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Abstract

In recent years, the study of phenomena pertaining to non-linear properties of materials
has seen a major upswing - especially in the context of High Harmonic Generation
(HHG). In this thesis, an account of the current state of research in this area will be
given. In addition, we seek to combine two seemingly disparate areas of research,
both of which have been the subject of numerous years of intense research - namely
those of HHG in solid state materials, and the optical response of strongly correlated
quantum systems. To this end we will rely on solving the Fermi-Hubbard model
coupled to an electromagnetic field under time propagation. With the aid of both
numerical work and simple energy level analyses, we are able to explain most of the
characteristics of our calculated spectra. High field strength will induce aMott insulator
to metal phase transition whose imprints will be established through time resolved
high harmonic emission and doublon and spin correlation functions. The various
HHG spectra, together with said correlation functions will be studied through an Exact
diagonalization algorithm in conjunctionwith anArnoldi-Lanczos time propagator. The
parameter space considered is comprised of the electron-electron repulsion energy, U,
and peak electric field strength. Additionally, the study is not restricted to half-filling,
and results for doped materials will be presented. We find that the high U-induced
energy gap in the Fermi-Hubbard model plays the same role as the valence-conduction
bandgap in models like for instance the Semiconductor Bloch Equations when it comes
to generating high harmonic radiation through multiphoton processes. The central part
of this thesis aims at providing insight to and making further contributions to an article
published in Nature Photonics in March 2018. [1]
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Chapter 1

Introduction

In this introductory chapter, we will provide a brief introduction to the crux of the thesis,
starting from an elementary level. At the end, an outline of the main contents of the
thesis will be given.

1.1 High harmonic generation

Quantum theory dates back to Bohr’s model of the hydrogen atom in the 1910s. [2]
Although the model proved to be inadequate for more complex atoms, it still persists as
a good introduction to the basic quantum physics of matter interacting with light. One
can get a glimpse of some of the physics in a hydrogen atom by drawing a simple two
level figure. When a photon is incident upon an atom, an electron can be excited to a
state of higher energy, which is shown to the left in figure 1.1. Now, the already excited
electron might subsequently emit radiation by another photon mediating the emission
process. This process is referred to as stimulated emission and is shown to the right in
figure 1.1. Now, in a scenario in which the energy of the incident photon is off-resonant
with the energy gap, an electron might reach a higher energy state through a succession
of virtual states as illustrated in figure 1.2. Once the high energy state is reached,
the electron will ultimately relax to the ground state via either the stimulated emission
process or through spontaneous emission. Either way, a photon of higher energy than
the incident photons has been generated. The fact that we have one outgoing photon per
five incident photons is merely a consequence of energy conservation. This process is
called a multiphoton process. We emphasize the fact that the number emitted photons
in a multiphoton process is always less than the number of photons required to reach
|1〉.

It is natural to inquire why one might be interested in multiphoton processes, es-
pecially considering that the emitted photons are far and in between. The answer lies
in the concept of ultrafast measurements [3] - an exciting avenue of research that has
arisen due to the advent of new technology making it possible to study physics on the
time scale of one billionth of a billionth of a second (10−18 s). [4] This endeaveour is
motivated by the mere fact that many quantum processes in atoms happen on this time
scale. Going back to the Bohr model of hydrogen, the time taken for an electron to orbit
once around the atom is about 10−16 seconds.

Even though atoms are considered the archetypal quantum entities, interesting quan-
tum behaviour is also present in solid state materials. Moreover, to explain some
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Single photon absorption Stimulated emission

Figure 1.1: The leftmost figure shows the excitation of an electron from a state, |0〉, to an
excited state, |1〉, through a resonant excitation. In the rightmost figure, the relaxation to the
lowest lying energy state is displayed through the process dubbed stimulated emission.

Multiphoton absorption

Figure 1.2: This figure illustrates the physical scenario when the electromagnetic field is
comprised of photons that are off-resonant with the energy gap. A succession of virtual states
are reached prior to reaching the state |1〉. After excitation has taken place, the electron might
relax through spontaneous emission or stimulated emission.

properties of said systems, a quantum description is in fact necessary. The focus herein
will be geared at multiphoton processes and subsequently the generation of high har-
monics in such systems - photons generated in ways similar to the process displayed in
figure 1.2.

High harmonic generation (HHG) can be concisely described as the generation of
overtones arising from a material’s response to a driving laser pulse. Depending on the
type of system, the harmonics may arise from a multiphoton process, or may even arise
when the photons in the laser pulse are resonant with the energy gap. [5] Hence, figure
1.2 provides a first glimpse at a HHG-process. A peculiar signature of HHG is the
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appearance of only odd order harmonics, i.e. harmonics in which the angular frequency
is an odd integer multiple of that of the driving field. [6]

1.2 HHG in atomic systems

Since HHG had its conception in atomic physics [7], and that subsequent research in
large part has relied heavily upon the intuitions gained from those systems, it would be
wrong not to at least give a brief disposition of its phenomenology. In the co called
three-step model, HHG in atoms is explained by the following steps:

1. A bound electron is tunnel-ionized from the atom due to the nature of the tilted
potential generated by the light-matter coupling. When the amount of tilt is such
that the electron escapes even though it is classically forbidden, it is referred to as
tunneling. 1 [8] See the leftmost panels in figure 1.3.

2. After ionization, the electron is accelerated in the continuum. See the middle
panels in figure 1.3.

3. The electron recombines with the nucleus, and emits the energy corresponding
to the difference between its energy as a bound electron, and that of the field
accelerated "free" electron. This energy discrepancy is manifested in emitted
photons having frequencies in integer multiples of the fundamental frequency.
See the rightmost panels in figure 1.3.

The upper panels in figure 1.3 indicate the times of the laser pulse corresponding to
each of the steps described above. The radiation yield as a function of frequency can
often be said to reside in one of three regimes, shown in figure 1.4. The perturbative
regime describes the multiphoton processes in figure 1.2. Experiments conducted on
rare gases showed that the dramatic decrease in the perturbative regime was followed
by a plateau region, i.e., a region of the spectrum in figure 1.4 in which the yield was
nearly constant over several harmonic orders, until a sudden drop in the yield after a
particular harmonic order following the plateau. That is, the HHG spectra can be said
to display a cut-off, which is the rightmost region of figure 1.4. This means that there
will be one or more frequencies after which the intensity of the harmonics is drastically
reduced - see figure 1.4. In an attempt to make this cut-off behavior quantitative, an
empirical relation between ionization energy, Ip, and cut-off energy, Ic, can be devised
as follows

Ic = Ip + 3.17 ·Up (1.1)

where Up the ponderomotive energy, the energy of the field-accelerated electron. We
merely remark the following qualitative behavior

Up ∝ E2
0 ∝ I (1.2)

where I is the intensity of the electromagnetic field, and E0 the peak electric field
strength.

1Furthermore, the ionization step does not necessitate the quantummechanical concept of tunneling ionization.
An ionization process which is allowed classically is referred to as above barrier ionization. [8]
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Figure 1.3: The upper panels show different times during half a cycle of a laser pulse. To
each upper panel, the corresponding picture for the electron in a central potential is sketched
beneath it. In process 1, it is seen that the effect of the laser pulse is to modify the potential to
a tilted one, which expedites the tunneling process. Process 2 displays a dispersed wave packet
with only a small influence of the central potential. In process 3, the electron recombines and
emits (high harmonic) radiation.

HHG is a research area for which much work has been done in the context of atomic
and molecular systems. [9] We have here presented one of the hallmark articles in the
field of HHG in atomic systems - the proposal of a three-step model for HHG. [7] Even
though a condensedmatter system and an atomic system display differences with respect
to electronic structure, in that there is no apt continuum description in the former, a three
step model has been sought to explain HHG in solids. [10] The inherent difficulties in
modeling HHG in condensed matter systems will be addressed in the following.

1.3 Condensed matter systems

The early success in priming and establishing the new field of HHG in condensed matter
systems as a fertile research area can in large part be credited to Koch et al. [5] and
Vampa et al. [11] From the initial rise in popularity, up until this day, a central purpose
has been to ground the physics in an understanding paralleling that of the three-step
model [7] in its simplicity.

To get a glimpse of the physics governing light-matter interactions in solids, it is
instructive to begin by remarking the differences in the energies an electron can attain in
such systems. The complexity is somewhat increased in relation to the two level system
described above, in that a new dimension, or variable, is introduced; crystal momentum.
Accepting the notion that an electron behaves as a wave in the crystal, and is in some
systems even delocalized throughout the crystal, the crystal momentum can loosely be



1.3 Condensed matter systems 5

perturbative regime
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cut-off

...

Intensity

Figure 1.4: The yield of high harmonic radiation as a function of frequency of the emitted
radiation is shown. When the yield is presented on a logarithmic scale, the spectrum often
admits the demonstrated three-fold structure.

thought of as the momentum of the electron wave in the crystal. Earlier, we saw how
the photon energy was absorbed in the system in the form of level excitations. However,
by adding the crystal momentum dimension, not only does the system exhibit the level
transitions in figures 1.1, 1.2, but it can do so at various crystal momenta. Additionally,
light can accelerate the electron to higher momentum values within a band of energy
levels - see figure 1.5. In figure 1.5, a few excitation routes are illustrated. The figure
puts emphasis on the process of acceleration within the conduction band, although such
an acceleration may also be undergone by an electron in the valence band. 2 The reason
for the distinction crystal momentum, as opposed to momentum is the peculiar property
of the momentum of an electron in a crystal. When attaining a momentum higher than a
certain value, the wave function of the electron will effectively fold back to some smaller
set of momenta. This reduced set of momenta is referred to as the first Brillouin Zone, or
usually just the Brillouin Zone - the region of momentum space sketched in 1.5. Usually,
the electron is obstructed on its path to high crystal momentum values - which is due
to interactions with lattice vibrations, electron-electron scattering and more. [12] The
phenomenon of an electron traversing the entire Brillouin Zone was originally proposed
by Felix Bloch for electrons in static fields [13], but has recently been experimentally
realized in AC-fields. [14] The particular example of time dependent external fields is
referred to as Dynamical Bloch Oscillations. [15]

As already mentioned, atoms and solids exhibit different electronic structure. More-
over, seeing as light-emission is a mere reflection of the underlying electronic structure

2Usually, these types of problems are formulated in the language of electrons and holes, wherein physical
quantities like the current are calculated in by essentially counting up vacant single particle states - holes. [12]
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Figure 1.5: The motion of only one electron is sketched, although the valence band usually
holds a full band of electrons. The initial transition marked 1 can be parallelled to the one
in figure 1.1. Process 2 displays the additional degree of freedom along the axis of crystal
momentum. Only a few out of many possible transitions are illustrated.

- the condensed matter counterpart displays richer dynamics. That is, since an addi-
tional degree of freedom is introduced - the crystal momentum - an electron can be
excited via several pathways. In concrete terms, an interplay between intraband and in-
terband [5] processes is the underlying processes governing HHG. Interband excitation
refers to processes 1 and 3 in figure 1.5, while the intraband processes correspond to
process 2. In solids, particularly in the system studied herein, the electron is often mod-
eled as residing deep inside the crystal. There is thus no apt continuum description of
HHG, unlike in atomic systems. This is a fact that complicates the matter of trajectory
analyses in the style of HHG in atomic physics. Nevertheless, it should be noted that
successful attempts have also been made for solid state materials in this regard. [16]

To give a rationale for the newly established field, one can argue along the lines of the
importance of fundamental research pertaining to light-matter interactions. However,
HHG can be more broadly characterized as belonging to the field of ultrafast physics.
Said field provides promising outlooks on fast switching elements for next-generation
electronics that can potentially be more energy efficient and faster than present-day
transistors. In this regard, the prospect of ultrafast switching in a strongly correlated
material has very recently been revived as a result of this. [1] Another appealing feature
is the promise of elevating todays standards of table top sources of high frequency laser
pulses. [17]

Experimentally, ultrafast processes can to date be monitored on sub-femtosecond
time scales. An example is the time frequency resolution of high harmonic radiation.
[1] Thus, many aspects of ultrafast imaging are within reach experimentally. On the
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theoretical side, even single active electron theories, DFT-based studies [18], and most
notably the regime of light-matter interaction in strongly correlated systems, lack the
computational easewhich at this point can be attributed to its atomic physics counterpart.

With the prospect of imaging in mind, research has recently been directed towards
studying the ultrafast behavior of strongly correlated materials. A concept exclusive to
the regime of strongly correlated electron systems is the concept of photoinduced phase
transitions. [19] [20] The process is quantum mechanical in its origin. A correlation
function, meaning some function which we can track throughout the phase transition,
contains the signature of a transition from one phase to another. At this point, suffice it
to say that their abrupt change are indicators of a phase transition taking place. Although
seemingly unrelated to the concept of HHG, this concept unites with ultrafast physics
due to the time scale associated with the phase transition and the prospect of monitoring
the process with sub-cycle resolution with respect to an exciting laser pulse. [1]

The study of strongly correlated electron systems on pico- and femto-second time
scales is an avenue for which many recent experiments have been performed. [19]
[20] In order to not only excite the system in an apt way for femtosecond dynamics,
but also resolve the sub cycle processes in time, novel pump probe techniques are
prerequisites. The insulator to metal transition is a phase transition in a material
in which characteristic fluctuations in spin correlation and doublon-hole correlation
functions reach a metastable state. [1]

A convenient tool of analysis in these systems is provided through the so called
Schwinger limit, defined by a threshold electric field strength, Eth. It is given by

Eth =
∆

2eξ
(1.3)

where ∆ is the optical gap, e is the unit charge and ξ the correlation length - which is the
typical spatial extent of a doublon-hole pair. [21] A doublon-hole pair is understood as
a pair of an anion and a cation in the crystal. Specifically, the threshold field strength is
the field strength required to initiate the described phase transition. Eth will depend on
material parameters, as for example the energy of onsite interaction, U.

These systems also admit a useful characterization borrowed from atomic physics
in strong fields - namely, the Keldysh adiabaticity parameter. [1] [8]

γ =
~ω0

ξE0
(1.4)

whereω0 is the carrier frequency of the laser and E0 its peak electric field strength. This
formula holds true in AC fields. The range of values of the parameter quantitatively
describes whether the system undergoes a multiphoton process or a tunneling process.
It is chiefly in the regime γ << 1 that equation 1.3 holds. It is worthwhile remarking
the following behavior of the threshold field strength considered in the article of R.E.F.
Silva et al.

Fth ∝ U (1.5)

[1] This threshold behavior can also be viewed as a function of time, since the maximum
field strength will increase during the pulse, until somewhere before the middle of the
pulse the threshold is reached. The last equation is valid for relatively large electron
repulsion, U. The latter statement and the relations above will be corroborated by
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numerical simulations later on. For the present, we merely present the recent results of
R.E.F. Silva et. al. [1] in figure 1.6. Figure 1.6 illustrates the behavior of correlation
functions as a function of time, and when the field attains its threshold field strength for
different system parameters. The pulse is plotted alongside the two figures.

Figure 1.6: Two correlation functions are shown as a function of time for different instances
of the electron-electron repulsion, U. Roughly speaking, the left panel displays the degree to
which the spins are aligned antiparallel over time, and the right panel shows the number of
doubly occupied sites, normalized over the system size, as a function of time. Courtesy of
Nature photonics. [1]

Given the basic premises of HHG, it is not surprising that it bears promise in
the context of imaging. The few aspects of HHG outlined here only give the merest
indication as to the current state of research on the topic. Notable recent achievements
include an all optical reconstruction of the band structure in ZnO and the investigation
of multi band quantum interference effects. [22] [23] The latter has been used to
investigate suppression of odd order harmonics in semiconductors. In addition, we are
witnessing the the advent of the a field of study pertaining to strong electron correlation
in conjunction with ultrafast physics. [1].

In light of recent progress, there is a lot indicating the technological role as well
as the flourishing of formerly unexplored fundamental research areas. Particularly, the
final words on the matter of HHG and strong electron correlation has not been said,
and it is the authour’s ambition to at least expand a little on the underlying microscopic
theory of the newly published results. [1]
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1.4 Outline of the thesis

The contents of the thesis can be summarized as follows:

• In chapter 2, a primer on time dependent quantum mechanics in condensed matter
systems will be given. Most notably, the formalism of second quantization will
be laid out. This is done in order to formulate the Hubbard model.

• In chapter 3, the Hubbard model is derived. Furthermore, basic theory regarding
light matter coupling is applied to the Hubbard model.

• Although all numerical efforts are directed towards HHG-spectra in strongly cor-
related systems, we seek to theoretically describe our system analytically to the
largest extent possible in chapter 4 until we resort to numerical methods.

• In chapter 5, we will provide a numerical framework capable of solving for the
various observables in the Hubbard model under time propagation. In addition,
we will elaborate on the practical aspects of the numerical methods, highlighting
critical procedures along with algorithms and examples.

• The preceding chapters will comprise most of the machinery needed to describe
the one dimensional Hubbard model with light matter coupling. However, some
theoretical considerations are positioned among the results in chapter 6, which is
done for the purpose a coherent disposition.

Throughout this thesis, atomic units will be employed unless stated otherwise. In
these units, the values of ~, e, 1

4πε0
and me are all set to 1 [a.u.]. ~ is the reduced planck’s

constant, e is the elementary charge, ε0 is the permittivity of free space and me is the
electron mass. Quantities expressed in these units will be written with [a.u.] not to be
confused with arbitrary units which we will denote by [arb.u].
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Chapter 2

Fundamental concepts

In this chapter, we seek to build a foundation starting from basic theory both with
regards to time independent methods in condensed matter physics and the theory of
light matter coupling.

2.1 The time dependent Schrödinger equation

The quantum mechanical time evolution of a system of N electrons is given by the time
dependent Schrödinger equation

i
∂

∂t
Ψ(r1, r2, ..., rN, t) = ĤΨ(r1, r2, ..., rN, t) (2.1)

where Ψ(r1, r2, ..., rN, t) is the wave function of the system and Ĥ its Hamilto-
nian. The wave function,Ψ(r1, r2, ..., rN, t), also called the state of the system, is
a vector in Hilbert space. It is of paramount importance as it contains all the in-
formation about the system. Specifically, in the Born interpretation, the quantity
|Ψ(r1, r2, ..., rN, t)|2d3r1d3r2...d3rN gives the probability of finding the electrons with
coordinates r1, r2, ..., rN in their respective volume elements d3r1, d3r2, ..., d3rN at time
t. The Schrödinger equation can be formally integrated as follows

Ψ(r1, r2, ..., rN, t) = T̂ e−i
∫ t

0
Ĥ(t ′)dt ′

Ψ(r1, r2, ..., rN, 0) (2.2)

where T̂ is the time ordering operator, defined as

T̂(Â(t)B̂(t′)) =

{
Â(t)B̂(t′) if t’<t
−B̂(t′)Â(t) if t<t’

(2.3)

whence the state of the system at any time t is obtained. Physical quantities like
position, momentum etc. of a particle are related to observables. In quantum theory,
observables correspond to operators over a Hilbert space. To each observable, Â, there
is an associated notion of an expectation value. This is defined as〈

Â
〉
(t) =

∫
Ω

dΩΨ∗(r1, r2, ..., rN, t)Â(t)Ψ(r1, r2, ..., rN, t) (2.4)
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where dΩ = d3r1d3r2...d3rN . The expectation value does not describe the outcome
of a single measurement of the property pertaining to observable A. Rather, it is the
mean value obtained after doing a sufficient number of repeated measurements of the
system prepared in state Ψ(r1, r2, ..., rN, t). [24] Observables are required to be linear
hermitian operators over a Hilbert space. This assures that their expectation values are
real, whence

〈
Â
〉
(t) in equation 2.4 is real.

If the wave function is separable in space and time, i.e.,

Ψ(r1, r2, ..., rN, t) = φ(r1, r2, ..., rN) f (t) (2.5)

alongwith the fact that Ĥ is time independent, the following result follows from equation
2.1,

i
1

f (t)
∂ f (t)
∂t
=

1

φ(r1, r2, ..., rN)
Ĥφ(r1, r2, ..., rN) (2.6)

Now, since the two sides of the equations depend on different variables, both sides of
the equation are constant. Labeling this constant as E, it is readily seen that

Ĥφ(r1, r2, ..., rN) = Eφ(r1, r2, ..., rN) (2.7)

Moreover, the state’s time dependence is governed by

i
∂ f (t)
∂t
= E f (t) (2.8)

which has solution
f (t) = f (t = t0) · e−iE(t−t0) (2.9)

Clearly, for any Ψ satisfying ĤΨ = EΨ,

d
dt

〈
Â
〉
=

d
dt

∫
Ω

dΩΨ(r1, r2, ..., rN, t)∗ ÂΨ(r1, r2, ..., rN, t) = 0 (2.10)

provided Â is not a function of time. For a system in an eigenstate of a given observable,
Â, thematter of calculating expectation values is much simpler. In that case, the problem
amounts to the following eigenvalue equation

Âψn = anψn (2.11)

Just like for equation 2.4, it follows that an is real provided Â is hermitian, or self-adjoint.
Moreover, for ψn and ψm satisfying 2.11 with an , am, ψn and ψm are orthogonal. That
is, ∫

Ω

dΩψ∗nψm = δn,m (2.12)

given that {ψn | Âψn = onψn} are normalized. δn,m is the Kronecker delta, defined as

δm,n =

{
1 if m=n
0 if m, n

(2.13)
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To make the formulation more specific, for an interacting system of N particles, the
Hamiltonian assumes the form

Ĥ =
N∑

i=1

ĥ1(r i, t) +
1

2

N∑
i, j=1

UC(r i, r j, t)

:= T̂ +UC

(2.14)

where Ĥ is partitioned into a sum of single particle operators, h1(r̂ i, t), and the mutual
interaction between electrons in the system, 1

2

∑
i, j UC(r i, r j, t) where i , j. The former

may include the effect of an electrostatic potential and the coupling to an electromagnetic
field and the latter is typically the electrostatic interaction between electrons. 1 It will be
the purpose of the next section to lay out the essential theory regarding electromagnetism
before the light matter coupling is developed.

2.2 Basic electromagnetism

2 Maxwell’s equations are given as

∇ × B = µ0J + µ0ε0
∂E

∂t

∇ × E = −
∂B

∂t
∇ · B = 0

∇ · E = ρ

ε0

(2.15)

where J[ Am2 ] is the electric current density, E[Vm] the electric field, B[
Wb
m2 ] is themagnetic

flux density, ρ[ Cm3 ] is the charge density. µ0 and ε0 are the permeability and permittivity
of free space, respectively. [25] In the following, we will resort to a useful restatement
of equations 2.15 To this end, define the electromagnetic vector potential as

B = ∇ × A (2.16)

which is in agreement with the third of Maxwell’s equations 2.15 since the divergence
of the curl of any smooth vector potential is zero. [26] A’s relation to the electric field
is

∇ × E = −
∂

∂t
(∇ × A)

∇ × (E + ∂

∂t
A) = 0

(2.17)

Now, since ∇ × ∇Φ = 0 for a smooth scalar field, Φ, we may write

E +
∂

∂t
A = −∇ · Φ (2.18)

1Although the single particle term most often includes p̂i , we do not write it as an argument to equation 2.14
2This section is in SI units
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whence
E = −

∂

∂t
A − ∇ · Φ (2.19)

Upon substitution into Maxwell’s equations 2.15, the following couple of equations
arise

∇2
Φ +

∂

∂t
(∇ · A) = 1

ε0
ρ

∇2A − µ0ε0
∂2A

∂t2
− ∇

(
∇A + µ0ε0

∂Φ

∂t

)
= −µ0J

(2.20)

By the established relation between electric and magnetic fields and the scalar and
vector potentials, one can gain access to both electric and magnetic fields by solving
the coupled equations 2.20. Furthermore, it is evident that the these equations exhibit
a freedom in the sense that two different pairs (A,Φ) and (A′,Φ′) can give rise to the
same physical fields. This freedom is called gauge invariance.

2.3 Light matter coupling

In classical mechanics, the motion of an electron in an electromagnetic field is governed
by the Lorentz force

F = v × B + E (2.21)

where v is the electrons velocity at time t. In order to extend the Hamiltonian in equation
2.14 to that of a system of electrons interacting with an electromagnetic field, note that
the single particle Hamiltonian can in the time independent case be cast in the form

Ĥ =
N∑

i=1

p̂i

2
+ VI(r i) (2.22)

where p̂i is the momentum operator for electron i andVI(r i) is the electrostatic potential
experienced by electron i. The effect of introducing the electromagnetic field amounts
to the following substitution

p̂ → p̂ + Â(r, t) (2.23)

This is made evident by the fact that the Hamiltonian in classical field theory for an
electron in an electromagnetic field is given by [27]

H(r, t) =
1

2
(p + A(r, t))2 − Φ(r, t) (2.24)

By applying Hamilton’s equations [28] to equation 2.24, equation 2.21 is obtained.
The substitution 2.23 is referred to as minimal coupling. By applying the canonical
quantization step [24], the single particle Hamiltonian in equation 2.22 is expressed on
the following form

Ĥ =
N∑

i=1

( p̂i + Â(r, t))2

2
+ VI(r i) (2.25)
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where we have employed the gauge Φ(r, t) = 0. [29] An important approximation
can be made in the above expression, namely the semiclassical approximation. This
amounts to replacing Âwith the classical field, A(r, t). For a laser with sufficiently high
photon number, the classical nature of light is prominent, and the quantum description
becomes a cumbersome, and in fact redundant one for our purposes. 3 In the subsequent
chapters, all efforts will be geared towards incorporating equation 2.25 into the Hubbard
model. However, to achieve this with the necessary level of rigor, we first specialize
our generical Hamiltonian in equation 2.14 to the case electrons on a one dimensional
crystal lattice.

2.4 Electrons in a crystal lattice

4 For an electron in a one-dimensional crystal lattice, the Hamiltonian can be written as

ĥ1(r) =
p̂2

2
+

L∑
i=1

VI(r − Ri) (2.26)

where r is the coordinate of the electron, L is the number of atoms/sites in the lattice
and Ri denotes the positions of the atoms/sites in the crystal lattice. This Hamiltonian
assumes an electron that is not interacting with the other electrons present in the
solid. The nearest neighboor atoms are separated by the lattice constant, a. As a
central assumption, the potential is a periodic function in the lattice parameter, V(r) =
V(r + na) for arbitrary n ∈ Z . In addition, the periodicity of the charge density, ρ(r), at
different sites implies that the wavefunctions for an electron residing on different sites
are separated by a complex phase,

eikRnψλ(k, r) = ψλ(k, r + Rn) (2.27)

where k is some quantity yet to be determined and λ the band index. Upon writing

ψλ(k, r) =
eikr

√
L

uk(r) (2.28)

it follows from equation 2.27 that

uk(r) = uk(r + a) (2.29)

Equation 2.28 together with 2.29 is referred to as as Bloch’s theorem. The Bloch states
defined by equation 2.28 can be interpreted as plane waves modulated by a function
carrying the periodicity of the lattice. An alternative derivation can be found in [12]
or other introductory textbooks on condensed matter physics. In order to model the
crystal as a finite system while circumventing the difficulty of surface effects, periodic
boundary conditions are employed. This entails demanding that ψ(r + La) = ψ(r) for

3However, it is important to emphasize that the process of spontaneous emission is not captured in the
semiclassical approximation, and is only adequately treated in the framework of quantum field theory.

4From here on out, we lose the vector notation since all systems studied are one dimensional.
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some integer L. From this consideration, k can be shown to take the following L discrete
values

k = −
π

a
,−
π

a
+

π

La
, ..., 0, ...,

π

a
−

π

La
(2.30)

Furthermore, the states in equation 2.28 exhibit orthogonality and completeness∫
L
ψ∗λ(k, r)ψξ(k

′, r) = δλ,ξδk,k ′ (2.31)

where the integral is taken over the length of the one dimensional crystal, La, which will
be done throughout this section. Equation 2.31 holds true since {ψλ(k, r)} are eigenstates
of the crystal Hamiltonian 2.26. By the completeness property, any eigenstate of the
Hamiltonian in equation 2.26 can be written as a linear combination of these eigenstates

Ψ(r) =
∑
k,λ

ck,λψλ(k, r) (2.32)

where ck,λ are complex coefficients. At present, it is of interest to look for stationary
states of the system. To this end, consider the Schrödinger equation for an electron
located at a single atom in the crystal lattice

ĥ1,i(r)φλ(r − Ri) = ελφλ(r − Ri) (2.33)

where
ĥ1,i(r) =

p̂2

2
+ VI(r − Ri) (2.34)

is the Hamiltonian of an electron located at atom i. φλ(r − Ri) can be thought of as
atomic wave functions, for which we may attribute variable spatial extent. Usually, the
starting point of band structure calculations will be to limit the extent of φλ(r − Ri) to
one atom. The following ansatz wave function satisfies Bloch’s theorem

ψλ(k, r) =
L∑

n=1

eikRn

√
L
φλ(r − Rn) (2.35)

as an eigenstate of the Hamiltonian in equation 2.26. The energy expectation value is
calculated as

ελ(k) =
∫

drψ∗λ(k, r)ĥ1(r)ψλ(k, r) (2.36)

This is justified since∫
drψ∗λ(k, r)ψλ(k, r)

=
1

L

L∑
n=1

L∑
m=1

eik(Rn−Rm)

∫
drφ∗λ(r − Rm)φλ(r − Rn)

(2.37)

which along with the approximation∫
drφ∗λ(r − Rm)φλ(r − Rn) ≈ δn,m (2.38)
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gives ∫
drψ∗λ(k, r)ψλ(k, r) ≈ 1 (2.39)

Now, to get an expression for ελ(k), we introduce the approximation

ελ ≈ ε̃λ + αλ(k) (2.40)

where

ε̃λ =
1

L

L∑
n=1

L∑
m=1

eik(Rm−Rn)

∫
drφ∗λ(r − Rn)

( p̂2

2m
+ VI(r − Rm)

)
φλ(r − Rm)

+
1

L

L∑
n=1

∫
drφ∗λ(r − Rn)

∑
l,n

VI(r − Rl)φλ(r − Rn)

(2.41)

and

αλ(k) =
1

L

L∑
n=1

eik(Rn+1−Rn)

∫
drφ∗λ(r − Rn)

L∑
l=1

VI(r − Rl)φλ(r − Rn+1)

+
1

L

L∑
n=1

e−ik(Rn+1−Rn)

∫
drφ∗λ(r − Rn+1)

L∑
l=1

VI(r − Rl)φλ(r − Rn)

=eika 1

L

L∑
n=1

∫
drφ∗λ(r − Rn)

L∑
l=1

VI(r − Rl)φλ(r − Rn+1)

+ e−ika 1

L

∑
n=1

∫
drφ∗λ(r − Rn+1)

L∑
l=1

VI(r − Rl)φλ(r − Rn)

(2.42)

Now, ε̃λ is the renormalized atomic energy and αλ(k) the overlap integral representing
the terms that involve nearest neighbor interactions. [12] If we define the overlap
integrals as follows

t0,λ = −
1

L

∑
n=1

∫
drφ∗λ(r − Rn+1)

L∑
l=1

VI(r − Rl)φλ(r − Rn) (2.43)

we may write equation 2.40 as

ελ(k) ≈ ε̃λ − 2t0,λ cos(ka) (2.44)

The approximation scheme referred employed above is to as the tight binding approxi-
mation. [30] [12] Figure 2.1 depicts the dispersion given in equation 2.44 where 2t0 = 1,
and the renormalized atomic energy, ε̃λ = 0.
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Figure 2.1: The tight binding dispersion with 2t0 = 1, and the renormalized atomic energy,
ε̃ = 0.

2.5 Second quantization

The purpose of the present chapter is to introduce a formalism that is particularly
convenient for many-particle systems. The formalism is referred to as second quanti-
zation whereas the previous formulation exemplified through equations 2.14 and 2.25
is dubbed first quantization. Second quantization has a great advantage over first quan-
tization in the ease with which observables and correlation functions can be evaluated.
[31] Prior to utilizing the full power of this method, it is instructive to get acquainted
with the formalism as it applies to the single particle case. The generic Hamiltonian in
equation 2.14 is solved for the instance of one particle, i.e., we solve

ĥ1 |ν〉 = Eν |ν〉 (2.45)

to give a complete set of single particle eigenstates, {|ν〉}. The time dependence of
equation 2.14 is dropped, since it is not of importance for this section. Now, by using
the completeness relation, ĥ1(r) in equation 2.14 can be written as

ĥ1(r) =
∑
µ,ν

〈µ| ĥ1 |ν〉 |µ〉 〈ν | (2.46)

where
〈µ| ĥ1 |ν〉 =

∫
drψ∗µ(r)ĥ1(r)ψν(r) (2.47)

since 〈r |µ〉 = ψµ(r). Note that the mention of r is lost in ĥ1 on the left hand side of
equation 2.47, which is a feature of the bra-ket notation. From equation 2.46 the physical
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interpretation is that the Hamiltonian acts as to annihilate an electron from the state |ν〉
and place it in |µ〉. In order to make this statement more mathematically apparent, we
employ the mathematical trick of writing 〈0|0〉 = 1 where |0〉 is the vacuum ket, i.e., a
quantum state with no particles. By writing

ĥ1(r) =
∑
µ,ν

〈µ| ĥ1 |ν〉 (|µ〉 〈0|)(|0〉 〈ν |) (2.48)

our language of annihilation and creation processes becomes more apt. These processes
can be associated to operators, whence the equation admits the form

ĥ1(r) =
∑
µ,ν

ĥ1µ,ν ĉ†µĉν (2.49)

where ĥ1µ,ν := 〈µ| ĥ1 |ν〉 and ĉ†ν and ĉν are creation and annihilation operators, re-
spectively. Although it can be shown from some of the considerations to come, it is
merely stated here that the creation and annihilation operators obey the following anti
commutation relations {

ĉα, ĉ
†

β

}
= δα,β{

ĉ†α, ĉ
†

β

}
= 0{

ĉα, ĉβ
}
= 0

(2.50)

where {
ĉα, ĉ

†

β

}
= ĉαĉ†β + ĉ†βĉα (2.51)

In order to showcase the utility of this method, we must first introduce an alltogether
different way of representing the many body eigenstates of the Hamiltonian in equation
2.14. Such a state can be written as

Ψ(r1, r2, ..., rN) =
∑

α1,α2,...,αN

Aα1,α2,...,αNψ(α1, α2, ..., αN) (2.52)

where

ψ(α1, α2, ..., αN) =
1
√

N !

��������
φα1(r1) φα2(r1) · · · φαN (r1)
φα1(r2) φα2(r2) · · · φαN (r2)

...
...

. . .
...

φα1(rN) φα2(rN) · · · φαN (rN)

�������� (2.53)

is a Slater determinant and αi denote single particle orbitals where we include the spin
quantum number. Furthermore, all single particle orbitals are assumed to be orthogonal,
i.e., ∫

drφ∗α(r)φβ(r) = δα,β (2.54)

The Slater determinant ensures the correct anti-symmetrization of the fermionic
wave function. That is, αi ↔ α j amounts to exchanging two columns in the
determinant expression, resulting in the desired anti-symmetry of equation 2.52:
Ψ(r1, r2, ..., ri, ..., r j, ..., rN) = −Ψ(r1, r2, ..., r j, ..., ri, ..., rN). Although there is explicit



20 Fundamental concepts

mention of the coordinates of each of the N electrons inside the determinant expression,
it need only be indexed by the quantum numbers {αi}. Therefore, the same information
as that of equation 2.53 can be surmised from the following representation��nα1, nα2, nα3, ...〉 (2.55)

where nαi = 1 if an electron is present in orbital φαi and nαi = 0 otherwise. This
representation comes without the redundancy of keeping track of the identities of each
and every electron and it is referred to as the occupation number representation. As an
example, a two particle Slater determinant

ψ(α1, α2) =
1
√
2!

����φα1(r1) φα2(r1)
φα1(r2) φα2(r2)

���� (2.56)

corresponds to the occupation number representation��nα1 = 1, nα2 = 1, nα3 = 0, ...
〉

(2.57)

with all remaining occupation numbers set to zero. In a more compact notation, a many
body state can be expressed as |{nα}〉 where {nα} is the set of occupation numbers in
equation 2.55. In the same manner as for the single particle case in equations 2.45-2.49,
the single particle term in equation 2.14 can for complete sets {|{nα}〉} and {

��{nβ}〉} of
many particle states be written as

ĥ1(ri) =
∑

{nα}{nβ}

|{nα}〉 〈{nα}| ĥ1

��{nβ}〉 〈
{nβ}

�� (2.58)

where now we change the argument from r to ri to hone in on the coordinate of one out
of a total of N electrons. Furthermore,

〈{nα}| ĥ1

��{nβ}〉 = ∫
dr1dr2...drNψ

∗(α1, α2, ..., αN)ĥ1(ri)ψ(α1, α2, ..., αN) (2.59)

From equation 2.53 is is seen that this integral is a sum of expressions of the form∫
dr1φ∗αa(r1)φβb(r1)

∫
dr2φ∗αc(r2)φβd(r2) . . .∫

driφ
∗
αi
(ri)ĥ1(ri)φβi(ri)...

∫
drNφ

∗
αe
(rN)φβf (rN)

=

∫
driφ

∗
α(ri)ĥ1(ri)φβ(ri)δαa,βbδαc,βdδαe,βf

(2.60)

where we have used equation 2.54. Clearly, this expression only allows for one pair of
orbitals to differ in order for it to be non-zero. Since at most one orbital is different for
non zero matrix elements,

〈
{nµ}

��V |{nν}〉, we can write

ĥ1(ri) =
∑
αi,βi

h1αi,βi ĉ
†
αi

ĉβi (2.61)
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Now, we made the above procedure simple by considering only one term in equation
2.14. The treatment above is easily extended to ĥ1 :=

∑N
i=1 ĥ1(ri), with essentially the

same result, i.e.,
T̂ =

∑
α,β

h1α,βĉ†αĉβ (2.62)

where we have relabeled the indices in order to emphasize that the whole first term in
equation 2.14 is considered. However, note that equations 2.61 and 2.62 are equal, due
to the fact that {αi, βi} and {α, β} run over the same orbitals. A similar line of reasoning
leads to an expression for the two particle interaction in equation 2.14. It is readily seen
that for the two particle term

UC =
1

2

∑
i, j

UC(
��ri − r j

��) (2.63)

〈
{nµ}

��UC |{nν}〉 will only give rise to matrix elements of the form

UC,α,β,γ,δ =

∫
dridr jφ

∗
α(ri)φ

∗
β(r j)UC(

��ri − r j
��)φγ(ri)φδ(r j) (2.64)

Thus, this expression will only give something non-zero when at most two pairs of
orbitals are different. The result is

UC =
1

2

∑
α,β,γ,δ

UC,α,β,γ,δ ĉ†αĉ†βĉγ ĉδ (2.65)

For an application to the Hubbard model, transformations between bases is particularly
important. By the completeness relation, a transformation between two complete sets
of basis states {

��ψ̃ν〉} and {|ψν〉} can be written as��ψ̃ν〉 =∑
µ

〈
ψ̃ν

��ψµ〉∗ ��ψµ〉 (2.66)

which can be thought of as an operator basis change

ˆ̃c†ν =
∑
µ

〈
ψ̃ν

��ψµ〉∗ ĉ†µ (2.67)

The position space representation will be granted special attention, and is given as

|r〉 =
∑
µ

〈
r
��ψµ〉∗ ��ψµ〉 =∑

µ

ψ∗µ(r)
��ψµ〉 (2.68)

where |r〉 is the position space ket. The corresponding operator can be expressed as

Ψ̂
†
σ(r) =

∑
ν

〈
r
��ψν,σ〉∗ ĉ†ν,σ =

∑
ν

ψ∗ν,σ(r)ĉ
†
ν,σ (2.69)

where the spin quantum number, σ, has been extracted from the generic quantum
number µ in equation 2.66 and marks the first explicit mention of the spin quantum
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number in this section. Ψ̂†σ(r) is referred to as the field operator. From equation 2.50,
the field operator can be shown to obey anti-commutation relations, i.e.,{

Ψ̂σ(r), Ψ̂†ρ(r
′)
}
= δ(r − r′)δσ,ρ{

Ψ̂σ(r), Ψ̂ρ(r′)
}
= 0{

Ψ̂
†
σ(r), Ψ̂

†
ρ(r
′)
}
= 0

(2.70)

where δ(r − r′) is the Dirac-Delta function. With the formalism developed above, the
single particle terms in the first quantized Hamiltonian in 2.14 can be cast in second
quantized form as follows

T̂ =
N∑

i=1

ĥ1(ri) =
∑
σ,ρ

∑
µ,ν

T̂µ,ν,σ,ρĉ†µ,σ ĉν,ρ

=
∑
σ,ρ

∑
µ,ν

∫
drψ∗µ,σ(r)T̂ψν,ρ(r)ĉ

†
µ,σ ĉν,ρ

=
∑
σ

∫
dr

(∑
µ

ψ∗µ,σ(r)ĉ
†
µ,σ

)
T̂
(∑

ν

ψν,σ(r)ĉν
)

=
∑
σ

∫
drΨ̂†σ(r)T̂ Ψ̂σ(r)

(2.71)

where T̂r,σ,ρ = T̂rδσ,ρ is assumed in going from line 2 to 3. The two particle interaction
term in equation 2.65 follows a similar derivation

UC =
1

2

∑
α,β,γ,δ

UC,α,β,γ,δ ĉ†αĉ†βĉγ ĉδ

=
1

2

∑
σ,ρ

∑
µ,µ′,ν,ν′

∫
drdr′ψ∗µ,σ(r)ψ

∗
µ′,ρ(r

′)UC(|r − r′|)ψν,ρ(r′)ψν′,σ(r)

. . . ĉ†µ,σ ĉ†µ′,ρĉν,ρĉν′,σ

=
1

2

∑
σ,ρ

∫
drdr′Ψ̂†σ(r)Ψ̂

†
ρ(r
′)UC(|r − r′|)Ψ̂ρ(r′)Ψ̂σ(r)

(2.72)

In going from line 1 to 2, the spin quantum numbers have been extracted from the
indices in line 1. Note, that we are in equation 2.67 not restricted to changes from
momentum to position and vice versa, but sometimes between different position bases,
for which the delocalized Bloch basis and the localized Wannier basis are bases which
admit such an inter-dependence. For the upcoming chapter on the Hubbard model, the
Hamiltonian constructed from equations 2.71 and 2.72

Ĥ =
∑
σ

∫
drΨ̂†σ(r)T̂ Ψ̂

†
σ(r)

+
1

2

∑
σ,ρ

∫
drdr′Ψ̂†σ(r)Ψ̂

†
ρ(r
′)UC(|r − r′|)Ψ̂ρ(r′)Ψ̂σ(r)

(2.73)

will be the starting point.



Chapter 3

The Hubbard Model

Research efforts concerning HHG in solid state materials have up until nowmainly been
geared at single active electron systems. [32] [11] Simply put, all systems studied thus
far have the advantage of having a description in terms of a single electron on top of
a periodic potential. In other words, although a solid is comprised of many electrons,
one can treat the effect of other electrons as a mean field - which means that the effect
of the other electrons act on the electron in question in an average way.

Despite the complex electronic structure of the transition metal compounds, the
Hubbard model uses a single band description. Moreover, long range interaction are
neglected, motivated by the fact high degree of correlation favors localization of the
electrons. [33] Even though a single band description is employed, the Hubbard model
is able to explain the insulating behaviour of certain metal oxides that are predicted to
be metals under regular band theory. [34] The ability to explain insulating behaviour is
the mere consequence of explicit treatment of electron correlation effects. It is worth
mentioning that a band picture of the Hubbard model can be devised [34], where the
"bands" are referred to as Hubbard subbands [34], or in other parts of the literature as
Hubbard bands. [1] [35] [36] They differ from regular band theory in ways that will
be elaborated on in this chapter. However, they find an analogous description in terms
of doubly occupied sites and vacancies - in the literature referred to as doublons and
holons. [21]

3.1 Hamiltonian

Due to the translational symmetry of the potential, Bloch’s theorem gives an analytical
solution to the one particle wavefunction in a crystal lattice in terms of band index
and crystal momentum, k. However, this solution will only apply to the single particle
terms of the Hamiltonian, and attacking the problem of calculating the matrix elements
of the electron-electron interaction can be more demanding. One can only hope that
if evaluated in the basis of the one particle Hamiltonian, that the interaction-matrix
elements are small, and that corrections can be tackled in perturbation theory. [37]

Now, the idea of of tackling the many-body problem in terms of a single particle
eigenvalue problem will be applied. We generalize the Hamiltonian in equation 2.26 to
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that of a system of N interacting electrons on a crystal lattice, and write

Ĥ =
N∑

i=1

p̂2
i

2
+

L∑
l=1

N∑
i=1

VI(ri − Rl) +
1

2

∑
i, j

UC(
��ri − r j

��) (3.1)

To accommodate the many-particle nature of the system, we perform the following
substitution in equation 3.1

VI → VI + VA = V (3.2)

where VI is the electrostatic potential of an electron experienced only due to the ions
(and not the other electrons), while VA represents a mean effect of the other electrons.
Thus, V can be thought of as an effective electrostatic potential. This change in the
single particle operator is alleviated by a corresponding subtraction in the two-particle
interaction term∑

1≤i< j≤N

UC(
��ri − r j

��) → ∑
1≤i< j≤N

UC(
��ri − r j

��) − 1

N − 1
(VA(ri) + VA(r j)) = U (3.3)

As a result, it is assumed that the single particle part has absorbed the effect of the
electron-electron interaction term to as large a degree as possible. Physically, envisage
an electron immersed in a system in which the electronic charge density due to the
other electrons screens the attraction between the electrons and ions. For electron i, the
charge density

|Ψ(r1, r2, ..., ri−1, ri+1, ..., rN)|
2 (3.4)

adds an auxiliary core potential, VA to the problem. Upon substituting equation 3.2
into equation 3.1 and focusing on a single particle on the lattice, we may solve for the
renormalized Bloch functions, ψ̃kσ(r). Explicitly, they are eigenstates of

ĥ1(r) =
p̂2

2
+

L∑
i=1

V(r − Ri) (3.5)

Thus, we obtain a suitable basis which can be used to express the matrix elements
of the interaction term in equation 3.3. For the purposes in this thesis, it will be
advantageous to transform the basis to a localized one. This transformation is realized
through Wannier functions. [12] [29] They are defined as follows

wσ(r − Rn) =
1

L

∑
k

ψ̃kσ(r)e−ikRn (3.6)

where L is the number of lattice sites, ψ̃kσ(r) is a Bloch function whose properties are
defined in equations 2.27 and 2.28, only this time it is a solution to a the Hamiltonian
in equation 3.5. From equation 2.31 it can be shown that∫

drw∗σ(r − Ri)wσ(r − Rj) = δi, j (3.7)

To make contact with our general Hamiltonian, the field operator in equation 2.69 is
expressed in terms of Wannier functions

Ψ̂
†
σ(r) =

L∑
i=1

w∗σ(r − Ri)ĉ
†

i,σ (3.8)
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For the single particle term in the generic Hamiltonian in equation 2.73, write

T̂ =
∑
σ

∫
dr

( L∑
i=1

w∗σ(r − Ri)ĉ
†

i,σ

)
ĥ1(r)

( L∑
j=1

wσ(r − Rj)ĉ j,σ
)

=
∑
σ

L∑
i, j=1

ti j ĉ
†

i,σ ĉ j,σ

(3.9)

where
ti j =

∫
drw∗σ(r − Ri)ĥ1(r)wσ(r − Rj) (3.10)

which is independent of σ. ti j is usually referred to as the hopping matrix element. For
the interaction term in equation 2.73,

U =
1

2

∑
σ,ρ

∫
drdr′Ψ̂†σ(r)Ψ̂

†
ρ(r
′)UC(|r − r′|)Ψ̂ρ(r′)Ψ̂σ(r)

=
1

2

∑
σ,ρ

∑
i j kl

UCi jkl ĉ
†

i,σ ĉ†j,ρĉk,ρĉl,σ

(3.11)

where

UC,i j kl =

∫
drdr′w∗σ(r − Ri)w

∗
ρ(r
′ − Rj)UC(|r − r′|)wρ(r′ − Rk)wσ(r − Rl) (3.12)

As explained in [33], the nearest neighboor interaction terms can be approximated as
having energies of ≈ 6eV , while the onsite integrals, i.e., i = j = k = l, dominate with
approximately 20eV for 3d electrons in transition metals. Thus, a valid (but coarse)
approximation is to only retain terms in the sum of equation 3.11 for which i = j = k = l.
Explicitly,

U =
1

2

∑
σ,σ

UC,iiii

L∑
i=1

n̂i,σn̂i,σ = U
L∑

i=1

n̂i,↑n̂i,↓ (3.13)

where we definedUC,iiii = U. With the approximation in equation 3.13 the Hamiltonian
in equation 2.73 is cast in the Wannier basis as follows

Ĥ =
∑
σ

∑
i j

ti j ĉ
†

i,σ ĉ j,σ +U
L∑

i=1

n̂i,↑n̂i,↓ (3.14)

In actual computations, tackling the kinetic term in equation 3.14 in full generality,
i.e., including ti j for |i − j | > 1 grossly complicates the problem. Concretely, they
represent denser matrices in the basis which will be employed later. A well established
approximation at this point is the tight binding approximation laid out in the section
2.4, in which only terms involving ti,i±1 are retained. Translational symmetry ensures
that ti,i±1 is independent of i. Therefore, we define

T̂ = −t0
∑
σ

L∑
i=1

ĉ†i,σ ĉi+1,σ + h.c. (3.15)
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where the operators obey periodic boundary conditions, i.e.,

ĉi = ĉL+i (3.16)

Upon substituting the kinetic term in equation 3.14 with that from the tight binding
approximation, equation 3.15, the Hubbard Hamiltonian is obtained

Ĥ = −t0
∑
σ

L∑
j=1

(
ĉ†j,σ ĉ j+1,σ + h.c

)
+U

L∑
j=1

n̂ j,↑n̂ j,↓ (3.17)

Equation 3.17 has the following physical interpretation. The Hubbard Hamiltonian
describes a system of electrons moving through a discrete set of lattice positions, under
the influence of the mutual interaction term involving U. The first term will be referred
to as the hopping term - a particularly appropriate image in real space since the operators
acts as to remove an electron from a site and place it in a neighboring site. The last term
acts as to raise the systems energy whenever there are two electrons with opposite spin
on one site. In the limit of U << t we basically retain the single electron description in
chapter 2 section 2.4. In the opposite limit, U >> t, the low energy states of the system
tend to distribute the electrons with adjacent spins anti-parallel to each other. Such a
state is called an anti-ferromagnetic state.

TheHubbardmodel aims atmodeling the strongly correlated behavior of 3d electrons
in transition metal oxides by s like orbitals, which is a shortcoming to the theory.
Moreover, only a single band is included. To a good approximation, when the Fermi
level lies inside of the conduction band, this picture is justified. An important remark
regarding 3.17 and other lattice Hamiltonians is the neglect of any explicit mention of
the site-energy, tii. This is merely a matter of defining an absolute energy scale and it
can therefore be set equal to zero.

For the upcoming chapters, the end goal is the application of equation 3.17 to a system
of 12 sites and 12 electrons in the presence of an electromagnetic field. However, before
developing the theory further it is helpful to turn to an example in which only two
electrons are placed on a lattice of L sites.

3.2 The contrast to band theory

The total wave function for two electrons on an L site lattice is given as

Ψ(α1, α2) = φ(r1, r2)Ξ(σ1, σ2) (3.18)

where α1 and α2 are generic quantum labels comprised of the spin part and position
part of electrons with labels 1 and 2, respectively. r1 and r2 denote the coordinates of
electrons with labels 1 and 2, respectively. φ(r1, r2) is the spatial part of Ψ(α1, α2) and
Ξ(σ1, σ2) the spin part. σ1 and σ2 denote the spins of electrons with labels 1 and 2,
respectively. Now, define φ(i, j) as the spatial wave function of a system in which the
electron with position label r1 is at lattice site i and and the other electron with position
label r2 is at lattice site j. Specifically, assign the first argument to electron "1" and the
second argument to electron "2", i.e.,

φ( i︸︷︷︸
r1

, j︸︷︷︸
r2

) (3.19)
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Furthermore, the spin part can be separated in terms of its eigenvalue of the total spin
operator, ŝ, i.e., s = 1 and s = 0. The spin part is denoted Ξs

m(σ1, σ2) where m is the
spin magnetic quantum number. [24] For s=1, denote

Ξ
1
1(σ1, σ2) = |↑↑〉

Ξ
1
0(σ1, σ2) =

1
√
2
(|↑↓〉 + |↓↑〉)

Ξ
1
−1(σ1, σ2) = |↓↓〉

(3.20)

and for the singlet state, s = 0

Ξ
0
0(σ1, σ2) =

1
√
2
(|↑↓〉 − |↓↑〉) (3.21)

It is thus evident that in the spin triplet case, φ(i, j) must be anti-symmetric and for
the spin singlet case, symmetric in order for equation 3.18 to have the correct anti-
symmetry. Now, one can hone in on the spatial part of equation 3.18, and look for a
solution to the Hubbard model in equation 3.17. In the following we will do so in a
manner similar to that done in John Hubbard’s original paper. [33] For the present, it
is not necessary to restrict ourselves to the tight binding approximation. We once again
state the Hamiltonian in equation 3.14 as

Ĥ =
∑
σ

L∑
i j

ti j ĉ
†

i,σ ĉ j,σ +U
N∑

j=1

n̂ j,↑n̂ j,↓ (3.22)

Now, note that for a solution of

Ĥφ(i, j) = Eφ(i, j) (3.23)

it follows from equation 3.22 that this can be written as

Ĥφ(i, j) =
∑

l

tilφ(l, j) +
∑

l

t jlφ(i, l) +Uδi jφ(i, j) (3.24)

since Ĥ in equation 3.17 only acts as to move electrons between sites, and not flip their
spins. It is obvious from this equation that there will be no high energy contribution
from the last term for spin triplet states, seeing as the spatial (anti-symmetric) part of
the wave function vanishes, i.e., φ(i, i) = 0. Thus, we need only be concerned with the
spin singlet state in equation 3.21. The eigenvalue equation 3.24 becomes, explicitly∑

l

tilφ(l, j) +
∑

l

t jlφ(i, l) +Uδi jφ(i, j) = Eφ(i, j) (3.25)

Now, in order to compare the Hubbard model to a regular band picture, a transition
to momentum space is necessary. A Fourier transformation of φ(i, j) may proceed as
follows

φ(i, j) = L−1
∑

k

∑
p

eikRieipRj φ̃(k, p)

= L−1
∑

K

∑
p

eiK(Ri+Rj )ei 12 p(Ri−Rj )φ̃(p,K)
(3.26)
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where a change of variables was performed in the last equation. Upon insertion of
equation 3.26 into equation 3.25 along with the Fourier transform of the hopping
parameter, ti j , [29]

ε(k) = L−1
∑

i j

ti jeik(Ri−Rj ) (3.27)

we get

E φ̃(p,K) = (ε(K +
1

2
p) + ε(K −

1

2
p))φ̃(p,K) +

U
L

∑
k

φ̃(k,K) (3.28)

Upon rearranging, we obtain

φ̃(p,K) =
UL−1

∑
k φ̃(k,K)

E − ε(K + 1
2p) − ε(K − 1

2p)
(3.29)

from which the following result is seen by summing over p on both sides
U
L

∑
p

1

E − ε(K + 1
2p) − ε(K − 1

2p)
= 1 (3.30)

A subtle thing to note at this point is the fact that between the L number of singularities
of equation 3.30, there are L-1 solutions for E. They are in fact nested between the
singular points, but all lie somewhere on the band ε(k) for some k. [33] Now, define
the average band energy as

T0 = L−1
∑

k

ε(k) (3.31)

and insert E = 2T0 + U into equation 3.30. If U is so large as to justify the following
approximation

U + 2T0 − ε(K +
1

2
p) − ε(K −

1

2
p) ≈ U (3.32)

then E = U + 2T0 represents the L-th solution of equation 3.30. In conclusion, the case
study of placing two electrons on a L-site lattice resulted in L possible ways of placing
a first electron in the band, ε(k) (corresponding to the L values of K), and L-1 ways
to configure the remaining electron such that the resulting state became a low energy
eigenstate. For each value of K, however, there is one high energy configuration.

One can now surmise that for n electrons placed among L lattice sites, there are now
(L-n) possible ways of placing an additional electron without introducing an additional
energy contribution of order U to the system. At the same time, there are n possible
ways of making such a high energy state by suitably placing the last electron on an
already occupied site. The L-n number of low energy placements of the last electron
amounts to different ways of placing the remaining electron in the lower band sketched
in figure 3.1, while the n possible high energy configurations correspond to occupation
of the upper band. These bands are referred to as subbands, since they differ from
regular bands in some regards. An important remark about the emerging band picture
is the fact that population in the upper subband in fact necessitates some population in
the lower subband. [34]

Hubbard did in fact show that the dispersions for (pseudo-) particles of spin σ
residing in one of the two subbands are described by the roots of

(E − ε(k))(E − T0 −U) + nσU(T0 − ε(k)) = 0 (3.33)
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where nσ is the average number of electrons with spin σ per site. The proof of this,
which involves the method of Green’s functions, is provided in appendix B. The spin σ
electron dispersion for the two bands at half filling, nσ = nσ = 1/2, with U = 5t0 from
equation 3.22 is shown in figure 3.1. Although the complexity of the general many
particle problem is too vast to be tackled by the procedure above, the filling of the upper
subband in figure 3.1 can be thought of as arising from single electrons being placed
on top of occupied sites in the lattice. The formalism of subbands benefits from the
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Hubbard bands

Figure 3.1: The two Hubbard subbands arising from a system at half filling (n = nσ + nσ = 1)
and U = 5t0 in equation 3.22.

vantage point of discussing the light matter processes in strongly correlated systems in
a manner reminiscent to that of two-band semiconductor models. [5] In semiconductor,
photoinduced interband transitions happen in the manner illustrated in figure 1.5, and
do not necessitate any two particle effects. However, in the strongly correlated material,
a viable interpretation of the bound state with energy E = 2T0 +U is the interpretation
as the sum of an electron with energy T0 and another with energy T0 + U. [34] Thus,
in the spirit of describing the physics from the viewpoint of single electrons, one can
imagine an excitation to the upper subband as arising from an electron being excited
from an initial energy of T0 to an energy T0 +U.

With the interpretation following equation 3.17 in mind, it is the hopping termwhich
is responsible for promoting electrons to the high energy configurations. As a result, the
hopping term can be viewed as the mediator of transitions between the Hubbard bands.
It will be the scope of the following chapter to elaborate on how the incorporation of
light matter coupling will alter this hopping term.
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3.3 Light matter coupling

According to equation 2.25, the single particle part of the Hamiltonian in equation 3.5
can be written

ĥ1(r, t) =
1

2
(p̂ + A)2 + V(r) (3.34)

where we defineV(r) =
∑L

i=1 V(r−Ri) and A = A(r, t) for brevity. Furthermore, the spin
index is left out, since the same value of the quantity we wish to calculate is obtained
regardless of the spin. By substituting equation 3.34 into equation 3.9 is can be seen that
the Hamiltonian in equation 3.14 will contain the modified hopping matrix elements

ti j(t) =
∫

drw∗(r − Ri)
[1
2
(p̂ + A(r, t))2 + V(r)

]
w(r − Rj) (3.35)

For a differentiable complex valued function, λ = λ(r, t), the following relation holds

(p̂ + A)2w(r) = e−iλ (p̂ + (A − ∂

∂r
λ)

)2eiλw(r) (3.36)

where φ(r) can be considered an arbitrary trial function. By working from the right
hand side of the equation,

e−iλ p̂2eiλw(r)

= (
∂

∂r
λ)2w(r) − i(

∂2

∂r2
λ)w(r) + 2(

∂

∂r
λ)(p̂w(r)) + p̂2w(r)

(3.37)

Moreover,

e−iλ p̂(A −
∂

∂r
λ)eiλw(r)

= (p̂A)w(r) + A(
∂

∂r
λ)w(r) + A(p̂w(r)) + i(

∂2

∂r2
λ)w(r)

− (
∂

∂r
λ)2w(r) − (

∂

∂r
λ)(p̂w(r))

(3.38)

and

e−iλ(A −
∂

∂r
λ)p̂eiλw(r)

= (A −
∂

∂r
λ)

(
(
∂

∂r
λ)w(r) + p̂w(r)

) (3.39)

Lastly,

e−ieλ(A −
∂

∂r
λ)2eiλw(r)

=A2w(r) − A(
∂

∂r
λ)w(r) − (

∂

∂r
λ)Aw(r) + (

∂

∂r
λ)2w(r)

(3.40)

By defining

λ(r, t) =
∫ r

r0
dyA(y, t) (3.41)
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where r0 is some arbitrary fixed point, it is immediate from the fundamental theorem of
calculus that

d
dr
λ(r, t) = A(r, t) (3.42)

Now, the modified matrix element can be interpreted as arising from the substitution

w(r − Rj) → w̃(r − Rj) = w(r − Rj)eiλ(r,t) (3.43)

in equation 3.10. Furthermore, since the upper integration limit of λ is r, i.e., the
position of the electron, we may approximate

w(r − Rj)eiλ(r,t) ≈ w(r − Rj)eiλ(Rj,t) (3.44)

since the electron is highly localized around Rj . Upon applying this result to the time
dependent matrix element, equation 3.35, we obtain

ti j(t) ≈ ei(λ(Rj,t)−λ(Ri,t))ti j ≈ ei( j−i)aA(t)ti j (3.45)

where we in the first approximation have defined

ti j =

∫
drw∗(r − Ri)

[ p̂2

2
+ V(r

) ]
w(r − Rj) (3.46)

and in the second approximation employed the dipole approximation, explicitly stated
as

λ(Rj, t) − λ(Ri, t) =
∫ Rj

r0
dyA(y, t) +

∫ r0

Ri

dyA(y, t) ≈ A(t)(Rj − Ri) (3.47)

With the modified matrix element in equation 3.46, the Hubbard Hamiltonian, equation
3.17, assumes the following form

Ĥ(t) = −t0
∑
σ

L∑
j=1

(
eiaA(t)ĉ†j,σ ĉ j+1,σ + h.c

)
+U

L∑
j=1

n̂ j,↑n̂ j,↓ (3.48)

3.4 The current operator

The continuity equation is given as

∂ρ(r, t)
∂t

+ ∇J(r, t) = 0 (3.49)

where ρ(r, t) is some density, while J(r, t) is the current of that density. Equation 3.49
is well known from examples in e.g. fluid mechanics and can be stated for quantum
mechanical observables as well. In order to see this, the Heisenberg equation of motion
approach is applied to the number density at site j for electrons with spin σ as follows

d
dt

n̂ j,σ = i
[
Ĥ(t), n̂ j,σ

]
(3.50)
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where Ĥ(t) is the Hamiltonian of equation 3.48. Upon calculating the commutator
above, the following result is obtained

d
dt

n̂ j,σ

= −it0[eiaA(t)(ĉ†j−1,σ ĉ j,σ − ĉ†j,σ ĉ j+1,σ)

+ e−iaA(t)(ĉ†j+1,σ ĉ j,σ − ĉ†j,σ ĉ j−1,σ)]

(3.51)

It is readily seen that upon identifying

ĵ j,σ = −it0[eiaA(t)(ĉ†j−1,σ ĉ j,σ − h.c.] (3.52)

equation 3.51 can be written as

d
dt

n̂ j,σ + ĵ j,σ − ĵ j−1,σ = 0 (3.53)

Since the starting point was the number density, n̂ j,σ, the quantity ĵ j,σ can in light of
equation 3.49 be interpreted as a current density for electrons with spin σ at site j.
Moreover, The total charge current density operator is defined in the following way

Ĵρ(t) = −
∑
σ

L∑
j=1

ĵ j,σ (3.54)

To get the total current operator, simply multiply Ĵρ(t) by the lattice constant, a. The
result is given explicitly as

Ĵ(t) = iat0
∑
σ

L∑
j=1

[eiaA(t)ĉ†j,σ ĉ j+1,σ − h.c.] (3.55)

where we have shifted j → j+1with respect to definition 3.52. [29] Before considering
the interacting properties of our system in the context of HHG, a bit of theory regarding
the U = 0 limit of the Hamiltonian in equation 3.48 will be presented. This will provide
a context for the analysis of our results in the final section.



Chapter 4

High Harmonic Generation

4.1 HHG in single band models

Most of current research into HHG attributes the emission of radiation to two funda-
mental mechanisms - intraband acceleration and interband tunneling. [10] [38] [39]
Intraband acceleration is when an electron gains crystal momentum as a result of accel-
eration in the electromagnetic field. [11] Interband processes describe the field induced
transitions between bands. Both processes occur in for instance semiconductors. Often,
the initial state of a semiconductor is modelled as system with an initially filled valence
band and an empty conduction band prior to pulse-excitation. [32] If the valence band
electrons populates the entire Brillouin zone, no current can flow. Therefore, any laser
induced current in this system necessitates an interband process to pump the electrons
into the conduction band.

Realistically, light matter coupling in a condensed matter system will involve an
interplay between different bands in addition to intraband acceleration. [5] However,
one can gain insight into the process by considering a one band model. There are a
couple of physical scenarios that justifies such a description. Firstly, in ametal, for which
the Fermi energy is located in the middle of the conduction band [29], electrons may be
excited above the Fermi level and subsequently accelerated in momentum space without
necessarily jumping to a higher energy band due to Zener tunneling. [30] Another
approach is to assume that while initially unpopulated, most of the population in the
valence band has been pumped by interband transitions into the conduction band. The
time evolution can be initiated at this point. [40] Hence, only a part of the full process is
modeled. Even though the described scenarios might sound like an oversimplification,
it can be helpful to get some familiarity with it before delving into the study of more
complex systems.



34 High Harmonic Generation

4.1.1 Current operator

To demonstrate the abovementioned acceleration process, consider the macroscopic
current in a system 〈

Ĵ(t)
〉
=

∑
σ

∑
k

∂

∂k
ε(k)

〈
ĉ†k,σ ĉk,σ

〉
=

∑
σ

∑
k

∂

∂k
ε(k)nσ(k)

:=
∑

k

∂

∂k
ε(k)n(k)

(4.1)

expressed as a sum in momentum space. [5] ε(k) is the momentum dispersion, and
nσ(k) is the population of electrons of spin σ with crystal momentum k. In the last
equality, we defined n(k) = n↓(k) + n↑(k). According to Bloch’s acceleration theorem
[30], the effect of an electromagnetic field on the crystal momentum may be expressed
as

∂k(t)
∂t
= −E(t) (4.2)

giving

k(t) = k(0) −
∫ t

0

E(t′)dt′ = k(0) + A(t) (4.3)

using equation 2.19 with Φ = 0. There are two ways to conceive of this result, each
of which amounts to a particular reference frame. One choice for the remainder of the
thesis falls upon the reference frame in which the dispersion is time dependent, giving
the following expression for the current

J(t) =
∑
σ

∑
k

∂

∂k
ε(k(0) + A(t))nσ(k(0)) (4.4)

[5]. For the proof of the correspondence between equation 4.4 and equation 3.55, the
reader may consult appendix A.

In order to gain some intuition about the transient location of the electrons in
momentum space, we must let the population vary in time, while keeping the dispersion
time independent. Such a distribution is governed by the following partial differential
equation

d
dt

n(k(t)) = −E(t)
∂

∂k
n(k(t)) (4.5)

which is deduced from
d
dt

n(k(t)) =
∂k
∂t

∂n
∂k

(4.6)

and equation 4.2. A solution to equation 4.5 is a Gaussian electron distribution

n(k(t)) = exp

{
−
(k(0) + A(t))2

2σ2

}
(4.7)
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where σ is its standard deviation. 1 Lastly, in this frame of reference, the current
operator admits the form

J(t) =
∑

k

∂ε(k)
∂k

n(k(t)) (4.8)

Because of the time dependence in equation 4.8, it is possible to view the electron
distribution as a function of time. It is a good assumption to start with a conduction
band filled with electrons according to a Gaussian distribution in k-space. [40] In
equation 4.7, we use σ = π

4a along with the lattice parameter a = 7.1739 [a.u.]. As a
result of applying the pulse specified in the beginning of chapter 6, the current in the
bottom panel of figure 4.1 is obtained. A notable feature of the bottom panel in figure
4.1 is the appearance of kinks at the location of high electric field strengths. Upon
adopting the viewpoint of equation 4.7, this can be explained in terms of figure 4.2.
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Figure 4.1: Macroscopic current obtained by modeling the time evolution of the Gaussian
distribution of electrons in equation 4.7 in the Brillouin zone.

4.1.2 Bloch Oscillations

In the bottom panel of figure 4.2 the population of electrons in the Brillouin zone
is indicated as a function of time. Observe that electrons reaching the boundary of
the Brillouin zone will reappear on the other side, yielding a rapid change in crystal
momentum. Most notably, said events correspond to the aforementioned kinks in the
total current, which has also been plotted in the top panel of figure 4.2. In real space,

1This is not to be confused with the electron spin. However, for the remaining part of this chapter, spin is not
used.
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Figure 4.2: Dynamical Bloch Oscillations modeled by an initial Gaussian electron distribution

these processes correspond to Bragg scattering - a process in which the electron wave
scatters off the lattice. [14] This is conceivable since when the crystal momentum
approaches π

a , the wavelength is short enough to reach the scattering condition, and
thus the electron crystal momentum undergoes a rapid change. The current seemingly
aquires higher frequency components due to this process when analyzing figure 4.2.
The contribution of these higher frequency components to the current can be assessed
by a Fourier transform. Moreover, this is the procedure followed in order to analyze
the frequency components in the emitted light, since an accelerating charge radiates.
[25] To predict the amount of radiation, the dipole acceleration, d

dt J(t), is the relevant
quantity. [1] [8]

Irad(ω) ∝
����∫ d

dt
J(t)eiωt

����2 = |iωJ(ω)|2 (4.9)

The result is shown in figure 4.3. Interestingly, only harmonics of odd order give
contributions here. It will in the following be shown that this is a general property of
solid state systems, with the exception of more complex pulse conditions. [23]

In order to explain the observed characteristics of figure 4.3, especially the appear-
ance of odd order harmonics, define

ωB(t) = aE(t) (4.10)

which can be used to restate the acceleration theorem, equation 4.2, in a different way

a
d
dt

k(t) = −ωB(t) (4.11)
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Figure 4.3: Resulting HHG spectrum from the parameters outlined in the two previous figures.
ω0 is the carrier wave frequency of A(t). For details of the laser pulse, the reader is referred to
chapter 6

for which the most simple instance is the static field case. Here, the crystal momentum
has the following simple time dependence

k(t) =
−tωB

a
(4.12)

Now, as t = π
ωB

the electron has reached the end of the Brillouin zone. The condition
when |k | = π

a is the Bragg scattering condition. To emphasize the quantum mechanical
aspect of this, note that ωB is the same as a potential drop between two lattice sites.
The effect of the light matter interaction is to modify the potential into that of a tilted
potential, and as a result lead to Wannier Stark Localization.2 [13]

The tight binding band structure from equation 2.44, together with the definition of
the group velocity [41], gives

vg =
dε(k)

dk
= 2t0a sin(ka) (4.13)

To make the analysis simple, consider the following AC-field

ΩB(t) = ΩB cos(ω0t) (4.14)

From the acceleration theorem, we see that

k(t) = −
ΩB

aω0
sin(ω0t) (4.15)

2In fact, a periodic lattice admits the same tilted shape as in figure the picture seen in the context of HHG in
atomic systems, see figure 1.3. This is made particularly clear when writing the Hamiltonian in 2.25 in the length
gauge.
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which combined with the expression of the group velocity, vg(k) = ∂ε(k)
∂k , and the fact

that ω(k) = ε(k) (in atomic units) yields

vg = −2at0 sin
(
ΩB

ω0
sin(ω0t)

)
(4.16)

This equation can be conveniently expressed with the help of the Bessel function of the
first kind [42]

vg = −4at0
∞∑

M=0

J2M+1(
ΩB

ω0
) sin((2M + 1)ω0t) (4.17)

It is convenient to introduce such a spectral resolution of the group velocity, because
one can at once identify its Fourier components as

vg(Nω0) = JN(
ΩB

ω0
) (4.18)

whence it is seen that only odd order harmonics are present. Now, to calculate the
energy resolved intensity of radiation, we turn to equation 4.9, i.e.

Irad(Nω0) =

����∫ dvg(t)
dt

eiNω0t
����2 = ��iNω0vg(Nω0)

��2 ∝ (Nω0)
2J2N(
ΩB

ω0
) (4.19)

However, this theoretical framework also lets us speak about the field field dependence
of the harmonic radiation. Specifically, one can with the theory developed inquire what
the highest frequency components observed in the spectrum are. If we in equation 4.16
let ΩB

ω0
>> 1, we may approximate

vg(t) ∝ sin(ΩBt) (4.20)

for the times around t = 0, π
ω0
, ..., since the inner sin function in equation 4.16 can be

approximated by its argument. Thus, at these times the group velocity oscillates with a
frequency dictated by the field strength through ΩB in equation 4.10. Since this is the
maximal frequency component, a cut off behaviour can be deduced as

Nmax ≈
ΩB

ω0
(4.21)

As for the Bessel functions in equation 4.17, they introduce nodes in the harmonic
spectrum as a function ΩB. In comparing this result with the cut off relation in the
three step model in the introduction, equation 1.2, equation 4.21 displays a different cut
off scaling. That is, atoms exhibit a quadratic scaling with field strength, whereas in
intraband processes, the scaling is linear in field strength.

4.2 A three step model in solids

The celebrated three step model was laid out in the introduction, and has provided
useful insight into HHG in atoms. In an attempt to settle the issue of the importance of
inter and intraband processes, something reminiscent of a a three step model has been
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employed in the solid state counterpart as well. [16] [11] To explain the process in a
three step model, one imagines the buildup of interband polarization as the tunneling
step. Physically, this amounts to electron-hole pairs being created. After that, the newly
created pairs are accelerated towards higher momenta by the electromagnetic field - the
acceleration step. Lastly, once the excited electrons recombine with the holes, radiation
is emitted - the recombination step. In the atomic three step model promulgated by
Lewenstein et. al. [7] it is only the third process that is assumed to give rise to radiation.
This turns out to be a good approximation to atomic systems. In solids however, it is
rather the last couple of processes that are at play.

In this section, we made some strides towards an analytic treatment of HHG in a
single bandmodel. However, as remarked earlier, the inclusion of significant correlation
effects renders most analytical methods inadequate. Although the analytical methods
end here, it will be the subject of the following chapter to develop an algorithm capable
of treating the Hubbard Hamiltonian in generality and as a result gain further insight
into the process of HHG.
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Chapter 5

Numerical Methods

This chapter will contain an elaboration on the theory required to solve the Hubbard
model in a time dependent setting. The theory presented herein will also prove relevant
for time independent problems, as solving the time independent problem is necessitated
in finding an initial condition prior to pulse excitation of the system.

5.1 Exact diagonalization

The mathematical problem at hand has been formulated in equations 2.2 and 3.48. It
will be the purpose of this chapter to present a numerical scheme capable of solving
these equations. It is clearly the chief purpose of any numerical method to present as
few approximations as possible on top of the mathematical problem it is intended to
solve. The method presented herein benefits in this regard due to the fact that there are
few approximations made beyond the Hubbard Hamiltonian 3.48. This advantage lends
itself to the discrete nature of lattice Hamiltonians in condensed matter systems.

Recall that when equation 2.73 is expressed in the Wannier basis, the electrons in
the Hubbard model can be said to reside on specific lattice points. Hence, the available
positions of an electron on the lattice is not a continuum, as opposed to e.g. the position
of an electron in free space. Thus, one basis element is merely the placement of each
electron in the system on lattice sites in accordance with the Pauli exclusion principle.

Exact diagonalization refers to the generation of a basis comprised of all possible
configurations of the system and the generation of the system Hamiltonian in this basis.
The first step towards a numerical description of the Hubbard model is to implement a
basis over which the Hamiltonian of the system can be expressed. Themethod employed
here is conceptually simple, and has been used extensively for these types of problems.
[43] [44] [45]

5.1.1 Symmetries

The reader may already infer that the difficulty in solving the problem at hand lies
in the exponential growth in system size when solving systems with many sites and
many electrons. Therefore, one should make use of the symmetries provided by our
Hamiltonian. If a Hamiltonian admits a certain symmetry, then it can be brought onto
a block diagonal form. The implication being a reduction of the problem into smaller
chunks. A symmetry of the Hamiltonian can be expressed as an operator Ô for which
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Ô, Ĥ

]
= 0. [43] As long as this relation is fulfilled, a system that is in an eigenstate of

the operator Ô will remain so for the course of the time evolution. As a result, during the
dynamics of the system, there is no crossover between eigenstates belonging to different
block-diagonals in the Hamiltonian matrix. For the Hubbard model in equation 3.48,
the following symmetries will be applied

1. Spin symmetry:

Ŝα =
1

2

L∑
i=1

∑
µ=↑,↓

∑
ν=↑,↓

ĉ†i,µσ
µ,ν
α ĉi,ν (5.1)

where L is the number of sites in the system and σµ,ν
α are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(5.2)

and ĉ†i,µ (ĉi,µ) is the creation (annihilation) operator of an electron with spin µ in
the Wannier orbital at site i. Specifically, we will use the Ŝz symmetry.

2. Particle number symmetry:

N̂e =
∑
σ

L∑
i=1

n̂i,σ (5.3)

In figure 5.1 we display the symmetry of N̂e alone for the case of 6 sites. The left
panel partitions the Hamiltonian into block diagonals according to different values of
Ne. In the right panel, the sparsity pattern of the largest subspace, Ne = 6, is shown.
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Figure 5.1: The left panel shows the different subspaces of N̂e for L=6. In the right panel, the
subspace of Ne = 6. For the Hamiltonian used to make these figures, no use of the Ŝz symmetry
has been made.
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Prior to exploiting any symmetries, note that the Hubbard model for L sites has

L∑
N↓=0

L∑
N↑=0

(
L
N↓

) (
L
N↑

)
= 2L2L = 4L

(5.4)

possible configurations, where N↓ is the number of spin down electrons and N↑ the
number of spin up electrons. As explained in chapter 3, the configuration referred to
as half filling is a system for which Ne = L. If we additionally require that Sz = 0,
equation 5.4 gives

(L
L
2

)2
configurations. In comparing the number of configurations with

and without the use of these symmetries, we get

4L(L
L
2

)2 ≈ πL
2

(5.5)

Thus, in going to the subspace of half filling granted by the symmetry of fixed particle
number, and the Sz = 0 subspace, the dimension of the problem has been reduced
by roughly a factor of L. Generally, the utility of symmetry reductions does not keep
up with the exponential growth of the problem as system size increases. Therefore,
it will not be of interest to look into other symmetries than spin and particle number
conservation in this thesis. For the remaining part of the thesis, the subspaces of Sz = 0
and Ne = L (half filling) will be used unless stated otherwise.

5.1.2 Conventions

Before embarking on the process of tackling the problem numerically, some conventions
must be adhered to. A general element of our basis can be devised as follows

|φm〉 = [ĉ
†

m1,↓
ĉ†m2,↓

...ĉ†m L
2
,↓
][ĉ†m1,↑

ĉ†m2,↑
...ĉ†m L

2
,↑
] |〉 =

��φ↓〉 ��φ↑〉 (5.6)

where again |〉 is the vacuum state, and the state is partitioned into sectors of different
spin for the ease of computation. The two sets {mi} and {mi} are sets of lattice positions,
each with L

2 elements. Spin down operators are placed to the left of spin up operators
as a convention. Secondarily, a convention of letting the site indices increase from left
to right is defined. In symbolic terms, if i < j, then mi < m j and mi < m j . The next
step would be to evaluate the action of each term in the Hamiltonian, equation 3.17, on
the basis states above. For the hopping term of equation 3.17, this amounts to

ĉ†i,↑ĉi+1,↑
��φ↑〉

= [ĉ†m1,↓
ĉ†m2,↓

...ĉ†m L
2
,↓
]ĉ†i,↑ĉi+1,↑[ĉ

†

m1,↑
ĉ†m2,↑

...ĉ†m L
2
,↑
] |〉

(5.7)
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where an even number of fermion exchanges have been performed. For the subsequent
action of ĉ†i,↑ĉi+1,↑ on the spin up sector, we get

ĉ†i,↑ĉi+1,↑ |φm〉

= ĉ†i,↑ĉi+1,↑[ĉ
†

m1,↑
ĉ†m2,↑

...ĉ†m L
2
,↑
] |〉

= [ĉ†m1,↑
ĉ†m2,↑

....ĉ†ml,↑︸              ︷︷              ︸
2l fermion exchanges

ĉ†i,↑ĉi+1,↑...ĉ
†

m L
2
,↑
] |〉 = |φn〉

(5.8)

with the purpose of showing that signs arising from anti-commutation operations is
usually unproblematic. An important caveat is the treatment of periodic boundary
conditions (equation 3.16) since hopping processes on the system boundary will give
rise to minus signs. For the electron interaction term in the equation 3.45, the action is
simply

n̂i,↓n̂i,↑ |φm〉

= n̂i,↓[ĉ
†

m1,↓
ĉ†m2,↓

...ĉ†m L
2
,↓
]n̂i,↑[ĉ

†

m1,↑
ĉ†m2,↑

...ĉ†m L
2
,↑
] |〉 = δ1,miδ1,mi

|φm〉
(5.9)

and the algorithmic procedure is just a matter of counting the number of occupied sites,
whence no off diagonal matrix elements are created.

5.1.3 Basis generation

Proceeding to the more practical aspects, the states need to be stored in memory
somehow. The basis states can be stored as binary numbers conforming to the following
enumeration scheme,

|φm〉 =
��m′1,m′2, ...,m′L〉 ��m′1,m′2, ...,m′L〉 (5.10)

where {m′i} and {m
′
i} are given the numbers 0 or 1 denoting a vacant site or an occupied

site, respectively. Example states for L=4 are

|1, 0, 1, 0〉 |0, 1, 1, 0〉

|1, 1, 0, 0〉 |0, 1, 1, 0〉

|0, 0, 1, 1〉 |1, 0, 1, 0〉
...

(5.11)

among a total of
(4
2

)2
= 36 basis states. Below, a pseudocode is made to illustrate the

creation of the basis set subject to the constraint of half filling and Sz = 0. See algorithm
1.

We showed the representation in terms of binary numbers, as it is much easier to do
manipulations, i.e., act with the Hubbard Hamiltonian in equation 3.48 on the binary
representation as exemplified in equation 5.11. However, it is less memory demanding
to store them in the decimal representation. Therefore, a transformation between these
representations is desired. To this end, we need to resort to a "look up" table of sorts in
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Algorithm 1 Algorithm for basis generation at half filling and Sz = 0

1: function Basis(L) . L is the number of sites in the system
2: sz =

(L
L
2

)
. Number of configurations in one spin sector

3: spinsector(1:sz)=0 . Allocate space for the configurations for the spin up/down sector
4: for g = 1 to sz do . Loop over the number of elements in this spin sector
5: dec = 0 . The decimal number of the state
6: occup = 0 . Number of electrons in the spin sector
7: for i = 0 to L − 1 do . Loop over the lattice sites
8: if occup < L

2 − 1] then
9: binar← randint(0, 1) . Random integer 0 or 1 is assigned

10: adder← binar × 2i

11: if binar = 1 then
12: occup + 1← occup
13: else
14: Continue . A sufficient number of electrons is reached
15: end if
16: else if i == L − 1 and occup < L/2 then . Condition for adding electrons
17: binar = 1
18: binar ∗ 2i ← adder
19: occup + 1← occup
20: else if occup > L/2 − 1 then
21: continue
22:
23: end if
24: dec← dec + adder
25: end for
26: if g > 1 and dec ∈ spinsector then . Determine if you have already made the state
27: continue
28: else if dec not in spinsector and occup == L/2 then
29: flag = 0
30: end if
31: if flag == 0 then
32: break
33: end if
34: spinsector(g) = dec . Resulting decimal number is added to "spinsector"
35: end for
36: end function

order to go back and forth between these representations in a one to one correspondence.
Realizing the described one-to-one correspondence between the decimal and the binary
representations calls for a function, for which the following is employed

I = I↓ + 2L I↑ (5.12)

where I is an index that enumerates the basis state in equation 5.9, and Iσ are binary
numbers pertaining to the spin σ sector. There are different ways of assigning a decimal
number to the different sectors of the state in equation 5.10. One way is according to
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the prescription ��m′1,m′2, ...,m′L〉 7−→ I↓ =
L−1∑
i=0

m′L−i × 2i

��m′1,m′2, ...,m′L〉 7−→ I↑ =
L−1∑
i=0

m′L−i × 2i

(5.13)

It is clear that given I, one can find I↓ in equation 5.12 as follows

I↓ = mod(I, 2L) (5.14)

and moreover,
I↑ = (I − I↓)2−N (5.15)

In this way, the set of basis states of the system is simply stored in a column ofmaximally
4L decimal numbers.

Algorithm 2 Algorithm for the generation of the decimal basis
1: function Decimalbasis(sz) . Number of elements in spin up/down sector
2: for i = 1 to sz do
3: for j = 1 to sz do
4: k = sz(i − 1) + j . Indexing the basis state
5: I↑ = spinsector(i)
6: I↓ = spinsector(j)
7: I(k) = 2L I↓ + I↑ . Create the basis states in decimal representation
8: end for
9: end for
10: sort(I)← I . Sort the vector in ascending order
11: end function

The code snippet above merely demonstrates the generation of the possible configu-
rations in one spin sector. To make the decimal number pertaining to one of the actual
basis states in equation 5.10, use the conversion formulas 5.14-5.15. A possible algo-
rithm is based on taking random combinations of the states of the spin sectors, combine
them according to the decimal formula 5.11 above to I, whence one obtains a long list
of decimal numbers. One throws out non-unique/repeated instances of a states. Such
an procudure is shown in algorithm 2.



5.2 Krylov subspace methods 47

5.1.4 Hamiltonian

The binary representation in equation 5.10 is the representation from which we create
our Hamiltonian. Now, say that subsequent to the hopping term in equation 3.17 acting
on a basis state, the following basis state is obtained

T̂ |φm〉 → |φn〉 (5.16)

As an example, a single term of the Hubbard Hamiltonian in equation 3.17 has the
following effect on a basis state, |φ〉m

−t0ĉ†
2,↑

ĉ2,↑ |φm〉 = −t0ĉ†
2,↑

ĉ2,↑ |0101〉↓ |1010〉↑

= −t0 |0101〉↓ ĉ†
2,↑

ĉ2,↑ |1010〉↑
= −t0 |0101〉↓ |1100〉↑
= −t0 |φn〉

(5.17)

In order to know what element of the Hamiltonian this pertains to, i.e., what |φn〉 is, a
binary search must be performed. Simply transform |φn〉’s binary representation to a
decimal number, and then search to find the placement/index of the decimal number in
the your decimal basis (as generated in algorithm 2). As a result you obtain two indices;
one representing |φn〉 and another representing |φm〉. These two indices determine
which slot in the Hamiltonian 3.17 gets filled. Algorithm 3 illustrates a way of creating
a Hamiltonian matrix. Although algorithm 3 displays only the action of the hopping
term in equation 3.17, it is easily extended to the full Hamiltonian.

Algorithm 3 Algorithm for the generation of Ĥ
1: function Hamiltonian(Basis,sz)
2: for g = 1 to sz2 do
3:

��φg〉 = |m1,m2, ...,mL〉↓ |m1,m2, ...,mL〉↑← I(g) . Decimal to binary.
4: −t0

��φg̃〉 ← Ĥ
��φg〉

5: I(g̃) ← Ĥ
��φg〉 . Assign the state a decimal number

6: g̃ ← I(g̃) . Perform a binary search for g̃
7: Ĥg̃,g − t0 ← Ĥg̃,g . Append the matrix element to the Hamiltonian
8: end for
9: end function

The sparsity pattern of the resulting Hamiltonian is shown in figure 5.2 for 12
sites. However, the sparsity matrix is obtained by performing algorithm 3 with the full
Hamiltonian, equation 3.17. It is calculated that the number of non zero elements in
this particular Hamiltonian makes up 0.0017% of the whole matrix.

5.2 Krylov subspace methods

To obtain the ground state in the exact basis, we turn to an often used method in many
body calculations - namely the Lanczosmethod. [43] [44] [45] The utility of thismethod
stems from the fact that the Hamiltonian 3.17 is a sparse matrix in the exact basis -
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Figure 5.2: Sparsity pattern of the Hubbard Hamiltonian, equation 3.17 for 12 sites.

which can be seen as a result of the tight-binding approximation. A large dimension
and sparsity makes our system ideally suited for the Lanczos algorithm. The procedure
starts with a random, normalized vector, q0. A vector orthonormal to q0 can be found
with the Gram-Schmidt procedure

q̃1 = Ĥq0 − (q
†
0Ĥq0)q0 (5.18)

where
β1 = ‖q1‖ (5.19)

Cast in another way,
Ĥq0 = q1β + αq0 (5.20)

where
α0 = q0Ĥq0 (5.21)

Further application of the above procedure will yield a tridiagonal matrix structure, for
which the general recursion is given by

Ĥq j = α jq j + β jq j−1 + β j+1q j+1 (5.22)

where
α j = q†j Ĥq j (5.23)

q̃ j+1 = Ĥq j − α jq j − β jq j−1 (5.24)
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β j+1 =
q̃ j+1

 (5.25)

and
q j+1 =

q̃ j+1

β j+1
(5.26)

The tridiagonal matrix structure is written as

ĤK =

©«

α0 β1 0 . . . 0

β1 α1 β2
. . .

...

0 β2
. . . . . .

...
...

. . . . . . . . . βK−1
0 . . . 0 βK−1 αK−1

ª®®®®®®®¬
(5.27)

where K is defined as the Krylov dimension. Furthermore we define the Krylov space
as the following vector space

K(Ĥ, q0) = span{q0, Ĥq0, ..., Ĥ
K−1q0} (5.28)

To generate the matrix in 5.27, one may either append {βi}i=1,2,...,K−1 and {αi}i=0,1,...,K−1
to the Krylov matrix during the solution of equations 5.23-5.25, or alternatively, first
calculate {q}i=1,2,...,K−1, and then calculate

ĤK = (q0q1...qK−1)
†Ĥ(q0q1...qK−1) (5.29)

After the Krylov matrix is built, a diagonalization in the Krylov space is performed
in order to find the ground state. Given the transformation in equation 5.29, one may
deduce the transformation of vectors in one basis to the other. Denote for instance the
ground state eigenvector of ĤK by ξ . Then, the corresponding eigenstate of Ĥ is

Ψ =

K−1∑
i=1

ξiqi−1 (5.30)

where ξi are the components of the ground state of ĤK . The vast reduction of matrix
dimension lends itself to the fact that iterations of the type ĤN q converges towards
the eigenstates belonging to eigenvalues of large magnitudes. In order to explain this,
consider writing the initial random vector as a linear combination of the eigenstates of
Ĥ

q0 =
∑

n

cnλn (5.31)

where cn are complex coefficients and λn are the eigenstates of Ĥ. Now, upon acting
with Ĥ N times, we obtain

ĤN q0 =
∑

n

cnE N
n λn (5.32)

since Ĥ |n〉 = En |n〉. It is clear that the dominant contribution in the linear combination
of equation 5.32 comes from the state for which |En | is largest. Therefore, we can
construct a basis out of the Krylov space, equation 5.28. One may question the utility
of such a method applied to a Hamiltonian for which the actual ground state belongs to
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the energy of smallest magnitude. In that case, the following restatement of equation
5.32 can be devised

(Ĥ − σ)N q0 =
∑

n

cn(En − σ)
Nλn (5.33)

where σ is some real parameter chosen in order to select out the ground state of Ĥ.

5.3 The Arnoldi-Lanczos propagator

Given the tools necessary to calculate the time independent problem, we now proceed
to propagate the system in time. The problem at hand is reiterated from equation ??,
which is solved along with equation 3.48. The mathematical problem can be formulated
as

Ψ(t) = T̂ e−i
∫ t

0
Ĥ(t)dtΨ(0)

= Û(t, 0)Ψ(0)
(5.34)

where T̂ is the time ordering operator. At small time increments, one may express

Ψ(t + ∆t) ' e−i
∫ t+∆t

t
Ĥ(t)dtΨ(t) (5.35)

at which point various approximations can be applied. The small time step can for
instance be used to assume a constant Hamiltonian over the time interval [t, t + ∆t]. A
convenient approximation at this point is the Simpson’s method, which applied to the
integral in equation 5.35 gives∫ t+∆t

t
Ĥ(t)dt ≈

∆t
6
[Ĥ(t) + 4Ĥ(t +

∆t
2
) + Ĥ(t + ∆t)] := ˆ̃H(t,∆t) (5.36)

In order to make the many-body Hamiltonian 3.48 tractable for the time propagation,
the Krylov subspace reduction of the previous chapter is applied to ˆ̃H(t) in each time
step. [46] Specifically, creating an orthonormal basis in the Krylov space from ˆ̃H(t)
along with the start vector q0 = Ψ(t), and transforming ˆ̃H(t) to the Krylov space by
means of equation 5.27 can be used to re-express equation 5.35 in the Krylov space as
follows

Ψ(t + ∆t)K = e−i ˆ̃HK (t,∆t)Ψ(t)K (5.37)

where the state vectors are represented in the Krylov space. Now since K � dim(Ĥ),
ˆ̃HK can easily be diagonalized, i.e.,

ˆ̃HK = ŜD̂Ŝ−1 (5.38)

where Ŝ is the matrix of eigenvectors of ˆ̃HK and D̂ a diagonal matrix of the eigenvalues
of ˆ̃H. From this, equation 5.37 can be expressed as

Ψ(t + ∆t)K = Ŝe−iD̂Ŝ−1Ψ(t)K := ξ (5.39)
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Finally, in the same manner as the time independent Lanczos algorithm, the state in
equation 5.34 is obtained via

Ψ(t + ∆t) =
K−1∑
i=1

ξiqi−1 (5.40)
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Chapter 6

Results and Discussion

TheHubbardHamiltonian presented in equation 3.48 is solvedwith theArnoldi-Lanczos
time propagator for 12 sites. Typical parameters used throughout this section is the
hopping term, t0 = 0.191 [a.u.], and the electron-electron repulsion energy, U, expressed
in units of t0. Furthermore, the lattice constant is set to a = 7.1739 [a.u.] throughout.
The parameters are chosen to mimic Sr2CuO3. [21]

For the purpose of generating high harmonic radiation, a cos2 enveloped pulse is
employed, given as

A(t) =
E0

ω0
sin

(
ω0(t − t) + φ −

π

2

)
cos2(

ω0(t − t)
2M

)

. . . {θ((t − t) −
MT
2
) − θ((t − t) +

MT
2
)}

(6.1)

with E0 the peak electric field strength, ω0 the carrier angular frequency, M the number
of optical cycles, T the period of one cycle of the pulse, t the middle of the time
interval, φ the carrier-envelope phase and θ is the heaviside step function. φ = 0 in
all forthcoming simulations. A ten cycle pulse with a cycle duration of 1257 [a.u.] will
be used throughout unless stated otherwise. The vector potential is shown in figure
6.1, and is normalized to unity. Herein, a field strength of E0 = 0.0019 [a.u.] and
a carrier frequency of ω0 = 0.005 [a.u.] will be used for the majority of the figures.
The macroscopic current from equation 3.55 forms the centerpiece of the subsequent
analyses. A theoretical prerequisite to understanding how the current relates to the
emission of radiation is the concept of the radiating charge. The power radiated by a
moving charge is calculated through the Larmor formula. [25] [8] More specifically, it
is the acceleration of the charge that is used in order to calculate the harmonic intensity.
Since the current in equation 3.55 is proportional to the speed of the particles, the dipole
acceleration can be identified as the time derivative of the current. More precisely, the
objective is to calculate [1]

a(t) =
d
dt

J(t) (6.2)

where J(t) is understood as the expectation value of the current operator at time t.
a(t) will be referred to as the dipole acceleration. As a word of warning, the dipole
acceleration can give rise to numerical noise as a result of not vanishing smoothly at
the start and end of the pulse. [8] In order to resolve this issue, a window function is
applied to a(t). An example of such a window would be to multiply a(t) by the pulse
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Figure 6.1: Vector potential, A(t), expressed as a function of optical cycles. The intensity is
normalized to unity in this figure.

envelope. Rather, the same approach as that used in reference [8] is used here, where
the window function is defined as

ξε (t) =


0 if t < t0 or t > t1
sin2(

π(t−t0)
2ε ) if t > t0 and t < t̃0

1 ift > t̃0 and t < t̃1
sin2(

π(t1−t)
2ε ) if t > t̃1 and t < t1

(6.3)

where t0 and t1 mark the start and end of the pulse, respectively. t̃0 := t0 + ε and
t̃1 := t1 − ε are defined with some ε with the duration of a few femtoseconds. Given a
pulse duration of 300 fs, a value of ε ∼ 30fs or less gives desired results. 1

In order to resolve the emission of radiation in the frequency domain, the absolute
value squared of the Fourier transform is calculated

Irad(ω) =
����∫ t1

t0
ξε (t)a(t)eiωtdt

����2 ≈ |iωJ(ω)|2 (6.4)

where equation 6.2 was used in the approximation. The approximate result is due to the
incorporation of the window function, equation 6.3.

1This is a point that is perhaps best exemplified by calculating the HHG spectrumwith and without the window.
The most prominent characteristic of the latter is that it often exhibits noisy harmonics at low frequencies.
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6.1 Benchmark

To start off the analysis of the developed numerical code, a benchmark is in place to
ensure the correctness of our results. In the spirit of making the problem numerically
tractable, some notable approximations are employed. It is unknown from the article in
reference [1] which time propagator is used, and moreover which time step is needed
to ensure the desired results. According to Nyquist’s theorem, the sampling rate of
the time interval over which the propagation is performed gives an estimate for the
highest discernable frequency component present in our calculated current. However,
even if the simulation is performed within the confines of the resulting frequency, the
convergence of the wave function at arbitrary times is not assured. Figure 6.2 shows a
comparison between original data from R.E.F. Silva et al., and my data. Two values of
U
t are shown, and the overall shape fits well. The fine structure of the harmonics is not
a perfect match, but is likely considered to have origin in different numerical methods.
However, a good quantitative agreement on the basis of two vastly differing interaction
strengths indicates that our numerical code can be applied to study other properties, and
even go beyond the results of R.E.F. Silva et al.
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Figure 6.2: A comparison of data from [1] and data from my own code applied to a case of
strong correlation (left panel) and to a case of weak correlation (right panel).

The HHG spectra resulting from three different interaction strengths are compared
in figure 6.3. We have included the zero U case in order to demonstrate the limit of zero
interaction in our numerical code. In this case, the spectrum in figure 4.3 is essentially
reproduced. To draw attention to the case of strongest coupling, U

t0
= 5, the harmonic

yield is centered at ω
ω0
≈ 20. At the same time, note that since ω0 = 0.005 [a.u.] and

U = 0.0956 [a.u.], we have that U ≈ 20ω0. Since this energy coincides with the value of
ω for which the yield is highest in figure 6.3, we may attribute the region of highest yield
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to transitions between the Hubbard bands - seeing as they have an energy separation of U
at direct momentum transitions. (See chapter 3) Therefore, as is probably expected, the
harmonic spectrum is indicative of the underlying electronic structure. This hypothesis
is further corroborated for the case of U

t = 2 which gives a peak at ω
ω0
≈ 8. Based on the

interaction strengths in figure 6.3, the region of highest yield seems to follow a scaling
of N ∼ U

ω0
where N is the harmonic order. Low order harmonics are more prominent

in the realm of low U, whereas high order harmonics become increasingly apparent at
high U. The extreme of zero U has already been demonstrated to give clear low order
harmonics in chapter 4.1, and is replicated by our developed numerical algorithm in
figure 6.3.
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Figure 6.3: HHG spectra for 12 sites with parameters U
t = 0, and 2 and 5. The two last cases

display an irregular structure which is not manifested in single active electron theories. See for
instance [40].
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6.2 Time frequency analysis

The HHG spectra depicted in figures 6.2 and 6.3 will in an experimental setting cor-
respond to the yield of the total radiation that hits a detector during the duration of
the pulse. However, experiments currently enable the resolution of emitted harmon-
ics to the precision of 1-2 femtoseconds (fs) in the time domain. [47] Thus, with the
certainty that this time scale is within experimental bounds, one may proceed by per-
forming a time-frequency analysis with fs windows. Theoretically, a time frequency
analysis is performed by multiplying the dipole acceleration, a(t) in equation 6.2, by a
narrow Gaussian function with FWHM (full width at half maximum) on the order of
a few fs. These functions are referred to as sliding windows. More specifically, the
same sliding window as used in [1] is used here, and is of the form exp

[
−
(t−τ)2

σ2

]
, where

σ = 1
3ω0

and τ marks the time at which the harmonics is detected. Figure 6.4 shows
such a time-resolved harmonic emission. In figure 6.4 an interesting correlation be-
tween the onset of emitted radiation with the time the pulse attains the threshold field
strength, Fth, is observed. Roughly speaking, the threshold field strength is attained
at the instances of increased harmonic emission in the middle and the lower panel of
figure 6.4. [1] We restate equation 1.3 from the introduction here

Fth =
∆

2eξ
(6.5)

where again ∆ is the optical gap and ξ the correlation length of a doublon hole pair. It
was mentioned that ∆ scales linearly with U. In comparing the middle panel with the
bottom panel, it is seen that the onset of high harmonic radiation for U

t0
= 5 happens

at a later time than for the case of U
t0
= 2. This is because for stronger correlation, the

time taken for the field to reach threshold field strength is prolonged in light of equation
6.17. It should be emphasized that each of the figures 6.2 and 6.3 are essentially
comprised of sums of the time slices used in order to calculate the time-frequency
spectrogram in figure 6.4. With the attosecond metrology that is currently achievable,
there is a promising prospect of using analyses of the likes of that in 6.4 to gain useful
information about the behavior of strongly correlated systems on the attosecond time
scale. This is the main finding purported in the recent paper of R.E.F. Silva et al. [1]
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Figure 6.4: In the top panel, the vector potential is plotted as a function of time, and is
normalized to unity. The middle panel shows a time frequency analysis for the case U

t = 2.
The bottom panel shows the case of U

t = 5. Time frequency analysis is performed on the
generated dipole accelerations, with a sliding window as in [1]. The color plot is drawn on
a logarithmic scale. Along the x-axis in the two lower panels, the angular frequency of the
emitted harmonics is given in units of the angular frequency of the driving field. In comparison
with the publication, smaller intensities are here highlighted in places where the authors in [1]
have chosen to remove the coloring.

Excited states in the Hubbard model are characterized by the population of the upper
Hubbard band [34] - i.e., doubly occupied sites. Clearly, the excitation process depends
on the coupling strength, U. Figure 6.5 shows the projection of the wave function at time
t onto the ground state. Explicitly, the projection is defined as W(t) = |〈Ψ0 |Ψ(t)〉|2,
where |Ψ(t)〉 is the propagated wave function and |Ψ0〉 the ground state. Now, since
figure 6.5 draws a comparison on the grounds of different coupling strengths only, it is
seen that the same field strength will more efficiently expedite the excitation process in
U
t = 2 as compared to U

t = 5. This is because the energy gap from the ground state to
the first excited state is lower in the former case. Moreover, the middle and the bottom
panels of figure 6.5 both display time intervals of coherence between the ground state
and first excited state. Most importantly, the coherence in the described time intervals
are accompanied by increased harmonic emission, as can be seen from figure 6.4. The
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described events substantiate the importance of coherence in the process of HHG in
strongly correlated systems.
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Figure 6.5: Top panel: Vector potential normalized to unity and otherwise conforming to the
pulse parameters already stated. Middle panel: Ground state projection for 12 sites with U

t = 2.
Bottom panel: The same system with U

t = 5.

6.3 Phase transitions

It will be the objective of this section to demonstrate that the already presented results
show signatures of an insulator to metal phase transition. Generally, correlation func-
tions are a way to properly ascertain the fact of a phase transition taking place. The
relevant correlation functions undergo a sudden change during this event, and the key
quantities are presented here. Firstly, note that in a highly correlated Hubbard model,
the lowest energy eigenstates will tend to have the spins aligned in an anti-ferromagnetic
fashion. [34] This configuration is characterized as a state with high anti-ferromagnetic
order. In the other limit of weak correlation, there is less restriction on the ordering
and states with doubly occupied sites can easily occur. A key remark is that we may at-
tribute the scenario of high anti-ferromagnetic ordering to the insulating phase, and the
scenario of low anti ferromagnetic ordering (and similarly the preponderance of dou-
bly occupied sites) to a metallic phase. Both described characteristics can be quantified
through the doublon correlation function

D(t) =
1

L

〈
L∑

j=1

n̂ j,↑n̂ j,↓

〉
(t) (6.6)
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and the spin-spin correlation function [48]

η(t) =
1

L

〈
L∑

j=1

Ŝ j Ŝ j+1

〉
(t) (6.7)

where L is the number of sites in the system, and 〈. . .〉 (t) is understood as
〈Ψ(t)| . . . |Ψ(t)〉 for the state of the system, |Ψ(t)〉, at time t. D(t) is the number of
doubly occupied sites normalized over system size, whereas η is a quantity measuring
the degree to which the spins in the lattice are aligned anti-parallel. Furthermore,

Ŝi =
1

2

∑
α=↑,↓

∑
β=↑,↓

ĉ†i,ασ
α,βĉi,β (6.8)

where
σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
are the Pauli matrices. [31] It can be shown that

ŜiŜ j =
1

2
(Ŝ+i Ŝ−j + Ŝ−i Ŝ+j ) + Ŝz

i Ŝz
j (6.10)

where
Ŝ+i = Ŝx

i + iŜy
i = ĉ†i,↑ĉi,↓ (6.11)

and
Ŝ−i = Ŝx

i − iŜy
i = ĉ†i,↓ĉi,↑ (6.12)

For the last term in equation 6.10 we have

Ŝz
i =

1

2
(n̂i,↑ − n̂i,↓) (6.13)

From a numerical point of view, the above definitions present intricate combinations
of creation and annihilation operators, and it may hence be instructive to demonstrate
how this acts on a many body state following the methods of chapter 5. A general basis
element is reiterated here as

|φm〉 = [ĉ
†

m1,↓
ĉ†m2,↓

...ĉ†m L
2
,↓
][ĉ†m1,↑

ĉ†m2,↑
...ĉ†m L

2
,↑
] |〉 =

��φ↓〉 ��φ↑〉 (6.14)

It is seen that
Ŝ+i Ŝ−j |φm〉 = ĉi,↓ĉ

†

j,↓

��φm,↓
〉

ĉ†i,↑ĉ j,↑
��φm,↑

〉
(6.15)

Furthermore,

ĉi,↓ĉ
†

j,↓

��φm,↓
〉
= ĉi,↓ĉ

†

j,↓[ĉ
†

m1,↓
ĉ†m2,↓

...ĉ†m L
2
,↓
] |〉

= −[ĉ†m1,↓
ĉ†m2,↓

...ĉ†ml,↓︸             ︷︷             ︸
2l fermion exchanges

ĉ†j,↓ĉi,↓...ĉ
†

m L
2
,↓
] |〉 (6.16)
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A similar procedure is conducted on the spin up sector in equation 6.15

ĉi,↑ĉ
†

j,↑

��φm,↑
〉
= [ĉ†m1,↑

ĉ†m2,↑
...ĉ†ml,↑︸             ︷︷             ︸

2l fermion exchanges

ĉ†j,↑ĉ
†

i,↑...ĉ
†

m L
2
,↑
] |〉 (6.17)

whence we see from equations 6.16 and 6.17 that the result of the first term in equation
6.10 acting on a basis state gives rise to an overall minus sign. The action of the second
term in equation 6.10 is completely analogous, whereas the action of the last term
essentially amounts to the same algorithm as that in equation 5.9.

Figure 6.6 shows the behavior of the correlation functions in equations 6.6 and 6.7
over the duration of the laser pulse. The negative of η is plotted for the purpose of
clearly discerning the two functions. For U

t = 5 in the bottom panel of figure 6.6, a
prolonged period of a low value of D(t) (and a high value of −η(t)) can be seen before
the field reaches the threshold field strength, Fth. The case of U

t = 2 in the middle
panel of figure 6.6 shows that the ground state depletion in the middle panel of figure
6.5 happens in line with the decrease of anti-ferromagnetic order and the increase in
doublon-hole pairs. That is, the depletion of the ground state marks the change in the
defined correlation functions, and hence marks the onset of the phase transition. The
same reasoning applies equally well to the instance of U

t0
= 5. It can also be seen that the

change in the correlation functions directly reflects the high harmonic emission events
in figure 6.4. Hence, in summarizing the observations from figures 6.4-6.6 we have
studied the insulator to metal phase transition from the vantage points of time resolved
HHG, ground state projection and correlation functions in time.
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Figure 6.6: The indicator of a phase transition - the correlation functions in equations 6.6 and
6.7 shown for U

t0
= 2 in the middle panel and U

t0
= 5 in the bottom panel.
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6.4 Different system sizes

Given the computational complexity outlined in the chapter on numerical methods, it is
natural to inquire why 12 sites are needed. One can argue on the basis of convergence.
That is, a sample of simulations across many system sizes is gathered and one concludes
that for instance the discrepancy from L=6 to L=8 is larger than that between L=10 and
L=12. R.E.F. Silva et al. has reported essentially similar results for L=12 and L=14 as
a justification for presenting results for L=12. [1] A systematic account for the trend
from L=6 to L=12 for the instance of the doublon correlation function is presented in
the following.
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Figure 6.7: The doublon correlation function from equation 6.6 is presented in varying system
sizes. All panels are results of simulations performed with U

t0
= 5.
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Figure 6.8: Comparison of HHG spectra for different system sizes. All panels are results of
simulations performed with U

t0
= 5.

In 6.7, it is seen that the simulations with fewer sites are characterized by an
oscillatory behavior after the phase transition has taken place. In order to explain this,
recall the interpretation of the doublon-correlation function as the number of doubly
occupied sites normalized over system volume. Now, when the system is comprised
of few sites and few electrons, D(t) in equation 6.6 will respond more sensitively to
an event where a single particle jumps to a site where an electron with opposite spin
already resides. With this interpretation in mind, we may conjecture that regions prior
to, and after the phase transition, in figure 6.7 will become almost entirely flat when the
system size increases further. On account of this, we may judge the case of 10 and 12
sites to be an adequate representation of the true physical scenario.

Interestingly, the HHG spectra resulting from different system sizes presented in
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figure 6.8 are harder to discern between. As mentioned, the HHG spectrum in the pre-
sented coupling regime bears the characteristic of the single particle excitation energy,
U. (see chapter 3) In this regard, the overall shape of the spectra is more a statement
about the single particle energies - which is more or less site independent. Although
considerable discrepancy across the panels in figure 6.7 has been demonstrated, this is
arguably not paralleled in figure 6.8.

6.5 Dependence on field strength

Since much attention has been given the details of the phase transition, this section will
provide an insight into the system properties at field strengths below Fth. This marks
the first mention of an "ordinary" HHG-processes in the Hubbard model in this thesis.
For a laser pulse that exceeds the threshold field strength at some point during the pulse,
the resulting spectrum is independent of intensity. [1] In this section we denote the unit
field strength as E0 = 0.0019 [a.u.].

A broad overview of the effect of field strength is shown in figure 6.9 where we
compare field strengths above and below Fth. For the intensity E = 0.1E0 we see a
harmonic spectrum reminiscent of atomic HHG-spectra and those of semiconductor
HHG-spectra, the latter of which is usually modeled by a interband and intraband
processes including a valence and a conduction band. [5] [22] That is, the signature of
dynamical Bloch oscillations is present for the lowest order harmonics for the considered
field strength. Furthermore, the spectrum acquires a plateau structure followed by a
cut-off around N ≈ 30. A notable feature of the lowest couple of field strengths in figure
6.9 is the emergence of clean harmonics at all orders, which is reminiscent of single
active electron theories in general.

In figure 6.10 we show the spectra for two additional field strengths above and
below E = 0.1E0. The field strength of E = 0.15E0 highlights the intermediate regime
between the normal HHG process present in the Mott insulator and the regime of above
threshold field strength. In particular, the spectrum of E = 0.15E0 displays some
of the irregularities seen in the spectrum produced for E = E0. Whereas the case
of E = 0.1E0 exhibited a clear plateau structure, this feature seemingly vanishes for
E = 0.15E0. However, a cut-off can be seen at ω

ω0
≈ 30 for both of the aforementioned.
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Figure 6.9: The effect of altering the field strength is investigated. E0 = 0.0019 [a.u.] is the
field strength for which the spectrum displays above threshold behavior as in figures 6.2-6.8.
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Figure 6.10: Three HHG spectra for intensities around E = 0.1E0 are shown. With respect to
the actual intensities, the spectra for E = 0.05E0 and E = 0.15E0 are shifted by -3 orders of
magnitude and +3 orders of magnitude, respectively.
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6.6 The Mott-Hubbard model

Despite the Hubbard model’s neglect of anything other than on-site correlations, the so
called Mott-Hubbard model

Ĥ = −t0
∑
σ

L∑
i=1

(ĉ†i,σ ĉi+1,σ + h.c.) +U
L∑

i=1

n̂i,↑n̂i,↓ + V
L∑

i=1

n̂in̂i+1 (6.18)

where
n̂i = n̂i,↑ + n̂i,↓ (6.19)

[34] has been applied to study quantum interference effects in the a strongly correlated
system as a means of calculating optical conductivity, among other quantities. [49] Re-
call how the light matter coupling only affects the single particle part of the Hamiltonian
in equation 3.17. Hence, the complex phases in the Hamiltonian 3.48 can be added to the
Mott-Hubbard Hamiltonian in the same manner as for the Hubbard model. Fortunately,
this extension does not pose much of a numerical challenge, since the last term in 6.18
is diagonal in the exact basis. In [49] such a model with parameters t0 = 0.0184 [a.u.],
U = 16.4t0 and V = 2t0 is studied. In the following, the Mott-Hubbard model will be
solved with this set of parameters with and without the nearest neighbor term, V. The
authors in [49] have seen effects of this interaction in terms other properties than HHG,
which they explain in terms of quantum path interference.

Figure 6.11 shows a comparison of the HHG-spectra obtained for the above parame-
ters, and the same parameters except for V = 0. Incidentally, the energy spectrum of the
Hamiltonian 6.18 is such that we make use of equation 5.32 for obtaining the ground
state. As in earlier results, the yield is concentrated around N ≈ U

ω0
. At this point, a

trend in the generated harmonic spectra emerges. Figure 6.11 shows a shift in the max-
imal yield towards higher energies - directly reflecting the increased electron-electron
repulsion. More quantitatively, the orders N are shifted according to N ≈ U

ω , as was in-
dicated in the context of figure 6.3. Since figure 6.11 represents a multiphoton process
involving extra intermediate states in relation to the other spectra presented herein, the
overall yield is lower.

We attribute the heightening of harmonic intensity at orders below N ≈ 60 to the
intermediate energy steps between those of the Hubbard model 3.48. The suppression
of harmonic intensity above this order on the other hand, may find a similar explanation
to that given by S. Wall et al. [49] Quantum interference of different excitation paths
will lead to the suppression of certain harmonic intensities, while increasing other ones.
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Figure 6.11: The effect of including the nearest neighbor interaction term in the Hubbard model
- i.e., going from the model in equation 3.48 to that in equation 6.18.

6.7 Doping

We have in this thesis developed a numerical code capable of investigating the one
dimensional Hubbard model in any subspaces of the symmetries of Ŝz and N̂e explained
in chapter 5. Therefore, we seek to explore other configurations than those of singlet
states and half filling. In figure 6.12, such a simulation is performed for 10 sites.
Despite the fact that all previous results have been calculated for 12 sites, we find that
not imposing any Ŝz symmetry increases the computational demand so as tomake 12 site
simulations unfeasible. Therefore, we present the results for 10 sites instead. Its validity
can be justified on the basis of the discussion following figure 6.7. Nevertheless, figure
6.12 forms a valid basis of comparison between different electron fillings. Moreover,
it is calculated that simulations with the half-filling configuration gives the same HHG
spectrum as that with half-filling and restriction to the subspace of Sz = 0. Figure
6.12 shows the comparison between a 10 site system with 6,10 and 14 electrons without
restricting to any subspace of the Sz symmetry. In drawing attention to the case of Ne = 6,
we see that the signature of dynamical Bloch oscillations are very much present. Since
there are less electrons in the system, there are correspondingly less excitations to the
upper Hubbard band. This result goes some way in disentangling the contributions from
intra-subband acceleration (the process responsible for dynamical Bloch oscillations)
and inter-subband processes. That is, since we know that the upper Hubbard band



68 Results and Discussion

1 11 21 31 41 51 61 71 81 91 101

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

Figure 6.12: This figure displays simulation results fromdifferent subspaces of electron number.

is sparsely populated for Ne = 6, we can with a great deal of certainty attribute the
low harmonic region to that of dynamical Bloch oscillations and the region of higher
harmonics to inter-subband processes. In order to explain the case of 14 electrons,
the reader is reminded about the interpretation following the Hubbard Hamiltonian,
equation 3.17. For high electron fillings, there is a higher probability of an electron
being obstructed by another electron already residing on a given site. Correspondingly,
the degree to which the electron hops around the crystal lattice is limited. As a result, the
dynamical Bloch oscillations are suppressed. Now, since there is less electron motion,
this implies that few electrons get promoted to the upper Hubbard band. However,
for electron numbers above half-filling some parts of the Hubbard band is naturally
populated. Although the cases Ne = 6 and Ne = 14 presented less interband coherence,
the fillings studied in figure 6.12 provides a prospect with regards to tuning the shape
of the Harmonic spectrum in a given material on the basis of doping.



Chapter 7

Conclusion

In this thesis, an account for the the dynamics of strongly correlated systems has
been provided in light of correlation functions, demonstrations of coherence and most
importantly, both total HHG-spectra and time-frequency analyses. The results presented
have been sought simplified through the formalism of Hubbard bands. In assessing the
robustness of the Hubbard model in this context, equation 3.48, has been examined
through comparing with the Mott-Hubbard model, equation 6.18, for parameters used
in a recent experiment by S.Wall et al. [49] Moreover, HHG spectra for doped materials
have been presented as a means of substantiating our hypotheses about the validity of
the explanation in terms of Hubbard bands.

Seeing as electronic structure has been key in describing most observed phenomena
up until this point, an interesting prospect is to determine in what way the spectrum will
change, for any intensity, if another band is included. However, adding bands amounts
to building a larger space of configurations - which would for 12 sites effectively amount
to a 24 site problem, adding the orbital degree of freedom. When a laser pulse attains
above threshold field strength, it is questionable whether the single band Hubbard model
breaks down.

Among the most notable approximations employed in this thesis is the dipole ap-
proximation. For larger system sizes than what has been considered, it is questionable
whether the vector potential can be treated as constant over the range of the system
considered. It also remains to see whether the conclusions reached here withstands in
two dimensional and three dimensional materials. In this regard, we will need to in-
corporate additional symmetries to those considered here in order to perform realistic
simulations.

Based on what has been presented, it will be interesting to further explore the possi-
bility of obtaining equations on closed form through an equation of motion technique.
This is in fact what is done in the Semiconductor Bloch Equations, although they rely on
the Hartree Fock approximation. [12] Future prospects should include analytical strides
in order to mitigate the numerical difficulty inherent in the physics of these systems.
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Appendix A

The current operator

The correspondence between the current in momentum space and that in real space,
equations 4.4 and 3.55, respectively, is proved in this appendix. By adhering to the
conventions

ĉk,σ = L−
1
2

∑
i

ĉi,σe−ikRi (A.1)

and
ε(k) = L−1

∑
i j

ti j · eik(Ri−Rj ) (A.2)

equation 4.4 may be expressed as

Ĵ(t) =
∑
σ

L−2
∑

k

∑
i jlm

ti ji(Ri − Rj)eik(Ri−Rj )ei(Ri−Rj )A(t)

ĉ†l,σ ĉm,σeik(Rl−Rm)

(A.3)

where
∂

∂k
ε(k) = L−1

∑
i j

ti j
∂

∂k
eik(Ri−Rj )ei(Ri−Rj )A(t)

= L−1
∑

i j

i(Ri − Rj)ti jeik(Ri−Rj )ei(Ri−Rj )A(t)
(A.4)

was used. By using the relation

L−1
∑

k

eik(Ri−Rj ) = δ(Ri − Rj) = δ(i − j) (A.5)

since Ri − Rj = a(i − j), equation A.3 may be written as

Ĵ(t) = N−1
∑
σ

∑
i jlm

δ(i − j + l − m)ti jia(i − j)eia(i− j)A(t) (A.6)

Now, define ρ := i − j and ξ := l − m, and write

Ĵ(t) = N−1
∑
σ

∑
iρlξ

δ(ρ + ξ)iaρti,i−ρĉ
†

l,σ ĉl−ξ,σeiaρA(t)

= N−1
∑
σ

∑
i,ρ,l

ti,i−ρiaρeiaρA(t)ĉ†l,σ ĉl+ρ,σ
(A.7)
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Next, we make use of the fact that the system is translationally invariant, i.e., ti,i−ρ = t−ρ.
Therefore, equation A.7 can be rewritten as

Ĵ(t) = i
∑
σ

∑
l,ρ

t−ρiaρeiaρA(t)ĉ†l,σ ĉl+ρ,σ

= +iat0
∑
σ

L∑
l=1

[eiaA(t)ĉ†l,σ ĉl+1,σ − h.c.]
(A.8)



Appendix B

Pseudo-particle band structure

The concept of the pseudo-particle band structure presented in the chapter on the
Hubbard model, chapter 3, can provide useful insight into the optical response of
strongly correlated systems. It is therefore derived here, with an approach closely
following that of Hubbards original article from 1963. [33].

We will denote the retarded (+) and advanced (-) Green’s functions by〈〈
ĉi,σ(t); ĉ†j,σ(t

′)

〉〉(±)
= ∓iθ(±(t − t′))

〈
[ĉi,σ(t), ĉ

†

j,σ(t
′)]η

〉
(B.1)

where θ(t − t′) is the heaviside step function and η = −1 for fermions, denoting an
anti-commutator. By using the Heisenberg equation

d
dt

Ô = i
[
Ĥ, Ô

]
, (B.2)

it is easy to show that

i
d
dt

〈〈
ĉi,σ(t); ĉ†j,σ(t

′)

〉〉(±)
= ±δ(±(t − t′))

〈
[ĉi,σ(t), ĉ

†

j,σ(t
′)]η

〉
+

〈〈
[ĉi,σ(t), Ĥ]; ĉ†j,σ(t

′)

〉〉(±) (B.3)

where
d
dt
θ(t − t′) = δ(t − t′) (B.4)

was used. Hereafter, wewill be concernedwith the retardedGreen’s function, and hence
we drop the superscript (±) in the Green’s function. Using equation B.3 in conjunction
with the fact that the correlation functions only depend on (t-t’), we may define〈〈

ĉi,σ; ĉ†j,σ
〉〉

E
=

∫ +∞

−∞

〈〈
ĉi,σ(t); ĉ†j,σ(0)

〉〉
eiEtdt (B.5)

Now, a strategy that is often employed in these kinds of calculations, is to perform a
substitution E → E ± iε in order to ensure convergence of the integral. For the retarded
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Green’s function, we obtain〈〈
ĉi,σ; ĉ†j,σ

〉〉
E

= −i
∫ +∞

−∞

θ(t)
〈〈

ĉi,σ(t); ĉ†j,σ(0)
〉〉

eiEtdt

= lim
ε→0+
−i

∫ +∞

0

〈〈
ĉi,σ(t); ĉ†j,σ(0)

〉〉
ei(E+iε)tdt

(B.6)

Similarly, we must let ε tend to zero from below the real axis for the advanced
Green’s function. By taking the Fourier transform of equation B.3, we get

E
〈〈

ĉi,σ; ĉ†j,σ
〉〉

E
=

1

2π

〈〈
[ĉi,σ, ĉ

†

j,σ]η

〉〉
E
+

〈〈
[ĉi,σ, Ĥ]; ĉ†j,σ

〉〉
E

(B.7)

by using the following property of the Fourier transform

1

2π

∫
d
dt

f (t)eiωtdt = iω f (ω) (B.8)

First, note that from the Hamiltonian in equation 3.14, it can be shown that[
ĉi,σ, Ĥ

]
=

L∑
j=1

ti j ĉi,σ +Un̂i,σ ĉi,σ (B.9)

which implies that

E
〈〈

ĉi,σ; ĉ†j,σ
〉〉

E

=
1

2π
δi j +

∑
k

tik
〈〈

ĉk,σ; ĉ†j,σ
〉〉

E
+U

〈〈
n̂i,σ ĉi,σ; ĉ†j,σ

〉〉
E

(B.10)

For the last expression in the equation, write

E
〈〈

n̂i,σ ĉi,σ; ĉ†j,σ
〉〉

E

=
1

2π
δi j

〈
n̂i,σ

〉
+

〈〈[
n̂i,σ ĉi,σ, Ĥ

]
; ĉ†j,σ

〉〉
E

(B.11)

By noting that [
n̂i,σ, Ĥ

]
=

∑
j

ti j(ĉ
†

i,σ ĉ j,σ − ĉ†j,σ ĉi,σ), (B.12)

we may write [
n̂i,σ ĉi,σ, Ĥ

]
=

[
n̂i,σ, Ĥ

]
ĉi,σ + n̂i,σ

[
ĉi,σ, Ĥ

]
=

∑
j

ti j(ĉ
†

i,σ ĉ j,σ ĉi,σ − ĉ†j,σ ĉi,σ ĉi,σ)

+
∑

j

ti j n̂i,σ ĉ j,σ +Un̂i,σ ĉi,σ

(B.13)
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This implies that equation B.11 can be written as

E
〈〈

n̂i,σ ĉi,σ; ĉ†j,σ
〉〉

E

=
1

2π
δi j

〈
n̂i,σ

〉
+

∑
k

tik
〈〈

ĉ†i,σ ĉk,σ ĉi,σ; ĉ†j,σ
〉〉

E

−
∑

k

tik
〈〈

ĉ†k,σ ĉi,σ ĉi,σ; ĉ†j,σ
〉〉

E

+
∑

k

tik
〈〈

n̂†i,σ ĉk,σ; ĉ†j,σ
〉〉

E
+U

〈〈
n̂i,σ ĉi,σ; ĉ†j,σ

〉〉
E

(B.14)

Clearly, continuing this procedure will lead to a hierarchy of higher order Green’s
functions unless the expression above is truncated at some point. To that end, we adopt
the approximation scheme from [33], and write〈〈

n̂i,σ ĉk,σ; ĉ†j,σ
〉〉

E
≈

〈
n̂i,σ

〉 〈〈
ĉk,σ; ĉ†j,σ

〉〉
E〈〈

ĉ†i,σ ĉk,σ ĉi,σ; ĉ†j,σ
〉〉

E
≈

〈
ĉ†i,σ ĉk,σ

〉 〈〈
ĉi,σ; ĉ†j,σ

〉〉
E〈〈

ĉ†k,σ ĉi,σ ĉi,σ; ĉ†j,σ
〉〉

E
≈

〈
ĉ†k,σ ĉi,σ

〉 〈〈
ĉi,σ; ĉ†j,σ

〉〉
E

(B.15)

Now, upon inserting the above approximations into equation B.14, the following is
obtained

E
〈〈

n̂i,σ ĉi,σ; ĉ†j,σ
〉〉

E

≈
1

2π
δi jni,σ +

∑
k

tk

〈
ĉ†i,σ ĉk,σ

〉 〈〈
ĉi,σ; ĉ j,σ

〉〉
E

−
∑

k

tk

〈
ĉ†k,σ ĉi,σ

〉 〈〈
ĉi,σ; ĉ j,σ

〉〉
E

+
∑

k

tikni,σ
〈〈

ĉk,σ; ĉ j,σ
〉〉

E

+Uni,σ

〈〈
ĉi,σ; ĉ†j,σ

〉〉
E

(B.16)

Due to the fact that some terms cancel, we may write the expression as

EΞσi j(E) =
1

2π
δi jni,σ + T0Ξ

σ
i j(E) +UΞσi j(E) +

∑
k,i

tikni,σGσ
k j(E) (B.17)

where we defined

Ξ
σ
i j(E) =

〈〈
n̂i,σ ĉi,σ; ĉ†j,σ

〉〉
≈

〈
n̂i,σ

〉 〈〈
ĉk,σ; ĉ†j,σ

〉〉
E

(B.18)

which can be isolated for Ξσi j(E) to give

Ξ
σ
i j(E) =

1

E − T0 −U
{
1

2π
δi jni,σ +

∑
k,i

tikni,σGσ
k j(E)} (B.19)
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One may approximate
〈
ni,σ

〉
:= ni,σ ≈ nσ, i.e., set the expected value of finding an

electron of spin σ at any site to the same value. At this point, simply insert the
expression above into the expression of the Green’s function in equation B.10 and
rearrange to obtain

EGσ
i j(E) = T0Gσ

i j(E) + (1 +
Unσ

E − T0 −U
)(
δi j

2π
+

∑
k,i

tikGσ
k j(E)) (B.20)

As a preliminary remark to what follows, it is easy to see that for a non-interacting
second quantized Hamiltonian, i.e.,

Ĥ =
∑

k

ε(k)ĉ†k,σ ĉk,σ (B.21)

the retarded Green’s function is given as

G+σ(k, E) =
1

E − ε(k) + iη
(B.22)

where η > 0 is some small number required to ensure the convergence of the Fourier
transform from time-domain to energy domain. Equation B.22 shows by example that
the roots of the denominator in the retarded Green’s function is merely the single particle
energy of the Hamiltonian for the given value of k. Now, this knowledge will be used in
finding the single particle resonances of the strongly correlated system. Translational
invariance of the system justifies the expression of G in the terms of its momentum
space representation

Gσ
i j(E) = L−1

∑
q

Gσ(q, E)eiq(Ri−Rj ) (B.23)

whereupon insertion into equation B.20 we get

EGσ(q, E) = T0Gσ(q, E) + (1 +
Unσ

E − T0 −U
)(

1

2π
+ (εq − T0)Gσ(q, E) (B.24)

where we made use of∑
k,i

tik =
∑

k

tikGσ
k j(E) − T0Gσ

i j(E)

= L−1
∑

q

(ε(q) − T0)Gσ(q, E)eiq(Ri−Rj )
(B.25)

In going from B.20 to B.24, we also used the property

L−1
∑

q

eiq(Ri−Rj ) = δi j (B.26)

Isolating for Gσ(q, E) in equation B.24, it is seen that

Gσ(q, E) =
1

2π

E − T0 −U(1 − nσ)
(E − ε(q))(E − T0 −U) + nσU(T0 − ε(q))

(B.27)

whence it is seen that the energies are the roots of

(E − ε(q))(E − T0 −U) + nσU(T0 − ε(q)) = 0 (B.28)

which is what we wanted to show.
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