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Abstract 

Salmon lice infections by Lepeophtheirus salmonis represent one of the biggest challenges for the 

salmon industry. Intensive use of chemical delousing methods has led to resistance in lice against 

several of the chemicals, this has sparked an interest for the use of cleaner fish as an efficient delousing 

solution. A goal for several salmon farmers is that farmed cleaner fish should replace wild catches, this 

has led to commercial farming of Ballan wrasse. In order to optimize the cultivation, knowledge about 

B. wrasse digestive physiology (normal functioning and regulation) and its nutritional requirements are 

equally important. Serotonin (5-HT) has been proposed to be an important molecule at regulating gut 

motility involved in digestion of nutrients as well as appetite regulation. Serotonin function in B. wrasse 

is unknown, elucidating its role might contribute to a better understanding of the gastrointestinal 

functionality that might help to overcome farming limitations of this cultured specie. 

There were two separate aims of this study. A transcriptomic part; revealing the expression of genes 

in the intestine regulated by lipid ingestion, emphasizing genes associated to lipid and 5-HT 

metabolism. Here, the aim was to observe the dietary lipid modulation of the gene expression over 

time (post prandial incubation time from 10m to 3 hours). In addition to this, my aim was to investigate 

the amount of 5-HT in the gut of Ballan wrasse from the same intestines to detect potential correlation 

to gene expressions involved in 5-HT metabolism. These investigations were done, in vitro on ex vivo 

intestines of Ballan wrasse, using a lipid diet (hydrolysed fish oil).  

Results showed significant response of only one gene involved in 5-HT metabolism (TPH2) and 3 genes 

involved in lipid metabolism after feeding (ELOVL1, PLIN2 and PPARG). Interestingly enough, 5-HT was 

observed to be present in the gut of Ballan wrasse with a tendency to increase 3 hours after feeding. 

Also, by analysing genome and transcriptomic data, I propose the presence of enterocromaffin cells 

(EC cells) in the gut of B. wrasse. EC cells theoretically, produce the majority of intestinal 5-HT 

synthesized through the enzyme TPH1. Unlike TPH1, its isoform TPH2 (exclusive to enteric neurons, 

another 5-HT producing cell) was observed to be significantly upregulated by feeding, suggesting an 

active role in nutrient sensing.  
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1. Introduction 
 

Atlantic salmon (Salmo salar) is a highly valued anadromous fish species that is mainly exploited in 

commercial and recreational fisheries (Forseth et al. 2017). The Norwegian aquaculture industry has 

undergone a tremendous development over the last decades with a total income growth of more than 

300 % for the last 10 years.  The annual production of salmon accounted for 1.3 million tons in 2016 

(Directorate of Fisheries 2016) and it is expected to rise as the world population continuously  grows 

which will have a direct impact on the need for protein-rich, nutritious food. Although aquaculture 

have the potential to contribute to this increasing food demand, it still faces many challenges such as 

how to handle spill water, escapees, water and waste recirculation, viral and bacterial diseases and 

the urgent need for sustainable ecto-parasite treatments (Christiansen and Jakobsen 2017).  

1.1. The sea lice problem in salmon aquaculture 

Sea lice are ecto-parasites of many species of fish and are a current serious threat to Atlantic salmon 

(Salmon salar) populations in Norway. The sea lice problem affects wild salmon populations to the 

extent that they may be critically endangered or lost, and farmed salmon resulting in severe clinical 

pathology (Bjordal 1990; Roth 1993; Torrissen et al. 2013). If the lice problem is not properly 

addressed, there is a large likelihood of even further reductions and losses in the future (Christiansen 

and Jakobsen 2017). 

The specie that infest Atlantic salmon and has been found to be most problematic in European salmon 

farms is Lepeophtheirus salmonis (Imsland et al. 2014).  Sea lice grazes on the skin and mucosal tissue 

of salmon, resulting in skin erosion (open wounds) and sub epidermal haemorrhage. If sea lice are not 

removed, they might cause osmotic stress and ease secondary infections risking salmon welfare, which 

might ultimately result in death (Skiftesvik et al. 2013; Imsland et al. 2014). Sea lice reproduce year-

round and therefore, a successful lice control strategy would be focused on the control of juvenile and 

pre-adult stages, preventing the appearance of gravid females (Burridge et al. 2010). 

Medicinal treatments have historically been used to prevent the occurrence of high sea lice 

abundance. This has resulted in drug resistant parasites occurring on farmed and possibly wild salmon 

which have been already reported in Chile, Scotland, Canada, and Norway (Aaen et al. 2015). 
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1.1.1. Alternatives to the use of chemicals for sea lice removal: Cleaner fish 

Methods other than chemical, have been designed and used in-situ by farmers. First farmers started 

to hang onions out in the cages when they first identified lice (Bjordal 1990). New and modern methods 

such as light-traps, shading cages, sound or electrical stimuli to repeal lice have been tested out as sea 

lice expanded but none presented promising solutions to the problem (Costello 1993). A more recent 

mechanical method that consists of immersing infected salmon in fresh water baths was believed as 

of great potential treatment for lice. However, Stone et al. (2002) concluded  that short baths in fresh 

water (3h) did not significantly affected the survival of lice. On the other hand, Powell et al. (2015) 

reviewed a positive reduction in attached stages of lice in salmon after freshwater baths (likely due to 

mechanical action during the pumping of fish from the cages to the fresh water sites). Regardless its 

efficiency, this treatment represents a hypo-osmotic challenge for salmon that may result in significant 

osmotic stress for the fish with short-term acute physiological effects (Powell et al. 2015) and 

therefore, it cannot be considered as a good alternative. 

Biological controls have a brighter and promising future against sea lice. Many authors claim that the 

utilization of cleaner fish is at present the most developed and environmentally sustainable alternative 

method for lice control, it is less expensive compared to medicinal treatments, and can be managed in 

ways causing no apparent stress to salmon (Groner et al. 2013; Skiftesvik et al. 2013; Imsland et al. 

2014). Several different wrasse species has been used to aid in the control of sea lice. 

1.2. Labrus bergylta (Ballan wrasse) 

 1.2.1. Ballan wrasse as cleaner fish 

Up to date, Ballan wrasse (Labrus bergylta) is the biggest and most robust of the available wrasse 

species and has the greatest potential for large-scale biological delousing (Gagnat 2012). However, 

Ballan wrasse is temperature sensitive making it unfit for low temperatures (Imsland et al. 2014).  

The use of cleaner fish in the production of Atlantic salmon and Rainbow trout in Norway surpassed 

26 million fish in 2015 (Directorate of Fisheries 2016) being mainly caught from their natural habitat 

by the fisheries industry and provided to the farms (Skiftesvik et al. 2014). This growing demand of 

wrasses (Figure 1) increase the pressure on wild populations and represents a new challenge for the 

industry. In order to cope with this dramatic increase of the fishing pressure and be able to meet the 

demand from salmon farms, intensive culture of Ballan wrasse needs to be quickly developed.  
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Figure 1: Catches of wrasses in Norway for use as cleaner fish in salmon cages. From  (Torrissen et al. 
2013). 
 

Nonetheless, as the cultivation of this specie is new, anatomical, physiological and functional 

knowledge is needed for optimal rearing. 

1.2.2. Wild VS. Cultivated stock 

As mentioned above, Ballan wrasse populations are being over exploited for salmon delousing and this 

creates the necessity to cultivate them. Apart from the obvious decrease of the current pressure on 

wild wrasse, farmed Ballan wrasse can alleviate concerns about the risk of wrasse to salmon disease 

transmission as reviewed by  Groner et al. (2013). Another advantage of farming wrasse might be the 

possibility to implement breeding programs. Breeding programs for faster growth in aquatic species 

have showed to have improved feed conversion and higher survival (Gjedrem et al. 2012), implying 

that the use of selectively bred wrasse individuals might lead to improve the biological efficiency of its 

production. 

Scientists have wondered however whether farmed Ballan wrasse fed by dry feeds and grown in 

captivity was as efficient as wild individuals at removing sea lice. With the purpose of clear up that 

issue, Skiftesvik et al. (2013) reported an extremely efficient delousing behaviour of cultivated 

individuals that proved to be as efficient as wild individuals despite not having previous contact with 

sea lice.   

Despite the promising role of farmed Ballan wrasse as cleaner fish in salmon aquaculture, there is still 

much to be elucidated to enhance a successful co-inhabitation, for instance, optimal ratio 

wrasse/salmon per cage and temperature optimum for Ballan wrasse.  Also, the optimal size of Ballan 

wrasse for large salmon (>2kg) has not been reported as such and further aggressive behaviour 



10 
 

between salmon a Ballan wrasse is yet to be explored (Skiftesvik et al. 2013). One of the biggest   

challenges that is considered critical for production of viable offspring  is the apparently lack of 

appetite and feed intake in the juvenile phase of farmed individuals (Hamre et al. 2013). 

1.2.3. General intestinal physiology 

The mechanisms by which gastric fish species digest and absorb nutrients have been widely studied. 

However, unlike most farmed fish (except cyprinids), Ballan wrasse lack stomach and pyloric caeca 

besides having a rather short gut. 

The intestinal tract of Ballan wrasse (Figure 2) comprises about 1.5-2% of the total body weight and its 

length represents only 2/3 of the total body length (Hamre et al. 2013). The gut is short and lies in a 

loop (Z-shaped), the liver with the gall bladder and a prominent bile duct is connected to the proximal 

gut. The pancreas is commonly referred as pancreatic tissue and appears to be mixed with adipose 

tissue and distributed along the gut. 

 

 

Figure 2.  Figure showing the digestive organs of the Ballan wrasse out-lighting the gut. Numbers from 
1 to 4 refer to the different segments of the gut being 1 the anterior part and 4 the hindgut. From (Lie 
et al. 2018). 
 

Lie et al. (2018) reported the higher nutrient digestion and uptake in the anterior part of the gut 

compared to the posterior by observing a declining expression gradient, anterior to posterior, for most 

genes involved in general nutrient digestion. They also showed the similarity in the gene profile 

between intestinal segments 1-3, and the much larger number of differentially expressed genes 

between segment 1-3 and segment 4 (hindgut), suggesting that the hind-gut of Ballan wrasse differs 

substantially from the rest of the gut. 
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1.2.4. Feeding and diet approaches 

Wild populations base their diet on benthic invertebrates such as molluscs, decapod crustaceans, and 

sea urchins (Figueiredo et al. 2005). 

Studies on the digestive tract and its response to feed composition have been conducted over the last 

years aiming to find the optimal feed and feeding regime. A first approach was done regarding the 

nutritional requirements of juvenile Ballan wrasse where wild populations of Ballan wrasses were also 

analysed and their nutritional status was assumed to be of good health, setting the bases to make 

comparisons. Hamre et al. (2013) showed that the optimal composition of diets for juvenile individuals 

was 65% protein, 12% lipid, and 16% carbohydrate. Also of note is that not only the amount of 

nutrients is important but also the quality. This specie is highly sensitive to diet quality and seems to 

have specific nutritional requirements. Variations in the quality and composition of protein and lipid 

sources have large effects on growth (Øystein Sæle, personal communication).  

A second approach was published by Lie et al. (2018) in an attempt to determine the genetic basis for 

the digestive system function of Ballan wrasse. They reported the loss of all known genes related to 

the stomach function and claimed substantial changes in the appetite control. As stomach is mainly 

involved in protein digestion, these authors suggested that the lack of genes related to stomach 

digestion might require formulated diets with higher levels of digestible protein than those for gastric 

species. 

The last approach was done by (Le et al. in prepp) in regards of the evacuation rates in the gut of Ballan 

wrasse. They observed that after 4 and up to 8 hours 90% of the digesta was transferred from the first 

to the second segment of the gut, dismissing that the first segment has a pseudogaster function 

(storage function). They also claimed that differences in dietary water levels (dietary moisture level) 

had no or limited effect on digestibility and gut evacuation rate. 

Despite interesting studies on Ballan wrasse have recently been published , further research on the 

feeding physiology of this fish is crucial to determinate the optimal feed formula and optimal feeding 

practices aiming towards a successful cultivation of Ballan wrasse (Dunaevskaya 2012). 

1.3. Lipid and fatty acids metabolism in Ballan wrasse 

The digestive process involves a series of events starting with ingestion of food, followed by  the 

secretion of enzymatic and fluid secretions, digestion via mechanical and enzymatic processes, 

absorption, motility (including evacuation) and final regulation of the different processes (Rønnestad 

et al. 2013). Genetic studies on the physiology of Ballan wrasse have shown that the anterior part of 

the gut plays a major role in nutrient digestion and absorption (Lie et al. 2018; Le et al. in prepp). 
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1.3.1. Digestion of lipids 

Lipids together with proteins have a major role as sources of metabolic energy for growth, 

reproduction, movement and migration in fish (Langhans et al. 2010; Tocher 2010) which makes these 

two ingredients of great value for fish feeds. It is well known that fat is a strong stimulus for the release 

of hormones contributing to digestion and gut motility. Among the diverse group of lipids, 

triacylglycerol (TAG) and phospholipids (PL) might be the ones that have driven much of the attention 

in lipid digestion research. TAG is used as energy storage while PLs are vital for energy, membrane 

structures, posttranscriptional regulation of proteins and as a messenger molecules (Rønnestad et al. 

2013).  Furthermore, Izquierdo et al. (2000) high-lighted the importance of adding  PL to micro-diets 

for an advantageous larval growth and survival in several fish species. In accordance with this, 

European sea bass (Dicentrarchus labrax) larvae fed with high levels of dietary PL displayed better 

maturation of the digestive tract, better survival, better growth, and fewer malformations than larvae 

fed on low PL diets (Cahu et al. 2003).  Fish larvae need dietary PL to be able to metabolise ingested 

neutral lipids and therefore, phospholipids  are the most crucial lipid class for the correct development 

of young fish larvae  

In contrast to mammals, digestion of lipids in teleost has been shown to take place exclusively in the 

gut as teleost lack gastric lipase. Pre-intestinal lipid digestion has not been reported (Rønnestad et al. 

2013). Digestion of lipids relies on bile salts from the bile which emulsify large fat droplets to finer ones 

called micelles in a process called emulsion. In the case of mammals, triacylglycerol (TAG) is hydrolysed 

by neutral lipases to free fatty acids (FFA) and monoacyglycerol (MAG) which are absorbed by the 

apical membrane of the enterocytes. Tocher (2010); Rønnestad et al. (2013) reviewed the impolitic 

activity in the gut of several fishes; In Cod and salmon the complete hydrolysis of TAG along the gut 

results in free fatty acids (FFA) and glycerol while the hydrolysis of TAG to FFA and glycerol only 

happened in the hindgut of turbot and not in the anterior part. Based on this, it is admitted that the 

main products of the digestion of all major lipid classes in fish are free fatty acids, which are further 

absorbed by the apical membrane of the enterocytes. In addition, there will be glycerol from the 

digestion of triacylglycerol, one lyso-PL molecule from the digestion of PL, and long chain alcohols from 

the hydrolysis of cholesteryl and wax esters (Tocher 2010). 

1.3.2. Lipases in fish and mammals: differences 

Triacylglycerol (TAG) is a major lipid class in the diet of marine fish. In mammalian gut, TAG hydrolysis 

is regulated by two main lipases, the pancreatic lipase-colipase system (EC 3.1.1.3) and the less specific 

bile salt-activated lipase (EC 3.1.1.1) (Tocher 2010).   
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Several types of lipases have been recognized in the digestive tract of juvenile and adult fish. Among 

them, non-specific bile salt activated lipase (BAL) which catalyses the hydrolysis of carboxyl ester 

bonds, have been suggested to play an important role in the digestion of neutral lipids as well as 

phospholipids in teleost fish (Izquierdo et al. 2000). In line with this,  Sæle et al. (2010) reported the 

presence of non-functional pancreatic lipase-protein (PRLP), the lack of colipase, and the important 

role of BAL as the major neutral lipase in cod. Besides, although BAL may hydrolyse PL, phospholipase 

A2 (PLA2) is the most important enzyme for PL hydrolysis . 

1.3.3. Lipid sensing 

Several mechanisms are involved in dietary fat sensing and energy regulation along the digestive tract.  

It is currently accepted that the sensing of luminal content, lipids in this case, relies on two receptors: 

G-protein coupled receptors (GPCR) and solute carriers (SLC). GPRCs lie on the apical membrane of 

enterocytes and are the binding place for ligands (nutrients) flowing on the lumen. This binding 

activates intracellular G proteins which trigger a cascade-like downstream pathway eventually 

resulting in the absorption of micelles in exchange with small solutes across the membrane by solute 

carriers (SLCs) (Rønnestad et al. 2014). Sensing involves the transmission of signals from the gut to 

vagal nerves and this is believed to provide a very accurate measure of the energy available from 

ingested fat (Langhans et al. 2010). Although the function of the sensing mechanisms in fish have not 

been fully investigated, it is known that nutrient sensing has an important role in peristalsis and 

appetite regulation (Murthy 2006). 

1.3.4. Absorption and transport of lipids 

The gastrointestinal mucosa can be considered a complex chemosensory system where 

enteroendocrine cells and gut hormones work together through specific signalling cascades to 

enhance absorption of nutrients (Rønnestad et al. 2014).  

Absorption of lipids seems to be a rather complex process that requires the presence of  lipases and it 

starts when micelles (emulsified lipid with bile salts and phospholipids) enter the enterocyte by the 

apical membrane. In order for this to happen, lipids in the micelles need to be broken down into small 

particles. BAL has a crucial role at breaking lipids into free fatty acids in fish (Sæle et al. 2010) that can 

then be absorbed/ transported into the enterocyte on the apical side. It is believed that short FAs enter 

the cell by diffusion (or “flip-flop” pathway) whereas complex FAs are actively transported by the CD36 

system.  FAs in the enterocytes are further re-esterified to lipids in two pathways: the monoglyceride 

pathway which produces TAG, and the a-glycerophosphate pathway that produces both TAG and PL. 

The latter has been observed to be the major pathway for lipid re-esterification in teleost (Rønnestad 

et al. 2013; Rønnestad et al. 2014). 
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Once absorbed FAs are re-esterified to lipids in the ER of enterocytes, they bind to proteins forming 

lipoprotein particles which can vary in size and protein-triglyceride ratio. These lipoproteins are 

directly discharged into the circulatory system as VLDL or chylomicrons and will deposit lipids to cells 

in the body (Izquierdo et al. 2000). The characteristics of the lipoprotein particles depends on the major 

fatty acid being absorbed (Ockner et al. 1972).  

1.4. Serotonin 

1.4.1. Importance of serotonin 

Serotonin (5-hidroxytryptamine, 5-HT) is a widely distributed molecule in the animal kingdom that can 

act both as an hormone and/or neurotransmitter (Kim and Camilleri 2000). Serotonin serves multiple 

functions in vertebrates such as endocrine responses, heart development, mediator of behaviour, 

social interactions, stress and feeding regulation (Winberg and Thörnqvist 2016; Backström and 

Winberg 2017). Serotonin synthesized within the central nervous system is called brain serotonin and 

represents only 5% of the total 5-HT while peripheral 5-HT accounts for 95% of the total body serotonin 

and it is mainly produced within the gut (gut serotonin) (Linan-Rico et al. 2016).  

Mechanisms of brain serotonin synthesis in mammals have recently attracted much attention as it 

seems to regulate mood, sleep, sex, appetite, depression, and neuropsychiatric illness within others 

(Kim and Camilleri 2000; Gershon and Tack 2007).  However, gut 5-HT also deserves great focus as it 

mediates many gastrointestinal functions via paracrine and endocrine pathways including motility, 

peristalsis , mixing movements (fed state), secretion, vasodilation, and perception of pain or nausea 

(Gershon 2004). In the same way that altering brain 5-HT can lead to mental instability, alteration of 

the  gut 5-HT signalling pathway can lead to gastrointestinal disorders, for instance the inflammatory 

Bowel Diseases (IBD) in humans (Linan-Rico et al. 2016). Due to its important implications in humans, 

serotonin might be of relevance for gut motility regulation in fish as Ballan wrasse.  

1.4.2. Gut as a complex intrinsic nervous system 

Among the organs in the body, the bowel stands out as different as it is equipped with its own intrinsic 

nervous system which can and does operate independently of the brain mediating its own behaviour 

(Gershon 2004).  This is called the enteric nervous system (ENS) and it is responsible of peristaltic 

reflexes (waves of contraction and relaxation) of the gut.  ENS is unique both in the complexity of its 

organization and its resemblance to the brain. ENS is  composed by efferent, afferent, and inter-

neurons, acting as an integrating centre in the absence of CNS input (CNS is physically separated from 

serotonergic neurons of the ENS, platelets, and EC cells) (Gershon and Tack 2007).  Some authors refer 

to the ENS as the second brain as its structural organization and neural diversity is rather complex, 

resembling to the brain more than peripheral nerves (Gershon and Tack 2007). Although serotonergic 

https://en.wikipedia.org/wiki/Afferent_neuron
https://en.wikipedia.org/wiki/Interneurons
https://en.wikipedia.org/wiki/Interneurons
https://en.wikipedia.org/w/index.php?title=Integrating_center&action=edit&redlink=1
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neurons from the CNS do not have any input in the 5-HT system of the gut, there is communication 

between the gut (ENS) and the brain (CNS) through the parasympathetic and sympathetic nervous 

systems (Gershon and Tack 2007). In other words, there is a bidirectional communication network 

between the brain and the gut with serotonin functioning as a key signalling molecule in both ENS and 

the CNS (O’Mahony et al. 2015). However, the exact 5-HT functioning pathway has not been 

completely elucidated (Kim and Camilleri 2000). Experiments on in-vitro guts are characterized by the 

absence of CNS input and serotonin is then proposed as one of the main molecules regulating the 

enteric system and leading to peristalsis and motility regulation. 

1.4.3. Signalling and metabolic synthesis of serotonin in the gut 

Serotonin can be produced either in the brain by serotonergic neurons or within the gut. Around 90% 

of the gut 5-HT is synthetized, stored, and released by a subset of enteroendocrine cells called 

enterochromaffin cells (EC) that are scattered throughout the enteric epithelium (Kim and Camilleri 

2000; Yano et al. 2015) . The other 10% is produced by enteric neurons.  Irrespective of the location in 

the gut-brain axis, the synthetic cascade of serotonin is similar in both the gut and the brain (O’Mahony 

et al. 2015). 

Afferent nerves of the ENS do not reach into the gut lumen where they could respond to changes in 

pH, the presence of nutrients or any other luminal stimuli.  Instead, EC cells function as sensory 

transducers to monitor conditions prevailing in the lumen (Mawe and Hoffman 2013). These cells store 

prodigious amounts of serotonin in secretion granules laying on the base of their microvillus. At least 

five important enzymes are needed to complete the serotonin metabolic pathway (Figure 3). The first 

step in the synthesis of 5-HT is catalysed by the rate limiting enzyme tryptophan hydroxylase-1 (TPH1) 

that converts tryptophan into 5-Hydroxytryptophan (5-HTP). TPH-2 has the same function as TPH1 but 

it has uniquely been found in neurons from both the brain and the gut (Gershon and Tack 2007). 5-

HTP is then converted to 5-HT by action of the enzyme L-amino acid decarboxylase (L-AADC) commonly 

known as DDC. 

 

https://en.wikipedia.org/wiki/Parasympathetic_nervous_system
https://en.wikipedia.org/wiki/Sympathetic_nervous_system
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Figure 3: The metabolic pathway of serotonin in the gut. EC cells (orange) are enterochromaffin 
cells and neighbouring cells (blue) are epithelial cells both laying on the innermost layer called 
mucosa. This is followed by the submucosal plexus containing neurons from the ENS. Steps 1–
5 are the processes involved in 5-HT synthesis and neurotransmission; Step 1 where 5-
Hydroxytryptophan (5-HTP) is synthesized by the rate limiting enzyme tryptophan hydroxylase-
1 (TPH1). 5-HTP is then converted to 5-HT by the enzyme L-amino acid decarboxylase (DDC) 
(step 2). 5-HT is then released into the submucosal plexus (step 3) where it can bind to 
corresponding 5-HT receptors (SLC6A4) on intrinsic primary afferent neurons (IPANs). 
Remaining 5-HT is then transported into epithelial cells via SERT transporters (step 4) and 
metabolized to 5-hydroxyindole acetic acid (5-HIAA) by the action if the enzymes MAO A and 
MAO B (step 5). The latter represents the final step in neurotransmission as 5-HT is inactivated. 
From (Parmar et al. 2012) 

. 

Gut mucosa might be altered by mechanical and/or chemical stimuli such as nutrients, toxins, pressure, 

and/or acid (Mawe and Hoffman 2013). In response to this stimulation, intracellular levels of ca2+ in EC 

cells increases which evokes the release of 5-HT into the extracellular matrix either on the basolateral 

side or into the gut lumen (Bertrand and Bertrand 2010). Luminal 5-HT might stimulate cells lying in 

the crypts of the mucosa layer while basolateral 5-HT enters the inner walls of the GI tract (submucosal 

plexus) where it can either be taken up by platelets entering the circulation or bind to specific receptors 

in intrinsic primary afferent neurons (IPANs) (Mawe and Hoffman 2013). This activation triggers in turn 

a cascade of interneurons and motor neurons within the enteric circuitry causing changes in the 

regulation of GI motility (Parmar et al. 2012). Once IPANs get activated by 5-HT, they release Ach 
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and/or GCRP which will stimulate other neurons and the signal is transmitted to numerous other cells 

causing peristaltic activity and secretory reflexes. SLC6A4 is an important membrane 5-HT carrier that 

enable this communication between synaptic and presynaptic spaces (Gershon and Tack 2007). 

Despite the very few studies on the cellular and molecular mechanisms of 5-HT release from EC cells, 

a simple outwards exocytosis of 5-HT from the storage granules in multiple directions has been 

proposed as the likely mechanism (Linan-Rico et al. 2016). 

The majority of released 5-HT that have not been absorbed by platelets nor conjugated to neural 

receptors is quickly cleared into neighbouring epithelial cells that surround EC cells (Parmar et al. 

2012). This is done via the 5-HT selective reuptake transporter (SERT). This transporter is expressed by 

all epithelial cells of the intestinal mucosa and seem to have a crucial role on both strength and 

duration of the excitatory signals caused by 5-HT. Once 5-HT enters the epithelial cell, it is metabolized 

into 5-hydroxyindole acetic acid (5-HIAA) as a result of the activity of monoamine oxidases (MAO). 

While 5-HIAA by-product from liver and kidney is excreted in the urine, the gut has its own inactivating 

mechanism (Kim and Camilleri 2000).  

1.4.4. Serotonin in fish: Novel research in Ballan wrasse 

As mentioned before, serotonin plays a critical role in several gastrointestinal functions in vertebrates 

including fish. Similar to mammals, the enteric system of teleost is characterized by a well-developed 

myenteric plexus containing projections of serotonergic neurons with a wide variation on morphology 

and density (Velarde et al. 2010). Despite the little knowledge of the serotonergic system functions 

and its general organization in fish, it has been considered similar to that in mammals as it is highly 

conserved across the vertebrate subphylum (Winberg and Thörnqvist 2016). However, differences on 

the location of 5HT body cells in the brain of teleost in respect to that in mammals, and differences in 

the type of active 5-HT receptors in the gut of teleost have been characterised over the last years 

(Velarde et al. 2010; Winberg and Thörnqvist 2016; Backström and Winberg 2017). This proves that 

there are some anatomical and functional differences in the serotonergic system of teleost compared 

to that in mammals and further research might elucidate whether this system has remained as 

conserved as it has been thought within the vertebrate phylum.  

In short, serotonin regulate the contractile activity of the gut showing a dual action in both mammals 

and teleost acting as a stimulant and /or relaxing factor of gut motility within different species (Velarde 

et al. 2010). Above all, the exact role of 5-HT in mediating these effects is still very limited and not fully 

understood. Therefore, there is a clear necessity to broaden the knowledge of the serotonergic system 

and how it is regulated in fish. The serotonergic system of Ballan wrasse have not been investigated 

before. 
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1.5. Aim of the master’s thesis 

This thesis is  part of the NRC project: “Intestinal function and health Ballan wrasse”, Grant No.: 

244170. First of all, this master’s thesis aims at revealing some of the physiological characteristics of 

the digestive tract of Ballan wrasse by in vitro analyses of guts. More in detail, the main focus was to 

investigate the serotonergic system of the gut of Ballan wrasse by tracing the expression of the main 

genes implicated in serotonin metabolism after a lipid meal. In order to do this, serotonin in the gut 

was quantified to observe its presence and to what extent, and to observe any possible correlation 

with gene expression. The effect of post prandial time (from feeding to up to three hours) on both the 

genetic expression and the amount of serotonin present in the gut was analysed. 

A second but not less relevant aim of this thesis was to observe the modulation of the expression of 

those genes involved in lipid metabolism. For that purpose, fish oil was used as feed in the experiments 

which was also expected to stimulate the mechanisms involved in serotonin metabolism. In a broad 

perspective, the relevance of this study tries to contribute to broaden the little knowledge of the 

digestive system of this a-gastric species, Ballan wrasse, with the potential of improving the farming 

efforts of the aquaculture industry. 
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2. Materials and Methods 
 

2.1. Experimental overview 

As mentioned previously, this master thesis has two distinguishable parts; Serotonin measurements 

with enzyme-linked immunosorbent assay (ELISA) and gene quantifications by terms of RT-qPCR. A 

pre-trial was important to optimize the set-up of the eventual experiment. All the experiments 

described thereafter were performed in vitro guts of Ballan wrasses. 

2.2. Fish used for ex vivo experiments 

Ballan wrasses (20-30 g body weight) were provided by Marine Harvest (Øygarden, outside Bergen, 

the day before dissections and placed in cold room temperature (14 °C) with dimmed light. In order to 

reduce stress, fish was then sorted out in different buckets (4-5 fish/bucket) containing stripes of 

plastic bags (fake kelp) to imitate their natural environment. Overnight fasting was required to ensure 

empty guts for the trials. 

2.2.1. Diet preparation 

Hydrolysed fish oil (containing omega-3-fatty acids, Vitamin D, A and E) was used as feed for the final 

experiment (see result chapter).  In order to hydrolyse fish oil a lipase from Pseudomonas cepacia (PS 

Lipase <30 U/mg, Sigma-Aldrich) was used by mixing 30 mg of the latter with 500µL of PBS (pH=8) in a 

small glass container together with 3 mL of fish oil. To ensure an optimal activation of the enzyme, it 

was crucial to maintain a pH of 8 under 35-40 °C for 3 hours. Once fish oil was hydrolysed (change in 

consistence), the mix was incubated at 80 °C for 1 hour to ensure deactivation of the enzyme. After 

deactivation, 250µL of tween 20 were added to the hydrolysate and it was stored at -20 °C until further 

use. 

2.2.2. Dissections 

Fish were anaesthetised by placing them in a bath with MS222 (30 mg/ml) before being killed with a 

blow in the head. Weight and standard length of each individual were recorded. After that, dissection 

of the abdominal part was performed with extreme care to not do any incision in the intestinal wall. 

Guts were then removed from the body and placed in a Petri dish filled with Ringer’s solution. Gills 

were also retrieved together with the gut to facilitate the input of fish oil.  Ringer’s solution (pH=7) was 

made for the purpose of creating an isotonic solution to keep the tissue active during the trial. It is a 

solution of several salts composition (table A.1 in the Appendix). Previous to the insertion of “feed” 

guts were emptied by flushing with a gentle squirt of Ringer’s solution to wash out food remains. Food 

was then added by injecting 0, 1% µl of the total body weight into the oesophagus with a pipette. In 
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order to prevent food from escaping anteriorly, guts were closed by tying a thread around the 

oesophagus right below the gills. They were then moved into glass assay tubes (Figure 4) filled with 24 

ml of Ringer’s solution and constant gas flow (95% oxygen + 5% C02). 

After incubation guts were retrieved from the tubes accordingly to the given times. Only the first 

segment was used for gene analyses and serotonin quantification. The first segment (40% of the total 

gut length) was cut off and opened by incision.  A rather small part of this tissue (around 50 mg) was 

taken by a transversely cut in order to avoid variation and washed by flushing it gently on the Ringer’s 

solution. The remaining tissue from the first segment was weighted and placed in a different Eppendorf 

for further serotonin extraction. Samples were quickly frozen by placing them in dry ice mixed with 

methanol to avoid degradation of genetic material. Tissues were kept at -80°C until further use. 

 

2.2.3. Pre-trial 

The aim was to identify genes associated with lipid and serotonin metabolic pathways in the gut of 

Ballan wrasse that could be regulated by lipid ingestion. Ex vivo guts were prepared as described 

above. Three different treatments were done with 8 n in each group: intact fish oil (TG), hydrolysed 

fish oil (free fatty acids) (hTG) and empty (control) (c). Guts were then put in tubes with Ringer’s 

solution and incubated for one hour.  After that, Guts were sampled and RNA extracted exclusively 

from the first segment. RNA from the 24 samples was then transferred to a 96- well plate, sealed and 

sent to be sequenced by The Norwegian Sequencing Centre (NSC), Oslo, Norway 

(www.sequencing.uio.no). Transcriptomic data was analysed according by Kai Lie 

(KaiKristoffer.Lie@hi.no) at HI.  

2.2.4. Final experiment 

To investigate the genetic expression and serotonin profile of the gut as a function of post prandial 

time, a timeline experiment was set as showed in figure 4. This experiment consisted on 7 gut from 7 

different fishes each of one was given a specific post prandial incubation time (10, 30, 60, 90, 120, 150, 

and 180 min). This experiment was repeated a total of three times (experimental triplicates) under 

equal conditions.  
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Figure 4. In vitro experimental set-up. 7 guts were placed in tubes filled with Ringer’s solution and 
supplied with air during incubation. Numbers indicate the post prandial incubation time (10’ to 180’) for 
the different guts. Photo by Hoang Le (HI) 

 

The term experimental triplicate is used as the experiment was run three times. However, it is crucial 

to be aware of the potential causes of variations between trials that might (or not) have an important 

effect on the results interpretation. In this case, the experimental procedure was kept identical for the 

three trials, the only difference was the month and the day-time when they were undergone. The first 

one was performed in September 2017 while the others two in the same day in January 2018.  The first 

and the second were performed at the same time in the morning but in different dates (20/09/2017 

and 30/01/2018). The third experimental replicate was done later in the afternoon (30/01/2018) so 

fish was kept longer in the room than the fish used for the other two experiments.  

2.3. Genetic analyses by real-time RT-qPCR 

Gene expression was determined by means of RT-qPCR. Gene expression analyses were performed 

equally to all the samples from the three replicates. 

2.3.1. RNA extraction and purification: 

It was important to work under sterile conditions to avoid contamination and keep the samples on dry 

ice while handling to minimize DNA degradation. The aim of the procedure was to obtain pure RNA by 

magnetic-particle technology (EZ1 RNA Universal Tissue Kit).  For that purpose, 50 mg of frozen gut 

tissue (stored at -80 °C) was placed in 2 ml micro-centrifuge tubes. In order to get an efficient lysis of 
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the tissue and to inhibit RNases activity, 750 µL of QIAzol Reagent was added together with 4 stainless 

steel beads into each tube. The tubes were further placed in the TissueLyser for 60 seconds at 6000 

rpm (6000-3x10).  After the tissue was completely disrupted and homogenized the tubes were left on 

the benchtop at room temperature (rt) for 5 minutes. 150 µL of chloroform was added to each tube in 

order to separate RNA and DNA in different phases. For this, the tubes were centrifuged at 12,000xg 

for 15 min at 4 °C (this low temperature is crucial for optimal phase separation and removal of DNA). 

After centrifugation, the colourless upper phase of the tube (containing RNA) was carefully transferred 

to 2 ml tubes supplied by the kit.  Reckless (rushing) pipetting could lead to take some of the lower, 

red organic phase which would contaminate the RNA samples. The EZ1 instrument (Bio-Robot EZ1) 

was used and the RNA Universal tissue protocol with integrated DNase digestion was set up as default 

program. In order to ensure fully DNA removal from the samples, 10 µL of DNase were added into the 

liquid in the fifth well of each cartridge supplied by the kid. It was of great importance to track the 

samples ID throughout the whole procedure to avoid data mix-up. Up to 6 samples were processed in 

a single run using the Bio-Robot EZ1. The final products were pure RNA and further quantification and 

purity analyses were taken. RNA must be stored at -70°C. 

2.3.2. RNA quantification and purity: 

It was important to check the amount and the purity of the extracted RNA to ensure optimal conditions 

before moving on. Concentration of RNA can be determined by measuring the absorbance at 260nm 

(A260) in a Nano-spectrophotometer. RNA eluate was first spin and placed in a suitable magnet to 

minimize magnetic particle carryover during the A260 reading. 1, 8 µL of the eluate was enough volume 

to measure the concentration and purity of each RNA sample. 

Purity relies on A260/280 and A260/230 ratio. 

 A260/280 ratio: This value indicates the purity of the sample and should range between 1, 8-2, 

2. If lower values are obtained, the sample could contain some leftovers of DNA, proteins or 

phenol. 

 A260/230 ratio:  A lower value than 1, 8 could imply the presence of salt and/or phenol leftovers. 

2.3.3. RNA quality/Integrity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

Checking the integrity of the RNA beforehand was required to minimize potential failures. By using an 

Agilent 2100 bio-analyser instrument (Agilent technologies, Waldbronn, Germany), RNA integrity can 

be obtained in terms of RIN number which range from 1 to 10. An optimal RIN number can be that 

close to 10 but it is expected to be lower with RNA extracted from tissues, especially in this case where 

guts were dissected out of the body and repeatedly handled by flushing during dissection. Besides the 
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RIN number, the Agilent bio-analyser instrument also provides an electro-photogram (graph) showing 

the ribosomal RNAs 28S and 18S which should appear as sharp bands or peaks. If the ribosomal peaks 

of a specific sample are not sharp, but rather appear as a smear towards smaller sized RNAs, it is likely 

that the sample suffered major degradation either before or during RNA purification. 

It was required to know the RNA concentration of the samples in advance as it had to range between 

25-500 ng/µL in order to be detected by the instrument. Previous dilution in ddH2O was performed for 

those samples exceeding the required concentration. All the samples were then transferred to micro-

centrifuge tubes and placed in a heating block for denaturation.  

Gel-Dye Mix together with RNA marker and a ladder (Pre-denatured for 3 minutes at 70 °C) were also 

needed.  The chip was placed in the priming station provided by the kit and 9 µL of Gel-Dye Mix were 

pipetted in the well-marked G. A plunger was then used in order to spread the gel along the micro-

channels by making sure its initial position was 1 mL and pressing down until it was held by the clip. 

After 30 seconds, the clip was released and the plunger pulled back to 1 mL position. 9 µL of the gel-

dye mix were pipetted in each of the two wells marked G and the remaining gel was discarded. 5 µL of 

RNA marker were pipetted in each of the 12 sample wells and in the one marked as the ladder. 

Subsequently, 1 µL of the ladder was pipetted into the ladder-well.  Each of the RNA samples 

(previously denatured by heat) were loaded into the Nano-chip (Agilent RNA 6000 Nano kit). Each RNA 

chip consists on a set of interconnected micro-channels that is used for separation of nucleic acid 

fragments by electrophoresis (based on their size as they are driven through the gel). Once all these 

loading steps were completed, the chip was vortexed for one minute at 2400 rpm so that all the 

reagents mixed properly. The chip was then ready to be placed in the bio-analyser. Cleaning up the 

electrodes of the bio-analyser with ddH2O water was required before the chip was placed in and the 

program run. 

2.3.4. Primer design:  

Once relevant genes (8 genes associated with lipid metabolism and 6 genes associated with serotonin 

metabolism) were selected based on the pre-trial, primers were designed for the mRNA sequences of 

PLPP3, PLD1, PLIN2, CD36, SLC27A4, ELOVL1, APOA-IV, PPARG, DDC, TPH1, TPH2, SLC6A4, MAO A, and 

MAO B. RPL37 and ubiquitin (Ubi) were chosen as reference genes based on (Sæle et al. 2009). Gene 

specific primers (table 1) were designed using NCBI data bases and its primer design tool (NCBI, 

Maryland, USA).  

Table 1. Primer sequences used for RT-qPCR.  The coefficient variance (CV) is a measure of the stability 
of the reference genes. CV for RPL37 and Ubi was 0,082 and 0,079 respectively and considered as 
suitable reference genes (CV <0, 25). 
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Gene  Forward sequence Reverse sequence 

PLPP3  GAGACACCATTAGCGATGCG CTGACCCCACAACCGAACAG 

PLIN2  CAGGAGTATGGTCACGAGGC TGTAGACGTGTGTGGCAGAG 

CD36  ACGGAGGGATAAAACGCACA TATGCTGTGGTTCCAGGCTC 

SLC27A4  TGCTCGTCGGCTCTTATTCC TTGTAGCCGATAAGCTCGCC 

DDC  CACAAACTCACCACGTGCC CACATCTGGGTAGACTGGTCG 

TPH1  GAGGGACCACGTAGAGGAAGAT CCTTCACTAGTCCTCCCACTTC 

TPH2  TGAGGCATGCTTTGTCCGAT AACGGACGCTTGATCGTCTT 

SLC6A4  GTGTCCTGGATTAGGGGCAA AAATCACTCATGCCTGGGCT 

PLD1  GCCATCGAGAAGAGCGAACA TACACGCGGTACCTTTTACCC 

ELOVL1  GAGGAAGCTGAGCAGAGAACT ACTGCGTCACCCGTTTATCC 

APOA-IV  TAGCTTGGAGCCATGAGGGT TGCATCAATCAGCCCATCCAT 

MAO A  CAGCTCATCTGCTCCGGAAA TTGGCTGCCGGTATTTCCAT 

MAO B  CCAACTCAGAACCGCATCCT AGGGAAGGAGCCTTTGAACG 

PPARG  GCTGCAACAAATGCAAAGCCC GAATCCCACAGGCCAGGCTA 

RPL37  CCTCCGTGTTTCACTGGGCAGAC ACCCAGACGTGCTGCAGTGG 

Ubi  GGCCAGCTGTCTGAGAGAAG GTCAAGGCCAAGATCCAAGA 

 

2.3.5. Reverse Transcription (RT) reaction- from RNA to cDNA: 

In order to run the RT-qPCR reaction, RNA samples were converted into complementary DNA by means 

of the enzyme reverse transcriptase. TaqMan reverse transcription reagents were used (Applied 

Biosystems, Foster City, CA, USA).  

A RNA pool containing 2 µl of each of the RNA samples was prepared in order to create the standard 

curve. This standard curve was made with six serial dilutions using a dilution factor of 0, 5 resulting in 

concentrations ranging from 3,125 to 100 ng/µl per well. RNA samples were then diluted to a 

concentration of 50 ng/µl. Two negative controls were also prepared; the non-amplification control 

(nac) which did not have any enzyme, and the non-template control (ntc) with ddH2O instead of RNA.  

Table A.2 in appendix shows volumes and reagents required for the reaction.  The reaction mix 

comprising the non-enzymatic reagents was made, vortexed and put on ice. The nac control was then 

prepared by mixing 38, 33 µl of the reaction mix with 1, 67 µl ddH2O at RT temperature. Posteriorly, 

the multiscribe enzyme Transcriptase was added to the RT reaction mix and 40 µl of the latter was 
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pipetted in each of the 96 well RT plate except for the nac well. Both samples and standards were 

prepared in triplicates. Posterior loading of the plate was done by adding 10 µl of the RNA samples 

into the wells always keeping track of what is loaded and where (RNA was added to the nac control 

but only H2O in the ntc control). The final volume of each well of the plate was 50 µl. 

The plate was then covered by a 96-well plate cover which was previously cleaned with soap, ddH2O, 

and 70 % EtOH (crucial step to avoid contamination). The plate was centrifuged at 50x g for 1 minute 

and ready for reverse transcription which was performed by GeneAmp PCR 9700 (Applied Biosystems, 

Foster City, UA, USA). Table A.3 in the appendix shows the instrument set up for the reaction. The run 

was 90 minutes long.  When finished, the cDNA plate was sealed with a tape pad and stored at -20°C 

until further used for real-time quantitative PCR. 

2.3.6. Real Time quantitative PCR (RT-qPCR): 

Both reverse and forward primers were diluted with TE buffer to a concentration of 0,05nmol/µl 

before being used. They were then vortexed for 15 seconds and stored at -20°C to avoid degradation 

of the primer DNA.  

Gene expression was quantified by means of qPCR by measuring cDNA amplification and fluorescence. 

The cDNA plates were used as a template for this reaction which was measured by a Light cycler 480 

(Roche Applied Sciences, Basel, Switzerland). A reaction mix (SYBR Green) was prepared for each 

primer and the volume of such depended on the number of samples of the cDNA plate (Table A.4 in 

the appendix). SYBR Green master mix is a dye that becomes fluorescent when conjugated with cDNA. 

The quantity of cDNA is expressed as the cycle threshold value (ct) which stands for the number of 

heating/cooling cycles that it takes before the increase in fluorescence is linear. The already prepared 

cDNA plates were thawed on ice, centrifuged at 1000 x g for one minute and shaken for 5 minutes at 

1500rpm.  

By using a pipetting robot programmed to transfer 8µl of the reaction mix (containing the primer) and 

2µl of cDNA from a single well to each well on a 384-well qPCR plate. When the plate was filled, it was 

covered with an optical adhesive cover by flatting the surface with an applicator being careful not to 

touch the film with the hands. Centrifugation of the plate at 1500 x g for 2 minutes was required.  The 

plate was then placed into the Light cycler 480 Real Time PCR System for approximately 90 min. The 

set-up program for the qPCR was as followed; Pre-incubation for 5 minutes at 95°C to achieve 

denaturation and activation of the enzyme Taq DNA polymerase. This was followed by amplification 

which consisted in 45 cycles of three steps: Denaturation of DNA for 10 seconds at 95°C, annealing or 

primer binding to DNA strands for 10 seconds at 60 °C, and elongation process for 10 seconds at 72°C 

where double stranded DNA was synthetized. The plate was read at the end of each cycle. Following 
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the 45 cycles, the melting point was measured by gradually increasing the temperature of the plate 

from 65 °C to 97 °C in intervals of 0, 5°C and readings were obtained every second.  Figure A.1 in the 

appendix shows a general picture of the standard protocol for SYBR green 384 well-plate. 

2.3.7. Calculation of mean normalised expressions 

Genetic data analysis such as reference primer efficiencies, data normalization and relative 

quantification were displayed using the CFX Manager Software (Bio-Rad CFX Manager 3.1).  

2.4. Serotonin quantification 

ELISA analyzer (Serotonin ELISA; LifeSpan BioSciences, Inc. (LSBio), Seattle) was used to measure 

serotonin in tissue.  Serotonin was extracted from only the first segment of the guts from the triplicates 

at different time intervals (10, 30, 60, 90, 120, 150, and 180 min).  Tissue samples were firstly minced 

and homogenized with buffer as following explained before measuring the concentration of serotonin. 

2.4.1. Serotonin extraction: Homogenized 

PBS solution 0, 02 M (pH=7) was used as buffer to perform the extraction. After dissection, all the 

tissue samples were adjusted to a finale concentration of 80 mg/ml regardless their initial weight. 

Needed volumes of buffer (PBS) were then calculated and extraction was carried out as following: 

tissue was rinsed with the corresponding amount of buffer together with 4 stainless steel beads into a 

tube. The tubes were further placed in the TissueLyser for 60 seconds at 6000 rpm (6000-3x10).  Tubes 

were immediately placed in wet ice for cell lyses by ultrasonication, 3 rounds of 10 seconds each. Tubes 

were then centrifuged for 5 minutes at 5000X g and 20 °C. Further collection of the supernatant was 

required for assaying.  

2.4.2. Serotonin quantification 

A. Assay principle:  

Serotonin ELISA bio-analyser kit (Serotonin ELISA; LifeSpan BioSciences, Inc. (LSBio), Seattle) was used. 

The assay principle is based on the competition antigen-antibody principle. A pre-coated plate with a 

target specific capture antibody was required. Both standards and samples together with a fixed 

amount of biotin- conjugated target antigen are added to the wells. The antigen from the samples 

compete with the biotin-conjugated antigen to bind the capture antibody. Unbound antigen is washed 

away. A conjugate (HRP) which binds to biotin is then added followed by a TMB substrate that reacts 

with HRP resulting in colour development. This colour signal is measured in terms of its optical density 

(OD). The OD of an unknown sample can then be compared to an OD standard curve to determine the 
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antigen concentration of the unknown sample which is serotonin. As a result, the higher the amount 

of serotonin in the sample, the lower the OD reading is.   

The coated 96-well plate, standard stock, sample diluent or buffer, reagent A and reagent B, wash 

buffer, TMB substrate, and a stop solution were provided by the kit (ELISA bio-analyser). 

B. Assay preparation: 

 Sample preparation: Dilution of the samples was required as the sensitivity of the method was 

unknown.  A dilution series of 4 dilutions was performed for each sample using a dilution factor of 0, 

5. The initial concentration for all the samples was 80 mg/ml as mentioned above. The resulting 

concentrations varied from 1:1 for the non-diluted to 1:16 (5 mg/ml) for the most diluted one (Figure 

5). 

 

Figure 5. Dilution series preparation of samples: Dilution factor of 0, 5. 

 

Standard dilution preparation: To calculate the amount of serotonin in the samples it was needed to 

have a Standard stock with a fixed serotonin concentration of 50 ng/ml which was provided by the kit. 

A dilution series of 7 dilutions was prepared out of the Standard stock. The dilution factor was also 0, 

5 resulting in the concentrations showed in Figure 6.  A control (Zero) was also prepared using only 

buffer. 
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Figure 
6. Dilution series preparation of standards with a dilution factor of 0, 5. 

 

Once samples and standards dilutions were finished, the rest of the needed reagents were prepared. 

Detection Reagent Working Solution A and B were prepared in sufficient volumes for all the 96 wells 

of the plate. For that, Detection Reagent A and B were diluted to a ratio of 1:100 using Assay Diluent 

A and B respectively. 750 mL of Wash buffer was prepared by mixing 720 ml of deionized water to the 

supplied 30 ml of 25x Wash buffer concentrate and kept at 4°C. No further preparation was required 

for neither TMB Substrate Solution nor Stop solutions which were brought to room temperature, as 

all the others, prior to start. TMB required sterile precautions and was also protected from light.  

2.4.3. Plate preparation for 5-HT measurement: 

The plate was then filled by adding 50 µl of standards, blank, or Sample in the wells. All the samples 

were done in duplicates. Immediately after, 50 µl of solution A were added to each well with a multiple 

micropipette and the plate was incubated for 1 hour at 37°C with gentle mixing (micro-oscillator at low 

frequency). The liquid from each well was then aspirated and washed three times with a soaking time 

of two minutes between each wash by a DELFIA 1296-026 Microplate Washer. When the washing was 

finished, the plate was taped against absorbent paper to get rid of remaining drops.  100µl of the 

solution B were then added to all wells and the plate was again incubated for 45 min at 37°C. It was 

crucial to seal the plates while incubating to avoid possible evaporation.  A second wash of the plate 

was required as described before but for 5 cycles. TMB solution was now added (90 µl per well) 

followed by gently agitation to ensure thorough mixing. It was incubated for 15-20 minutes at 37°C 

protected from light and periodically monitored until optimal colour development was achieved.  In 

order to cease the enzymatic reaction, 50 µl of Stop solution were added to each well and the optical 

density (OD) of the plate was quickly measured by a Multilabel Plate Reader set to 450 nm.  
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2.4.4. Calculation of serotonin concentration: 

A linear standard curve was designed for each plate (one plate per replicate) by plotting the log of the 

ELISA serotonin concentration on the X-axis against the mean absorbance (OD reads) from the 

standard dilutions on the Y-axis. A logarithmic trend-line was drawn as it best fitted the points on the 

graph. Microsoft Excel (Microsoft®Office®2003, Microsoft Corp., USA) was used for this purpose. The 

given linear equations (Y= mx + b) were then used to calculate the concentration of serotonin in our 

samples where Y were the OD values of each sample and X was the log of the concentration of 

serotonin to be calculated.  M and b values were given by the standard curve.  

Each sample was diluted following a series of 4 dilutions with a dilution factor of 0, 5. This was done in 

order to find those dilutions which OD values ranged within the OD values from the standard curve. 

The OD values from the standards that flattened the standard curve out were removed as were not 

considered trustable to measure serotonin concentration. In order to calculate the real concentration 

of serotonin from a sample that has been diluted, the concentration read based on the standard curve 

must be multiplied by the dilution factor. 

In order to assess correlation, if any, between serotonin measurements in tissue and genetic 

expression, Pearson’s correlation coefficients were used. 

 

2.5. Statistics 

Regression models were aimed to observe serotonin and gene expression modulation with time. 

Weighted least square regression (1/σ²) was selected as the only suitable modelling approach 

considering that the variance component was not homogeneous (lack of homoscedasticity) for the 

various genes and neither for serotonin measurements from tissue.  For this purpose, the measured 

data were modelled as a function of time by using the general expression of the form: 

𝛾 = 𝑚 × 𝑡 + 𝑏 

 

Where γ represents the gene expression/ serotonin concentration in tissue, m is the slope of the model 

(aka variation of the gene expression/serotonin concentration in tissue per time unit), t   the time in 

minutes and b the intercept of the model. 

Statistics-Microsoft Excel (Microsoft®Office®2003, Microsoft Corp., USA) was used for analysing 

heteroscedasticity of the data. The acceptability of heteroscedasticity and the adequacy of the 

regression models were tested by comparing the lack-of-fit to pure error variances at a 95% confidence 

level. An Excel template developed at Havsforskning Institutet (HI) containing all the routines for 

http://www.statisticshowto.com/homoscedasticity/
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automatic calculation of the ordinary and weighted regressions and the analysis of their residuals was 

used. The Excel template is available upon request at HI (par@hi.no). 

As a complement of the weighted least square regression (1/σ²) models, statistical analysis were 

performed using R Foundation for Statistical Computing, v2.11.0 (R Development Core Team, Vienna, 

Austria). Gene data followed normal distributions but presented considerable heteroscedasticity. Data 

from serotonin measurements did not show neither normal distribution, nor homoscedasticity.  For 

this reason, generalized linear mixed effect model (glmmPQL) with Gaussian error term was 

considered as adequate to measure significances throughout the feeding trial. P values of <0.05 were 

considered statistically significant. 
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3. Results 
 

3.1. Transcriptome analyses 

Transcriptome analyses (RNA-sequences) of gut samples were based on comparisons between 

hydrolysed fish oil diet (hTG) versus control (empty guts) and intact fish oil diet (TG) versus control. 

Principal component analysis (Figure 7) showed a clear separation between the hTG compared to the 

control (C) group.  

 

Figure 7.  Principal component analysis (PCA) of RNA-sequencing data from gut gut in Ballan wrasse fed 
either control (C), hydrolysed (hTG), or intact (TG) fish oil diet.  

 

For further data analyses and gene expression profiles a heat map showing differentially expressed 

genes between the three dietary treatments were done (Figure 8). The intact fish oil group (TG) 

clusters closer to the control group (c) compared to the hydrolysed fish oil group (hTG) concluding that 

hTG diet evokes significantly different expression of genes than TG and control. The hydrolysed fish oil 

treatment (hTG) was therefore chosen as the diet for further experiments. 
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Figure 8: Hierarchical clustered heat map of the 195 differentially expressed  intestinal transcripts from 
Ballan wrasse fed either control (C), hydrolysed (hTG), or intact (TG) fish oil diet (p < 0.05). The vertical 
distances on each branch of the heat map represent the degree of similarity between dietary treatments 
gene expression profiles. Expression level is colour coded: red for up-regulated, black for unchanged 
expression, and green for down-regulated genes. 

 

Genes considered as relevant for serotonin and lipid metabolism were selected to be target genes in 

further experiments: RT-qPCR (table 2). 

 

 



33 
 

Table 2. List of the selected genes for further experiments (RT-qPCR). They are also classified by their 
function in either lipid or serotonin metabolism. Transcriptomes analysis identified differentially 
expressed genes (adjusted p< 0, 05) from RNA-sequencing of gut samples fed with hydrolysed fish oil 
compared to control diets. NA indicates lack of gene expression. P values (p < 0, 05) were significantly 
lower when hTG diets are used in opposite to TG diets. 

 

3.2. Genetic expression-quantification 

3.2.1. Genes involved in lipid metabolism   

The mean of the expression of the genes (RNE) related to lipid transport (Figure 12) and those related 

to lipid metabolism (Figure 13) are shown thereupon. The expression of only three genes (ELOVL1, 

PLIN2, and PPARG) was significantly affected by feeding (glmmPQL p ELOVL1= 0.005, glmmPQL p 

PLIN2= 0.016, glmmPQL p PPARG= 0.014) where ELOVL1 and PPARG were down-regulated whereas 

PLIN2 was up-regulated. Not significant effect of diet was observed for the rest of the genes (glmmPQL 

p APOA4= 0.17, glmmPQL p CD36= 0.15, glmmPQL p PLPP3= 0.84, glmmPQL p SLC27A4= 0.67, and 

glmmPQL p PLD1= .60). 

Diets                                     hTG vs control    TG vs control 
   Gene accession no. log2FoldChange p-value log2FoldChange  p-value                                   Function 

DDC LABE_00062252 0,394 0,043 0,281 0,230 Biosynthesis of serotonin 

MAO B LABE_00012540 -0,476 0,040 -0,299 0,295 Deamination of serotonin 

MAO A LABE_00010029 -0,433 0,045 -0,368 0,144 Deamination of serotonin 

SLC6A4 LABE_00037267 0,258 0,122 0,133 0,546 Transport of serotonin 

TPH2 LABE_00054456 0,962 0,001 0,683 0,044 Biosynthesis of serotonin 

TPH1 LABE_00005595 0,282 0,281 0,335 0,256 Biosynthesis of serotonin 

APOA4 LABE_00076033 -0,779 0,038 -0,297 0,390 Chylomicron assembly  

ELOVL1 LABE_00047458 -0,203 0,142                        NA      NA           Fatty acid elongation  

PLD1 LABE_00056986 -0,686 0,001 -0,468 0,065  Phospholipase  

PLIN2 LABE_00009890 -0,009 0,983 0,585 0,058 Lipid storage droplets  

PLPP3 LABE_00030241 -0,485 0,000 -0,202 0,076 De novo synthesis of some 
lipids 

PPARG LABE_00007366 -0,312 0,132 -0,296 0,216 Adipocyte differentiation 

SLC27A4 LABE_00024491 -0,301 0,144 -0,151 0,582 Fatty acid transport 

CD36 LABE_00046348 -0,422 0,115 0,086 0,842 Regulator of fatty acid 
transport 
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Figure 12. Average of the relative normalized expression (RNE) and the SD of genes related to lipid 
transport with time by means of RT-qPCR.  Feeding did not modulate its expression (glmmPQL p> 0, 05). 
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Figure 13. Average of the relative normalized expression (RNE) and the SD of genes related to lipid 
metabolism with time by means of RT-qPCR.  Feeding did not modulate the expression of PLD1 nor 
PLPP3 (glmmPQL p> 0, 05) but had a significant effect on ELOVL1, PLIN2 and PPARG (glmmPQL p< 0, 
05). 
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Weighted calibrations 

Once the variances were normalized, weighted regressions of the expression of all the genes involved 

in lipid metabolism except for PLIN2 and PLPP3 showed a tendency to decrease after feeding (table 

A.6 in the Appendix). PLIN2 and PLPP3 showed a weighted regression (1/σ²) with a positive slope (m) 

suggesting upregulation of the latter genes (table A.6). It is important to remark that the expression of 

only three genes (ELOVL1, PLIN2, and PPARG) showed to be significantly affected by feeding and the 

regressions for the rest of the genes (APOA4, SLC27A4, CD36, PLD1, and PLPP3) are mere trends (p 

values > 0, 05) (table A.6). 

3.2.2. Serotonin related genes 

Genes involved in serotonin synthesis 

TPH1 was the highest expressed gene among all the genes involved in 5-HT metabolism. However, not 

significant effect of time on TPH1 expression was found (glmmPQL p=0.94). On the contrary, TPH2 

expression did increase significantly with time (glmmPQL p=6*10-6) reaching the highest expression 

level 180 min after feeding (Figure 9). DDC expression was not modulated by feeding (glmmPQL p=0, 

11) which can be observed by the flat bars in (Figure 9).  
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Figure 9. Average of the relative normalized expression (RNE) of TPH 1, TPH2 and DDC with time by 
means of RT-qPCR. The expression of both TPH 1 and DDC does not vary significantly with time 
(glmmPQL p>0,05) while TPH2 expression showed to be modulated by time (glmmPQL p<0,05). 

 

Genes involved in serotonin degradation 

Both MAO A and MAO B showed a similar post prandial pattern of expression (Figure 10). The mean 

of the expression of both genes (RNE) tended to show a peak expression 60 minutes after feeding and 

from there on, there is a tendency towards decreased expression. However, not significant effect of 

feeding on none of the genes was found (glmmPQL p MAO A= 0, 24 and glmmPQL p MAO B=0, 57). 
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Figure 10. Average of the relative normalized expression (RNE) of MAO A and MAO B with time by means 
of RT-qPCR. No significant variation in gene expression with time for both genes (glmmPQL p > 0, 05). 

 

Serotonin carrier encoding gene 

SLC6A4 expression was downregulated with a p value very close to significance (glmmPQL p= 0, 053) 

showing its lowest value at the end of the trial (180 minutes after feeding) (Figure 11). 
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Figure 11. Average of the relative normalized expression (RNE) of SLC6A4 with time by means of RT-
qPCR.  Time did not modulate its expression (glmmPQL p= 0, 05) 

 

Weighted calibrations 

The violation of the assumption of data with equal variances (which precluded the implementation of 

ordinary least square methods) and the weighted models for all the genes involved in 5-HT metabolism 

with their corresponding normalized residuals are shown (table A.5 in the Appendix)  

Once the data (variances) were normalized for each gene, weighted calibrations showed a linear down-

regulated trend for MAO A, MAO B, and SLC6A4. A clear up-regulated trend for TPH2, and an almost  

inappreciable up-regulated trend for TPH1 and DDC (table A.5). Although only the expression of TPH2 

was significantly affected by feeding (p = 6*10-6) as mentioned before, weighted least square 

regressions (table A.5) were crucial to define the tendency of the gene expression throughout time. 

3.3. Serotonin in intestinal tissue 

3.3.1. Optimal initial concentration of the samples 

The OD values (absorbance) obtained from 1:16 diluted samples (the third dilution of the dilution 

series) were within the limits of the standard curves for the three replicates (Figure 14). 1:16 diluted 

samples were then used for calculating serotonin concentration in tissue. 

 

http://www.statisticshowto.com/least-squares-regression-line/
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Figure 14. Standard curves of the OD values (blue spots) and their logarithmic trend line (blue line) for 
the three different replicates (A, B, and C correspond to replicate 1, 2 and 3).  Equations together with 
the R-squared values are displayed for each chart.  Orange dots represent the OD values from the 1:16 
diluted samples which are clearly plotted within the trend-lines limits. 

 

3.3.2. Serotonin quantification 

Figure 15 shows the average of serotonin (ng/mg) found in tissue for the three experimental replicates.  

Serotonin levels did not show large fluctuations over the first two hours and a half after feeding where 

values varied between 0,55 and 0,70 ng/mg.  By looking at figure 15 and table A.7 (in the Appendix), 

one could expect a significant effect of feed in the concentration of 5-HT as the average concentration 

after three hours (180 min) increased nearly twice as much as in the beginning (after 10 minutes of 

incubation). Nonetheless, not significant effect of feeding was found along the post prandial incubation 

time frame (glmmPQL p = 0,299).   

 

 

Figure 15.  Average and SD of serotonin concentration (ng/mg) in tissue from the three experimental 
replicates. Feeding did not have a significant effect on 5-HT concentration in tissue (glmmPQL p = 0,299).  
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In an attempt to observe possible differences in serotonin concentrations between experimental 

triplicates, they were plotted separately (Figure 16). The first and second experimental replicates (A 

and B in Figure 16) were observed to have similar levels of serotonin throughout the time of incubation 

(3 hours). On the other hand, the third experimental replicate (C in Figure 16) showed higher levels of 

serotonin for most of the time points, especially for 90 to 150 minutes, not following the same 

modulation pattern than the other two experimental replicates. 

 

Figure 16. Serotonin concentration (ng/mg) in tissue for the three experimental different replicates (A, 
B, and C correspond to replicate 1, 2 and 3). The third experimental replicate (c) showed a concentration 
of serotonin twice as large as the first and second experimental replicates at 90 and 120 minutes.  

 

3.3.3. Correlation analyses 

Pearson’s product-moment correlation test (Figure 17) showed not significant correlation between 

serotonin in tissue (ng/mg) and the expression of any of the genes (DDC r (19) = -0.005, p=0.98; MAO 

A r (19) = -0.41, p = 0. 066; MAO B r (19) = -0. 26, p=0. 26; SLC6A4 r (19) = -0.39, p= 0.081; TPH 1 r (19) 

= -0. 1, p= 0.66; TPH 2 r (19) = 0.29, p= 0.2).  TPH2 expression seemed to be the only positively 

correlated with serotonin in tissue while the rest of genes tend to lower their expression when 

serotonin in tissue increases (negative correlation). 
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Figure 17. Pearson correlation coefficient, r, and p values for each gene. Values corresponding to the 
three timelines are plotted for each given time. 
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4. Discussion 
 

4.1. Methodological considerations 

 

4.1.1. In vitro analyses 

Gene expression analyses together with 5-HT measurements were investigated in intestinal tissues 

under in vitro conditions representing a novel method. In vitro experiments using gut tissues have 

previously been reported for example by (Velarde et al. 2010) that evaluated the effect of 5-HT on the 

intestinal motility of goldfish. However, this current in vitro study analyses modulation of gene 

expression in response to diet using RT-qPCR methodology.  

4.1.2. Sample recollection and gene expression repercussions 

The RNA integrity of a sample is determined by the RNA integrity Number (RIN) that follows a 

numbering system from 1 to 10, with 1 being the most degraded RNA, 5 being highly degraded, and 

10 being the best intact. It has been previously reported that the gut tissue is especially fragile and 

RNA degrades rapidly if not treated adequately (Heumüller-Klug et al. 2015). The RNA integrity of the 

gut samples analysed in this study cannot be considered as optimal (RIN values varied between 6 and 

7,5) but still acceptable and following gene expression analyses were therefore trusted (Heumüller-

Klug et al. 2015). The life span of intestinal epithelial cells (IECs) is short (3–5 days), and its regulation 

is thought to be important for homeostasis of the intestinal epithelium (Park et al. 2016). This high cell-

turnover ratio would lead to the presence of degraded RNA which could lower the RIN values in 

intestinal tissue. There were several steps throughout the experiments that could potentially have 

damaged the gut tissue affecting cell function and gene expression. Firstly, guts were flushed several 

times with Ringer’s solution prior to feeding in order to wash out food remains. The intestinal tissue 

was also cleaned after incubation for the same purpose. This procedure, together with the fact that 

the gut was kept out of the body during sampling and incubation, might have caused damage and 

degradation of the tissue.  

4.1.3. Serotonin quantification by ELISA kit 

ELISA serotonin analyses have been reported as an efficient method to measure serotonin in serum, 

plasma, cell culture supernatants, and urine (Nichkova et al. 2012; Lee et al. 2014). Most of the 

literature testing the efficiency of ELISA kits refers to serotonin from body fluids in either  humans or 

mice (Kim and Camilleri 2000; Gershon and Tack 2007). A recent study focused on 5-HT quantification 

from the gut tissue of two fish species (Atlantic salmon and Coho salmon) was performed by  Mardones 

et al. (2018) using HPLC for quantification instead ELISA. The 5-HT concentration seemed to vary 
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considerably between the two investigated species (from 1 to 1, 5 ng/mg of 5-HT in the midgut of A. 

salmon and 2,5 to 3 ng/mg in the midgut of C. salmon). This gives a perception of the variation of 5-HT 

between species. Ballan wrasse belonging to a completely different order of fishes, had 5-HT values 

from 0, 5 to 1, 1 ng/mg over the post prandial incubation time (Figure 15) being close to those values 

showed by salmon. Although the 5-HT levels from salmon and Ballan wrasse are not comparable 

(different species, one with empty guts and the other with lipid infusion before 5-HT measurements), 

the similarity in the 5-HT concentration found in the gut of the previous mentioned species could 

confirm the suitability of ELISA analysers used in these in vitro experiments. 

4.1.4. Statistical considerations 

By looking at the data from gene expression and serotonin quantification (Figures 9-13 and 15) large 

variances were observed although outliers were not found in any case. In order to test the possible 

effect of variances the data were evaluated for homoscedasticity by plotting weighted regression in 

which variances were normalized, and comparing them to linear (unweighted) regressions. Weighted 

regressions did not show any significant lack of fit at the 95 % confident level which meant that the 

data were heteroscedastic (significant differences in the variances)  (Miller and Miller 2018). For this 

reason and according to Araujo et al. (2014) , weighted regressions were chosen as the most suitable 

modelling approach for showing the time dependant  modulation of gene expression after feeding.  

Non-constant variance (heteroscedasticity) in repeated measurements is a frequent problem in 

biological data (K. Jensen, personal communication, 2017) especially when the number of replicates is 

low. Interestingly enough, the current study counted with three experimental replicates (n=3) which 

is proposed to be the main reason for the big variation in our data. In an attempt to add more 

information to the weighted regression models and define significances, a non-parametric statistical 

test was applied with its corresponding decrease in sensitivity. In this case Generalized Linear Mixed 

Models for multiple random effects (glmmPQL) which accounted for large variances was used.   

4.2. Transcriptomes analyses 

The principal component analysis together with the heat map of gut transcriptomic patterns of the 

control (c) and intact fish oil groups (TG) revealed larger differences than expected. Only digested oil 

(hTG) in the form of free fatty acids can be absorbed and therefore trigger a transcriptomic response. 

Thus, intact fish oil dietary groups (TG) was expected to not trigger transcription of genes and cluster 

closer to the control than it did. It can be hypothesized that either the low amount of free fatty acids 

in the intact oil (TG) used in the experiment was enough to initiate the transcription of the differentially 

expressed genes, or there are enzymes left for lipolysis in the in vitro gut. However, the intact fish oil 

http://www.statisticshowto.com/homoscedasticity/
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dietary group (TG) still clustered closer with the control group than with the group given hydrolysed 

fish oil (hTG).   

Lipid diets, in vivo, are a strong stimuli for the activation of digestion mechanisms and gene expression 

(Sæle et al. 2018).  The hydrolysed dietary group (hTG) which is mainly free FAs (available for 

absorption) did not cluster with the control group concluding that hTG diet evokes significantly 

different expression of genes than TG and control. Lie et al. (2018) demonstrated that the first three 

segments of the Ballan wrasse gut act as one continuous short tube with high expression of genes 

associated with digestion and absorption of nutrients as well as appetite regulation. In the same paper 

they revealed the loss of all known genes (except for one) related to stomach function suggesting the 

necessity of formulated diets with higher levels of easily digestible protein than those for gastric 

species.  

4.3. Modulation of gene expression following lipid administration 

4.3.1. Lipid transport and absorption in the gut of Ballan wrasse 

The genetic expression of lipid transporters (SLC27A4, CD36, and APOA-IV) were investigated in the 

gut of Ballan wrasse after administering a lipid-rich meal in vitro. The in vitro diet used in these 

experiments was cod oil rich in omega-3 polyunsaturated fatty acids (90% PUFAs: EPA and DHA and 

only 10 % saturated fatty acids) (NIFES 2018).   

SLC27A4 also known as FATP4 is specifically expressed in enterocytes and directly related to the uptake 

of fatty acids specially LCFAs, generation of energy and biosynthesis of lipids (Milger et al. 2006; 

Anderson and Stahl 2013). Results showed a slight down-regulation of SLC27A4 after feeding. Yan et 

al. (2015) also observed downregualtion of SLC27A4 with fish oil diet and suggested that the role of FA 

transporters may differ under various dietary lipid levels. Supported by this, it is hypothesized that 

SLC27A4 might lack direct implication in PUFAs transport in the gut of Ballan wrasse.  

Schwartz (2011) reported the fatty acid translocase CD36 as the main molecule involved in the 

absorption of lipids with a likely important secondary role in chylomicron formation. Results did not 

show a significant response of CD36 to feeding. A close related enzyme, Apo A-IV, is primarily 

synthesized in the enterocytes of the gut during fat absorption and further incorporated into the 

surface of nascent chylomicrons and high-density lipoproteins (HDL) (Stan et al. 2003).  As for CD36, 

results showed not significant response of Apo A-IV to feeding. Apo A-IV synthesis and secretion have 

been reported to be actively involved in  fat absorption in the gut of rats (Kalogeris et al. 1994) and 

zebra fish (Otis et al. 2015)  with diets rich in TAG. It is well known that Apo A-IV gene expression is up-

regulated in response to lipid ingestion (Otis et al. 2015; Sæle et al. 2018).  
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The lack of time dependant modulation of CD36 and specially, Apo A-IV by feeding is difficult to discuss. 

According to (Schwartz 2011) and (Otis et al. 2015) the high content of long chain fatty acids (LCFA) in 

the diet would trigger up-regulation of both genes and therefore, a higher response of Apo A-IV and 

CD36 was expected in the gut of Ballan wrasse as fish oil was used as dietary treatment. 

4.3.2. Lipid droplets formation 

Perilipin (PLIN) proteins constitute an ancient family important for the assembly and biogenesis of 

cytosolic lipid droplets (CLD) which typically store neutral lipids and play diverse roles in metabolism 

and signalling (Demignot et al. 2014; Granneman et al. 2017). Results showed a significant upregulation 

of PLIN2 in the gut of Ballan wrasse corroborating its response to lipid diets. Most work addressing 

PLIN protein function has been performed in mammals and relatively little on non-mammalian 

vertebrates. In accordance with our results, Lecchi et al. (2013) hypothesized that n3 LC- PUFAs (EPA 

and DHA) may modulate lipid droplet formation by upregulating PLIN2 and PLIN3 mRNA expression. 

Besides, upregulation of PLIN2 in fish has been shown to correlate with the inclusion of dietary TAG 

(Sæle et al. 2018). However, unlike the rest of the studied genes, PLIN2 was strongly expressed only 2 

hours after feeding suggesting that droplet formation mechanisms in Ballan wrasse act more actively 

after transport and absorption have taken place.   

4.3.3. Lipid metabolism 

Genes associated with re-synthesis of TAG were up-regulated in the gut of zebrafish larvae with TG 

rich diets (Sæle et al. 2018). Genes involved in the re-synthesis of TG in Ballan wrasse did not show the 

same up-regulated expression pattern. 

PLPP3 expression in the gut of Ballan wrasse was not significantly modulated by feeding. PLPP3 is a 

member of the phosphatidic acid phosphatase (PAP) family with a crucial role in de novo synthesis of 

glycerolipids such as TGs and DAGs (Tocher et al. 2008). It is well known that different genes act 

specifically in the synthesis of different glycerolipids. Sæle et al. (2018) showed that genes involved in 

DAG synthesis were higher expressed compared to those involved in TAG synthesis when TAG rich 

diets were supplied. The lack of time-dependant TAG-rich diet modulation of PLPP3 in the gut of Ballan 

wrasse suggest the likely presence of other genes with a higher commitment in glycerolipids synthesis.  

ELOVL1  has been  suggested to be involved in the elongation of both saturated and monounsaturated 

fatty acids (Jakobsson et al. 2006). Fish oil-enriched diets repressed elongase activity in livers of rats 

(Wang et al. 2005). Interestingly, also diets rich in monounsaturated fatty acids (oleic and erucic) have 

been reported to inhibit endogenous ELOVL1 (Sassa et al. 2014). The expression of ELOVL1 mRNA in 

Ballan wrasse only started to decrease significantly one hour after feeding probably indicating that the 

feed used in these trials (fish oil rich in PUFAs) did not trigger any specific response and it was the time 
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the main factor for the decreased expression of ELOVL1. The slightly up-regulated pattern of ELOVL1 

right after feeding could still be explained by the presence of few SFAs in fish oil (Jakobsson et al. 2006). 

This is supported by (Sassa et al. 2014) that dismissed the role of PUFAs (EPA and DHA) at inhibiting 

ELOVL1 activity. 

 

PPARG also known as PPARγ, is a regulator of adipocyte differentiation and lipid storage (Morais et al. 

2012). PPARγ transcriptional activity is regulated by fatty acids availability. In the absence of FAs, 

PPARγ is transcriptionally silent whereas it is highly expressed when fatty acids are added to the diet 

(de Paula et al. 2013). Unexpectedly and similar to ELOVL1, results in Ballan wrasse showed a significant 

downregulation of PPARG with fish oil diet. Interestingly,  Morais et al. (2012) claimed that PPARG was 

strongly up-regulated by diets rich in vegetable oil compared to fish oil diets. It is then suggested that 

a lower adipocyte synthesis and lipid storage occurs when fish oil rich in PUFAs is used instead of 

vegetable oil, which is rich in monounsaturated fatty acids (MUFAs).  The latter is supported by (Morais 

et al. 2012). 

 

The last gene investigated was Phospholipase D (PLD1) which catalyses the hydrolysis of the 

phospholipid phosphatidylcholine (PC) and its metabolites participate in multiple cellular activities 

including cell proliferation, differentiation, migration, and survival (Zeng et al. 2009). The lack of 

response of PLD1 to feeding was expected as fish oil used in this diet did not have phosphatidylcholine. 

 

Although most of the target genes involved in lipid metabolism did not show as strong response to 

feeding as expected, there is a tendency of changing patterns in their expression during the in vitro 

experiments which are triggered by “feeding”. This implies the presence of active cellular mechanisms 

in the gut of Ballan wrasse that efficiently respond to nutrients in vitro. According to Bellono et al. 

(2017), EC cells have receptors and transduction mechanisms that detect ingested chemicals and 

contribute to other sensory or neural signalling systems. Based on the fact that dietary lipids 

modulated expression of genes involved in lipid metabolism, it is suggested that serotonergic EC cell 

will also respond to diet and further discussion will be therefore focused on the regulation of 5-HT by 

lipid diets in the gut of Ballan wrasse. 

 

4.4. Serotonin in Ballan wrasse 

4.4.1. Serotonin quantification in the gut 

The surprising lack of the significant effect of dietary lipids post prandial on the amount of 5-HT in 

tissue might be due to the low number of biological replicates (low n) used in the present experiments 
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in combination with large variation in the data. The apparent higher concentration of 5-HT at the end 

of the trial (180 minutes after feeding) (Figure 15 and 16) might suggest the likely presence of a 

regulatory mechanism that evokes an increase of 5-HT in the gut of Ballan wrasse in response to feed. 

This however can only be proved with more experimental replicates (higher n). The suggested 

mechanisms involved in the synthesis of 5-HT in Ballan wrasse will be later discussed. 

It was also shown that the amount of 5-HT was similar in the guts dissected at the same time early in 

the morning but in different months (first and second experimental replicate). Interestingly, the third 

experimental replicate that was perform later in the afternoon showed in average higher levels of 

serotonin.  

Stress of cultured fish is of great concern as it directly affects growth and health causing fish mortality. 

Conte (2004) recognized that controlling animal stress is absolutely essential to ensure animal welfare. 

There are many factors that can potentially lead to stress in fish such as water characteristics (quality, 

quantity, and temperature), high animal density, and poor feeding regime among others. Poor water 

quality (low oxygen and high waste accumulation) together with high fish density will overload the 

system with metabolites thereby leading to stress (Conte 2004). Fish respond differentially to stress 

and count on mechanisms to cope with disturbances and maintain its homeostatic state. Genetic 

history of fish appears to be highly affected by stress when trying to cope with it (Barton 2002). 

Serotonin has been reported to be strongly implicated in stress regulation in fish (Backström and 

Winberg 2017). Brain 5-HT release is easily affected by multiple stressors such as nutritional status, 

social interaction, and immune challenges (Winberg and Nilsson 1993). In accordance with this, both 

synthesis of 5-HT and its metabolism was observed to increase under pathological or stressful 

circumstances in the brain of trout and the gut of mice (Øverli et al. 2001; Gershon 2013; Winberg and 

Thörnqvist 2016). As mentioned before fish used in the third experimental replicate was kept in the 

bucket for longer period implying longer fasting and repeated disturbances with the net to catch fish. 

These factors might have caused higher stress for the fish of the third experimental replicate compared 

to the other individuals. I therefore  propose stress as the potential reason of the higher concentration 

of 5-HT in the third experimental replicate.  

4.4.2. Synthesis of serotonin and the role of EC cells 

Serotonin is synthesized through the actions of two different rate-limiting tryptophan hydroxylases, 

TPH1 which yield the mucosal synthesis of serotonin and TPH2 (the neural form), which are found 

respectively, in enterocromaffin cells (EC cells) and neurons (Gershon and Tack 2007; Bornstein 2012). 

DDC also known as L-AADC, is also involved in serotonin synthesis as a non-rate limiting enzyme 
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(Bertrand and Bertrand 2010). DDC expression did not show any change after feeding which is 

consistent with its non-rate limiting action and thus, not large variations were expected. 

The gastrointestinal (GI) tract in fish is innervated by sensory neurons that respond to nutrients, 

chemicals or mechanical stimuli within the gut lumen (Velarde et al. 2010). Stimuli however, do not 

seem to interact directly with enteric neurons but instead activate specialized cells (EC cells) in the 

epithelium in a process of sensory transduction (Bertrand and Bertrand 2010; Velarde et al. 2010).  

Many authors have supported the idea that this sensory system regulates the synthesis and release of 

5-HT by EC cells which will act on intrinsic nerves regulating GI tract motility. EC cells have been found 

in protochordates and most vertebrates, but were previously thought not to be present in teleost.  

Now it is known that the presence and/or location of EC cells in teleost varies greatly among species 

being found both in the stomach and/or in the gut (Anderson and Campbell 1988).  The presence or 

absence of EC cells in the gut of Ballan wrasse have not been investigated by terms of 

immunohistochemistry or fluorescence. However, the analyses of the entire genome as well as the 

intestinal transcriptome of Ballan wrasse recently available (Lie et al. 2018) has made it possible to 

shed some light on the previously unreported presence of EC cells as discussed in greater detail later 

(see 4.3 below).  

According to Parmar et al. (2012), TPH1 is the main enzyme involved in 5-HT synthesis within EC cells. 

TPH1 showed the highest expression among all the studied genes in these experiments. mRNA 

expression analysed by RT-qPCR evidenced the presence of TPH1, which implies the existence of EC 

cells in the gut of Ballan wrasse unlike another stomach-less species, the goldfish, that was reported  

to lack  EC cells in the gut mucosa (Velarde et al. 2010). Surprisingly, TPH1 did not show to be regulated 

by feeding, indicating that there might be another important source of 5-HT besides EC cells in the gut 

of Ballan wrasse.  

4.4.3. EC presence in the gut of Ballan wrasse 

The presence of known genes associated with EC cells in the gut of Ballan wrasse (table 3) have been 

reviewed by investigating the genome and intestinal transcriptome of Ballan wrasse found in the 

European Nucleotide Archive (accession number: PRJEB13687) (From Additional files.2 (Lie et al. 

2018)). This small “meta-study” is based on the use of transcriptomic data and it was done as a 

supplement for the thesis as it was not part of the original focus on this study. 

NK2 homeobox 2 (Nkx2.2) has been reported to be essential for the specification of enteroendocrine 

cells, especially for serotonergic EC cell linage (Gross et al. 2016). The same authors identified Lmx1a 

as a novel regulator of the 5-HT signalling pathway in the gut of mice being essential for the expression 

of TPH1. Genome and transcriptomes analyses in Ballan wrasse revealed the presence of Nka2.2a, 
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Lmx1a and TPH1 (table 3). Also, TPH1 was identified by means of RT-qPCR. Interestingly, unlike the 

rest of the specific genes of EC cells, Lmx1a did not show to be differentially expressed between the 

different parts of the gut despite being present in the analysed transcriptome. Also surprisingly, TPH1 

and DDC which are enzymes in charge of 5-HT synthesis showed to be upregulated towards the hindgut 

unlike the rest of the genes expressed by EC cells. 

Two catecholamine receptors (adra2a and TRPC4) have been reported to specifically be present in EC 

cells from the gut of mice (Bellono et al. 2017). TRCP4 was not found in the Ballan wrasse genome, 

while according to the transcriptome, adra2a seemed to be present only in the first segment of the gut 

(table W). It has been suggested that EC cells respond to contents of the lumen through the action of 

cation channels such as Trpa1.  Nozawa et al. (2009) reported the high expression of Trpa1 in human 

and rats EC cells and its direct implication in regulating 5-HT release as well as gut contraction. Trpa1 

was also highly expressed in the gut of Ballan wrasse which would be another evidence supporting the 

presence of EC cells. However, Trpa1 is not exclusively expressed in EC cells as it has been found in 

sensory neurons (Penuelas et al. 2007). The source of Trpa1 in the gut of Ballan wrasse (from EC cells 

or neurons) therefore cannot be defined by transcriptomic analyses and cannot be directly linked with 

the presence of EC cells.  

Table 3: Genes expressed by EC cells in the gut of Ballan wrasse. Differentially expressed genes between 

the third and the fourth segment and the first and the fourth segment. Transcriptomes analysis 

identified differentially expressed genes (adjusted p< 0, 05) from RNA-sequencing of the gut of Ballan 

wrasse (From Additional files.2 (Lie et al. 2018)). NA indicates the lack of differential gene expression 

between segments and the log2Foldchange indicates up/down regulation of the gene expression. All 

the three genes seem to be higher expressed in the anterior part of the gut indicating a downregulation 

of the gene expression towards the hindgut. 

 

 

The expression of genes that characterize EC cells (table 3) is a good indicator of the presence of EC 

cells in the gut of Ballan wrasse. Interestingly, the fact that TPH1 and DDC are the only up-regulated 

genes towards the hindgut seems to be a bit of contradictory. Regardless, based on the previous 
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transcriptome analyses, I hypothesize the presence of EC cells in the gut of Ballan wrasse and more 

specifically, the higher presence of EC cells in the anterior part of the gut compared to the hindgut. It 

is also proposed that the higher transcriptomic expression of TPH1 and DDC in the hindgut might be 

promoted by microbiota which has been observed to stimulate 5-HT synthesis in the colon (see 4.8) 

(Yano et al. 2015). Only TRCP4 was not observed in the genome of Ballan wrasse. Nonetheless, it is 

very likely that TRCP4 also exist in the gut and that the gene, for example could have remained 

undetected in regions difficult to sequence (Lie et al. 2018). The absence of a gen is always more 

difficult to demonstrate than the presence of one. Further and more detailed genetic analyses together 

with immunohistochemistry might corroborate the presence of EC cells. 

4.4.4. The role of the enteric nervous system in teleost 

Serotonin has been shown to induce contractions in isolated gut from a stomach-less teleost, the 

goldfish (Carassius auratus), which gut has a prominent population of 5-HT positive neurons and lack 

EC cells in the mucosa (Velarde et al. 2010). These enteric neurons have projections to the lamina 

propria and muscle but do not reach the myenteric plexus lacking direct contact with stimuli from the 

mucosa.  

For decades, it was widely believed that serotonin was mainly produced by EC cells (mucosal sources) 

(Bornstein 2012) and the contribution of the enzyme TPH2 (neural form) in the production of serotonin 

in the enteric neurons of the gut was not very clear. This was likely due to the use of low sensitive 

techniques such as formaldehyde induced fluorescence which did not seem to detect low levels of 5-

HT and thus, those neurons with low 5-HT concentration were not detected at all (Anderson and 

Campbell 1988).  The use of a more sensitive technique, immunohistochemistry, revealed the presence 

of enteric neurons in most of the teleost despite having low concentration of 5-HT (Anderson and 

Campbell 1988). Interestingly, in the same article they proposed the existence of a correlation between 

intestinal EC cells and enteric neurons: Fish without EC cells in the mucosa had enteric neurons rich in 

5-HT while those rich in EC cells might have neurons with low 5-HT concentration. Results showed that 

TPH2 was also expressed corroborating the presence of enteric neurons in the gut of Ballan wrasse 

although its expression remained lower than the expression of TPH1 (TPH1 compared to TPH2 had a 

fold-change varying from 2 after feeding, to 4 after two hours, and 1 fold-change after 3 hours). 

Gershon (2013) reviewed the substantially smaller 5-HT content of the enteric nervous system in 

comparison to EC cells which seems consistent with the higher expression of TPH1 (from EC cells) 

compared to TPH2 (from enteric neurons) in our data. However, small does not mean unimportant. 

Although results showed low TPH2 expression, TPH2 was observed to increase significantly after 

feeding suggesting a possible stronger implication of TPH2  in response to feed compared to TPH1. 
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4.4.5. Has the role of TPH2 been underestimated? 

The mechanisms by which serotonin production is stimulated in enteric neurons together with the role 

of neural 5-HT in the gut still remains unknown. Some light was shed on its role by Li et al. (2011) that 

knocked out TPH1 and TPH2 in mice. They concluded that serotonin produced by EC cells had a very 

minor role in the regulation of IG motility, while neural serotonin (5-HT produced by TPH2 in enteric 

neurons) may have a much more substantial role than previously believed. Consistent with this, 

Gershon (2013) claimed that the depletion of TPH2 slows the total gastrointestinal transit time,  

intestinal propulsion and colonic motility  while depletion of TPH1 did not interfere with constitutive 

GI motility. In accordance with this, both the levels of serotonin in tissue and the expression of TPH2 

increased at the end of the trial (3 hours after feeding) suggesting that TPH2 might be directly 

responsible for serotonin synthesis in response to feed in the gut of Ballan wrasse. Also in line with 

this, analyses of the transcriptomes in Ballan wrasse (From Additional files.2 (Lie et al. 2018)) revealed 

the presence of Lmx1b (LABE_00014479)  which according to (Gross et al. 2016) is a paralog of Lmx1a 

(LABE_00030204) and it is only expressed in neurons where it regulates TPH2. Lmx1b has been 

reported in the gut before but only expressed at extremely low concentrations (Gross et al. 2016). 

Surprisingly, the presence of Lmx1b was found to be higher than Lmx1a in the gut of Ballan wrasse 

(Lmx1b expression in the first segment showed a fold-change mean of 4.34 ± 2 compared to Lmx1a). 

The considerably higher expression of Lmx1b that potentially regulates TPH2 would also support the 

previously suggested important role of TPH2 in 5-HT synthesis. However, significant correlation 

between serotonin in tissue and TPH2 expression was not found (Figure 6) which could indicate the 

lack of relation between mRNA expression of TPH2 and its enzyme activity.  It is therefore important 

to remark that gene expression does not determine the action of the enzymes they code for and there 

can be many other factors modulating the action of TPH1 and TPH2. In spite of the significant increased 

level of TPH2 over time, results lack evidences to affirm that TPH2 directly synthesize 5-HT in the gut 

of Ballan wrasse in response to lipid meals. 

Generally, there are many reported contradictory evidences with regards to the role and importance 

of both EC cells and enteric neurons which might not be easily reconciled (Bornstein 2012). Further 

studies of the role of TPH1 and TPH2 are needed to understand the mechanism of 5-HT synthesis and 

settle this controversy.  

4.4.6. Metabolism of serotonin 

Monoamine oxidase (MAO) enzymes has been reported to be the major pathway of 5-HT metabolism 

in animals (Sjoerdsma et al. 1955). Serotonin released from the EC cells in the submucosa is eventually  

transported into epithelial cells via SERTs and metabolized by monoamine oxidase A (MAO A) (Figure 

3), which is located in all epithelial cells of the gut (Bertrand and Bertrand 2010). Both isoforms of MAO 
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(MAO A and MAO B)  have been reported to metabolize serotonin in different classes of terrestrial 

vertebrates but not in teleost (Rao et al. 1993), where monoamine oxidase does not fit into the classical 

MAO A/MAO B binary classification. Following up, Senatori et al. (2002) reported that MAO is 

exclusively present in one single form in several species of teleost, and this form has usually been 

classified as MAO  A. Opposed to this, MAO B was measured with RT-qPCR and also present in both 

the genome and transcriptome (Gene ID: LABE_00012540. From Additional files.2 (Lie et al. 2018)) in 

the gut of Ballan wrasse, supporting the presence of this isoform. Besides, the expression of these two 

enzymes showed a tendency to decrease after feeding. If the 5-HT system is somehow genetically 

regulated by feeding, the tendency towards a lower expression of the genes coding for these enzymes 

after the lipid meal might be in accordance with the up-regulation of TPH2 and the slightly increase of 

serotonin levels. The mechanisms causing these expression of different genes is regulated by feeding 

is unknown and further research is needed. 

4.4.7. Transport of serotonin. 

The serotonin transporter and its gene (SLC6A4 in humans; Slc6a4 in mice, otherwise known in some  

published papers as 5-HTT or SERT) (Murphy et al. 2008) is one of the major modulators of serotonergic 

neurotransmission. It is responsible for the reuptake of 5-HT in serotonergic nerve terminals (Figure 3) 

determining the magnitude and duration of postsynaptic responses to 5-HT (Sookoian et al. 2008).   

Several articles have reported the polymorphism form of the human SLC6A4 gene as the main cause 

of intestinal inflammation, IBS and psychiatric syndromes associated with an altered response of the 

serotonin system (Saito et al. 2010; Margolis and Gershon 2016).  Although our results showed that 

SLC6A4 gene expression did not change significantly post prandial, it tended to decrease 3 hours after 

feeding suggesting the likely lower uptake of total 5-HT by serotonergic neurons. Tanofsky‐Kraff et al. 

(2013) and (Murphy et al. 2008) reported that individuals with polymorphic SLC6A4 as well as SLC6A4-

/- mice showed reduced synaptic levels of serotonin which leads to great disorder of appetite 

regulation. Further studies in SLC6A4 seem promising to understand the regulation mechanism of 5-

HT (Murphy et al. 2008).The reasons causing this apparently diminution of the expression of SLC6A4  

in the gut of Ballan wrasse by lipid diet are unknown and complicated as there is not information about 

the dietary modulation of SLC6A4.  

4.4.8. Other known factors modulating serotonin: Microbiota 

Recent relevant studies reviewed by  O’Mahony et al. (2015) have investigated the role of gut-

microbiota in regulating 5-HT levels within the gut. Although microbiota is not a part of this master’s 

thesis, it is important to remark its apparent complex role on the brain-gut axis and behaviour. Yano 

et al. (2015) showed that microbiota can promote levels of colon and blood 5-HT by producing 

metabolites capable of stimulating host EC cells to synthesize 5-HT. Whether some bacteria are able 
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to produce 5-HT de novo or not remains unclear. Microbiota has revealed its important contribution 

to regulate 5-HT biosynthesis in the gastrointestinal tract which probably affects gastrointestinal 

motility and homeostasis. Further research on 5-HT-microbiota relationship might elucidate more 

about its action mechanisms and regulation systems. 
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5. Conclusions 
In response to a “meal” of hydrolysed cod liver oil, genes associated with elongation of fatty acids 

(ELOVL1), modulation of long chain fatty acid processing (PPARG) and lipid storage in cytosolic lipid 

droplets (PLIN2) were upregulated. However, APOA-IV, associated with lipid transport from the 

intestinal cells and well known to be upregulated in response to lipid ingestion in vivo was 

unexpectedly expressed.  

The number or experimental replicates conducted in this study was limited (n= 3) and showed a fairly 

large variation between them. For this reason I suggest that the low n has contribute to the big 

variances and a higher number of experimental replicates might probably lead to more robust 

conclusions. 

Serotonin in the gut of Ballan wrasse showed a tendency to increase 3 hours after feeding. I also 

hypothesise that stress induce higher levels of intestinal 5-HT as has been shown to be the case in 

brain 5-HT in trout. Genes associated to 5-HT metabolism did not respond to the lipid “meal” except 

for the enteric neuron specific, rate limiting enzyme TPH2 which has been recently suggested to have 

a much more substantial role in 5-HT production and regulation than previously believed. 

However, based on analysis of the genome and transcriptomic data, I propose the presence of 

enterocromaffin cells (EC cells) in the gut of B. wrasse. EC cells theoretically, produce the majority of 

intestinal 5-HT synthesized through the enzyme TPH1. Unlike TPH1, its isoform TPH2 (exclusive to 

enteric neurons, another 5-HT producing cell) was the only gene involved in 5-HT metabolism which 

was observed to be significantly upregulated by feeding. Although correlation analyses failed to find a 

close relationship between 5-HT levels in tissue and gene expression, the upregulation of TPH2 by 

feeding suggest the active role of the latter in nutrient sensing.  

Future perspectives 

Based on our observations, both 5-HT and lipid mechanism seems to have some sort of response to 

lipid meals in the gut of B.wrasse. However, this response is not clear and a higher number of 

experimental replicates (n) might be crucial to elucidate the genetic regulation of 5-HT synthesis after 

a lipid meal in the gut of Ballan wrasse.  

The present results indicate the likely suitability of the novel in vitro model used in these experiments 

for investigating the impact of lipid diet inclusion at the level of gene expression. However, 

methodological limitations need to be further elucidated. 
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Appendix 

Table A.1. Ringer’s solution composition 
 

weight (g) in 10 

X solution 

Volume stock 

(L) 

Volume 10 X 

solution (L) 

Nacl 15.121 0.2 0.1 

MgCl2 *6H2O 0.191 0.2 0.1 

Kcl 0.373 0.2 0.1 

Cacl2 *2H2O 0.441 0.2 0.1 

NaHCO3 0.339 0.2 0.1 

NaH2PO4 0.116 0.2 0.1 

ddH2O 
  

0.4 

Final Volume 
  

1 

 

 

 

Table A.2. RT reaction mix: Reagents and concentrations 

  Reagents  Volume (µl) Concentration 

  ddH2O 8,9   

  10x RT buffer 5 1X 

Non enzymatic 

reagents 

10x MgCl2 11 5,5 mM 

 10 mM dNTP mix 10 500µM per dNTP 

 50µM oligo d(T)16 2,5 2,5 µM 

    

       

Enzymes Rnase Inhibitor (20 

U/µl) 

1 0,4 U/µl 

  Multiscribe Reverse 

Transcriptasa ( 50U/µl) 

1,67 1,67 U/µl 
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Table A.3. Instrument setup for Reverse Transcription 

Step Temperature (°C) Time 

(minutes) 

Incubation 25 10 

Reverse 

transcription 

48 60 

Reverse 

transcriptase 

inactivation 

95 5 

End 4 ∞ 

 

 

 

 

Table A.4. SYBRGreen reaction mix for Light Cycler 480. Expressed volumes correspond to only one well 
of the plate. 

Reagent Volume per 

sample (µl) 

ddH2O 2,8 

Primer I (50µM) 0,1 

Primer II (50µl) 0,1 

SBRY GREEN PCR 

Master Mix 

5 

 

 

 

Figure A.1. Standard RT-qPCR protocol for SYBR green 384 plate
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Table A.5: Both linear (unweighted regression) and weighted regression with their corresponding standard deviations (residuals) for all the serotonin related 
genes are shown. Weighted regressions showed a significant fit at the 95% confidence level for all the genes.  TPH 1, TPH 2, and DDC showed a positive slope 
(weighted m value) which might imply upregulated expression with time. However, TPH1 and DDC exhibited an m value close to 0 suggesting that time hardly 
had effect on their expression. On the other hand, MAO A, MAO B, and SLC6A4 showed a negative slope (weighted m value) implying downregulated expression 
with time. This is only a model and it is important to remark that only TPH2 was significantly affected by time (p=6*10-6). 

Gen                   Unweighted regression                                                                                                              Weighted regression  

DDC 
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MAOA 

 

MAOB 
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SLC6A4 

 

TPH1 

 



 

67 
 

TPH2 
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Table A.6: Both linear (unweighted regression) and weighted regression with their corresponding standard deviations (residuals) for all the lipid related genes 
are shown. Weighted regressions showed a significant fit at the 95% confidence level for all the genes. APOA4, SLC27A4, CD36, ELOVL1, PPARG, and PLD1 
showed a negative slope (weighted m value) implying downregulated expression with time. PLIN2 and PLPP3 showed a positive slope (weighted m value) 
which might imply upregulated expression with time. This is only a model and it is important to remark that only ELOVL1, PLIN2 and PPARG were significantly 
affected by time after feeding (glmmPQL p< 0, 05). 

Gen                  Unweighted regression                                                                                                               Weighted regression 

APOA4 
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SLC27A4 

 
CD36 
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ELOVL1 

 

PLIN2 
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PPARG 

 

PLD1 
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PLPP3 
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Table A.7: Both linear (unweighted calibration) and weighted regression (weighted calibration) with their corresponding standard deviations (residuals) for the 
concentration of 5-HT in the gut of ballan wrasse at different times. Weighted regressions showed a significant fit at the 95% confidence level. Not significant 
effect of feeding was found along the time frame (glmmPQL p = 0,299).  



 

Figure A.1. Standard RT-qPCR protocol for SYBR green 384 plate 
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