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Abstract 

 

This thesis concerns the design, implementation, testing and verification of the radiation 

shutter control system, an embedded, microcontroller-based system, to be used in the Solar 

Wind Magnetosphere Ionosphere Link Explorer (SMILE) satellite. SMILE is a scientific space 

mission for exploring the Earth’s radiation belt, ionosphere, and magnetosphere. It involves 

several institutes where European Space Agency (ESA) and the Chinese Academy of Science 

(CAS) are the primary contributors. The SMILE satellite is expected to launch towards the end 

of 2021 and will follow a highly elliptical orbit, reaching almost 128 000 km over the northern 

hemisphere. 

SMILE carries four instruments, including the Soft X-ray Imager (SXI). The SXI features a 

sensitive soft X-ray detector, built for detecting low energy electrons. The orbit traverses the 

Earth’s radiation belts when the spacecraft is near perigee. The radiation belt is a highly 

radiative area that the SXI detector cannot handle, and therefore, must be shielded. 

The University of Bergen is responsible for the development of the radiation shutter, which 

consists of the Radiation Shutter Electronics (RSE), the Radiation Shutter Mechanism (RSM), 

and the control system provided by this thesis. The radiation shutter will significantly reduce 

the SXI detector’s exposure to radiation by covering its focal plane during the crossing of the 

Earth’s radiation belts. In addition, if necessary, it will shield while performing spacecraft 

manoeuvres where the sensor is prone to stray light. 

This thesis describes the implementation of a well-designed, generic and modular control 

system which accomplish all operations required to protect the detectors. The system holds a 

custom interrupt driven scheduler which guarantees execution of both soft and hard real-time 

tasks within the timing constraints. These tasks include communication with the SXIs’ control 

unit, collecting HK-readouts from sensors, and safely operate the shutter through a stepper 

motor. Furthermore, a flexible stepper driver software is developed with emphasis on 

predictable stepper motor operations, efficiency, and in-flight adjustable features.  

The system has been methodically tested through software analysis and hardware 

measurements. The tests confirmed that all tasks were completed without any timing violations 

and the driver software successfully drives the stepper motor. 
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1 Introduction 

1.1 Background and Motivation 

The Sun continuously emits a stream of high-energy particles, known as solar wind. The 

Earth’s magnetosphere acts as a protective shield that deflects these charged particles. 

Occasionally, the interaction causes severe disturbances on Earth, generally called space 

weather, which can affect performance and reliability of both ground and space technologies. 

As our world becomes more dependent on sophisticated technology in space, the 

understanding of space weather is not only important for scientific interest, but also for society. 

[1] 

X-rays are emitted when the solar wind’s highly charged ions, such as oxygen, collide with the 

natural hydrogen atoms in the outer magnetosphere [2]. This process is called Solar Wind 

Charge Exchange (SWCX) and can by observation, address fundamental aspects of space 

weather.   

SMILE is the first space mission that studies these effects using 2D imaging technologies. This 

technology will provide soft X-ray images of the magnetic cusps, magnetosheath, and 

ultraviolet images of the aurora [1]. Furthermore, it will utilise in-situ solar wind plasma and 

magnetic field measurements. This mission will significantly increase our knowledge of the 

interaction between the solar wind and the magnetosphere. It will also provide further 

information regarding specific processes in the ionosphere (e.g., the aurora). 

1.2 About this Thesis 

This thesis primary objective is to start the development of the radiation shutter control unit, 

which is referred to as the radiation shutter electronics (RSE). The control system must meet 

the overall system requirements, described in Section 2.2. Consequently, a significant amount 

of effort was put into creating software requirements and design, before the code was 

implemented and tested. The RSE Software Requirement Specifications (SRS) is presented 

in Appendix A, and chapter 4 offers a detailed description of design and implementation. The 

tests and verification are further explained in Chapter 5.  

A substantial amount of work was put into the communication, which ensured that the RSE 

followed the RoR communication protocol, used by the SXI instrument’s control cards. This 

protocol provided the Data Process Unit (DPU) with a memory mapped interface where the 

RSE’s registers could be accessed through memory read and memory write operations.  
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At the start of this project, the University of Bergen (UB) had already designed and created a 

stepper driver prototype which should be used to drive the stepper motor. However, the driver 

was not tested, and a driver software was not developed. Therefore, this thesis must also 

provide a well-constructed driver software and test the driver functionality. Due to the driver 

construction, the driver operation required control of several different signals as well as precise 

timing. Consequently, a great deal of effort was put into the driver software development where 

most of the driver is operated by hardware timers, which significantly decreased the use of the 

limited Central Processing Unit (CPU) resources. 

Furthermore, a substantial amount of effort was invested in testing and verification. The control 

systems main modules were tested individually (e.g., task handling, communication, stepper 

driver and stepper motor). Finally, the overall functionally were tested. In addition, a great deal 

of effort was put into the development of custom software, written in Python. This program 

simulated the RSEs’ master node (DPU), and thereby allowed to test and operate the RSE 

realistically. It also provides a user-friendly GUI where all the RSE functionalist can be initiated 

with ease.  

The RSE software is commented and structured in logical separate files. In addition, the code 

is provided with version control, where each commit contains a short description of the changes 

and stored in UBs’ git repository.  

1.2.1 Thesis Overview 

Chapter 2: Radiation Shutter Overview. This chapter starts by introducing the radiation 

shutter objectives, and the system requirements. Followed by an overview of the radiation 

shutter implementation and the communication protocol utilised by the SXI instrument’s control 

modules. The communication protocol is a fundamental aspect of the system, and must 

therefore be understood before the RSE control system implementation makes sense. 

Chapter 3: Stepper Motor. This chapter describes the operating principle of a stepper motor, 

why a stepper motor was selected, and special considerations for stepper motors used in 

space applications. This chapter also offers a detailed description of the stepper driver. An 

understanding of the driver hardware is required to comprehend the driver software 

implementation and trade-offs. 

Chapter 4: RSE Development. This chapter offers a discussion about embedded systems, 

an overview of the RSE software and the development strategy. Furthermore, it provides a 

comprehensive description of the RSE software design and implementation. 

Chapter 5: Test and Development. This chapter offers a brief description of the ground 

support equipment, developed for enhancement of testing, verification, and operation of the 

RSE. The chapter also provides a detailed description of the tests performed to verify the 

functionality of the control system, stepper driver, and the stepper driver. 
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Chapter 6: Outlook and Conclusion. This chapter gives some suggestions for future RSE 

development and an alternative solution for the RSE. Finally, the thesis conclusion is 

presented.   

Appendix A, B, C, and D: These chapters provide supplementary information: software 

requirements specification, test rapport for RSE motor control, software organising, and RSE 

pin map.  

1.3 Soft X-ray Imager Instrument  

The SMILE SXI instrument features a wide-field lobster-eye telescope, which guides the 

photons through an array of squared tubes before appearing on the detector. The detector 

consists of two highly sensitive Charge-Coupled Devices (CCDs) measuring energy between 

0.2 keV and 5 keV. The CCDs absorb the SWCX soft X-ray emission and convert the energy 

to electrical signals. A baffle system encircles the optics and the CCDs to prevent 

contamination from stray light. In addition, the radiation shutter created by the UB provides a 

controlled shielding mechanism that covers the CCDs when the CCDs are prone to radiation. 

Figure 1 illustrates the SMILE SXI instrument by means of a CAD model (left) and a schematic 

diagram (right). The information provided by the instrument can further be used to create a 2D 

image illustrating the response of the magnetosphere to the interplanetary magnetic field. [1] 

 

Figure 1. CAD model and schematic illustration of the SMILE SXI instrument [3]. 
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1.3.1 SXI Electronics Box 

The Electronics Box (E-box) contains all electronics cards required to operate the SXI 

instrument: the Power Supply Unit (PSU) providing power to all SXI components; the Data 

Process Unit (DPU), which is the E-box central control unit; and the RSE controlling the 

radiation shutter. The E-box is constructed as a cold redundant system (i.e., two identical cards 

for each unit), therefore, if one card fail, the other card will be enabled, and the system will 

operate as normal. This redundancy limits unpredictable breakdowns caused by failure parts 

and will significantly increase the larger system reliability. In addition, the E-box provides a 

shared communication bus used by the cards, as further explained in Section 2.4. Although 

the SMILE satellite has several other DPUs and PSUs and general components, this thesis 

only refers to the SXI instrument’s related components. [3] 
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2 Radiation Shutter Overview 

2.1 Objective 

The highly sensitive CCD detectors are designed to detect soft X-rays with energy around 

1 keV. The satellite traverses the Earth’s radiation belts during parts of the orbit. This is a high 

radiation environment where particles such as protons can exceed energy of 10 MeV, for more 

information about radiation belts, see for example [4]. This energy level is several orders higher 

than the CCD’s tolerance and will, therefore, degrade or destroy the CCDs. As a result, the 

radiation shutter is designed with the primary objective to protect the CCDs during the crossing 

of the radiation belts. Figure 2 shows a simplified illustration of the satellite’s orbit where the 

red field around the Earth represents the radiation belts. The green vertical arrow illustrates 

the low radiate part of the orbit, and the red arrow indicates where the CCDs requires 

protection. However, the satellite may also perform space manoeuvres, e.g., in case other 

instruments on the satellite, like the magnetometer, requires calibration. This means that the 

CCDs may be exposed to stray light from the Sun or reflections from the Moon or the Earth. 

Hence, a secondary objective is to protect the CCDs during these events as well.  

 

Figure 2. The SMILE satellite’s orbit around the Earth. The radiation belts are indicated in red, where 

the red arrow indicates the part of the orbit that requires CCD protection (I.e., the shutter must be 

closed). The green arrow represents the low radiate part of the orbit that the SXI instrument operates 

unaffected by the radiation (i.e., the shutter should normally be open).   

The third objective is that a radiation source can be mounted onto the shutter’s inner surface. 

By closing the shutter, the radiation source will provide a known reference point for the SXI 

instrument, and thereby enable in-flight calibration possibility. Note, that this option has not yet 

been decided and is not within the scope of UB’s work [3]. This alternative will therefore not be 

further discussed in this thesis.  
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2.2 System Requirements 

The radiation shutter must provide a dynamic blockade which completely shields the CCDs 

from the radiation environment. This requirement imposes the need for a shutter which is 

mechanically operated, constructed of sufficient material and sited on top of the CCDs. On the 

other hand, the radiation shutter components, including the shutter, must be prevented from 

interfering with the detectors focal plane when the SXI instrument is active.  

A baffle system is placed around the detectors to reduce exposure from stray light. However, 

this also limits the size of the radiation shutter solution, because the baffles define the outer 

barrier. As a result, the structure and components must have a small footprint, and the shutter 

must lie alongside the baffle wall when it is open. Therefore, the shutter must be able to move 

from a closed position, covering the CCDs, to an open position at an angle of 120˚, which 

corresponds to the baffle angle. In addition, the radiation shutter must be designed for 

tolerating temperatures from -100˚C to +10˚C and should survive three years of unattended 

operation [3]. This imposes the need for a comprehensive and compact design which can 

withstand the mission’s life cycle. 

To reduce the possibility of system failure, the radiation shutter must be implemented as a 

redundant system. In case one system fails, the other system should be introduced and 

operate the shutter as normal. This means that two independent and identical radiation shutter 

systems must be implemented. However, some components cannot be redundant, for 

example, the structure and the shutter. This is because these components will obstruct the SXI 

instrument if they fail. Therefore, redundancy would be pointless.    

The E-box, which contains the SXI instrument’s PSU and DPU, must also hold the Radiation 

Shutter Electronics (RSE). Because the E-box provides a shared communication bus, where 

the DPU is the bus master, the RSE must be implemented as a bus slave. This configuration 

means that the slaves, including the RSE, must follow the E-box communication protocol that 

provides the DPU with a dependable control interface. To prevent bus contamination, the 

slaves must only act on commands from the DPU. Hence, the RSE does not determine when 

the CCDs need protection; this is the DPU’s responsibility. However, the RSE must comprise 

safety features which automatically protects the CCDs in case of DPU or communication fails. 

This safety future is required because the RSE on its own, has no knowledge of the orbit or 

the radiation environment. Therefore, if communication is corrupt, the RSE must assume the 

worst-case scenario, meaning that the shutter must be closed and remain closed until 

communication is re-established. 

The RSE must hold a reliable control system which enables the DPU to collect HK-readouts, 

configured RSE settings and perform operations, such as open the shutter. These demands 

require that the RSE contains a separate control unit, sensors, and actuators. In addition, the 

system must guarantee predictable operation of the shutter, even under extreme conditions 

that may cause the shutter to be cold weld onto the structure surface. These circumstances 

impose the need for an adequate shutter activator which provides enough torque. 



CHAPTER 2 

7 
 

Furthermore, the shutter must be restrained from moving during launch and until the satellite 

is successfully deployed in orbit. In addition, the RSE must process sensor readings and 

ensure that components are not exposed to excessive stress. For example, if the shutter 

activator temperature is critically high, the ongoing shutter operation must be suspended. 

However, protecting the CCDs must always be a higher priority than the radiation shutter 

wellbeing. Therefore, the RSE must provide emergency features that enable shutter operations 

even if it may degrade the radiation shutter components.  

2.3 Implementation 

The radiation shutter is based on a simple principle, where the shutter is mechanically 

connected to a stepper motor. This principle enables the shutter to be accurately and safely 

controlled. Furthermore, the radiation shutter is split into two separate redundant systems as 

shown in Figure 3. The RSM contains the mechanical components, and the RSE contains the 

electrical components required to operate the radiation shutter. 

 

Figure 3. Schematic diagram of the radiation shutter [5]. The radiation shutter electronics are located 

within the E-box, and the radiation shutter mechanics is sited on top of the CCDs. 
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2.3.1 Radiation Shutter Mechanism  

The RSM will be mounted on top of the CCDs inside the SXI assembly tube. Figure 4 illustrates 

the RSM assembly where the different elements are labelled from 1 to 9. Most of the structure 

consists of aluminium, but some parts are made of lead loaded bronze, stainless steel and 

other materials. The RSM components operated by the control system are further explained in 

the sections that follow. [6] 

 

 

Figure 4. Components of the Radiation Shutter Mechanism (RSM) [6]. (1) Frame holds the RSM 

components. (2) Shutter which is constructed of 10 mm thick solid aluminium. (3) Stepper motor 

operates the shutter. (4) Coupling compensates for mounting misalignments. (5) Hold down release 

mechanism (HDRM) holds the shutter in the closed position during launch. (6) End switches sense the 

open and closed positions. (7) End stop act as a damper for the shutter, (8) Harness connectors 

between RSM and Radiation Shutter Electronics (RSE). (9) Bearings for the stepper motor. 
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Stepper Motor and Gearbox 

The shutter is operated by a space classified, two-phase stepper motor, equipped with an 

internal gearbox, as shown in Figure 5. The motor is constructed of high-quality materials that 

limit outgassing and enable operation during extreme temperatures and hard vacuum 

conditions. [6] 

 

Figure 5. Phytron phySPACE stepper motor. Mounted on the frame used during development. Motor 

height, approximately 8 cm.   

Two thermocouples integrated into the motor windings provides temperature surveillance from 

−270˚C to 1370˚C [7]. In contrast to the radiation shutter redundant system, the RSM does not 

contain two separate motor elements. However, the motor’s most critical components are 

doubled, i.e., a double set of windings and a double set of temperature sensors [5]. The 

gearbox contains a three-stage, planetary gear system. The planetary gears provide excellent 

gear reduction without compromising the weight, size, and robustness [8]. Table 1 presents an 

overview of the stepper motor and gearbox specifications. 
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Table 1. Stepper motor and gearbox specifications. [7] 

Parameters Value/identification 

Motor type Phytron phySPACE 25-2-200-0.6 

Number of coil phases 2 

Steps per rotation 200 

Nominal motor current 0.6 A 

Windings resistance 3.25 Ω 

Windings inductance 1.1 mH 

Max operation voltage 70 V 

Thermocouple Type K 

Holding torque at nominal motor current 
(without gearbox)1 

12 mNm 

Detent torque (without gearbox)2 2 mNm 

Combined mass of motor and gear  0.18 kg 

Bearings Ball bearings with dry lubrication 

Gear type VGPL 22 

Gear ratio 1:196 

Gear rated torque 1.5 Nm 

Gear efficiency at full load 80% 

Hold Down Release Mechanism 

The spacecraft will be exposed to shock and vibrations during launch and while travelling 

through the atmosphere. The holding force generated by the stepper motor is insufficient to 

oppose these conditions. Because of this, an additional mechanism called the Hold Down 

Release Mechanism (HDRM) is implemented to restrain the shutter from moving. The HDRM 

is an actuator controlling a pin which is inserted in the shutter. The pin is released when the 

spacecraft is successfully deployed, thereby enabling the shutter to be moved freely by the 

stepper motor. Figure 6 illustrates the HDRM when the shutter is in the locked position. [6] 

 

Figure 6. HDRM launch lock [6]. The actuator operates a pin which is inserted in the shutter. This 

restrains the shutter from moving during launch.  

                                                
1 Holding torque is the amount of torque required to move the rotor while the coils are energized. 

2 Detent torque is the amount of torque required to move the rotor without energized coils. 



CHAPTER 2 

11 
 

End Switches 

The end switches are used to sense the shutter end positions (open or closed) and are 

activated upon contact. A double set of switches is placed at each end position, providing 

redundancy in case of switch failure. [6] 

2.3.2 Radiation Shutter Electronics 

The RSE is constructed as a System on a Chip (SoC), containing the microcontroller and the 

driver hardware necessary to operate the stepper motor. Two identical RSE cards will be 

mounted inside the E-box, connected to their corresponding redundant PSU and DPU. This 

provides two independent systems, enabling one to be used for backup. [5] 

Prototyping  

As a consequence of the project’s early stage, requirements regarding the RSE control unit 

where limited. However, it was suggested that an AVR microcontroller should be used. 

Therefore, the RSE prototype was established using ATMEL STK600, which is a highly 

customisable development platform. 

STK600 supports programming of all 8-bit and 32-bit AVR microcontrollers, where it is 

connected on top of the STK600 with a separate socket card. All Input-Output (IO) ports are 

routed to different headers, which are organised in logical groups and identified by their port 

names. This system significantly increases the speed of development because the 

microcontroller can easily be changed without requiring other hardware modifications, only 

simple software adjustments. In addition, the card includes hardware features such as 

pushbuttons and LEDs that can be connected to the preferred IO ports. The only drawback 

was that the platform did not support On-Chip Debugging (OCD). OCD provides the possibility 

of single stepping through the code implemented on the chip, thereby enabling a more natural 

method for following the program flow and detecting bugs. Because embedded systems 

frequently use interrupts, the program flow is hard to predict without OCD abilities. However, 

this problem was solved by introducing a separate debugger, AVR Dragon. For more 

information about the STK600, see [9]. 

AVR Dragon, a development tool compatible with both 8-bit and 32-bit AVR microcontrollers, 

was selected in this project because of its ability to enable OCD. The AVR Dragon allows for 

3 hardware breakpoints and 32 software breakpoints, enabling efficient bug tracking. For more 

material regarding the AVR Dragon debugger, see [10]. 
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The development software Atmel Studio 7 was a natural choice because it is designed explicitly 

for programming AVR microcontrollers. This program combined with the debugger produced 

a powerful tool that enabled fast programming and OCD. In addition, it enabled the ability to 

view the possessor status, registers, communication, and analogue interfaces directly from a 

sub window, all of which were essential for confirming register settings and task execution. For 

additional information about Atmel Studio 7, see [11]. Figure 7 presents the RSE development 

setup, where the key elements are identified.  

 

Figure 7. RSE prototyping setup at the University of Bergen. Two power supply units provide power to 

the stepper driver and motor. The oscilloscope measure motor coil current, and the torque meter sited 

below the stepper motor measure motor torque.     

Radiation Tolerance 

Space applications require that the electronics are evaluated and qualified in terms of radiation 

tolerance. Because the protective shield provided by the atmosphere is absent at the mission’s 

altitude, the electronics are exposed to radiative surroundings. High-energy particles such as 

ions, protons, and electrons can affect electronic performance or worse, destroy vital 

components. In general, radiation effects concerning electronics are split into two classes: 

Total-Ionising Dose (TID) and Single-Event Effects (SEE).  

TID is a gradual effect where charged particles or photons ionise the medium as it passes 

through. The energy is accumulated over time, slowly degrading the silicon dioxide (SiO2) 

which is the main material used in Integrated Circuits (IC). This effect results in reduced 

performance and unpredictable characteristics. In contrast to SEE, TID can be reduced by 

using sufficient shielding. The ability of electronics to tolerate TID is measured in krads, a unit 

describing absorbed dose per seconds. 
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SEE occurs when a single, high-energy particle interacts with the IC. SEE tolerance is usually 

rated by the maximum tolerable Linear Energy Transfer3 (LET). Single-Event Upset (SEU) and 

Single-Event Latch-up (SEL) are two common forms of SEEs. SEU occurs when charge 

deposed by a particle exceeds the transistor’s threshold voltage and thereby changes the 

transistor state. In general, SEU is a significant problem for ICs registers where a bit or more 

can be flipped. However, the circuit’s ability to withstand SEUs can be significantly increased 

by for example creating a redundant memory system. 

SEL occurs when a high energy particle activates a parasitic PnP transistor between the N-

type Metal Oxide-Semiconductor (N-MOS) transistor, the bulk, and the P-type Metal Oxide-

Semiconductor (P-MOS) transistor. This parasitic effect creates a low impedance path 

between the power rail and ground. The low impedance path permits high current to flow 

through the junction, potentially resulting in internal junction breakdown. For additional 

information about total-ionising dose and single-event effects, see for example [12]. 

Microcontroller 

The radiation shutter control unit needs to be highly reliable, low powered, with a small footprint 

and an ability to withstand the radiative environment. The control unit’s tasks include operating 

the motor, monitoring the sensors, and communicate with the DPU. Because these tasks can 

be accomplished without parallel processing, a microcontroller was selected. Another factor 

when selecting the control unit is cost. In general, microcontrollers are inexpensive compared 

to other solutions such as Field Programmable Gate Arrays (FPGAs) or an Application-Specific 

Integrated Circuits (ASICs). 

The current market for space-qualified microcontrollers is limited. However, Microchip4 has 

released the ATmegaS128, a space market version of the standard ATmega128 

microcontroller. ATmegaS128 is a low power AVR 8-bit microcontroller designed to prevent 

SEL with a LET below 62.5 MeV.cm2/mg, and a TID tolerance of 30 krads. Table 2 offers a 

brief overview of the ATmegaS128 specifications. For more information about the 

ATmegaS128 see [13]. 

Except for the radiation tolerance, both these microcontrollers (ATmegaS128 and 

ATmega128) are equivalent and thereby enables compatible software implementation. 

Consequently, it was decided to use the non-space graded, inexpensive ATmega128 in the 

development phase and uploaded the software onto the ATmegaS128 when the software is 

tested and verified. 

                                                
3 LET is a measurement describing the energy deposit by a particle per unit length, with the SI unit 
MeVcm2 /mg. 

4 Microchip has acquired Atmel in 2016. 
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Table 2. ATmegaS128 specification summary [13] 

Microcontroller  ATmegaS128 

CPU 8-bit AVR RISC architecture 

EEPROM  4 kBytes 

Flash 128 kBytes 

SRAM 4 kBytes 

PWM channels 6 units 

Timers 8-bit 2 units 

Timers 16-bit 2 units 

Speed grade 0-8 MHz 

USART modules 2 units 

ADC 1 unit 

Voltage range 3V to 3.6V 

SEL tolerance  62.5 MeV.cm2/mg 

TID tolerance 30 krads 

ESD tolerance  2000V HBM / 750V CDM 

Temperature range  −55°C to +125°C 

 

Stepper Driver 

The stepper driver is an electrical circuit that acts as a buffer between the microcontroller and 

the stepper motor. It provides a simplified interface where the microcontroller can control the 

relatively complex and high current demanding motor operation. The present market for space-

qualified stepper drivers is narrow, so the few available drivers are costly. However, a stepper 

driver is a relatively simple circuit with few components. Therefore, the stepper driver will be 

designed and built by UB where all components can be selected with an emphasis on radiation 

tolerance. Besides the reduced cost, another advantage of this plan is that the transistors can 

be placed as separate components. By isolating each transistor, the circuit is essentially SEL 

proof because a latch-up requires two transistors (one P-MOS and one N-MOS) situated in the 

same bulk. [12] 

The driver design is still in an early phase; however, the UB has developed a prototype with 

the following features:  

 In-flight adjustable current limit. 

 In-flight adjustable power saving features. 

 SEL proof transistors, and 

 Built-in temperature sensors. 
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2.4 E-box Communication Topology 

A general-purpose master/slave communication protocol called RMAP over RBDP (RoR) 

provides the DPU with a simple memory-mapped interface. The E-box cards are connected 

via a Multipoint Low-Voltage Differential Signalling (M-LVDS)5 bus, as shown in Figure 8. The 

DPU is the bus master, and the additional cards are slaves; this means that only the DPU can 

initiate bus transactions. The following subsections briefly describe the higher level of the RoR 

communication protocol. For additional information regarding the RoR communication protocol 

see [14] and [15]. 

 

Figure 8. M-LVDS bus interface [14]. (1) Pull-up resistor ensures that the line is high if it is not driven. 

(2) Transmitter. (3) Receiver. (4, 5) Fail-safe biasing prevents undesirable oscillations. 

 (6) Termination resistor, prevents signal reflections. 

                                                
5 The bus follows the TIA/EIA-889 Interface standard.  
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2.4.1 RMAP over RBDP Communication Protocol 

RoR exploits the fundamental aspects defined by the Regular Byte Stream DAQ Protocol 

(RBDP), a protocol designed for collecting HK-readouts. However, RBDP does not establish 

the interface required to fulfil the slaves’ responsibilities. Consequently, an additional protocol 

called the Remote Memory Access Protocol (RMAP) is implemented on top of the RBDP, thus 

the name RoR. The merged protocol makes the slaves’ registers accessible both via memory 

read and memory write operations. Figure 9 illustrates the RoR protocol stack, where the M-

LVDS bus topology defines signal level. The other levels are described in the following 

sections. 

 
Figure 9. RoR protocol stack. The RoR communication protocol which the E-box modules must 

follow, including the RSE, contains five hierarchical levels.  

Character Level 

Character level defines the smallest unit of transmitted data, identified as a character. The 

Universal Asynchronous Receiver/Transmitter (UART) arranges the characters, configured in 

UART 9O16 mode as illustrated in Figure 10. In addition, character level provides bit error 

verifications, such as parity check. In case of a bit error, the character is discarded on the 

character level. The UART transmission speed has not yet been decided, but a baud rate of 

200 kbps has been suggested.  

                                                
6 UART 9O1 characterises the serial data properties; 9 data bits, odd parity, and one stop bit. 
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Figure 10. RoR UART configuration [14]. A character contains 9-bit (green) and is transmitted along 

with a start bit, odd parity bit (blue) and a stop bit. Start bit and stop bit signal the start and the end 

of a transmission, respectively. The parity bit provides the receiving node with odd parity detection 

possibilities. 

Packet Level 

Packet level sorts a concrete set of characters into two individual packets: query packets and 

response packets. These packets provide a higher level of information, where the DPU 

generates query packets and the slaves generate response packets. The query packets hold 

a single character, identified by the Most Significant Bit (MSB) set logically low. A total of five 

different query packets are defined, as shown in Table 3. 

Table 3. Query packets structure 

 

During normal operations, every query sent by the master is answered by a corresponding 

response packet, generated by the target slave. The only exception is when the target slave 

receives a bit error. RoR defines five unique response packets, each of which contains three 

characters, and are distinguished from the query packets by the MSB set logically high, as 

shown in Table 4. The first character named “confirmation” identifies the responded query type 

and indicates whether the slave’s application-level authorised the query or not. The second 

character named “remark” contains acquired register content, no data, or a remark identifying 

the error. The third character named “CRC” contains a Cyclic Redundancy Checksum7 (CRC) 

generated by the two first characters. The CRC character ensures that the master detects 

errors introduced during transmission. 

                                                
7 RMAP CRC polynomial: g(x) = x8 + x2 + x + 1. 

 Header Data 

Query name Bit [8] 
(MSB) 

Bit [7-5] 
(Query 
id) 

Bit [4] Bit [3-0] 

Invocation 0 “000” Slave address bit [4] Slave address bit [3-0] 

Instruction 0 “001” R/nW Register address bit [8-5] 

Reg-address 0 “010” Register address bit 
[4] 

Register address bit [3-0] 

Write data H 0 “011” Reserved Register data to write bit [7-4] 

Write data L 0 “100” Reserved Register data to write bit [3-0] 
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Table 4. Response packets structure 

 Header Data 

Response 
name 

Character Bit [8] 
(MSB) 

Bit [7-5] Bit [4-2] Bit [1] Bit [0] 

 Confirmation 1 ID = “000” Reserved Auto 
timeout 

Query 
reject 

Invocation Remark 1 E.g., Cause of rejection 

 CRC 1 CRC 

 Confirmation 1 ID = “001” Reserved Auto 
timeout 

Query 
reject 

Instruction Remark 1 E.g., Cause of rejection 

 CRC 1 CRC 

 Confirmation 1 ID= “010” Reserved Auto 
timeout 

Query 
reject 

Reg-address Remark 1 E.g., Cause of rejection or register address 

 CRC 1 CRC 

 Confirmation 1 ID = “011” Reserved Auto 
timeout 

Query 
reject 

Write data H Remark 1 E.g., Cause of rejection 

 CRC 1 CRC 

 Confirmation 1 ID = “100” Reserved Auto 
timeout 

Query 
reject 

Write data L Remark 1 E.g., Cause of rejection 

 CRC 1 CRC 

Application Level 

Application level describes the behaviour of the software and is individual for each slave.  

2.4.2 RoR Read and Write Operations 

As discussed in Section 2.4, a RoR bus transactions involve two requests: memory write, or 

memory read. Both operations follow a non-posted procedure, meaning that the source must 

wait for an acknowledgement or a reply to be received, which in this case is a response packet 

produced by the slaves. This procedure is obviously slower than a posted transaction, where 

the source can send a continuous stream of requests. However, the E-box slaves manage vital 

systems for instants, the radiation shutter. Therefore, it is beneficial to detect failures as soon 

as possible. In addition, the slaves do not require a more efficient transaction topology as there 

are few slaves and limited bus transactions. 

All RoR transactions start with an invocation query that establishes communication with the 

acquired slave, as shown in Figure 11. A memory read operation is identical to a write 

transaction, except that the performed cycles will end at the reg-address query (i.e., write data 

H and write data L queries are not issued). Note that once a RoR transaction completes, the 

communication between the DPU and the target slave terminates. Hence, an invocation query 

must be sent to re-establish the connection. [5] 
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Figure 11. RoR bus transaction with memory write (left) and memory read (right) operations [14]. 

Assuming normal operation, every query transmitted by the DPU is answered by a response packet, 

generated by the slaves.  

Reject Query 

A query that is intentionally rejected by the slave will result in a response packet where the 

“confirmation character” signifies the rejected query, and the “remark character” identifies the 

cause of the rejection. Note that the slave will be re-initialized and an “invocation query” must 

be sent to re-establish communication.  

Sequence Error and Query Authorisation 

A particular case of an error occurs if the query is authorised, but the sequence is wrong. This 

sequence error occurs if the slave expects a “non-invocation query” but receives an “invocation 

query”. This will result in a response packet where the “confirmation character” indicates that 

the query is authorised, but the “remark character” contains the “sequence error id”. The 

previously received data will be discarded, and the next expected query is an “instruction 

query”. In other words, an “invocation query” will always be authorised, regardless of the 

sequence.  
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2.4.3 RoR Timing Constraints 

The RoR communication protocol defines three timing constraints, which are essential for 

preventing buss contamination. Because the protocol does not specify a transmission speed, 

the timing is represented by baud delays, where 1 baud delay =
1

𝐵𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 [𝑏𝑝𝑠]
. 

 Slave slack: After a received query, the slaves must wait for at least 1 baud delay 

before a response message can be initiated. 

 Master slack: After a complete bus transaction, the master must wait for at least 1 

baud delay before a new bus transaction can be initiated. 

 Response timeout delay: After a received query, the slaves must start to drive the 

bus within 24 baud delays. If a response is not generated within 24 baud delays, 

the master can start a new transaction. 

For the RSE, these requirements mean that the control system must be designed such that a 

response packet is generated between 1 baud delay and 24 baud delays, after a received 

query.   
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3 Stepper Motor and Driver 
This chapter begins by introducing some general aspects regarding stepper motors and, 

discussing the challenges regarding stepper motor in space applications. These sections are 

based on materials from [16], [17], [18], [19], and [20]. Finally, a detailed description of the 

RSE driver hardware is presented.  

3.1 Stepper Motor 

A stepper motor is an electromechanical device that generates discrete mechanical movement 

when digital pulses are applied. By stimulating the motor in a specific sequence, the rotor 

rotates in discrete steps where the angular speed is proportional to the input signal frequency. 

The sequence order determines the rotating direction. If the load does not exceed the motor 

torque capability, the position is identified by tracking the steps/pulses. Because of this, the 

stepper motor archives precise positioning without requiring a closed loop regulating system. 

This feature eliminates the need for expensive sensing devices and feedback and often results 

in simpler and more robust system. Besides the ability to be controlled accurately without a 

closed loop system, several other advantages make a stepper motor well-suited for this project. 

 Reliability:  

Stepper motors do not use contact brushes to transfer energy to the rotor such that it 

rotates. Hence, it is only mechanically connected via the output shaft and bearings. 

This advantage makes the motor’s reliability only dependent on the lifetime of the 

bearings. 

 Responsiveness:  

The motor has full torque at a standstill, which gives an excellent response to 

starting/stopping/reversing. The quick response is beneficial if the load (e.g., the 

shutter) is stuck. By increasing the current supplied to maximum, the torque generated 

will work as a hammer, forcing the load to move. 

 Holding force:  

Unlike a conventional DC motor, a stepper motor generates equal force regardless of 

whether the motor is moving or at a standstill, assuming energised coils. In addition, 

stepper motors generate some force even if the coils are not energized. These static 

features eliminate the need for separate components to hold the load at a fixed position. 

 Controllability:  

Because the angular speed is proportional to the pulse frequency, the rate can easily 

be controlled digitally. This feature of the motor enables full control at low and high 

speeds. 
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3.1.1 Stepper Motor Drawbacks 

Due to the discrete behaviour, the stepper motor is prone to resonance. The inertia of the 

rotating load and rotor will overshoot the rotor a small amount each step before settling to a 

stable position. Figure 12 illustrates the single step response for a stepper motor where the 

oscillations are present. If the motor is poorly controlled the oscillations can become severe 

and potentially result in sudden torque loss and skipped steps. Due to the open loop system, 

the controller does not recognise step loss. Because of this problem, the radiation shutter has 

two end-switches placed at the shutter open and closed position.  

 

Figure 12. Stepper motor “step response” Step angle vs time [19].The rotor exceeds the desired angle 

“ө” at time “t” and oscillates utile time “T.”  

Because the stepper motor’s torque characteristics significantly decrease at high speeds, the 

stepper motors are best suited for applications that operate at speeds below 1000 rpm.  

3.2 Types of Stepper Motors 

Stepper motors can be divided into three categories, Variable-Reluctance (VR), Permanent 

Magnet (PM) and hybrid stepper motor. This section discusses each type, including 

advantages and limitations, and then concludes by selecting the one that best suits this project. 

3.2.1 Variable-Reluctance Stepper Motor 

Figure 13 illustrates a cross-section of a VR-stepper motor. The rotor consists of a soft 

magnetic-toothed iron core, where the teeth positions are offset from the stators. The offset 

between the stators and the rotor defines the stepping angle. The stators create diagonal pole 

pairs as illustrated in Figure 13 where the pole pairs are denoted by letter A–D and A’–D’. 

When energising the stator windings, the rotor seeks the path of least magnetic reluctance, 

which is equivalent to the least resistive path in terms of electrical circuits. This will align the 

energised pole pair with the adjacent rotor’s teeth. By stimulating the stators in a specific 

sequence, the rotor rotates. 
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Figure 13. Cross-section of a Variable-reluctance stepper motor [19]. The tooted rotor is sited in the 

middle, and the stators are placed around the rotor with an offset of 15˚ angle.  

Because the VR stepper motor has the most straightforward and smallest design among these 

three types, it is also the cheapest and most robust. All stepper motors will have a reduction in 

torque regarding speed, but the other types, especially the PM-stepper motor, have steeper 

torque drop-off curves than the VR-stepper motor. This makes the VR-stepper motor preferred 

in applications that require a wide range of speed (e.g., washing machine). 

However, the VR stepper generates noise due to the lack of controllability. In addition, the VR-

stepper motor does not have a permanent magnet rotor which increases the magnetic field. 

Consequently, the motor generates less torque and does not generate detent torque which 

means it cannot hold a load in a fixed position when the coils are not energised.   

3.2.2 Permanent Magnet Stepper Motor 

A cross-section of a simplified PM stepper motor is illustrated in Figure 14. In contrast to the 

VR stepper motor, the PM motor has a magnetised rotor without teeth. The magnetic poles 

are situated in straight lines parallel to the shaft. When the coils are energised, they create a 

magnetic flux pattern that interacts with the PM rotor. The rotor will seek the path that aligns 

with the magnetic field generated by the windings. If the windings are energised in a specific 

sequence, the rotor will follow the discrete rotating field.  

The primary advantage of the PM-motor is the presence of the permanently magnetised rotors, 

which generate detent torque and increase magnetic flux, resulting in improved torque 

characteristics. In addition, it is also possible to increase the resolution by dividing the steps 

through software techniques. 
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Figure 14. Cross-section of a permanent magnet stepper motor.  

3.2.3 Hybrid Stepper Motor 

The hybrid stepper motor is a combination of the VR and PM stepper motor. By using toothed 

stators and a toothed PM rotor, the hybrid motor gains the advantages of both motors. In Figure 

15, a cross-section of a simplified hybrid stepper motor is illustrated. Unlike the PM motor, the 

rotor of a hybrid motor is axially magnetised, one end polarized south and the other end 

polarised north. The teeth of the stators and the rotor align in different configurations, which 

defines the step angle. The principle of rotation remains the same: by sequentially energizing 

the coils, a rotating magnetic field forces the rotor to rotate. 

 

Figure 15. Cross-section of a simplified hybrid stepper motor. 

By combining the advantages of the PM and VR motor, the hybrid stepper motor gains 

excellent torque characteristics and excellent stepping resolution due to software configurable 

stepping interval.  
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The SXI instrument relies on the stepper motors ability to always guarantee predictable 

operations of the radiation shutter. If the shutter gets stuck in either the open or closed position, 

the SXI sensor may be damaged due to radiation, or the sensor’s field of view may be blocked. 

Consequently, the motor torque needs to be high enough to move the radiation shutter, even 

under extreme conditions. The weight of the motor is also an aspect while selecting a motor. 

The hybrid stepper motor has the highest performance-to-weight-ratio and is for that reason 

chosen in our project. 

3.3 Stepper Motors in Space Applications 

Even when the general requirements for a motor, such as torque, response, speed, and power 

consumption are met, some additional requirements must be considered when designing 

space applications. The motor needs to be highly reliable, operate unattended for several 

years, and able to withstand hard vacuum conditions and a wide temperature range. It also 

needs to be unaffected by radiation during operation and able to withstand vibration and shock 

during launch. The materials used should not be prone to outgassing. Furthermore, the motor 

should be highly efficient and have a compact, light design. These requirements limit the use 

of, bearings, lubrication, and material. 

3.3.1 Lubrication 

Due to the high vacuum, zero gravity, and radiative conditions, lubrication is one of the leading 

problems with moving parts in space applications. If the lubrication is not correctly done, the 

friction will be too high, extended wear and unpredictable performance will occur, and the 

mechanical surfaces could be welded together. These problems would lead to catastrophic 

failures that could potentially make the mission fail. 

In ground-applications, regular lubrication, such as oil and grease, is used. Even the humidity 

and the organic contents of the atmosphere will lubricate the surfaces. In addition, the ambient 

pressure on Earth is relatively high so the fluid will not premature evaporate. 

For the bearings to function correctly, lubrication needs to be present. Otherwise their lifetime 

will be significantly reduced. The lifetime of the bearing is also dependent on the operation 

speed, which limits the use of lubrication in very high-speed operations. However, the stepper 

motor used in this project operates at low speed and is therefore lubricated with dry lubrication. 
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3.4 Driver Hardware 

A stepper motor turns by sequentially shifting current through the motor coils. This current 

routing principle is achieved by means of a stepper driver.  Figure 16 illustrates the RSE driver 

circuit for one coil. It involves three main modules, H-bridge, current control circuitry, and the 

voltage regulator. Notably, the driver circuit is identical for both coils but controlled separately.  

 

 

Figure 16. RSE Driver circuit for one coil [21]. The voltage regulator consists of a low pass filter (R1 

and C1) and an operation amplifier OP1. The H-bridge contains four transistors, Q1, Q2, Q3, and Q4. 

The current control circuitry OP2, OP3, and their corresponding voltage dividers.   
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3.4.1 H-Bridge 

In general, an H-bridge is a current routing network involving four transistors and the load: two 

pull-up transistors linked to the power rail, two pull-down transistors connected to ground, and 

the load situated in the middle. Current is routed through the load, and the stimulated 

transistors determine its direction. Figure 17 shows the H-bridge operation principle, where the 

green arrows represent the current flow. The H-bridge labelled “1” in Figure 17, enables current 

to flow through pull-up transistor Q1, the motor windings, and pull-down transistor Q3. The H-

bridge labelled “2” reverses the motor current by activating pull-up transistor Q2 and pull-down 

transistor Q4. Note, that only one pull-up transistor and the pull-down transistor opposite to the 

load can be activated simultaneously. Otherwise, the H-bridge creates a short circuit that may 

destroy the transistors. 

 

Figure 17. H-bridge operation principle [21]. The activated transistors lead current through the motor 

windings, as indicated by the arrows.   

3.4.2 Current Control Circuit 

From a fundamental perspective, a stepper motor consists of an inductor and a resistor, as 

modelled in Figure 18. By using Kirchhoff’s law and Laplace transform, the current can be 

described in relation to frequency, resulting in Equation (1) or in the time domain, resulting in 

Equation (2). These equations show that the supply voltage and the motor impedance primarily 

determine the current. 
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Figure 18. Resistor-inductor circuit model of a stepper motor. The following components are 

identified, motor voltage (Vm) , motor inductance (Lm), and motor resistance (Rm). The values a 

specified according to the stepper motor used in this project.     
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L/R Drive 

A general current limiting topology is to apply enough voltage so that the internal motor 

resistance determines the target current, so-called L/R drive, as represented by Equation (3). 

Because the motor torque is proportional to the current, short current rise time is preferred. 

According to Equation (2), a shorter current rise time requires, increasing the voltage supply 

or decreasing the inductance or resistance. Because decreasing the inductance or the 

resistance means changing the motor, our only reasonable option is to increase the voltage. 

However, the voltage also affects the current because it is only limited by the windings 

resistance. Therefore, an L/R-drive topology would be highly ineffective since the voltage is 

always at a minimum. [22] 

L/nR Drive 

One typical solution to the L/R-drive problem is to insert an external resistor in series with the 

motor and increase the supply voltage, a so-called L/nR drive. As the current builds up, most 

of the voltage occurs across the motor windings, resulting in short current rise time. However, 

when the current settles, the voltage is distributed between the low resistive windings and the 

higher resistive external resistor. Consequently, almost all power is dissipated by the external 

resistor which is highly inefficient as well as it may degrade the transistors due to the excessive 

heat. This drive topology is suited for applications that have unlimited current supply and 

excellent cooling capability. However, in space application that has strict requirements 

regarding efficiency and reduced cooling abilities, this would be a terrible solution. [18] [22] 
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Chop Drive 

The optimal topology is a highly efficient driver that provides a short current rise time. This can 

be achieved by several methods. However, only the solution for the RSE driver is disused, a 

so-called chop drive. 

The current control circuitry is a part of the driver shown in Figure 16. It involves one resistor 

named Rsense and two operational amplifiers OP2 and OP3 that control pulldown transistor Q4 

and Q3 respectively. The transistors operate in a current source configuration, and the current 

results in a voltage drop over Rsense, which is fed back via the operational amplifiers [5]. The 

feedback acts as the current limiting operation, ensuring that the current never exceeds the 

target value. However, due to the significant power dissipation in the pull-down transistor when 

the current settles, an additional regulating solution is added. The regulation is controlled by 

the microcontroller and performs fast on/off switching of the pull-down transistors when the 

target current is reached (i.e., current chopping). 

The chopping procedure significantly reduces the average current draw from the power supply. 

When the transistors are on, the only power loss is the saturation loss of the transistors, 

resistive loss of Rsense, and the winding resistance. However, when the transistors are switched 

off, the magnetic field around the windings collapses. The collapsing magnetic field induces a 

current that recirculates through a flyback diode, which results in no current draw from the 

power supply. Because the current decay rate is primarily determined by the relative slow 

windings time constant, this current recirculating topology is often referred to as slow decay. 

Slow Decay 

Figure 19 demonstrates the slow current decay principle for one coil and one current phase. 

During “on” time, the current is drawn from the power supply, enabling current build up. When 

the target current is reached, pull-down transistor Q3 switches off for a short period. 

Consequently, the windings magnetic field collapses and sets a positive voltage over the built-

in flyback diode for transistor Q2 (“off time” in Figure 19 ). The forward biased diode enables 

the current to circulate through pull-up transistor Q1, the winding and the built-in flyback diode 

for transistor Q2. Due to the slow current decay, the current is approximately sustained without 

drawing current from the power supply. 
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Figure 19. H-bridge Current flow during “on” time and “off” time [21]. Arrows represent the current 

direction. 

Comparison of the Current Limiting Topologies  

Figure 20 illustrates the simulated current step response for the different solutions when the 

target current is 0.78 A. For the L/R drive, 5 volts is applied, and only the motor resistance 

limits the current. For the L/nR-drive, an external resistor four times the motor-rated resistance 

is added, yielding a total resistance of 5 times the motor resistance. The voltage is increased 

five times such that nominal current remains the same. For the chop drive, the voltage is 

identical to that of L/nR drive, but no external resistor is added. When the nominal current is 

reached, the chopping operation is activated and holds the current at a nearly constant level. 

Figure 20 shows that each method eventually reaches the target value of 0.78 A, but the chop-

drive has a significantly shorter current rise time. 
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Figure 20. Current step response for L/R, L/nR and chop drives.  

 

3.4.3 Voltage Regulator 

The voltage regulator supplies the current control operation amplifiers OP2 and OP3 with a 

software configurable reference voltage signal, denoted Vctrl in Figure 16. This signal is 

reduced by a factor of four before appearing at the amplifiers positive terminal. The voltage 

across the 1Ω resistor Rsense is fed back to the OP-amps negative terminal, resulting in a current 

limit defined by Equation (4). 

 
𝐼𝑀𝑜𝑡𝑜𝑟 =

𝑉𝑐𝑡𝑟𝑙

4 ⋅ 𝑅𝑠𝑒𝑛𝑠𝑒
=

𝑉𝑐𝑡𝑟𝑙

4
 

(4) 

Figure 16 illustrates the voltage regulator that consist of the operation amplifier OP1, resistor 

R1, and capacitor C1. The output of OP1 is direct feedback to the negative terminal. The 

voltage appearing on the positive terminal, reflects on to the output, without requiring a 

sufficient current source. This means that an output-pin from a microcontroller can be used as 

the source. By connecting the positive terminal across the low-pass filter’s capacitor, and 

applying a high-frequency signal, the RC-time constant can be used to create an adjustable 

voltage, which is purely determined by the signal’s duty cycle. Therefore, when the input 

frequency is much higher than the RC-time constant, Vreg can primarily be determined by 

Equation (5). 

 
𝑉𝑟𝑒𝑔 = 𝑉𝑖𝑛𝑝𝑢𝑡 ⋅

𝐷𝑐𝑦𝑐𝑙𝑒

100%
  

(5) 

A simulation of the voltage regulator is presented in Figure 21, generated by the simulation 

tool Simulink. A Pulse-Width Modulated (PWM) digital single with a 3.3 V amplitude and a 

period of 32 µs is used as the input source. Figure 21 illustrates the output when the duty cycle 

of the input signal is 80% and 40%. The output eventually settles at the target values of 2.65 V 

and 1.32 V, respectively, with a small amount of ripple, which is a result of the high-frequency 

input signal. 
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Figure 21. Voltage regulator output signals with different PMW input signals.  
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4 RSE Development 
This chapter begins by introducing some central aspects regarding embedded system 

development, followed by a detailed description of the RSE control system design and 

implementation.  

4.1 Embedded System 

An embedded system is a single-purpose, computer-based unit, which often collaborates with 

a larger system, such as an automobile, or a satellite. Unlike a conventional computer, the 

software of an embedded system is highly dependent upon the hardware. Both the hardware 

and software are tailored towards a specific job, such as controlling the radiation shutter. 

Usually, embedded systems react to the surroundings through sensors and produce an output 

that may be vital for the greater system. As a result, strict requirements are imposed on these 

systems regarding timing, performance, and reliability. This section introduces three central 

aspects for embedded systems, interrupts, real-time system and task scheduling. For more 

information about embedded systems and the three central aspects, see for example: [23], 

[24], and [25].   

4.1.1 Interrupts 

Interrupts are one of the microcontroller’s most powerful tools and essential for embedded 

systems. Interrupts are used when operations require asynchronous handling for example 

during interactions with the microcontroller’s hardware. In essence, an interrupt is a signal to 

the CPU that requests execution of different code, corresponding to the provoked interrupt 

signal (generally called interrupt vector). The code is written within a particular handling routine, 

the so-called Interrupt Service Routine (ISR). Once an interrupt occurs, the main program is 

paused, the corresponding ISR is executed, and the main program is picked up where it left 

off. If interrupts are appropriately used, system performance and flexibility can increase 

significantly. For example, rather than continuously poll events, the events itself can cause 

interrupts and therefore not waste CPU resource. However, some precautions are required 

when dealing with interrupts. The list below describes three crucial safety measures that were 

emphasised during RSE development of this project.  
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1. ISR execution time: Because an ISR occupies the CPU, the main program must wait 

until the CPU is available. A time-consuming ISR can affects tasks by means of timing 

jitter8, or even worse time-dependent tasks executed too late. A short ISR is especially 

crucial if interrupts occur frequently. An efficient solution for a short ISR is to, temporary 

store key parameters in the ISR and conduct the processing in the main program. 

However, response time will always be present before entering the ISR, and return time 

before the main program is resumed. For AVR microcontrollers, including the 

ATmegaS128, both the response and return times is four clock cycles, at a minimum 

[13]. This means that the main program is at a halt for at least eight clock cycles plus 

ISR execution time. 

 

2. Volatile variable declaration: According to the main program’s awareness, the ISR is 

“invisible”, meaning that variables updated within the ISR, may not be recognized by 

the main program. This is because the compiler can optimise multiple readings of a 

variable. However, by declaring variables shared between ISR and main program 

volatile, the optimisation will not be present for that particular variable. Volatile 

declaration essentially tells the compiler that the variable may change outside the main 

program. Therefore, a volatile declaration forces the main program to read the variable 

each line it is specified in the code rather than using an old value which it may believe 

is up to date.  

 

3. Corrupt variable: An interrupt may occur while reading/writing a variable and thereby 

modify parts of the variable. For example, an eight-bit microcontroller, such as the 

ATmegaS128 can read/write one byte each clock cycle, two bytes needs two clock 

cycles, and so on [13]. Corrupt variables are easily prevented by disabling interrupts 

before and enabling them after reading/writing a variable which requires more than one 

clock cycle to complete.  

                                                
8 Task timing jitter is referred to as the deviation between periodic task executions.   
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4.1.2 Real-Time Systems 

Most embedded systems, including the RSE, fall under the real-time system category. A real-

time system requires, completion of processes, tasks or responses within a specific period. 

This is often referred to as timing constraints. Exceeded timing constraints can risk fatal 

consequences. In general, real-time systems are categorised as hard or soft, based on the 

response time and the consequences regarding a timing violation.  

 Hard real-time system: An operation completed after the deadline will lead to severe 

failures, such as a human fatality or an expensive equipment breakdown. In addition, 

the response time of this type of system is tight, generally in milliseconds or less. A 

typical example of a real-time system is the anti-lock braking system (ABS) in a car. 

The ABS must guarantee a predictable and instantaneous response. Failing to do so 

may result in a car crash. 

 Soft real-time systems: These systems only require operations to meet an average 

response time. Although a time constraint violation will have a significant impact on 

system performance, this type of system can tolerate it. Instead, only when time 

violations occur repeatedly, it will be considered as an error. The system 

responsiveness is typically in the order of seconds and generally less complex than 

that of a hard real-time system.  A typical soft real-time system is, for example, a 

washing machine; a program starting a second or two later than usual is hardly 

recognisable.  

As described in Section 2.4.3, the RoR communication protocol requires that a query is 

answered within 24 baud delays, which corresponds to 120 µs. In addition, the response 

cannot be initiated before 1 baud delay which corresponds to 5 µs. Failing to do so may prevent 

the RSE from receiving essential commands, potentially resulting in radiation-damaged CCDs 

or unintentionally blocked CCDs. Because both scenarios would have severe consequences, 

the RSE requires a hard real-time system. However, the RSE also performs other tasks, such 

as HK-readouts and motor control that only need an average response time. A soft real-time 

system would be sufficient for these tasks. Therefore, to accommodate both system types 

without increasing complexity, the RSE software is designed as a hybrid of hard and soft real-

time systems.  
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4.1.3 Task Scheduling  

As previously discussed in this chapter, most real-time systems manage several time-

dependent tasks. The tasks must, therefore, be organised such that all operations are 

accomplished without compromising reliability and performance. Because embedded systems 

have limited resources, task management often requires multitasking. Thus, the tasks are 

handled by a software algorithm called a scheduler. During the last four decades, various 

scheduler topologies have been developed, ranging from sophisticated schedulers such as 

Real Time-Operating Systems (RTOS) to a simple scheduler that loops through a fixed set of 

tasks. Hard real-time systems is generally constructed as an RTOS because of its ability to 

suspend a task, execute higher priority tasks, and resume the suspended task later. This 

guarantees that the higher priority tasks are executed within the deadline. On the other hand, 

RTOS generally requires a complex scheduler algorithm, which often is hard to debug and 

occupies more memory than a simpler scheduler. In addition, the task swapping overhead 

increases significantly with RTOS, since it must spend time on deciding which task is going 

too executed.  

Because the RSE only handles one hard real-time task, the use of an RTOS just for that single 

purpose alone is excessive. Consequently, it was decided to design a custom, cooperative 

scheduler which loops through a set of tasks, for the RSE. Although this type of scheduler is 

perfect for soft real-time tasks, it may not fulfil the strict hard real-time constraints of the RSE. 

However, by exploiting the microcontroller’s interrupts, the hard real-time constraints can also 

be met. As a result, the task which handles the communication (i.e., the hard real-time task) is 

located in an ISR, and the cooperative scheduler controls the tasks with soft constraints. This 

solution has some similarities to RTOS because interrupts can also suspend the ongoing task 

and execute the higher priority task. However, the difference is that this solution only works if 

the amount of hard real-time tasks is limited, because the microcontroller only has a few 

interrupt sources. Furthermore, an RTOS can return to any of the tasks after a higher priority 

task is executed. The cooperative schedule can only resume the suspended task after the 

interrupt driven tasks are complete. As a result, the RSE scheduler solution is not as flexible 

but, the reduced complexity, almost instantaneously task swapping, and minimal memory 

usage makes this an acceptable trade-off. The design and implementation of this scheduler 

are further explained in Section 4.4. 
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4.2 SW Development Strategy 

An intuitive software development approach involves two simple steps, first, analyse the 

problem, and then start coding. This approach may give the impression of an efficient and 

reasonable method because time spent on documentation is not in the picture. Unfortunately, 

this technique is practically guaranteed to fail and definitely more time-consuming. Poorly 

planned programmes often suffer from bugs and complex structure. This makes debugging 

harder, resulting in “invisible” bugs or those, discovered late in the proses, might require re-

constructing of the whole program.  

A better approach that eliminates such unprofessional mistakes is planning and preparation 

before writing the code. A typical development strategy that follows these principles is the 

waterfall design strategy, which was used for the contents of this thesis. It involves four basic 

steps as shown in Figure 22, and requires that each step is completed before moving onto the 

next. First, overall requirements from the customer are analysed, and software requirements 

are produced. Second, developers develop a design plan that describes a detailed solution of 

the software construction and behaviour. Third, the design document is transformed into actual 

code. In contrast to the other steps, this is often the least time-consuming step because the 

problem solving and “error-free” design was prepared in advanced. Finally, the product is 

tested to verify it meets its requirements. For more information about the waterfall design 

strategy, see for example [26].  

 

Figure 22. Waterfall design strategy. Each step in the software development lifecycle is completed 

before moving to the next. This approach will enable errors to be found early in the development 

process, thereby reducing cost and time.   

Although the SMILE project has a 4-years duration and is currently in its early phase, this 

thesis was limited to only one year. Because the RSE requirements frequently change, it was 

not possible to follow the waterfall strategy exactly. Hence, some adjustments in the earlier 

“completed” stage were required. Furthermore, measurements such as stepper motor torque 

and driver performance needed to be confirmed before further design could be accomplished. 
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4.3 RSE Software Design and Implementation 

The RSE software is implemented using the C programming language, due to its ability to 

accommodate both higher and lower level functionalities, such as hardware access through 

registers. In addition, Atmel Studio 7 provides an excellent C-compiler, designed for 

programming of AVR microcontrollers, such as the ATmegaS128. However, the C language 

can be prone to errors, even if the code is compiled error free. These errors can, for instance, 

be caused by poor syntax that is technically correct according to the C language. Because the 

RSE software must meet a high-quality standard, these errors must be prevented. 

Consequently, the RSE software is designed and implemented with emphasis on the MISRA-

C standard. MISRA-C defines a set of C language programming rules which is developed by 

the Motor Industry Software Reliability Association (MISRA). By following these rules, the 

implemented code will be significantly more reliable. [27] [28] [11]   

Figure 23 shows an overview of the RSE software. The boxes represent the key modules, and 

the arrows represent the execution flow. The scheduler contains three modules: idle, sporadic 

dispatcher and periodic dispatcher. These modules are sequentially executed in a loop 

configuration. Note that the communication module can suspend the ongoing scheduler tasks, 

as indicated by the lightning symbol. 

 

Figure 23. RSE software overview. First, the program completes the initialisation routine, then the 

scheduler is entered (green) and loops through three software modules, in a sequential manner.   



CHAPTER 4 

39 
 

4.3.1 Initialisation Routines 

Several initialisation routines are executed when the RSE is started or restarted. These 

routines configure system settings and set register default values, including the following: 

 Initialise IO-ports: configure port mode (input/output) and set default values. 

 Initialise register: set register default values.  

 Initialise Timer0: configure HW-timer-0, (controls the driver voltage regulator). 

 Initialise Timer1: configure HW-timer-1, (controls scheduler and driver settling time). 

 Initialise Timer2: configure HW-timer-2, (controls three driver chopping pins). 

 Initialise Timer3: configure HW-timer-3, (controls one driver chopping pin). 

 Initialise UART0: configure UART-0, (utilises serial communication).  

 Enable global interrupt: enable all interrupt lines.  

4.4 Scheduler 

The scheduler is entered once all initialisation routines are completed. Timer1 synchronises 

the scheduler, ensuring that the scheduler loops in a constant interval. Within one cycle, two 

dispatcher functions are always executed, named “sporadic dispatcher” and “periodic 

dispatcher”. Both dispatchers contain several tasks that they are responsible for determining 

which tasks are given CPU access.  

This cyclic scheduler topology requires that each task performed within a cycle must also 

complete before the period ends. Because of this, tasks that need long operation time are split 

into many subtasks. An example of such tasks is the motor-related procedure. It may require 

thousands of steps before the shutter reach its final destination. The step configuration 

(stimulating the H-bridge transistors) itself is a quick operation, in the order of microseconds. 

However, between each step, a delay must be present, typical in the order of milliseconds. 

The delay defines the stepper motor speed, resulting in a severe execution timer. Therefore, 

the scheduler interval time is chosen by the stepper motor speed, where the scheduler 

performs one step each cycle. 

Due to the limited lubrication capabilities in space applications, the motor is restricted to 

operate below 100 rpm. Because the scheduler interval time is used as a reference time for 

the program, it is convenient to operate with a round number. Hence, the scheduler interval 

time of 2 ms was selected, which corresponds to a motor speed of 75 rpm. This time ensures 

that the delay between each step is preserved by the scheduler cycle. This also gives an 

impression of multitasking, since after the step is configured, the scheduler has plenty of 

available time to perform other tasks, such as HK-readouts. Because the scheduler runs in 

intervals of 2 ms, the worst-case response time will also be 2 ms and the average response 

time is 1 ms. Hence, this scheduler topology will be a responsive solution.   
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4.4.1 Idle Task 

The idle task preserves the program’s timing, by acquiring CPU attention while waiting for a 

cycle to end. This guarantees a fixed execution rate of queued tasks, where the first task in 

the queue notices the least amount of timing jitter, practically none. Therefore, the most time-

dependent task is placed first in the queue. Figure 24 illustrates the task handling principle for 

two exemplified cycles. Each cycle lasts for precisely 2 ms, regardless of the number of tasks 

or tasks execution time, as maintained by the idle task. The idle task stays in a continuous loop 

and waits for a flag which is controlled by the ISR for Timer1. Every second ms, timer1 

generates an interrupt which enables the ISR to set the flag. This procedure terminates the 

idle task, resets the flag and executes all tasks in the queue. Figure 24 also identifies the timing 

jitter present in task 3. However, the first task is guaranteed a permanent execution interval, 

unaffected by the other tasks execution time.  

 

Figure 24. Scheduler task handling principle for two cycles. The first task (Task1) has a fixed 

execution interval. The other tasks may be affected by timing jitter, as indicated for Task3. 

4.5 Periodic Dispatcher 

The periodic dispatcher contains all tasks that require a fixed execution interval. The dispatcher 

includes the following HK readout tasks as listed below: 

1. Measure motor temperature 

2. Measure electronics temperature 

3. Measure open shutter end switch 

4. Measure closed shutter end switch 

5. Measure HDRM arm time 
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The dispatcher determines the execution interval for these measurements. For example, while 

the motor is running, a temperature reading must frequently be measured; however, when the 

motor is inactive, a longer measurement interval is adequate. By utilising the known scheduler 

interval time (2 ms) and count number of iterations, the dispatcher is provided a reference time. 

For each cycle, the dispatcher compares the elapsed time with the task’s defined interval time. 

A match between elapsed time and interval time results in a measurement. All measurements 

are directly stored in their corresponding status register, which is further described in Section 

4.8.1. The periodic measurements’ interval time can be configured in the periodic dispatcher’s 

header file, as shown in Listing 1. Note that the unit is the number of scheduler cycle iterations. 

Thus, if the scheduler interval time is changed, these variables must also be changed.  

1. //-----Measurement interval time-------//   
2. #define motor_ON_temp_interval 500UL                 
3. #define motor_OFF_temp_interval 15000UL              
4. #define motor_ON_electronics_temp_interval 500UL     
5. #define motor_OFF_electronics_temp_interval 15000UL  
6. #define motor_ON_shutter_status_interval 1              
7. #define motor_OFF_shutter_status_interval 10000UL       
8. #define HDRM_armed_time 500UL                        

Listing 1. Macros for adjusting the periodic measurements. These parameters are located in the 

header file for the periodic dispatcher (periodic_dispatcher.h). 

In contrast to the “sporadic” tasks, “periodic” tasks are executed independent of the DPU and 

does not require precise timing. Because of this, “periodic” tasks are always put last in the 

queue and therefore may be affected by a timing jitter. 

4.6 Sporadic Dispatcher 

The sporadic dispatcher contains all tasks that interact with the stepper motor or the HDRM.  

These tasks can be initiated at any time, hence the name “sporadic”. The dispatcher includes 

the following tasks: 

1. Open shutter stop at end 

2. Close shutter stop at end 

3. Open shutter max no of steps 

4. Close shutter max no of steps 

5. Emergency close stop at end 

6. ARM HDRM 

7. Activate HDRM 
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This dispatcher only executes its tasks, if the DPU has requested it. Unfortunately, the RoR 

protocol is only capable of performing memory read and write operations. Thus, the protocol 

does not specify how the master (DPU) should command the slaves (e.g., open the RSE 

shutter). Because of this, the RSE has an 8-bit register named command register, which 

the DPU can access. If the DPU updates the command register with one of the command 

identifiers shown in Table 5, the register will be read by the RSE, and the corresponding 

operation is performed. The DPU can also read the register for verification, and it will read the 

issued command identifier, as long as the operation is active. After a finishing operation, the 

register will be cleared to 0x00, which also is the default value. This procedure means that if 

the DPU continuously reads the status registers and the command register, the DPU can safely 

monitor any ongoing operation. The sporadic dispatcher is placed first in the queue to prevent 

irregular stepping interval. As previously discussed, the first task is unaffected by a timing jitter. 

Timing jitters can potentially introduce motor resonance and thereby increases mechanical 

stress. 

Table 5. Command register overview [5]. 

RSE operation Address Command 
identifier 

Open shutter 
Stop at end 

0x80 0x01 

Close shutter 
Stop at end 

0x80 0x02 

Open shutter 
Max no of steps 

0x80 0x04 

Close shutter 
Max no of steps 

0x80 0x08 

Emergency 
close 
Stop at end 

0x80 0x10 

Arm HDRM 0x80 0x40 

Activate HDRM 0x80 0x42 

Cancel 
command 

0x80 0x80 

 

4.6.1 Open/Close Shutter Stop at End  

During normal operation will an open shutter stop at end command, run the motor in 

open direction until the “open” end end switch is activated. However, due to scenarios such as 

end switch malfunction or electronics/motor overheating, two more criteria are added. The 

functional structure is best described by a flowchart, as shown in Figure 25. The scheduler will 

run this procedure each cycle until the “open” end switch is activated, the motor/electronics 

overheat, or the number of performed steps equals the maximum stepping limit. The same 

procedure is performed in a close shutter stop at end operation, except that the motor 

runs in close direction and “closed” end switch must be activated. Notably, a cancel command 

operation terminates all ongoing operation.  
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Figure 25. Software behaviour for an ongoing open/close shutter stop at end operation. 

4.6.2 Open/Close Shutter Max no of Steps 

The Open/close shutter max no of steps procedures are optional tasks and only 

used if the “open” end switch is stuck activated. As described in Section 3.1.1, the RSE stepper 

motor operates in an open loop configuration. Thus, the number of performed steps are not 

measured. However, the performed steps is represented by the programs iterations. For this 

reason, these two tasks are identical to the corresponding open shutter stop at end, 

and close shutter stop at end procedures, except the end switch criteria is excluded. 

Figure 26 describes the functional structure of these procedures.  

 

Figure 26. Software behaviour for an ongoing open/close shutter max no of steps 

operation. 



RSE Development 

44 
 

4.6.3 Emergency Close Stop at End 

As the name implies, Emergency close stop at end is a task used during an emergency. 

Such an emergency may be, if stray light from the Moon suddenly strikes the CCDs or the 

communication is broken. Either scenarios, the CCDs must be protected as fast as possible. 

Therefore, this procedure is identical to the close shutter stop at end operation, 

except for the increased motor speed and the removed temperature criteria. Figure 27 presents 

the functional structure of this emergency procedure.  

 

Figure 27. Software behaviour for an ongoing emergency close stop at end operation. 

4.6.4 Arm/Activate HDRM  

The arm HDRM procedure is an additional safety future that prevents undesirable activation of 

the HDRM. Figure 28 illustrates the arm HDRM procedure. During an issued arm HDRM 

command, a software implemented counter increments for each cycle until it reaches one 

second (i.e., 1000 scheduler cycles). The HDRM can only be activated within this time window. 

In addition, all unrelated “memory write” operations disarm the HDRM, so the process must be 

repeated. However, a successfully issued HDRM command triggers the actuator and releases 

the shutter. 
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Figure 28. Software behaviour for an ongoing arm HDRM operation. 

4.7 Communication Task  

The communication task is responsible for interpreting received data and engaging the 

transmission procedure. Communication between the DPU and the RSE must follow strict 

timing requirements, which is considerably shorter than the scheduler time resolution of 2 ms. 

Therefore, the communication task cannot be controlled by the scheduler. As discussed in 

Section 4.1.3, this problem could be solved by implementing an RTOS where the 

communications task has the highest priority. However, this solution would significantly 

increase the system’s complexity and therefore may make it more prone to error and not as 

responsive. Instead, the communication task was implemented using an ISR. The ISR 

executes after reception of a full data frame, known as the “receive complete ISR”, and follows 

an atomic behaviour, meaning that other tasks cannot interrupt the task. The communication 

task is kept as short as possible so that it does not interfere with the timing of other tasks. It is 

also structured and named like the RoR stack described in Section 2.4.1. This structure 

significantly increases readability which is beneficial for further development.  

Figure 29 illustrates the communications task execution flow where received data is sorted and 

interpreted through several levels. Errors discovered at the character level, packet level or 

RMAP level will end the procedure eminently. This procedure is further explained in the 

sections that follow. 
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Figure 29. Communication task functionality overview.  

 

A complete read and write transaction requires 3 and 5 characters, respectively. Each 

character contains information that needs to be stored until the necessary read/write operation 

is complete. This means that the characters information must be stored in variables that retain 

its value during the program lifecycle. A static variable declaration within a function could solve 

this, but due to increased readability, the variables are implemented globally in a struct, as 

shown in Listing 2. 

1. struct RMAP{ 
2.   uint8_t R_nW;                    // Read write indication   
3.   uint16_t register_address;       // Acquired RSE register   
4.   uint8_t register_data_to_write;  // New register content   
5.   uint8_t sequence;                // Query sequence          
6.   uint8_t reject_query;            // Query rejection      
7.   uint8_t remark;                  // RMAP error ID   
8. };   
9. struct RMAP RMAP_struct;   

Listing 2. RMAP struct. Contains the communication task variables that must retain its value. Located 

in RMAP.c. 

The RMAP struct is declared and defined in the communication tasks’ source file, limiting the 

scope to that specific source file. This programming practice reduces the possibility that these 

variables are unintentionally modified by other functions. Variables that only require one 

communication task life cycle is passed through the different levels as function arguments. 

Hence, these variable does not consume memory when the communication task is finished. 

4.7.1 Character Level 

Character level utilizes the UART hardware module, where the serial signal is converted into 

characters. A complete character reception triggers the “receive complete interrupt” and only 

then is the communication task initiated. The task starts by verifying that received data does 

not contain bit errors. A bit error will end the procedure at the character level, resulting in a 

short ISR routine. If not, the sequence continues to the packet level. Table 6 shows the 

interface signal between the character level and the packet level. 
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Table 6. Character and packet level interface signal 

Interface signal  Description 

UART_raw_data 16-bit local variable, containing an error-free 
character, received by the UART 

 

4.7.2 Packet Level  

Packet level is responsible for detecting package type (response/query) and only continue to 

the next level if a query is received. Due to the shared bus topology, the RSE will read all data 

exchanged on the bus, including response packets sent from other slaves. Therefore, 

response packets must be discovered as soon as possible so that CPU is not unnecessarily 

occupied. Table 7 shows the interface signal between packet level and RMAP level. 

Table 7. Packet level and RMAP level interface signal 

Interface signal  Description 

query_data 8-bit local variable containing query data 

 

4.7.3 RMAP Level 

At this point, the received data does not contain bit errors and is verified as being sent from 

the DPU (i.e., a query is received). The query is then sent through a sorting algorithm that 

identifies the query type and sequence. If both of these identifiers are correct, the content is 

sorted and stored in the corresponding struck variables, according to the query type. The 

sequence indicates the order of the received queries, where an invocation query is the first in 

the series. If a different query (other than an invocation query) is received, while the RSE 

expect an invocation query, the procedure is terminated. Table 8 shows the interface signals 

between the RMAP level and the application level. Table 9 describes the RMAP level 

interaction with the struct variables, depending on the query type. 

Table 8. RMAP level and application level interface signals 

Interface signal to application level Description 

query_type 8-bit local variable, identifying query type 

sequence_error 8-bit local variable, signalling sequence error 
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Table 9. RMAP-level struct variable interactions 

Query type Struct variables Description 

Invocation Sequence = 1 Next expected query is an instruction-
query 

Instruction R_nw = query_data [bit 4] Indicate read or write request 

Register_address [bit 8:5] = 
query_data [bit 3:0] 

Transfer the lower 4 bits, containing RSE 
register address [8:5] 

Sequence = 2 Next expected query is a Reg-address-
query 

Reg-address  Register_address [bit 4:0] = 
query_data [bit 4:0] 

Transfer the lower 5 bits, containing RSE 
register address [4:0] 

Sequence = 3 or 0 Next expected query is a write data H-
query or invocation-query, depending on 
write or read request 

Write data H Register_data_to_write [bit 
7:4] = query_data [bit 3:0] 

Transfer the lower 4 bits, containing the 
RSE register data to write bit [7:4] 

Sequence = 4 Next expected query is an  
write data L-query 

Write data L Register_data_to_write [bit 
3:0] = query_data [bit 3:0] 

Transfer the lower 4 bits, containing the 
RSE register data to write bit [3:0] 

Sequence = 0 Close communication. Next expected 
query is an Invocation-query 

 

4.7.4 Application Level 

Application level determines if the query’s instruction is authorised or rejected and handles the 

RSE register access. Only a query that is authorised results in a register write or register read 

operation (i.e., a rejected query is not granted register access). In addition, application level 

updates two of the RMAP struct variables, as shown in Table 10. Causes of query rejection 

and their corresponding remark ID is presented in Table 11. Notably, an authorised query also 

results in a remark ID.  The process then proceeds to RMAP response level where the interface 

signal “query type” is passed as an argument. 
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Table 10. Application level struct variables interactions 

Query type Struct variables Description 

Invocation reject_query [bit 0] =1/0 Invocation query is rejected/authorised 

remark = ID Identifies cause of rejection or authorised   

Instruction reject_query [bit 1] =1/0 Instruction query is rejected/authorised 

remark = ID Identifies cause of rejection or authorised   

Reg-address reject_query [bit 2] =1/0 Reg-address query is rejected/authorised 

remark = ID Identifies cause of rejection or authorised   

Write data H reject_query [bit 3] =1/0 Write data H query is rejected/authorised 

remark = ID Identifies cause of rejection or authorised   

Write data L reject_query [bit 4] =1/0 Write data L query is rejected/authorised 

remark = ID Identifies cause of rejection or authorised   

 

Table 11. Remark ID 

Response ID Description 

Authorised 0x00 The operation is correct and accepted by the RSE 

Sequence error 0x01 RMAP protocol sequence error 

Not writable register 0x02 The register is read-only 

Wrong address 0x03 No such register 

Not allowed 0x04 Not allowed since a command is already being 

performed 

Shutter already closed 0x05 Not allowed since the shutter is already closed 

Shutter already open 0x06 Not allowed since the shutter is already open 

Motor temperature too high 0x07 Not allowed since the motor is too hot 

Electronics temperature too high 0x08 Not allowed since electronics is too hot 

 

4.7.5 RMAP Response Level 

RMAP response level organises the response packets according to the RoR communication 

protocol described in 2.4.1. This means that RMAP response level also sends the two first 

characters through a CRC algorithm that generates the third character. In general, CRC 

calculations are time-consuming operations that may considerably increase the ISR execution 

time. Therefore, it is crucial to use an optimum solution where the execution time is at a 

minimum. AVR supports a wide range of libraries, among them the crc16.h that provides an 

optimised, inline function for calculating CRC.  Therefore, this function was selected for this 

project because creating a custom algorithm will most likely not be as efficient. After a complete 

response packet, the characters are stored in the transmit First In First Out (FIFO), and the 

transmit procedure is initiated. 
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4.7.6 Transmit Data 

The transmit procedure is the smallest and simplest procedure. Nevertheless, it is the most 

important part for keeping the ISR execution time at a minimum. The transmit procedure is 

responsible for sending a whole response packet, which contains three characters. Because 

the characters must be transmitted one at the time, the ISR routine must wait until the next 

character can be sent. This is an inefficient solution and often referred to as “polling operating”, 

where the CPU must continuously check if the UART transmit register is available. However, 

by utilising the UART transmit complete interrupt line, this problem is eliminated. Therefore, 

the transmit procedure is implemented in two separate ISR routines. The first character stored 

in the transmit FIFO is buffered onto the UART transmit register in the same ISR as the other 

levels. While the first character transmits, the CPU returns to the main program. Once the first 

character is sent, the “transmit complete interrupt” triggers. The CPU then returns to the 

transmit ISR, buffers a new character onto the UART transmit register and returns to the main 

program. This procedure continues until the transmit FIFO is empty (i.e., until all three 

characters are transmitted). 

4.8 RSE Register Overview 

The RSE registers serve as the interface between the DPU and the RSE. This interface means 

that all interaction between the DPU and the RSE, involves access registers through memory 

read or memory write operations. Because the communication protocol requires it, all registers 

are of 8-bit size. In addition, the ATmegaS128 uses an 8-bit architecture [13]. Thus, a register 

can be written or read within one clock cycle. The registers are further divided into three 

categories:  

1. Status registers 

2. Control registers 

3. Command register 

Unique addresses identify the registers, where each register categories are organised in a 

separate struct, of global scope. This does not affect performance, only increases readability. 

Listing 3 shows the control registers declaration. Not that these registers are declared “volatile”. 

As discussed in Section 4.1.1, volatile declaration informs the compiler that a variable may 

change outside the main environment. Because the registers are both accessed through the 

communications task ISR and the main program, the volatile declaration guarantees that the 

variable/register is up to date. 
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1. //------------Control registers---------------//   
2. struct control{    
3.   //        TYPE       Reg name             Address   
4.   volatile uint8_t Motor_current;          // 0x40   
5.   volatile uint8_t Settling_time;          // 0x41   
6.   volatile uint8_t Chop_D_cycle;           // 0x42   
7.   volatile uint8_t Max_motor_temp;         // 0x43   
8.   volatile uint8_t Max_electronics_temp;   // 0x44   
9.   volatile uint8_t Max_step_for_operation; // 0x45   
10. };   
11. extern struct control control_reg;   

Listing 3. Control registers declaration. Located in RSE_registers.h. 

The following sections describe the status registers and the control registers. The command 

register is previously discussed in Section 4.6.  

4.8.1 Status Registers 

The status registers contain HK readouts from sensors or other status variables (e.g., 

temperature and motor step iterations). The RSE regularly updates these registers, and they 

are always readable by the DPU. However, the status register does not allow DPU writing 

access, (i.e., from the DPU standpoint, a status register is read-only). Table 12 shows the 

status registers and their corresponding addresses. [5] 

Table 12. Status register overview [5]. 

Register Address 

Software version 0x00 

Motor temperature 0x01 

Electronics temperature 0x02 

Shutter status 0x03 

HDRM status 0x04 

Performed steps L 0x05 

Performed steps H 0x06 

Heartbeat count 0x07 

Processor status 0x08 

 

Software Version 

The software version register contains the embedded software revision number. This register 

is only updated during patching. 
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Motor Temperature 

This register contains the motor temperature value and is updated during a motor temperature 

measurement. The periodic dispatcher determines the measurement interval. The motor is 

inactive for most of the time, and thus the temperature should remain relatively stable. Because 

of this stability, the periodic dispatcher engages a measurement once every 30 seconds when 

the motor is inactive. By contrast, while the motor is active, temperature increases significantly, 

and therefore, a measurement is performed once every second.  

Electronics Temperature 

The electronics temperature register contains the driver circuit temperature value and is 

updated during an electronics temperature measurement. The measurement procedure is 

identical to that of a motor temperature measurement. 

Shutter Status 

The shutter status register indicates the central status of software and hardware. The register 

bits represent a single event where a high bit characterises a triggered event. Table 13 

describes the shutter status registers structure. 

Table 13. Shutter status register structure [5]. 

Event bit Purpose 

Shutter is closed 0 (LSB) The shutter is closed, closed end stop switch is active 

Shutter is open 1 The shutter is open, open end stop switch is active 

Close shutter in 
progress 

2 A close shutter command has been issued and is 
being performed 

Open shutter in 
progress 

3 An open shutter command has been issued and is 
being performed 

Emergency closure 
initiated 

4 An emergency closure has been initiated due to a 
missing heartbeat signal from the DPU 

Motor to hot 5 Motor exceeds maximum temperature range 

Electronics to hot 6 Electronics exceeds maximum temperature range 

- 7 (MSB) Spare 

 HDRM Status 

The HDRM status register indicates the status of HDRM related software. Therefore, no 

sensors measure the HDRM status, only events indicating performed HDRM tasks. The HDRM 

must be armed before the HDRM are permitted activation, as indicated by the HDRM armed 

status bit. Table 14 shows the HDRM status events. 
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Table 14. HDRM status register description [5]. 

Event Bit Purpose 

HDRM armed 0 (LSB) HDRM is armed 

HDRM activated 1 HDRM is activated 

- 2 Spare 

- 3 Spare 

- 4 Spare 

- 5 Spare 

- 6 Spare 

- 7 (MSB) Spare 

 

Performed Steps L and Performed Steps H 

The performed steps registers contain a 16-bit number that reflects the stepper motor 

iterations. Performed steps L contains the step number lower byte (bit [7-0]) and 

Performed steps H contains the high byte (bit [15-9]). Performed steps L, increments 

each step and an overflow increments performed steps H, and is default 0x00 if the motor 

is off. By reading these registers, the DPU can track the shutter position.  

Heartbeat Count 

As discussed in Section 2.2, the RSE does not sense the radiated environment, only act on 

commands from the DPU. Therefore, if the communication between the DPU and the RSE 

fails, the CCDs must be covered. The heartbeat count register act as a software implemented 

watchdog timer. The DPU must access and read this register regularly, for example, every 30 

seconds. Every read operation will increment its content, with wrap around. However, failing 

to read it regularly will initiate the automatic emergency closure of the radiation shutter. This 

functionality ensures that the radiation shutter is shut by default if the DPU is inactive. [5] 

Processor Status 

The processor status register indicates the main status of the software and hardware, as 

described in Table 15 

Table 15. Processor status register, description [5]. 

Event Bit Purpose 

Heartbeat missing 0 (LSB) DCE did not receive heartbeat signals from the DPU 

- 1 Spare 

- 2 Spare 

- 3 Spare 

- 4 Spare 

- 5 Spare 

- 6 Spare 

- 7 (MSB) Spare 
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4.8.2 Control Registers 

Contrary to the status registers, control registers are only updated by the DPU (i.e., from the 

RSE point of view, control registers are read-only). These registers configure the RSE motor 

operation parameters. Therefore, the DPU is prevented from updating these registers while 

the motor is active. Table 16 outlines the control registers, address and the register default 

values. 

Table 16. Control registers [5]. 

Register Address Default 
value 

Motor current 0x40 205 

Settling time 0x41 105 

Chop duty cycle 0x42 115 

Max acceptable 
motor temperature 

0x43 TBD 

Max acceptable 
electronics 
temperature 

0x44 TBD 

Max steps for 
operation 

0x45 TBD 

 

Motor Current 

This register contains the parameter that sets the motor current limit. The current limit is 

adjustable between 0 and 0.8 A, which corresponds to a register value range from 0 to 255. 

The register default value is 205, with a corresponding nominal motor current of 0.6 A.  

Settling Time 

This register contains the settling time parameter, which determines the delay before the 

current chopping operation starts. The delay is configurable from 1 to 255 µs, which 

corresponds to a register value range from 1 to 255.  

Chop Duty Cycle 

The chop duty cycle register determines the duty cycle of the chop signal. The duty cycle 

is configurable from 0 to 100%, which corresponds to a register value from 0 to 255. 
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Max Acceptable Motor Temperature 

This register determines the maximum acceptable motor temperature. The temperature limit 

range is not yet concluded. However, by adjusting this register to its maximum value, the 

temperature limit will be infinity. This is implemented because most of the motor-related 

procedures are suspended if the temperature is over the limit defined by this register. A 

malfunctioning end stop sensor could potentially read a high value and thereby prevent the 

motor from operating.  

Max Acceptable Electronics Temperature 

This register is identical to the max acceptable motor temperature register, except that 

it determines the electronics temperature limit.  

Max Steps for Operation 

This register determines the absolute number of steps the motor is allowed for one operation. 

Therefore, any ongoing operation will be aborted if the performed steps exceed the limit. 

However, if the max steps for operation register is set to the maximum value (255), the 

limit will be infinity, thereby not interfere with the ongoing operation.    

4.9 Stepper Driver Software 

At the time the driver software was designed, empirical test data concerning the driver 

hardware was not yet established. However, data from the driver simulations and the driver 

schematic was available. Regarding the stepper motor, only the following specifications were 

determined: 

1. Hybrid stepper motor 

2. 200 steps per rotation 

3. Gear ratio: 1:196 

4. Max motor speed:  less than 100 rpm 

5. Motor torque: 1.2 Nm or more 

The software is therefore made to be highly generic, such that could easily be configured when 

the data become available. 
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4.9.1 Stepper Motor Operation Mode 

In general, a stepper motor can operate in three distinctive modes: micro stepping, half step, 

and full step. These operation modes affect the motor’s behaviour differently (e.g., motor 

smoothness, torque characteristics, and driver software complexity). Therefore, the operation 

mode must be carefully considered while designing the driver software.  

The following four subsections briefly describe the operation modes. For the sake of simplicity, 

all examples are based on a motor with one pole pair on the rotor (i.e., four stators, which gives 

a step resolution of 90°). This is an extreme step angle, which is not used by any reasonable 

stepper motors. However, the operation principle remains the same. 

Full Step 

The full step operation can further be divided into two categories: one-phase full step and two-

phase full step. Figure 30 illustrates the step sequence for the full step operation. The arrow 

represents the rotor pointing in the magnetic vector direction, generated by the energised 

stators coloured orange. The stators are labelled “A” and “B”, identifying the pole pairs. 

 

 

Figure 30. Step sequence for full step one-phase (left) and full step two-phase (right). 

One-phase full step energises one pole pair per sequence. This creates a rotating magnetic 

field, which rotates the rotor in discrete steps at an angle of 0°, 90°, 180° and 270°. By utilising 

both phases (two-phase full step), the magnetic vector equals the vector sum of both coils (i.e., 

  √2   multiplied by the magnitude of one magnetic vector). Thus, the rotating field is offset by 

an angle of 45° and provides approximately 30% more torque. However, twice as much power 

is needed resulting in pore efficiency. The full-step requires the least complicated software 

because only four electrical sequences are needed. [19] 
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Half Step 

Half step operation exploits the magnetic field offset between one-phase and two-phase full 

step. By sequentially alternating between one phase and two phases, the resolution doubles. 

The increased resolution yields more control and smoother operation and therefore less 

mechanical stress. However, the one phase sequences produce less torque than the two-

phase sequence. This can potentially create a performance issue, often referred to as torque 

ripple. If needed, a variable current source can significantly reduce torque ripple, where the 

current is increased by a factor of √2  for each one phase sequence. In addition, compared to 

the full step mode, the half-step mod requires a more complex software because eight 

electrical sequences are needed. [19] 

 Micro Step  

In contrast to the other stepping modes, micro-stepping progressively transfer current from one 

phase to the other phase, thereby reducing the stepper motors’ jerky movement. This gradually 

effect is achieved by inducing a sinusoidal voltage across the phases, rather than using a 

complementary binary signal which switches the phases entirely on or off. Therefore, micro-

stepping significantly increases the step resolution and enhance smother operations. However, 

micro-stepping increases the drive software complexity. In addition, the torque characteristic 

will be reduced. [20]    

4.9.2 Driver Software Design 

Based on the stepper motor requirements, 200 steps per rotation yields a step resolution of 

1.8°. Furthermore, the low gear ratio of 1:196 provides an output resolution of 
1.8°

196 
= 0.009° 

per step, indicating that the advantage of micro-step is limited and that both full-step and half-

step modes are adequate. However, the full-step operation may be harsher on the gearbox, 

due to the larger discrete steps. Therefore, the stepper motor will run in half-step mode to 

enhance smoother transaction between steps, thereby reducing mechanical stress. As 

described in Section 4.9.1, half-step operation will introduce some torque ripple. Although the 

driver hardware utilizes a variable current limit, the voltage regulator time constant is too slow 

and, therefore, not suitable for torque ripple compensation. Considering the stepper motor’s 

torque margined which is more than adequate, the torque loss in one phase sequences are 

negligible. 
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Step Control 

One electrical cycle consists of eight half steps, where the coil current is on, reverse, or off, as 

illustrated in Figure 31. The rotor sited in the middle, points in the magnetic vector direction, 

as maintained by the two current phases (I1 and I2 in Figure 31). For each step (marked by 

numbers), at least one of the current phases changes its direction or turns off. This creates a 

rotating magnetic field that rotates the rotor. Based on this information, the H-bridge transistor 

for the RSE driver circuit must be controlled according to the sequence diagram shown in 

Figure 32.  

 

Figure 31. Coil current for half-step mod [22]. I1 and I2 represent current in coil 1, and 2, respectively 

and the sequence is indicated by numbering.   

 

Figure 32. H-bridge steering signals (left) and driver circuit’s H-bridge (right). Steering signal high and 

low indicates that the transistors are on and off, respectively, regardless of transistor type                 

(N-MOS/P-MOS). 
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By sequentially repeating these eight cycles presented in Figure 32, the motor rotates 

continuously in one direction. The motor direction is easily changed by swapping the 

transistor’s steering signals for coil A and coil B. Except for the starting sequence, the current 

is sustained in one direction for 3 out of 8 cycles before turning off, and changing course, 

hereby denoted as the “motor on period”. 

It is crucial that the software exploits the driver circuit’s potential fully. Because of this, the 

“motor on period” is divided into three phases: setup, fully on, and chop. Figure 33 illustrates 

the hypothetical motor current behaviour for a “motor on period”. This also applies to the 

starting sequence. However, for one of the coils, depending on motor direction, the “motor on 

period” las for only one cycle. 

 

Figure 33. Motor on period. Red line represents coil current for coil A, in step sequence 3, 4, and 5. 

 

The setup phase (Arrow A in Figure 33) configures the transistor states according to the 

specific cycle and enables/disables timers used by the fully on and chop phase. This is 

implemented as a simple state machine where the electrical cycle (1-8) is the argument. 

Because a total of eight transistors are connected to various output ports, and some transistors 

are active low, the readability can become messy. Consequently, each transistor state is 

acquired by using the “define” pre-processor directives as shown in Listing 4. 

1. //-------------- define transistor states for coil A ----------------//   
2. #define AQ1_OFF (PORTE |=  (1<<PINE3)) // transistor AQ1 OFF       
3. #define AQ2_OFF (PORTA &= ~(1<<PINA0)) // transistor AQ2 OFF   
4. #define AQ3_OFF (PORTE |=  (1<<PINE4)) // transistor AQ3 OFF       
5. #define AQ4_OFF (PORTA &= ~(1<<PINA1)) // transistor AQ4 OFF   

Listing 4. Macros for operating H-bridge transistors. Macros for the other transistor are identical, 

except for different output ports. These macros are located in the stepper driver header file 

(stepper_driver.h). 
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After the setup phase, pull-down transistor Q3 or Q4 (depending on the step sequence) is 

entirely on until time C. The fully on duration (time from B to C) is adjustable from 1 to 255 µs 

and defined by control register settling time.  After reaching C, one of these transistors 

(Q4 or Q3) is turned off, resulting in a current decay determined by the motor coil inductance, 

before the appropriate transistor is turned on again at time D. The duty cycle of this chopping 

procedure is adjustable from 0 to 100% and determined by control register chop duty 

cycle. This utilises full control of both decay time and on time. Both the fully on phase and 

chop phase rely on precise timing and is therefore implemented using hardware timers which 

are further explained in Section 4.10.2. 

4.10 Hardware Modules 

The RSE software utilizes five separate hardware modules, where two modules generate 

interrupts. The various modules and their corresponding interrupt handling routines are listed 

in Table 17. These modules operate asynchronously to the CPU, meaning that they are 

separate circuits, where the modules registers are the only interface. 

Table 17. RSE HW-modules 

HW-module Interrupt no ISR 

USART 0 19 ISR(USART0_RX_vect) 

21 ISR(USART0_TX_vect) 

TIMER 0 - - 

TIMER 1 13 ISR(TIMER1_COMPA_vect) 

14 ISR(TIMER1_COMPB_vect) 

TIMER 2 - - 

TIMER 3 - - 

 

4.10.1 USART 0 

This module handles the low-level communication between the RSE and DPU. The UART 

initialisation routine configures the UART registers: UBRR0, UCSR0C, and UCSR0B. 

The UBRR0 is a 12-bit register used by the USART baud rate generator. The generated baud 

rate is determined by the clock frequency, the operation mode, and the UBRR0 register value, 

as shown in Equation (6). 

 
𝐵𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 [𝑏𝑝𝑠] =

𝑓𝑜𝑠𝑐[𝐻𝑧]

8 ⋅ (𝑈𝐵𝑅𝑅0[12𝑏𝑖𝑡] + 1)
  

(6) 

The UBRR0 register can only hold a whole number, meaning that both the clock frequency and 

baud rate must be chosen relating to the UBRR0 value. If this is not evaluated, an error given 

by Equation (7) will be present. The USART module tolerates a small amount of error because 

the signal sampling occurs in the middle of a bit. However, the baud rate error gives less room 

for distortions introduced during transmission. 
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𝐵𝑎𝑢𝑑𝑒 𝑟𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟[%] =

𝑎𝑐𝑡𝑢𝑎𝑙 𝑏𝑎𝑢𝑑𝑟𝑎𝑡𝑒[𝑏𝑝𝑠]

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑏𝑎𝑢𝑑𝑟𝑎𝑡𝑒[𝑏𝑝𝑠]
⋅ 100 

(7) 

The E-box modules baud rate has not yet been decided, but approximately 200 000 bps was 

suggested. The system currently operates with an internal oscillator measured at 7.6 MHz. 

Because a baud rate of 237 500 bps provides the nearest error-free baud rate, it was chosen 

as the baud rate for this thesis. However, when the baud rate is decided, an external crystal 

can be selected based on the baud rate.  

The UCSR0C register determines the operation mode and the data frame. This register is 

configured according to the communication protocol specifications (i.e., asynchronous 

operation mode, one start-bit, nine data-bit, odd parity and one stop-bit). 

The UCSR0C register enables the hardware module and the acquired interrupts. Two interrupt 

lines are enabled: receive complete and transmit complete. A complete date reception will run 

the ISR (USART0_RX_vect), and a complete transmitted frame will run the 

ISR (USART0_TX_vect). For more information about AVR microcontrollers’ UART see for 

example [13]. 

4.10.2  Timers 

Timers are used when precise timing is required. The RSE utilises four timers, operating in 

Clear on Compare Match (CTC) mode or Fast Pulse Width Modulation (F-PWM) mode, 

explicitly. Because the ATmegaS128 does not have enough timers, two of the timers handles 

more than one process.  

In CTC mode, the timer’s resolution is modified, thereby changing the interrupt interval. This is 

achieved by manipulating the Output Compare Register (OCR), a register that defines the 

timer’s top value. The timer continuously increments the counter register (TCNT) and resets 

the moment a compare match between TCNT and OCR occurs. Figure 34 demonstrates the 

timer’s behaviour during different values of OCR. [13] 

 

Figure 34. CTC mode, timing diagram [13]. Adjusting the compare value (TCNT) enables the interrupt 

to be triggered at a specific time, rather than use the fixed overflow interrupt.    
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The F-PWM mode and the CTC mode are relatively similar. However, a timer configured in F-

PWM mode utilize direct pin control without using an ISR. This is a significant advantage 

because the pin is precisely controlled and does not require CPU attention. Figure 35 illustrates 

the F-PWM operation procedure. The OCR register controls the output compare pin number 

"n" (OCn). The counter counts from the bottom to top and toggle the pin, immediately, a 

compare match between TCNT and OCR occurs [13], thereby generating a high-frequency 

PWM signal (i.e., a signal with adjustable duty cycle). 

 

Figure 35. F-PWM mode, timing diagram [13]. Period 1 and 2, the timers output-compare-value equals 

the timer’s top value, i.e., the output pin (OCn) duty cycle is 100%. For the other periods, the output 

compare value is reduced, thus the duty cycle decrease.    

Timer0 

This timer controls the stepper motor current limit. As described in Section 3.4.3, the current 

limit is proportional to the duty cycle of a high-frequency input signal. The signal could be 

controlled by the scheduler, where a task toggles an output port. However, this would be an 

inefficient and unreliable solution because the task would suffer from timing jitter and frequently 

require CPU resources. Instead, the procedure is hardware implemented by utilising timer0. 

Timer0 operates in F-PWM mode and thereby generates a high-frequency PWM signal, 

without requiring CPU resources. Control register Motor current determines the signal's 

duty cycle, and the base frequency is 32 kHz. 
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Timer1 

Timer1 handles two operations, synchronisation of the scheduler and setting the motor current 

settling time. The timer operates in CTC mode where two different interrupt lines are 

accessible. The first interrupt line is in-flight configurable and determined by control register: 

Settling-time. The stepper driver software enables the interrupt line at the start of each 

“motor on period”, as described in Section 4.9.2. The second interrupt line controls the 

scheduler interval time. Because the scheduler maintains the program timing and several other 

operations uses the interval time as a reference time, the interrupt line is fixed. This means 

that the DPU cannot change the scheduler interval time; however, it is possible during 

patching. 

Timer2 and Timer3 

The chopping procedure requires a precise and high-frequency signal that performs fast 

switching of the H-bridge pull-down transistors. Consequently, this procedure is controlled by 

timer2 and timer3 which both runs in F-PWM mode. Timer3 handles both transistors for coil A 

and one transistor for coil B; Timer2 controls the second transistor for coil B. The PWM signal’s 

base frequency was determined based on the motor time constant. A low frequency would 

allow current to exceed the current limiting circuit’s threshold, resulting in severe power 

dissipation. On the other hand, an excessively high frequency would significantly increase the 

transistor’s switching power consumption. A base frequency of 32 kHz is a decent compromise 

and was for this reason selected. The driver software controls both these timers, where control 

register chop duty cycle adjusts the PWM signal’s duty cycle.
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5 Test and Development  
A system that simulates the DPU must exist to command and receive data from the RSE. The 

optimal solution would be to use the authentic DPU. Unfortunately, a DPU prototype was not 

available; the DPU was therefore simulated by using a computer and the program Real-Term. 

Real-Term is an open source terminal emulator that enables serial communication through the 

computer’s COM ports. The emulator is fully configurable where a variety of different baud 

rates and data frames can be selected. In addition to the emulator, a USB-to-UART converter 

was connected between the RSE and the computer. This step was necessary because the 

computer’s USB port generates 5 V signals while the RSE requires 3.3 V signals. This setup 

worked nicely at the beginning of the tests, where only a command or two was tested. 

However, as the RSE software evolved, several “memory read” and “memory write” commands 

were required to cover all the RSE functions. As described in Section 2.4.2, a “memory read” 

and “memory write” transaction requires three and five separate queries, respectively. 

Because the emulator did not support multiple transmissions, the query’s payload must be 

manually arranged for each transmission, a time-consuming and inefficient method. 

Consequently, it was concluded that development of a custom terminal emulator, simulating 

the DPU would be faster in the long-term. 

5.1 RSE Modifications for Testing 

The RoR protocol defines a UART transmission to contain 9 data bits, which represents one 

character. This is an unusual configuration that the computer’s COM ports dos not support (8 

data bits or less). Constructing an additional microcontroller that simulates the DPU would be 

significantly more time consuming and not as flexible as a program on a computer. Therefore, 

it was decided to remove the MSB from the UART configuration and instead, insert it at the 

beginning of the RSE communication task, as shown in Listing 5.  

1. ISR(USART0_RX_vect){   
2.   //------------------------- RBDP character level begin -------------//   
3.   uint8_t status = UCSR0A; // Read UART status register   
4.   uint16_t raw_data;   
5.   // if bit-error, discard the data   
6.   if ( (status) & ((1<<UPE0)) ) 
7.   {    
8.     uint16_t received_data_error=UDR0; // Don't use data, i.e. garbage   
9.   }   
10.   else // Error free data   
11.   {     
12.     raw_data = ((0<<8) | UDR0);// Manually insert the MSB and read UART data bit[7-0]   
13.     //--------------------- RBDP character level end -----------------//   
14.     packet_level(raw_data);  //Continue to packet level with a whole character (9bit)  
15.   }   
16. }   

Listing 5. RSE communication task. The MSB which indicates query or response packet is manually 

inserted in the code, enabling 8-data bit UART configuration. (Located in main.c)    
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Listing 5 illustrates the communication task ISR, where the character’s MSB is set to ‘0’ 

(marked blue), indicating a Query and the reaming 8 data bit is provided by the UART. This 

allowed testing of both queries and response characters, which means it could simulate, other 

salves and the DPU. However, the MSB must be manually changed in the code. Note that the 

UART control register C (UCSR0C) which defines the data bit size, must also be changed (i.e., 

to 8 data bits). 

5.2 DPU Simulator 

The DPU simulator is created in Python, which is a high-level, general-purpose programming 

language. Python has simpler syntax compared to the alternative programming languages: C, 

C++, and Java. It also supports a large variety of libraries and development tools, such as 

serial communication and Graphical User Interface (GUI). This enables complex programmes 

to be created in a relatively short time, so it was decided to use Python as the framework for 

constructing the DPU simulator. [29] 

Because this simulator also is intended to be used for further development of the radiation 

shutter, the programme needs to be user-friendly and robust. Therefore, the programme is 

operated through a GUI, as shown in Figure 36. The GUI is organised in three separate 

windows: RSE register window, RSE command window, and RSE terminal. 

 

Figure 36. DPU simulator for operating and test the RSE. From this program, all RSE functionalities 

can be acquired (read/write operations) thereby configure RSE settings, collect HK-readouts and 

activate motor/HDRM. In addition, the transactions can be observed from the RSE terminal. 
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RSE Register Window 

As the name implies, this window handles the RSE registers. The registers are organised as 

a list where the register content is displayed in a status bar, parallel to the corresponding 

register. Control registers are separated from status registers and the command register by 

their name written in capital letters. A memory read operation is achieved by selecting the 

acquired register from the “Choose Register” drop-down menu and clicking the “Read register” 

button. The program will automatically broadcast the required queries, interpret the received 

response packets, and place the register content in the correct register status bar. Because 

the RSE test procedure often required reading of multiple registers, an extra functionality was 

added. The functionality enables to read all registers by activating the “read all registers” 

button, and thus, significantly reduced the time of testing. The memory write procedure is 

identical to that of a memory read operation, except that the register content must be written 

in the “enter register data” menu. 

RSE Command Window 

As discussed in Section 4.6, a command is initiated by writing a specific value into the 

command register. Hence, a command can be started via the RSE register window. However, 

the command was frequently used and therefore required a more efficient solution. 

Consequently, the command window was introduced, which works as a shortcut for a pre-

coded memory write operation. This window gave the ability to start commands through the 

buttons instead of the cumbersome, manual register write operations. 

RSE Terminal 

Before the system behaviour could be confirmed, the transactions between the DPU and RSE 

must be correct (i.e., follow the RoR communication protocol). This imposes the need for a 

predictable and organised solution where the transactions can be observed. To fill this need, 

the RSE terminal was created. The terminal serves as a monitor where a sorting algorithm 

translates the transactions and displays the data in a structured form. Because this type of 

sorting algorithm already was developed for the RSE, it was relatively easy to convert it into 

Python code. The queries are identified by their name, followed by their corresponding 

response packets, which contain three characters as specified by the RoR communication 

protocol, described in Section 2.4.1. In addition, a rejected query is identified by an error 

message. For example, in Figure 36, two open shutter commands have been started, which is 

an illegal operation according to the RSE applications level (see Section 4.7.4). The RSE 

terminal signals that an error occurred at the last query and identifies the cause of rejection. 
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5.3 Driver Test 

The motor and the drive are two critical elements in the radiation shutter system. Therefore, it 

is crucial that both driver software and driver hardware collaborate so that the motor is 

accurately controlled, provides the required torque, and operates efficiently. In addition, the 

magnetic field generated by the motor needed to be measured and confirmed that it does not 

affect other instruments on the SMILE satellite. These requirements impose the need for a 

comprehensive test setup, which covers the following: 

 Step sequence 

 Driver parameters (chop duty cycle, Vctrl duty-cycle, and settling-time)   

 Motor torque and efficiency  

 Motor magnetic field  

5.3.1 Step-Sequence Test 

Software Test 

As discussed in Section 4.9.2, the step-operation is implemented as a state machine where 

the step sequence is the argument. The state machine was therefore examined and verified 

by using Atmel Studio’s OCD tool. This enabled to single step through each state and observe 

the output ports register. 

Hardware Test 

The eight RSE output ports that operate the driver’s H-bridge was connected to a logical-

analyser. This provided the information required to verify that the signals were correct for each 

step sequence, as shown in Figure 37. Due to the H-bridge operation principle, a wrong 

stimulated transistor not only affects the motor behaviour but also may cause a short circuit. 

The step sequence was, therefore, systematically tested before the output ports were 

connected to the driver circuit. The test then proceeded to the circuit test. An oscilloscope 

measured the gate voltage on the H-bridge transistors, and the voltage was verified to ensure 

sufficiency to fully activate and deactivate the transistors. 
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Figure 37. Step sequence sample. The transistor states are labelled according to the driver circuit 

diagram, where A and B identify the coil pairs. The numbering identifies the sequence. 

5.3.2 Driver Parameters Test 

Due to the construction of the motor driver, three parameters are adjustable: the duty cycle of 

Vctrl signal, the duty cycle of the chop signal, and the settling time. Because hardware timers 

control these parameters, it is difficult to inspect the procedure trough software analysis. 

Therefore, the functionality of these parameters was primarily hardware tested where the 

output signals were inspected by using a logical analyser. 

Vctrl Test 

The functionality of the Vctrl signal is much simpler than those of chop and settling time. It only 

handles one port and is not affected by the step sequence. Therefore, the behaviour was 

confirmed by incrementing control register “motor current” and inspecting the signal’s duty 

cycle. 

Chop Test 

The chop procedure was tested similarly to the step sequence. The eight RSE output ports 

that operate the driver’s H-bridge were sampled with different values of control register chop 

duty cycle, where one sample is shown in Figure 38. The test confirmed that the chopping 

procedure followed the correct sequence and that the register value controlled the duty cycle. 

However, when a chopping phase for one coil started, the ongoing pulse for the other coil was 

longer than the others, as highlighted in Figure 38. This is because Timer2 controls signals for 

both coil A and B. The timer did not permit, introducing of new signals in the middle of a count 

operation so the timer must complete the ongoing count or manually be reset.  
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Waiting for the timer to complete, would mean that the chopping procedure for the passive coil 

starts too late. This results in additional power dissipation because the current exceeds the 

current limit. The other alternative, manually resetting the timer, would introduce a longer pulse 

because the timer is reset before the pulse is set low. However, this would only mean that the 

current would decrease slightly more for that particular pulse.  

Because the current rise time is significantly quicker than current decay time, as described in 

Section 3.4.2, the effect would be more noticeable if chopping starts too late. Therefore, the 

driver SW operates by manually resetting the timer at the start of each chopping phase. 

 

Figure 38. Chop sample. The figure illustrates the chopping procedure for an eight-step sequence 

where the steering signal for the pull-down transistors (Q3 and Q4) are switched fast on and off. The 

figure also indicates (red) the undesirable extended pulse, introduced by the timer. 

Settling Time Test 

This parameter determines how long the current is allowed to rise unaffected by the chopping 

procedure. This means that there must be a delay before the chopping starts, which is called 

the “fully on phase”. The settling time test procedure was identical to that of the chop producer, 

except that the control register settling time was incremented. Figure 39 illustrates one 

sample of four steps where settling time is 250 µs. 
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Figure 39. Settling time sample for 4 out of 8 step sequences. Settling time register is adjusted to 

250 µs. Therefore, the chopping (fast on/off switching) procedure for pull-down transistor AQ4 and 

BQ3 starts after 250 µs.  

Current Waveform Test 

The overall functionality was verified by connecting the stepper motor to the driver and 

observing the motor current. As discussed in Section 4.9.2, a “motor on period” is divided into 

three phases: setup, fully on, and chop. Figure 40 shows one “motor on period” for coil A where 

the driver is configured by the following settings: 

 VCtrl  duty cycle: 80% (current limit: 0.6 A) 

 Settling time: 250 µs 

 Chop duty cycle: 45% 

 

Figure 40. “Motor on period” for coil A. Purple line represents the motor current.  
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Figure 40 illustrates that the current change direction and increase until the current limit is 

reached. We see that the current is sustained (A in Figure 40) until the chopping procedure 

starts and holds the current at approximately 0.6 A. As previously discussed in Section 3.4.2, 

the most efficient setting is when the chopping procedures start as soon as the limit is reached. 

This enables current to rise quickly, but without the excessive power dissipated by the current 

limit circuitry, as indicated for period A in Figure 40. Therefore, a settling time of approximately 

120 µs would be a more suitable setting for this particular test. Figure 40 also illustrates the 

undesirable current decay, introduced by the timer. However, this effect is hardly recognizable 

and, therefore, would not affect the torque characteristics. 

System Test 

The driver's parameters affect motor torque characteristics and power consumption. 

Therefore, it is vital to characterise the driver parameters effects and operation range, as well 

as to find the optimum settings for the driver software. A complete test which covers these 

demands is located in Appendix B, and a summary of the test is presented in this section. 

The current limit worked as expected: both motor current and motor torque increased linearly 

as the Vctrl duty cycle increased. However, the driver was non-functional below 25% duty cycle, 

which corresponds to a Vctrl signal of 0.8 V and a current limit of 0.16 A, because the current 

limit circuit requires a Vctrl signal above 0.8 V. The test confirmed that a settling time less than 

the current rise-time reduced the torque. Although a settling time longer than the current 

needed to reach the current limit did not affect the torque, the current draw increased 

considerably. 

The chopping operation had a significant impact on both torque and current draw. However, a 

chop duty cycle of approximately 45% reduced the average current draw by 70% and only 

decreased the torque by roughly 5% from the maximum value. These results confirm that the 

copping operation significantly increased the efficiency. The torque is fully adjustable from 

0.1 Nm to 1.63 Nm and provides the required torque of 1.2 Nm at a current limit of 0.6 A. Table 

18 shows the parameters operation range and the ideal parameter settings at normal 

operation. 

Table 18. Driver parameters test result 

Parameter Optimal setting (0.6 A) Operation range 

Vctrl duty cycle 80% 25–100% (0.16–0.8 A) 

Chop duty cycle 45% 0%–55%  

Settling time 120 µs 1–255 µs 
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5.4 Task Execution Test 

Communication Timing Test 

As discussed in Section 2.4.3, the RoR communication protocol defines three timing 

constraints. Therefore, it is crucial to ensure that the RSE does not violate any of these 

constraints. The transmission speed between the E-box cards was suggested to be around 

200 kbs. Thus 1 baud delay corresponds to 5 µs, meaning that the RSE must generate a 

response message between 5 µs (slave slack) and 120 µs (response timeout) after a received 

query. The RoR protocol defines five different queries that contain separate instructions, so 

the delay before the RSE generates a response packet will vary. To ensure that the RSE 

operates within the timing constraints, the transactions were analysed by an oscilloscope. The 

scope sampled several transactions and generated a combined image, as shown in Figure 41. 

All samples are stacked on top of each other; together, the samples will cover an area that 

represents the time variation of the transactions. Figure 41 shows that after a received query, 

the RSE waits for at least 38 µs and a maximum of 68 µs before a response is generated. This 

confirms that the RSE operates within timing constraints and at a safe value away from the 

minimum and maximum limits.  

 

Figure 41. Transactions envelop samples. Query packet (on top) contains one character, and the 

response packet (below) contains three characters. A query is answered by a response packet 

between 38 µs and 68 µs. 
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Scheduler Tasks Test 

As discussed in Section 4.4, the scheduler requires that all tasks started within a cycle must 

complete before the cycle ends. One cycle lasts for two ms, which should be more than enough 

because the tasks perform relatively simple operations. However, the communication task is 

implemented as two ISRs, one for receiving data and one for transmitting data. Because the 

CPU only has one core, the tasks controlled by the scheduler can be affected, especially if the 

interrupt occurs frequently. By measuring the tasks’ worst-case execution time (WCET), it is 

possible to calculate the WCET of a cycle and confirm that it is less than two ms.   

The scheduler executes two task categories, periodic tasks, and sporadic tasks. All periodic 

tasks are permitted to execute once per cycle, and only one sporadic task is allowed. 

Therefore, the WCET for one cycle can be calculated by means of Equation (8). 

 WCETPeriodic : Execution time of all periodic tasks 

 WCETSporadic : Execution time of the most time-consuming sporadic task 

 WCETRx  : Execution time of the receive ISR  

 WCETTx : Execution time of the transmit ISR   

 a : Maximum amount of receive ISR, before all scheduler tasks, are complete 

 b : Maximum amount of transmit ISR, before all scheduler tasks are complete  

The tasks execution time was established by toggling an output port before and after each task 

and measuring the pulse length. The results are listed in Table 19. 

Table 19. WCET results 

Task  WCET 

WCETFixed 32 µs 

WCETCommand 24 µs 

WCETRx 68 µs 

WCETTx 7 µs 

 

Figure 42 illustrates the CPU resources, assuming the DPU sends queries at the maximum 

rate. The light-green boxes represent available CPU resource, and red boxes represent CPU 

occupied by an ISR. Once a query is received, the communication task ISR is entered. As 

previously described, the communication task interprets the data and buffers the first response 

character into the UART transmit register. The UART operates asynchronously to the CPU; 

this means that while the UART transmits the data, the CPU is available for 60 µs, as defined 

by Equation (9).  

 

  𝑊𝐶𝐸𝑇𝐶𝑦𝑐𝑙𝑒 = 𝑊𝐶𝐸𝑇𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 + 𝑊𝐶𝐸𝑇𝑆𝑝𝑜𝑟𝑎𝑑𝑖𝑐 + 𝑊𝐶𝐸𝑇𝑅𝑥 ⋅ 𝑎 + 𝑊𝐶𝐸𝑇𝑇𝑥 ⋅ 𝑏 (8) 

 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 12 𝑏𝑖𝑡 ⋅ 5𝜇𝑠 = 60𝜇𝑠 (9) 
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Figure 42. WCET CPU illustration. Dark red boxes represent CPU occupied by an ISR. Light green 

boxes represent available CPU.  

Once the first character is transmitted, the transmit ISR is entered, and the next character is 

buffered into the UART transmit register. This is a short ISR and only occupies the CPU for 

7µs. After the second character is transmitted, a new transmit ISR is entered, and the last 

character is buffered. The CPU is then available for 60 µs plus the master slack, which is one 

of the RoR timing constraints. This operation repeats until the cycle ends. 

From Equation (10), the CPU is at worst occupied by an ISR for 30% of the cycle, which means 

that the tasks have 1.4 ms available CPU time each cycle. Considering the short task execution 

time WCETPeriodic + WCETSporadic = 56 µs, the available CPU resource is more than adequate.  

Because the execution of the scheduler tasks adds up to 56 µs which are less than one 

character transmission time, the WCET for a cycle according to Equation (8) is 68 µs+56 µs 

= 124 µs. 

To confirm that the calculations were correct, a test similar to the communication test was 

performed. An output port was toggled at the beginning of the first task and at the end of the 

last task. In addition, an output port was toggled by the scheduler timer. This setup provides 

two signals where one represents the execution time of all tasks, and the other represents the 

scheduler cycle. The oscilloscope repetitively sampled the output signal while several memory 

read and memory write operations were initiated, as fast as possible, ensuring that an interrupt 

occurred before the tasks were complete. Figure 43 illustrates the generated envelope image 

where the upper signal represents the scheduler time, and the lower signal represents the total 

task execution time. 

 
𝐼𝑆𝑅𝑇𝑖𝑚𝑒 =

𝐶𝑃𝑈Occupied 

𝐶𝑃𝑈Available + 𝐶𝑃𝑈𝑂ccupied
=

82𝜇𝑠

185𝜇𝑠 + 82𝜇𝑠
⋅ 100 ≈ 30% 

(10) 
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Figure 43. Scheduler tasks envelope sample. The pulse on top represents one scheduler cycle (lasts 

for two ms) and the pulse below represents the WCET of all tasks in a cycle (146 µs). 

Figure 43 illustrates that all tasks complete after 146 µs, which is slightly more than the 

calculated. Considering the rough estimate method, the two results are relatively similar and 

confirm that the scheduler guarantee execution off all tasks well within the limit. Figure 43 also 

shows that the first task is not affected by timing jitter, denoted by how the rising edge of the 

pulse does not cover an area, meaning it is started at the same time each cycle. The first task 

is only affected by timing jitter if an interrupt occurs at that particular moment, which is unlikely. 

5.5 Motor Magnetic Field Test 

The SMILE satellite contains several components that may be affected by the magnetic field 

generated by the stepper motor. In particular, the magnetometer instrument which is designed 

for measurements of the Earth’s magnetic field. Even though the stepper motor will be off for 

most of the time and only generate a rotating magnetic field for a short period, the stepper 

motor’s permanent magnetized rotor will produce a static magnetic field. However, by 

characterising the magnetic field during both these events, the magnetometer’s readings can 

be compensated. 

Consequently, the motors magnetic field in the x, y, and z-axis was measured from distances 

between 5 and 25 cm. In addition, these measurements were repeated with mu-metal wrapped 

around the motor. Mu-metal is a soft ferromagnetic alloy of about 80% nickel, and the 

remaining 20% consists of iron and various other materials [30]. This composition has an ability 

to reduces magnetic field and will most likely encapsulate the motor to prevent magnetic field 

contamination.     
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Figure 44 shows two magnetic field measurements (x-axis) when the motor is active, with and 

without the mu-metal. These graphs confirm that the mu-metal significantly reduces the 

magnetic field exposure, especial at lower distances. The other measurements that are not 

included in this thesis showed similar results. In addition, the magnetic field measurements 

that were performed while the motor was off and on, was almost identical. For more information 

about the magnetic field measurements, see [31] 

 

Figure 44. Stepper motor magnetic field measurement [31]. 

5.6 Test Evaluation and Key Findings 

A user-friendly and efficient simulator program has been developed. This allowed to test the 

RSE functionalities and monitor the communication. It was also beneficial during motor torque 

and magnetic field measurements since the program provided a simple interface for operating 

the RSE. The program did not support the correct UART configuration. Consequently, the RSE 

required smaller modifications. However, the modifications did not affect the RSE operations 

and therefore did not compromise the tests integrity. 

5.6.1 Driver and Motor Evaluation 

The driver’s key functionalities were analysed and tested separately. The test confirmed that 

H-bridge transistors were sufficient controlled and that a short circuit did not occur. The driver 

parameters worked as expected, the output signal was determined by their corresponding 

control registers. In addition, the settling time and chop procedure where activate at the correct 

sequence. However, the chop procedure which should provide a stable PWM signal had one 

extend pulse, each fully on period. The current waveform test showed that the extended pulse 

had a negligible effect on the current waveform. Hence, it will not affect the motor 

characteristics. 
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The system test showed that both driver hardware and software were sufficient to control the 

stepper motor efficiently. The test also characterized the parameters effect on motor torque 

and current draw. This provides the information required to find the optimal driver setting, which 

gives the highest torque without compromising the efficiency. In addition, the system test 

provides key findings which can increase the motor’s performance and reliability. For example, 

by decreasing the settling-time parameter (i.e., chopping starts earlier), the current rise time 

will be longer, as shown in Figure 45. Consequently, each step will have slower acceleration 

and therefore not be as harsh on the gearbox.  

 

Figure 45. Driver settling time parameter effect. The two images show the coil current at the start of a 

“motor on period”, i.e., the start of a step. Left: the current chopping starts immediately, resulting in 

long current rise time. Right: the current chopping stars after ≈100 µs, resulting in shorter current rise 

time.  

Furthermore, the current limit can also be reduced, but this will not affect current rise time, only 

the current final value. However, if an operation requires higher torque than normal, e.g., in 

case of the shutter is stuck, can the driver parameters be adjusted accordingly: 

 Current limit set to maximum (0.8 A) 

 Settling time over 115 µs 

 Chop duty cycle 45% or less 

This will provide approximately 25% more torque than normal operations. However, the current 

draw and power consumption will increase significantly, especially if the chop duty cycle is less 

than 10 %. Therefore, this setting must only be used for a short period, to prevent the motor 

and driver form overheating. 



CHAPTER 5 

79 
 

5.6.2 Tasks Handling Evaluation 

The RSE control system is constructed as a hybrid of hard and soft real-time system. The task 

testes confirmed that system guaranteed execution of all task well within the deadline. The 

communication task which is the only hard real-time task could potentially affect the soft real-

time tasks. This is because the communicating task is implemented as an ISR, rather than a 

pre-emptive task within an RTOS. The ISR could therefore frequently acquire CPU resources 

and prevent the scheduler from completing the soft-real-time operations. However, 

calculations showed that the scheduler had at least 70% available execution time for each 

cycle. Considering the relatively long scheduler interval time of 2 ms and the short WCET for 

a cycle, of 124 µs, the CPU has plenty of available time. This was also confirmed with hardware 

measurements, where the communication task was continuously stimulated, and the task 

execution time was measured. However, the HW test showed that the scheduler task used 

about 15% more time than the calculated, which corresponds to only 22 µs difference. 

Considering that calculated method did not account for the task swapping overhead, ISR 

response time and the modified UART frame, the results are almost identical.
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6 Outlook and Conclusion 

6.1 Future Work  

Due to the projects early stage, some components and software requirement specifications 

(SRS) are not yet finalised (e.g., HDRM actuator, sensors and the periodic measurements’ 

interval). However, the software is designed highly generic and modular, enabling simple 

software adjustments, adoption of new hardware components and software functionality. 

Therefore, all tasks are independent procedures. Those tasks that are not completed due to 

the projects early stage, will read dummy variables (simulating sensors) or activate dummy 

output ports (simulating actuators). 

Because the RSE must be able to operate unattended during several years, the program must 

be prevented from a system halt. A feature that prevents this scenario is not yet implemented. 

Therefore, it is strongly suggested that for example, a Watchdog Timer (WDT) is implemented 

in the future. A WDT operates identically to a hardware timer, but rather than count in a loop; 

the WDT manually resets the system when a set/specific value is reached. For example, by 

implementing a task in the periodic dispatcher that zeroes the timer, a system reset will not 

occur. However, if the system is at a halt, the zeroing will not happen. Consequently, the 

system will be reinitialised by the watchdog and continue as normal. 

6.2 FPGA Implementation 

At the time of writing this thesis, requirements regarding components’ radiation tolerance 

became more defined, as well as stricter. Therefore, the ATmegaS128 microcontroller’s 

radiation tolerance is in the lower region within these requirements. Consequently, it has been 

suggested that a radiation hardened FPGA solution would be a safer alternative. 

Because FPGAs and microcontrollers are two different platforms, the RSE implementation 

provided by this thesis will require some re-design. However, the system requirements will not 

change. In addition, most of the SRS and software design can easily be converted into 

operating on a hardware platform such as an FPGA. This is because the RSE software is 

highly modular, controlled through registers, and most of the execution is done in state 

machines (SM). Furthermore, most of the output signals steering the motor are already directly 

controlled by hardware timers. These design choices are very close to a hardware approach, 

and will enable a quick transition to an FPGA if required. 

Figure 46 offers a simplified block diagram of a potential FPGA solution for the RSE. The 

individual blocks illustrate the main modules and the arrows illustrate their interconnections. 

Instead of using a scheduler, the registers can directly acquire and configure timers and state 

machines, thereby executing both periodic and sporadic tasks in hardware. 
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Figure 46. Potential FPGA solution for the RSE. The RSE software is easily converted into a hardware 

solution, as represented by the boxes.  

6.3 Conclusion 

This thesis has presented the design, implementation, and testing of a control system solution 

for the radiation shutter. The embedded software is implemented as a hybrid of hard and soft 

real-time system, without a real-time operating system. Instead, the system utilizes a custom 

interrupt driven scheduler that consume less memory, reduces system complexity and is more 

responsive. Furthermore, the system provides the SXI control unit (DPU), with a reliable 

memory mapped interface. This interface enables the DPU to collect HK-readout, configure 

RSE settings and safely operate the radiation shutter. 

The radiation shutter main modules have been implemented, tested and verified. These main 

modules include the task handling procedures, communication, and the stepper driver 

software. In addition, the testing of the stepper driver hardware and the stepper motor 

confirmed that the system worked successfully. 

The task handling tests showed that the custom interrupt driven scheduler guaranteed 

execution of both soft and hard real-time tasks, well within the timing constraints. Because a 

significant amount of effort was spent on design, the implementation and testing were vastly 

simplified. This decision was a major contributor to being able to develop an almost complete 

solution within the MSc project time frame of one year.
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Appendix A Software Requirement Specification 

This chapter presents the software requirements specification for the RSE. Due to the project’s 

early stage, several key elements of the software are not yet decided or confirmed. This is 

indicated by: To Be Decided (TBD) or To Be Confirmed (TBC). 

A.1 Start-Up 

RSE-SRS-FN-0001 Start-up routine Verification: T 

The start-up routine shall be executed automatically after powering on or after a reset. The 

start-up routine includes the following initialisation tasks: 

 Initialise USART 

 Initialize GPIO-ports 

 Initialise timers 

 Initialise register values 

 Enable global interrupt 

After a finished start-up routine, the main function shall transfer control to the scheduler. 

   

RSE-SRS-FN-0002 Initialise USART Verification: T / I 

Initialisation of USART shall configure the correct settings listed below: 

 Set baud rate to TBD-01 

 Enable transmit and receive 

 Configure data frame: 1-start-bit, 9-data-bit, odd parity, 1-stop-bit TBC-01 

 Enable RX complete interrupt 

 Enable TX complete interrupt 

RSE-SRS-FN-0003 Initialise GPIO ports Verification: T / I 

Initialisation of GPIO ports shall set ports as input or output and set default values on output 

ports. 

RSE-SRS-FN-0004 Initialise timers Verification: T 

Initialisation of timers shall configure motor driver timers and the scheduler timer, with TBD-02 

seconds intervals. 
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RSE-SRS-FN-0005 Initialise register values Verification: T 

Initialisation of register values shall set all registers’ (status registers, control registers, and 

command register) default values TBD-03. 

RSE-SRS-FN-0006 Enable global interrupt Verification: T 

After all interrupts are configured, global interrupt shall be enabled. None of the interrupts shall 

be triggered before this is done. 

A.2 Scheduler 

RSE-SRS-FN-0009 Scheduler Verification: T 

The scheduler shall run in a constant cycle of TBD-04 seconds. The scheduler shall guarantee 

the following: 

 Perform periodic HK-readouts (e.g., temperature measurements)  

 Interpret received data and generate a response within the RMAP over RBDP (RoR) 

protocol timing constraints (i.e., a response shall be generated between 1 baud delay 

and 24 baud delays, after a received query) 

 Perform aperiodic tasks (e.g., open shutter, close shutter)  

Periodic tasks:  

Several tasks can execute within a cycle, including but not limited to:  

 Measure motor temperature 

 Measure electronics temperature 

 Measure shutter status 

 Measure HDRM status 

 Measure processor status 

Aperiodic tasks: 

Only one task can execute within a cycle, including but not limited to: 

 Open shutter stop at end 

 Close shutter stop at end 

 Open shutter max no of steps 

 Close shutter max no of steps 

 Emergency shutter stop at end 

 Activate HDRM 

 Cancel command 



Appendix A 

85 
 

A.2.1 Periodic Tasks 

RSE-SRS-FN-0010 Measure motor temperature Verification: T 

RSE shall measure the motor temperature and store the values in status register: Motor 

temperature. When the motor is inactive, a temperature reading shall be performed at 

intervals of 30 TBC-02 seconds. When the motor is activated, a temperature reading shall be 

performed at intervals of 1 TBC-03 seconds. 

RSE-SRS-FN-0011 Measure electronics temperature Verification: T 

RSE shall measure the electronics temperature and store the values in status register: 

Electronics temperature. When the motor is inactive, a temperature reading shall be 

performed at intervals of 30 seconds TBD-05. When the motor is activated, a temperature 

reading shall be performed at intervals of 1second TBD-06. 

RSE-SRS-FN-0012 Measure shutter status Verification: T 

RSE shall measure the shutter status sensors and store the value in status register: Shutter 

status register. The shutter status register shall also indicate if an emergency 

closure is initiated and if the motor or/and electronics temperatures are too hot to operate. 

When the motor is inactive, the shutter status register shall be updated in intervals of 

TBD-07 seconds. When the motor is activated, the shutter status register shall be 

updated in intervals of TBD-08 second. 

 

RSE-SRS-FN-0013 Update HDRM status Verification: T 

TBD-09 
 
 

RSE-SRS-FN-0014 Update Processor status Verification: T 

TBD-10 
 

A.2.2 Aperiodic Tasks 

Aperiodic tasks shall be executed if the DPU has requested it. This involves reading the 

command register and performing the operation that corresponds to the command registers 

unique content.   
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RSE-SRS-FN-0015 Open shutter stop at end Verification: T 

If the command register content indicates an open shutter stop at end operation, the 

RSE shall read the control registers, configure motor settings, and start the motor in the open 

direction. The motor shall run continuously until the open shutter sensor is activated, 

motor/electronics overheating, performed steps equals the maximum stepping limit, or the 

cancel command is initiated. 

 

RSE-SRS-FN-0016 Close shutter stop at end Verification: T 

If the command register content indicates a close shutter stop at end operation, the 

RSE shall read the control registers, configure motor settings and start the motor in the closed 

direction. The motor shall run continuously until the closed shutter sensor is activated, 

motor/electronics overheating, performed steps equals the maximum stepping limit or the 

cancel command is initiated. 

RSE-SRS-FN-0017 Open shutter max no of steps Verification: T 

If the command register content indicates an Open shutter max no of steps operation, 

the RSE shall read the control registers, configure motor settings and start the motor in open 

shutter direction. The motor shall run continuously until max no of steps is performed, 

motor/electronics overheat, or the cancel command is initiated. Notably, the sensor criteria is 

removed, which guarantees opening of the shutter even if the open sensor is stuck activated. 

RSE-SRS-FN-0018 Close shutter max no of steps Verification: T 

If the command register content indicates a close shutter max no of steps operation, 

the RSE shall read the control registers, configure motor settings and start the motor in open 

shutter direction. The motor shall run continuously until max no of steps is performed, 

motor/electronics overheat, or the cancel command is initiated. Notably, the sensor criteria is 

removed, which guarantees closing of the shutter even if the closed sensor is stuck activated. 

RSE-SRS-FN-0019 Emergency close stop at end Verification: T 

If the command register value indicates an emergency close stop at end operation, the 

RSE shall read the control registers, configure motor settings, and start the motor in close 

shutter direction. The motor shall run continuously as fast as possible until only the close 

shutter sensor is activated, or the cancel command is initiated. Notably, motor/electronics 

overheating criteria is omitted. 
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RSE-SRS-FN-0020 Activate HDRM Verification: T 

The HDRM shall only be activated if the RSE receive two unique HDRM commands. The first 

command shall arm the HDRM and the second command shall activate the HDRM. The HDRM 

shall be armed for 1 second TBD-11; if an activate HDRM command is not received within this 

time or a command that updates any of the RSE registers are received, the HDRM shall be 

disarmed and the proses must be repeated. TBD-12 

RSE-SRS-FN-0021 Cancel command Verification: T 

If the command register value indicates a Cancel command operation, the RSE shall always 

cancel any ongoing operation. 

 

A.3 Interpret Received Data 

If data is received, the interpret data task shall be performed, by means of an interrupt routine. 

When the RSE has received a full data packet, the data packet shall be interpreted as following 

depending on its content: 

 Read register request 

 Write register request 

 Undefined/ illegal request 

The interpret data and response procedure shall follow the RoR protocol.  

RSE-SRS-FN-0022 Read register request Verification: T 

The RSE registers shall always be readable regardless of whether the motor is active or not; 

this includes the status register, the control registers, and the command register. 

RSE-SRS-FN-0023 Write register request Verification: T 

Only the control registers and the command register shall be writable; the status registers shall 

be read-only. All writing requests for the status register shall result in a rejected request and 

the remark character shall identify the error. 

The control registers shall only be written if the motor is inactive; any writing request for the 

control registers while the motor is active, shall reject the request and the remark character 

shall identify the error. This shall also apply to the command registers, except if the data written 

to the command register identifies cancel command, the request shall be accepted. 

A request for opening the shutter while the shutter is already open shall be rejected, and the 

remark character shall identify the error. 
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A request for closing the shutter while the shutter is already closed shall be rejected, and the 

remark character shall identify the error. 

A request for closing/opening the shutter while the motor temperature is too hot shall be 

rejected, and the remark character shall identify the error. 

A request for closing/opening the shutter while the electronics temperature is too hot shall be 

rejected, and the remark character shall identify the error. 

 

RSE-SRS-FN-0023 Undefined/ illegal request Verification: T 

Write or read request of a register that is undefined shall be rejected and, the remark character 
shall identify the error. 
 

A.4 Error Messages 

RSE-SRS-FN-0024 RMAP transaction errors Verification: T 

After completion of a full read or write transaction, the remark character shall indicate the status 

of the operation as shown in Table 20. The detection of an illegal read/write operation, or a 

sequence error, shall also result in an aborted transaction with the remark character containing 

the corresponding ID listed in Table 20 , identifying the error. 

 
 

Table 20: RSE application level error and status messages 

Response ID Comment 

Authorised 0x00 The operation is correct and accepted by the RSE 

Sequence error 0x01 RMAP protocol sequence error 

Not writable register 0x02 The register is read-only 

Wrong address 0x03 No such register 

Not allowed 0x04 Not allowed since a command is already being performed 

Shutter already closed 0x05 Not allowed since the Shutter is already closed 

Shutter already open 0x06 Not allowed since the Shutter is already open 

Motor temperature 
too high 

0x07 Not allowed since the motor is too hot 

Electronics 
temperature too high 

0x08 Not allowed since electronics is too hot 
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Appendix B Test Report for RSE Motor Control 

This chapter presents the test report for RSE motor control.  

Due to the construction of the motor driver, three parameters are adjustable, including the duty 

cycle of Vctrl signal, the duty cycle of the chop signal and the settling time. Each of these 

parameters affects both the motor torque and the average power supply current draw. In these 

experiments, both the motor torque and the average power supply current draw with respect 

to the parameters is measured independently. The intent of these measurements is to find a 

compromise between torque and the average current draw and to confirm that key parameters, 

such as maximum torque and motor current, match their theoretical values. 

B.1 Equipment 

Table 21.Equipment list 

Device Name Serial No 

Torque meter TruCheck Plus 3 N·m 43250 

Power supply  TTI QL355TP 429733 

Power supply TTI QL355TP 314963 

Oscilloscope Tektronix MD04104C MD04104C C002440 

Stepper motor VSS 25.200.0.6-HV-
GPL-KTC  

 

Microcontroller Atmega2560  

Motor driver Custom  

Fan Ide line LQ-7  
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B.2 Experiment Overview  

The equipment, listed in Table 21, is connected as illustrated in Figure 47 and remain 

unchanged during the whole experiment. 

 

Figure 47. Test setup 

The input signals from the microcontroller are connected to the driver: eight control signals for 

the transistors in the two H-bridges, one control signal for the voltage regulator (𝑉𝑐𝑡𝑟𝑙) and one 

for ground. The driver is supplied with two voltage sources ±12 𝑉 for the operational amplifiers 

and 24𝑉 for the H-bridges which is responsible for directing current in the motor. The outputs 

from the driver H-bridges are connected to the stepper motor, two wires for each coil pair. The 

stepper motor is mechanically connected to the torque measurement device which is bolted to 

a massive frame. The oscilloscope measured the current in one coil pair, the voltage regulator 

output voltage 𝑉𝑐𝑡𝑟𝑙 and a trigger signal for the first step in a sequence. The fan prevents the 

driver from overheating. 

A total of three experiments were performed. In the first experiment, the effect of adjusting 𝑉𝑐𝑡𝑟𝑙 

was measured. In the second experiment, the effect of adjusting chop duty cycle was 

investigated. In the third experiment, the effect of adjusting the settling time was examined. 
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B.3 Experiment 1, Vctrl Duty Cycle Sweep 

B.3.1 Theory, Experiment 1 

The voltage regulator shall set the current limit for the stepper motor. This is done by adjusting 

the duty cycle of the voltage regulator’s input signal which will result in a configurable voltage 

between 0 − 3.3 𝑉. The current limit is given by Equation (11) and should be adjustable 

between 0 − 0.825 𝐴  

 
𝐼𝑀𝑜𝑡𝑜𝑟 =

𝑉𝑐𝑡𝑟𝑙

4 ⋅ 𝑅𝑠𝑒𝑛𝑠𝑒
=

𝑉𝑐𝑡𝑟𝑙

4
 

(11) 

B.3.2 Objective, Experiment 1 

The goal of this experiment is to find the effect 𝑉𝑐𝑡𝑟𝑙 has on both the torque and average current 

draw. The linearity between the motor current and torque indicates whether the motor and 

driver work properly, and this is what we want to confirm by means of this experiment. The 

theoretical values of 𝑉𝑐𝑡𝑟𝑙 , 𝐼𝑚𝑜𝑡𝑜𝑟 and the motor torque should match the experimental values. 

B.3.3 Method, Experiment 1 

The duty cycle of Vctrl is adjusted from 22 −  100 %. The range from 0 −  21% is skipped 

because this is below the driver operation range. A total of four torque readings are performed, 

two readings each direction, before the duty cycle is changed. In addition, the experimental 

values of Vctrl, Imotor and power supply current draw are measured. All other driver parameters 

are constant during the whole experiment, as listed in Table 22.  Table 23 shows the calculated 

values of Vctrl and Imotor. 

Table 22. Driver settings, experiment 1 

Driver timer Parameter value  Register value  

Chop timer 8bit 50 [%] 128 

Chop settling timer 16bit 140 [𝜇𝑠] 140 
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Table 23. Calculated values for experiment 1 

𝑽𝒄𝒕𝒓𝒍 Duty Cycle 
[%] 𝑽𝒄𝒕𝒓𝒍 timer register Value 

𝑽𝒄𝒕𝒓𝒍  
[𝑽] 

𝑰𝒎𝒐𝒕𝒐𝒓  
[𝑨] 

22 56 0.7 0.182 

23 59 0.8 0.190 

24 61 0.8 0.198 

25 64 0.8 0.206 

30 77 1.0 0.248 

35 89 1.2 0.289 

40 102 1.3 0.330 

45 115 1.5 0.371 

50 128 1.7 0.413 

55 140 1.8 0.454 

60 153 2.0 0.495 

65 166 2.1 0.536 

70 179 2.3 0.578 

75 191 2.5 0.619 

80 204 2.6 0.660 

85 217 2.8 0.701 

90 230 3.0 0.743 

95 242 3.1 0.784 

100 255 3.3 0.825 

B.3.4 Results for Experiment 1 

Table 24 shows the experimental values and corresponding measurement uncertainties. The 

average value of the four readings (𝐴𝑉𝐺 𝑇𝑜𝑟𝑞𝑢𝑒) is calculated for each torque measurement. 

We observe that the uncertainty from the measurements are much greater than the uncertainty 

from the torque meter, therefore the instrument uncertainty is omitted. The uncertainty for the 

torque measurements is therefore calculated by using the standard deviation of the four 

measurements, given by Equation (12). 

 

𝑆𝐴𝑉𝐺 𝑇𝑜𝑟𝑞𝑢𝑒 = √
Σ𝑥�̅�

2

(𝑁 − 1)
   

(12) 

The power supply current meter is specified to have an accuracy of ±2% + 0.005[𝐴]. Since the 

measurements for 𝐼𝑝𝑤𝑟−𝑠𝑢𝑝𝑝𝑙𝑦 are almost constant during each measurement, and the current 

is low, the major contributor to the measurement uncertainty is the fixed part, ±0.005 𝐴. The 

uncertainty for the motor current measurements (𝐼𝑚𝑜𝑡𝑜𝑟) and voltage regulator output voltage 

(𝑉𝑐𝑡𝑟𝑙) is estimated by the smallest resolution the signal can be measured accurately without 

too much ripple. The estimated uncertainty for 𝐼𝑚𝑜𝑡𝑜𝑟 and 𝑉𝑐𝑡𝑟𝑙 is ±0.02𝐴 and ±0.05 𝑉 

respectively. 
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Table 24. Experimental values for experiment 1 

𝑽𝒄𝒕𝒓𝒍 Duty Cycle 
[%] 

AVG Torque 
[Nm] 

𝑰𝑷𝒘𝒓−𝒔𝒖𝒑𝒑𝒍𝒚 [A] 𝑰𝒎𝒐𝒕𝒐𝒓 [A] 𝑽𝒄𝒕𝒓𝒍 [V] 

22 0 0.034 ± 0.005 0 ± 0.03 0.75 ± 0.05 
23 0 0.045 ± 0.005 0 ± 0.03 0.787 ± 0.05 
24 0.12 ± 0.04 0.053 ± 0.005 0.150 ± 0.03 0.815 ± 0.05 
25 0.23 ± 0.01 0.059 ± 0.005 0.159 ± 0.03 0.854 ± 0.05 
30 0.35 ± 0.01 0.076 ± 0.005 0.200 ± 0.03 1.03 ± 0.05 
35 0.44 ± 0.03 0.089 ± 0.005 0.260 ± 0.03 1.19 ± 0.05 
40 0.51 ± 0.03 0.103 ± 0.005 0.310 ± 0.03 1.36 ± 0.05 
45 0.62 ± 0.07 0.118 ± 0.005 0.350 ± 0.03 1.52 ± 0.05 
50 0.67 ± 0.06 0.133 ± 0.005 0.400 ± 0.03 1.69 ± 0.05 
55 0.80 ± 0.03 0.148 ± 0.005 0.430 ± 0.03 1.84 ± 0.05 
60 0.90 ± 0.05 0.165 ± 0.005 0.495 ± 0.03 2.01 ± 0.05 
65 1.00 ± 0.07 0.182 ± 0.005 0.520 ± 0.03 2.19 ± 0.05 
70 1.11 ± 0.05 0.202 ± 0.005 0.560 ± 0.03 2.35 ± 0.05 
75 1.23 ± 0.03 0.220 ± 0.005 0.600 ± 0.03 2.52 ± 0.05 
80 1.32 ± 0.04 0.240 ± 0.005 0.640 ± 0.03 2.69 ± 0.05 
85 1.42 ± 0.01 0.260 ± 0.005 0.690 ± 0.03 2.82 ± 0.05 
90 1.51 ± 0.05 0.287 ± 0.005 0.710 ± 0.03 2.98 ± 0.05 
95 1.58 ± 0.01 0.310 ± 0.005 0.755 ± 0.03 3,14 ± 0.05 

100 1.64 ± 0.02 0.332 ± 0.005 0.800 ± 0.03 3,30 ± 0.05 

B.3.5 Discussion for Experiment 1 

The experimental results listed in Table 24 were used to graphically illustrate the effect of 

adjusting 𝑉𝑐𝑡𝑟𝑙. Error bars represent the uncertainty for each measurement. 

Figure 48 shows the relationship between Imotor and Vctrl. The graph clearly illustrates that below 

24% duty cycle, which corresponds to Vctrl≈0.8V, the driver is non-functional. This is due to the 

threshold voltage required to turn on the driver PnP transistors, labelled T3 and T4 in Figure 

16. On the other hand, Imotor is linear from 24-100% duty cycle. By comparing the calculated 

and experimental values of Vctrl and Imotor listed in Table 23 and Table 24, respectively, the 

values are practically equal if we consider the uncertainty. This indicates that the current 

limiting circuitry functions correctly and the current limit can be adjusted between 0.15 − 0.80𝐴. 
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Figure 48. Motor current versus Vctrl duty cycle 

Figure 49 shows the relationship between torque and 𝑉𝑐𝑡𝑟𝑙 duty cycle. The graph indicates that 

the torque is linear between 25 − 100% duty cycle and not between 24 − 100% duty cycle as 

we would assume from Figure 48. The reason for this may be that the PnP transistors are at 

their edge of the threshold voltage when the 𝑉𝑐𝑡𝑟𝑙 duty cycle is in the low range, and therefore 

not fully turned on. Figure 50 shows the relationship between 𝐼𝑚𝑜𝑡𝑜𝑟 and the torque. The graph 

shows that 𝐼𝑚𝑜𝑡𝑜𝑟 and the torque are nearly linear, and the maximum torque is 1.64 ± 0.02 𝑁𝑚.  

 

Figure 49. Torque versus Vctrl duty cycle 
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Figure 50. Torque versus Vctrl duty cycle 

According to the motor and gearing specifications, the theoretical motor torque at nominal 

current (0.6𝐴) is given by Equation (13). 

 𝑇𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐻𝑜𝑙𝑑𝑖𝑛𝑔𝑡𝑜𝑟𝑞𝑢𝑒 ⋅ 𝑅𝑎𝑡𝑖𝑜 ⋅ 𝐸𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 

𝑇𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑡𝑜𝑟𝑞𝑢𝑒 = 0.012𝑁𝑚 ⋅ 196 ⋅ 0.8 = 1.881 𝑁𝑚  

(13) 

Table 24 shows that a motor current of 0.6[𝐴] corresponds to a torque of 1.23 ± 0.03 𝑁𝑚, which 

is only 65% of the theoretical torque. This might be because of the stepper motor is running in 

half step mode. The half step mode gives better resolution and smoother operation, but the 

torque is only 70% every second step (the half step). Another factor could be the spring, which 

connects the motor to the torque measurement device. By taking these factors into account 

are the experimental value and theoretical value of the torque as expected.  

B.4 Experiment 2, Chop Duty Cycle Sweep  

B.4.1 Theory  

The chopping operation takes advantages of the fact that the current in an inductor, i.e., the 

motor current, cannot change instantaneously. By switching the inductor current on and off 

fast enough, the inductor manages to keep the current at a nearly constant level, without 

continuously wasting too much power on a current limiting resistor. By using this chopping 

technique, the power consumption and heat generation should be drastically reduced. The 

on/off time is controlled by the duty cycle of the chopping signal, where lower percentage duty 

cycle means more on time and likely more power dissipation. 
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B.4.2 Experiment 2, Objective 

In this experiment, the effect of chop duty cycle with respect to the torque characteristics and 

the average power dissipation is examined. The experiment should also give a reasonable 

assumption of the optimal chop duty cycle where there would be a compromise between high 

torque and low power dissipation. 

B.4.3 Method for Experiment 2 

In the following experiment, the duty cycle of chop signal is adjusted from 0 − 80%. The range 

from 80 − 100% is skipped because this is outside of the driver operation range. A total of four 

torque readings are performed, two readings each direction, before the duty cycle is 

incremented. In addition, the experimental value of the power supply current draw is measured. 

The nominal operating current for the motor is rated to 0.6𝐴, therefore the current limit is set to 

0.6𝐴 and kept constant during the whole experiment. The fixed driver parameters are listed in 

Table 25. 

Table 25. Driver settings for experiment 2 

Parameter Parameter value  Register value  

𝑉𝑐𝑡𝑟𝑙  80[%] 205 

Settling time  140 [𝜇𝑠] 140 

B.4.4 Results for Experiment 2 

The experimental values and its corresponding measurement uncertainties are listed in Table 

26. The values and the uncertainties are estimated by the same method as in experiment 1. 

Table 26. Experimental values for experiment 2 

𝐂𝐡𝐨𝐩 Duty Cycle 
[%] 

AVG Torque 
[Nm] 

𝑰𝑷𝒘𝒓−𝒔𝒖𝒑𝒑𝒍𝒚 [A] 

0 1.44 ± 0.02 0.964 ± 0.005 
2 1.431 ± 0.007 0.964 ± 0.005 
5 1.430 ± 0.009 0.901 ± 0.005 

10 1.42 ± 0.02 0.808 ± 0.005 
15 1.41 ± 0.02 0.723 ± 0.005 
20 1.40 ± 0.02 0.624 ± 0.005 
25 1.39 ± 0.01 0.525 ± 0.005 
30 1.386 ± 0.004 0.443 ± 0.005 
35 1.381 ± 0.004 0.377 ± 0.005 
40 1.36 ± 0.02 0.310 ± 0.005 
45 1.360 ± 0.004 0.256 ± 0.005 
50 1.350 ± 0.009 0.245 ± 0.005 
55 1.276 ± 0.008 0.230 ± 0.005 
60 0.67 ± 0.04 0.135 ± 0.005 
62 0.44 ± 0.02 0.098 ± 0.005 
65 0.162 ± 0.006 0.061 ± 0.005 
75 0.147 ± 0.009 0.059 ± 0.005 
80 0.14 ± 0.01 0.059 ± 0.005 
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B.4.5 Discussion for Experiment 2 

Figure 51 shows the effect that chop duty cycle has on both the torque and the average current 

draw. The graph illustrates that beyond 50% duty cycle, the torque drops significantly. This is 

limited by the speed of operational amplifier, which needs a minimal time to reach the transistor 

gate threshold voltage. On the other hand, the torque is nearly stable for 0 − 50% duty cycle, 

with only a difference of 90 Nm which corresponding to about 5% less torque. As the duty cycle 

increases the power supply current drops considerably. Furthermore, a chop duty cycle 

between 45% and 50%, the torque is almost at its maximum while the current draw is reduced 

by roughly 75%. Since operating close to the edge (50%) could potentially create unstable 

behaviour, a duty cycle of approximately 45% would be ideal. 

 

Figure 51. Chop duty cycle effect 

B.5 Experiment 3, Settling Time Sweep 

B.5.1 Theory, Experiment 3 

The driver’s settling time variable is an adjustable delay, which determined when the motor 

current starts to chop. If the delay is too short, the motor current rise time might be longer, 

which would affect the torque. On the other hand, if the delay is too long, unnecessary power 

is dissipated in the current limiting transistor. 

B.5.2 Objective, Experiment 3 

In this experiment, the effect of settling time with respect to the torque characteristics and the 

average power dissipation is examined. The experiment should also give a reasonable 

assumption of the optimal settling time where there would be a compromise between high 

torque and low power dissipation. 
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B.5.3 Method for Experiment 3 

In the following experiment, the settling time is adjusted from 0 − 1000 𝜇𝑠. A total of four torque 

readings are performed, two readings each direction, the settling time is incremented in steps 

from 10 − 500 𝜇𝑠. In addition, the value of the power supply current draw is measured. Table 

27 shows the fixed driver parameters.  

Table 27. Driver settings for experiment 3 

Parameter Parameter value  Register value  

𝑉𝑐𝑡𝑟𝑙  80[%] 205 

Chop duty cycle 50[%] 128 

 

B.5.4 Results for Experiment 3 

The experimental values and its corresponding measurement uncertainties are listed in Table 

28. The values and the uncertainties are estimated identical to that of experiment 1. 

Table 28. Experimental values for experiment 3 

𝑺𝒆𝒕𝒕𝒍𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 

[𝝁𝒔] 

AVG Torque 
[Nm] 

𝑰𝑷𝒘𝒓−𝒔𝒖𝒑𝒑𝒍𝒚 [A] 

3 1.253 ± 0.06 0.211 ± 0.05 
13 1.267 ± 0.05 0.214 ± 0.05 
26 1.285 ± 0.04 0.215 ± 0.05 
38 1.292 ± 0.06 0.217 ± 0.05 
51 1.296 ± 0.05 0.219 ± 0.05 
64 1.324 ± 0.03 0.225 ± 0.05 
77 1.326 ± 0.05 0.227 ± 0.05 
89 1.329 ± 0.04 0.230 ± 0.05 

102 1.338 ± 0.04 0.232 ± 0.05 
115 1.333 ± 0.03 0.236 ± 0.05 
128 1.338 ± 0.04 0.238 ± 0.05 
140 1.325 ± 0.04 0.241 ± 0.05 
153 1.335 ± 0.04 0.243 ± 0.05 
166 1.328 ± 0.04 0.247 ± 0.05 
179 1.335 ± 0.03 0.251 ± 0.05 
191 1.336 ± 0.03 0.254 ± 0.05 
250 1.335 ± 0.03 0.269 ± 0.05 
300 1.337 ± 0.04 0.282 ± 0.05 
500 1.342 ± 0.05 0.333 ± 0.05 

1000 1.347 ± 0.06 0.586 ± 0.05 
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B.5.5 Discussion for Experiment 3 

Figure 52  illustrates both the torque and the power supply current draw with respect to settling 

time. The settling time have slight influence on the torque, but below 100𝜇𝑠 there is a minor 

decrease. The reason for this is believed to be that the chopping starts before the current 

reaches the current limit, because the coil current does not settle until after 

approximately 100 𝜇𝑠. On the other hand, the current draw increases significantly, if the settling 

time is too long. By comparing these graphs, a settling time between 100 − 130𝜇𝑠 is a decent 

estimate for the optimal settling time variable. 

 

Figure 52. Settling time parameter effect 

B.6 Test Conclusion  

In these experiments, the effects of adjusting the motor driver’s parameter are examined. As 

a result, the operation range of 𝑉𝑐𝑡𝑟𝑙 is found to be 25 − 100% duty cycle, which corresponds 

to a current limit of 0.16 𝐴 − 0.8 𝐴. The rated motor torque at 0.6 𝐴 matches the calculated value 

based on the data sheet. The importance of current chopping is confirmed, by using a chop 

duty cycle of 45% the average current draw is reduced by 70% at the cost of only 5% less 

torque. The settling time parameter has a negligible effect on the torque characteristics 

after 100𝜇𝑠, but shows significant influence on the current draw. 
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Appendix C Software Organising  

Figure 53 shows an overview of the git repository where the current project’s files are displayed 

(right). The repository is divided into three top-level folders: documentation, embedded and 

ground support equipment. As the name implies, the “documentation” folder contains 

documentation established during the RSE development, such as SRS, test reports, and other 

vital materials. The “embedded” folder contains the embedded software, where 

RSE_ATmega128A is the latest version (31.05.2018); Table 29 offers a brief description of its 

contents. Finally, the DPU simulator is located in the “ground support equipment” folder. 

 

Figure 53. Git repository overview 
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Table 29. RSE embedded software files 

Filename File type Description 

main.c Source file Contains the main function which enables 
the initialisation routines and the 
scheduler. In addition, all ISRs are located 
in this file.   

init.c Source file Contains all initialisation functions 

init.h Header file Contains macro for system settings and 
function prototypes 

sporadic_dispatcher.c Source file Contains functions that interact with the 
stepper motor or the HDRM. (sporadic 
tasks)  

sporadic_dispatcher.h Header file  Contains prototypes and variable 
declarations for functions/ variables that 
needs a scope outside the source file.   

periodic_dispatcher.c Source file Contains functions that enables periodic 
measurements  

periodic_dispatcher.h Header file  Contains, function prototypes and macros 
to configure the periodic measurements.  

RSE_register.c  Source file  Contains the struct definition for all RSE 
registers.  

RSE_register.h Header file Contains the struct declaration for all RSE 
registers. In addition, all macros for 
identifying status events are located in this 
file 

RMAP.c Source file Contains all functions for the 
communication task 

RMAP.h Header file Contains communication task macros and 
function prototypes 

FIFO_UART.c Source file  Contains a software implemented FIFO for 
transmitting data. 

FIFO_UART.h Header file FIFO function prototype.  
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Appendix D RSE Pin Map 

Table 30 presents the pin map between the microcontroller and the stepper driver. All pins 

from the microcontroller are labelled and routed onto the STK600 development board. 

Because, the stepper drivers’ ports are unlabelled, a picture of the driver and an illustration 

which identifies that ports are shown in Figure 54. Furthermore, Table 31 presents the serial 

interface between the microcontroller (RSE) and the DPU.   

A 4-pin connector is connected between the driver and the motor. This contact can be coupled 

in two possible combinations (i.e., by horizontally flipping it), which only affect the stepper 

motor rotating direction. Because the motor direction is not yet finalized, a pin map for this 

contact is not provided.  

Table 30. Pin map for ATmegaS128 and stepper driver. 

AtmegaS128 Stepper driver 

PA0 PA coil1 

PA1 PB coil1 

PE4 NA coil1 

PE3 NB coil1 

PA2 PA coil2 

PA3 PB coil2 

PB7 NB coil2 

PE5 NB coil2 

PB4 Vctrl pin 

GND GND 

GND GND 

 

 

Figure 54. Stepper driver (left) and an illustration identifying the drivers’ ports (right) 
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Table 31. Pin map for ATmegS128 and DPU 

ATmegaS128 DPU  

PE1 RX 

PE0 TX 

GND GND 
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