGCTAACTCGCAAGAGAGGCAGGCGCCGAAGGTCAACTCGACAATTGGGA 

CTAAGTCG 
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>P6.1 16S rRNA Gene Sequence 

GCGGCGGAGGGAGAGGAATAAGTAGAAATCTGCCCTCGGGACGGGGATAGCGGCGGGAAA 

CTGCCGGTAATACCCGATAACATCTTTGGATCAAATGGTGTGATTCCGCCTGAGGATGAG 

TCTACTTCCTATTAGCTTGTTGGCGGGGTAATGGCCCACCAAGGCAACGATGGGTAGCGG 

GTGTGAGAGCACGATCCGCCTCACTGGGACTGAGACACTGCCCAGACACCTACGGGTGGC 

TGCAGTCGAGAATCTTCGGCAATGGGGGAAACCCTGACCGAGCGACGCCGCGTGCGGGAT 

GAAGGCCCTCGGGTTGTAAACCGCTGTCGTAAGGGAACAAATCCATAGGGGTACTCCTCT 

ATGGTTGAGTGATCTTAGGAGGAAGGACGGGCTAAGTTCGTGCCAGCAGCCGCGGTAAGA 

CGAACCGTCCAAACGTTATTCGGTATCACTGGGCTTAAAGAGTTCGTAGGCGGCCCGACA 

GGTGAGGTGTGAAATCCCTCGGCTCAACCGAGGAATTGCGCTTCAAACCGTCAGGCTTGA 

GGGAGATAGAGGTGAGCGGAACAGATGGTGGAGCGGTGAAATGCGTTGATATCATCTGGA 

ACACCGGTGGCGAAAGCGGCTCACTGGATCTTTTCTGACGCTGAGGAACGAAAGCTAGGG 

TAGCGAACGGGATTAGATACCCCGGTAGTCCTAGCCGTAAACGATGAGCACTAGTCTGTG 

GGGACCCTCACATCCTCTCGGACGTAGCGAAAGTGTTAAGTGCTCCGCCTGGGGAGTATG 

GTCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCTCACACAAGCGGTGGAGGATGTGG 

CTTAATTCGAGGCTACGCGAAGAACCTTATCCTAGTCTTGACATGCTTAAGAACCTCTCT 

GAAAGGAGAGGGTGCCTTCGGGAACTTTTGCACAGGTGCTGCATGGCTGTCGTCAGCTCG 

TGTCGTGAGATGTCGGGTTAAGTCCCTTAACGAGCGAAACCCTTGTCTCTAGTTGCCAGC 

GAGTAAAGTCGGGGACTCTAGAGAGACTGCCGGTGTTAAACCGGAGGAAGGTGGGGATGA 

CGTCAAGTCCTCATGGCCTTTATGACTAGGGCTGCACACGTCCTACAATGCGGCATACAA 

AGGGAAGCAAACCCGCGAGGGGGAGCAAACCCCAAAAAGTGTCGCTCAGTTCGGATTGCA 

GGCTGCAACTCGCCTGCATGAAGTTGGAATCGCTAGTAATCGCGGGTCAGCATACCGCGG 

TGAATGTGTTCCTGAGCCTTGTACACACCGCCCGTCAAGCCACGAAAGTTGGGGGGGCCC 

GAAGTCGCTAAGCTAACCGTAAGGAGGCAGGCGCCGAAGGTCAACTCGACAATTGGGACT 

AAGTCGTAACAA 
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>P6.2 16S rRNA Gene Sequence 

GGAAGCGGCGGAGGGAGAGGAATAAGTAGAAATCTGCCCTCGGGACGGGGATAGCGGCGG 

GAAACTGCCGGTAATACCCGATAACATCTTTGGATCAAATGGTGTGATTCCGCCTGAGGA 

TGAGTCTACTTCCTATTAGCTTGTTGGCGGGGTAATGGCCCACCAAGGCAACGATGGGTA 

GCGGGTGTGAGAGCACGATCCGCCTCACTGGGACTGAGACACTGCCCAGACACCTACGGG 

TGGCTGCAGTCGAGAATCTTCGGCAATGGGGGAAACCCTGACCGAGCGACGCCGCGTGCG 

GGATGAAGGCCCTCGGGTTGTAAACCGCTGTCGTAAGGGAACAAATCCATAGGGGTACTC 

CTCTATGGTTGAGTGATCTTAGGAGGAAGGACGGGCTAAGTTCGTGCCAGCAGCCGCGGT 

AAGACGAACCGTCCAAACGTTATTCGGTATCACTGGGCTTAAAGAGTTCGTAGGCGGCCC 

GACAGGTGAGGTGTGAAATCCCTCGGCTCAACCGAGGAATTGCGCTTCAAACCGTCAGGC 

TTGAGGGAGATAGAGGTGAGCGGAACAGATGGTGGAGCGGTGAAATGCGTTGATATCATC 

TGGAACACCGGTGGCGAAAGCGGCTCACTGGATCTTTTCTGACGCTGAGGAACGAAAGCT 

AGGGTAGCGAACGGGATTAGATACCCCGGTAGTCCTAGCCGTAAACGATGAGCACTAGTC 

TGTGGGGACCCTCACATCCTCTCGGACGTAGCGAAAGTGTTAAGTGCTCCGCCTGGGGAG 

TATGGTCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCTCACACAAGCGGTGGAGGAT 

GTGGCTTAATTCGAGGCTACGCGAAGAACCTTATCCTAGTCTTGACATGCTTAAGAACCT 

CTCTGAAAGGAGAGGGTGCCTTCGGGAACTTTTGCACAGGTGCTGCATGGGCTGTCGTCA 

GCTCGTGTCGTGAGATGTCGGGTTAAGTCCCTTAACGAGCGAAACCCTTGTCTCTAGTTG 

CCAGCGAGTAAAGTCGGGGACTCTAGAGAGACTGCCGGTGTTAAACCGGAGGAAGGTGGG 

GATGACGTCAAGTCCTCATGGCCTTTATGACTAGGGCTGCACACGTCCTACAATGCGGCA 

TACAAAGGGAAGCAAACCCGCGAGGGGGAGCAAACCCCAAAAAGTGTCGCTCAGTTCGGA 

TTGCAGGCTGCAACTCGCCTGCATGAAGTTGGAATCGCTAGTAATCGCGGGTCAGCATAC 

CGCGGTGAATGTGTTCCTGAGCCTTGTACACACCGCCCGTCAAGCCACGAAAGTTGGGGG 

GGCCCGAAGTCGCTAAGCTAACCGTAAGGAGGCAGGCGCCGAAGGTCAACTCGACAATTG 

GACTAAGTCGTAACAAG 
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Abstract 

There is a strong need to develop new drugs against many severe diseases. Therapy 

resistance is a major problem in for instance infectious diseases and cancer. Drug 

discovery has again turned to nature to search for molecules that can become drug leads. 

Although many bacterial phyla are extensively studied, some, like the Planctomycetes, 

remain largely unexplored as potential sources of new leads. Planctomycetes form a 

diverse group of bacteria with peculiar characteristics such as division by polar budding 

and absence of the FtsZ gene. Furthermore, they exhibit large genomes up to 12.5 Mb, 

and possess a high number of secondary metabolites as assessed by in silico genomic 

analysis. These characteristics have also revealed the presence of potential anticancer 

activity. Based on these promising characteristics, we wanted to investigate 

planctomycetes as a source for natural products with anticancer properties. Organic and 

aqueous extracts were obtained from cultivated planctomycetes strains originated from a 

variety of habitats such as marine systems (free living or attached to marine algae), deep 

marine iron hydroxide deposits, brackish water and glacier ice system. The extracts 

were screened for ability to inhibit cell growth, or induce cell death on two cancer cell 

lines, the human prostatic cancer cell line PC3, and human acute myeloid leukaemia 

(AML) cell line MOLM-13, as well as normal rat kidney epithelial cell line (NRK). Out 

of 39 strains, five exhibited cytotoxicity towards NRK cells, whereas 32 of the strains 

were toxic to the AML cell line, and four were toxic to the PC3 cell line. Four strains 

showed high toxicity and selectivity towards either one, or both of the cancer cell line 
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over the NRK-cells, and are potential producers of anti-cancer compounds. We found 

no correlation between bioactivity and strains habitat and geographic location but 

regarding phylogeny some Rhodopirellula spp. showed higher toxicity toward MOLM-

13 cells. These results from the first anticancer screening with planctomycetes showed 

that these peculiar microorganisms should be further explored for anti-cancer 

compounds and that more effort must be put in providing culture collections for drug 

development purposes. 

Introduction 

Biotechnological search for new natural products is of utmost importance for the well-

being and sustainability of humanity in the fight against many deadly diseases such as 

cancer and bacterial infections due to resistant strains (O'Neill, 2016). In Europe, cancer 

represents the second most important cause of death and morbidity with more than 3.7 

million new cases and 1.9 million deaths each year (WHO, 2012). In the USA, values of 

1 688 780 new cancer cases diagnosed and 600 920 cancer deaths were estimated for 

2017 (Siegel Rebecca et al., 2017). As the prophylactic treatment to prevent 

cardiovascular diseases improves, it is expected that cancer will become the leading cause 

of death within few years (Heron, 2016). This increase in cancer incidents represents new 

challenges. As the population ages, there will be a need for novel therapeutics with less 

harmful side-effects like cardiac failure or bone marrow depletion, often associated with 

therapy-induced mortality in elderly patients.  

In the development of new therapeutics, the majority of drug candidates are natural 

derived compounds (Imhoff et al., 2011). Some phyla of bacteria, Actinobacteria, 

Myxobacteria and Cyanobacteria, are well known producers of secondary metabolites 

(Jeske et al., 2016) and have been extensively studied for bioactive compounds. 

Traditionally, terrestrial organisms have been targeted for the search of novel antibacterial 

compounds and secondary metabolites. Therefore, special attention is directed towards 

marine biological sources (Joseph & Sujatha, 2010) and less explored bacterial phyla. 

The marine environment is a huge ecosystem still highly underexplored. It thus represents 

a vast source for novel bioactive molecules that can fulfil the ever-increasing need for 

new therapeutics to meet the increasing demand of pharmaceuticals. The oceans are 

inhabited by an immense diversity of microorganisms that only recently started to be 

unveiled. Estimations foresee numbers exceeding 1029 bacterial cells in the open ocean, 

with an average cell concentration of 106 per millilitre of seawater (Whitman et al., 1998, 
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Amaral-Zettler et al., 2010). It has become notorious that the study of novel bacterial 

phyla could lead to new bioactive molecules (Bredholt et al., 2008). One of these 

phylogenetic groups are the Planctomycetes, bacteria that have an intricate, still not fully 

understood, cell biology with complex life cycles and large genomes. Recently, 

Planctomycetes have proven the capacity to produce antibiotics and antifungal molecules 

and also genome mining has demonstrated their promising biotechnological potential 

(Donadio et al., 2007, Jeske et al., 2013, Graça et al., 2016, Jeske et al., 2016, Boedeker 

et al., 2017) . This is due to the presence of secondary metabolite genes or clusters related 

to various pathways for the production of several bioactive molecules, including some 

antitumor compounds like epothilone (Graça et al., 2016). 

Besides the in silico study of its potential, no study has hitherto addressed the anti-

cancer proprieties of planctomycetes. In fact, the study presented here is the first 

anticancer screening performed with planctomycetes assessing the induction of apoptosis 

and the decrease of growth in cancer cell lines. Acute myeloid leukaemia (AML) cell 

lines were chosen because AML is one of the most aggressive forms of leukaemia and is 

associated with high rate of chemo resistant relapse, and dose-limiting side-effects. 

Moreover, therapies developed towards leukaemia have high translational value to other 

cancers. We also tested for activity towards a solid tumour derived cell line, using prostate 

cancer (PC) cell lines since PC is one of the most common cancer types and with high 

mortality rates, especially in western countries. Prostate cancer is the leading cause of 

death from cancer in USA (Siegel Rebecca et al., 2017) and the third most common cause 

of death in Europe (Bray & Kiemeney, 2017). The results obtained with both cancer cell 

lines (AML and PC) were compared with the ability to induce cell death in a normal 

epithelial cell line. Our results show that planctomycetes represent a promising source for 

novel molecules that can become anticancer drug leads. 

 

Material and Methods 

 

Bacterial collections 

The planctomycetes strains used in this study were obtained from several different 

habitats (Table 1), namely marine iron hydroxide deposits (13 strains), marine water 

column (1 strain), macroalgal surface (18 strains), a meromictic lake (5 strains) and a 



115 
 

glacier ice inside a cave (2 strains). The strains affiliate to diverse phylogenetic clusters 

within the Planctomycetes phylum (Supplementary Fig. 1). 

 

Cultivation of planctomycetes  

Pure cultures of planctomycetes were cultivated in 250 mL M13 or M30 media with 70 – 

90 % seawater with the exception of the ice derived isolates that were cultivated in M30 

with 18 % seawater (Table 1) at 25 ⁰C, and 120 r.p.m. After 7 days incubation, the cultures 

were centrifuged for 15 min at 10 000 x g., and the supernatant discarded. The cell pellets 

were washed twice with sterile water and freeze-died for approximately 18 h (with 

temperature below - 40 ⁰C and about 4 × 10 -2 atm pressure). The final biomass was 

weighted and kept at -20 ⁰C until further processing. 

 

Preparation of planctomycetes extracts for cell lines experiments:   

Six mL of methanol: MilliQ water: chloroform (1:1:1) were added to each freeze-dried 

pellet. Six mL of the mixture without cells were used as an extraction control. The 

samples were homogenized (Tempest Virtishear I.Q. from Virtis, Gardiner NY fitted with 

10 mm rotor), at 20000 r.p.m., for two periods of 30 s, with cooling on ice for 10 s between 

the cycles. The samples were allowed to extract for 1 h at 4°C, with agitation after 30 

min, and then centrifuged at 450 x g for 30 min at 4°C, to separate the aqueous and organic 

phases. For each sample: (i) the organic phase (bottom phase) was carefully transferred 

to a separate tube and evaporated to dryness in a vacuumed centrifuge (Eppendorf 

concentrator plus, Eppendorf AG, Hamburg, Germany). The dried extract was dissolved 

in DMSO in a ratio of 10 mg of initial freeze-dried biomass of the bacterial culture to 25 

µL of DMSO. (ii) the aqueous phase (top phase) was treated in a similar way as the 

organic extract with the exception of the final step. The aqueous extracts were added 75 

µL of MilliQ water, in addition to 25 µL DMSO for each 10 mg initial freeze-dried 

biomass.  

 

Cancer cell lines and cytotoxicity assays:  

Planctomycetes extracts were tested for their capacity to induce apoptosis in the normal 

epithelial rat kidney cell line NRK (ATCC no: CRL-6509), the human AML cell line 

MOLM-13 (Matsuo et al., Quentmeier et al., 2003) and in the human prostate cancer cell 

line PC3 (ATCC no.: CRL-1435).  
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MOLM-13 cells were cultured in RPMI medium (Sigma R5886), supplemented with 10% 

(v/v) foetal calf serum (Sigma F7524), 0.2 mM L-glutamine and added 50 IU/mL 

penicillin and 0.1 mg/mL streptomycin. The cells were cultured to a density between 8 - 

80 x 104 cells/mL, and diluted by adding fresh medium with supplements. NRK and PC3 

cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM - Sigma D-6429), 

with the same supplements as for MOLM-13 cells. The PC3 and NRK cells are adherent, 

and at 90% confluence, the cells were detached by mild trypsin treatment (0.30 mg/mL 

trypsin for 5 min at 37 °C) and reseeded in fresh medium with supplements at 40-50% 

confluence. Cells were incubated at 37 °C, in a humidified atmosphere with 5% CO2. All 

media, serum and supplements, and reagents were from Sigma-Aldrich, St. Louis, MO, 

USA. 

The cytotoxicity experiments were performed in 96-well plates. One hundred µL 

containing 6000 cells of NRK or PC3 cell lines were placed in each well 24 h before the 

addition of the extracts to allow cells attachment to the substratum. After 24 h the medium 

was replaced by fresh medium and the extracts were added. MOLM-13 cell suspensions 

(20 000 cells/well in 100 µL) were added to the plates at the same time as the extracts. 

For all cell lines, one µL of the organic extracts or 4 µL of the aqueous extracts were 

added, respectively, to 99 µL or 96 µL of cell culture. The same volume of DMSO was 

used as solvent control and a negative control of 100 µL cell culture was also made. Cells 

were incubated with the extracts for 72h. The viability of the cells was first monitored 

using the WST-1 assay metabolic assay (Roche, Mannheim, Germany) following the 

manufacturers instruction. Thereafter, the cells were fixed with 2% buffered 

formaldehyde (pH 7.4) containing 0.01 mg/mL of the DNA-specific fluorescent dye, 

Hoechst 33342 and morphology of the nuclei was visualised by fluorescence microscopy 

(Nikon Diaphot 300 fitted with a 40× Flu-Phase contrast lens and a DS-Fi3 camera) as 

described by Prestegard et al (2009). A minimum of hundred cells from each cell line 

were used to determine cell death microscopically. All extracts were tested for cytotoxic 

activity 3-5 times for each concentration.  

 

Statistical analysis 

Statistical analyses and visualization was done in R (R Core Team 2017) using the vegan 

(Oksanen et al., 2015), ggplot2 (Wickham, 2009) and pheatmap packages (Kolde, 2015). 

To see if the toxic effect of Planctomycetes on the different cancer cell lines was related 

to strain phylogeny (Blastopirellula, Gimesia, Mariniblastus, Rhodopirellula sp., 
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Rhodopirellula lusitana, Roseimaritima, Rubinisphaera or Pir 4) or original habitat (ice, 

iron hydroxides, meromictic lake, macroalgal surface or seawater) we used analysis of 

similarities (ANOSIM, vegan). The response variable was a dissimilarity matrix of 

individual strain effects (aqueous and organic, n=6) on the three cancer cell lines, and the 

predictors were strain phylogenetic affiliation and original habitat. A PCA analysis (999 

perm) was used to further examine correlations between strain toxicity and the different 

cell lines. 

 

RESULTS 

A total of 39 planctomycetes were screened for cytotoxic bioactivity towards human 

AML cell line (MOLM-13) and human prostatic cancer cell line (PC3). The normal rat 

kidney epithelial cell line (NRK) was used as control. All cells were analysed for 

metabolic activity using the WST-1 assay which measures enzymatic conversion of a 

tetrazolium salt into a coloured metabolite. However, as several of the planctomycetes 

possess coloration that interferes with the WST-1 colorimetric assay, cytotoxicity was 

therefore only assessed through the nuclear morphology (see Supplementary Figure 2)  

All the planctomycetes were cultivated for 7 days except strain L2, which was also grown 

for 15 days to assess a longer stationary phase on the potential production of bioactive 

molecules.  

The extracts were tested at 1% for the organic extracts and 4% for the aqueous extracts, 

both corresponding to extracts from 0.4 mg freeze-dried material per 0.1 mL cell culture 

medium. First, it was tested whether the extracts exhibited cytotoxicity during 24-hours 

incubation. However, we noticed only modest cytotoxicity for all extracts after this 

incubation time. Since many cytostatics, like metabolic inhibitors, have a protracted 

cytotoxic effect, we decide to incubate the cells with the planctomycetes extracts for 72 

hours before assessing for cell death. We divided the cytotoxic potential of the extracts 

into high - H (> 70 % cell death), intermediate - I (40-70% cell death), low - L (10-40 % 

cell death) or no (<10 % cell death) (Supplementary Table 1). In total, 40 aqueous and 40 

organic extracts were analysed. The different cell lines were screened under the 

microscope for apoptotic nuclei and their percentage calculated (Supplementary Fig 2). 

Based on these values, a heat-map of the cytotoxic effects was constructed (Fig. 1). The 

organic extracts showed higher cytotoxic capacity than the aqueous extracts both in 

number (55% of the organic and 35% of the aqueous) and intensity (mean and median 
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cell death was, respectively, 26.4% and 12.10% for the organic and 13.6% and 6.0% for 

the aqueous extracts) (Figure 1 and Supplementary Table 1).  

Only five extracts showed intermediate or high activity towards NRK cells; the aqueous 

extract from strain Plm2, and the organic extracts from strains 7mR, SH1, UC49.1 and 

Sm4. High or intermediate activity towards PC3 prostate cancer cells was detected only 

in the organic extracts from strains CcC6, L1, SH1, Sm4, UC16, and UC49.1. Of these, 

strains SH1, Sm4 and UC49.1 were also cytotoxic towards NRK cells, but strains CcC6 

and L1 appeared selective towards PC3 cells over NRK cells.  

In general the MOLM-13 cells were much more sensitive towards the planctomycetal 

extracts than the other two cell lines. When counting strains causing high and intermediate 

cytotoxicity, 17.5% of the strains were H, and 42.5 % I in the organic extracts, and 12.5% 

were H, and 25 % I in the aqueous extracts. Only strains P6.1, VLbF2, 1mW and VLsL2h  

produced cytotoxic activity in both extracts, the remaining strains had cytotoxicity in only 

one of the extracts.  

From strain L2, extracts were obtained after 7 and 15 days of cultivation. After 7 days the 

organic extract was bioactive against MOLM-13 with low cytotoxicity (24 %) but after 

the 15 days a 3-fold increase in cytotoxicity (70 %) was seen (Fig. 1, Supplementary 

Table 1). 

Some strains stood out as particularly promising regarding anticancer activity. The 

organic extracts from the Rhodopirellula lusitana strains CcC6 (H - 82.7% PC3 and I - 

59% MOLM-13) and UF6 (L – 26% PC3 and H – 97% MOLM-13) and Rhodopirellula 

sp. L1 (H – 87% PC3 and I – 59% MOLM-13) induced cell death in the cancer cell lines 

selectively, i.e. strong activity towards both cancer cell lines, but not NRK-cells (Figure 

1 and Supplementary Table 1). Another striking feature was that several planctomycetes 

were selective towards MOLM-13 cells only, such as Rhodopirellula lusitana strain CcC8 

(I – 67%), UC13 (H – 91%), L2 (H – 70%) and Planctomyces maris VlrD4 (I – 44%) 

only in the organic phase. Furthermore, Rhodopirellula sp. FF4 (L (aq) – 26% and I (org) 

– 65%), Rubinisphaera sp. 1MW (H (aq) – 78% and I (org) – 46%), Planctomyces maris 

VLbF2 (H (aq) – 76% and I (org) – 64%) and Blastopirellula marina (H (aq) – 73% and 

L (org) –33%) showed activity both in aqueous and organic phases. R. lusitana seems to 

be highly bioactive in the organic extracts but not in the aqueous extracts (Fig. 2). The 

most cytotoxic strains belong to Rhodopirellula spp. (Fig. 2) 

In this study, a broad range of phylogenetic different planctomycetes was selected 

covering diverse habitats and geographical origins (Table 1, Supplementary Fig. 1). 



119 
 

Effects of individual strains on cancer cell lines differed between different phylogenetic 

groups (ANOSIM, p < 0.005), with Rhodopirellula sp. and R. lusitana, in particular, 

showing higher toxicity toward MOLM-13 cells. However, no distinct patterns regarding 

habitat or geographical location (data not shown) were identified. In line with the 

ANOSIM analysis, PCA analysis also showed that the organic extracts from 

Rhodopirellula sp. and R. lusitana as well as Rubrinisphaera strains had stronger effects 

on MOLM-13 cells than aqueous extracts (Fig. 3). However, the opposite was the case 

for the extracts from Blastopirellula, Gimesia, Pir 4 and Rubinisphaera strains (Fig. 3).  

 

Discussion 

In this study, we have demonstrated the capacity of planctomycetes to induce apoptosis 

and decrease cell growth of two cancer cell lines; the acute myeloid leukaemia MOLM-

13 and the human prostatic PC3. A considerable high number of planctomycetes were 

able to affect the MOLM-13 cells (32 strains) whereas a lower number affected PC3 cells 

(six strains). 

Little is known about bioactive substances in planctomycetes, as compared to other 

microorganisms such as actinobacteria and, in particular, streptomycetes, myxobacteria, 

and cyanobacteria. However, planctomycetes have recently been recognized as important 

producers of bioactive compounds by both in silico genome mining analyses and 

molecular screenings. These analyses revealed the presence of genes related to various 

pathways for the production of several bioactive molecules, including some antitumor 

compounds like epothilone (Donadio et al., 2007, Graça et al., 2013, Wang et al., 2014, 

Graça et al., 2016, Ivanova et al., 2017, Vollmers et al., 2017). It is therefore very 

promising that several of our planctomycetes strains isolated from various ecosystems 

showed significant cytotoxic activity towards the MOLM-13 cells and the human 

prostatic PC3 cells.  

The cultivation of planctomycetes is challenging as they are slow growing bacteria and 

therefore production of intermediate and high scale of biomass is not always 

straightforward. In this study we were able to establish growth conditions that allowed 

considerable biomass production. For strain L2 a prolonged growth period (15 days 

instead of 7 days) was included and results from this experiment seemed to favour the 

formation of bioactive molecules (Fig. 1). It should be emphasized that in both situations 

the cultures were in the same stationary growth phase. The only differences are the 

duration for the production of bioactive molecules or an increased stress by the aging of 
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the culture. Planctomycetal growth time is therefore an important parameter to be 

considered in future work. 

Four strains induced high toxicity (> 70%) against NRK control cells. Interestingly, strain 

UC49 was highly toxic towards all cell lines in the organic extract, but produced no toxic 

substances in the aqueous extracts towards any of the cell lines. This demonstrates that 

the two obtained extracts, aqueous and organic, were different regarding the composition 

on planctomycetes metabolites, similar to what has been demonstrated for cyanobacteria 

(Liu et al., 2014, Humisto et al., 2015). Still seven strains showed activity in both extracts 

(>40%), which is likely to be caused by compounds with intermediate hydrophobicity 

present in both extracts.  

The MOLM-13 cells were in general more sensitive towards the extracts compared to the 

prostate cancer cells (Fig. 1). We have previously observed that the activity towards the 

MOLM-13 cells in the aqueous extracts can be due to high levels of adenosine (Prestegard 

et al., 2009, Liu et al., 2014). Adenosine has been shown to induce apoptosis in MOLM-

13 cells (Tanaka et al., 1994). However, in our study, we used non-heat inactivated foetal 

bovine serum, where adenosine deaminase is intact, and able to convert adenosine into 

the inactive metabolite inosine. Thus, the anti-AML activity seen in the aqueous extracts 

in our experimental assays could not be due to adenosine. The selectivity towards AML 

compared to NRK or PC3 could be due to the more rapid proliferation rate of MOLM-13 

cells, and could point towards a mode of action related to DNA replication or the mitotic 

machinery.  

The most promising results regarding the anticancer activity were obtained with the 

organic extracts from the R. lusitana strains (CcC6, L1 and UF6, Fig. 1). They showed 

activities towards both MOLM-13 cells and PC3 cells, but not towards the NRK cells. 

Interestingly the phylogenetic related R. baltica also produced extracts showing high 

toxicity towards the cancer cell lines but also against the NRK cells. This demonstrates 

the importance of a broad culture collection for bioprospecting purposes, since even 

highly related strains can give very different bioactivities.  

Planctomycetes attached to algal surfaces seemed to be most active towards the cell lines 

tested as they produced the most potent anti-cancer compounds in this study. This could 

be explained by the high level of competition in macroalgal biofilms against eukaryotic 

cells such as microalgae, which trigger Planctomycetes production of secondary 

metabolites. These metabolites could selectively target cell signalling component 
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exclusively found in eukaryotes. If these targets are evolutionary conserved, they might 

even be present in mammalian cancer cells.  

We did not find a strong correlation between biogeography and habitat of the most 

promising candidates, as L1 was isolated from a kelp surface from Kongsfjorden in the 

Arctic (Svalbard, Norway), whereas the CcC6 was isolated from the surface of Chondrus 

crispus of the Coast of Portugal. The cytotoxicity-producing planctomycetes were 

ubiquitously distributed and adapted to tolerate fluctuations in salinity, temperatures, light 

and nutrient regimes.  

This work further confirms the potential of Planctomycetes as producers of important 

bioactivities by extending them to the production of anti-cancer compounds. Living in 

complex biodiverse environments, Planctomycetes are obliged to fight for their niche 

against many eukaryotic cells. To overcome their slow growth rate, they produce 

chemicals towards their competitors. This can explain why the Planctomycetes produce 

substantial bioactive substances that also might be targeting important processes in 

eukaryotic cells. As these molecules can be used for medical purposes, this study 

enlightens the importance of exploring molecules produced by planctomycetes for drug 

development. In the light of the evolutionary history, large genome size and diverse 

metabolic pathways, we foresee that several unique and important compounds may 

appear in these enigmatic bacteria. 
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Captions: 

Figure 1 - Heat-map showing the different degrees of toxicity that organic and aqueous 

extracts of planctomycetes induced in NRK, MOLM-13 and PC3 cell lines. Heat-map 

scale: 0-20% -no toxicity; 20-40%- low toxicity; 40-70% - intermediate toxicity; 70-

100% high toxicity. White boxes – Not evaluated. Graph was created in R studio 

programme, using pheatmap package. Cluster analysis was based on Eucledian Distance 

Figure 2 - Boxplots indicate the effects in % cell death on cancer cell lines (PC3 and 

MOLM-13) and controls (NRK) in aqueous (A) and organic phase (O) of strains 

affiliating with different subgroups of planctomyctetes. The band inside each box 

represents the median and the black points indicate values for individual strains. 

Figure 3 - Principal Component Analyses (PCA) constructed from a distance matrix 

based on the effect of the individual strains on the different cell lines. The figures 

http://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/data-and-statistics
http://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/data-and-statistics
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illustrate the relationship between strains, their phylogenetic affiliation, their original 

environment and activity against the different cell lines in aqueous and organic phases. 

Axis 1 and 2 explains 50 % and 23 % respectively of the observed variance. Arrows 

indicates the correlation between strains and activity against cell lines. 

Table 1 – Phylogeny, habitat and location of planctomycetes strains used in this study. 

 

Supplementary Figure 1 -  Phylogenetic 16S rRNA gene tree generated by maximum-

likelihood analysis based in General Time Reversible model and Gamma distributed 

with Invariant sites (G+I) indicating the relationship of the planctomycetes strains tested 

in this work. Bar – 0.05 substitutions per 100 nucleotides. The planctomycete 

Candidatus Scalinda brodae was used as outgroup. 

Supplementary Figure 2 - Examples of MOLM-13 cells stained with the DNA binding 

specific Hoechst dye. A - control cells and B – cells exposed to organic extracts of 

strain UC49.1. The apoptotic nuclei are bright, condensed or fragmented. 

 

Supplementary Table 1 – Data based on the different degrees of toxicity used for the 

construction of the heat-map. 

 

Table 1 – Phylogeny, habitat and location of planctomycetes strains used in this study. 

Strain Phylogeny Habitat Location Country 

MgM4h Blastopirellula cremea Iron hydroxide 

deposits 

South Pacific Fidji/Tonga 

TBK2h Blastopirellula marina Iron hydroxide 

deposits 

South Pacific Fidji/Tonga 

VLsL2h Blastopirellula sp. Iron hydroxide 

deposits South Pacific Fidji/Tonga 

Vloj2h Blastopirellula sp. Iron hydroxide 

deposits 

South Pacific Fidji/Tonga 

VLoJ4h Blastopirellula sp. Iron hydroxide 

deposits 

South Pacific Fidji/Tonga 

FC18 Mariniblastus fucicola Fucus spiralis Carreço Portugal 

K2D Pir 4 group Iron hydroxide 

deposits 

South Pacific Fidji/Tonga 

P6.1 Pir 4 (Ice cluster) Cave Ice 
Svarthamarhola Norway 

P6.2 Pir 4 (Ice cluster) Cave Ice 
Svarthamarhola Norway 
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VlrD4 Planctomyces maris Iron hydroxide 

deposits 

South Pacific Fidji/Tonga 

VL6F2 Planctomyces maris Iron hydroxide 

deposits South Pacific Fidji/Tonga 

Plm2 Planctomyces maris Iron hydroxide 

deposits South Pacific Fidji/Tonga 

9mWe Planctomyces sp. Meromictic lake Fana 
Norway 

UC49.1 Rhodopirellula  baltica Ulva sp. Carreço Portugal 

SH1 Rhodopirellula baltica Water column Baltic Sea Germany 

UC21 Rhodopirellula baltica Ulva sp. Carreço Portugal 

L1 Rhodopirellula 

islandica 

Saccharina nigripes Kongsfjorden Norway 

CcC6 Rhodopirellula lusitana Chondrus crispus Carreço Portugal 

CcC8 Rhodopirellula lusitana Chondrus crispus Carreço Portugal 

Sm4 Rhodopirellula lusitana Sargassum moticum Porto Portugal 

UC13 Rhodopirellula lusitana Ulva sp. Carreço Portugal 

UC16 Rhodopirellula lusitana Ulva sp. Carreço Portugal 

UF6 Rhodopirellula lusitana Ulva sp. Porto Portugal 

L2 Rhodopirellula lusitana Saccharina nigripes Kongsfjorden Norway 

UC9 Rhodopirellula rubra Ulva sp. Carreço Portugal 

7mR Rhodopirellula sp. Meromictic lake Fana Norway 

FC9.2 Rhodopirellula sp. Fucus spiralis Carreço Portugal 

FF4 Rhodopirellula sp. Fucus spiralis Porto  Portugal 

TBK1 Rhodopirellula sp. Iron hydroxide 

deposits 

South Pacific Norway 

VLsL4lr Rhodopirellula sp. 
Iron hydroxide 

deposits 

South Pacific Fiji/Tonga 

VLsK4lR Rhodopirellula sp. Iron hydroxide 

deposits 

South Pacific Fidji/Tonga  

VLpG4r Rhodopirellula sp. Iron hydroxide 

deposits 

South Pacific Fidji/Tonga  

UC8 Roseimaritima ulvae Ulva sp. Carreço Portugal 
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UF3 Roseimaritima ulvae Ulva sp. Porto Portugal 

UF4.1 Roseimaritima ulvae Ulva sp. Porto Portugal 

Gr7 Rubinisphaera 

brasiliensis 

Gracilaria bursa-

pastoris 

Aveiro Portugal 

1mW Rubinisphaera sp. Meromictic lake 
Fana Norway 

8mW Rubinisphaera sp. Meromictic lake Fana Norway 

15mW 

 

Rubinisphaera sp. Meromictic lake Fana Norway 
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Supplementary Table 1 – Data based on the different degrees of toxicity used for the 

construction of the heat-map. 

Phylogeny Strain NRK 
Organic 

PC3 
Organic 

MOLM-
13 

Organic 

NRK 
Aqueous 

PC3 
Aqueous 

MOLM-
13 

Aqueous 

Blastopirellula 
cremea 

MgM4h 9.15 5.66 39.76 0.00 4.71 0.00 

Blastopirellula 
marina 

TBK2h 14.69 7.49 33.33 16.35 6.80 73.15 

Blastopirellula 
sp. 

VLsL2h 2.52 11.11 53.46 37.61 8.01 69.12 

Blastopirellula 
sp. 

VLoj2h 3.34 7.23 40.93 6.51 11.88 44.07 

Blastopirellula 
sp. 

VLoj4h 5.98 9.21 38.70 3.22 5.08 54.63 

Mariniblastus 
fucicola 

FC18 4.51 15.90 17.18 9.87 5.98 73.25 

Pir 4 K2D 0.00 14.96 7.02 7.19 0.00 53.36 

Pir 4 P6.1 3.70 7.32 56.15 10.02 12.66 64.21 

Pir 4 P6.2 10.02 4.39 19.01 10.72 8.87 43.62 

Planctomyces 
maris 

VLrD4 7.37 0.00 43.52 5.65 4.21 3.87 

Planctomyces 
maris 

Plm2 7.03 2.06 2.01 44.11 5.25 78.97 

Planctomyces 
maris 

VLbF2 6.68 5.94 64.20 18.98 8.95 75.83 

Planctomyces 
sp. 

9mWe 9.32 8.01 32.88 14.06 15.59 66.89 

Rhodopirellula  
baltica 

SH1 79.36 42.35 53.91 5.22 14.10 8.44 

Rhodopirellula  
baltica 

UC49.1 75.63 78.09 80.20 0.38 0.31 10.93 

Rhodopirellula  
baltica 

UC21 19.66 6.60 28.60 3.79 2.17 4.19 

Rhodopirellula 
islandica 

L1 4.56 87.03 59.18 13.84 2.95 1.06 

Rhodopirellula 
lusitana 

CcC6 15.50 82.70 71.77 9.67 7.53 2.83 

Rhodopirellula 
lusitana 

CcC8 18.15 ND 66.86 0.84 9.71 1.02 

Rhodopirellula 
lusitana 

L2 ND 9.49 23.67 2.68 0.00 0.00 

Rhodopirellula 
lusitana 

L2(2) 15.32 16.06 70.44 5.02 ND 2.50 

Rhodopirellula 
lusitana 

Sm4 88.09 47.31 71.19 17.35 6.09 0.83 

Rhodopirellula 
lusitana 

UC13 15.21 1.99 91.22 1.11 0.94 3.80 
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Rhodopirellula 
lusitana 

UC16 35.07 60.78 96.52 1.92 0.03 0.02 

Rhodopirellula 
lusitana 

UF6 5.46 26.02 96.91 7.73 9.63 10.69 

Rhodopirellula 
rubra 

UC9 7.97 0.84 24.13 1.43 4.83 3.80 

Rhodopirellula 
sp. 

7mR 79.36 21.50 66.11 0.00 2.99 13.51 

Rhodopirellula 
sp. 

FC 9.2 1.53 3.68 8.74 1.98 0.00 3.55 

Rhodopirellula 
sp. 

FF4 9.60 9.08 65.05 11.31 2.71 26.06 

Rhodopirellula 
sp. 

TBK1 13.09 0.94 64.32 5.42 4.57 0.00 

Rhodopirellula 
sp. 

VLsL4lr 2.46 3.10 64.65 0.82 3.96 21.92 

Rhodopirellula 
sp. 

VLsK4lR 5.45 3.53 48.09 0.00 5.25 12.75 

Rhodopirellula 
sp. 

VLpG4r 7.38 4.39 43.17 14.06 6.28 50.33 

Roseimaritima 
ulvae 

UC8 8.45 13.48 58.76 0.00 ND 0.00 

Roseimaritima 
ulvae 

UF3 9.49 0.16 55.49 0.78 5.95 0.00 

Roseimaritima 
ulvae 

UF4.1 5.09 0.00 22.12 0.00 20.52 0.89 

Rubinisphaera 
brasiliensis 

Gr7 6.48 4.08 19.77 26.69 2.01 53.00 

Rubinisphaera 
sp. 

8mW 11.12 8.55 5.29 0.00 8.66 7.16 

Rubinisphaera 
sp. 

15mW 7.85 0.00 1.88 12.76 8.20 17.32 

Rubinisphaera 
sp. 

1mW 3.52 2.32 45.86 14.41 22.48 78.08 
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Figure 1 - Heat-map showing the different degrees of toxicity that organic and aqueous 

extracts of planctomycetes induced in NRK, MOLM-13 and PC3 cell lines. Heat-map scale: 

0-20% -no toxicity; 20-40%- low toxicity; 40-70% - intermediate toxicity; 70-100% high 

toxicity. White boxes – Not evaluated. Graph was created in R studio programme, using 

pheatmap package. Cluster analysis was based on Eucledian Distance 
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Figure 2 - Boxplots indicate the effects in % cell death on cancer cell lines (PC3 and MOLM-

13) and controls (NRK) in aqueous (A) and organic phase (O) of strains affiliating with 

different subgroups of planctomyctetes. The band inside each box represents the median and 

the black points indicate values for individual strains. 
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Figure 3 - Principal Component Analyses (PCA) constructed from a distance matrix based on 

the effect of the individual strains on the different cell lines. The figures illustrate the 

relationship between strains, their phylogenetic affiliation, their original environment and 

activity against the different cell lines in aqueous and organic phases. Axis 1 and 2 explains 

50 % and 23 % respectively of the observed variance. Arrows indicates the correlation 

between strains and activity against cell lines. 

 

 


