
Implications of a changing Arctic
on microbial communities
Following the effects of thawing permafrost from land to sea

Oliver Müller

University of Bergen, Norway
2018

Thesis for the Degree of Philosophiae Doctor (PhD)



at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d )

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Implications of a changing
Arctic on microbial communities
Following the effects of thawing permafrost from land to

sea

Oliver Müller

2018

Thesis for the Degree of Philosophiae Doctor (PhD)

Date of defence: 14.06.2018



The material in this publication is covered by the provisions of the Copyright Act.

Print:     Skipnes Kommunikasjon / University of Bergen

Title: Implications of a changing Arctic on microbial communities

© Copyright Oliver Müller

Name:        Oliver Müller

Year:          2018



 3 

Contents  
SCIENTIFIC ENVIRONMENT ......................................................................................................... 5 

ACKNOWLEDGEMENTS ................................................................................................................. 6 

LIST OF ABBREVIATIONS .............................................................................................................. 7 

SUMMARY ........................................................................................................................................... 8 

LIST OF PUBLICATIONS ............................................................................................................... 11 

1. INTRODUCTION .................................................................................................................... 12 

2. AIMS ......................................................................................................................................... 17 

3. THE STUDY AREA - THE ROLE OF 

 MICROBES IN  THE ARCTIC ....................................................................................................... 18 

3.1 SAMPLING SITES ................................................................................................................... 18 

3.2 PERMAFROST: THE FROZEN SOIL ........................................................................................ 20 

Box 1 | Arctic permafrost - Consequences of thawing ................................................................ 21 

Permafrost research site: ........................................................................................................... 22 

3.3 FJORDS: THE INTERPLAY BETWEEN LAND AND OCEAN ...................................................... 23 

Box 2 | tDOM - Terrigenous dissolved organic matter .............................................................. 24 

Box 3 | Planktonic food web - The role of bacteria .................................................................... 26 

Fjord systems: ............................................................................................................................ 27 

3.4 ARCTIC OCEAN: CHANGING SEASONS AND WATER MASSES ............................................... 28 

Box 4 | Changing seasons - Microbial life in the surface and the deep Arctic Ocean ............... 30 

Arctic Ocean research cruises: .................................................................................................. 32 

4. RESULTS AND DISCUSSION ............................................................................................... 33 

4.1 COMMUNITY COMPOSITION PATTERNS IN THE ARCTIC AND ECOSYSTEM FUNCTION ....... 33 

4.1.1 Community changes along environmental gradients .................................................. 34 

4.1.2 Bacteria as sentinels of climate change ...................................................................... 42 

4.2 MICROBIAL RESPONSE TO THAW ......................................................................................... 45 

4.2.1 Experimentally induced permafrost thaw ................................................................... 45 

4.2.2 Microbial response to DOM in fjord microcosms ...................................................... 47 

4.3 METHODOLOGICAL CHALLENGES ....................................................................................... 51 

5. CONCLUSION AND FUTURE PERSPECTIVE ................................................................. 53 

REFERENCES ................................................................................................................................... 55 

PAPER I - V 



 4 

 

 

 

 

 

 



 5 

Scientific environment  

This Ph.D. was carried out at the Faculty of Mathematics and Natural Sciences of the 

University of Bergen, at the Department of Biological Sciences in the Marine 

Microbiology group. The work was part of the two projects “Microorganisms in the 

Arctic: Major drivers of biogeochemical cycles and climate change” (RCN 227062) 

and “MicroPolar [µP]: Processes and Players in Arctic Marine Pelagic Food Webs” 

(RCN 225956), funded by the Research Council of Norway, in close collaboration 

with the project CarbonBridge (RCN 226415). Research in Greenland was 

additionally supported by the Danish Research Council for Independent Research 

(DFF 1323–00336).  

 

 

MicroPolar [µP] 
P r o c e s s e s  a n d  P l a y e r s  i n  A r c t i c  
M a r i n e  P e l a g i c  F o o d  W e b s   

 

 

Microorganisms in the Arctic 
M a j o r  d r i v e r s  o f  b i o g e o c h e m i c a l  c y c l e s  
A n d  c l i m a t e  c h a n g e  

 



 6 

Acknowledgements 

First of all I want to thank my supervisors for this opportunity and all the support I received 

throughout the entire PhD-time. I was so lucky to be part of not just one, but two amazing research 

projects and grateful for the many possibilities for travelling and field work in the Arctic. Thank you 

Lise, for letting me take part in your fantastic permafrost project, helpful guidance in becoming a 

better scientist and introducing me to all your fascinating colleagues from labs all around the world. 

To Gunnar, thank you for including me in the MicroPolar project, which showed me all the fun of 

working in and being part of a large research community and for always finding a solution. To Janet, 

thank you for the opportunity to visit your inspiring group in the US and all the great collaborations 

that started from there. And thank you to all the Danish collaborators at CENPERM, where I was 

always welcomed with open arms and learned a lot.  

A big thank you to the entire Marine Microbiology group for many enjoyable moments and making 

going to work something I was looking forward to (even on weekends). Especially thank you to Evy, 

Hilde and Hilde and Ela for taking care of everything in the labs. Big thank you to all the amazing 

colleagues and friends I could share the office with during the last years. Alejandro and Eliana thanks 

for the relaxed Spanish vibe and Julia thank you for representing wonderfully the young Norwegians. 

Berna thank you for all your help with getting started, answering my many questions and introducing 

me to all the fun Norwegian outdoor activities and teaching me how to (successfully) brew beer. Pia 

thank you for always taking the time to help with anything, for all the fun at work and all the nice 

beers you brought from your many travels. Bryan thank you for your funny stories, bioinformatics 

tricks and some very memorable conferences together. And a huge thank you to Maria, without you I 

would not have ended up here and seen so many beautiful parts of the world. I am really glad that we 

can work together on so many projects and that you are an important part of my thesis. And thank 

you to all the very helpful post-docs, Tanya, Selina and Antonio who always had time to talk and 

discuss. A final thank you to Tommy, for being an excellent PhD-coordinator and many fun football 

games during the last years. 

Finally I want to thank my family and friends in Germany! Vor allem ein riesen großes Dankeschön 

an meine Eltern Ulrike und Wolfgang, meine Großeltern Ruth und Heinrich und meiner Schwester 

Katja die alle immer für mich da sind, mich immer unterstützen (selbst hier in Norwegen) und mir 

geholfen haben meine eigene Wege zu gehen. Til min kjæreste Johanne, takk for å gjøre meg den 

lykkeligste personen i verden hver dag og at Norge føler som en ekte hjem. 



 7 

List of Abbreviations 

OTU  Operational taxonomic unit (97% sequence similarity) 

AL  Active layer 

TZ  Transition zone 

PL  Permafrost layer 

CO2  Carbon dioxide 

CH4  Methane 

SOM  Soil organic matter 

------------------------------------------------------------------------------------------------------ 

POM  Particulate organic matter 

DOM  Dissolved organic matter 

tDOM  terrestrial derived DOM 

DCM  Deep chlorophyll maximum  

YS  Young Sound (Fjord in north-east Greenland) 

------------------------------------------------------------------------------------------------------ 

SW  Surface Water 

AW  Atlantic Water 

cAW  cold Atlantic Water 

IW  Intermediate Water 

ArW  Arctic Water 

AOA  Ammonia oxidizing Archaea 

NH4
+  

Ammonium 

 



 8 

Summary 

Climate change has severe impacts in the Arctic, where permafrost is thawing, 

glaciers are retreating and sea ice is melting. These physical changes are not only 

affecting large predators like polar bears, but also microscopic organisms such as 

Bacteria and Archaea. The impacts on microbes are far more concerning, as they are 

the main drivers of global biogeochemical cycles. Microbial-driven degradation of 

recently thawed permafrost organic matter is causing the release of critical 

greenhouse gases, including methane (CH4) and carbon dioxide (CO2). Parts of this 

formerly preserved organic carbon pool is upon thaw transported into marine 

systems, affecting the structure and dynamics of marine microbial communities. This 

thesis addresses the extensive implications of thawing permafrost on Arctic microbes. 

I investigated not only the microbial community composition and processes directly 

within the soil, but also the indirect effects of permafrost derived carbon run-off on 

the marine microbial structure, function and activity.    

By analyzing the microbial community composition, using high-throughput 16S 

rRNA gene sequencing, new insights on how microbial communities are structured in 

permafrost (Paper I), in a run-off affected fjord system (Paper II) and the Arctic 

Ocean (Paper IV and V) were revealed. 16S rRNA gene sequencing was also used 

to elucidate how permafrost derived organic matter affected the community structure 

and activity of coastal microbial communities (Paper III). Together, these results 

improve our understanding on how microbial community patterns can be used to 

explain biochemical processes like carbon degradation (Paper I, II, III and IV). We 

analyzed shifts in community composition due to climate change processes like 

permafrost thawing (Paper I) and carbon run-off (Paper III), thereby providing 

insights on which organisms and processes will be sensitive to the changes in a 

warmer Arctic.  

Permafrost is increasingly thawing, which will stimulate microbial activity, and 

subsequently cause the release of greenhouse gases to the atmosphere. In Paper I, we 

analyzed the microbial community composition every 3 cm along a 2-meter 
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permafrost core, in order to better understand the connection between the active layer 

and the permafrost layer. The microbial community in the active layer was diverse 

and gradually shifting until a distinctive transition zone, where the phylum 

Bacteroidetes dominated. This short transition zone was followed by a different 

permafrost layer, which was dominated by a single Actinobacteria family 

(Intrasporangiaceae). We also performed activity measurements along the various 

layers, where we tested the implications of thaw. These experiments demonstrated a 

quick change in community composition together with an increase of genes coding 

for proteins involved in carbon degradation, which was leading to increased CO2 

production. 

 

Terrestrial dissolved organic matter (tDOM), originating from thawing permafrost 

and melting glaciers, is increasingly entering the Arctic Ocean. Yet, the 

understanding of which fraction of tDOM is bioavailable and how fjord microbial 

communities respond to increases in tDOM is limited. In Paper II we investigated 

the DOM bioavailability in a glacial run-off affected high Arctic fjord system over 

time. Different DOM compounds correlated to community changes and specific 

indicator species, including various taxa from the order Alteromonadales were 

identified. The effects of permafrost derived tDOM on an Arctic fjord microbial 

community was tested experimentally in Paper III and we documented significant 

growth of one specific genus (Glaciecola) within the order Alteromonadales, due to 

this carbon input. This increase of Glaciecola was tightly connected with an increase 

of bacterial grazers, highlighting an important, yet often neglected link in the Arctic 

microbial food web when predicting the impact of climate change on the carbon 

cycle.  

 

The dynamics of microbial changes in the Arctic Ocean over a polar year was the 

focus of Paper IV and V. We were especially interested in the seasonal interplay 

between processes during the light summer and dark winter period, as this is an 

important driver of community composition that might be disturbed by climate 

change. The relative abundance of several taxa in the surface waters was found to 
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vary with season and was associated to phytoplankton dynamics, while communities 

in deeper waters remained relatively unchanged. With global warming, changing 

surface phytoplankton growth dynamics will affect associated surface microbial 

communities. This will inevitably have an impact on microbial groups in the deep 

ocean, that are dependent on nutrients from above. One of those groups is the 

Thaumarchaeota, which are recognized as major contributors to marine ammonia 

oxidation, a crucial step in the biochemical cycling of nitrogen. The remineralization 

of nitrogen in the deep ocean is an important process to support the life in the surface 

layers. Thaumarchaeota were abundant in winter surface and deep waters throughout 

the year, but nearly not detectable in summer surface samples. Besides the seasonal 

dynamics we identified water mass to be the predominant factor in defining 

Thaumarchaeota community composition and not solely depth or ammonium 

concentration as suggested in most studies. Since their abundance is linked to water 

masses, a freshening of the Arctic Ocean or increased Atlantification, due to climate 

change, will affect Thaumarchaeota distribution.  

 

The studies included in this thesis underline the importance of microbes as the main 

drivers of processes that determine the balance of carbon storage and release in the 

Arctic and contribute to a better understanding of their role in a drastically changing 

environment. The results highlight the necessity of detailed microbial community 

analyses in order to understand how different microbes are distributed, how they 

interact and how they function in a globally important and changing Arctic. 
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1. Introduction 

With the increasing melting in the Arctic, the description of this area as the eternal ice 

seems like a long forgotten tale. At nearly twice the global rate, warming is especially 

affecting the Arctic ecosystems (Trenberth and Josey, 2007; Screen and Simmonds, 

2010; Vincent, 2010). Permafrost, soil that has been consecutively frozen for at least 

two years, is thawing, which leads to increased greenhouse gas emissions and to 

increased carbon loads in run-off from land into coastal areas (Figure 1). The 

increased availability of carbon and nutrients changes the dynamics within the 

planktonic food web, which will inevitably affect processes in the deep Arctic Ocean. 

Processes on land and in the ocean are both causing increased carbon emissions, 

which is further heating up the atmosphere (Vonk and Gustafsson, 2013). 

Microorganisms, involved in various biochemical cycles, form a central part in the 

processes that are causing this climate change feedback loop. Even though changes in 

seasons are immense and temperatures are low, microbes developed strategies to 

thrive under these extreme conditions and are the key players in a hidden, 

biologically diverse and active environment. 

 

 

 

   

 

 

 

 

Figure 1: Illustration of an Arctic landscape showing the land-to-ocean carbon fluxes. The four boxes highlight 

relevant topics covered in this thesis and are each explained in detail in chapter 3. In short, thawing permafrost soil 

(Box 1) releases tDOM (Box 2) via rivers into the coastal Arctic, where it influences the dynamics in the microbial 

food web (Box 3), with cascading effects on higher trophic levels, possibly changing microbial dynamics in the 

entire Arctic Ocean (Box 4). 
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Microbes are found in high abundances in Arctic soils, fjord systems and the open 

ocean. This has consequences for the Arctic carbon budget, as organic matter that is 

currently locked away in the frozen soil becomes increasingly available due to the 

rising temperatures, and is thereby vulnerable to degradation by microbes. This is 

especially concerning, considering that permafrost stores  50% of earth`s below 

ground carbon (Tarnocai et al., 2009). 

Significant advances in permafrost microbial ecology research have put the focus on 

microbes as the main drivers of processes that determine the balance of the terrestrial 

carbon cycle in the Arctic (Box 1, p. 21). Analyzing the microbial community 

structure and its functions are central in order to understand the processes in thawing 

permafrost that are contributing to greenhouse gas release (Romanovsky et al., 2010; 

Mackelprang et al., 2011). Still, much is unknown and several questions remain 

unanswered. One important question is how the microbial community composition 

and activity will change with increasing permafrost thaw. With overall increasing 

CO2 concentration in the atmosphere, understanding the controls of microbial 

turnover of permafrost carbon is crucial in predicting the extent of additional 

greenhouse gas emissions in a warmer future.  

Not all permafrost carbon that becomes available after thaw will be directly degraded. 

A large part of the organic material will, as riverine discharge, be washed out into the 

Arctic Ocean and potentially influence the marine carbon cycle and ecosystem as 

illustrated in Figure 1 (Serreze et al., 2000; Fichot et al., 2013; Feng et al., 2013; 

Holmes et al.,, 2013). This continental run-off introduces vast amounts of freshwater, 

nutrients and tDOM into the Arctic Ocean (Box 2, p. 24). It is estimated that 

mobilization of tDOM has increased by three to six percent from 1985 to 2004 (Feng 

et al., 2013) and will continue to increase under current warming climate conditions 

(Amon et al., 2012). Yearly, about 3,300 km
3
 of freshwater stream into the Arctic 

Ocean and influence stratification, light absorption, surface temperatures, gas 

exchange, productivity and carbon sequestration (Rachold et al., 2004). Various 

factors play together and influence how increased tDOM loads will alter the 

microbial life in Arctic coastal ecosystems. Firstly, the colored fraction of the organic 

matter has shading effects and thereby affects the productivity of the phytoplankton. 
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Secondly, to influence growth of heterotrophic bacteria the tDOM has to be available 

for degradation. The organic matter that enters the Arctic Ocean has been described 

to be mainly refractory (Opsahl et al., 1999; Dittmar and Kattner, 2003; Xie et al., 

2012), while other studies showed that up to 40% can be bioavailable, even on shorter 

time scales of a few days (Hansell, 2004; Holmes et al., 2008; Vonk et al., 2013; 

Sipler et al., 2017). This suggests that tDOM derived from Arctic rivers can represent 

a food source for bacteria and indirectly grazers that feed on bacteria. It has been 

shown that increased tDOM concentrations caused a shift in the bacterial community 

composition based on the capabilities of certain species to degrade complex organic 

matter (Sipler et al., 2017). There is the need to further investigate how this 

community shift and potential respiration of tDOM might affect higher trophic levels 

in order to better understand climate change impacts on the marine Arctic ecosystem. 

A higher bacterial activity due to the degradation of tDOM might cause a higher 

turnover within the microbial loop, which could cause an increased CO2 production 

(Box 3, p. 26). Increased carbon availability might also affect the competition 

between bacteria and phytoplankton for inorganic nutrients and indirectly 

disadvantage larger phytoplankton (Thingstad et al., 2008; Sipler et al., 2017). If 

even a small part of the community adapts to the increased carbon run-off and 

degrades the additional carbon sources, it would have enormous consequences for the 

entire marine carbon cycle. On a global scale, an increase in bacterial respiration of 

just 1% would cause a higher CO2 release than all anthropogenic sources combined 

(Hedges, 2002).  

Not only the Arctic coastal areas are affected by increased fresh water run-off, also 

the entire Arctic Ocean is expected to become fresher due to this terrestrial run-off in 

addition to sea ice melting (Dutkiewicz et al., 2005). Together this can lead to 

increased thermal and haline stratification with reduced deep mixing, which is in turn 

causing a lower nutrient supply from the deep ocean up to the surface layer (Li et al., 

2009). This can have widespread consequences for the marine food web structure and 

carbon cycling in the Arctic Ocean (Box 3, p. 26). Nutrients that are depleted during 

phytoplankton growth in summer might not be replaced due to decreased upwelling, 
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which will cause a less productive summer season in the following year that 

inevitably will affect higher trophic levels (Box 4, p. 30). Chemolithotrophic 

Thaumarchaeota have an important role in the nutrient cycle in the deep ocean. They 

are a major contributor to marine ammonia oxidation, which is a crucial step in the 

biogeochemical cycling of nitrogen (Könneke et al., 2005; Wuchter et al., 2006). 

Thaumarchaeota oxidize ammonium, which is predominantly originating from 

zooplankton feeding on phytoplankton. This shows how these groups in the Arctic 

Ocean are connected and highly depend on each other. It is thus necessary to better 

understand the dynamic connections between surface and deep waters in the Arctic 

Ocean in order to predict how climate change will affect the marine food web and 

consequently the marine carbon cycle.  

Even though great advances in Arctic research have put the focus on the importance 

of microbial processes, many uncertainties remain due to logistic sampling 

difficulties and small study sizes. Necessary investments in travel, equipment and 

security are enormous and are causing temporal and spatial study limitations. This 

makes Arctic samples highly unique. However, it also is the reason for two 

tremendous drawbacks of current Arctic research, replicability and generalization. 

For example, even though permafrost is known to be highly heterogeneous, 

measurements of greenhouse gas production from only a few study sites are 

extrapolated to predict potential emissions from the entire permafrost region. The 

heterogeneity of permafrost is not only occurring horizontally, but also vertically. 

Still many studies are based on broad scale sampling, comparing surface with deep 

samples and knowledge regarding fine-scale shifts throughout the soil core is still 

scarce. In order to obtain an in depth study of the various layers of the permafrost 

core, we used an unprecedented high vertical sampling resolution to gain novel 

insights into the structure and function of permafrost microbial communities. Such 

information is crucial for understanding how microbial communities are shaped and 

which mechanisms are important drivers for the activity of the microbes. We further 

wanted to monitor permafrost greenhouse gas emissions upon thaw and relate these 

fluxes to microbial activity.  
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Sampling strategies were also regarded important in our other studies in which 

different aquatic environments were analyzed, which are as well known to exhibit 

strong heterogeneity. We thus attempted to improve the understanding of the 

structure and function of microbial communities in: 1) Arctic waters around Svalbard 

during a full annual cycle; 2) a high Arctic fjord system in north-east Greenland 

during the ice-free period and 3) incubation experiments where we investigated the 

effects of tDOM run-off. The research presented in this PhD thesis highlights the 

necessity of studies including both community composition analyses and 

environmental factors, which are based on a high sampling resolution in order to 

elucidate drivers of changes in the microbial community due the warming in the 

Arctic. 
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2. Aims 

This PhD project aims to contribute to the understanding of effects of climate change 

on Arctic microbial life by integrating descriptive field observations with 

experimental studies of community structures and metabolic processes. I particularly 

aimed to emphasize the need of studies that are linking terrestrial and marine 

environments and the microbial processes within. 

Thawing permafrost will not only result in the release of large amounts of greenhouse 

gases, but also set additional complex organic carbon compounds free that might 

wash out into the fjords and ocean, where, if degraded, it has the potential to change 

microbial-based food web structures. To highlight the importance of microbial 

processes in the Arctic and the consequences of climate change on the microbes, the 

following three main objectives are addressed in my thesis: 

1. To describe microbial communities in Arctic permafrost (Paper I), coastal waters 

(Paper II and III) and open ocean (Paper IV and V) and determine how they may 

respond to climate change. 

2. To investigate to what degree the microbial community composition can provide 

information about how carbon is processed in the Arctic (Paper I, II, III and IV).   

3. To assess the effects of terrestrial derived carbon on marine microbial ecosystems 

and in particular on microbial growth and community composition (Paper II and 

III).   
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3. The study area - The role of microbes in  
the Arctic 

Extreme seasonality and general low temperatures characterize Arctic environments. 

These environments foster, despite the harsh conditions, a biologically diverse and 

active environment. As microbes have evolved to thrive under these conditions, they 

are important mediators for several biochemical cycles, including carbon and 

nitrogen cycling and are key players in Arctic terrestrial and marine environments, 

(Box 1, Box 3 and Box 4). The studies presented in this PhD-thesis, in which we 

have investigated and assessed microbial community composition and their 

interactions in Arctic environments, represent an important record for the state of the 

art of the microbial life in these rapidly changing habitats. With this information, we 

could further test how specific effects of climate warming, such as permafrost 

thawing or tDOM run-off, will potentially affect these microbial communities, and 

thereby gain insights about the future of the Arctic ecosystem.  

3.1 Sampling sites 

For this thesis, samples were taken at different Arctic sites (Figure 2, A). Samples 

originated from various marine and terrestrial sites on and around Svalbard, including 

five cruises west and north of Svalbard over an entire year (Figure 2, B), a fjord in 

north-west Svalbard (Figure 2, C) and an ice-wedge polygon permafrost site in 

Adventdalen (Figure 2, D). Another fjord system was studied in north-eastern 

Greenland (Figure 2, E).  
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  Figure 2: A) Map of the Arctic, including the four study sites (B, C, D and E). The red arrows indicate the transport 

of warm and saline Atlantic water up the Norwegian coast and branching into the West Spitsbergen Current (WSC). 

The flow of cold and less saline Arctic water is indicated by blue arrows and includes the major branch called East 

Greenland Current (EGC) (based on Blindheim and Østerhus, 2005). The dots on B) mark the sampling stations and 

colors indicate sampling months. C) and E) illustrate the two fjord systems where the microbial community under 

influence of terrestrial run-off was tested experimentally C) or monitored E). D) shows a photograph of the 

permafrost sampling site, which is marked with  a red asterisk. F) and G) illustrate two cross sections, where 

temperature and salinity are indicators of the different water masses in the study area (AW=Atlantic Water; 

cAW=cold Atlantic Water; IW=Intermediate Water; SW=Surface Water; ArW= Arctic Water). 
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3.2 Permafrost: The frozen soil 

Permafrost is continuously frozen soil and stores vast amounts of buried, ancient 

carbon, equaling about half of the global belowground soil organic matter (SOM) 

pool (Hugelius et al., 2014). Covering the permafrost is a so called active layer (AL). 

The AL can reach down to a maximum of 1.5 m and experiences seasonal freeze-

thaw cycles, while the permafrost layer (PL) can extend several meters and contains 

SOM that has been frozen for thousands of years.  

While microbial community composition can vary substantially from site to site, 

microbial structures in the AL and PL can be distinguished by certain universal 

differences (Yergeau et al., 2010; Frank-Fahle et al., 2014; Hultman et al., 2015). 

The AL communitiy is more diverse, including bacteria belonging to the phyla 

Acidobacteria, Proteobacteria, Planctomycetes, candidate phylum WPS-2, 

Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate phylum AD3. PL 

samples show a lower alpha diversity and include bacterial taxa belonging to the 

phyla of Actinobacteria, Proteobacteria, Verrucomicrobia, Chloroflexi, Bacteroidetes 

and Firmicutes (Hansen et al., 2007; Yergeau et al., 2010; Mackelprang et al., 2011; 

Yang et al., 2012).  

The current warming in the Arctic is of special concern, as this may trigger an 

increased microbial activity leading to faster decomposition of formerly preserved 

SOM and release of greenhouse gases, including CO2 and CH4 as illustrated in Box 1 

(Schuur et al., 2009; Grosse et al., 2011; Mackelprang et al., 2011; Xue et al., 2016). 

How microbes contribute to greenhouse gas emissions is still not understood in detail, 

partly because of the heterogeneous character of soil (Elberling et al., 2004; 

McCalley et al., 2014). Therefore it is important to capture the changes throughout 

the permafrost profile in detail by using a high resolution community composition 

analysis to address the future implications and consequences of thawing permafrost.  
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Box 1 | Arctic permafrost - Consequences of thawing  
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Permafrost research site:  

The soil samples were taken in 2011 and 2014 from a site located in the valley 

Adventdalen on Svalbard (Figure 2 D; 78.186N, 15.9248E), an archipelago at the 

entrance to the Arctic Ocean. The valley is 35 km long and 3 km wide and has a 

characteristic U-shape caused by glacial erosion. The site is covered with Late 

Holocene loess deposits and is characterized by high silt/sand content, resulting in a 

relatively well-drained soil. The soil profile can be divided into an AL, seasonally 

thawing in summer, with a thickness of up to 100 cm and a continuously frozen PL 

below extending to greater than 100 m (Humlum et al., 2003). Adventdalen is one of 

the driest parts of Svalbard, averaging 190 mm of annual precipitation. The mean 

annual air temperature is approximately -6°C and ground temperatures range from -

3˚C to -6˚C. Strong winds from the south-east dominate during winter and cause a 

thin snow cover. Adventdalen is a dynamic landscape, with changing periglacial 

landforms, such as ice-wedge polygons, typically covered by grasses and mosses in 

the central parts and sparse vegetation on the ramparts. 
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3.3 Fjords: The interplay between land and ocean 

Fjords are long, narrow oceanic inlets, largely influenced by terrestrial run-off. They 

are characterized by mainly three water masses, including surface water, intermediate 

water and basin water (Stigebrandt, 2012). These water masses are, due to density 

gradients generally highly stratified and water circulation consists mainly of two 

opposing currents, one surface layer current, fueled by the freshwater run-off moving 

out of the fjord and one current below, transporting water into the fjord (Stigebrandt 

et al., 1989). Seasonal mixing processes as observed in open water are far less 

common in fjord ecosystems and sources for resupply of nutrients are predominantly 

entering as run-off from land (Gutiérrez et al., 2015). This run-off from lands 

introduces not only nutrients and carbon, but also microbes, such as Cyanobacteria, 

Proteobacteria and Actinobacteria and thereby influences the dynamics of fjord 

microbial communities (Gutiérrez et al., 2015).  

With increasing temperatures in the Arctic this discharge of organic material into 

fjord systems has the potential to alter the carbon cycle and the marine ecosystem 

(Serreze et al., 2000; Holmes et al., 2012; Feng et al., 2013; Fichot et al., 2013). The 

continental run-off introduces vast amounts of freshwater, nutrients and tDOM via 

fjords into the Arctic Ocean. Microorganisms can use this organic carbon source as a 

food supply and its uptake depends on the composition of bioavailable compounds 

(Middelboe and Lundsgaard, 2003). Various optical methods can be used to 

differentiate between refractory DOM (resistant to biological degradation) and 

bioavailable DOM. As illustrated in Box 2, the refractory DOM is characteristic for 

an increase in aromaticity, conjugation and carbon to hydrogen ratio and can be 

measured on a spectrofluorometer (fluorescent dissolved organic matter) (Álvarez-

Salgado and Stedmon 2011). The bioavailable part of DOM remains colorless in 

these measurements.   
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Box 2 | tDOM - Terrigenous dissolved organic matter    
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from Hansell, 2013) 
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DOM is including different types of carbon compounds that are categorized, based on their 

degradability, into labile (light green), semi-labile (darker green) and refractory (black) groups.   

Terrigenous DOM (tDOM) has relatively high concentrations of refractory components from 

remnants of plant materials like lignin. Fluorescence signals of humic acid-like substances in the 

Arctic Ocean show the transport of tDOM from land into the coastal areas. The tDOM that eventually 

enters the Arctic Ocean is even more refractory, as it has been abiotically (UV-rays) and biotically 

(microbes) degraded in ponds and rivers where it originated.  

tDOM in the Arctic 

Fluorescence of humic acid-like DOM components in the Arctic Ocean (Fichot et al., 2013) 

High 

Low 



 25 

 

Changes in the balance of available organic material, bacterial respiration of DOC 

and ocean CO2 release will eventually have a great effect on the global carbon cycle 

and atmospheric CO2 concentrations. The role of bacteria in processing different 

DOC sources is complex and yet not well investigated. However, experiments which 

were conducted in two different locations in the Arctic, hint towards a positive 

influence of both temperature and concentration of labile carbon sources on bacterial 

growth rates (Middelboe and Lundsgaard 2003; Kritzberg et al., 2010). It is of high 

importance to understand these processes induced by climatic changes, since bacteria 

comprise the largest biomass and are responsible for most respiration in the ocean.  

The concentration of DOM does not only affect bacteria, but the entire marine 

ecosystem by influencing nutrient and light availability (Urtizberea et al., 2013). 

Further, with DOM affecting microbial community structure, cascading effects higher 

up the trophic level are expected (Thingstad et al., 2008; Sipler et al., 2017). Specific 

predator-prey relations between bacteria and heterotrophic nanoflagellates (HNF) 

might be an important link in the microbial food web of Arctic fjord systems, 

affecting higher trophic levels, including ciliates, copepods and reaching up to top 

level predators. How these food web structures are connected and link to the carbon 

cycle is illustrated in Box 3 (Azam and Malfatti, 2007; Worden et al., 2015).  

There is a need to understand how increased tDOM might change the fjord microbial 

community composition and thereby also higher trophic levels in order to better 

predict climate change impacts on the marine Arctic ecosystem. To gain a better 

understanding, it is necessary to add detailed knowledge about the structure and 

activity of the microbial community under the influence of increased tDOM run-off.   
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  Box 3 | Planktonic food web - The role of bacteria  

Phytoplankton Zooplankton 

DOM 

POM Virus 

Terrestrial run-off 

Bacteria 

Archaea 

Heterotrophic 

nanoflagellates 

Ciliates 

. 

Inorganic nutrients 

Microbial  
Loop 

O2 CO2 

O2 CO2 

Inorganic nutrients 

Sinking and long-
term storage of C 

A schematic view of the marine microbial food web and carbon cycling in the Arctic Ocean (based on 

Azam and Malfatti et al., 2007 and Worden et al., 2015). One key process is photosynthesis, the 

conversion of inorganic carbon (CO
2
) to organic carbon by phytoplankton. This phytoplankton derived 

organic carbon build the basic resource for heterotrophic organisms. The organic carbon is either 

directly used by zooplankton (e.g. copepods) or indirectly, via the microbial loop, transported from 

prokaryotes (Bacteria and Archaea) which are eaten by nanoflagellates and ciliates up to zooplankton, 

which are eventually eaten by fish.  

Sea ice with ice algae 

CO2 

Fish 
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Fjord systems: 

We chose Young Sound, a fjord in north-eastern Greenland (Figure 2 E), for the long 

term study as there is in a clear gradient of allochthonous sources of both organic 

matter and silt throughout the fjord (Murray et al., 2015). Young Sound receives most 

of its run-off from the Greenland Ice Sheet via land terminating glaciers (Citterio et 

al., 2017). The organic carbon sources in the fjord comprise the autochthonous 

phytoplankton production, allochthonous carbon from the rivers (with diverse 

vegetation and soil catchments) and allochthonous organic carbon that enters the 

fjord via entrance of coastal waters, which contain DOM from the Arctic Ocean that 

are transported in the East Greenland current (Amon, 2003).  

The other fjord system, where tDOM experiments were conducted, is situated in the 

western part of Svalbard (Figure 2 C; 79.0 N, 11.4 E). Kongsfjord is 26 km long, 6 

to 14 km wide and two glaciers, Kronebreen and Kongsvegen, terminate at the head 

of the fjord. This fjord is well characterized and was chosen for the incubation 

experiments, since tDOM extracts were produced from local permafrost samples. 

This provided an optimal setting to simulate and study future scenarios of increased 

tDOM concentrations in fjord systems.  
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3.4 Arctic Ocean: Changing seasons and water masses 

The Arctic Ocean comprises the water masses around the North Pole and undergoes 

therefore extreme seasonal changes during an annual cycle. It switches from a dark, 

ice-covered winter to light, more open water conditions in the summer (Box 4). 

Despite these extreme periodic shifts, biodiversity is high in the Arctic. But climate 

warming is altering the conditions microbes have adapted to. The Arctic is currently 

undergoing the warmest period since the last 40,000 years, causing a lengthening of 

the melt season and dramatic decline of sea-ice (Figure 3) (Stroeve et al., 2014). 

 

   

 

Figure 3: Extent of Arctic summer sea ice (based on historical satellite records and climate 

models) showing the retreat over the last centuries and the predicted future decline (Figure: 

Yale University).  
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Despite the increased melting, sea-ice covers the ocean surface through much of the 

year and limits vertical mixing, which leads to a strong stratification of water masses 

(Stein and Macdonald, 2004). The cold surface layer spans approximately 0-30m and 

is influenced by river run-off and melting sea ice. Below that is a nutrient rich 

intermediate layer (30-250m) comprised of Pacific waters. Finally, a warm Atlantic 

layer spans 250-1500m above the isolated deep water (Figure 4). The upper cold 

freshwater rich layer sustains a perennial halocline, which acts as an isolation from 

the warmer, saline Atlantic waters (Aagaard and Carmack, 1989; Shimada et al., 

2006). 

 

 

 

 

 

 

 

 

 

 

The transport of water masses, their history and mixing are important regulators of 

mesopelagic microbial community structures (Galand et al., 2010; Reinthaler et al., 

2010). Due to the extreme differences between summer and winter, microbial life has 

adapted and developed different strategies to thrive under both conditions (Box 4).  

 

Figure 4: Schematic diagram showing the stratification of the Arctic Ocean (modified 

from Macdonald and Bewers, 1996). 



 30 

Box 4 | Changing seasons - Microbial life in the surface 
and the deep Arctic Ocean  

WINTER SUMMER 
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Illustration of plankton-driven processes in Arctic Ocean surface and deep layers during summer and 

winter (based on Grzymski et al., 2012). The summer surface water has higher bacterial activity 

associated with light-driven processes and heterotrophic bacteria that degrade labile phytoplankton 

derived DOM. The winter surface water is dominated by chemolithoautotrophic processes, where 

predominantly Archaea oxidize substrates like ammonium and fix CO2. In the deep ocean, microbial 

processes are similar to the winter surface situation, including the dominance of chemolithotrophic 

Bacteria and Archaea. Upwelling in spring transports nutrients like nitrate (as product of microbial 

nitrification) to the surface layer where it sustains phytoplankton growth in the upcoming summer 

season.   
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Especially in the surface during the dark winter and in the deep waters all year round, 

where phytoplankton cannot grow, chemolithotrophic microorganisms, such as 

ammonia oxidizing Thaumarchaeota that remineralize nutrients and fix CO2, are the 

dominant organisms (Murray et al., 1998; Alonso-Sáez et al., 2008; Grzymski et al., 

2012). Thaumarchaeota are key players in the nitrification process and oxidize 

ammonium to nitrite, which is then further oxidized to nitrate by, among others,  

members of the family Nitrospinaceae (Levipan et al., 2014). Thus, nitrate is 

accumulating in the deep ocean and transported via upwelling to the surface, where it 

supports phytoplankton growth in the summer season (Zehr and Ward, 2002). Despite 

the important role of Thaumarchaeota in the marine nitrogen cycle, little is known 

about how these Archaea change over an annual cycle and what factors drive their 

distribution in the Arctic Ocean.   
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Arctic Ocean research cruises: 

Samples were collected during five cruises in 2014 north-west of Svalbard (Figure 2 

B), following several transects along the West Spitsbergen Current (WSC) at the 

eastern part of the Fram Strait up to the Arctic Ocean. Sampling periods extended 

over an entire polar year with cruises in January (06.01-15.01), March (05.03-10.03), 

May (15.05-02.06), August (07.08-18.08) and November (03.11-10.11). Depth 

profiles of temperature, salinity and fluorescence were recorded using a SBE 911plus 

CTD system, to identify water masses and to collect water for downstream analyses. 

Samples (25-50 L) for molecular analyses were taken between depths of 1 to 1000 m 

, filtered onto 0.22 µm pore size Millipore® Sterivex filters (Merck-Millipore, MA, 

USA) and immediately frozen at -80°C. 

The sampling area is hydrographically characterized by three Atlantic water masses, 

including Atlantic Water (AW), cold Atlantic Water (cAW) and Intermediate Water 

(IW), having salinity >34.9 and temperatures >2°C, 0-2°C and <0°C, respectively; 

and also, by two Arctic water masses, Surface Water (SW) and Arctic Water (ArW), 

having salinity <34.92 and a density (σt) of <27.7 kg m
-3

 and >27.7 kg m
-3

 

respectively (Cokelet et al., 2008; de Steur et al., 2014; Randelhoff et al., 2015). The 

WSC at the eastern part of the Fram Strait transports Atlantic water into the Arctic 

Ocean. This Atlantic water can also be found in deeper mesopelagic zones as cAW 

and IW. The water masses classified as Arctic Water do not necessarily originate 

from the Arctic Ocean interior, but have undergone similar freshening and cooling 

processes and have the same physical characteristics as Arctic Ocean water masses.  
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4. Results and Discussion 

4.1 Community composition patterns in the Arctic  

and ecosystem function 

In ecology, the first step to understand processes and functions in the environment is 

to identify patterns in time, space and at different scales, as the distribution of 

organisms in nature, is neither random nor uniform. What are able to observe are 

distribution patterns, most often as a result of multiple ecological processes 

(Legendre and Fortin, 1989). Various ecological processes, together with species 

responses are generally causing pattern structures, including gradients, patches or 

noise (Fortin et al., 2002). While gradients describe steady directional distributional 

change, patch structures are more homogenous distributions that are separated from 

each other. Variations in patterns that cannot be explained are categorized as noise 

and are most likely caused by processes that act on more than one spatial scale.  

In microbial ecology, community composition is most often driven by environmental 

factors and processes (Baas-Becking, 1934; de Wit and Bouvier, 2006). By analyzing 

patterns of community composition, the magnitude of the effect of environmental 

factors can be revealed and ecosystem functions understood. Defining the magnitude 

and importance of environmental factors driving community composition changes 

can be difficult when spatiotemporal variations occur (Borcard et al., 1992). 

Consequently, correlations of community patterns with environmental factors can 

only be meaningful if spatiotemporal variations are not disregarded.  

Recent advances in next-generation sequencing opened the possibility to investigate 

community composition patterns at a much higher sampling resolution and thereby 

enabled better elucidation between spatiotemporal factors and environmental drivers. 

We used this method in all our studies and were thereby able to discover novel 

community composition patterns, their environmental relevance in different Arctic 

environments, and how they might be affected by climate change.  
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4.1.1 Community changes along environmental gradients 

Temperature, pH, salinity, carbon concentration, nutrients and oxygen, are only few 

examples of environmental factors that can gradually change and thereby create 

gradients that influence the microbial community composition. We identified a 

gradually changing community composition in both terrestrial (Paper I) and marine 

Arctic (Paper II, III, IV and V) study sites. While the community composition 

differs greatly, similar environmental gradients might be important in the different 

ecosystems. We were therefore interested to what degree environmental factors 

(Table 1) can inform about changes in microbial community composition in 

permafrost (Paper I), in an Arctic fjord system (Paper II) and further in the Arctic 

Ocean (Paper IV and V). In order to detect gradual changes in community 

composition, several factors, including scale, time, distance and sample grouping 

have to be considered (Borcard et al., 1992; Torsvik et al., 2002). When studying 

different environments the complexity becomes even greater.  

 

 

Environmental gradient 
Permafrost 

core 

Fjord 

transect 

Arctic 

Ocean 

Depth ++ + ++ 

Water content + - - 

pH + - - 

DOC-content/quality ++ ++ + 

Salinity - ++ + 

Nutrients + + ++ 

Light + + ++ 

Water mass - ++ ++ 

Sampling resolution ++ + - 
 

During the last decade, permafrost studies began to describe environmental factors 

which are driving the microbial community composition. But until now, microbial 

community structures in permafrost have most often been characterized as a two layer 

system, divided in AL and PL (Yergeau et al., 2010; Wilhelm et al., 2011; Frank-

Table 1: Different environmental factors that influenced the 

microbial communities analyzed in three studies included in this 

PhD-thesis.  ++: important; +: moderate; -: minor/no role 
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Fahle et al., 2014; Gittel et al., 2014; Koyama et al., 2014; Taş et al., 2014; Deng et 

al., 2015).  

In Paper I we investigated the microbial community composition in a permafrost 

core from Svalbard and applied an unprecedented high sampling resolution of every 

3-4 cm over the two-meter soil core and identified small scale changes as a 

consequence of environmental gradients (Figure 5).  

  

Figure 5: Bray-Curtis values illustrating sample similarities based on 16S rRNA gene sequences in a two-

meter permafrost core. Sample similarity revealed three distinctive groups; Active Layer, Transition Zone 

and Permafrost Layer and shifts in sample similarity between these layers are indicated by the black arrows. 

Three samples (larger symbols) were therefore used to compare sample similarity (light blue: 3 cm; medium 

blue: 78 cm; dark blue: 88 cm). 
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Analysis of similarities (ANOSIM) of the distinctive microbial community patterns 

revealed a significant difference between the three layers. While we identified clear 

gradual changes in the upper AL, both the TZ and PL showed a homogenous 

community composition. The TZ and PL were dominated by just one bacterial family 

each, belonging to Bacteriodetes and Actinobacteria, respectively.  

Even though carbon plays an especially important role in this system, the changes can 

only partly be explained by carbon concentration differences and are more likely 

associated with carbon quality characteristics, which were not assessed in this study. 

Especially the dominance of copiotrophic Bacteroidetes above the frozen above the 

frozen permafrost table might be due to their metabolic flexibility and their ability to 

respond fast to a variety of easy available carbon and nutrients that can accumulate in 

the TZ (Padmanabhan et al., 2003; Fierer et al., 2007). As we identified such distinct 

characteristics in the TZ for the first time, the question if this zone deepens with 

increasing AL thaw and how fast the microbial community in the PL might change 

remains.  

Carbon availability is undoubtedly an important factor for microbial life, not only in 

permafrost, but also in aquatic Arctic ecosystems. In Paper II we investigated the 

influence of different carbon sources on the fjord microbial community with the 

specific aim to identify the different microbial drivers during the productive ice-free 

period. Changes in community composition over time or distance appeared random at 

first (Figure 6) and are a result of various different environmental parameters 

interacting with each other, as well as a matter of scale regarding taxonomical 

classification (Paper II).   

The high Arctic fjord that was investigated, Young Sound, is a rather complex fjord 

system, with three adjoining rivers. The three rivers all have a different origin and 

catchment area; river 1 (R1) has a close connection (0.5 km) to the Greenland Ice 

Sheet, river 2 (R2) a longer distance (2 km) to a smaller local glacier, and river 3 (R3) 

runs through lowland rich vegetation with a lake connection. The difference in origin 

is very important in shaping the bacterial communities in the rivers, which were 
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highly specific to each of them. The other stations showed community differences 

between surface and deeper samples, which refers to the physical water mass 

characteristics they were sampled from. Both surface and deep samples showed 

gradually community changes from inner to outer fjord stations, with specific taxa at 

family level either decreasing or increasing, respectively.  

   

 

 

 

 

 

 

 

 

 

 

 

 

Depending on the spatiotemporal constrains, different environmental factors 

influenced community composition. For example while no measured environmental 

parameter correlated with community composition of samples from all stations over 

the entire sampling period, some parameters, including salinity and carbon 

concentrations correlated for the period when run-off from land was strongest and the 

fjord was stratified. These conditions also enabled the communities found in glacial 

Figure 6: Bray-Curtis values based on 16S rRNA gene sequences from fjord profiles showing 

sample similarities in Young Sound over time (July until September) and at four stations and 

including additional river samples, schematic indicated as “x” in illustration above. A surface 

sample taken in August at station St-2 was used as reference to compare sample similarity. Samples 

were grouped according to the station where they were taken (varying between one and three 

sampling occasions per month and station). DCM=Deep chlorophyll maximum 
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river run-off to persist. It has been suggested that such bacteria, residing in glacial 

meltwater have the competitive advantage of tolerating the colder and fresher 

conditions of the fjord surface water (Gutiérrez et al., 2015). The differences between 

surface and subsurface communities were only evident as long as fresh water was 

supplied by the rivers and were not detected when thermal stratification stopped 

towards the end of the sampling period (Figure 6). 

Interestingly, only at the lowest taxonomic level (OTUs), some correlations became 

evident. Especially carbon seemed to affect only some OTUs over a range of different 

species, while others remain unchanged. This might be due to intraspecific 

specializations to degrade specific carbon compounds (Paper III and V and Sipler et 

al., 2017). The overall structuring was based on water sources and along freshwater 

gradients, common for coastal environments (Bouvier and del Giorgio, 2002; 

Gutiérrez et al., 2015). It will be important to understand these processes in fjord 

systems, in order to predict how hydrology changes, such as increased freshwater 

run-off might affect the microbial community in the future.  

 

Freshening and increased terrestrial carbon inputs have also been predicted for the 

entire Arctic Ocean (Kwok and Cunningham, 2010; Comeau et al., 2011; Fichot et 

al., 2013). We analyzed the microbial community structure repeatedly in the Arctic 

Ocean north-west of Svalbard during five cruises distributed over an entire year 

(Figure 7). This dataset revealed the main drivers of community change in epi- and 

mesopelagic waters over the course of an Arctic polar year (Paper IV) and provided 

new insights towards the importance of water masses in defining marine microbial 

community structures (Paper V). Both, the influence of seasonal factors and water 

mass on community composition became evident when comparing Bray-Curtis 

sample similarities (Figure 7). Highest were similarities between winter surface and 

summer deep samples, indicating that light and light associated processes, including 

phytoplankton growth causing nutrient depletions and competition, greatly affects the 

Arctic Ocean surface microbial community structure (Giovannoni and Stingl, 2005). 

Associated with the observed patterns of community similarities were patterns of 

general alpha diversity. We observed a lower diversity in summer surface samples, 
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even though prokaryotic abundance was highest. In winter surface and mesopelagic 

waters all year round, where prokaryotic abundances are lower, we observed a higher 

diversity. These diversity differences are tightly connected to concentrations and 

quality of carbon and nutrients. In summer, the increase of labile carbon compounds 

following phytoplankton blooms is favoring a few specific bacterial groups and 

thereby decreasing the diversity (Buchan et al., 2014). On the contrary, in winter 

surface and deep waters the labile DOM sources are deprived and only rather 

complex and diverse recalcitrant DOM compounds remain as energy sources 

(Hansell, 2013).  This substrate complexity fosters a mix of different specialized 

bacteria to proliferate and  results in higher diversity (Alonso-Sáez et al., 2008).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Bray-Curtis values based on 16S rRNA gene sequences from Arctic Ocean profiles (sampling points 

are shown schematically as “x”) showing sample similarities over time (January until November), different 

stations and different depths. Different stations are separated by a dotted line. The 1 m sample taken in January 

at station B-16 was used as reference to compare sample similarity.  
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One important functional microbial group in the deep waters and winter surface 

waters are Thaumarchaeota. We described the distribution and dispersal limitations of 

this important group of ammonia oxidizers in Paper V. Thaumarchaeota abundance 

varied with season and depth, with highest numbers in deep and winter surface 

samples. Photoinhibition of ammonia oxidation has been widely suggested to cause 

this cyclical decline in abundance  (Guerrero and Jones, 1996; Murray et al., 1998; 

Mincer et al., 2007; Merbt et al., 2012). 

Besides the overall seasonal differences, we also identified a pattern of different 

Thaumarchaeota ecotypes that were distributed according to water masses found 

around Svalbard (Paper V). This is in contrast to the common perception of depth or 

ammonium concentration as main drivers of Thaumarchaeota distribution (Kirchman 

et al., 2007; Christman et al., 2011; Sintes et al., 2013, 2015, 2016; Santoro et al., 

2017). Further, this might have great ecological implications in the future, when 

water masses in the Arctic Ocean might change, due to increased sea ice melting 

(Comeau et al., 2011) or “Atlantification” (Polyakov et al., 2005; Holland et al., 

2006; Walczowski and Piechura, 2006).  

Interestingly, not only Thaumarchaeota abundance but also the distribution of other 

taxa was associated with water masses. This is illustrated in Figure 7, where 

community similarity between the surface sample and the 1000 m samples was either 

below 20% or between 40 and 60%. The 1000 m samples in which similarities were 

below 20% originated all from the Nansen Basin and were associated with a deep 

Arctic water mass (ArW), while the other 1000 m samples with higher similarities to 

the surface sample were associated with water masses that are transformed Atlantic 

water masses (cAW or IW). Depending on their origin, the water masses acted either 

as barriers or promoters of microbial dispersal, causing distinct biogeographical 

patterns. This supports the general theory that water mass history to a great extent 

defines the marine microbial community composition (Galand et al., 2010; Reinthaler 

et al., 2010).     

 

We identified different microbial patterns in all the investigated environments with 

different drivers causing the observed distributions. While comparing samples based 
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on Bray-Curtis similarities is an effective way to identify community patterns, it is 

necessary to include environmental information in order to explain the observed 

distribution when different scales, both temporal and spatial are applied. Scale is also 

important regarding taxonomical resolution. Some ecologically important patterns, 

such as correlations with DOM compounds, only become evident when comparing 

samples at the OTU level, while other distribution patterns can be informative already 

at phylum or class level, as shown for the Thaumarchaeota pattern.  

Following the changes in these patterns can furthermore highlight consequences of 

disturbances in the ecosystem, including the changes associated to climate warming. 

We can only report on the consequences of climate change effects on the microbial 

community if we have detailed records of their current state and can identify 

ecologically important patterns. It is therefore crucial to identify bacteria that are 

sensitive to climate change and to further test experimentally if certain stressors can 

affect these sentinels of change.      
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4.1.2 Bacteria as sentinels of climate change 

Prokaryotes are sensitive to climate change processes and can thus serve as sentinels 

to detect and monitor climate change effects on ecosystems in different Arctic 

environments (Blaud et al., 2015; Oliverio et al., 2017; Rofner et al., 2017; Sipler et 

al., 2017). In order to identify new prokaryotes that can be used as sentinels of 

climate change, we have to understand their function and identify distribution 

patterns. Especially species that show gradually changing abundances to certain 

environmental parameters that can be associated with climate change, including 

carbon and freshwater run-off, are suitable candidates. The taxonomic level is also 

important to define such sentinels. We identified environmental gradients causing 

abundance patterns already on phylum or class level (Paper I, Paper II and Paper 

IV) or patterns that were only detectable at the species or OTU level (Paper II and 

Paper III). 

Of all phylogenetic groups, Proteobacteria appeared particular useful to follow 

climate change related trends and we observed gradual abundance changes of 

members of this group in all three environments that we investigated (Paper I, Paper 

II and Paper IV). Throughout the permafrost soil profile that we analyzed in Paper 

I, we identified gradual changes for the different Proteobacterial classes. The relative 

abundance of Alphaproteobacteria and Gammaproteobacteria was decreasing and the 

relative abundance of Betaproteobacteria was increasing with soil depth in the AL. It 

has been speculated that such abundance differences correlate with carbon and 

nutrient availability (Koyama et al., 2014; Kim et al., 2016). As we analyzed a 

mineral permafrost core with throughout low carbon concentrations, we concluded 

that other parameters which can directly be associated with increasing depth, like 

oxygen availability, redox conditions or carbon quality, might be more important in 

controlling the abundance of Alphaproteobacteria and Gammaproteobacteria and can 

explain the observation of similar patterns both in mineral and carbon rich Arctic 

soils. This makes the group of Proteobacteria especially suitable as sentinel for 

changes in permafrost environments. The TZ represents formerly frozen PL and is 

therefore the layer experiencing extreme physical changes. We identified significant 

increases in relative abundance of Betaproteobacteria in samples from the transition 
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zone after 16 days of incubation under thawing conditions. Due to this change in 

community composition thawed TZ samples became more similar to AL samples. In 

regard to climate change, Betaproteobacteria might therefore serve as sentinels to 

identify recently thawed permafrost soils.  

Betaproteobacteria also became the focus of our search for sentinels of climate 

change in marine systems, as they can be indicators for freshwater influences in both 

Arctic fjords and the Arctic Ocean. Their increase in relative abundance in marine 

systems has therefore been associated with either increased run-off from land 

(Garneau et al., 2009) or melting sea-ice (Brinkmeyer et al., 2004). In Young Sound 

their abundance was highest in the river samples and the surface samples of the 

stations nearest to river inflow (Figure 8 and Paper II).  

 

 

 

 

 

 

 

 

 

 

 

 

We also observed a decrease in relative abundance of Betaproteobacteria in surface 

water samples with increasing distance either from the coast or from the sea-ice 

(Paper IV). With increasing run-off from land and sea-ice melt, we hence expect an 

increase of Betaproteobacteria in marine Arctic systems, which therefore can be used 

to indicate the extent of these climate change effects.  

Some microbes can also serve as sentinels of climate change in regard to much more 

specific environmental parameters, such as tDOM. With increasing permafrost thaw 

and run-off from land, more tDOM is entering the Arctic Ocean (Holmes et al., 2012; 

Figure 8: Relative abundance of the most abundant prokaryotic groups at class level in Young 

Sound shown for samples taken in the beginning of August. 
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Feng et al., 2013; Fichot et al., 2013). With the potential to affect the entire marine 

food web and carbon cycle, increase in tDOM may have huge impacts on the Arctic 

ecosystem (Paper III and Thingstad et al., 2008; Sipler et al., 2017). It is therefore 

important to closely follow the distributions of tDOM as well as the microbes that are 

able to process this carbon source. We identified one particular species, Glaciecola, 

in association with increased tDOM concentrations, both in situ in Young Sound 

(Paper II) and in experiments in Young Sound (Paper II) and Ny Ålesund (Paper 

III). Interestingly, not all Glaciecola OTUs responded similarly to the input of tDOM 

and different OTUs dominated in the different studies. It remains unclear whether the 

differences are caused by OTU dependent substrate specificities or their abundance at 

in situ conditions.  

With the current changes in the Arctic it is important to have records of the microbial 

state to be able to identify how the Arctic microbes react to the warming climate. By 

identifying microbial sentinels of climate change we can go one step further and 

detect specific environmental climate change effects using molecular tools. 

Experiments that especially target such sentinels and test their function can further 

help to predict the consequences on the local microbial community and even on entire 

biogeochemical cycles, such as the carbon cycle.  
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4.2 Microbial response to thaw 

Global warming is affecting the Arctic cryosphere, causing the decline in annual 

sea ice, glaciers and permafrost extent. In this scenario, Arctic microbes can serve 

both as sentinels and amplifiers of the ongoing changes. With Arctic microbial 

ecosystems shifting towards new states, changing microbial processes have 

implications on important biogeochemical fluxes, including the carbon cycle. Some 

microbes become more active with a longer growth season, others can inhabit newly 

available areas and in some cases entire microbial communities might change 

(Schuur et al., 2008; Kirchman et al., 2009). In Paper I, II and III we performed 

different experiments in different Arctic environments in order to test the effects and 

predict the consequences of climate warming on the microbial level.  

4.2.1 Experimentally induced permafrost thaw 

Being one of the most significant potential carbon feedbacks to the atmosphere, 

permafrost is central for all climate related changes in the Arctic. The carbon 

locked away in the frozen ground becomes available for degradation upon thaw, but 

may also be washed out in aquatic systems. In the end, microbial degradation 

processes in both environments are fueling greenhouse gas emissions, which in turn 

causes warmer temperatures and lead to even faster thaw. Studies measuring 

permafrost gas fluxes have shown that plant related carbon uptake cannot keep up 

with microbial CO2 production (Schuur et al., 2009). Permafrost environments 

might thus become a large carbon source to the biosphere. Research simulating 

future scenarios of warmer climate is needed to increase our knowledge about the 

microbial role in permafrost carbon processing. 

We incubated subsamples from five segments of the Svalbard permafrost core at 

4(±1) °C to simulate thawing conditions to different permafrost layers and document 

greenhouse gas fluxes thoroughly over 19 days (Paper I). CO2 production rates were 

found to be high, but we did not detect any release or production of CH4 or N2O. 

Independent of the soil layer, respiration rates were higher, with up to four times 
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more produced CO2, under aerobic than anaerobic conditions. Similar results have 

been obtained with permafrost incubations from different sites, which together shows 

that permafrost carbon from aerobic soil systems might have a greater effect on 

climate change than anaerobic environments (Lee et al., 2012; Elberling et al., 2013). 

This is especially important when data from such experiments is used to scale up and 

represent entire landscapes to predict future greenhouse gas release.  

Such predictions are often based on results which compare gas fluxes based on broad 

scales, for example comparing surface (AL) with deep (PL) samples. This implies 

that greenhouse gas release is comparable within these layers. We showed that 

between the different layers, CO2 production rates varied with changing community 

structure and incubation time. The highest within-layer difference was measured in 

the AL, where AL-1 samples released 60 µg C-CO2 per gram soil, while samples 

from AL-2 released three times less during 19 days of incubation. This became 

especially evident when production rates were used to integrate CO2 release over 

depth, as illustrated in Figure 9.  

 

 

 

 

 

 

 

 

 

Considering the different responses in the different permafrost layers, there is a need 

for further detailed gas flux studies in order to improve our understanding of the 

microbial response to permafrost thawing. 

Figure 9: Depth integrated CO2 production per gram soil differences of permafrost samples 

based on two AL sampling points (green bars) or only one AL sampling point (red bars). 
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4.2.2 Microbial response to DOM in fjord microcosms 

Arctic marine environments are experiencing increased inputs of terrestrial DOM 

sources fueled by permafrost thaw. However, the understanding of what fraction of 

tDOM is bioavailable and how fjord microbial communities will respond to increased 

tDOM is limited. In Paper II we investigated the DOM bioavailability in a high 

Arctic fjord system (Young Sound) over time and tested the bacterial uptake of the 

different DOM compounds experimentally, which correlated with the abundance of 

specific species. In Paper III we then tested the direct effects of tDOM input on the 

bacterial community composition in Kongsfjorden.  

The natural sources of organic carbon in the Young Sound fjord system are; (1) local 

phytoplankton production; (2) runoff from land-terminating glaciers and a lowland 

river and (3) inflow from the ocean shelf. Bioavailability was up to six times higher 

in river samples. However, which DOM compounds dominated in the different rivers 

depended on their origins. The rivers fed by glacial run-off transported significantly 

lower humic DOM compounds than the river running through a vegetated permafrost 

landscape. We used three experiments at different time points and different in situ 

conditions to evaluate what role the bacterial community plays in processing different 

DOM compounds. Bacteria within the class Gammaproteobacteria, especially of the 

order Alteromonadales (genera Glaciecola, Colwellia, Pseudoalteromonas and the 

SAR92 clade) can occur at high concentrations in coastal environments, where humic 

DOM compounds can be found in high abundances (Sosa et al., 2015; Paulsen et al., 

2017; Sipler et al., 2017). They are also known to be able to degrade a great variety 

of carbon sources, including humic like compounds. Interestingly, we found highest 

in situ abundances of these taxa in the fjord in July, when run-off was highest and in 

the first two experiments, with increased abundance at the end of the incubation 

(Figure 10). Likewise, only in these two first experiments, humic DOM compounds 

decreased over the course of the incubation, indicating that only a specific part of the 

residing bacterial community was able to degrade humic DOM (Figure 10).  
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Figure 10: Changes observed in the incubation experiments performed at different time 

points in Young Sound regarding A) fluorescent DOM compounds and B) relative 

abundance of Glaciecola. 

 

The relative abundance of OTUs correlated significantly with humic DOM 

components, both positively (e.g. Balneatrix, Glaciecola and SAR92 clade) and 

negatively (e.g. Litoricola and SAR86 clade). Especially the abundance of the genus 

Glaciecola was higher when natural humic DOM concentrations were elevated 

(Paper II) and in experiments in association with a decrease in humic DOM 

compounds (Paper III and Figure 10). Interestingly, correlations between taxa and 

DOM compounds were often only detectable at the OTU level. This indicates that 

strains within the same genus might have different functions.  
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We therefore focused in Paper III on identifying the taxa and OTUs that are capable 

to degrade humic compounds originating from permafrost and how they respond to 

increased inputs of this material in an experiment performed with an Arctic fjord 

microbial community from Kongsfjorden. This is especially relevant if the bacterial 

carbon uptake of humic DOM, via bacterial grazing, also affects higher trophic levels 

(Thingstad et al., 2008; Sipler et al., 2017).  

We found an immediate response in diversity and activity upon tDOM addition, as 

the growth of predominantly large bacteria was increased, thereby contributing to 

more than 77% of the total bacterial abundance after five days of incubation (Figure 

11). The growth of large bacteria corresponded to a change in the community 

composition caused by the rise of the genus Glaciecola which increased 2-fold within 

the first 12 hours and up to 138-fold after four days (Figure 11). 

 

 

 

 

 

 

 

 

 

 

Glaciecola and other genera of the family Alteromonadaceae are not known to  

initially dominate marine or coastal communities, but have shown rapid responses 

upon phytoplankton-derived DOM input (Eilers et al., 2000; McCarren et al., 2010; 

Figure 11: Change in absolute abundance of large bacteria and HNF (blue symbols) and relative abundance 

of the two most abundant taxa Glaciecola and Colwellia (orange symbols) over 9 days of incubation under 

A) control settings and B) after addition of tDOM. 
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Gómez-Consarnau et al., 2012; Beier et al., 2015). They have also experimentally 

been shown to increase in abundance due to the addition of  terrestrial derived DOM 

(Sipler et al., 2017). Besides Glaciecola, other taxa known to degrade complex 

organic matter, such as Marinomonas and Colwellia showed growth upon tDOM 

addition. They have both been associated with the breakdown of high molecular-

weight organic compounds (Huston et al., 2004; Methé et al., 2005; Chandra et al., 

2015; Gontikaki et al., 2015).  

Interestingly, the abundance of Glaciecola declined towards the end of the 

experiment by 84%. At the same time there was a substantial increase of a group of 

bacterial grazers (Figure 11). Size-selective predator-prey interactions have been 

shown for Glaciecola, which first became abundant upon rapid utilization of 

phytoplankton derived DOM and were subsequently grazed, which caused a decline 

in their abundance (von Scheibner et al., 2017). HNF did not increase in control 

incubations, where absolute abundance of bacteria was comparable high, but 

Glaciecola abundance was low (Figure 11). This suggests a specific predator-prey 

relation between Glaciecola and HNF in our experiment, which might be an 

important link in the microbial food web of Arctic fjord systems, with cascading 

effects on higher trophic levels, including ciliates, copepods and up to the top level 

predators.  

Our results indicate that tDOM has various effects on the structure and activity of 

fjord microbial communities and that it can quickly be utilized by some marine taxa. 

We further observed that the different DOM compounds can shape the microbial 

community composition and that these responses could affect higher trophic levels 

and biogeochemical cycles. Increases in land-to-ocean tDOM fluxes will, therefore, 

be important to the overall productivity of the Arctic Ocean.  
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4.3 Methodological challenges 

The studies presented in this PhD-thesis were part of two large projects and only 

possible because of years of planning behind these projects, long before I even started 

my PhD. Thus, I could benefit from well-organized sampling strategies, sample 

collection and sample processing plans. Details, for example, whether DNA or RNA 

should be used to analyze community composition, were decided based on first test 

results throughout the projects. While sequencing of DNA enables to capture the 

entire potential of the community, RNA, which is less stable than DNA, is better 

suitable to catch the more metabolically-active fraction of the community. We used 

DNA in Paper I and Paper V, and RNA in Paper II, III and IV for various 

molecular methods, including PCR, qPCR, cloning and sequencing.  

In molecular microbiology, basically all methods have different distinctive 

independent limitations, which can affect final interpretations of the data. Every step, 

from sampling and biomass collection to sample processing, DNA and RNA 

extraction and sequencing, harbors risks. Permafrost samples, like those we used in 

Paper I, are due to the drilling process sensitive for contamination, as nucleic acid 

concentrations are low (Juck et al., 2005). We therefore removed large parts of the 

outer layer of the permafrost core samples and due to the high sample resolution and 

replication rate, we were confident that contamination was avoided. Another aspect is 

that DNA has, due to the constant frozen conditions, a very long lifetime in 

permafrost and can keep its structural integrity even outside of bacterial cells 

(Willerslev et al., 2004). Still, due to low amounts of nucleic acids in the samples, 

extraction of DNA was challenging and extraction of RNA was not possible.  

Extraction of DNA and RNA from the marine water samples used in Paper IV and V 

was also complicated. Especially the samples taken at 1000 m depth had very low 

nucleic acid concentrations, which were sometimes below the detection limit. In 

contrast, summer surface sample had RNA concentrations of up to 1.4 µg/L sea 

water, since total biomass, including phytoplankton, was collected on the filters. This 

however, caused different problems during the analysis part, as over 90% of 
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sequences of these summer surface samples were from phytoplankton chloroplast 16S 

rRNAs and thereby reduced the sequencing coverage of the targetted prokaryotes. 

These chloroplast sequences were simply removed, since high-throughput sequencing 

produces a high read output. Rarefaction curve analysis showed that the remaining 

prokaryotic sequences were sufficient to cover the diversity in summer, while winter 

samples were more diverse and sequencing efforts were undersaturated.  

Also the amplification of nucleic acids is sensitive to bias, as primer selection can 

influence specific population abundances. For example, the 16S rRNA gene primer 

used to characterize the marine microbial community in Paper II, III, IV and V, had 

a low affinity for the SAR11 cluster and therefore the relative abundance of other 

groups was slightly overestimated (Apprill et al., 2015). Still, changes in community 

dynamics observed over the changing seasons were not affected, as also recently 

confirmed in a study testing the influence of different primer combinations on 

community dynamics of coastal marine bacteria (Wear et al., 2018). Additionally, by 

acknowledging the methodological biases and combing several different methods, 

like quantitative PCR, cloning and sequencing as in Paper V, or 16S rRNA gene 

sequencing and metagenomics in Paper I, the individual biases can be reduced and 

the interpretations be strengthened.  

However, some methodological biases cannot be avoided, simply because alternative 

methods have not been successfully established. For example, the incubations in 

Paper III, are as all incubation studies biased due to a so called “bottle effect” (Lee 

and Fuhrman, 1991; Massana et al., 2001; Stewart et al., 2012). Because of this bottle 

effect, the growth of certain bacteria is enhanced due to a combination of factors, 

including biofilm formation and binding of nutrients to the surface of the incubation 

container (Fogg and Calvario-Martinez, 1989; Fletcher, 1996). Also larger incubation 

volumes (>1000 L) can be affected (Calvo-Díaz et al., 2011; Hosia et al., 2014). We 

therefore decided to use shorter incubation times, followed the changes in growth and 

community composition daily and were thereby able to distinguish between bottle 

effects and tDOM effects in Paper III. 
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5. Conclusion and future perspective 

The studies presented in this PhD-thesis address the extensive implications of climate 

change on Arctic microbial communities. The effects of climate change were evident 

in all analyzed environments, making descriptive studies that can be used as a historic 

record of the current microbial state, as presented in Paper I, II, IV and V, highly 

necessary in order to indicate how the Arctic is changing. We add substantial new 

insights in regard of community composition and drivers determining these structures 

in permafrost, fjord systems and the Arctic Ocean.  

Our results indicate that permafrost microbial communities are much more complex 

than previously thought and that in future projects sampling strategies have to be 

adapted to resolve this complexity. Especially the discovery of the distinctively 

different community composition in the TZ and small scale changes over the depth of 

the AL highlight the necessity of a higher sampling resolution in order to understand 

the processes in permafrost soil. Future research should also focus on investigating 

environmental drivers, like carbon quality, that might cause this complex structuring, 

in more detail. 

The descriptive and experimental analyses of the different marine systems also shed 

light on the central role of permafrost carbon in the entire Arctic ecosystem. Soil 

microbes are, especially under aerobic conditions, capable of quickly processing the 

carbon, available upon thaw, into CO2, which is then released into the atmosphere. 

We followed the fate of permafrost derived carbon in marine environments and 

showed that, against the common perception, a large part of this carbon source is 

bioavailable and identified microbes, predominantly belonging to the genus 

Glaciecola, that are capable of degrading it. As this permafrost derived carbon caused 

a dramatic shift in the microbial community, which in turn affected higher trophic 

levels due to grazing, further research is needed to investigate this unexplored link in 

the microbial food web of Arctic marine systems.  
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We also showed that community structures in Arctic marine environments are highly 

affected by seasonal changes, but that additionally, regardless of season, water mass 

and history are crucial to explain abundance pattern, such as shown for ammonia 

oxidizing Thaumarchaeota. In future studies it will be important to identify the 

parameters behind the group of factors that collectively describe water masses, which 

are driving the distribution observed by us and whether this Thaumarchaeota niche 

separation is associated with different functional strategies.  

Descriptive studies, as presented here, represent the first step to understand largely 

unexplored systems as the Arctic. Especially by identifying microbial patterns, we get 

one step closer to understand the players behind important biogeochemical cycles. 

We also need more research investigating the environmental drivers behind the 

observed pattern and the functions of the microbes. The latest technological advances 

allow for such analyses. For example, with Fourier transform-ion cyclotron resonance 

mass spectrometry (FT-ICR MS) carbon composition can be described with a much 

higher sensitivity (Nebbioso and Piccolo, 2013). The highly improved resolution of 

this important environmental parameter together with the in depth functional analysis 

using metagenomics and metatranscriptomics can provide new insights into how the 

environment influences microbial communities and how they functionally cope under 

different conditions (Ward et al., 2017).  

This study clearly shows that climate change has various impacts on the different 

Arctic ecosystems and that the microbial community responds to these changes. We 

have documented community changes by identifying abundance patterns and 

sentinels that are sensitive to the changes in their environment. When such 

community profiles are combined with functional analyses and connected to 

interdisciplinary studies, yet more information can be obtained, that gets us closer to 

grasp how these ecosystems function. We observed that climate change is altering the 

microbial community, predominantly in association with functional changes that 

causes increased CO2 release into the atmosphere. This demonstrates that these 

results are not only relevant for the Arctic, but the entire global ecosystem and shows 

the importance of further research, along the line presented in this work. 
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Originality-Significance Statement:  20 

The work presented here is addressing one of the most pressing aspects regarding global warming, the fate of carbon 21 
currently locked in permafrost. Organic matter immobilized in the frozen soil is increasingly available due to 22 
temperature rises in the Arctic and thereby exposed to degradation by microbes. We used state of the art next-23 
generation sequencing techniques to identify the responsible microbial communities and revealed, by using an 24 
unprecedented high vertical sampling resolution, novel insights into the structure and diversity of permafrost 25 
microbial communities. We further linked community composition, gene function and respiration measurements to 26 
address if and how they are connected. This work provides valuable new knowledge within the field of permafrost 27 
microbiology and further strengthens the general importance of microbes as the main drivers of processes that 28 
determine the balance of carbon storage and release in the Arctic. Our sampling strategy highlights the importance of 29 
high resolution microbial profiling of permafrost soils, in order to identify the highly variable communities which 30 
ultimately respond differently in regard to CO2 production under thawing conditions. This information is of utter 31 
importance for projecting permafrost greenhouse gas emissions related to microbial activity.  32 
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Summary: 33 

Thawing permafrost can stimulate microbial activity, leading to faster decomposition of formerly 34 

preserved organic matter and CO2 release. Detailed knowledge about the vertical distribution of the 35 

responsible microbial community that is changing with increasing soil depth is limited. In this study, we 36 

determined the microbial community composition from cores sampled in a HighArctic heath at Svalbard, 37 

Norway; spanning from the active layer (AL) into the permafrost layer (PL). A special aim has been on 38 

identifying a layer of recently thawed soil, the transition zone (TZ), which might provide new insights into 39 

the fate of thawing permafrost. A unique sampling strategy allowed us to observe a diverse and gradually 40 

shifting microbial community in the AL, a Bacteroidetes dominated community in the TZ, and throughout 41 

the PL, a community strongly dominated by a single Actinobacteria family (Intrasporangiaceae). The 42 

contrasting abundances of these two taxa caused a community difference of about 60%, just within three 43 

centimeters from TZ to PL. We incubated sub-samples at about 5°C and measured highest CO2 production 44 

rates under aerobic incubations, yet contrasting for five different layers and correlating to the microbial 45 

community composition. This high resolution strategy provides new insights on how microbial 46 

communities are structured in permafrost and a better understanding of how they respond to thaw.  47 



3 

 

Introduction: 48 

Permafrost constitutes 25% of Earth’s terrestrial surface and stores a vast amount of buried, ancient 49 

carbon (C) equaling about half of the global belowground soil organic matter (SOM) pool (Hugelius et al., 50 

2014). The current warming in the Arctic is therefore of special concern, as this may trigger increased 51 

microbial activity, leading to faster decomposition of formerly preserved organic matter and release of 52 

greenhouse gases such as carbon dioxide (CO2) and methane (CH4) (Schuur et al., 2009; Grosse et al., 53 

2011; Mackelprang et al., 2011; Xue et al., 2016). 54 

Permafrost thaw has expanded dramatically across the Arctic, as measured by the increasing extent of 55 

active layer thickness (ALT) in the soil (Jorgenson et al., 2001; Åkerman and Johansson, 2008; 56 

Romanovsky et al., 2010; Hayes et al., 2014). The active layer (AL) is the upper part of the permafrost, 57 

undergoing seasonal freezing-thawing cycles, while the permafrost layer (PL) remains constantly frozen 58 

throughout the year. Together, this is the underlying reason for the microbial differences between those 59 

layers (Jansson and Taş, 2014). 60 

Several studies of Arctic permafrost have shown a higher microbial diversity, biomass and activity in the 61 

AL, which is decreasing towards the PL (Yergeau et al., 2010; Mackelprang et al., 2011; Frank-Fahle et 62 

al., 2014; Gittel, Bárta, Kohoutová, Schnecker, et al., 2014; Taş et al., 2014; Deng et al., 2015). However, 63 

the impact of microbes on SOM degradation processes and greenhouse gas production remains unclear. 64 

Only a few studies have combined microbial community composition and activity measurements. 65 

Interestingly, experiments showed that microbial communities in the PL changed rapidly in structure and 66 

function upon thaw, indicating that the newly available SOM can be processed instantly (Mackelprang et 67 

al., 2011; Deng et al., 2015). Whether this degradation will result in increased CO2 or CH4 fluxes depends 68 

strongly on conditions at the permafrost site, including soil type, water content and if aerobic or anaerobic 69 

conditions are dominating (Lee et al., 2012; Elberling et al., 2013). Additionally, the microbial 70 



4 

 

contribution to greenhouse gas emissions is not fully understood (Elberling et al., 2004; McCalley et al., 71 

2014).  72 

One important challenge in all soil studies is the heterogeneous character of a soil profile (Elkateb et al., 73 

2003). Nevertheless, most permafrost studies compare microbial communities based on broad scales, 74 

comparing surface (AL) with deep (PL) samples and knowledge regarding fine-scale shifts throughout the 75 

soil core is still scarce. In this study we therefore investigated the changes in microbial community 76 

structure along a fine scaled depth profile, following, in a high resolution (every 3-4 cm), the transition 77 

from AL into the PL in a two-meter soil core from Svalbard. Sub-samples were thawed and incubated at 4 78 

(±1) °C and microbial activity response was measured using gas flux analysis (CO2, CH4 and N2O) over 79 

intervals of hours to months.  80 

Our high resolution analysis therefore aims to precisely capture the microbial community composition 81 

throughout a permafrost core and to identify potential connections between community structure and 82 

greenhouse gas fluxes. This information is crucial to improve computational predictions of climate change 83 

effects that include microbial processes (Schwalm et al., 2010). In order to better understand these 84 

processes we need detailed knowledge on how permafrost communities are structured and on their 85 

metabolic response to thaw.  86 

Results: 87 

Soil characteristics 88 

The soil structure throughout the core was found to be homogenous (Figure 1a), as confirmed using X-ray 89 

Computer Tomography (Figure 1e), where estimated bulk densities ranged between 0.3-0.4 g cm
-3

. The 90 

soil sampling site is covered with Late Holocene loess deposits and is characterized by a high silt/sand 91 

content of up to ~47% (Bang-Andreasen et al., 2017). Due to the high silt/sand content the site is 92 

relatively well-drained. In this location, the combination of continuous sedimentation and freezing 93 

conditions resulted in thickening of the permafrost layer, where organic C surface layers were buried with 94 
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time and can be observed throughout the core in thin layers (Figure 1a). This is reflected in the 95 

homogenous character of soil properties such as total carbon (TC), total nitrogen (TN) and pH (Figure 1f).  96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

Figure 1: Permafrost soil profile illustrating:  

a) The soil structure in Adventdalen. Photograph shows the sedimentation process with periods of low sedimentation rates (small darker 

organic rich layers, marked with white triangles) and periods with higher sedimentation rates (thicker more pale layers). 

b) Relative abundance of the 20 most abundant taxa at different taxonomical levels based on 16S rRNA gene sequence data showing the 

taxonomic prokaryotic community composition of the permafrost core profile. When taxonomical classes within a phylum showed very 

contrasting trends, the most abundant classes were illustrated instead of the entire phyla. Taxonomical levels are indicated by a one-letter 

code (p=phylum; c=class; f=family). Taxa comprising <1% of the total number of sequences within a sample were summarized as “Other”. 

Relative abundances for each sampling point are average values calculated from 2-6 replicates (Table S1). c) Bray-Curtis dissimilarity 

values calculated for 16S rRNA gene sequence data at OTU level. Black triangles mark the transition from AL to TZ and from TZ to PL. 

d) Alpha diversity indices (Chao1, Shannon and Simpson). e) Bulk density measurement using X-ray CT scanning with measuring points 

for every centimeter (eleven example images illustrated on the left). f) Soil chemistry (n=1) showing in blue the water content, in grey the 

carbon content and in red the pH throughout the core. Note that data was not available between 30 and 80 cm. 
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Microbial Community Composition 114 

We could identify characteristic differences in relative abundance of the predominant microbial groups 115 

originating from the AL and PL. In the AL the most abundant phyla were Acidobacteria (14% on 116 

average), Actinobacteria (9%), Proteobacteria (24%) and Verrucomicrobia (16%) (Figure 1b). Especially 117 

the relative abundance of different classes of the phylum Proteobacteria showed gradual fine-scale 118 

changes within the AL (Figure 1b and S1). The abundance of Alphaproteobacteria and 119 

Gammaproteobacteria decreased gradually from 24 to 7% and 11 to 1.5% respectively (Figure 1b). The 120 

decrease in relative abundance in the AL of those two classes correlated with depth (Alphaproteobacteria: 121 

r=-0.85, p<0.002 and Gammaproteobacteria: r=-0.89, p<0.001), while no significant correlations to C, pH 122 

or water content could be identified (Table 1).  123 

  124 
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c_Alphaproteobacteria -0.8 < 0.0001 **** -0.9 0.002 ** 0.5 0.002 ** 0.5 0.126 ns 0.4 0.015 * 0.6 0.079 ns 0.0 0.905 ns -0.1 0.863 ns

c_Betaproteobacteria -0.1 0.321 ns 0.5 0.123 ns 0.4 0.056 ns 0.0 0.99 ns 0.3 0.116 ns 0.1 0.849 ns -0.1 0.709 ns -0.3 0.384 ns

c_Gammaproteobacteria -0.6 < 0.0001 **** -0.9 0.001 *** 0.5 0.002 ** 0.4 0.228 ns 0.4 0.030 * 0.3 0.495 ns 0.1 0.596 ns 0.3 0.405 ns

c_Deltaproteobacteria -0.8 < 0.0001 **** -0.8 0.004 ** 0.5 0.002 ** 0.4 0.262 ns 0.3 0.063 ns 0.3 0.452 ns 0.1 0.743 ns 0.4 0.274 ns

p_Actinobacteria|              

c_Thermoleophilia 0.1 0.3554 ns 0.6 0.089 ns -0.4 0.026 * -0.7 0.016 * -0.2 0.442 ns -0.4 0.232 ns -0.1 0.706 ns -0.2 0.515 ns

p_Actinobacteria|              

f_Intrasporangiaceae 0.8 < 0.0001 **** 0.6 0.046 * -0.4 0.014 * -0.5 0.175 ns -0.3 0.079 ns -0.4 0.299 ns 0.0 0.972 ns 0.1 0.727 ns

p_Chloroplast -0.4 0.0017 ** -0.4 0.224 ns 0.1 0.637 ns -0.2 0.51 ns 0.1 0.776 ns -0.2 0.682 ns 0.1 0.767 ns 0.1 0.778 ns

p_Planctomycetes -0.8 < 0.0001 **** -0.5 0.132 ns 0.5 0.003 ** 0.4 0.302 ns 0.2 0.247 ns -0.2 0.66 ns 0.0 0.967 ns -0.2 0.661 ns

p_Firmicutes 0.6 < 0.0001 **** 0.4 0.258 ns -0.4 0.029 * 0.2 0.599 ns -0.1 0.525 ns -0.2 0.545 ns -0.1 0.610 ns -0.2 0.617 ns

p_Chloroflexi -0.2 0.141 ns 0.9 0 *** 0.0 0.844 ns -0.4 0.295 ns 0.1 0.601 ns -0.2 0.556 ns -0.2 0.376 ns -0.2 0.502 ns

p_Acidobacteria -0.8 < 0.0001 **** 0.9 0.002 ** 0.4 0.015 * -0.1 0.793 ns 0.3 0.099 ns 0.0 0.989 ns 0.0 0.898 ns -0.1 0.753 ns

p_Gemmatimonadetes -0.5 0.0009 *** 0.6 0.089 ns 0.1 0.786 ns -0.5 0.108 ns 0.0 0.928 ns -0.4 0.229 ns 0.0 0.825 ns 0.1 0.742 ns

p_Bacteroidetes|                

c_Bacteroidia 0.0 0.797 ns 0.1 0.719 ns 0.0 0.904 ns -0.4 0.265 ns -0.1 0.491 ns -0.2 0.652 ns -0.1 0.633 ns 0.0 0.954 ns

p_Bacteroidetes|                

c_Sphingobacteriia -0.5 0.0001 *** -0.8 0.003 ** 0.7 < 0.0001 **** 0.7 0.043 * 0.5 0.005 ** 0.5 0.157 ns 0.1 0.602 ns 0.2 0.688 ns

p_Verrucomicrobia|           

c_Opitutae -0.7 < 0.0001 **** -0.7 0.015 * 0.4 0.020 * 0.1 0.759 ns 0.3 0.143 ns 0.1 0.888 ns 0.1 0.583 ns 0.3 0.381 ns

p_Verrucomicrobia|            

c_Methylacidiphilae -0.7 < 0.0001 **** -0.8 0.011 * 0.5 0.004 ** 0.3 0.403 ns 0.2 0.334 ns -0.1 0.75 ns 0.1 0.505 ns 0.4 0.319 ns

p_Verrucomicrobia|           

c_Spartobacteria -0.7 < 0.0001 **** 0.9 0 *** 0.3 0.100 ns -0.2 0.583 ns 0.2 0.221 ns -0.1 0.836 ns -0.1 0.801 ns -0.3 0.453 ns

p_Verrucomicrobia|           

c_Pedosphaerae -0.7 < 0.0001 **** -0.7 0.025 * 0.4 0.016 * 0.2 0.644 ns 0.1 0.487 ns -0.2 0.61 ns 0.2 0.280 ns 0.6 0.083 ns

p_AD3 0.0 0.7589 ns 0.5 0.124 ns -0.4 0.039 * -0.6 0.067 ns -0.1 0.586 ns -0.2 0.606 ns -0.1 0.715 ns -0.3 0.424 ns

p_WPS-2 -0.4 0.0035 ** -0.7 0.028 * 0.3 0.071 ns 0.0 0.977 ns 0.1 0.799 ns -0.3 0.371 ns 0.2 0.430 ns 0.4 0.285 ns

 Entire core  First 30 cm  

Table 1: Statistical analysis using the Pearson correlation coefficient to identify linear correlations throughout the entire core (grey background) and the first 

30 cm of active layer (white background) by comparing depth, and the soil properties carbon concentration, pH and water content with the relative 

abundance of the 20 most abundant taxa at class level.   

Depth % Carbon pH % water

Entire core First 30 cm  Entire core First 30 cm   Entire core First 30 cm  
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An opposite trend was observed for the class Betaproteobacteria, which was underrepresented down to 36 125 

cm before their relative abundance increased from 4 to 22% down to 75 cm. Other phyla, like the 126 

Gemmatimonadetes and candidate phylum AD3 also increased in abundance from 42 cm down to 75 cm 127 

and 68 cm, respectively. A general decrease down to 75 cm could be observed for the phyla 128 

Acidobacteria, Verrucomicrobia, Chloroflexi and Planctomycetes. Throughout the entire core, an increase 129 

or decrease in relative abundance of certain taxa significantly correlated with depth, while correlations to 130 

C concentrations, pH and water content were predominantly not significant (Table 1).  131 

We detected a major shift in microbial community composition at 75 - 78 cm depth in the AL. This was 132 

mainly driven by changes in relative abundance of Bacteroidetes (class Bacteroidia), which increased 133 

from 2 to 54% and Proteobacteria, which decreased from 34 to 8%. Bacteroidetes (class Bacteroidia) 134 

stayed abundant until 85 cm before decreasing to <0.5% within the next 7 cm of the soil core. We 135 

identified mayor differences in Bray-Curtis dissimilarity values at the transition from 75-78 cm with 29% 136 

and 85-88 cm with 39% (Figure 1c). Since community similarity between consecutive samples is on 137 

average about 78%, we interpreted those two shifts as the transition from AL to TZ and TZ to PL, 138 

respectively. Consequently, this change at 88 cm, where the microbial community composition shifted 139 

towards a dominance of Actinobacteria, can be interpreted as the beginning of the PL and the depths 140 

between 78-85 cm as the TZ. The PL is dominated by four OTUs belonging to Intrasporangiaceae 141 

(family) with an average relative abundance of 70% (±13%). An ANOSIM analysis on Bray-Curtis 142 

dissimilarities between the three layers showed that they are significantly different to each other and 143 

justifies the introduction of the TZ as a biological independent layer in the permafrost core (Table 2).  144 

Table 2: ANOSIM analysis of Bray-Curtis dissimilarities for the three different permafrost zones AL 

(Active layer), TZ (Transition zone) and PL (Permafrost layer). R indicates the grade of dissimilarity 

(1=most dissimilar) and p the statistical probability. 

Sample grouping Global R P 

Active layer - Transition zone 0.997 0.002 

Active layer - Permafrost layer 0.993 0.001 

Transition zone - Permafrost 

layer 
1 0.001 
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Archaea were generally underrepresented with a maximum relative abundance of 0.5% throughout the 145 

entire core and OTUs were predominantly assigned to Crenarchaeota (class MBGA) and Euryarchaeota 146 

(class Thermoplasmata).The three layers showed significant differences in richness (Chao1), evenness 147 

(Simpson) and diversity (Shannon), illustrated in Figure 2 (ANOVA, p<0.0001).  148 

 149 

 150 

 151 

 152 

 153 

All three alpha diversity indices were higher in the AL and decreased significantly with depth down to the 154 

PL (Pearson's r: Shannon [r=-0.8242] and Simpson [r=-0.7666] with p<0.0001 and Chao1 [r=-0.5121] 155 

with p=0.0002) (Figure 1d). Beta-diversity analysis confirmed these differences and is illustrated by a 156 

MDS plot (Figure 3).  157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

Figure 2: Richness and alpha diversity 

indices (Chao1, Shannon and Simpson). 

Pooled samples from the AL (n=19), TZ 

(n=3) and PL (n=27) were used to 

calculate alpha diversity indices.  

Figure 3: Multidimensional Scaling 

Analysis (MDS) plot of Bray-Curtis 

dissimilarity values illustrating the 

variation of bacterial community 

composition based on sequenced 16S 

rRNA gene fragments at OTU level. The 

analysis included the high resolution core 

samples and samples from the five layers 

of each core used for the incubation 

experiment. The soil type of each core 

sample is given by symbols and the 

sample depth and incubation segment is 

added as caption. Numbers correspond to 

sampling depths in core 1. The stress 

value for the MDS plot is 0.06. The black 

circles around clusters indicate 

similarities of 20% and the dotted circles 

60% similarity. 
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All samples from the PL shared 60% similarity, while AL samples only shared 20% similarity. 165 

Furthermore, the AL, TZ and PL samples grouped separately, with AL samples showing the widest 166 

distribution with a clear, gradual clustering from surface to deeper AL samples. Community composition 167 

of sub-samples from core 2 was similar compared to the corresponding layers in core 1 (Figures 3 and 4c). 168 

One exception was the absence of a Bacteroidetes dominated TZ, instead, community composition in the 169 

TZ-3 sample from core 2 was more similar to the AL-2 sample from core 1 (Figure 3 and Table S3). The 170 

characteristic differences between AL and PL segments observed for core 1 were also present in core 2 171 

and included the decrease of Alphaproteobacteria and increase of Betaproteobacteria with increasing AL 172 

depth and the dominance of Intrasporangiaceae in PL samples (Figure 4c). 173 

Degradation potential of soil organic matter 174 

From both cores, five segments were chosen as models to simulate thawing conditions in different 175 

permafrost layers and document CO2 fluxes. These segments were from the AL (AL-1; AL-2), the TZ 176 

(TZ-3) and the PL (PL-4; PL-5). They were chosen based on differences in microbial community 177 

composition as described above and in order to confirm the expected differences for the five segments, 178 

16S rRNA gene sequencing analysis was performed (Figure 4c). All five segments from core 1 revealed 179 

the characteristic community structure according to their depth and were similar to the community 180 

structure identified in the high resolution profile (Figure 3 and Table S3).  181 

Sub-samples from the five segments were incubated for up to 122 days and CO2 was measured regularly 182 

at eight time points for the first 19 days (Figure 4a). Overall CO2 emissions were higher in core 1 than 183 

core 2, but showed similar trends for the different segments (Figure 4a). In core 1, highest CO2 values 184 

were measured for PL-5 and lowest for AL-2 with 65 µg C-CO2 g soil
-1 

and 19 µg C-CO2 g soil
-1

 185 

respectively. Differences could be observed when the 19 days were divided into three phases. The first 186 

24h cover the release of trapped CO2 (phase 1), the next five days mark the first CO2 production phase 187 

(phase 2) and the last 12 days represent the later CO2 production phase (phase 3). PL-5, PL-4 and TZ-3 188 

had all high amounts of stored CO2 which were released during the first 24h. AL-1 and AL-2 released 189 
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only small amounts during this first phase. The production during phase 2 was highest in PL-5 (29 µg C-190 

CO2 g soil
-1

) and decreased towards AL-1 (12 µg C-CO2 g soil
-1

). The most contrasting rates between the 191 

five segments were observed during production phase 3, when AL-1 showed the highest CO2 emissions 192 

with 47 µg C-CO2 g soil
-1

 making up for 78% of the total emissions within 19 days.  193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

Overall similar trends, as described above, could be observed for the representative segments from core 2. 206 

By comparing both treatments, we found that CO2 emissions were always higher under aerobic 207 

incubations, with up to 4.2 times more CO2 produced for AL-1 in phase3 (Figure 4a). The last sampling 208 

point was after 122 days and during this 103 day period, AL-1 samples produced the most CO2 with 1207 209 

Figure 4: CO
2
 emissions, water content and microbial community structure of five characteristic layers from two replicate 

permafrost cores. C1: Core 1 from 2011 and C2: Core 2 from 2014 

 a) CO
2
 emissions of permafrost samples measured over 19 days and categorized in 3 phases which are indicated by the different 

shades of blue and green as stacked bars. Samples from five segments of the cores were incubated at 4 (±1) °C under aerobic (+) or 

anaerobic (-) conditions (n=3). b) Water content in % of weight for the five different layers (n=3). c) Microbial community 

composition of the five segments from the two permafrost cores used for the incubation experiment covering the AL, TZ and PL 

(n=1). Illustrated are the most abundant taxa at different taxonomical levels. Taxonomical levels are indicated by a one-letter code 

(p=phylum; c=class; f=family).  
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µg C-CO2 g soil
-1

 (Figure S4), while the segments TZ-3, PL-4 and PL-5 released around 800 µg C-CO2 g 210 

soil
-1

 and AL-2 produced only 330 µg C-CO2 g soil
-1

.  211 

All layers released significant amounts of CO2, thereby showing spatial (ANOVA, core 1: p=0.0369; core 212 

2: p=0.007) and temporal (ANOVA, core 1: p=0.0032; core 2: p=0.0041) differences. These differences 213 

were compared to the community composition in the different layers and visualized in a redundancy 214 

analysis biplot (Figure 5).  215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

The RDA model included the OTU abundance matrix as response variables and CO2 emission values for 226 

the three categories (24h; 24h-6d; and 6d-19d) as predictor variables, which explained 46.2% (p=0.016) of 227 

the total variance. For core 1, chemical parameters such as DOC, DTN, NH4-N, pH and water content, 228 

before and after 19 days of incubation, were measured. The results showed no major differences between 229 

the two different treatments and incubation time (Figure S3).  230 

Figure 5: Redundancy analysis biplot summarizing the variation of bacterial community composition in the five 

segments from both cores used for the incubation experiment plotted in relation to CO2 emission under aerobic conditions 

used as explanatory variables (black arrows). CO2 emission was grouped into three periods covering the first 24h, 24h to 

6d and 6d to 19d. The size of the symbols relates to the sample diversity (Shannon-Wiener index) at species level. 
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Metagenomics analysis 231 

We were interested in identifying functional differences in the different layers of the core as well as 232 

differences due to the induced thawing conditions of the incubation experiment (Figure 6). Firstly, 233 

differences between the four analyzed segments were greater than differences caused by incubation for up 234 

to 16 days (Figure S4). Changes in gene abundance over the course of the 16 days of incubation were 235 

more pronounced under aerobic conditions than in anaerobic treatments, where microbial communities 236 

remained relatively unchanged (data not shown). Overall, most reads (>60%) were assigned to genes 237 

involved in various metabolisms, of which the carbohydrate metabolism was most represented with 10-238 

15% of all reads, but varying for each layer. Glycolysis, starch and sucrose metabolism and degradation of 239 

aromatic compounds were overrepresented in the PL, while the fructose metabolism and the pentose 240 

phosphate pathway were pronounced in the TZ (Figure 6).  241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 
Figure 6: Heat map displaying the relative abundance of KEGG annotated metagenomics reads assigned to a selection of 

different metabolic pathways in four different layers of the permafrost core. The relative abundance of reads assigned to 

each pathway is displayed by the grey bar graph to the left and the changes in relative abundance for each layer after 16 

days of incubation is indicated by the bar graph to the right.  
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In the AL, benzoate and xylene degradation and the galactose metabolism were overrepresented. After 16 251 

days of thaw, the relative abundance of these KEGG pathways changed considerably in three of the four 252 

layers, only AL-2 samples showed no or minimal changes (Figure 6). Common for all layers was an 253 

increase in reads assigned to DNA repair mechanisms and decarboxylases. The most pronounced change 254 

after 16 days of thaw was an increase in relative abundance of genes connected to ABC transporters and 255 

the two-component system. Changes in the relative abundance of carbohydrate pathways were 256 

considerably less pronounced after 16 days of thaw. Additionally, the layers where a certain carbohydrate 257 

pathway was overrepresented compared to the other layers, also had the strongest reduction of the 258 

respective pathway after 16 days of thaw, for example the decrease in relative abundance of the starch and 259 

sucrose metabolism in AL-1 and PL-5 (Figure 6). 260 

  261 
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Discussion: 262 

Fine-scale resolution 263 

Numerous studies have characterized the microbial community structure of permafrost-affected soils, but 264 

mostly on broader scales (Yergeau et al., 2010; Wilhelm et al., 2011; Frank-Fahle et al., 2014; Gittel, 265 

Bárta, Kohoutová, Schnecker, et al., 2014; Koyama et al., 2014; Taş et al., 2014; Deng et al., 2015; 266 

Schostag et al., 2015). So far, only two studies characterized shifting microbial communities at a finer 267 

scale (Kim et al., 2016; Tripathi et al., 2018). They analyzed the AL of Alaskan organic rich tundra soils 268 

in steps of five centimeter and showed that a high resolution analysis of the soil profile can reveal unique 269 

changes in relative abundance of certain bacterial groups with depth.  270 

Here a permafrost core from Svalbard was analyzed at three to four centimeter intervals to a depth of two 271 

meters. Due to the fine resolution we were able to identify microbial community shifts in the AL and the 272 

PL, and further to distinguish a structurally unique and different TZ between these layers. Throughout the 273 

entire core, bacteria were dominating over archaea, which could be detected at various depths, but did not 274 

exceed abundances of more than 0.5% of the total community. Low archaeal abundances have been 275 

reported before and especially the absence of methanogenic archaea has been associated with low water 276 

content, similar to the soil investigated in this study (Høj et al., 2006; Yergeau et al., 2010; Rivkina et al., 277 

2016). We identified similar trends as seen in Kim et al (2016) for the bacterial community in the AL, 278 

where the relative abundance of Alphaproteobacteria, Gammaproteobacteria and Acidobacteria decreased, 279 

whereas Betaproteobacteria, Gemmatimonadetes and candidate phylum AD3 increased with soil depth. 280 

The community shifts caused by the different abundances of Proteobacteria and the other phyla have to 281 

some extent been described before (Koyama et al., 2014; Deng et al., 2015; Kim et al., 2016), and 282 

correlated with different soil horizons based on C turnover. Although those studies were based on organic 283 

soils, we could identify similar community shifts in our mineral soil core with <5% C content. The higher 284 

abundance of Alphaproteobacteria and Gammaproteobacteria in the upper AL has been speculated to 285 

correlate with higher C and nutrient availability (Koyama et al., 2014; Kim et al., 2016). However, 286 
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Alphaproteobacteria and Gammaproteobacteria were also more abundant in the upper AL of our core, 287 

despite the overall low C content in this mineral soil. This indicates that C availability alone might not be 288 

suitable to explain changes in the relative abundance of Alphaproteobacteria and Gammaproteobacteria in 289 

Arctic soils with both low and high carbon concentraions. The current study can, however, not 290 

discriminate whether the observed decline in abundance is related to carbon related factors like C quality 291 

or a combination of several factors, including oxygen availability and redox effects.  292 

Betaproteobacteria and especially taxa belonging to the uncultured and uncharacterized order SBla14 and 293 

the order Gallionellales increased in abundance in the deeper AL. As Gallionellales are chemolithotrophic 294 

iron-oxidizers, their increase in relative abundance might be connected to an increase in available Fe(II), 295 

which they use as primary energy source (Emerson et al., 2015). In mineral soils, Fe(II) is less likely to be 296 

bound to organic ligands and therefore available for oxidation by iron-oxidizing bacteria (Liang et al., 297 

1993). Other taxa that increased in relative abundance in the deeper AL belong to the phylum 298 

Gemmatimonadetes and the candidate phylum AD3 and have been detected in deeper soils before 299 

(Costello, 2007; Taş et al., 2014; Deng et al., 2015). It is unclear which environmental factors are causing 300 

their increase, as members of these phyla are largely uncharacterized. While dry soils and neutral pH have 301 

been associated with a higher abundance of Gemmatimonadetes (DeBruyn et al., 2011), higher 302 

abundances of candidate phylum AD3 were associated with low carbon concentrations (Jansson and Taş, 303 

2014). Interestingly, all phyla, independent of increasing or decreasing abundance towards the deeper AL, 304 

abruptly changed from 75 to 78 cm, due to the tremendous increase in relative abundance of Bacteroidetes 305 

(from 2 to 54%; Figure 1). The Bacteroidetes-dominated zone likely coincides with a geocryological 306 

defined transition zone, which, according to the three-layer conceptual model, describes a zone between 307 

the seasonally thawed AL and the stable PL, with sub-decadal freeze-thaw transitions (Shur et al., 2005). 308 

The thickness of the AL is variable in Adventdalen and can range between 63-90cm within a 20m radius 309 

of our study site (field measurements in 2016 and Cable et al., 2018). These AL maximum depths 310 

however suggest that a TZ above the permafrost table in core 1 might have been located where we also 311 
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identified the high Bacteroidetes abundance. It might also explain why we did not identify this zone of 312 

high Bacteroidetes abundance at similar depths in core 2. Since the community composition of the TZ-3 313 

segment from core 2 was most similar to the AL-2 samples from core 1, the AL might have extended 314 

deeper in core 2 than in core 1 and hence might explain why we did not identify the actual TZ with high 315 

Bacteroidetes abundance in core 2. The current study can, however, not provide evidence whether the high 316 

Bacteroidetes abundance is associated to the effects of recent thawing in the transition zone. High 317 

Bacteroidetes abundances in general have been associated with their metabolic flexibility and their ability 318 

to quickly respond to the easy available C and nutrients (Padmanabhan et al., 2003; Fierer et al., 2007). 319 

Chemical analysis of the TZ-3 samples from core 1 however, showed neither elevated carbon nor nitrogen 320 

levels compared to the neighboring layers AL-2 and PL-4. It remains uncertain what factors caused this 321 

clear separation of the TZ or whether this layer might be a record of a particular condition in the past 322 

when it was formed and buried due to sedimentation processes. Interestingly, the dominance by one 323 

taxonomical group (unknown family; within the class Bacteroidia) in the TZ is followed by the dominance 324 

of another family (Intrasporangiaceae; within the phylum Actinobacteria) in the PL. The sharp 325 

community changes between the different layers, which we here demonstrate for the first time, are an 326 

indicator that community structures are highly flexible and might adapt quickly to distinct conditions.  327 

Studies of permafrost layers from other Arctic regions have reported a high variability of bacteria 328 

belonging to the phyla of Actinobacteria, Proteobacteria, Verrucomicrobia, Chloroflexi, Bacteroidetes and 329 

Firmicutes (Hansen et al., 2007; Yergeau et al., 2010; Mackelprang et al., 2011; Yang et al., 2012; 330 

Jansson and Taş, 2014). In our study we observed a dominance of only four OTUs, belonging to the 331 

family of Intrasporangiaceae, which accounted for up to 80% of the entire community in the PL in core 1 332 

(Figure 1b) and up to 42% in core 2 (Figure 4c). High dominance of this Actinobacteria family has been 333 

seen in permafrost soils before ((Gittel, Bárta, Kohoutová, Schnecker, et al., 2014): Greenland up to 8%; 334 

(Gittel, Bárta, Kohoutová, Mikutta, et al., 2014): Siberian Arctic up to 47%), but to our knowledge never 335 

been reported in such consistent high numbers throughout the entire PL. It has been discussed that these 336 
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Actinobacteria are globally successful in permafrost environments due to their adaptions to low C 337 

availability and capabilities to degrade complex C compounds, like cellulose, cellobiose and lignin 338 

(DeAngelis et al., 2011; Giongo et al., 2013; Gittel, Bárta, Kohoutová, Schnecker, et al., 2014).  339 

Greenhouse gas fluxes and functional genes 340 

Although respiration takes place at sub-zero temperature, several studies have shown a rapid increase in 341 

respiration upon thaw, probably due to the availability of liquid water (Clein and Schimel, 1995; Larsen et 342 

al., 2002; Elberling and Brandt, 2003; Mackelprang et al., 2011). Nikrad and colleagues (2016) therefore 343 

suggested that several parameters, including temperature, C content and changes in the physical 344 

environment, should be included when comparing respiration rates. In our study we included the microbial 345 

community composition as an additional factor regarding respiration rates. 346 

We were able to show in detail, that both incubation conditions and soil depth with associated differences 347 

in microbial community structure influence CO2 fluxes during permafrost thaw (Figure 4a). Incubations 348 

with a different community structure showed different respiration rates. The highest difference was 349 

observed between AL-1 and AL-2 incubations from core 1. Within 19 days AL-1 samples release 60 µg 350 

C-CO2 per gram soil, while samples from AL-2 release three times less (Figure 4a). Similar low CO2 351 

production rates were observed for samples from TZ-3 of core 2 (Figure 4a). The community composition 352 

of TZ-3 from core 2 was most similar to the AL-2 segment from core 1 (Figure 3 and Table S3), 353 

indicating that depth-dependent differences in community structure might be indicators for the CO2 354 

production potential (Figure 5).  If these findings can be applied to longer term and field conditions 355 

requires further investigations as well as the identification of the active drivers of CO2 production and 356 

their abundance in the different communities. Further, the correlation between community composition 357 

and CO2 fluxes that we observed, might also be driven by substrate specific factors which we did not 358 

measure. Nevertheless, our results highlight the complexity of microbial driven respiration throughout a 359 

permafrost core and the necessity for further detailed gas flux studies considering the different responses 360 

in the different permafrost layers. 361 
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Independent of soil layer and community structure, respiration rates were highestunder aerobic than 362 

anaerobic conditions, with up to four times more produced CO2 (Figure 4a). Similar results have been 363 

documented in a study with permafrost from Greenland, incubated for 12 years (Elberling et al., 2013) and 364 

a comparative study investigating aerobic and anaerobic permafrost incubations from different locations in 365 

Alaska and Siberia (Lee et al., 2012). 366 

Under anaerobic conditions the release of CO2 was with 50 µg C-CO2 per gram soil twice as high in PL-5 367 

as in PL-4 and TZ-3 and almost three times as high as in AL-1 and AL-2. This indicates that the 368 

fermentative potential is highest in the deepest PL layer, which also represents the only layer which has 369 

not been thawed at any point since the beginning of the Holocene. Even though TZ-3 has been thawed 370 

during the last 15 years, similar amounts of stored CO2 were released during the first 24 hours compared 371 

to PL-5. This indicates that CO2 is produced under freezing conditions and that CO2 can be stored until it 372 

is released upon thawing (as previous documented by Elberling & Brandt 2003).  373 

In contrast to other permafrost incubations, we could not detect CH4 production in any of our treatments. 374 

The absence of methane production has been shown to be connected to iron and sulfate reduction 375 

processes, which energetically outcompete methanogenesis under anaerobic conditions (Patrick and 376 

Jugsujinda, 1992; Megonigal et al., 2004). The metagenomics analysis confirmed that methanogenesis 377 

might not have been activated, as genes involved in methane production were at a very low level or absent 378 

throughout the entire soil core, while genes encoding iron transporter proteins and sulfoxide reductases, 379 

were widely expressed and abundant throughout the core.  380 

This analysis also revealed that of all metabolisms, most genes were assigned to several carbohydrate 381 

pathways, varying for the different layers. The microbial community in the AL was involved in various 382 

carbohydrate degradation pathways, whereas communities in deeper layers depended on smaller organic 383 

substrates for energy conservation and degradation of complex aromatic compounds. Especially, transport 384 

and signaling genes were overrepresented in the AL and increased upon incubation. The abundance of 385 

certain genes changed in nearly all soil layers over the course of the incubation, with the exception of the 386 
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lower part of the AL (AL-2) (Figure S4). This was also the layer that, despite the genomic potential to 387 

degrade various carbon sources, produced the least amount of CO2 during the incubation. It remains 388 

unclear why CO2 production rates differed so substantially within the AL. These spatial and temporal 389 

differences in CO2 production within the different layers indicate important implications for future climate 390 

change models which incorporate permafrost greenhouse gas release.  391 

Conclusion: 392 

In this study, high resolution profiling of the microbial community throughout an entire two-meter 393 

permafrost core from Svalbard allowed us to closely follow changes. It showed significant differences 394 

between the AL and the PL, with the latter being dominated by Intrasporangiaceae and revealed a ~8cm 395 

spanning TZ with a clearly different community, dominated by Bacteroidetes. Further, we showed that 396 

CO2 release from our permafrost samples varied within the different layers and during different incubation 397 

periods. Together, our results indicate that the spatial and temporal variability of CO2 is reflected in the 398 

fine-scale variations of microbial communities throughout the permafrost core, that can change 399 

dramatically even within 3 cm. Due to observed structural variability of permafrost soils we cannot expect 400 

our identified microbial and activity patterns to be universal. However, the results from our study 401 

strengthen the necessity of detailed high resolution microbial community permafrost profiles in order to 402 

understand how the different microbes are distributed, how they interact and how they function in this 403 

globally important and changing Arctic environment. 404 

  405 
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Experimental Procedures: 406 

Study site and sampling  407 

Soil samples were obtained from a characteristic low-centred ice-wedge polygon site in the valley 408 

Adventdalen on Svalbard (78.186N, 15.9248E). Overall, two separate cores were drilled; the first core was 409 

obtained in April 2011 and is referred to as “core 1” and a replicate core was drilled at the same 410 

coordinates in July 2014 (“core 2”). The high resolution sequencing and chemical analyzes are based on 411 

soil samples from core 1. Sub-samples (n=2-6) from each of the analyzed 50 sections of the core were 412 

used as replicates for the 16S rRNA gene sequencing (Table S1). The incubation experiments included 413 

samples from five representative segments from core 1 and at similar depths five segments from core 2 414 

(Table S2). Samples from these five layers used in the incubation experiments were also used for 16S 415 

rRNA gene sequencing. The incubation experiments and chemical analyzes included three to four 416 

replicates. 417 

Soil processing and chemical properties 418 

To remove potential core surface contaminants, introduced during the drilling procedures, the outermost 2 419 

cm were scraped off with sterile blades. The remaining inner part was kept frozen on dry ice and 420 

transferred to a sterile thick plastic bag and homogenized by hammering. Characteristic soil properties, 421 

such as pH, water content, dissolved organic carbon (DOC), NO3 and NH
4+

 were measured for most of the 422 

subsections of core 1 used for the high resolution profile and for all segments from both cores used for the 423 

incubation experiments.  424 

X-ray CT scanning 425 

The core was X-ray CT scanned using a modified Siemens Somatom HiQ medical CT scanner at 133 kV. 426 

To obtain bulk density, the CT scanner was calibrated by scanning a number of materials having known 427 

density. The data were analyzed using imageJ (Schindelin et al., 2015).  428 
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Soil incubations and gas-flux measurements 429 

All preparations for soil incubations were performed in a -20 °C cold room. All incubation experiments 430 

included three replicates and covered five different segments (2 from AL, 1 from TZ and 2 from PL) from 431 

each of the two permafrost cores. Two gram of soil were added to sterilized glass vials (20 ml) and sealed 432 

with butyl rubber stoppers and aluminum crimps. Samples incubated under anaerobic conditions were 433 

flushed with nitrogen for 1 min. Three milliliters of headspace gas were collected from the vials 434 

immediately after the incubation was started and at 9 time points (4h, 12h, 24h, 2d, 4d, 6d, 16d, 19d, 435 

122d) during incubation. After each gas collection, aerobic or anaerobic conditions were re-established. 436 

The gas samples were transferred into 3 ml Exetainer glass vials and analyzed for CO2, CH4 and N2O on a 437 

SRI 8610C gas chromatograph. Measurements for CH4 and N2O were below the detection limit in all the 438 

segments and data was therefore not included. All samples were incubated at 4(±1) °C in the dark. 439 

DNA extraction, 16S rRNA gene amplification and amplicon sequencing 440 

Frozen soil from homogenized segments of the core was used for DNA extractions, following 441 

manufacturer’s instructions of the PowerSoil® DNA Isolation Kit (Mobio, Carlsbad, USA) and performed 442 

in triplicates with minor modifications. Instead of 0.25 g, 0.3-0.4 g soil was used for the DNA extraction 443 

and an additional incubation step of 70°C for 5 min was included after solution C1 was added. 444 

Information regarding the sub-sample depth, the number of replicates, DNA concentration and the number 445 

sequences before and after processing is listed in Table S1. DNA amplification included a two-step nested 446 

PCR approach with primers 519F (CAGCMGCCGCGGTAA; (Øvreås et al., 1997)) and 806R 447 

(GGACTACHVGGGTWTCTAAT; (Caporaso et al., 2011)) targeting the bacterial and archaeal 16S 448 

rRNA gene V4 hypervariable region. Details can be found in (Wilson et al., 2017). Libraries were send to 449 

the Yale Center for Genome analysis (Yale University, the W.M. Keck Biotechnology Resource 450 

Laboratory, CT, US) and the Norwegian Sequencing Centre (Oslo, Norway) for high-throughput 451 
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sequencing on a MiSeq platform (Illumina). Sequencing data is available at "The European Bioinformatics 452 

Institute" under study accession number PRJEB21759. (http://www.ebi.ac.uk). 453 

Bioinformatic sequence analysis 454 

Sequencing data was processed using different bioinformatic tools incorporated in the Qiime-processing 455 

platform using version 1.9.1. (Caporaso et al., 2010). A total of 13,669,151 sequences were retrieved from 456 

151 samples. Prokaryotic OTUs were selected at a sequence similarity threshold of 97% using a de novo 457 

uclust (Edgar, 2010) OTU clustering method with default parameters and taxonomy assigned, using the 458 

Greengenes reference database (DeSantis, 2006). OTUs with a taxonomic identification were assembled 459 

to an OTU table providing abundances for each sample excluding singletons and unassigned OTUs. After 460 

removal of singletons and unassigned OTUs, a total of 37,016 unique OTUs at 97% sequence identity 461 

were retrieved. Alpha diversity, including Shannon and Simpson indices (Shannon, 1948; Simpson, 1949) 462 

and Chao1 richness (Chao, 1984), was calculated using a rarefied sample set, standardized to the smallest 463 

read number of 3,500 sequences per sample. To test for multivariate environmental correlation with the 464 

prokaryotic community structure, the programs primer-e version 6 (Plymouth, UK) and Canoco 5 (ter 465 

Braak and Šmilauer, 2012) were used. Among others, Bray-Curtis resemblance, ANOSIM and principal 466 

component analyses were calculated using these programs. Multidimensional Scaling Analysis (MDS) 467 

plot was used to illustrate the variation of bacterial diversity based on Bray-Curtis dissimilarity values of 468 

sequenced 16S rRNA gene data. For the redundancy analysis (RDA), the OTU abundance matrix was log 469 

transformed and used as response variables, while CO2 emission values for the three categories (24h; 24h-470 

6d; and 6d-19d) were used as predictor variables.  471 

Metagenomics analysis 472 

Samples for metagenomics Illumina High-Seq sequencing were collected from four of the five different 473 

segments (2 from AL, 1 from TZ and 1 from PL) from core 1 used in the incubation experiment. Triplicate 474 

soil samples of 0.3 - 0.4 g were collected before the incubation started and after 16 days of thaw under 475 
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aerobic conditions, frozen immediately in liquid nitrogen and stored in at -80 °C. DNA was extracted 476 

using the PowerSoil® DNA Isolation Kit (Mobio, Carlsbad, USA) as described above. DNA was sent to 477 

WSU Genomics Core (Washington, Spokane) where DNA was quality checked and libraries prepared 478 

using 100 ng DNA per sample and the Illumina® TruSeq® Nano DNA Library Prep kit (Illumina), 479 

according to manufacturer`s instructions. Metagenomics shot sequencing data was analyzed using the 480 

ATLAS software package and standard settings (White III et al., 2017). Raw paired-end Illumina reads 481 

(.fastq format) were extended for overlaps by using FLASH (Magoč and Salzberg, 2011), after which 482 

φX174 was removed using Bowtie2 (Langmead and Salzberg, 2012), the reads were trimmed with 483 

trimmomatic (Bolger et al., 2014), and then quality control was performed with FastQC (Andrews, 2010). 484 

Overlapped paired-end reads (from FLASH) and unpaired reads were assembled using MEGAHIT (Li et 485 

al., 2015). The resulting contigs were subsampled for lengths >1 kbp and translated to protein coding open 486 

reading frames (ORFs) using Prodigal (Hyatt et al., 2010) in metagenome mode and annotated using 487 

DIAMOND (Buchfink et al., 2015) blastp for protein-protein searching. DIAMOND blastp high-scoring 488 

pairs were filtered to user specified bitscore and e-value cut-offs (defaults >200 and <1x10
7
, respectively). 489 

Functional annotation utilizes non-redundant RefSeq (O’Leary et al., 2016) and obtains KEGG (Ogata et 490 

al., 1999) (i.e., KO number) annotations from EggNOG reference database. KEGG reads were normalized 491 

to metagenome size and relative abundance differences between layers were normalized for each pathway. 492 

ATLAS uses RefSeq high-scoring pairs along with NCBI’s taxonomy assignments reference tree via a 493 

modified majority voting-method (MMVM) that utilizes lowest common ancestor (LCA) (Hanson et al., 494 

2016), to determine the lowest common ancestor represented across all ORFs present within a single 495 

contig. Functional and taxonomic count data was obtained by mapping quality controlled reads to 496 

assembled contig annotations using Bowtie2, then parsed using featureCounts of the Subread package 497 

(Liao et al., 2014). Sequencing details can be found in Table S4.  498 

Statistical analysis 499 
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ANOSIM analysis comparing Bray-Curtis dissimilarities between samples for the three different 500 

permafrost zones was carried out using the program primer-e version 6 (Plymouth, UK). Calculations for 501 

ANOVA and the Pearson correlation coefficient (Pearson`s r) were carried out using GraphPad Prism v 502 

6.01 for Windows (GraphPad Software, CA, USA). Differences in CO2 emission in the different layers 503 

and for the three time periods (24h; 24h-6d; 6d-9d) during the incubation experiment were analyzed by 504 

one-way ANOVA with p<0.05 as threshold for statistical significance. To compare the differences of the 505 

three alpha diversity indices for the different layers one-way ANOVA was performed and Pearson`s r to 506 

indicate whether those indices decreased significantly with depth. Further, Pearson`s r linear correlations 507 

were carried out to investigate the significance of correlation between the 16S rRNA relative abundance 508 

data and depth and the soil properties C concentration, pH and water content. 509 
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Figure S1: Heat map displaying the 

highly represented (additive relative 

abundance >90%) bacterial groups at 

class level across the permafrost 

depth profile. Each of the bacterial 

groups is colored according to its 

maximum abundance at any depth of 

the core. The darkest blue illustrates 

maximum, yellow medium and red 

lowest abundances. 
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Figure S2: CO
2
 emissions over 103 days incubation of permafrost samples, calculated for the period 

between day 19 and 122. Experiments were performed with 2 g soil samples from 5 segments of core 1 

covering the AL, TZ and PL (Table S2). Samples were incubated at 4-6°C under aerobic (+) or anaerobic 

(-) conditions.  
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Figure S3: Soil chemistry, including DOC, DTN, NH
4
-N, C/N ratio, pH and water content of the 

permafrost incubations of the five segments from core 1, measured before (black) and after 19 days of 

incubation under aerobic (blue) and anaerobic (green) conditions.  
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Figure S4: Principal component analysis (PCA) of 16 metagenomes based on frequencies of KEGG 

annotated read frequency. KEGG reads were normalized to metagenome size and samples are colored 

according to segments from the incubation experiment. Dark blue = Active Layer 1; Light blue = Active 

Layer 2; Green = Transition Zone 3; Red = Permafrost Layer 5. The time point of incubation is given by 

the sample label and only aerobic incubations are included in the analysis. 
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Table S1: Detailed 16S rRNA sequencing information regarding the number of replicates and sequences 

before and after processing in Qiime for the entire soil core profile. 

Depth 
in cm 

Sample 
ID 

DNA 

conc. in 

ng per g 
soil 

16S rRNA 

sequencing 
2012 

16S rRNA 

sequencing 
2016 Sequences 2012 

Sequences without 
singletons/unassigned Sequences 2016 

Sequences without 
singletons/unassigned 

    
 

    a b c a b c a b c a b c 
4 2_1_5 3608.5 x   18339 25765 9022 16862 23455 8453             
6 2_1_4 2541 x   6046 19835 5611 5591 18475 5013             
8 2_1_3 1577.8 x   1743 3729 3452 1610 3421 2866             

11 2_1_2 1663.9 x x 32629 33563 22476 28755 30346 20186 171055 149955 119299 140922 130176 96050 
14 2_1_1 2371.6 x   386 3504 5037 362 3293 4691             
16 2_2_5 1395.1 x   5383 1715 1843 4984 1577 1740             
20 2_2_4 2192.4 x   9477 11919   8796 10939               
23 2_2_3 1228.5 x   14224 8525 9037 13274 7798 8361             
27 2_2_2 1800.4 x   13757 2672 15213 11436 2486 14221             
30 2_2_1 1617 x   55727 90596 11363 50809 85261 10627             
33 2_3_6 

 
                            

36 2_3_5 1003.3   x             130160 75079 164450 122248 70886 155131 
39 2_3_4 

 
                            

42 2_3_3 672   x             115239 151154 153176 109007 142728 144228 
45 2_3_2 

 
                            

50 2_3_1 416.7   x             157235 103684 130840 147571 97126 122728 
52 2_4_5 835.3   x             238117 312342 146174 221041 287317 135086 
55 2_4_4 

 
                            

58 2_4_3 664.7   x             167313 254989 176348 154713 237462 163027 
61 2_4_2 

 
                            

65 2_4_1 1072.7   x             251085 309841 162152 234195 290031 151446 
68 2_5_2 841.3   x             98445 129613  170744 93337 121174  161117 
72 2_5_1 1230.7   x             89373 46507 65988 86466 45058 62551 
75 2_6_3 940.7   x             41600 44458 19180 39923 42705 18600 
78 2_6_2 1268   x             435282 286751 113382 410592 270181 107578 
82 2_6_1 1126   x             91375 104187 111265 89028 101532 108523 
85 2_7_5 803.3   x             92386 57477 156859 88680 54863 150820 
88 2_7_4 323.4 x   50763 92017 12140 47872 87381 11272             
92 2_7_3 406 x   118033 111693 61627 111065 103420 56617             
96 2_7_2 330.4 x   101928 114819 101275 93402 107516 93381             
100 2_7_1 379.4 x x 10228 60107 44768 9752 56594 41407 149053 189616 184934 130619 169363 164458 
104 2_8_6 

 
                            

106 2_8_5 288.7   x             190700 128854   175176 119554   
110 2_8_4 

 
                            

112 2_8_3 118.3 x   67253 42632 34606 62558 39092 30691             
114 2_8_2 177.8 x   100581 79533 63401 93021 75566 60104             
118 2_8_1 171.5 x   81752 22560 105462 77956 21240 97142             
120 2_9_4 43.4 x   213878 73360 97992 200275 66736 90812             
122 2_9_3 70.7 x   126871 92286   115958 86855               
124 2_9_2 107.6 x   70573 27772 135810 66352 26135 127895             
126 2_9_1 63 x   145651 89626 98530 136234 82973 93021             
128 2_10_6 

 
                            

130 2_10_5 87.8   x             190851     179238     
134 2_10_4 

 
                            

136 2_10_3 43.6 x   66653 12953   62760 12192               
140 2_10_2 24.5 x   2333 40272 23365 2174 38234 22128             
142 2_10_1 33.3 x x 13684 22530 12279 12673 21654 11638 76898 238434 152033 70252 221898 139807 
144 2_11_5 66.5   x             191193 156642 254504 176153 144328 234929 
148 2_11_4 
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152 2_11_3 76.3   x             168233 366032   153895 335792   
156 2_11_2 

 
                            

160 2_11_1 84   x             128740 172584 187363 119111 158647 173160 
162 2_12_6 44.6 x   28501 63176 50784 27091 60677 47422             
166 2_12_5 45.5 x   116112 22046 54468 108291 20987 51518             
170 2_12_4 67.7 x   40225 12423 12691 37692 11561 12089             
174 2_12_3 57.8 x   136 29717 17457 124 28242 16360             
176 2_12_2 56.9 x   10767 8100 20812 10240 7429 19742             
180 2_12_1 70.5 x   7395 14998 13349 6886 14346 12640             
182 2_13_5 92   x             89265 211421 110251 78385 183880 97865 
186 2_13_4 

 
                            

190 2_13_3 99.7   x             60180 225524 102941 55665 209863 95893 
194 2_13_2 

 
                            

198 2_13_1 72.8   x             103497 117303 88951 95124 107910 82326 
 

Table S2: Overview of permafrost core segments used for the incubation experiments containing the 

depth and the characteristic layer represented by those segments.  

Segment ID Depth below surface (in cm) Permafrost zone 
  Core 1 2011 Core 2 2014   

AL-1 6-20 20-36  Active layer 
AL-2 57-74 57-73  Active layer 
TZ-3 74-89 73-83  Transition zone 
PL-4 89-107 95-107  Permafrost layer 
PL-5 167-187 167-185  Permafrost layer 

 

Table S3: ANOSIM analysis of Euclidean distances between 16S rRNA gene sequencing data from the 

high resolution soil profile (core 1) and the sequencing data from the five chosen layers used in the 

incubation experiment from core 1 and core 2. The number indicates the grade of dissimilarity (1=most 

dissimilar). The best similarity value for each incubation segment of the two cores is highlighted with a 

light green background.   

High resolution profile samples Incubation samples (all n=1) 
core-2011 core-2011  core-2014  

Layer Depth in cm AL-1 AL-2 TZ-3 PL-4 PL-5 AL-1 AL-2 TZ-3 PL-4 PL-5 
AL-1 (n=7) 6-20 -0.08 0.67 1 1 1 0.65 1 0.89 1 1 
AL (n=7) 20-54 0.97 0.10 1 1 1 0.35 1 0.97 1 1 
AL-2 (n=5) 57-74 0.4 0.04 1 1 1 0.12 0.2 -0.12 1 1 
TZ-3 (n=3) 74-89 1 1 -0.56 1 1 1 1 1 1 1 
PL-4 (n=5) 89-107 1 1 1 0.08 0.4 1 1 1 0.68 0.8 
PL (n=15) 107-167 1 1 1 0.31 0.38 1 1.00 1.00 0.68 0.80 
PL-5 (n=7) 167-187 1 1 1 0.58 0.63 1 1 1 0.92 1 
 



Supplementary Information   
Disentangling the complexity of permafrost soil by using high resolution profiling of  
microbial community composition, key functions and respiration rates  Müller et al. 

 
 

Table S4: Summary of metagenomics sequencing results.  

Sample 

groups 

Read 

length 

(bp) 

No. of 

reads in 

Million 

No. of 

contigs 

(1k) in 

Million 

No. of reads for 

bin size cutoff 

N50 

(bp) 
GC % 

Reads 

mapped 

against 

active 

layer (%) 

Reads 

mapped 

against 

transition 

zone (%) 

Reads 

mapped 

against 

permafrost 

layer (%) 

>5 kb 
>10 

kb 

Active 

layer 

250 

24.67 1.16 3.20% 0.60% 2022 59.94 64.23 29.98 17.85 

Transition 

zone 
7.32 0.42 4.93% 1.60% 2498 53.81 36.64 70.24 34.06 

Permafrost 

layer 
4.19 0.18 3.72% 0.78% 2100 58.99 49.37 57.53 62.16 

 

Detailed description of the study site, sampling and sample processing  

Soil samples were obtained from a characteristic low-centred ice-wedge polygon site in the valley 

Adventdalen on Svalbard (78.186N, 15.9248E). At our study site in Adventdalen (Svalbard), the 

maximum AL depth measured by the end of the summer season is less than 100 cm (Christiansen et al., 

2010) and the PL below extending to greater than 100 m (Humlum et al., 2003). Adventdalen is a U-

shaped, broad valley with braided river floodplain deposits and terraces and the dominant periglacial 

landforms are pingos and ice wedges (BRYANT, 1982; L. Sørbel & J. Tolgensbakk, 2002). Annual 

average precipitation is at around 190 mm, making Adventdalen one of the driest parts in Svalbard. Mean 

annual air temperature is at around -6 °C at Svalbard Airport (1961–1990; (Førland et al., 1997)), 16 km 

west of the sampling site. The low-centred ice-wedge polygons are typically covered by tall grasses in the 

troughs and mosses in the central parts (Christiansen, 2005). Overall two separate cores were drilled; the 

first core was obtained in April 2011 and is referred to as “core 1” and a replicate core which was drilled 

at the same coordinates in July 2014 (“core 2”). Vegetation was removed along with thawed top soil (4 cm 

in 2011 and 20 cm in 2014) to drill through the active layer down into the permafrost to a depth of two 

meter. During drilling, core sections up to 50 cm long were obtained (ø 7.2 cm) and immediately wrapped 

in aluminum foil, kept frozen and stored at -80 °C, until further analysis. Core 1 was used for the high 

resolution 16S rRNA gene sequencing. Sub-samples from core 1 and core 2 were used for the incubation 

experiments to obtain gas flux measurements. Due to experimental restraints, several layers had to be 

pooled and represent five characteristic different segments of the core profile (Table S2). Similar depths 

were used to pool material from core 2. These five segments from both cores were as well used for 16S 

rRNA gene sequencing to confirm firstly, that community structure is comparable in both cores and 
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secondly that the five segments have a similar community structure at corresponding depths observed 

from the high resolution sequencing.  

Core 1 used for high resolution profile was cut into 1.5 - 2 cm subsections using a diamond blade electric 

saw, where the sawblade was washed in ethanol prior to the cutting. Core 2 was separated into smaller 4-6 

cm subsections using a sterile chisel. To remove potential core surface contaminants, introduced during 

the drilling procedures, the outermost 2 cm were scraped off with sterile blades. The remaining inner part 

was kept frozen on dry ice and transferred to a sterile thick plastic bag and homogenized by hammering. 

Samples for DNA extraction used for the high resolution profile sequencing were collected from core 1 as 

subsections at 2-4 cm intervals (Table S1). For the incubation experiments soil from several subsections 

was pooled into 5 larger segments for each core 1 and 2 (Table S2). Characteristic soil properties, such as 

pH, water content, dissolved organic carbon (DOC), NO3 and NH
4+

 were measured for most of the 

subsections of core 1 used for high resolution profile and for all segments from both cores used for the 

incubation experiments.  

 

Detailed description of chemical analyses and X-ray CT scanning 

1 g soil was homogenized and diluted in 10 ml dH2O and the pH measured on a pH-meter. The water 

content was calculated based on the difference in weight after the water in 1 g of soil was evaporated at 80 

°C for 24 hours. Dissolved organic carbon (DOC) and nitrogen (DTN), including NO3 and NH4
+
, were 

analyzed following a cold water extraction where ~2 g of soil were dissolved in 20 ml of dH2O and 

incubated while shaking at 4 °C for 5 hours. The mixtures were centrifuged at 4300 rpm for 10 min and 

the resulting supernatant was transferred into 30 mL acid washed HDPE bottles. Nitrate and ammonium 

were measured using flow injection analysis on a FIAstar™ 5000. Samples for DOC measurements were 

first acidified with 2 M HCl and then analyzed on a TOC-5000A/SSM-5000A.  

The core was X-ray CT scanned using a modified Siemens Somatom HiQ medical CT scanner at 133 kV. 

The scan slice thickness was 2 mm, and scans were performed every centimeter. The voxel dimension for 

the resulting images was 193 microns x 193 microns x 2000 microns. To obtain bulk density, the CT 

scanner was calibrated by scanning a number of materials having known density. This technique is fairly 

good for materials composed mostly of lighter elements, but has larger errors when the scanned soils are 

high in iron or other heavier elements. The data were analyzed using imageJ (Schindelin et al., 2015). 

After calibrating the data, a threshold was set such that values between 0.59 and 2.3 g/cm3 were included. 

Slices having more than 30,000 voxels were considered in assigning axial length values, and slices having 

more than 50,000 voxels between these values were considered for density measurements. Slices with less 
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than 50,000 voxels showed unusual values, as they were typically near the core segment ends and perhaps 

sustained changes from the coring and handling processes. 

Detailed description of soil incubations and gas-flux measurements 

All preparations for soil incubations were performed in a -20 °C cold room. All incubation experiments 

included three replicates and covered five different segments (2 from the AL, 1 from the TZ and 2 from 

the PL) from each of the two permafrost cores. For those segments soil from several subsections was 

pooled from similar depths for each core 1 and 2 and therefore segments slightly vary between the cores 

(Table S2). Two gram of soil were added to sterilized glass vials (20 ml) and sealed with butyl rubber 

stoppers and aluminum crimps. Samples incubated under anaerobic conditions were flushed with nitrogen 

for 1 min. Three ml of headspace gas were collected from the vials immediately after the incubation was 

started and at 9 time points (4h, 12h, 24h, 2d, 4d, 6d, 16d, 19d, 122d) during incubation. After each gas 

collection aerobic or anaerobic conditions were re-established and a positive pressure was applied in 

bottles by either injecting 3 ml atmospheric gas (aerobic) or 3 ml nitrogen (anaerobic) into the headspace. 

The gas samples were transferred into 3 ml Exetainer glass vials and analyzed for CO2, CH4 and N2O on a 

SRI 8610C gas chromatograph. Measurements for CH4 and N2O were below the detection limit in all the 

segments and data therefore not included. All samples were incubated at 4(±1) °C in the dark, over the 

course of several days and weeks for up to 122 days. Additionally, before the start of the incubation DNA 

was extracted from the five different segments and 16S rRNA gene sequencing analysis performed as 

described below. 

Detailed description of sequencing and bioinformatic analyses 

High-throughput sequencing was performed on a MiSeq platform (Illumina) using the MiSeq Reagent Kit 

v1 and v2 respectively (Illumina). Sequencing data was processed using different bioinformatic tools 

incorporated in the Qiime-processing platform using version 1.9.1. (Caporaso et al., 2010). A total of 

13,669,151 sequences were retrieved from 151 samples. FASTQ files of paired-end sequences were 

quality end-trimmed at a phred quality score ≥ 24 using Trimmomatic (Bolger et al., 2014) and merged 

using PANDAseq (Masella et al., 2012), while all reads <200bp were removed. Prokaryotic OTUs were 

selected at a sequence similarity threshold of 97% using a de novo uclust (Edgar, 2010) OTU clustering 

method with default parameters and taxonomy assigned using the Greengenes reference database 

(DeSantis, 2006). OTUs with a taxonomic identification were assembled to an OTU table providing 

abundances for each sample excluding singletons and unassigned OTUs. To test for multivariate 

environmental correlation with the prokaryotic community structure the programs primer-e version 6 

(Plymouth, UK) and Canoco 5 (ter Braak and Šmilauer, 2012) were used.  
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Abstract: 11 

The warming of the Arctic causes increased riverine discharge, coastal erosion, and the thawing of 12 

permafrost. Together, this is leading to an increased wash out of terrestrial dissolved organic matter 13 

(tDOM) into the coastal Arctic ecosystems. This tDOM may be anticipated to affect both carbon and 14 

nutrient flow in the microbial food web and microbial community composition, but there are few 15 

studies detailing this in Arctic marine ecosystems. We tested the effects of tDOM on the bacterial 16 

community composition and net-growth by extracting DOM from the active layer of permafrost soil 17 

and adding the aged tDOM concentrate to a natural microbial fjord community (Kongsfjorden, NW 18 

Svalbard). This resulted in an increased carbon load of 128 µM in the tDOM treatment relative to the 19 

control of 83 µM DOC. We observed changes in community composition and activity in incubations 20 

already within 12 hours where tDOM was added. Flow cytometry revealed that predominantly large 21 

bacteria increased in the tDOM treated incubations. The increase of this group correlated with the 22 

increase in relative abundance of the genus Glaciecola (Gammaproteobacteria). Glaciecola were 23 

initially not abundant in the bacterial community (0.6%), but their subsequent increase up to 47% 24 

after four days upon tDOM addition compared to 8% in control incubations indicates that they are 25 

likely capable of degrading permafrost derived DOM. Further, according to our experimental results 26 

we hypothesize that the tDOM addition increased bacterivorous grazing by small protists and thus 27 

tDOM might indirectly also effect higher trophic levels of the microbial food web. 28 

 29 

  30 
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Introduction: 31 

The Arctic is experiencing a warming at nearly twice the global rate, with drastic changes for the 32 

ecosystem (Trenberth et al. 2007; Screen and Simmonds 2010; Vincent 2010). Higher sea surface 33 

temperatures, melting sea ice and increased freshwater input from large Arctic rivers, transporting 34 

nutrients and terrestrial organic matter into the ocean, have multiple implications for the marine 35 

carbon cycle (Li et al., 2009; Doney et al., 2012; El-Swais et al., 2015; Fichot et al. 2013; Holmes et 36 

al., 2013). Higher temperatures are on the one hand responsible for a decreasing sea ice cover, which 37 

in turn may enhance primary production and thus the biological carbon pump (CO2 burial), but on the 38 

other hand could also increase the rate of bacterial degradation of phytoplankton derived dissolved 39 

organic matter (DOM) (CO2 production) (Wohlers et al., 2009). This bacterial transformation of 40 

phytoplankton derived DOM might lead to the accumulation of more complex humic-like organic 41 

matter via the microbial carbon pump (Jiao et al., 2010).  42 

In the Arctic, another source of DOM comes from permafrost soil organic matter and enters the 43 

Arctic Ocean via rivers (Feng et al., 2013; Holmes et al., 2012). Estimations show that mobilization 44 

of DOM has increased up to 6% from 1985 to 2004 (Feng et al., 2013) and will further increase 45 

under the current warming climate (Amon et al., 2012).Yearly, about 3,300 km
3
 of freshwater stream 46 

into the Arctic Ocean and influence stratification, light absorption, surface temperature, gas 47 

exchange, productivity and carbon sequestration (Rachold et al., 2004). This input is often 48 

characterized by a high dissolved organic carbon (DOC) concentration, reaching more than 1000 49 

µmol kg
-1

, compared to open ocean concentrations of around 80 µmol kg
-1

 (Dittmar and Kattner, 50 

2003; Hansell et al., 2009; Stedmon et al., 2011). The quality of the DOC has in some studies been 51 

described to be mainly refractory (Dittmar and Kattner, 2003; Opsahl et al., 1999; Xie et al., 2012), 52 

while other studies showed that up to 40% can be degrade within weeks up to months (Hansell, 2004; 53 

Holmes et al., 2008; Sipler et al., 2017b; Vonk et al., 2013). Thus, it is still disputed whether Arctic 54 

tDOM can represent an important carbon source for marine bacteria, leading to increased CO2 55 

production and how this may affect the marine trophic network via the microbial loop.  56 

Several studies have examined the ability of bacteria to degrade the seasonally available 57 

phytoplankton derived DOM and found that an increase of such carbon sources influences both the 58 

structure and the activity of the bacterial community (Pinhassi et al., 2004; Sapp et al., 2007; Teeling 59 

et al., 2012). Especially a versatile group of Gammaproteobacteria, belonging to the order 60 

Alteromonadales, responds immediately both in abundance and activity, when phytoplankton derived 61 

DOM becomes available (Beier et al., 2015; Eilers et al., 2000; McCarren et al., 2010; Pedler et al., 62 

2014; von Scheibner et al., 2017). Only few studies have investigated the effects of terrestrial derived 63 

DOM on marine microbial community structure and activity (Blanchet et al.; Herlemann et al., 2014, 64 

2017; Traving et al., 2017), of which even less have been conducted in the coastal Arctic (Sipler et 65 

al., 2017b). Common for all studies is an observed shift in bacterial community structure due to the 66 

addition of tDOM. There is a need to understand how this community shift might affect higher 67 

trophic levels in order to better understand climate change impacts on the marine Arctic ecosystem. 68 

A higher bacterial activity due to the degradation of tDOM might cause a higher turnover within the 69 

microbial loop and therewith increased CO2 production, but ultimately depends on the bacterial 70 

growth efficiency. Increased carbon availability might also enhance the competition between bacteria 71 

and phytoplankton for inorganic nutrients and indirectly disadvantage larger phytoplankton (Sipler et 72 
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al., 2017a; Thingstad et al., 2008). Thus, high tDOM input may decrease primary production in 73 

coastal Arctic areas. 74 

We here studied the impact of permafrost-derived DOM on an Arctic fjord microbial community 75 

using 16S rRNA amplicon sequencing and followed the changes over the course of a nine-day 76 

incubation experiment. We hypothesized that the increased organic matter input, as a consequence of 77 

increased run-off from land, would provide a potential source of organic matter for fjord microbial 78 

communities. If bioavailable, this tDOM will stimulate the growth of some fast-responding bacterial 79 

groups that were initially underrepresented and increase in abundance over time. In particular, we 80 

were interested in answering two questions 1) how tDOM might alter the fjord bacterial community 81 

composition and 2) how tDOM might affect the growth and size of bacteria and subsequently protist 82 

grazers. This study thus aims to improve our understanding of the implications of a warmer Arctic, 83 

influenced by increased run-off from land, on coastal microbial communities. 84 

 85 

 86 

  87 
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Material and Methods: 88 

Preparation of aged permafrost-derived tDOM stock solution 89 

Active layer permafrost soil from 50 cm depth, just above the frozen permafrost table, was sampled 90 

in Adventdalen, Svalbard (78.19 N, 15.89 E), and mixed with unfiltered water from the nearby 91 

Adventfjorden (1m depth) in the ratio 600g soil to 1L water. The mix was stored in the dark for 30 92 

days at 4°C to degrade the predominantly labile compounds, thus producing ‘aged tDOM’ as has 93 

been done in similar studies (Eiler et al., 2003). The rationale behind using an aged tDOM stock was 94 

to increase resemblance to the organic matter that reaches the coastal systems, as the most labile 95 

compounds will be degraded during its transportation from soil to coastal waters (Lobbes et al. 96 

2000). Before being added to tDOM incubations, the stock solution was filtered through 0.2 µm 97 

polycarbonate filters, ensuring that only dissolved organic matter was present in the tDOM stock 98 

solution. To test the character of DOM in the tDOM-solution relative to the control, the fluorescent 99 

properties were examined during an earlier analysis, performed in 2014. Here five fluorescence 100 

components (two humic-like and three amino-like) were described following the method explained in 101 

(Stedmon and Markager, 2005). The averaged intensity (given in Raman units) of these components 102 

are given in Table S1. The intensity of the humic-like substances was two-fold higher in the tDOM-103 

stock relative to the control (0.2µm filtered Atlantic water) and further one of the amino-like 104 

components was 100 times higher in the tDOM stock solution. Since we did not characterize the 105 

DOM composition at the end of the experiment, we cannot say what exact compounds were 106 

consumed or produced throughout our incubations. The rationale behind measuring the DOM 107 

components in the beginning was to ensure that more complex compounds were enriched in the 108 

tDOM-solution. The results strongly indicate that the character of the DOM was significantly 109 

different in the tDOM treatment compared to the control. 110 

Study site and experimental set-up 111 

Kongsfjorden is a 26 km long fjord, 6 to 14 km wide and includes two tidewater-glaciers, 112 

Kronebreen and Kongsvegen (Figure 1A). Water samples for incubations were collected on the 29
th

 113 

of June in 2015 from the centre of the fjord near Kings Bay (78.95°N, 11.93°E) at 40m depth (Figure 114 

1A). The water was filtered through pre-combusted GFC filters (1.2 µm) to reduce the presence of 115 

protist. The tDOM-stock solution had a carbon concentration of 190 µM DOC and was mixed in the 116 

ratio of 1:2.5 with fjord water (83 µM DOC) and aliquoted into eight 1L air-tight glass bottles 117 

(Figure 1B). Filtered (0.2 µm) fjord water was added in the same ratio to the eight control bottles. 118 

The final DOC concentration was 1.5 times higher in the tDOM treatment incubations (128 µM) than 119 

in the control incubations (83 µM). The elevated DOC concentration in the tDOM treatment reflects 120 

ranges of natural, elevated concentrations near the sample site in Kongsfjorden (Zhu et al., 2016). In 121 

total, we incubated 16 bottles, representing eight replicated starting conditions to investigate the 122 

effect of tDOM addition over time in comparison to eight controls. Incubations were kept dark at 2°C 123 

and terminated after 9 days. The responses in terms of bacterial community composition were 124 

documented in the treatment and control bottles at eight different time points spanning over nine days 125 

in total (0d, 0.5d, 1d, 2d, 3d, 4d, 5d, 9d; Figure 1B), by harvesting one of the eight bottles (ca. 1L), 126 

each from the tDOM treatment and control bottles, at every sampling occasion. Samples (6ml) for 127 
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measurements of bacterial abundance via flow-cytometry were collected as replicates according to 128 

the number of bottles remaining at each respective sampling point (e.g. 8 replicates at t0, 4 at d4 and 129 

1 at d9). Both bacterial abundance and community composition were also analyzed for the untreated 130 

40m fjord sample and 0.2 µm filtered tDOM-stock solution.  131 

 132 
 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

Figure 1: A) Study area in northwest Svalbard (78.95°N, 11.93°E) showing the sampling location in 

Kongsfjorden (red circle). B) Illustration of the experimental design showing that for both tDOM treatment and 

control eight bottles with the same starting condition were incubated for different periods (from 12 hours up to 

9 days). One bottle was harvested at each sampling point to analyse the bacterial community composition. 

Bacterial abundance was measured using flow cytometry for samples at the beginning of the experiment, 

including the fjord water (8.1 x 10
5
 mL

-1
), the 0.2 µm filtered fjord water (2.8 x 10

4
 mL

-1
) and the tDOM isolate 

(3.2 x 10
4
 mL

-1
) and over the course of the incubation in both treatment and control bottles (number of 

replicates was dependent on the number of remaining bottles). FW=fjord water; tDOM=solution of terrigenous 

dissolved organic matter from permafrost; DOC=dissolved organic carbon 
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Bacterial enumeration using flow cytometry 141 

 142 

The abundance of bacteria, virus and heterotrophic nanoflagellates (HNF) were determined on an 143 

Attune® Acoustic Focusing Flow Cytometer (Applied Biosystems by Life technologies) with a 144 

syringe-based fluidic system and a 20 mW 488 nm (blue) laser. Triplicate samples of 2ml were fixed 145 

with glutaraldehyde (0.5% final conc.) at 4°C for a minimum of 30 min, flash frozen in liquid 146 

nitrogen and stored at -80°C. Samples were first thawed and diluted x10 with 0.2 μm filtered TE 147 

buffer (Tris 10 mM, EDTA 1 mM, pH 8), stained with a green fluorescent nucleic acid dye (SYBR 148 

Green I ; Molecular Probes, Eugene, Oregon, USA) and then incubated for 10 min at 80°C in a water 149 

bath (Marie et al., 1999). Samples were counted at a low flow rate of 25 µL min
-1

 and a minimum 150 

volume of 100 µL. Bacteria were discriminated on a biparametric plot of green florescence (BL1) vs. 151 

red florescence (BL3).   152 

Additionally, these plots allowed to distinguish between low nuclear acid (LNA) and high nuclear 153 

acid (HNA) bacteria, virus, and a subgroup we here call ‘large bacteria’. Heterotrophic 154 

nanoflagellates (HNF) were measured at a high flow rate (500 µL min
-1

) according to (Zubkov et al., 155 

2007). Pico-and nano-sized phytoplankton were counted directly after thawing and the various 156 

groups discriminated based on their red fluorescence (BL3) vs. orange fluorescence (BL2) (Paulsen 157 

et al., 2016).  158 

 159 

DNA extraction, PCR amplification and amplicon sequencing 160 

The bacterial biomass for molecular analysis was collected by filtering ca. 1 L onto 0.22 µm 161 

Millipore® Sterivex filters (Merck-Millipore), which were flash frozen in liquid nitrogen and stored 162 

at -80°C. DNA and RNA were simultaneously extracted from the Sterivex filters using the AllPrep 163 

DNA/RNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. In this 164 

study, only RNA was used in order to investigate changes in the active community. Before PCR 165 

amplification, RNA was treated with the DNA-free DNA Removal kit (Invitrogen, CA, USA). 166 

Subsequently, 10 ng of DNA-free RNA was reverse transcribed using the SuperScript III First-Strand 167 

Synthesis System for RT-PCR (Invitrogen), according to the manufacturer’s instructions. 168 

Amplification of cDNA (reverse transcribed RNA) targeting the bacterial/archaeal 16S rRNA gene 169 

V4 hypervariable region was performed using a two-step nested PCR approach with primers 519F 170 

(CAGCMGCCGCGGTAA; Øvreås et al., (1997) and 806R (GGACTACHVGGGTWTCTAAT; 171 

Caporaso et al., (2011). In brief, the first PCR step was performed in triplicates. Samples were 172 

amplified, comprising 10 ng cDNA, 10 μL HotStarTaq Master Mix (Qiagen), 0.5 μM of each primer 173 

and nuclease-free water. PCR reaction conditions were as follows: initial denaturation of 15 min at 174 

95°C, followed by 25 cycles of 95°C for 20 s, 55°C for 30 s and 72°C for 30 s and a final extension 175 

step of 72°C for 7 min. After triplicate PCR products were pooled, the DNA Clean & Concentrator-5 176 

kit (Zymo Research Corporation, CA, USA) was used for purification. During the second PCR step, 177 

10 ng of pooled PCR product, 25 μL HotStarTaq Master Mix, 0.5 μM of each nested primer 178 

(containing a unique eight-nucleotide barcode) were mixed with nuclease-free water to a reaction 179 

volume of 50 µL. PCR reaction conditions were as follows: initial denaturation of 15 min at 95°C, 180 

followed by 15 cycles of 95°C for 20 s, 62°C for 30 s, 72°C for 30 s and a final extension step of 181 

72°C for 7 min. Final PCR products were purified using Agencourt AMPure XP Beads (Beckman 182 
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Coulter Inc., CA, USA) and pooled in equimolar amounts. Before sequencing, the quality and 183 

concentration of the amplicon pool were assessed by agarose gel electrophoresis and a Qubit 3.0 184 

Fluorometer, respectively. The final amplicon library was sequenced at the Norwegian Sequencing 185 

Centre (Oslo, Norway) using their MiSeq platform (MiSeq Reagent Kit v2, Illumina, CA, USA). All 186 

Illumina sequencing data is available at the European Nucleotide Archive (ENA) under study 187 

accession number PRJEB25031. 188 

16S rRNA gene sequence analysis 189 

Illumina Paired-end sequence data was processed using different bioinformatic tools incorporated on 190 

a QIIME-processing platform (Caporaso et al., 2011b). In short, FASTQ files were quality end-191 

trimmed at a phred quality score ≥ 24 using Trimmomatic (Bolger et al., 2014) and merged using 192 

PANDAseq (Masella et al., 2012), while all reads <200bp were removed. A total of 1,916,574 193 

sequences were retrieved across 18 samples and two sequencing controls. Those sequences were used 194 

to select prokaryotic OTUs at a sequence similarity threshold of 97% using a de novo uclust (Edgar, 195 

2010) OTU clustering method and taxonomy assigned using the Silva 111 reference database (Quast 196 

et al., 2013). After removal of singletons and unassigned OTUs, sequences were rarefied to 10,000 197 

reads per sample, with a total of 15,513 unique OTUs at 97% sequence identity. Rarefaction curves 198 

were calculated using QIIME’s alpha rarefaction script and showed that sequencing coverage was 199 

sufficiently high, as samples approached an asymptote. The phylogenetic data was then used to 200 

calculate relative abundance at different taxonomical levels. When combined with absolute bacterial 201 

abundance data from flow cytometer measurements, the absolute abundance of taxa can be 202 

calculated. For this the bacterial abundance in cells per ml is multiplied with the relative abundance 203 

of the taxa of interest. 204 

Indicator OTU analysis 205 

Calculations to identify indicator OTUs associated with the treatment of tDOM addition were 206 

performed using the “indicspecies” package (De Cáceres and Legendre, 2009) included in the 207 

statistical software R 3.2.3 (R Core Team 2012) and the script “otu_category_significance.py” within 208 

the QIIME-processing platform (Caporaso et al., 2011b). Both tools can be used to assess statistically 209 

significant differences between OTU abundances and defined groups. We defined groups according 210 

to the experimental strategy in tDOM treatment and control. The analysis included only samples after 211 

two days of the experiment when abundances of Pseudoalteromonas sequences, an artefact of the 212 

experimental set-up, were greatly reduced. 213 

Statistical analysis 214 

Correlations between bacterial abundance and community structure were calculated using the 215 

Pearson correlation coefficient (Pearson`s r) and were carried out using GraphPad Prism v 6.01 for 216 

Windows (GraphPad Software, CA, USA). 217 

 218 

 219 
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Calculations to estimate bacterial and HNF carbon turnover 220 

Calculations of carbon turnover are based on measurements of abundance and growth efficiency 221 

values for bacteria (B) and HNF (HNF) from literature. First carbon accumulation (CA) was calculated 222 

from the difference in cell abundance over time (ΔA) and values of fixed carbon content per cell for 223 

bacteria (0.02 pg C per cell; Lee and Fuhrman 1987) and HNF (3.8 pg C per cell; Børsheim and 224 

Bratbak 1987) from literature (1). The release of carbon as CO2 via respiration (R) is further 225 

calculated from the estimated CA values and expected growth efficiency of bacteria (10%; Kritzberg, 226 

Duarte, and Wassmann 2010; Middelboe, Glud, and Sejr 2012; Paulsen et al. 2017) and HNF (30%; 227 

Fenchel 1982) (2). 228 

CA𝐵[µg C] = ∆A𝐵 ∗ 2 ∗ 10−8µg C                                    CA𝐻𝑁𝐹[µg C] = ∆A𝐻𝑁𝐹 ∗ 3.8 ∗ 10−6µg C           (1)            229 

R𝐵[µg C𝐶𝑂2
] = (

BP𝐵

0.1
) ∗ 0.9                                                 R𝐻𝑁𝐹[µg C𝐶𝑂2

] = (
BP𝐻𝑁𝐹

0.3
) ∗ 0.7                        (2)   

 230 

  231 
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Results: 232 

tDOM effect on bacterial growth 233 

During the nine-day incubation period the bacterial net-growth was documented (Figure 2). The 234 

initial fjord water contained 8.13 x 10
5
 bacteria mL

-1
 and when mixed with either the aged tDOM-235 

solution (tDOM treatment) or 0.22 µm filtered fjord water (control), this concentration was diluted to 236 

an average abundance of 4.32 x 10
5
 or 4.19 x 10

5
 mL

-1
, respectively (Figure 2A). After a lag phase 237 

during the first 24 h, we observed net-growth in both treatment and control. The bacterial abundance 238 

(BA) increased at twice the rate in the tDOM treatment between day 1 and 4 and the BA was on 239 

average 24% higher in the tDOM treatment than in the control during the first 4 days. After day 5, a 240 

different pattern emerged. While bacteria continued to grow in the control incubations reaching 4.32 241 

x 10
6
 mL

-1
 by day 9, we observed a significant decline of 63% in BA from 1.76 x 10

6
 mL

-1
 (5d) to 242 

6.51 x 10
5
 mL

-1
 (9d) in the incubations with tDOM addition (Figure 2A). 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

Figure 2: Flow cytometer counts over the course of the experiment in cells mL
-1 

of A) total bacteria; B) low 

nucleic acid (LNA) containing bacteria; C) high nucleic acid (HNA) containing bacteria; D) a group of large 

bacteria; E) Virus; F) and heterotrophic nanoflagellates (HNF). Treatment incubations with added tDOM are 

illustrated as black circles and control incubations as open circles. The bacterial abundance of the untreated 

fjord sample and of the 0.2 µm filtered tDOM-stock solution is indicated as cross and triangle, respectively. 

The different lines represent the sample replicates, which declined over the course of the experiment depending 

on the number of remaining bottles (e.g. eight at t0, four at day 3 and one at day 9).  
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The group of total bacteria was divided into three subgroups, “LNA”, “HNA” and “large bacteria” 261 

within the HNA group, to investigate whether a specific group is connected to the increase or 262 

decrease in BA (Figure 2 B-F). The LNA group showed no differences in abundance between 263 

treatment and control over the nine days and stayed overall stable, ranging between 1.78 x 10
5
 and 264 

4.04 x 10
5
 mL

-1
 (Figure 2B). In contrary, the HNA group showed significant correlations (r=0.99; 265 

p<0.0001) with the increase in BA, including the same differences between treatment and control 266 

described earlier (Figure 2 C). At day 3 we observed a new group on the flow cytometer plots within 267 

the HNA group, which we here term “large bacteria” (Figure 3). This group was well-defined in 268 

tDOM treatments where it started with low values of 15 x 10
3
 mL

-1
 (day 2) and reached up to 1.36 x 269 

10
6
 mL

-1
 at day 5, thereby contributing to more than 77% of the BA (Figure 2 D).  270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

Virus abundance was on average one order of magnitude higher than bacteria ranging from 2.58 x 284 

10
6
 mL

-1
 to 1.56 x 10

7
 mL

-1
 and followed the changes observed for BA in both treatment and control 285 

(Figure 2 E). Due to the pre-filtration of the fjord water through 1.2 µm GFC filters, the abundance of 286 

small protists was substantially reduced from 600 mL
-1

 in the fjord water to 16±2 mL
-1

 in both 287 

treatment and control until day 6 (Figure 2 F). At day 9, the abundance of HNF reached 651 mL
-1

 in 288 

the incubation where tDOM was added, while it remained low in the control (47 mL
-1

). 289 

Picophytoplankton were additionally enumerated throughout the incubation period to confirm that 290 

autotrophic production did not contribute to the carbon pool. Abundances were reduced from 2,056 291 

mL
-1

 in fjord water to <100 mL
-1

 at the beginning of the experiment and remained low (<150 mL
-1

).  292 

 293 

Figure 3: Flow cytometer plots of measurements from day 2-9 showing the changes in bacterial abundance 

and the subgroups within, illustrating the increase in large bacteria in the tDOM treatment. HNA=High nucleic 

acid containing bacteria; LNA=Low nucleic acid containing bacteria  
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tDOM effect on community composition  294 

The fjord water used to set up the incubations was taken from 40m depth and was characterized as 295 

Atlantic water with a salinity of 34.6 and temperature of 4°C. The analysis of the untreated Atlantic 296 

water showed a high abundance of the phylum Proteobacteria (96.5%) (Figure 4A). 297 

Gammaproteopbacteria were dominating (±76.2%), followed by Alphaproteobacteria (±14.9%) and 298 

Betaproteobacteria (±3.0%). Due to the high diversity within the different Proteobacteria classes, 299 

40% of all sequences at genus level were categorized as “Other” (Figure 4A).    300 

 301 

 302 

 303 

 304 

 305 

Community composition at the beginning of the experiment was similar in the control and the tDOM 306 

treatment, with around 30-50% of the sequences resembling the in situ fjord community and all other 307 

sequences belonging to the genus Pseudoalteromonas. Sequences belonging to this genus, possibly 308 

introduced with the addition of 0.22 µm filtered tDOM solution and 0.22 µm filtered fjord water, 309 

Figure 4: A) A) Bacterial community composition derived from 16S rRNA sequencing data showing the 

relative abundance of the 20 most abundant taxa at genus level in the fjord sample from 40m depth and 

during the 9 days of incubation in the control and treatment incubations where tDOM was added. Taxa 

comprising <1% of the total number of sequences within a sample were summarized as “Other”. B) 

Calculated absolute abundance of the most abundant genera in control and treatment incubations, based on 

absolute bacterial abundance measured on the flow cytometer and phylogenetic relative abundance. 

 



  Bacterial response to tDOM input 

 
12 

This is a provisional file, not the final typeset article 

decreased within four days from up to 70% to 4% in the treatment and from 30% to 3% in the control 310 

incubations. With increasing incubation time, changes could be attributed to the increase of certain 311 

genera. We observed a substantial increase in relative abundance of Glaciecola, Marinomonas and 312 

Colwellia in the treatment experiments. In the control incubations, it was predominantly Colwellia 313 

that increased in relative abundance and to a lesser extend Glaciecola, Marinomonas and 314 

Psychromonas. Glaciecola increased from 1.5% to 47.1% on day 5 in the incubations where tDOM 315 

was added, while the abundance in the controls increased only up to 7.9%. A Simper analysis showed 316 

in agreement, that predominantly the changes in Glaciecola relative abundance contributed, with up 317 

to 40% (at day 4), for the differences caused by the tDOM addition.  318 

We analyzed the effect of tDOM addition on the community structure by combining the relative 319 

abundance of bacterial community composition and absolute abundance of bacterial counts obtained 320 

from sequencing data and flow cytometer counts, respectively (Figure 4B). Using this estimation of 321 

absolute species abundance, the Glaciecola abundance increased two-fold within the first 12 hours 322 

and 138-fold after 4 days relative to the beginning (Figure 4B). At day 4, Glaciecola abundance was 323 

90.6% higher in tDOM treatment incubations than in control incubations. The abundance of 324 

Marinomonas increased 92-fold after 5 days and was up to 93.8% higher in incubations with added 325 

tDOM than in controls (Figure 4B). Both genera, Glaciecola and Marinomonas, showed significant 326 

(p=0.006 and p=0.018) responses due to the addition of tDOM. Only in the tDOM treatment 327 

incubations Glaciecola abundance significantly correlated (r=0.77; p=0.03) with the abundance of 328 

large bacteria (Figure S1). In the control incubations it was only Colwellia abundance that correlated 329 

significantly (r=0.83; p=0.01) with the abundance of large bacteria. This genus however showed no 330 

significant difference in abundance between treatment and control. In the first days until day 3, the 331 

abundance was up to three times higher in the tDOM treatment than the control. This changed on day 332 

4, when abundance in the control incubation was twice as high as in the treatment.  333 

The observed changes for the different genera are based on cumulative abundances of several OTUs 334 

which were taxonomically assigned to these genera and grouped accordingly. In order to identify 335 

whether all or just some OTUs within each genus are causing the observed changes between 336 

treatment and controls, we performed an indicator OTU analysis (Figure 5). This analysis identified 337 

the OTUs that significantly contributed to the differences between tDOM treatment and control. Out 338 

of the 20 most significant OTUs, seven were significantly more abundant in incubations with tDOM 339 

addition and thirteen OTUs had a significant higher abundance in control incubations. 340 

Taxonomically, the great majority of OTUs (19/20) belonged to the class of Gammaproteobacteria 341 

and within that class to genera including Glaciecola, Marinomonas, Colwellia, Balneatrix, SAR92 342 

and Psychromonas. The overall most abundant OTU (33%) belonged to the genus Glaciecola and 343 

was at day 3 seven times more abundant in the tDOM treatment than the control incubations. Of all 344 

genera, Glaciecola was the genus with the highest number of OTUs (85%) that were positively 345 

associated with incubations where tDOM was added. Other genera, like Colwellia, with an overall 346 

high abundance had a more equal distribution of OTUs, which were higher in abundance in either 347 

treatment or control. 66% of Colwellia OTUs were significantly more abundant in control 348 

incubations and 33% more abundant in treatment incubations.  349 
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 350 

 351 

 352 

 353 

Discussion: 354 

Climate model predictions suggest a 30% increase of terrestrial run-off into the Arctic Ocean by the 355 

end of the century (Lehner et al., 2012). The tDOM in this run-off is originating from thawing Arctic 356 

soil and is modified during the transport into the Arctic Ocean (Serreze et al. 2000; Lobbes et al. 357 

2000; Fichot et al. 2013; Feng et al. 2013; Holmes et al., 2013). It is uncertain how this will affect the 358 

marine microbial life and in particular the coastal communities. Our results indicated increased 359 

bacterial abundance (Figure 2), enlarged cell sizes (Figure 3) and changes in the community 360 

composition (Figure 4) as an immediate (within 3 days) response to tDOM addition. Together, this 361 

suggests that in the future the activity, the physiology and the structure of the fjord microbial 362 

community might be affected by increased tDOM rich run-off. 363 

In situ microbial community composition 364 

Environmental conditions in the Arctic are highly affected by seasonality. In accordance, seasonal 365 

changes in microbial community composition have been reported for different parts of the Arctic 366 

Figure 5: A) The 20 most significant OTUs, identified by an indicator OTU analysis, contributing to the 

differences in community composition between control and treatment incubations. Relative abundance 

differences are visualized as two-fold change from day1 until day 9. B) Relative abundance (average values 

from d1 - d9) of the 20 most significant indicator OTUs visualized in the same order as in (A).  
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Oceans, i.e. the increase of Gammaproteobacteria, in association to phytoplankton bloom dynamics 367 

and increased concentrations of dissolved organic matter, in the summer months (Alonso-Sáez et al., 368 

2008; Buchan et al., 2014; El-Swais et al., 2015; Wilson et al., 2017). The fjord water used for our 369 

incubation experiments, taken in June, was indicative for a post-bloom situation, with high relative 370 

abundance of the phylum Proteobacteria (96.5%) and in particular the class Gammaproteobacteria, 371 

with up to 76.1% of all proteobacterial reads (Figure 4), similar to reports from other studies (Piquet 372 

et al., 2010; Zeng et al., 2013). The largest contributor was the genus Balneatrix (30.9%), known to 373 

be associated with phytoplankton blooms and observed in other Arctic fjords (Nikrad et al., 2014; 374 

Paulsen et al., 2017). Other dominant taxa within the Gammaproteobacteria, such as SAR92 (10%) 375 

and OM182 (13%), are commonly associated with rather oligotrophic conditions (Cho and 376 

Giovannoni, 2004). Surprisingly, Bacteroidetes, commonly found in summer coastal Arctic 377 

communities, comprised only 0.3% in our samples (Nikrad et al., 2012; Sipler et al., 2017b). The low 378 

abundance of Betaproteobacteria, which comprised, with up to 3%, only a small proportion of all 379 

proteobacterial reads is characteristic for Atlantic water masses (Cottrell and Kirchman, 2003; 380 

Garneau et al., 2006).  381 

tDOM addition induced changes in bacterial community composition 382 

The large initial relative abundance of Pseudoalteromonas was likely an experimental artifact and 383 

rapidly decreased in abundance under both experimental conditions. Changes in community 384 

composition due to tDOM addition were already measurable after 12 hours of incubation, for 385 

example the doubling of Glaciecola relative abundance (Figure 4). Glaciecola also increased in 386 

abundance in control incubations (4171% increase from t0 until d4), confirming both that this taxa is 387 

part of the in situ microbial community and able to grow using in situ carbon sources. The fact that 388 

Glaciecola grew faster and to a higher abundance in the treatment incubations (10781% increase 389 

from t0 until d4) indicates that this genus has the potential to degrade the introduced complex tDOM 390 

compounds. Other growth experiments with Glaciecola revealed both general phylotypes, capable of 391 

degrading a broad range of carbon compounds and specialized phylotypes, capable of degrading only 392 

specific carbon sources (Gómez-Consarnau et al., 2012).  393 

Besides Glaciecola, Marinomonas and Colwellia, two taxa known to degrade complex organic 394 

matter, also increased in abundance in the tDOM treatment incubations. Marinomonas and Colwellia 395 

had, similar to Glaciecola, low starting abundances and increased in both treatment and control 396 

incubations, with a stronger response under tDOM addition. It has been shown that a member of the 397 

genus Marinomonas is capable of catalyzing ring cleavage of aromatic compounds and correlates 398 

with lignocellulosic carbon uptake (Chandra et al., 2015; Gontikaki et al., 2015). Also Colwellia has 399 

been considered to produce extracellular enzymes for the breakdown of high molecular-weight 400 

organic compounds (Huston et al., 2004; Methé et al., 2005). Glaciecola and Colwellia have also 401 

recently been shown to increase in abundance under presence of tDOM derived from Arctic rivers 402 

(Sipler et al. 2017). Interestingly, it was a different Glaciecola OTU that was dominating in their 403 

dataset. This OTU was also found in our data set, but is only one of the least abundant Glaciecola 404 

OTUs. It remains unclear whether this difference is caused by substrate specificity or simply which 405 

OTU is most abundant at in situ conditions. Sipler and colleagues used seven times higher DOC 406 
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concentrations (400-500 µM) than in their control to stimulate a community response, while the DOC 407 

concentrations (128 µM) in our study were only 1.5 times higher than in the control incubations. 408 

Pulses of tDOM released via Arctic rivers can reach the DOC concentrations used by Sipler and 409 

colleagues (Benner et al., 2005), but at our sampling site in Kongsfjorden the DOC concentration is 410 

on average 109 µM (Zhu et al., 2016). Despite the relatively small increase in tDOM concentration in 411 

our study, we here stimulated faster growth of certain taxa than the change reported by Sipler and 412 

colleagues. This might be due to fact that our incubations were conducted in the dark and therefore 413 

inhibited phototrophic processes.  414 

OTU specific response to tDOM addition and “the bottle effect” 415 

We detected a significantly stronger increase of the genera Glaciecola and Marinomonas in 416 

incubations where we added tDOM compared to control incubations. The other genus found to 417 

increase, Colwellia, showed no significant difference between treatment and control. This is reflected 418 

in the differential response we observed at the taxonomic level of OTUs (Figure 5). Several OTUs 419 

were positively affected by tDOM addition and became more abundant during incubation, whereas 420 

other OTUs of the same genus decreased upon tDOM addition (Figure 5). This non-coherent 421 

tendency was found for all genera and indicates that strains within the same genus might have 422 

different functional roles.  423 

We compared changes in relative OTU abundance between treatment and control to differentiate 424 

between potential effects due to the tDOM input and effects caused by the experimental set-up, the so 425 

called “bottle effects”. The increase of a number of Colwellia OTUs was similar in both control and 426 

treatment incubations and is therefore likely to be attributed to the bottle effect, which is a well 427 

known inherent concern in incubations studies (Lee and Fuhrman, 1991; Massana et al., 2001; 428 

Stewart et al., 2012). Several studies have suggested a combination of factors, including biofilm 429 

formation and the binding of nutrients, cells or carbon to the surface of the incubation container, as 430 

potential cause of bottle effects (Eilers et al., 2000; Fletcher, 1996; Fogg and Calvario-Martinez, 431 

1989). It appears that the bottle effect predominantly leads to an increase in Gammaproteobacteria 432 

taxa, as documented in our and other studies (Dinasquet et al., 2013; Eilers et al., 2000; Herlemann et 433 

al., 2014; Stewart et al., 2012). While the bottle effect in the study from Stewart and colleagues and 434 

in our study can be attributed to an increase in Colwelliaceae, different families, such as 435 

Moraxellaceae (Herlemann et al., 2014), Pseudoalteromonadaceae (Dinasquet et al., 2013) or 436 

Oceanospirillaceae (Sipler et al., 2017b) were affected in other studies. This suggests that several 437 

different types of Gammaproteobacteria can benefit from a bottle effect and that the starting 438 

community composition might be the determining factor.  439 

tDOM effects on the coastal microbial food web 440 

The increase of Gammaproteobacteria, in particular of taxa belonging to the order Alteromonadales, 441 

including Glaciecola and Colwellia, has also been observed during marine phytoplankton spring 442 

blooms in lower latitudes (Tada et al., 2011; Teeling et al., 2012) and in the Arctic Ocean (Bano and 443 

Hollibaugh, 2002; Wilson et al., 2017). This suggests that they can rapidly proliferate in response to 444 

new carbon sources, including phytoplankton-derived organic carbon or tDOM as indicated in our 445 
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study. A strong grazing pressure by bacterivorous protists has been shown to particularly affect 446 

Gammaproteobacteria of the order Alteromonadales (Allers et al., 2007; Beardsley et al., 2003). 447 

These studies demonstrated selective grazing on large metabolically active bacteria by heterotrophic 448 

flagellate grazers. Size-selective predator-prey interactions have also been shown for Glaciecola, that 449 

first became abundant upon rapid utilization of phytoplankton derived DOM and subsequently 450 

declined in their abundance due to grazing (von Scheibner et al., 2017). It was suggested that once 451 

abundant, Glaciecola became a target for size selective predation by protists, including heterotrophic 452 

nanoflagellates (HNF) due to their above-average cell size.  453 

We also observed an increase in Glaciecola abundance upon tDOM addition, which correlated with 454 

the appearance of above-average large bacteria measured via flow cytometry (Figure 3 and Figure 455 

S1). Towards the end of the experiment, Glaciecola abundance declined by 84%, while at the same 456 

time the abundance of HNF increased substantially (from 32 to 651 cells mL
-1

). Interestingly, in the 457 

control incubations, where Glaciecola abundance stayed low, HNF abundance remained unchanged 458 

at a low level and did not increase towards the end. This suggests that after Glaciecola, fueled by the 459 

tDOM addition, increased in abundance, size-selective HNF caused the decline in Glaciecola 460 

abundance. The specific predator-prey relation between Glaciecola and HNF might be an important 461 

link in the microbial food web of Arctic fjord systems, with cascading effects on higher trophic 462 

levels, including ciliates, copepods and up to the top level predators.  463 

This link has also consequences for the coastal carbon budget. We calculated carbon turnover 464 

assuming a bacterial biomass of 0.02 pg per cell (Lee and Fuhrman, 1987) and a 10% growth 465 

efficiency for bacteria (Kritzberg et al., 2010; Middelboe et al., 2012; Paulsen et al., 2017). From day 466 

2 to 4, bacterial growth resulted in the release of 188 µg C-CO2 L
-1

 in the tDOM treatment compared 467 

to 41 µg C-CO2 L
-1

 in the control. Based on these calculations, 30% of the added tDOM was already 468 

processed by the bacteria within 4 days. Since the increase in bacterial abundance after day 4 in the 469 

control incubations most likely was caused by the bottle effect, carbon turnover for the later period 470 

was not considered as representative for an in situ fjord community carbon turnover. The grazing and 471 

subsequent growth of HNF in the tDOM treatment caused a further transition of the bacterial 472 

biomass. The carbon turnover by HNF was calculated assuming a biomass of 3.8 pg (Borsheim and 473 

Bratbak, 1987) and 30% growth efficiency for HNF (Fenchel, 1982). The increase of HNF from day 474 

5 to day 9 resulted in the incorporation of 2 µg C L
-1

 as biomass and an additional release of 6 µg C-475 

CO2 L
-1

. Both the initial growth of Glaciecola and the subsequent grazing by HNF will thus affect 476 

the carbon turnover in Arctic coastal ecosystems with increased tDOM inputs. Based on our study 477 

design, we cannot fully predict such effects, but we can document that the addition of tDOM affected 478 

not only bacteria, but indirectly also the organisms grazing on bacteria. To our knowledge we here 479 

provide the first results on the effects of permafrost-derived tDOM input on fjord microbial 480 

communities and to understand the interactions at higher trophic levels, it is necessary to conduct 481 

further experiments with tDOM additions at larger scales, including more members of the marine 482 

food web.   483 

  484 
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 505 

Supplementary:  506 

Table S1: The averaged ± SD (n=8) fluorescent intensity (Raman units) of five fluorescence components of 507 

the tDOM-solution and control (0.2 filtered fjord water) illustrated in Figure S2.  C1 and C3 are characterized 508 

as humic-like fluorescent components and C2, C4 and C5 are characterized as amino-like fluorescent 509 

components as in (Stedmon and Markager, 2005). 510 

  

tDOM  Control  

  

Avg. SD Avg. SD 

Humic C1 0.111 0.004 0.051 0.003 

Humic C3 0.064 0.001 0.028 0.002 

Amino C2 0.081 0.010 0.071 0.004 

Amino C4 0.104 0.007 0.001 0.000 

Amino C5 0.052 0.024 0.063 0.012 

 511 
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 512 

 513 

Figure S1: Relative abundance of Glaciecola and Colwellia from sequencing data plotted against the 514 

abundance of large bacteria obtained from flow cytometry for both control and tDOM treatment incubations. 515 

Black asterisk indicates significant correlation between relative abundance and large bacteria.   516 

  517 

Figure S2: The contour plots show the spectral characteristics of each of the five fluorescence components 1–518 

5 (C1-C5). C1 and C3 are characterized as humic-like fluorescent components and C2, C4 and C5 are 519 

characterized as amino-like fluorescent components as in (Stedmon and Markager, 2005). 520 

 521 
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As the global climate changes, the higher latitudes are seen to be warming significantly

faster. It is likely that the Arctic biome will experience considerable shifts in ice melt

season length, leading to changes in photoirradiance and in the freshwater inputs

to the marine environment. The exchange of nutrients between Arctic surface and

deep waters and their cycling throughout the water column is driven by seasonal

change. The impacts, however, of the current global climate transition period on the

biodiversity of the Arctic Ocean and its activity are not yet known. To determine

seasonal variation in the microbial communities in the deep water column, samples were

collected from a profile (1-1000 m depth) in the waters around the Svalbard archipelago

throughout an annual cycle encompassing both the polar night and day. High-throughput

sequencing of 16S rRNA gene amplicons was used to monitor prokaryote diversity. In

epipelagic surface waters (<200 m depth), seasonal diversity varied significantly, with

light and the corresponding annual phytoplankton bloom pattern being the primary

drivers of change during the late spring and summer months. In the permanently dark

mesopelagic ocean depths (>200 m), seasonality subsequently had much less effect on

community composition. In summer, phytoplankton-associated Gammaproteobacteria

and Flavobacteriia dominated surface waters, whilst in low light conditions (surface

waters in winter months and deeper waters all year round), the Thaumarchaeota and

Chloroflexi-type SAR202 predominated. Alpha-diversity generally increased in epipelagic

waters as seasonal light availability decreased; OTU richness also consistently increased

down through the water column, with the deepest darkest waters containing the greatest

diversity. Beta-diversity analyses confirmed that seasonality and depth also primarily

drove community composition. The relative abundance of the eleven predominant taxa

showed significant changes in surface waters in summer months and varied with season

depending on the phytoplankton bloom stage; corresponding populations in deeper

waters however, remained relatively unchanged. Given the significance of the annual

phytoplankton bloom pattern on prokaryote diversity in Arctic waters, any changes to

bloom dynamics resulting from accelerated global warming will likely have major impacts

on surface marine microbial communities, those impacts inevitably trickling down into

deeper waters.

Keywords: Arctic,marinemicrobiology, seasonality, nutrient cycling, depth, climate change, phytoplankton bloom,

mesopelagic
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1. INTRODUCTION

Polar regions are vulnerable and most sensitive to global climate
change. Therefore, there is an increasing research focus needed
on these high latitude environments. During the annual cycle, the
poles undergo some of the most extreme environmental changes
on the planet, from that of the subzero permanently dark winter
to the relative warmth and perpetual daylight of the summer.
The extensive biodiversity of these regions is understandably
well-adapted to these periodic shifts but accelerated atmospheric
warming is irrefutably altering conditions here and therefore
needs to be studied in detail. The Arctic is warming three times
faster than the global mean warming rate (Trenberth et al., 2007)
and the extent and thickness of sea ice in the polar oceans is
steadily decreasing (Chen et al., 2009), at a rate of up to ten
percent per year (Comiso et al., 2008). Recent decades have
also seen the summer melt season increase in length (Markus
et al., 2009) and the percentage of thin first-year ice increase as
compared with thicker multiyear ice (MYI) (Comiso, 2012), such
that the late summer Arctic Ocean may be ice-free before the end
of the twenty-first century (Boe et al., 2009) or sooner still (Kerr,
2012). Some of these striking environmental changes occurring
in the Arctic are related to the inflow of Atlantic water to the
Arctic Ocean. TheWest Spitsbergen Current passing through the
eastern Fram Strait is the most significant inflow to the Arctic
Ocean and it has intensified over the last decades (Schauer et al.,
2004). Increased inflow of the warm and highly saline Atlantic
Water affects water column stability and is also probably one
of the main drivers of the recent sea ice loss north of Svalbard
(Onarheim et al., 2014; Randelhoff et al., 2015). The cumulative
consequence of these effects has been the exposure of polar seas
to increasing levels of solar radiation (Perovich et al., 2007).
Furthermore, enhanced permafrost thawing (Romanovsky et al.,
2010) in concert with the profound influence of several large
river systems (an hydrology peculiar to the Arctic) (Anderson,
2002) and a greater erosion of exposed coastlines (Lantuit et al.,
2012), is leading to an increased terrigenous input of carbon
to the Arctic Ocean (Frey and McClelland, 2009). All of which
has the potential to radically impact the primary production
and successive trophic levels of the polar marine environment
(Anderson and Macdonald, 2015).

The greater part of high latitude research has been carried
out in the Arctic (predominantly due to the relative logistical
ease of working in the region when compared with Antarctica)
and the Svalbard archipelago in particular has become a
key site for Arctic marine studies, particularly with regards
to its being the confluence of both the Arctic and Atlantic
Oceans (Hop et al., 2002, 2006; Svendsen et al., 2002). The
ocean around the Western coastline of Svalbard is a sea ice-
associated pelagic ecosystem (Svendsen et al., 2002) and as
with other high latitude locations, seasonal variations in light
(and thus in primary production) are more pronounced here
than elsewhere. The extreme seasonality of these environmental
drivers has revealed a number of trends particular to the polar
regions. A single major spring bloom along the retreating ice
edge accounts for >50% of the annual primary production
around Svalbard and in the Northern Barents Sea (Sakshaug,

2004). By late summer, this develops into a successional post-
bloom stage, comprising different phytoplankton populations
(Sherr et al., 2003) and it follows, their different associated
successional heterotrophic prokaryote consortia, in particular
the Flavobacteriia and Gammaproteobacteria classes (Alonso-
Sáez et al., 2008; Teeling et al., 2012). This phenomenon of
the polar phytoplankton blooms (Williams et al., 2013) followed
by the heterotrophic bacterial populations also seemingly drives
the annual disappearance of the chemolithoautotrophic marine
Archaea from surface waters (Kalanetra et al., 2009; Alonso-
Sáez et al., 2012; Pedneault et al., 2014) and the subsequent
seasonal fluctuations in prokaryote diversity (Murray et al., 1998;
Ghiglione and Murray, 2012; Grzymski et al., 2012; Ladau et al.,
2013).

A significant fraction of the phytoplankton primary
production sinks out of these surface waters (Reigstad et al.,
2008), contributing a single annual major input of organic
carbon and energy to the microbial communities residing
in dark mesopelagic and deep waters. This subsurface realm
dominates the global ocean biome and whereas the Arctic
Ocean is the shallowest of the five major oceanic divisions,
still its average depth is >1000 m deep. These aphotic zones
are characterized by higher pressures, lower temperatures and
higher inorganic nutrient concentrations than the photic surface
waters above (Arístegui et al., 2009; Orcutt et al., 2011). Yet it is
these physicochemical factors, in addition to their remoteness
from the surface wind effects and solar irradiation that affect
the upper layers so, that also determines their characteristic
stability (Orcutt et al., 2011). The waters at these depths contain
the largest pool of microbes in aquatic systems (Whitman
et al., 1998) and play a major role in ocean biogeochemistry,
comprising extraordinarily high genetic and metabolic diversity
(Arístegui et al., 2009). The marine snow (primarily dissolved
and particulate organic matter) produced by the spring and
summer phytoplankton blooms in the stratified epipelagic
zone is transported down during winter into the mesopelagic
zone by convective mixing and subduction after cooling of
the sea surface (Arístegui et al., 2009; Grzymski et al., 2012).
Chemolithoautotrophic processes (such as archaeal ammonia
oxidation) then come into play during the dark winter months
(Grzymski et al., 2012) and the resulting nitrate buildup fuels
the subsequent phytoplankton spring bloom (Connelly et al.,
2014). However, should suggested models of a freshening Arctic
be correct (Comeau et al., 2011), surface Arctic basin waters
in a warming world may become increasingly stratified, such
that the vertical flux of nutrients between deeper waters and the
epipelagic zone may be reduced; primary productivity would
consequently be lessened and this annual biogeochemical cycle,
so essential for Arctic Ocean productivity, would inevitably be
disrupted (Tremblay et al., 2008).

As the majority of Arctic studies of marine microbial
communities have either been carried out in the more amenable
spring and summer seasons or in shallow waters, the primary
objective of the present study was to expand upon these data.
More specifically, we wished to identify the key mediators of the
prokaryotic microbial community in the Atlantic water inflow to
the Arctic Ocean during the light-driven summers vs. the dark
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winter night, seasons characterized by the massive variation in
availability of fresh photosynthesis-derived carbon. Additionally,
we intended to compare the cold, deep and dark mesopelagic
ocean with the cold, shallow and dark surface waters above, to
gain more insight into the driving mechanisms resulting from
such environmental conditions. High-throughput sequencing
technologies have previously highlighted the extreme microbial
seasonality of the polar regions (Kirchman et al., 2010; Christman
et al., 2011; Connelly et al., 2014). In this study we implement
the same technologies to sequence reverse-transcribed total RNA
(with its significantly shorter life span than DNA) to provide a
timely snapshot of the more metabolically-active fraction of the
marine microbial community.

2. MATERIALS AND EXPERIMENTAL
METHODS

2.1. Sampling
Samples were taken from various transects bisecting the West
Spitsbergen Current along the coast of Svalbard, a Norwegian
archipelago in the Arctic Ocean (Figure 1) from the research
vessels RV Lance and RV Helmer Hanssen, operating under
either the MicroPolar and Carbon Bridge projects (Table 1).
Samples (25–50 L) representative of the water column profile
were collected from a range of water masses (defined in Paulsen
et al., 2016) between 1m and 1000 m (Table 1) using Niskin
bottles mounted on a rosette deployed from the vessels. Water
samples were filtered through 0.22µm Sterivex Filter Units
(Merck-Millipore, MA, USA) via a peristaltic pump and frozen
at−80◦C immediately.

2.2. Chlorophyll a Measurement
The concentration of chlorophyll (chl) a was determined
fluorometrically (Parson et al., 1984). Sample water was filtered
onto triplicate Whatman GF/F glass-fiber filters (Sigma-Aldrich,
MO, USA). The chl a on the filters was immediately extracted
in 5 mL methanol (>99.8% v/v) at 4◦C in the dark for 12 h
without grinding. The fluorescence of the extracts was measured
with a fluorometer (Model 10-AU, Turner Designs, CA, USA),
calibrated with pure chl a (Sigma-Aldrich).

2.3. RNA Extraction
RNA were extracted directly from filters with the AllPrep
DNA/RNA Mini Kit (Qiagen, CA, USA) using a protocol
modified from the manufacturer’s instructions. Briefly, filters
were thawed on ice and an extraction buffer (comprising
990µL Buffer RLT Plus and 10µL β-mercaptoethanol per filter)
prepared. Extraction buffer (1 mL) was added to each filter and
filters vortexed vertically for 2 min, inverted and vortexed for
a further 2 min. Lysate was removed from the filter using a 10
mL syringe and transferred to a 1.5 mL microfuge tube. Lysate
(700µL) was loaded on to an AllPrep DNA spin column and
centrifuged for 30 s at 8000 × g, saving the flow-through for
subsequent RNA extraction. Centrifugation steps were repeated
for any remaining lysate volume, as necessary.

One volume 70% (v/v) ethanol was added to the flow-through,
mixed by pipetting and 700µL transferred to an RNeasy spin

column in a 2 mL microfuge tube, before centrifugation for
15 s at 8000 × g. Centrifugation was repeated for the remaining
liquid volume as necessary, discarding the flow-through each
time. Buffer RW1 (700µL) was added to the RNeasy spin column
and the tube centrifuged again for 15 s at 8000 × g and the
flow-through discarded. Buffer RPE (500µL) was added to the
RNeasy spin column and the tube centrifuged for 15 s at 8000× g,
discarding the flow-through. Buffer RPE (500µL) was again
added to the RNeasy spin column and the tube centrifuged for
2 min at 8000 × g. The RNeasy spin column was placed in
a fresh 2mL microfuge tube and centrifuged for 1 min at full
speed. The RNeasy spin column was placed in a fresh 1.5 mL
microfuge tube and 50µL RNase-free water added to the spin
column, before centrifugation for 1 min at 8000 × g. RNase-
free water (50µL) was added to the spin column again and
the centrifugation repeated. The eluate (100µL) was stored at
−20◦C.

The quantity and quality of RNA were assessed using a Qubit
3.0 Fluorometer (Thermo Fisher Scientific Inc., MA, USA) and
by agarose gel electrophoresis.

2.4. Reverse Transcription and PCR for
High-Throughput Sequencing (HTS) Library
Construction
RNA (10 ng) was treated with the DNA-free DNA Removal
kit (Invitrogen, CA, USA), prior to reverse transcription using
the SuperScript III First-Strand Synthesis System for RT-PCR
(Invitrogen), as per the manufacturer’s instructions. The V4
region of the 16S rRNA gene was amplified from cDNA
using a two-step nested PCR approach. In the first step,
triplicate samples were amplified using primers 519F (5′-
CAGCMGCCGCGGTAA-3′) (Øvreås et al., 1997) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) (Caporaso et al., 2011).
The reaction mixture consisted of 10µL HotStarTaq Master Mix
(Qiagen), 500 nM of each primer, 10 ng of cDNA and nuclease-
free water to bring the total volume to 20µL. Reactions were
initially denatured for 15 min at 95◦C, followed by 25 cycles of
denaturation at 95◦C for 20 s, primer annealing at 55◦C for 30 s
and extension at 72◦C for 30 s, followed by a final extension step
of 72◦C for 7 min. Triplicate amplicons were pooled and purified
using the DNA Clean & Concentrator-5 kit (Zymo Research
Corporation, CA, USA), as per the manufacturer’s instructions,
and quantified using a Qubit 3.0 Fluorometer.

In the second step, pooled amplicons were amplified by
nested PCR using MID-tagged primers 519F and 806R in a
reaction mixture comprising 25µL HotStarTaq Master Mix,
500 nM of each primer, 50 ng of pooled DNA, and nuclease-
free water to bring the total volume to 50µL. Reactions were
initially denatured for 15 min at 95◦C, followed by 15 cycles
of denaturation at 95◦C for 20 s, primer annealing at 62◦C for
30 s and extension at 72◦C for 30 s. This was followed by a
final extension step of 72◦C for 7 min. The quantity and quality
of RNA was assessed by agarose gel electrophoresis. Amplicons
were purified using Agencourt AMPure XP Beads (Beckman
Coulter Inc., CA, USA) and quantified again using a Qubit 3.0
Fluorometer and by agarose gel electrophoresis. MID-tagged
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FIGURE 1 | Map showing sampling locations and sea ice extent around the Svalbard Archipelago. Maps were generated using the Global Self-consistent

Hierarchical High-resolution Geography (GSHHG) data from the National Geospatial-Intelligence Agency (NGA), distributed under the GNU Lesser General Public

License (LGPL). Ice data were provided by the Norwegian Ice Service (MET Norway) for the following dates; January 10, March 7, May 23, August 12, and November

7, 2014.
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amplicons were then pooled in equimolar amounts for library
construction.

Libraries were sent to the Norwegian Sequencing Centre
(Oslo, Norway) for HTS on a MiSeq platform (Illumina, CA,
USA) using the MiSeq Reagent Kit v2 (Illumina).

2.5. Bioinformatic Analyses
16S rRNA gene sequences were processed using a custom
BioPython (Cock et al., 2009) script incorporating various
bioinformatic tools, along with the QIIME pipeline (Version
1.8.0) (Caporaso et al., 2010b). Briefly, FASTQ files were quality
end-trimmed at a phred quality score ≥20 using Sickle (Version
1.33) (Joshi and Fass, 2011) and PhiX contaminants and adapters
removed using Bowtie 2 (Langmead and Salzberg, 2012) and
cutadapt (Martin, 2011), respectively. Paired-end reads were
merged using PANDAseq (Masella et al., 2012) and all reads <200
bp removed. The remaining sequence reads were checked for
chimeras with the identify chimeric seqs and filter fasta scripts in
QIIME, using usearch61 (Edgar, 2010) and the ChimeraSlayer
(Haas et al., 2011) reference database (Gold.fa) found in
the Broad Microbiome Utilities suite (http://microbiomeutil.
sourceforge.net/). The pick de novo otus script in QIIME (using
default parameters) was used for de novo OTU picking (using
uclust (Edgar, 2010) and a sequence similarity threshold of
97%), taxonomy assignment (using PyNAST, Caporaso et al.,
2010a) at 90% sequence similarity against the Greengenes core
reference alignment database (Release 13_8) (DeSantis et al.,
2006), and finally, the assembly of a table of OTU abundances
with taxonomic identifiers for each OTU. OTUs were grouped by
different taxonomic levels using the summarize taxa and plot taxa
summary QIIME scripts. Rarefaction curves and Chao1 values
were calculated using QIIME’s alpha rarefaction script, whilst
principal coordinate analysis plots used the beta diversity through
plots script. All statistical figures were produced using the R
Software Environment (R Core Team, 2013). High-throughput
sequencing data were submitted to the European Nucleotide
Archive (ENA) under Accession Number PRJEB19605.

3. RESULTS

3.1. Environmental Data
The dataset comprised fifty two samples in total, with the
numbers of samples taken on each cruise (Table 1) varying with
prevailing conditions and ship access time. Summer and winter
conditions in the Arctic Ocean around Svalbard are very different
(Figure 1) and much of the archipelago is ice-bound during the
year, with the dark polar night persisting for almost threemonths.
The study area (Table 1) is hydrographically characterized by
Atlantic water masses, either as pure Atlantic water [AW; T
(temperature) > 2◦C and S (salinity) > 34.92; (Walczowski, 2013)
and references therein], or as modified colder water masses, such
as cold Atlantic Water (cAW) with 0 < T < 2◦C (S > 34.9)
and Intermediate Water (IW) T < 0◦C (S > 3 4.9) (de Steur
et al., 2014). Arctic water (ArW) was found at some stations
and depths. Not all water classified here as ArW necessarily
originated from the central Arctic Ocean. This may instead
have been water that had undergone freshening and cooling

processes, and hence had a density ρθ > 27.7 kg m−3 and S
<34.92 (or 34.9 when cooler than 2◦C). These are also the physical
characteristics for ArW in the central Arctic Ocean. Cold surface
water (SW; ρθ > 27.7 kg m−3 and S < 34.92) was encountered
at stations within the marginal ice zone, created by sea ice melt.
Sea ice extended furthest North during the winter months, and
furthest South during May and August, prohibiting sampling
north of Svalbard during the summer months. Consequently,
most stations sampled in May and August were covered by ice,
while all stations sampled during March and November were
situated in open waters.

Concentration of chl a (a proxy for phytoplankton biomass)
showed a clear seasonal cycle in phytoplankton, with lower
concentrations throughout the water column during the dark
winter months and March, higher concentrations in surface
waters in May, and intermediate concentrations in August
(Table 1). Detailed investigations of the phytoplankton showed
a major shift from communities dominated by smaller-celled
zooplankton during winter and March, to spring bloom
communities dominated by large-celled phytoplankton, such as
diatoms and Phaeocystis colonies in May (M. Reigstad, Personal
Communication). In August, the phytoplankton communities
were diverse and dominated again by smaller cells. The
community shift from May to August reflects the general
shift from nitrate-based phytoplankton communities in May to
phytoplankton communities based on regenerated production
in August (M. Reigstad, Personal Communication). In the deep
mesopelagic waters, there was much less variation in biological
and chemical properties than surface waters over the course of
the year.

3.2. Prokaryote Diversity
After quality trimming and chimera removal, the complete
16S rRNA dataset (targeting the V4 region) comprised 7 902
016 sequence reads from 52 samples, with on average 127
452 reads per sample, totalling 470 567 OTUs (75.7% of these
[356 512 OTUs] were singletons). Prokaryote communities were
dominated by taxa typical of marine environments, including the
bacterial classes Alphaproteobacteria, Gammaproteobacteria and
Chloroflexi-type SAR202 and the archaeal class Thaumarchaeota
(Figure 2). The relative abundances of these major classes
were seen to vary significantly with season and depth.
The Thaumarchaeota, Chloroflexi-type SAR202, AB16 (Marine
Group A, originally SAR406) and Deltaproteobacteria were
only observed to predominate in waters where light availability
was low (in surface waters during the winter months and
in deeper waters the year round). Representation of the
Gammaproteobacteria and Flavobacteriia however was greatest
when light availability and phytoplankton levels were highest (in
epipelagic waters in the summer months). In the darker months
(January, March and November), the relative abundances of the
Alphaproteobacteria were recorded at similar levels irrespective
of sample depth. InMay however, levels were substantially higher
in deeper waters, whilst August saw an abrupt shift to similarly
high levels in surface waters.

Principal coordinate analyses (PCoA) on unweighted UniFrac
distances (Figure 3) indicated that light availability and depth
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TABLE 1 | Chemical and biological parameters for samples taken from the Arctic Ocean around the Svalbard Archipelago in 2014.

Montha Station Latitude (◦North) Longitude (◦East) Depth (m) Temperature (◦C) Water massb Chl a (µg L−1)

Januaryc B16 81.77 19.16 1 −1.85 SW 0.02

20 −1.85 SW 0.02

500 +0.95 cAW 0.00

1,000 −0.27 ArW 0.00

B8 81.43 17.88 1 +2.20 AW NA

20 +2.19 AW 0.03

500 +2.28 AW 0.01

1,000 −0.25 IW 0.01

Marchm St1 80.77 16.12 20 +3.13 AW NA

St2 81.99 20.02 1 −1.80 SW 0.05

320 +2.00 cAW 0.01

1,000 −0.10 IW 0.00

St3 82.51 19.39 1 −1.80 SW 0.05

20 −1.50 SW NA

St4 82.38 19.87 1 −1.78 ArW 0.07

20 −1.70 ArW 0.04

St5 82.55 21.03 20 −1.70 ArW 0.06

120 +0.80 ArW 0.04

320 +2.10 AW NA

1,000 −0.45 IW NA

St6 80.86 15.08 20 +3.20 AW 0.02

1,000 −0.40 IW NA

Mayc P1 79.97 10.69 1 +1.01 SW 11.56

10 +1.87 ArW 8.34

365 +2.30 cAW 0.82

P3 79.73 9.35 1 −0.34 SW 13.46

10 −0.19 SW 14.49

375 +2.37 cAW 0.27

P4 79.78 6.17 1 −0.97 SW 5.54

20 +1.05 SW 8.98

500 +2.70 AW 0.04

1,000 −0.81 IW 0.01

Augustc P5 79.97 10.75 1 +6.03 SW 3.31

20 +5.79 SW 2.44

200 +4.20 AW 0.17

P6 80.86 15.02 1 −1.00 SW 0.00

25 +3.01 SW 0.20

500 +2.16 AW 0.35

1,000 −0.46 IW 0.33

P7 80.69 15.28 1 +0.11 SW 0.01

25 +4.98 AW 0.18

500 +3.40 AW 1.23

1,000 −0.24 IW 0.47

Novemberm St1 78.99 10.00 20 +3.30 ArW 0.21

St2 79.01 1.97 750 +0.50 cAW 0.01

St3 79.02 11.33 20 +2.30 SW 0.08

300 +3.63 AW 0.07

St4 79.03 6.01 5 +3.66 AW 0.11

20 +3.67 AW 0.10

200 +3.69 AW 0.07

500 +1.87 cAW 0.02

1,000 −0.39 IW 0.04

aResearch Cruise, c, Carbon Bridge; m, MicroPolar; bSW, Surface Water; ArW, Arctic Water; AW, Atlantic Water; cAW, Cold Atlantic Water; IW, Intermediate Water; NA, Not Available;

c Carbon Bridge; m MicroPolar.
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A B

C D
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FIGURE 2 | Taxonomic diversity and relative abundance at the class level of prokaryotes from samples collected from the Arctic Ocean at different

times, locations and depths. Sequences were taxonomically assigned to the Greengenes database (DeSantis et al., 2006) using QIIME (Caporaso et al., 2010b).

For clarity of presentation, unassigned sequences and classes comprising <1% of the total number of sequences within a sample were simply classified as “Other”

(gray), whilst sequences affiliated with phylum Cyanobacteria class Chloroplast were removed. (A) January, (B) March, (C) May, (D) August, and (E) November.

(of which light availability is a factor) primarily drove the
phylogenetic beta-diversity across prokaryote communities,
with three clearly separated clusters; one cluster (Figure 3A)

containing communities from deep and dark mesopelagic
waters, predominantly those samples collected from January,
March and November; a second cluster (Figure 3B) comprising
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FIGURE 3 | Principal Coordinate Analysis (PCoA) of unweighted UniFrac distances of prokaryote 16S OTUs in putative Epipelagic (<200 m depth; blue

squares) and Mesopelagic (200–1000 m depth; red circles) Zones of the Arctic Ocean. Text in the figure at each point refers to sampling station and depth;

B8–16 (January), M St1–6 (March), P1–4 (May), P5–7 (August), and N St1–4 (November). PC, principal coordinate. Ellipses around the clusters labeled (A–C) were

added to the figure manually for descriptive purposes only.

communities from samples collected from shallow and light
epipelagic waters in May and August only; and a third cluster
(Figure 3C), an admixture of communities from shallow and
dark epipelagic waters in January, March and November and
mesopelagic waters from May and August. Prokaryote alpha-
diversity generally decreased as light availability increased to a
maximum in the summer (Figure 4 and Figure S1). Within each
sampling period, Chao-1 estimates of OTU richness increased
with increasing depth, with deeper waters containing a greater
richness than surface waters, with maximum richness over the
year observed in the deepest January samples. In surface waters,
richness decreased until a minimum in August, before increasing
again as light availability decreased during the late autumn.

The seasonal and depth variation in the relative abundance of
eleven major prokaryote taxa (Figure 5) confirmed the impact
of increased light availability and the resulting phytoplankton

blooms on Arctic marine microbial populations in epipelagic
waters. Generally, the dominant taxa in surface waters
were seen to exhibit either a significant positive or negative
population change in the summer months, whilst corresponding
populations in deeper waters remained relatively unchanged.
The relative abundance of 16S rRNAs derived from chloroplasts
reached a maximum in May (Figure 5) and this was reflected
by maxima in the Oceanospirillaceae, Alteromonadaceae
and Flavobacteriaceae and minima in the archaeal family
Cenarchaeaceae, Rhodospirillaceae, Nitrospinaceae and OM27,
moving from March into May - in all these taxa, relative
abundance increased substantially with the transition into
the darker winter months. The family AEGEAN185 were
unusual in that there was sharp decrease in the May relative
abundance in deeper waters, as were the group SAR324 which
saw concurrent minima in both surface and deeper waters.
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FIGURE 4 | Chao1 estimates of prokaryote 16S OTU richness in putative Epipelagic (<200 m depth) and Mesopelagic (200–1000m depth) Zones of the

Arctic Ocean. The ends of the box represent the 25th and 75th percentiles, the whiskers represent minimum and maximum range, the band inside each box

represents the median and the black circles represent outliers.

The second bloom in August, characterized by a different
phytoplankton community to the earlier May one (E. S. Egge,
Personal Communication), saw maxima in both the families
Halomonadaceae and Rhodobacteraceae.

4. DISCUSSION

Recent advances in high-throughput sequencing technologies
and software development for data management and processing
have helped to shed light on the composition and seasonal
dynamics of marine microbial communities, suggesting that
many follow cyclical and predictable patterns (Fuhrman et al.,
2006, 2015). Our study collected water samples in the seas
around Svalbard from nominal depths ranging from 1 to
1000 m throughout the year, spanning the whole spectrum
of environmental light conditions from the total darkness of

the polar night to the perpetual illumination of the polar day.
Our analysis of prokaryote 16S ribosomal RNA diversity using
high-throughput sequencing confirmed that the microbial
communities of Arctic waters during the polar winter and
summer varied significantly. Additionally, this data suggested
that seasonal and depth-related light availability and sea
conditions and the associated phytoplankton blooms are
the primary drivers for successional changes in community
composition in these waters. Phylogenetic diversity increased
with decreasing illumination, with regards to both seasonality
and water depth, with the greatest richness to be found in the
deepest and darkest water samples. The phytoplankton bloom
and post-bloom stages dominated surface water communities
in May and August, respectively, and saw corresponding
increases in the relative abundance of bloom-associated
copiotrophic organisms related to the Gammaproteobacteria
and Flavobacteriia. The chemolithotrophic Thaumarchaeota
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FIGURE 5 | Temporal variability of selected strong indicator prokaryote 16S phylotypes (at the family level) in putative Epipelagic (<200 m depth) and

Mesopelagic (200–1000 m depth) Zones of the Arctic Ocean.

and Chloroflexi-type SAR202 dominated deep aphotic waters
all year round but varied significantly in surface waters with
varying light levels, proliferating in the dark winter months and
diminishing in the well-lit summer months. Whether these taxa
were responding directly to the changes in light availability or
nutrient composition, or were outcompeted by the resulting
phytoplankton blooms and successional prokaryotes is not
known. The objectives of this research were to assess these
microbial communities in time and space and investigate how
these organisms respond down through the water column to the
extreme variations in surface environmental conditions during
the polar year.

We observed distinct seasonal fluctuations in prokaryote
diversity, comprising high richness in the darker autumn and
winter months and lower richness in the late spring and summer
(Gilbert et al., 2012; El-Swais et al., 2015), similar to other surveys
of surface waters in high latitude marine ecosystems (Murray
et al., 1998; Murray and Grzymski, 2007; Ghiglione and Murray,
2012; Grzymski et al., 2012; Ladau et al., 2013). Phylotype
richness peaked in January and then decreased through the year
(Figure 4) until the annual minimum in August, coincident with
the late summer phytoplankton post-bloom, before increasing
again in the late autumn. Cyclic annual patterns of prokaryote
community structure have been observed in waters off the
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Antarctic Peninsula (Murray et al., 1998; Church et al., 2003;
Murray and Grzymski, 2007) and had sampling in our study
persisted, we predict that phylotype richness would likely have
peaked again in January (Fuhrman et al., 2015). Rarefaction
curves (Figure S1) also indicated that there was a distinct change
in the number of unique phylotypes with season, which contrasts
with seasonal pyrosequencing data for the Western Arctic
(Kirchman et al., 2010). However, the authors do concede that
the depth of their sequencing efforts may not have captured the
complete diversity of these communities. Samples in the current
study were rarified to 62500 sequences (tenfold higher than that
of Kirchman et al., 2010) and this was sufficient to illustrate
seasonal differences in community diversity. Whilst rarefaction
curves for the May and August surface samples approached
an asymptote, showing that coverage by these libraries was
high, sequencing efforts for the winter months were typically
undersaturated, as evidenced by the continued upwards curve of
the January samples even at 170 000 reads (data not shown).

There was a clear trend in the variation in relative proportions
of the two prokaryote domains in surface waters over the
annual cycle, with the Archaea increasing to maxima in the
winter months and decreasing to almost undetectable levels
in the summer months (Figure 5). This was reflected in
reverse by the Bacteria, mirroring seasonal observations of
near-surface prokaryote communities in the Western Arctic
(Alonso-Sáez et al., 2008). In our study, the Proteobacteria
were the most abundant bacterial phylum throughout the
year and of these, it was the class Gammaproteobacteria that
predominated, particularly in the summer months, along with
class Flavobacteriia of the phylum Bacteroidetes (Figure 2).
The high relative abundance of these taxa in coastal waters
around Svalbard (Zeng et al., 2013) has been associated with the
release of dissolved organic matter following a phytoplankton
bloom (Ghiglione and Murray, 2012; De Corte et al., 2013;
Buchan et al., 2014; El-Swais et al., 2015) and they are seen
to dominate Arctic MYI communities (Bowman et al., 2012).
The Gammaproteobacteria are typically seen to increase toward
the summer months (Alonso-Sáez et al., 2008) and of the
strong indicator phylotypes determined during the study year,
three of the top five (Oceanospirillaceae, Halomondaceae and
Alteromonadaceae) were members of this class (Figure 5).
Members of both the Oceanospirillaceae and Alteromonadaceae
are known to be r-strategist, broad substrate generalists and
are frequently seen to be closely-associated with phytoplankton
blooms (Teeling et al., 2012; Buchan et al., 2014; El-Swais
et al., 2015). However, in comparison with the abundance
of physiological and genomic studies of bloom-associated
Bacteroidetes and Alphaproteobacteria strains, there is a relative
paucity of data regarding the Gammaproteobacteria (Buchan
et al., 2014).

Recent whole genome analyses of various members of
the Bacteroidetes have confirmed long-held assumptions of a
preference for and selective advantage of the phylum when
growing on complex organic matter (Abell and Bowman, 2005;
Teeling et al., 2012; Fernández-Gómez et al., 2013;Williams et al.,
2013), such as that typically produced by marine phytoplankton
(Passow, 2002). Consequently, Bacteroidetes and phytoplankton

are often found in close association in polar waters (Grossart
et al., 2005; Piquet et al., 2011; Williams et al., 2013) with
the relative abundance of the former significantly correlated
with the emergence of the late spring blooms (Alonso-Sáez
et al., 2008). During May of 2014, the Flavobacteriaceae were
notable by their prolific increase in relative abundance from
negligible levels inMarch, congruent with the spike in chloroplast
16S rRNA abundance (Figure 5) and chl a maxima (Table 1).
Secondary bacterial production is typically correlated with chl a
concentration (Buchan et al., 2014). The Flavobacteriaceae are
one of the most commonly found groups in polar ecosystems
(Abell and Bowman, 2005), particularly in the summer months
(Grzymski et al., 2012; Williams et al., 2012), frequently
comprising the majority of Bacteroidetes sequences in these
environments (Ghiglione and Murray, 2012; Williams et al.,
2013) and amongst the first groups to respond to phytoplankton
blooms (Williams et al., 2013). Previously, the Flavobacteriia
have been found at peak abundance during the decay phase of
a bloom (Riemann et al., 2000; Pinhassi et al., 2004) but this
was not the case in our post-bloom August samples (Figure 2).
Proteorhodopsins, which support photoheterotrophic growth,
have however been found in flavobacterial isolates (Gómez-
Consarnau et al., 2007) previously and this may explain the
peak abundance observed during the higher photoirradiance
conditions of May. It has been suggested that increased numbers
of Bacteroidetes would be found in the water column during
spring and summer as a consequence of increased melting sea
ice, either by seeding, as persistent members of sea ice biota
(Bowman et al., 2012; Lo Giudice et al., 2012) or as a result
of growth on organic matter released by the thawing (Piquet
et al., 2011). As an abundance of Flavobacteriial proteins involved
in oxidative stress protection have also been recovered from
Antarctic metaproteomes, this suggests that the group may also
exhibit a higher tolerance to the high solar irradiance found in
polar spring and summer waters (Williams et al., 2013) and may
indeed come to play a more dominant role in the surface layers
of an ice-free Arctic.

A notable outcome immediately apparent from the 16S rRNA
phylogenetic diversity data was the glaring disparity in the
relative abundance of Alphaproteobacteria, when compared with
previously published studies which saw them dominate polar
waters (Alonso-Sáez et al., 2008; Manganelli et al., 2009; Bowman
et al., 2012; Williams et al., 2013; Zeng et al., 2013). Closer
examination revealed that the ubiquitous SAR11 were notable
by their unusually low representation in the dataset, with their
relative abundance no higher than 2.5% during the entirety
of the study. The SAR11 typically comprise the greater part
of observed Alphaproteobacteria in global marine communities
(Morris et al., 2002), and more pertinently in the Arctic (Alonso-
Sáez et al., 2008; Kirchman et al., 2010; Bowman et al., 2012). In a
previous study in Svalbard coastal waters (De Corte et al., 2013),
SAR11 were only detected at the 16S rDNA level, none being
detected in the 16S rRNA; in the present investigation however,
similarly low levels of SAR11 were discerned in both 16S rDNA
and rRNA (data not shown). In silico analysis of the universal
prokaryotic primer set 519F-806R (Øvreås et al., 1997; Caporaso
et al., 2011) used in this study suggested a low-binding efficiency

Frontiers in Marine Science | www.frontiersin.org 11 April 2017 | Volume 4 | Article 95



Wilson et al. Microbiology of an Arctic Polar Year

of the reverse primer with the SAR11 cluster, an inherent flaw
of the primers confirmed in recent studies (Apprill et al., 2015;
Parada et al., 2016). Preliminary shotgun metagenomic data
for this same polar time-series did reveal a significantly higher
abundance of SAR11 (up to 28% of total prokaryote abundance;
data not shown) and so, we can assume that the SAR11 are likely
underrepresented in this 16S tag amplicon data set.

Members of the Alphaproteobacterial families
Rhodospirillaceae and Rhodobacteraceae were however
highly abundant in Arctic waters over the year, with both
taxa appearing to be significantly correlated (negatively and
positively, respectively) with different phytoplankton bloom
stages (Figure 5). The Rhodobacteraceae were themost abundant
OTUs recorded in late summer seas off Svalbard (Zeng et al.,
2013) and the genus Roseobacter within this family has been seen
to peak with chl amaximum in the Western Arctic (Alonso-Sáez
et al., 2008), which is assumed to relate to this taxon’s common
association with phytoplankton blooms (González et al., 2000;
Pinhassi et al., 2004; West et al., 2008; Buchan et al., 2014). In the
current study however, Roseobacter species were not detected at
the Genus level using the Greengenes database (DeSantis et al.,
2006) but comparison of unassigned Rhodobacteraceae OTUs
with BLAST confirms that they were present, albeit not at the
levels seen in similar studies during the polar summer (Grzymski
et al., 2012).

The Arctic Ocean has the greatest freshwater input of
any ocean (Carmack, 2007) and so as might be expected,
the Betaproteobacteria, one of the most prevalent groups in
freshwaters, were present in the surface marine samples all year
round (Figure 2) albeit at low levels; it is the corresponding
absence of rivers in Antarctica which supports their recorded low
levels in Southern Oceans (Ghiglione et al., 2012). Interestingly,
we observed that the relative abundance of Betaproteobacteria
in surface water samples decreased as a function of distance
either from the coast or from the pack ice. A number of large
glacial fjords flow into the Western coastal waters off Svalbard
(Figure 1) and the Betaproteobacteria have been retrieved from
Kongsfjorden there (Zeng et al., 2009, 2013; Piquet et al., 2010).
The group have also been seen to predominate in Arctic pack
ice summer melt pools (Brinkmeyer et al., 2004), which might
further seed ocean waters upon thawing. In more temperate
latitudes, the abundance of Betaproteobacteria decreases with
increasing salinity (Garneau et al., 2009) but in the colder waters
of the Arctic, they may persist further offshore (Pedrós-Alió
et al., 2015). With climate change bringing with it increased
freshwater inputs to the Arctic Ocean, we may also see the
relative abundance of the Betaproteobacteria in marine microbial
communities rise.

The lower diversity of surface waters during summer appears
to be related to both taxonomic and methodological factors;
whilst the spike in carbon and nutrient concentrations following
a phytoplankton bloom inevitably leads to the proliferation of a
few specific bacterial groups (Buchan et al., 2014), the elevated
levels of phytoplankton in surface waters can often overwhelm
efforts to sample representatively. Indeed, during this study,
filters were frequently blocked by phytoplankton cell debris
and consequently, without preventative measures, chloroplast

16S rRNAs would routinely comprise >90% of amplicon tag
sequences, thereby reducing the sequencing coverage of targetted
prokaryotes. Accordingly, prokaryote richness in surface waters
during the winter months (and in deeper waters year round) was
considerably higher, potentially also due to the more complex
composition of the dissolved organic carbon pool (Alonso-Sáez
et al., 2008) in darker waters not dominated by just a few bloom-
related taxa.

Whilst light availability is thought to be the main driving
factor in the epipelagic zone (Giovannoni and Stingl, 2005),
conditions within deep dark waters are far from homogenous
(Hewson et al., 2006; Teira et al., 2006; Galand et al., 2010).
The oceans comprise regional water masses, defined by their
distinct temperature and salinity properties, and these circulate
around the globe at different spatial scales. Our sampling
area off the west coast of Svalbard is notable as being the
confluence of North Atlantic and Arctic waters and depending
on sample season, location and depth, the deep water column
may comprise a number of different water masses (Table 1).
A study of the deep Arctic Ocean suggested that these water
masses may act as physical barriers to microbial dispersal and
that communities within these water masses may therefore have a
distinct biogeography (Galand et al., 2010). Preliminary analyses
of our data however did not seem to suggest a relationship
between water mass and community composition (data not
shown), with the effect of light and depth being much more
significant (Figure 3).

Microbial life in the mesopelagic zone is quite different from
that of the epipelagic zone (Orcutt et al., 2011) and whilst the
absence of light is the most obvious difference, the deep oceans
are also typically colder and at a higher pressure (increasing
by approximately 10 MPa km−1 depth) than surface waters.
Within each seasonal sample in our study, there was a clear
difference in prokaryote composition between epipelagic and
mesopelagic communities (Figure 2) and as might be expected,
these differences were much more pronounced during the lighter
months of May and August, driven by the massive change
in surface communities during the phytoplankton blooms. In
the darker months, communities were much more similar with
depth and were dominated throughout the water column by
the Thaumarchaeota and Chloroflexi-type SAR202. Seasonal
changes had little effect on mesopelagic communities, with the
moderate variations in prokaryote diversity congruent with the
relatively unchanging nature of the deep marine environment.
However, we do see a significant difference in phylotype
richness in mesopelagic waters between January and the other
months and one reason for this might very well be January’s
placing in the polar year, in the middle of the dark Arctic
winter. The phytoplankton bloom results in a single annual
pulse of nutrients and in the successional development of
mesozooplankton and heterotrophic prokaryotes, the bulk of
the simple compounds will be degraded relatively rapidly in the
photic surface waters. What is left sinks as marine snow, which
continues to be metabolized by the prokaryote community on
its way down through the water column. By the time much
of this matter reaches the mesopelagic depths, several months
after the initial deposition from surface waters, what remains
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is likely to be diverse relcalcitrant compounds. The primary
factor differentiating the deep ocean from surface waters is
that metabolic reactions are based only on chemical redox
reactions (rather than photosynthetic processes) and much more
variably coupled temporally, spatially and functionally (Orcutt
et al., 2011). The more diverse chemical processes ongoing in
the deep ocean will therefore likely require more functionally
(and phylogenetically) diverse organisms than in surface
waters, the richness of which seemingly peaks in the winter
months.

Unmitigated atmospheric warming will undoubtedly affect
gross changes in the marine environment and its phytoplankton
populations through increased photoirradiation and nutrients
made available by thawing sea ice and permafrost (Li et al., 2009;
Doney et al., 2012; El-Swais et al., 2015), respectively. Whilst the
phytoplankton blooms are restricted to the well-lit upper layers
of the ocean, the effects of their prolific but short-lived activity
are seen throughout the deep ocean beneath. As these summer
blooms are inextricably linked to the deep and dark activities
of the winter blooms of chemolithoautotrophic organisms, a
change in one system will inevitably be manifested in the
other, potentially via more subtle effects on specific taxonomic
or functional prokaryote groups. As major contributors to the
marine nitrogen cycle (Nicol and Schleper, 2006) and the
dominant chemolithoautotrophs in polar waters, the role of
the Thaumarchaeota (previously classified as members of the
phylum Crenarchaeota Brochier-Armanet et al., 2008) is well-
established (Fuhrman et al., 1992; DeLong et al., 1994; Karner
et al., 2001). More recently, the cyclical rise (during winter)
and decline (in summer) of the group in the surface waters
of polar regions has received some attention (Murray et al.,
1998, 1999; Church et al., 2003; Alonso-Sáez et al., 2008, 2012;
Grzymski et al., 2012; Williams et al., 2012) and indeed, our
data confirmed these findings. The almost total disappearance of
the Thaumarchaeota from the photic zone during the summer
months (Figure 5) is therefore suggestive of photoinhibition of
ammonia oxidation (Guerrero and Jones, 1996; Murray et al.,
1998; Mincer et al., 2007; Schleper and Nicol, 2010; Merbt et al.,
2012), or has been more recently posited, a sensitivity to reactive
oxygen species produced as a result of photosynthesis (Tolar
et al., 2016). The reasons may however be multifactorial and
it is thought that the Archaea may also be outcompeted by
phytoplankton (Murray et al., 1998; Ward, 2000, 2005; Church
et al., 2003; Herfort et al., 2007; Smith et al., 2014) and Bacteria
(which are much more active in the uptake of the labile bloom-
produced substrates Alonso-Sáez et al., 2008; Kalanetra et al.,
2009), or even subjected to selective viral infection (Labonté
et al., 2015). The proportional abundance of Thaumarchaeota
has been correlated with ammonium concentrations (Herfort
et al., 2007; Kirchman et al., 2007) and their peak abundance
in winter surface waters has been hypothesized to result from
mixing with deep water masses in Antarctic seas (Kalanetra
et al., 2009; Grzymski et al., 2012); however, in areas of the
Arctic Ocean where the water column tends to remain stratified
during the winter (Forest et al., 2011), recent data suggests
that the increase is in fact due to growth and proliferation of
surface water Thaumarchaeota populations in situ (Alonso-Sáez

et al., 2012). As the polar winter precludes photosynthesis and
consequently, a source of labile organic matter, the autotrophic
Thaumarchaeota are ideally adapted to bloom in these otherwise
limiting conditions (Pedrós-Alió et al., 2015). Interestingly, in
both Arctic (Alonso-Sáez et al., 2012) and Antarctic (Kalanetra
et al., 2009; Grzymski et al., 2012) winter surface waters, a single
Thaumarchaeotal OTU was seen to dominate archaeal 16S rRNA
and ammonia monooxygenase amoA gene libraries and we saw
a similar dominance in Arctic winter surface waters; however,
as we continued down through the water profile, this dominant
OTU gradually yields to another Thaumarchaeotal OTU, which
ultimately dominates deeper waters. These shallow and deep
cladal differences have been described in ammonia-oxidizing
Archaea (AOA) previously, based primarily in differences in
their amoA genes (Francis et al., 2005; Sintes et al., 2013;
Pedneault et al., 2014; among others) but also other metabolic
genes (Sintes et al., 2013; Luo et al., 2014; Villanueva et al.,
2015).

Any change in Thaumarchaeota populations may have
significant impacts on certain of the phytoplankton populations.
In unlit surface waters, the Thaumarchaeota oxidize ammonium
to nitrate, which in turn promotes phytoplankton growth
come the lighter months; however, as the larger diatoms are
thought to outcompete picophytoplankton for nitrate (Stolte and
Riegman, 1995), diatom populations may be proportionally more
affected by a loss of Thaumarchaeota (Comeau et al., 2011).
Conversely, a warming freshening Arctic will be increasingly
stratified and there will be less mixing with the nutrient-rich
depths, potentially favoring smaller picophytoplankton (Li et al.,
2009).

Taxa showing similar seasonal dynamics to the
chemolithotrophic Thaumarchaeota in surface waters were
the Deltaproteobacteria-affiliated SAR324, Nitrospinaceae and
OM27 (Figure 5), all of which saw drops in relative abundance
during the summer months. The nitrite-oxidizing genus
Nitrospina has been observed in winter-only samples from
both Antarctic (Grzymski et al., 2012) and Arctic (Alonso-Sáez
et al., 2010) waters, as well as in temperate waters (El-Swais
et al., 2015) and has also been correlated with amoA-containing
Thaumarchaeota in Monterey Bay (Mincer et al., 2007). Whilst
we recorded generally higher levels of all three taxa in winter
surface and year-round deeper waters, active populations
were still detected in surface waters in summer months, albeit
at much lower levels. The Chloroflexi-type SAR202 cluster
is also typical and highly abundant in mesopelagic waters
(Morris et al., 2004; Varela et al., 2008; Arístegui et al., 2009;
Dobal-Amador et al., 2016). Recent studies have shown the
Chloroflexi to be well adapted to deeper oligotrophic waters
and to efficiently utilize recalcitrant organic compounds uptake,
such as those found in the mesopelagic zone (Yilmaz et al.,
2016).

5. CONCLUSIONS

This high-throughput sequencing study of a polar year in
the Arctic Ocean revealed the driving force of light and
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phytoplankton blooms on the marine prokaryote community,
and in particular the Thaumarchaeota, in both surface and
deep ocean waters. Investigations such as this one and others
discussed in the text are fundamentally important as a historic
record of the current microbial state of the polar oceans and
an indicator of the ongoing rate of change (Ducklow et al.,
2009). Additionally, we believe that it is crucial to consider
the deeper water column in these studies, as part of a whole,
dynamic and interconnected marine system. As a complement
to this study, we are also investigating shotgun metagenomic
and metatranscriptomic data for these same seasonal samples,
which will greatly improve the resolution of these preliminary
results. We suggest that the future progress of the field would
benefit greatly from repeated longer-term investigations, in
concert with the continued improvement of omics tools and in
this manner, we hope that these data may be used to support
the overwhelming physical evidence of our changing global
climate.
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One of the most abundant archaeal groups on Earth is the Thaumarchaeota. They

are recognized as major contributors to marine ammonia oxidation, a crucial step

in the biogeochemical cycling of nitrogen. Their universal success is attributed to

a high genomic flexibility and niche adaptability. Based on differences in the gene

coding for ammonia monooxygenase subunit A (amoA), two different ecotypes with

distinct distribution patterns in the water column have been identified. We used high-

throughput sequencing of 16S rRNA genes combined with archaeal amoA functional

gene clone libraries to investigate which environmental factors are driving the distribution

of Thaumarchaeota ecotypes in the Atlantic gateway to the Arctic Ocean through an

annual cycle in 2014. We observed the characteristic vertical pattern of Thaumarchaeota

abundance with high values in the mesopelagic (>200m) water throughout the entire

year, but also in the epipelagic (<200m) water during the dark winter months (January,

March and November). The Thaumarchaeota community was dominated by three OTUs

which on average comprised 76% ± 11 and varied in relative abundance according to

water mass characteristics and not to depth or ammonium concentration, as suggested

in previous studies. The ratios of the abundance of the different OTU types were similar to

that of the functional amoAwater cluster types. Together, this suggests a strong selection

of ecotypes within different water masses, supporting the general idea of water mass

characteristics as an important factor in definingmicrobial community structure. If indeed,

as suggested in this study, Thaumarchaeota population dynamics are controlled by a set

of factors, described here as water mass characteristics and not just depth alone, then

changes in water mass flow will inevitably affect the distribution of the different ecotypes.

Keywords: thaumarchaeota, ammonia-oxidation, Arctic Ocean, water mass, ecotype, amoA, 16S rRNA gene

sequencing

INTRODUCTION

The discovery of the high abundance of marine planktonic Archaea in 1992 was a revelation
(DeLong, 1992; Fuhrman et al., 1992). Since then, numerous studies have confirmed both their
high proportions and population dynamics, especially in deeper waters and from both polar
oceans (Massana et al., 1998; Murray et al., 1998). In later studies the marine Archaea have been
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found to play important roles in many biogeochemical processes
(Ouverney and Fuhrman, 2000; Offre et al., 2013). When Craig
Venter and colleagues discovered genes encoding for ammonia
monooxygenase subunit A (amoA) in their metagenome analyses
from the Sargasso Sea, new information regarding these processes
was provided, leading to a particular interest in the marine
Thaumarchaeota (Venter et al., 2004). This interest was further
strengthened with the cultivation and characterization of the first
marine archaeal isolate (Candidatus Nitrosopumilus maritimus
SCM1) capable of ammonia oxidation (Könneke et al., 2005).
Today, chemoautotrophic ammonia oxidizing Archaea (AOA)
are recognized as the major contributors to marine microbial
ammonia oxidation and thus driving nitrification processes,
dominating these relative to their bacterial ammonia oxidizing
(AOB) counterparts (Wuchter et al., 2006; Valentine, 2007).

Thaumarchaeota are widely distributed and may make up a
significant part of marine microbial communities (Karner et al.,
2001; Agogué et al., 2008; Beman et al., 2008). In the surface
waters of polar regions there seem to be temporal changes in
the relative abundance of Thaumarchaeota with an increase
during winter and decline in summer (Massana et al., 1998;
Murray et al., 1998; Church et al., 2003; Alonso-Sáez et al., 2008;
Grzymski et al., 2012). Photoinhibition of ammonia oxidation
has been hypothesized as an underlying cause for the seasonal
disappearance of AOA (Guerrero and Jones, 1996; Murray et al.,
1998; Mincer et al., 2007; Merbt et al., 2012). However, other
factors, such as competition with an increasing abundance of
phytoplankton and associated bacterial blooms (Massana et al.,
1998; Church et al., 2003; Herfort et al., 2007) or nutrient
limitations, including ammonium (Wuchter et al., 2006; Herfort
et al., 2007; Kirchman et al., 2007), may also play important roles.
Physical aspects such as deep water mixing have been suggested
to resolve the winter increase of Thaumarchaeota abundance in
the Southern Oceans (Kalanetra et al., 2009; Grzymski et al.,
2012), but this could not explain the same trends in the Arctic,
where the ocean remains relatively stratified during winter
(Forest et al., 2011). Recent data have suggested that the increase
in AOA is due to in situ growth at the surface and not to mixing
with deeper water masses (Alonso-Sáez et al., 2012).

The surface Thaumarchaeota populations comprise
predominantly one type of AOA, while the deep ocean is
dominated by another type of AOA and have thus far, based
on differences in their amoA genes, been divided into a surface
(WCA) and a deep (WCB) type (Francis et al., 2005; Hallam
et al., 2006; Beman et al., 2008; Sintes et al., 2013). Their depth-
dependent distribution has been demonstrated in many different
regions, including the Gulf of California (Beman et al., 2008), the
Gulf of Mexico (Tolar et al., 2013), the Arctic Ocean (Pedneault
et al., 2014), Monterey Bay (Smith et al., 2014) and throughout
the entire Atlantic Ocean (Sintes et al., 2016). Taxonomically,
amoA sequences can be divided into six main subclusters all
branching to the N. maritimus cluster (Pester et al., 2012; Sintes
et al., 2016). Two subclusters include only WCA sequences and
the other four subclusters include exclusively WCB sequences.

The abundance of the different AOA types has also been
correlated with ammonium concentrations and this has led to
the introduction of high and low ammonium concentration

AOA (HAC-AOA and LAC-AOA, respectively) (Herfort et al.,
2007; Kirchman et al., 2007; Sintes et al., 2013). HAC-AOA
dominate at depths with high ammonium concentrations while
LAC-AOA are in higher abundance in deeper ocean regions
where the ammonium concentration is low (Sintes et al., 2013).
Overall, LAC-AOA corresponded taxonomically to WCB-types
and HAC-AOA with WCA types. Ammonium concentrations
(Woodward and Rees, 2001; Varela et al., 2007; Clark et al.,
2008) measured for different oceanic regions could also support
an observed macroecological AOA distribution in the Atlantic
Ocean (Sintes et al., 2016). However, other environmental factors
such as depth, temperature, dissolved oxygen, nitrite, and salinity
have been previously identified as influences on the abundance
and diversity of AOA (Francis et al., 2005; Herfort et al., 2007;
Abell et al., 2010; Santoro et al., 2010; Biller et al., 2012; Pester
et al., 2012; Sintes et al., 2015). Overall, the niche specification
of the two ecotypes is best explained by depth in combination
with geographic region and to a lesser extent with environmental
factors, including ammonium concentration. However, it
remains unclear whether these taxonomic definitions, both
WCA/WCB and HAC/LAC, can be used to associate observed
abundances with distinct biogeochemical niches, like water
masses.

We have recently reported the high relative abundance and
seasonal variation of Thaumarchaeota in waters around the
western coast of Svalbard (Wilson et al., 2017). Here we extend
the studies and investigate the Thaumarchaeota community in
five different water masses, dominated by Atlantic and Arctic
Water, using high throughput 16S rRNA gene sequencing aiming
to identify different Thaumarchaeota populations and using
amoA gene abundance to elucidate functional capabilities that
may influence their distribution and dynamics.

MATERIALS AND METHODS

Study Site and Sampling
Samples were collected as part of the MicroPolar project (in
cooperation with the project “CarbonBridge”) during five cruises
in 2014 north-west of Svalbard, following several transects
along the West Spitsbergen Current (WSC) at the eastern part
of the Fram Strait up to the Arctic Ocean (Figure 1). This
area is hydrographically characterized by three Atlantic water
masses, including Atlantic Water (AW), cold Atlantic Water
(cAW) and Intermediate Water (IW), having salinity >34.9 and
temperatures >2◦C, 0–2◦C and <0◦C, respectively; and also,
by two Arctic water masses, Surface Water (SW) and Arctic
Water (ArW), having salinity <34.92 and density (σt) <27.7
and >27.7 respectively (Cokelet et al., 2008; de Steur et al.,
2014; Randelhoff et al., 2015). An overview of the water mass
characteristics is listed in Supplementary Table S3. The WSC
at the eastern part of the Fram Strait transports Atlantic water
into the Arctic Ocean. This Atlantic water can also be found in
deeper mesopelagic zones as cAW and IW. The water masses
classified as Arctic Water do not necessarily originate from the
Arctic Ocean interior, but have undergone similar freshening and
cooling processes and have the same physical characteristics as
Arctic Ocean water masses.
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FIGURE 1 | (A) Study area Northwest of Svalbard. Stations are colored according to their time of sampling: gray, January; red, March; blue, May; yellow, August;

black, November. Stations marked with a red circle were selected for amoA functional gene analyses. (B) Abundance of prokaryotes counted by flow cytometry (black

bars) and superimposed abundance of Thaumarchaeota (gray bars) determined by qPCR of 16S rRNA genes. Relative abundance of Thaumarchaeota in relation to

the total of 16S rRNA genes from Illumina sequencing data is shown by the blue line. Samples were grouped in epipelagic (0–200m; n = 28) and mesopelagic

(200–1,000m; n = 22) zones and according to their sampling month. Standard errors were calculated for average values and are indicated as error bars.

Sampling periods extended over an entire polar year with
cruises in January (06.01–15.01), March (05.03–10.03), May
(15.05–02.06), August (07.08–18.08), and November (03.11–
10.11). Depth profiles of temperature, salinity and fluorescence
were recorded using a SBE 911plus CTD system (Sea-Bird
Scientific, WA, USA) and used to identify water masses and
to collect water for downstream analyses. Samples (25-50 L)
for molecular analyses were taken between depths of 1 and
1,000m (Supplementary Table S1), filtered onto 0.22µm pore
size Millipore R© Sterivex filters (Merck-Millipore, MA, USA) and
immediately frozen at −80◦C. In total 50 samples (epipelagic
zone; 0–200m; n = 28 and mesopelagic zone; 200–1,000m; n =

22) were used formolecular analysis. Further cruise and sampling
details are described in Paulsen et al. (2016) and Wilson et al.
(2017), respectively.

Flow Cytometry
The abundance of prokaryotes was detected from samples
collected at 18 stations from 11 depths (1, 5, 10, 20, 30, 50, 100,
200, 500, 750, and 1,000m) during 5 cruises using an Attune R©

Acoustic Focusing Flow Cytometer (Applied Biosystems by Life
technologies, CA, USA) with a syringe-based fluidic system and
a 20 mW 488 nm (blue) laser. First, samples were fixed with
glutaraldehyde (0.5% final conc.) and incubated at 4◦C for a
minimum of 30min, frozen in liquid nitrogen and stored at
−80◦C. For analysis, samples were diluted with 0.2µm filtered
TE buffer (Tris 10mM, EDTA 1mM, pH 8), stained with a
green fluorescent nucleic acid dye (SYBR Green I; Molecular
Probes, Eugene, Oregon, USA) and kept for 10min at 80◦C in
a water bath (Marie et al., 1999). A minimum of 100 µL was
counted at a low flow rate of 25 µL min−1 and prokaryotes were

discriminated on a biparametric plot of green florescence vs. red
florescence.

Ammonium Measurements
Concentrations of NH+

4 were determined fluorometrically from
frozen samples (4mL) using orthophthadialdehyde according to
the protocol by Holmes (1999). The method was adapted for
microplate readings following (Poulin and Pelletier, 2007) and
samples were analyzed on a 2300 EnSpireTM Multilabel Plate
Reader (PerkinElmer, Finland). A 0.1M ammonium chloride
stock solution was used to prepare standard curves (0.1, 0.3, 0.6,
1, 2µM) with correlation coefficients ≥0.986.

Nucleic Acids Extraction and Amplification
for Amplicon Sequencing
DNA and RNA from Sterivex filters were extracted using the
AllPrep DNA/RNAMini Kit (Qiagen, Hilden, Germany). Details
regarding RNAprocessing can be found inWilson et al. (2017). In
short, 10 ng RNA was treated with the DNA-free DNA Removal
kit (Invitrogen, CA, USA) and subsequently reverse transcribed
using the SuperScript III First-Strand Synthesis System for RT-
PCR (Invitrogen), following the manufacturer’s instructions.
DNA was amplified using a two-step nested PCR approach with
primers 519F and 806R (Supplementary Table S2) targeting both
the archaeal and the bacterial 16S rRNA gene V4 hypervariable
region. During the first step, triplicate samples were amplified
in reaction volumes of 20 µL, comprising 10 ng DNA, 10 µL
HotStarTaq Master Mix (Qiagen), 0.5µM of each primer and
nuclease-free water. PCR reaction conditions were as follows:
initial denaturation of 15min at 95◦C, followed by 25 cycles of
95◦C for 20 s, 55◦C for 30 s and 72◦C for 30 s and a final extension
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step of 72◦C for 7min. Triplicate PCR products were pooled
and purified using the DNA Clean & Concentrator-5 kit (Zymo
Research Corporation, CA, USA). 10 ng of pooled PCR product
was used for the second PCR step, in a reaction volume of 50
µL together with 25 µL HotStarTaq Master Mix, 0.5µM of each
nested primer (containing a unique eight-nucleotide barcode)
and nuclease-free water. PCR reaction conditions were as follows:
initial denaturation of 15min at 95◦C, followed by 15 cycles of
95◦C for 20 s, 62◦C for 30 s, 72◦C for 30 s and a final extension
step of 72◦C for 7min. Final PCR products were purified
using Agencourt AMPure XP Beads (Beckman Coulter Inc.,
CA, USA) and prepared for sequencing by pooling the samples
in equimolar amounts. The quality and concentration of the
amplicon pool were assessed by agarose gel electrophoresis and
a Qubit 3.0 Fluorometer, respectively. Libraries were sequenced
at the Norwegian Sequencing Centre (Oslo, Norway) using their
Illumina MiSeq platform (MiSeq Reagent Kit v2, Illumina, CA,
USA). Sequencing data are available at the European Nucleotide
Archive (ENA) under study accession number PRJEB23129. The
primers (519F-806R) used in this study have been shown to
have a low affinity for the SAR11 cluster, which can result in
overestimation of other prokaryotic groups (Apprill et al., 2015).

16s rRNA Gene Sequence Analysis
Paired-end sequences were processed using various
bioinformatic tools incorporated in the QIIME software
environment (Caporaso et al., 2011), as described in Paulsen
et al. (2016). Briefly, FASTQ files were quality end-trimmed,
merged and prokaryotic OTUs were selected at a sequence
similarity threshold of 97% and taxonomy assigned using the
Silva 111 reference database (Quast et al., 2013). A total of
5,995,334 sequences were retrieved from high-throughput
sequencing of the 16S rRNA gene V4 hypervariable region from
DNA across fifty samples from five cruises. After removal of
singletons, unassigned OTUs and chloroplast reads, sequences
were rarefied to 10,000 reads per sample, with a total of 24,723
unique OTUs (63.1% singletons) at 97% sequence similarity.
Bray–Curtis resemblance and ANOSIM statistical analysis were
performed using PRIMER-E (Version 6; Quest Research Limited,
Auckland, NZ).

Quantitative Real-Time PCR (qPCR)
All qPCR assays were run in triplicates on a C1000 Thermocycler
(BioRad, CA, USA). The following qPCR reaction mixture was
used: 10 µl Fast EvaGreen R© qPCR Master Mix (Biotium, Inc.,
Hayward, CA, USA), 0.5µM final concentration of each primer,
1 µL template DNA (corresponding to 1 ng of environmental
DNA) and water were added to a final volume of 20 µL. All
qPCR reactions were performed in white 96 well plates (BioRad).
Thaumarchaeota 16S rRNA genes were quantified using the
Thaumarchaeota specific forward primer Thaum-494F (Hong
et al., 2015) and an archaeal universal primer ARC917R (Loy
et al., 2002). This primer pair was suggested to better target the
Thaumarchaeota and showed a higher affinity (96%) in silico
to Marine Group I Archaea than previously used primer pairs
(Hong et al., 2015). qPCR reaction conditions were as follows:
initial activation for 2min at 95◦C, followed by 35 cycles of

amplification, including denaturation at 95◦C for 30 s, annealing
at 55◦C for 30 s, extension at 72◦C for 30 s and a final extension
step of 10min at 72◦C. The fluorescence was measured at the end
of each cycle and a melting curve obtained from 65 to 95◦C, with
increments of 0.2◦C. Ten-fold dilutions ranging from 1.1 × 108

to 1.1× 103 copies of environmental Thaumarchaeota 16S rRNA
gene were used as a quantification standard. Efficiencies for all
qPCR reactions ranged from 83 to 84% with constant R2-values
of 0.998. To calculate gene copies per mL, the copy number per
ng was multiplied by the DNA concentration per mL (based on
flow cytometer counts and the assumption that one prokaryote
contains 3 fg of DNA; Fuhrman and Azam, 1982; Jeffrey et al.,
1996).

Phylogenetic Analysis of amoA and 16s
rDNA Clone Libraries
A total of 10MicroPolar samples from five stations representative
of all five water masses were selected for amoA functional
gene amplification. Each time point comprised both a surface
and deep sample, excluding surface samples from the summer
season (May and August), due to very low amoA abundances.
Overall, eight DNA and two RNA samples were used for this
analysis. The two RNA samples were from the same depths as
the DNA samples from the November cruise and are included
as an indicator of the active transcription of amoA mRNA.
Amplification was performed using archaeal amoA primers
(Supplementary Table S2) targeting a 635 bp gene fragment using
the protocol of Francis et al. (2005) and 30 amplification cycles
(iCycler, Bio-Rad, CA, USA). These primers have been widely
used, but have been shown to underestimate amoA abundance
in surface water samples (Tolar et al., 2013). PCR products
were purified using the ExoSap-IT kit (Applied Biosystems)
and subsequently cloned with the Qiagen PCR Cloning Kit
(Qiagen) following manufacturer instructions. A total of 242
clones from all 10 samples were selected, and sequenced in-house
at the sequencing facility of the University of Bergen (http://
www.uib.no/en/seqlab). In order to obtain the 16S rRNA gene
fragments for phylogenetic analysis, the same steps were followed
as for the amoA genes; amplification was performed using an
Archaea-specific forward primer in combination with a universal
prokaryotic reverse primer resulting in amplicons of 1481 bp
length (Supplementary Table S2). PCR reaction conditions were
similar to those described before, with the exception of the
annealing temperature, which was adjusted to 52◦C. All amoA
gene sequences from this study have been deposited at ENA
under study accession number PRJEB23151. The three full
length sequences of the 16S rRNA gene have been deposited
at NCBI under GenBank accession numbers MG238502-
MG238504.

Sequencing of amoA clones resulted in a total of 230 high
quality sequences. This dataset was combined with an additional
254 amoA sequences (220 bp gene fragment) from a recent
study on archaeal ammonia oxidizing ecotypes in the Atlantic
Ocean (Sintes et al., 2016). This combined dataset was used
to define OTUs at 97% sequence similarity using the de novo
uclust (Edgar, 2010) OTU clustering method in QIIME, using
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default parameters. In total, 189 OTUs were identified and used
for phylogenetic analysis based on multiple alignments of amoA
OTUs using MUSCLE (Edgar, 2004) with default parameters.
The phylogenetic tree was inferred using the neighbor–joining
method (Saitou and Nei, 1987) with 1000 bootstrap replicates.
The retrieved tree was viewed using Evolview v2 (He et al., 2016).

The same strategy was implemented for Thaumarchaeota16S
rRNA gene sequences. In order to include the Illumina
amplicon reads, all sequences used (clonal or otherwise) for the
phylogenetic analysis were trimmed to a size of 268 bp. A total
of 1256 Thaumarchaeota sequences, including the three most
abundant Thaumarchaeota OTUs from our amplicon data set,
three full length 16S rRNA Sanger-sequenced reads and 1242
environmental sequences from the Arctic Ocean, the Atlantic
Ocean, the Northeast Pacific, the North Sea and Gulf of Mexico
were used to define OTUs at 97% similarity (Agogué et al.,
2008; Bale et al., 2013; Tolar et al., 2013; Wright, 2013; Ijichi
and Hamasaki unpublished). The resulting 23 OTUs were used
for phylogenetic analysis as described above. We calculated the
relative abundance of these OTUs in sets of samples from depths
below or above 100m.

RESULTS

Hydrography and Seasonal
Thaumarchaeota Abundance
We used 16S rRNA gene sequencing and qPCR analyses
to determine the relative and absolute abundance of
Thaumarchaeota in samples taken during five cruises throughout
the year in the Arctic Ocean off the western coast of Svalbard
(Figure 1). Throughout the sampling period, Thaumarchaeota
represented up to 73% (62% by qPCR) of the prokaryotic
community. The relative abundance of Thaumarchaeota
varied with both depth and season. Surface samples from the
epipelagic (1–200m) zone showed clear seasonal changes in
Thaumarchaeota relative abundance. During the winter months
relative abundance was high (44% ±15), while it was low during
the summer season (1.4% ±1.4). In contrast, Thaumarchaeota
relative abundance in the deep mesopelagic samples (200–
1,000m) was relatively high (38% ±11) throughout the entire
year (Figure 1B).

Although total prokaryote abundance strongly increased
during the summer months, absolute Thaumarchaeota
abundance of up to 3.8 × 105 cells mL−1 (January, 1m, station
B8) was highest during the winter months (Figures 1B, 2).
Relative Thaumarchaeota abundance values from 16S rRNA
gene sequencing and calculated values from qPCR were
comparable, while the Illumina derived relative abundance was
on average 14% higher (Supplementary Figure S3). We identified
the three most abundant OTUs, which constituted on average
76%±11 of the total Thaumarchaeota community in all samples.
The same three OTUs were identified from 16S rRNA sequencing
of reverse-transcribed total RNA, suggesting an active role in the
prokaryotic community (Wilson et al., 2017).

Phylogenetic analysis of 16S rRNA genes, which included the
three OTUs, and 1,242 environmental sequences from the Arctic

Ocean, the Atlantic Ocean, the Northeast Pacific, the North Sea
and Gulf of Mexico, showed that the three most abundant OTUs
from our study are also represented in other environments. The
OTUs representing our three most abundant Thaumarchaeota
types comprise 92% of all sequences included in the analysis.
The phylogenetic tree shows that all OTUs are related to the
cultured strain Nitrosopulimus maritimus SCM1 and that they
divide into two subgroups representing predominantly samples
of either epipelagic or mesopelagic origin (Supplementary Figure
S1). While OTUs affiliated to the surface group can be found
in samples from both the epipelagic and mesopelagic zones,
OTUs from the deep group were exclusively from mesopelagic
samples indicating a depth-dependent distribution pattern as
documented before.

Thaumarchaeota Abundance Patterns
Correlated with Specific Water Masses
The profiles in Figures 2A–D illustrate the differences in
abundance of Thaumarchaeota OTUs for the five cruises and in
contrasting stations with varying water masses. Overall, similar
presence/absence patterns of the three most abundant OTUs can
be observed throughout all cruises, which are partly connected
to depth (Figure 2). This includes OTU 81053 and OTU 201889
being most abundant in the surface and deep waters, respectively.
In order to identify a distribution pattern for these OTUs, we
separated all samples, according to their depth in epipelagic and
mesopelagic groups, as has been done previously (Figure 4A).
The OTU abundance pattern between the two water zones was
significantly different, as shown by an ANOSIM analysis (R =

0.32; p = 0.001). Whilst OTU 81053 was most abundant in
epipelagic waters (62–88%), it was found to be highly variable in
samples from themesopelagic zone (9.8–71%), thus referred to as
“surface OTU”. In contrast, OTU 201889 was barely detectable
in epipelagic samples (<0.5%) and of varying abundance (0.2–
51%) in mesopelagic samples, hence was referred to as “deep
OTU”. The third most abundant OTU (0.2–19%) was detected
in variable abundance in both epipelagic and mesopelagic waters
and is referred to as “middle OTU”. All other Thaumarchaeota
OTUs were grouped into those three OTU types, according to
their abundance pattern.

In order to identify Thaumarchaeota distribution patterns
throughout the entire sample set, a cluster analysis using Bray-
Curtis similarities was performed (Figure 3 and Supplementary
Figure S4). The cluster analysis shows five groups, which are in
co-occurrence with the five physical water masses observed in
the study area (exceptions marked in red). This co-occurrence
pattern was observed over the entire sampling period and the
Thaumarchaeota abundance pattern in January in AW samples
was highly similar to AW samples from March, May August
and November (Figure 3). Therefore grouping the samples into
the water mass groups revealed a more distinct distribution
pattern of the three most abundant OTUs, shown to be
significantly different by an ANOSIM analysis (R = 0.63; p =

0.001) (Figure 4B). The different water mass groups include
samples from varying depths and some from both epipelagic and
mesopelagic zones, as indicated in Figure 4B.
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FIGURE 2 | (A–D) Profiles of Thaumarchaeota abundance (blue lines) determined by qPCR of 16S rRNA genes and Thaumarchaeota relative abundance (black, gray,

light gray bars; in % of total 16S rRNA Illumina amplicons) from four different stations, where either Atlantic or Arctic water masses were dominating. Notice different

scales on the x-axis (lower x-axis for qPCR derived Thaumarchaeota gene copies per mL; upper x-axis for Thaumarchaeota relative abundance from Illumina

sequencing data). Colors indicate the water mass profile. Note that the y-axis is in logarithmic scale.

The influence between water mass and Thaumarchaeota OTU
abundance was particularly noticeable at the two stations in
January (Figures 2A,C). Only 43 km apart, the two stations
showed very different Thaumarchaeota abundance patterns
at comparable depths, connected to the discriminating water
masses observed at the stations. These OTU abundance patterns
seen in January were also observed at other stations during other
sampling months. Over the entire sampling period, the three
OTUs showed distinctive changes in abundance in the five water
masses. The surface OTU showed highest abundance in SW (84%
± 3.1) and declined in the other water masses down to 14%± 3.6
in ArW. An opposite trend was observed for the deep OTU with
highest abundance in ArW (40%±10) declining in IW (23% ±

4.7), cAW (9.2% ± 2.5), AW (1.5% ± 1.7), and lowest in SW
(0.2% ± 0.2). The highest abundance of the middle OTU was
found in AW (11% ± 4.0) and declining in the other modified
Atlantic water masses (cAW: 6.3%± 0.2; IW: 4.0%± 2.8). In the
SW and ArW the middle OTU was underrepresented (1.7% ±

1.4; 1.3%± 1.4).
We tested whether the changes in relative abundance of the

three OTUs were significantly correlated with the different water
masses and other environmental factors. The best fit for linear
regressions was achieved when Thaumarchaeota abundance was
plotted against water mass and not depth. All three OTUs showed
distinct seasonally reoccurring abundance patterns that correlate
with the distinct water masses in the area. OTU abundance either
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FIGURE 3 | Hierarchical cluster analysis of Bray-Curtis similarities, based on the diversity of Thaumarchaeota sequences from Illumina amplicon sequencing of 16S

rRNA genes, illustrating the distribution of samples into five groups. These five groups are labeled according to water mass specificities of the samples within the

groups (ArW, Arctic Water; SW, Surface Water; AW, Atlantic Water; cAW, cold Atlantic Water; IW, Intermediate Water). Samples with a mismatch between their

associated water mass group and the physical water mass of their sampling origin are marked with a red line. The sampling month is given by colors. Samples were

further distinguished according to depth, with open circles for epipelagic samples (0–200m; n = 16) and filled circles for mesopelagic samples (200–1,000m; n = 22).

FIGURE 4 | (A) Relative abundance of the three most abundant Thaumarchaeota OTUs. Samples were divided according to their sampling origin in epipelagic (open

symbols; 0–200m; n = 16) and mesopelagic (filled symbols; 200–1,000m; n = 22) zones. (B) Same data as in (A), grouped according to assigned water masses

based on sample similarities illustrated in Figure 3. ArW, Arctic Water; SW, Surface Water; AW, Atlantic Water; cAW, cold Atlantic Water; IW, Intermediate Water.

decreased (surface and middle OTU, R2 = 0.96; p < 0.0001
and R2 = 0.6; p < 0.0001) or increased (deep OTU, R2 = 0.84;
p < 0.0001) from SW or AW toward deeper water masses,
such as cAW, IW, and ArW (Figure 4B). Environmental factors
were correlated with some OTUs but not all three together. For
example, both the middle OTU and surface OTU were positively
(Pearson’s r, r = 0.51; p < 0.0014) or negatively (Pearson’s r, r
= −0.51; p < 0.0012) correlated respectively to salinity, whilst
the deep OTU was not correlated at all. Temperature was also
correlated with abundance of the middle OTU (Pearson’s r, r =
0.69; p < 0.0001), but not the other OTUs. None of the three
OTUswas correlated with ammonium concentration or sampling
month.

Analysis of amoA Gene Phylogeny
To answer whether there was a similar Thaumarchaeota
distribution pattern on the functional gene level, we analyzed
the distribution of the gene encoding for amoA. A single

station for each sampling month (comprising both a surface
and deep sampling point) was chosen, excluding summer season
surface samples with the low Thaumarchaeota abundance. These
eight samples represented all different water masses encountered
during the five cruises and resulted in 230 amoA sequences. The
genetic diversity of these MicroPolar sequences, combined with
published sequences from the entire Atlantic, is illustrated in
Supplementary Figure S2 and revealed the six main subclusters
previously reported (Sintes et al., 2016). A simplified version of
this phylogenetic tree is shown in Figure 5. MicroPolar sequences
can be found both in subclusters 1 and 2 (representing sequences
from WCA) and 3–6 (excluding 4; representing sequences
from WCB). In total 15 (5 with >1 sequence) new amoA
OTUs representing 50MicroPolar sequences were identified. The
majority of our Arctic amoA sequences affiliated to subclusters 2
and 6. The deep subcluster 6 represented sequences mostly from
mesopelagic samples, while sequences from subcluster 2 were
from both epipelagic and mesopelagic MicroPolar samples. The
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FIGURE 5 | Left panel Phylogenetic tree of 189 amoA OTUs at 97% sequence identity, representative of the genetic diversity of amoA clades 1-6 in reference

samples (254 sequences) and in 10 MicroPolar samples (230 sequences). The colored lines indicates the grouping of the six amoA clusters in surface (light blue) and

deep (dark blue) type. Right panel Distribution of OTUs, OTUs which only consist of MicroPolar sequences, OTUs that only consist of one sequence and MicroPolar

sequences within the six amoA clusters. Heat map, in shades of blue, displaying the relative abundance of OTUs at each analyzed station and grouped by sampling

depth.

heat map (illustrating the relative abundance pattern both of the
WCA andWCB amoA sequences) shows only two samples (Mar-
St2-1,000m and Nov-St4-1,000m) where amoA OTUs were
more abundant in the deep WCB group than the surface WCA
group (Figure 5). Other mesopelagic samples from January, May
and August comprised mainly sequences from the WCA group.
We compared the 10 samples from the amoA data set with our
16S rRNA gene Illumina amplicon data as we observed a similar
pattern between the deep and surface OTU types (Figure 6).
The different ratio of contrasting 16S rRNA gene surface/deep
types was highly similar to amoA gene WCA/WCB types in all
samples. For both genes the observed pattern was co-occurring
with different water masses.

DISCUSSION

Thaumarchaeota are ubiquitous in marine environments, but
a temporal pattern, where abundances decrease significantly
during summer seasons, has been described for the polar regions
(Massana et al., 1998; Murray et al., 1998; Church et al., 2003;
Alonso-Sáez et al., 2008; Christman et al., 2011). We detected
high Thaumarchaeota abundances in winter surface waters,
contributing up to 38% to the total prokaryotic community. High
Thaumarchaeota abundance in surface waters have been reported
before, with maximum values of 64% in the Antarctic (Kalanetra
et al., 2009) or up to 40% in the Northern Gulf of Mexico
(Tolar et al., 2013). Measurements of absolute Thaumarchaeota
abundance in other parts of the Arctic Ocean (Amundsen Gulf
region) showed similar high gene copy numbers (105 16S rRNA
gene copies mL−1) in winter surface water as observed in our
study. Our data confirmed a cyclical shift in Thaumarchaeota
abundance in surface waters, showing a strong increase in
winter months and a decline in summer months (Figure 1B).

At the taxonomic level of OTUs, we observed a distinct
distribution of different Thaumarchaeota ecotypes that were not
directly correlated with their epipelagic or mesopelagic sampling
origin. These ecotypes rather seemed to occur according to
different water masses, representing a possibly important (yet
often neglected) environmental factor as the main driver of
Thaumarchaeota distribution. This study better defines how
water masses may influence the abundance of Thaumarchaeota
in the ocean. Water masses combine by definition a set of
measurable environmental parameters, extending the three,
including salinity, density and temperature used to define them,
as well as factors like origin and history. Due to this complexity
it remains unclear which environmental parameter is driving
the distribution of Thaumarchaeota OTUs. However, the results
of this study point toward a more complex mechanism of
Thaumarchaeota distribution than, as previously reported, depth
or ammonium concentration could explain.

Thaumarchaeota Abundance Patterns
Correlated with Specific Water Masses
The 16S rRNA gene sequence data showed that the surface
Thaumarchaeota group is dominated by a single OTU, which has
previously been found both in the Arctic and Antarctic Oceans
(Arctic 70%: Alonso-Sáez et al., 2012; Antarctic 83%: Kalanetra
et al., 2009; Grzymski et al., 2012). The most abundant OTU in
our data set was predominantly identified in surface samples,
comprising up to 88% of the Thaumarchaeota population and
sharing 98% identity with the same OTU from the Arctic and
Antarctic studies. As a result of the repeated sampling campaigns
of depth profiles over the entire polar year, we detected the
reoccurrence of this OTU in the winter surface waters and
decreasing abundance with depth. Interestingly, another single
OTU outcompeted the surface OTU and was dominant in our
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FIGURE 6 | Comparison of the relative abundance of Thaumarchaeota OTUs (16S rRNA gene) and the functional gene for ammonia oxidation (amoA).

Thaumarchaeota OTUs are divided into the two most abundant sequences (OTU 81053 and OTU 201889), with highest relative abundance at the surface or the

deep, respectively. amoA OTUs were divided into the two depth depending clusters WCA (surface) and WCB (deep). One station for each sampling month with a

surface and deep sampling point were chosen (note, due to very low abundances, summer surface samples are not included), including all five water masses

encountered during the five cruises. Ammonium concentrations at each sampling point are visualized as red diamonds (0 = below the detection limit).

mesopelagic samples. However, depth alone could not explain
the abundance pattern. Our data indicates a clear distribution
and hence niche diversification of Thaumarchaeota ecotypes
according to discriminating water masses in this area (Figure 4).
A distinct biogeography for Thaumarchaeota in the ocean has
been described before, but abundance patterns of different
Thaumarchaeota groups were only connected to depth-specific
water profile characteristics (Francis et al., 2005; Beman et al.,
2008; Sintes et al., 2013, 2016). However, there have been
studies where shifts inmarinemicrobial community composition
were correlated to differences in physicochemical water mass
parameters (Agogué et al., 2008; Galand et al., 2009; Baltar et al.,
2016).

For the first time, we have made a causal link between the
abundance patterns of different Thaumarchaeota ecotypes to
water masses entering the Arctic Ocean. Thaumarchaeota OTUs
group primarily into three clusters, with each group having one
OTU beingmost abundant. These three OTUs, putatively defined
as surface, middle and deep OTUs, seemingly exhibit a certain
niche specificity, as they vary in abundance best explained by
water mass distribution and not, as otherwise suggested, depth
or ammonium concentration. By applying this principle to our
data, twelve out of thirty-eight samples were revised with regard
to their physicochemical water mass definition. These revisions
however, can be used to explain the hydrographical system in our
study area in a more concise way.

For example, according to the physicochemical water mass
information, 1,000m samples taken from stations in the Nansen
Basin were different, either assigned to ArW or IW. However,
the Thaumarchaeota abundance pattern was highly similar
suggesting that they all originated from ArW, which is different
from other deep water masses. Based on the molecular data, we
therefore conclude that the water mass at 1,000m throughout

the Nansen Basin is ArW. We did not see this Thaumarchaeota
pattern in all of our 1,000m samples, but only from the stations
closest to the deep Nansen Basin, indicating that this OTU was
not depth-specific, but rather water mass-specific. Additionally,
the absence of the surface OTU is indicative that this water
mass did not result from mixing of SW or incoming AW, but
rather originated from the deep central Arctic Ocean. Another,
co-occurrence between an OTU abundance pattern and water
mass was found for AW. By following the changes in abundance
of the middle OTU (which correlated with higher salinity and
warmer sea temperatures) in particular, we could trace the inflow
and modification of AW. The surface OTU on the other hand
had highest abundances in SW samples, which is influenced by
ice melt. This suggests that the microbial assemblage can provide
information on the origin of the water masses, in addition to
the physical parameters. It further highlights the possibility that
water mass definition can go beyond pure physical parameters
and by including molecular microbiological data, such as OTU
distribution patterns, presented in this study, explain better the
origin and development of water masses (Fuhrman and Steele,
2008; Galand et al., 2009; Djurhuus et al., 2017).

The differences in Thaumarchaeota OTU abundance also
reveal that water masses act as clearly separated boundaries for
the distribution of marine prokaryotes, while we also defined
water masses which seemed to be the result of mixing or dilution
processes. On the one hand water masses can be considered
barriers to microbial dispersal and on the other hand influencing
community composition by physical processes like mixing
(Agogué et al., 2011; Acha et al., 2015; Djurhuus et al., 2017). This
was especially apparent in January, where two stations, just 43 km
apart, showed a totally different abundance pattern for the three
defined Thaumarchaeota ecotypes throughout the depth profile
down to 1,000m, while overall Thaumarchaeota abundance was
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comparable at both stations (Figures 2A,C). This is similar to a
phenomenon observed at the Subtropical Frontal zone, where
community composition of surface water samples was highly
different for samples taken only 7 km apart at an oceanic front
(Baltar et al., 2016).

Oceanic frontal zones and ocean currents have been
considered to be barriers of dispersal (Srivastava and Kratina,
2013). This affects to a high degree the biogeography of
microbial communities and is adding a new element in
contrast to the idea of strong regional environmental factors
structuring the marine communities (Carr et al., 2003).
Our data suggests a dual role of water masses in shaping
Thaumarchaeota community composition. They both limit and
facilitate dispersal of Thaumarchaeota OTUs, which dominate
in specific water masses and are distributed when water mass
are mixed.

16s rRNA and amoA Gene Phylogeny and
Global Relevance
In our study, the deep OTU was highly abundant in samples
up to 500m, but not in shallower depths (Figure 4). The 16S
rRNA gene sequence was the most abundant sequence (68%) of
samples taken below 100m, in a global dataset of 1256 marine
Thaumarchaeota sequences (Supplementary Figure S1). The deep
OTU sequence was not found in any samples collected above
100m, whilst the middle OTU (phylogenetically in the same
cluster as the deep OTU) was found both in epipelagic and
mesopelagic samples. The surface OTU was found in highest
abundance in the Arctic surface water in our data set. This same
OTU has been recorded in high abundance in surface waters
globally and seems to be universally successful under different
conditions, having been found both at the Equator and in the
Arctic. In fact, none of the three most abundant OTUs in our
data set was Arctic-specific and all have been found in marine
waters around the globe. Whether those three OTUs are indeed
universally successful remains unclear, as the 16S rRNA gene with
an OTU definition of 97% similarity might not be suitable to
reveal functional ecotype variation.

The distribution of different amoA genes was investigated to
see if we could identify a similar water mass-dependent pattern
as for the 16S rRNA gene data. The relative distribution of the
two AOA groups, WCA (surface) andWCB (deep), was found to
correspond with the distribution of surface and deep OTUs based
on 16S rRNA gene data. By using independent PCR approaches
it is however not possible to directly associate the 16S rRNA and
amoA genotypes, but their observed grouping, co-occurring with
different water masses may indicate that the ecotypes defined by
the 16S rRNA gene sequence could be functionally different. One
hypothesis for this functional difference is the presence of urease
genes (ureC) in the deepWCB clusters (Swan et al., 2011; Alonso-
Sáez et al., 2012; Qin et al., 2014; Tolar et al., 2016). We did
not measure the abundance of ureC genes in our samples, but it
has been shown that Thaumarchaeota ecotypes from Arctic deep
waters have a higher abundance of the ureC gene than surface
groups (Alonso-Sáez et al., 2012). The genomic differences we
observe between the surface and deep amoA types might be

an indicator for evolutionarily different physiological strategies,
including the utilization of urea by the deep WCB (Figure 5).

Identifying environmental drivers, which might explain the
proportional abundances seen in this study as well as several
other studies, will ultimately help understand the ecological role
of the different AOA types. Our data indicated a distribution
which corresponds to water masses rather than strict depth
dependencies. We measured ammonium concentrations at
the sampled stations and did not see a correlation between
ammonium availability and WCA to WCB (HAC- to LAC-
amoA) ratio, despite previous reports (Kirchman et al., 2007;
Christman et al., 2011; Sintes et al., 2013, 2015, 2016; Santoro
et al., 2017). Environmental parameters such as salinity (Francis
et al., 2005; Abell et al., 2010), nitrite (Herfort et al., 2007),
dissolved oxygen (Santoro et al., 2008), light (Mincer et al.,
2007; Merbt et al., 2012), reactive oxygen species (Tolar et al.,
2016), and temperature (Biller et al., 2012) have been suggested
to regulate Thaumarchaeota community composition. It was
further speculated that depth (Biller et al., 2012; Sintes et al.,
2013, 2015), which is often correlated with Thaumarchaeota
distribution, is a collection of other environmental factors
following a gradient (Santoro et al., 2017).We expand that idea by
highlighting that water masses, being by definition a set of several
environmental parameters, are important for the distribution of
Thaumarchaeota OTUs. Ultimately, it is therefore a challenge
to comprehensively identify a single primary driver of AOA
distribution.

CONCLUSION

We observed a co-occurrence of the three dominant
Thaumarchaeota OTUs with water masses at the inflow to
the Arctic Ocean. This supports the theory that water mass
history to a great extent defines the mesopelagic microbial
community structure (Galand et al., 2009; Reinthaler et al.,
2010). The Thaumarchaeota pattern we observed was possibly a
combination of several factors; water mass characteristics seemed
to be a significant factor, influencing the distribution of the three
most abundant OTUs; additionally, physical mixing or dilution
of water masses might be another important factor explaining
the differences in abundance of the three Thaumarchaeota
ecotypes. Our study highlights the importance of water masses in
influencing Thaumarchaeota population distributions. As water
mass distributions will change in a future Arctic Ocean, due to
processes such as increased sea ice melting (Comeau et al., 2011)
or “Atlantification” (Polyakov et al., 2005; Holland et al., 2006;
Walczowski and Piechura, 2006), so will the Thaumarchaeota
distribution change. Further research is needed to investigate
possible ecological implications of such scenarios.
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