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Abstract

This thesis provides an overview of some known post-quantum cryptography
schemes with special attention given to code-based schemes. It also discusses
some challenges that may arise trying to implement a McEliece-like cryptosys-
tem.

The last part of the thesis examines the code-based submissions to NIST’s
post-quantum cryptography standardization process.

i



Abstrakt (Norwegian)

Denne oppgaven gir en oversikt over noen kjente postkvantekryptosystemer
med spesielt fokus på kodebaserte systemer. Den diskuterer også noen ut-
fordringer som kan oppstå når et McEliece lignende kryptosystem blir forsøkt
implementert.

Den siste delen av oppgaven tar for seg de kodebaserte innleveringene til
NISTs postkvantekryptografistandardiseringsprosess.
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Chapter 1

Introduction

1.1 Introduction to cryptography
Communication occurs everywhere, in everything from human conversations to
computers transmitting binary data over a communication link. Even yawning
while reading this thesis can be regarded as a form for communication, signaling
to the world that one would rather like to spend the time watching movies or
browsing social medias, which again are forms of communication. Common to
all forms is that information is being transferred from one party to another.
“Another” may be a little misleading here because, in fact, a very common form
for communication is from one party to itself; for instance, writing a list of
things one needs to remember, and then recollect them by reading the list later.

Communication can be regarded as a system of components: a source of
information, a channel or medium conveying the information, and receivers of
the information. In this section the set of receivers is referred to as the audience
of the communication. Sometimes the audience of the communication medium
is larger than what is desired and may contain unknown receivers. The source
would like to confide only to a subset of the audience. If the source trust everyone
in its audience to a sufficient degree, it may first persuade the unwanted receivers
to leave or simply overlook the secret information. However, in many scenarios,
such as when the audience contains unknown receivers, the source naturally
shouldn’t trust all of them. Some receivers can betray and, depending on the
circumstances, history spanning several millennia strongly indicates they will
most definitely betray. The need for more sophisticated methods of transmitting
secret messages are needed which is the study of cryptography.

What cryptographers have noticed is that the receivers may interpret the
messages differently. For some, the message makes perfect sense and all the
information that the message was meant to carry were extracted successfully by
the receiver. Others are only able to understand some parts of the message and,
in some cases, there are receivers who cannot distinguish the message from ran-
dom noise and consequently aren’t able to extract any sensible information from
the message at all. As a completely made up example, Norwegians is a popu-
lation known for their love of traveling abroad and also, maybe somewhat less
known, is their love for secret gossiping. A few years ago, the neighboring coun-
tries Sweden and Denmark were by far the most popular destinations among
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Norwegians, but since the Swedish and Danish languages have so much in com-
mon with Norwegian, the Norwegians soon realized that their secret gossiping
weren’t very secret after all. Norwegians eventually started traveling further,
maybe with the goal of reaching areas whose language had less similarities with
Norwegian.

In general, if some parties share some knowledge which are unknown for
the other parties, this knowledge can be used to transfer information that only
makes sense for these parties. This shared knowledge model is these days com-
monly referred to as symmetric cryptography and the shared secret knowledge
is called the symmetric key. Furthermore, there is an encryption function taking
the symmetric key as well as the information one wants to encrypt and maps
it to a ciphered message. Lastly there is a decryption function taking the sym-
metric key in addition to the ciphered message which provides the deciphered
information. Of course, it is absolutely possible to regard the encryption and
decryption function themselves as part of the shared secret as well, which is
indeed the case for some systems today.

Sometimes one wants to communicate with parties where no shared secrets
are initially present. For this purpose, the relatively recent field of public key
cryptography, also called asymmetric cryptography, is studied. A Public Key
Cryptosystem (PKC) also has an encryption and decryption function, just as
in the symmetric case. However, in public key cryptography, the keys used for
encryption and decryption differ. One of the keys is considered public and is
therefore called the public key. The other key is private and similarly called the
private key. The idea is that if one party wants to send a message to another
party. A public key is first requested from the recipient. If the recipient hasn’t
already done so a key pair is generated. Anyhow, the public key is transmitted
to the other party fully visible to everyone in the audience. Now the public
key is used to encrypt the information at the source and then transmitted as
ciphered through the medium. The encryption partially applied with the public
key is a “trapdoor function”, not in the sense that it is theoretically impossible
to find an inverse, but doing so should take so much time and power that it is
practically infeasible. Therefore, only the party with the corresponding private
key is able to decrypt the ciphered message.

There are several potential problems here; like for instance the possibility of
an adversary injecting its own public key instead of the one that was requested.
As a consequence, public key schemes require reliable methods for authenticating
parties and their public keys. Another problem is that most PKCs are slow and
consumes much more resources than a typical symmetric system. Hence, the
use of PKCs in a lengthy communication is usually limited to the first step of
agreeing upon the symmetric key that is going to be used for the rest of the
session.

Additionally, a prominent use case of public key cryptography is for signing
messages, i.e. guaranteeing that the message received is indeed from the pro-
claimed source. In this case the private key is used to produce a signature of the
message, often in combination with a hash-function, and the public key is used
to validate the signature. Unfortunately, not all asymmetric cryptosystems are
well suited to be used in a signature scheme.
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1.2 Properties of PKCs
All PKCs depends on trapdoor functions. A trapdoor function is a function
taking a key and one or more additional arguments, with the restriction that
the partial application of the key will return an injective function that is believed
to be one-way, unless some additional secret information called the trapdoor is
known. Furthermore, a one-way function is a function that is easy to compute
on every input, but inverting the image of a random input is hard. Whether
or not one-way functions actually exist is an unsolved question and therefore
any security deductions regarding PKCs are under the assumption that such
one-way functions exist.

Some encryption schemes are said to be probabilistic. This means that
the encryption function, in addition to the message, takes one or more secret
random numbers as arguments, and these random numbers affect the resulting
ciphertext. Encrypting the same plaintext multiple times should then, with
very high probability, give different ciphertexts. As a consequence, the number
of valid ciphertexts for any probabilistic encryption is much larger than the
number of valid plaintexts.

1.2.1 Some hard problems giving rise to trapdoor func-
tions

Discrete logarithm The Discrete Logarithm Problem (DLP) can be for-
mulated as follows: Given a prime modulus p, a primitive g ∈ Z?p, and some
gx ∈ Z?p, finding an integer x such that x = logg g

x is hard to compute, especially
if p and x is large.

Now assume one is given an integer a and g, gb,m ∈ Z?p for some unknown
integer b, then it is easy to compute

(
ga,m · gab

)
, but given only g, gagb ∈ Z?p for

unknown integers a and b it is hard to find m. If one knows either a or b, then
gab can easily be found as either (ga)

b or
(
gb
)a, the inverse of which can be used

to find m. Notice that if DLP was easily solvable, one could find a and b from
ga and gb. This is the trapdoor function used in the ElGamal cryptosystem.

Integer factorization Let n be the product of two large primes p and q.
Factoring n into its prime components p and q is hard. This is called the integer
factorization problem (IFP)

Euler’s totient function can be computed efficiently for n as Φ (n) = (p− 1) (q − 1)
if p and q is known. If d · e ≡ 1 mod Φ (n) for some integers d and e then, for
any integer m, the following holds (me)

d ≡ m mod n[24]. If one knew e, n and
some m then one could easily compute me mod n, however to get back to m
the knowledge of d is needed which again requires p and q which are hard to
find from n.

This is the trapdoor function used in the RSA cryptosystem[24]. The trap-
door itself does not take any random input, and so if e is the public key, then a
message m is encrypted to the same ciphertext every time it occurs.

1.2.2 Security
The most important feature of a cryptosystem should obviously be its security.
What level of security that is required can vary, and in some cases a lower
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security level is adequate.
The french cryptographer Auguste Kerckhoffs wrote six basic principles for

cryptosystems in his paper published in 1883 [14]. While the four last princi-
ples are strongly influence by that time’s operational limitations and thus not
especially applicable today, the first two are still highly relevant.

The first principle: “Le système doit être matériellement, sinon mathéma-
tiquement, indéchiffrable” says that the system must be substantially, if not
mathematically undecipherable. When encrypting a message using a public
key, one would like that only the owner of the associated private key is able to
decrypt the ciphertext. This property is called confidentiality of the system and
can be challenged in several ways.

First, an adversary can try to guess exactly what the private key looks
like and create a perfect copy which can then be used to decrypt the ciphertext.
Depending on how large the private key space is, the chance of guessing an exact
match can be incredibly low. In some cryptosystems there may be multiple keys
that can be used to decrypt the ciphertext. Another possibility is to iterate over
all possible keys trying to find a sufficient key, which is commonly called a brute
force attack.

It is hard to find the correct key if one has no way of determining if a given
key is right or not. This can be done by trying to decrypt the ciphertext using
the key in question and see if the result is sensible. However, this does not
rule out the possibility that the key may be a false positive. If an attacker also
knows something about the context of the communication, then some words in
the message space may give more sense than others giving a stronger indication
of which key was correct or not. Trying the key on multiple ciphertext blocks
can also help eliminating false positives.

Using the public key, one can encrypt a known plaintext and then iterate over
all private keys to find one that decrypts the generated ciphertext into the known
plaintext. This key can then be used decrypt the ciphertext corresponding to
the unknown plaintext.

If the key space is larger than the message space and it is known that the
system is not probabilistic, then it can be more efficient to instead try to guess
what plaintext was sent and then generate the corresponding ciphertext to check
if it matches. This attack is weaker than the previous because it does not reveal
the secret key, and hence does not provide decryptions for previous or future
encryptions. On the other hand, sometimes one bullet is enough. This form
of attack can be prevented by introducing some level of randomness in the
encryption process, such that two encryptions of the same plaintext have a low
probability of being equal.

Kerchoffs’ second principle, also known as the Kerchoffs’ principle: “Il faut
qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber entre les
mains de l’ennemi” says that the system must not require secrecy and that it
safely can fall into the hands of the enemy. In the introduction it was mentioned
that in some cases the workings of a cryptosystem itself are kept secret, however,
following Kerckhoffs’ principle it is rare for cryptanalysts to regard this secrecy
as adding any value to the security of the system.

Attack goals Usually the attacks which are able to obtain the secret key is
considered the strongest, but they can also be rather difficult to accomplish.
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Other, less ambitious, attacks may try to only decrypt a single ciphertext block,
alter message content or even just distinguishing ciphertext blocks.

Passive and active attacks Attacks can be placed in two main categories:
passive and active. Attacks that in some way change the communication channel
between the communicating parties, modifies messages under transfer, creates
new, redirects or blocks messages are called active attacks, while eavesdropping
and other non-intrusive methods are called passive attacks. The task of the
cryptosystem is not to prevent such attacks from happening, but rather limit
the amount of information an attacker is able to obtain, i.e. maintain the
confidentiality of the messages.

Attack models Attack models is a way to categorize different forms of attacks
after which kind of capabilities the adversary is given. The following list covers
some common attack models.

• The Ciphertext-Only Attack (COA) model assumes only access to some
ciphertext blocks. A notorious example of a COA is a brute force attack
with complexity of O

(
2|Kpriv|

)
.

• The Known-Plaintext-Attack (KPA) model assumes access to pairs of re-
lated ciphertext and plaintext blocks. A variant of this model is the
Partial-known-Plaintext Attack (PPA) where only parts of the related
plaintext blocks are known.

• The plain Chosen-Plaintext Attack (CPA) model assumes everything from
KPA, but in addition the attacker is allowed to request a group of plaintext
blocks to be encrypted in one batch only once. Here, a batch means that
all the plaintext blocks must be submitted to the encryption oracle as a
group and is also returned as such. Thus an attacker can not adapt the
requests to the oracle in response to previous requests. It is also expected
that the batch requested is of a reasonable size.

• The adaptive Chosen-Plaintext Attack (CPA2) model is very similar to
CPA with the only difference being that multiple batches can be submitted
to the encryption oracle. As a consequence the attacker can adapt the
requests by observing the results of previous requests.

• In addition to the assumption in of CPA2, the Chosen-Ciphertext Attack
(CCA) model gives the attacker the possibility to request decryptions of
a group of ciphertext in a single batch from a decryption oracle. If an
attack tries to find the corresponding plaintext of some ciphertext, then
the request to the decryption oracle must be done before the ciphertext
in question is known.

• The Adaptive Chosen-Chipertext Attack (CCA2) model lets the attacker
submit multiple batches to the decryption oracle. This way the attacker
can adapt the requests in response to the results of previous ones. Obvi-
ously, if an attack tries to find the corresponding plaintext of some cipher-
text, then the decryption of this ciphertext cannot be requested from the
oracle. A stricter variant of this attack model called the Reaction Attack
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Model Access
Ciphertext Plaintext Encryption Decryption

COA Some None None None
PPA Some Partial None None
KPA Some Some None None
CPA Some Some Single batch None
CPA2 Some Some Multiple batches None
RA Some Some Multiple batches Only reactions
CCA Some Some Multiple batches Single batch
CCA1 Some Some Multiple batches Limited batches
CCA2 Some Some Multiple batches Multiple batches

Table 1.1: Attack models and the capabilities

(RA) model lets the attacker only observe the reactions of the decryp-
tion oracle, but not the decrypted result itself. Another variant called the
Lunchtime Attack (CCA1) model only allows the attacker to submit new
requests to the decryption oracle up to a certain point after which the
decryption oracle can no longer be used.

• A Side-Channel Attack (SCA) assumes that the attacker has the ability
to gain information about the operation of the encryption device through
the use of “side-channels”. This may involve physical access to the device
or just being in close enough proximity to get any information about its
operation.

In all the attack models it is assumed that the encryption and decryption al-
gorithms, in addition to the public key, are publicly known (by Kerckhoffs’
principle). Because of this an attacker will always have access to an encryption
oracle and therefore it is reasonable to assume that an attacker at least has the
capabilities of the CPA2 model when attacking PKCs. Table 1.1 summarizes
some of the attack models and the capabilities of the attacker.

Perfect secrecy Perfect secrecy means that any valid ciphertext reveals
absolutely no information about the plaintext unless one has the decryption key.
Even if an attacker had unlimited computing power it is not possible to break the
system because there is not enough information to verify if a key trial was correct
or not. The chances of guessing the correct message should be no larger than
1
|M | , whereM is set of all possible messages. A PKC cannot have perfect secrecy
because an attacker can always can try to encrypt every possible message with
the public key to find the one corresponding to the ciphertext. In cases when
a probabilistic scheme is used, then the attacker can just repeat the procedure
for every possible random input as well. The chances of finding the correct
message is then 1, which means that the ciphertext is leaking enough information
to uniquely identify the corresponding message without any knowledge of the
private key.

Semantically security The ciphertext of a plaintext may leak some infor-
mation about the plaintext, but this information is infeasible to extract. This
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can be considered a weaker, but much more realistic requirement than that of
perfect secrecy. It has been shown that semantically security and ciphertext in-
distinguishability as described below are equivalent from a security perspective.

Ciphertext indistinguishability The concept of indistinguishability is most
often explained in terms of a game that must be won within some polynomially
bounded time frame. The player must produce two different plaintext blocks
and give them to a gamemaster who picks one of the blocks at random, en-
crypts it and returns the corresponding ciphertext block. If the player is able
to guess which plaintext the returned ciphertext belongs to with probability
notably better than 1/2, then the game is won and the ciphertext blocks of the
cryptosystem is distinguishable. Otherwise, the cryptosystem is said to have the
property of indistinguishability. However, this property may heavily depend on
the capabilities of the player, i.e. which attack model is used, and therefore it
is most common to say that a cryptosystem is distinguishable under some given
attack model. If, for instance, the the CCA model is used then one can say the
cryptosystem is indistinguishable under CCA or just IND-CCA for short.

Non-malleability If an attacker can transform a ciphertext into another ci-
phertext which decrypts successfully to a different plaintext than the original,
then the cryptosystem is malleable. Otherwise, the cryptosystem is said to have
the property of non-malleability. Just like with ciphertext indistinguishability
this property depends on which capabilities the adversary is given, and therefore
it is common to say that a cryptosystem is non-malleable under some specific at-
tack model. The abbreviation for non-malleability is NM and its often combined
with the abbreviation for the attack model like NM-CCA for non-malleability
under the chosen ciphertext attack model.

One-wayness One-wayness or preimage resistance requires that acquiring the
plaintext for any given ciphertext is hard which is the most basic property of any
one-way function. One-wayness can also depend on the attack model and just as
with non-malleability and ciphertext indistinguishability there is as short nota-
tion. For example, claiming that a cryptosystem has one-wayness under chosen
plaintext attack may be denoted by OW-CPA. Those who have studied crypto-
graphic hash function may also be familiar with the related concepts of second
preimage resistance and collision resistance. These are, however, irrelevant or
trivially satisfied for one-way encryption functions because, in contrast to hash
functions, all encryption functions are injective.

1.2.3 Message expansion
PKCs have a tendency to produce ciphertexts that are longer than the plaintext
from which the ciphertext was derived. This generally undesired feature is com-
monly called message expansion or ciphertext expansion. While this feature is
not particularly interesting from a security perspective, a large message expan-
sion can be a major drawback in practical usage of the system. One can argue
that message expansion is less of a problem these days because of the high chan-
nel capacity available using modern technologies, and then again, what message
expansion is acceptable greatly depends on the use case of the system.
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1.2.4 Key sizes
Because the public key of a asymmetric cryptosystem needs to be transmitted
over the communication channel it is inconvenient if the key is very large. A
large public and private key also puts a memory strain on the device using the
cryptosystem. On the other hand, the keys should not be too short either as
brute force attacks may become practically feasible either today or in a few
years.

1.2.5 Complexity
Encrypting and decrypting messages involve a lot of computational effort and
may consume a substantial amount of memory, which can be problematic for
devices with limited resources available.

The computational effort and memory consumption can depend on the size
of the input parameters, but also some instances of the input parameters of this
fixed size may require more resources than others. The worst-case complexity is
the complexity when the worst possible set of parameters are used. Furthermore,
the average complexity is the complexity for average parameters. In some cases,
it is tedious to exactly determine the number of operations needs to be performed
or exactly the number of bits which needs to be stored on the system for any
given input; also, the exact numbers may not be very relevant when complexity
is large. Therefore, asymptotic complexity estimates can be provided instead.

1.3 Quantum computers and the consequences
for PKCs

In recent years development of quantum computers have received massive at-
tention from various tech companies and intelligence agencies. A huge amount
of resources is being spent, pursuing the goal of being the first to get their
hands on a device capable of doing large scale general quantum computations.
As with all project receiving enormous investments, it’s not only fulfilled out of
pure scientific interest, but also as a tool for gaining power.

Several algorithms intended for quantum computers have been developed
which are able to reduce the time complexity of several well-known problems to
a level that is practically feasible. The most outstanding example is probably
Shor’s algorithm [25] which are able to solve IFP in polynomial time running
on a quantum computer and it can also be used to solve DLP efficiently.

The Hidden Subgroup Problem (HSP) states that given a group G which
has a subgroup H < G, a set X and a function f : G → X that acts as a
distinguisher for the left cosets of H < G, it is hard to find a generating set
for H. That f is a distinguisher means that f (g1) = f (g2) if and only if
g1H = g2H, i.e. g1 and g2 generates the same left coset of H < G. For certain
abelian groups G it is known that HSP can be solved efficiently with a quantum
computer using quantum Fourier transformations. Shor’s algorithm reduces
IFP to an instance of HSP over a cyclic group ZN and DLP to an instance of
HSP over an abelian group ZN × ZN which both can be solved on a quantum
computer using quantum Fourier sampling.
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As IFP and DLP are common trapdoors used in asymmetric cryptosystems
the consequences can be devastating if they suddenly are getting feasible to
solve. Some organizations have had the capability of storing massive amounts
of encrypted data for several years in hopes of decrypting them successfully in
the future. Having one or more parties with access to a large-scale quantum
computer in a world where communication relies solely upon IFP and DLP,
makes it impossible to trust services like banking, e-mail and electronic IDs.

Another important quantum procedure is Grover’s algorithm [13] which
given a black-box function (i.e. one can evaluate it, but not see its inner oper-
ations) and an output of this function finds an input which produces the given
output with high probability. On a classical computer the best way to solve this
problem is to try evaluating the function with inputs from the domain until one
input matches the given output. In the worst case one has to try all possible in-
puts before finding the correct match, but on average the correct match is found
after trying half of the domain. With a quantum computer Grover’s algorithm
can be used to solve this problem with an asymptotic worst-case complexity of
just the square root of the size of the domain.

It’s probably helpful to get a better understanding of why quantum algo-
rithms have the potential of being faster than their classical counterpart while
running on a quantum computer. Therefore, in this section a short introduction
to quantum computers is given.

In classical computing, certain algorithms can take advantage of several pro-
cessor cores to execute instructions in parallel and, depending on the algorithm,
may obtain at most a linear speedup (with slope ≤ 1) in the number of cores.
This means if the algorithm has exponential complexity, then one need an expo-
nential increase in the number of processor cores to be able to solve it efficiently.
In practice this doesn’t work.

Unlike classical system the amount of quantum parallelism of a quantum
system grows exponentially by the size of the system[23]. Whether this quantum
parallelism can actually be used to speed up computations or whether it is real
at all is still debated. The biggest problem with quantum parallelism is that in
contrast to classical computing one can only measure the result of exactly one
of the parallel threads and which one is measured is probabilistic. Performing
the measurement will also destroy the result of all other threads.

Quantum computers uses quantum bits (or qubit for short) instead of clas-
sical bits. While a classical bit has two states 0 and 1, the qubit can be in

a linear superposition of basis states. The basis states are |0〉 =

[
1
0

]
and

|1〉 =

[
0
1

]
and thus a linear superposition of such states can be written as

|ψ〉 = α |0〉 + β |1〉 =

[
α
β

]
. Here α and β are complex numbers with the

additional constraint that |α|2 + |β|2 = 1. One can think of a quantum state
as being a point on the surface of the unit sphere. Measuring a qubit means
that its state will immediately “collapse” into one of the basis states with prob-
ability |α|2 for |0〉 and |β|2 for |1〉. Just as with classical bits qubits can be
combined into sequences. The combination of two qubits |ψ〉A = αA |0〉+βA |1〉
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and |ψ〉B = αB |0〉 + βB |1〉 is |ψ〉AB =


αAαB
αAβB
βAαB
βAβB

 =


a
b
c
d

 and can be mea-

sured to any of these four states |00〉 =


1
0
0
0

, |01〉 =


0
1
0
0

, |10〉 =


0
0
1
0

,

and |11〉 =


0
0
0
1

. The operation used to combine the qubit is more generally

called a tensor product denoted with the symbol ⊗ and a combination of n
qubits can then be expressed as |ψ〉ABC... = ψ0 ⊕ ψ1 ⊕ ... ⊕ ψn−1. Notice that
n qubits can be in a superposition of 2n different states at once.

1.4 Alternative cryptosystem variants
There are several PKCs in development being based upon problems not believed
to be practically solvable with a quantum computer, many suffering problems
of their own like large keys sizes, poor plaintext to ciphertext ratio, and slow
encryption or decryption. These include lattice-based, multivariate, hash-based,
and code-based systems. Here we will give a very shallow introduction to some
multivariate and lattice-based problems and then in the following chapters the
focus will be on code-based systems.

1.4.1 Multivariate systems
Multivariate PKCs have the property that their public key is a set of multivariate
polynomials: P (x1, . . . , xn) = (p1(x1, . . . , xn), p2(x1, . . . , xn), . . . , pm(x1, . . . , xn)).
Given some plaintext X = (x1, . . . , xn), the ciphertext is a polynomial evalu-
ation. P (X) = (p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)) = (c1, . . . , cm) The private
key is then any trapdoor for computing P−1. Multivariate systems can also
be used for signatures in the following way. Let h1, . . . , hm be some informa-
tion that should be signed. Then compute the signature using the private key
(x1, . . . , xn) = P−1(h1, . . . , hm) The signature can be verified using the public
key (h1, . . . , hm) = P (x1, . . . , xm). Solving a set of m randomly chosen (nonlin-
ear) equations with n variables is known to be NP-complete.

1.4.2 Lattice-based systems
Consider any set of linearly independent vectors with entries from the real num-
bers. The additive group of all linear combinations of these vectors with integer
coefficients is a lattice. There are several different one-way trapdoors associated
with lattices and as expected lattice-based cryptosystems relies on some of these
hard lattice problems.

The shortest vector problem (SVP) tries to find the shortest non-zero vector
with respect to some norm (usually the euclidean norm). At first this problem
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may not seem very difficult at all, and for some sets of basis vectors it is in fact
easily solvable like when short nearly orthogonal vectors are used.

Another problem called the closest vector problem (CVP) here a vector not
necessarily in the lattice is given and the challenge is to find the closest vector
to it in the lattice.

1.5 Introduction to coding theory
Information can be represented in several different forms and some forms are
better suited for some applications than others. Finding good ways to represent
the information for a given application and making the transition between the
different representations is the science coding theory.

Example 1. Communication with errors

Assume Alice and Bob is communicating. Alice is a woman of few words
and so the only two possible words she will use are “yes” and “no”. Bob knows
this, but suffers from a bothersome hearing loss and so he has a (1− p) = 0.30
chance of hearing the wrong word. He is never satisfied before he is at least
τ = 0.95 certain that he catches the right words and therefore he asks Alice to
repeat her message until he is satisfied. On average, Alice will need to repeat
her message n = 17 times before Bob is satisfied where n is the minimum that
meets the following relation:

τ ≤
∑

bn2 c<k≤n

(
n

k

)
pk (1− p)n−k

Alice quickly gets tired of answering Bob’s repeat requests and therefore she
decides to encode her messages so that each word is repeated n times immedi-
ately.

1.5.1 Information value of a message
Intuitively information is what one gets from reading the newspaper, watching
TV, listening to friends or more generally interpreting sources of data. For
something to be considered information it must, at least partially, resolve the
uncertainty of one or more random variables.

In the example above, even though Alice is creating longer messages by
repeating each word, the total information the messages contains does not in-
crease because the additional redundant message contents is fully dependent on
already provided information.

1.5.2 Channel models
Often, it can be beneficial to assume a model of the channel in question which
captures and illustrates the behavior of the channel. A widely used such model
is the Binary Symmetric Channel (BSC). In the BSC model, every message bit
has a fixed chance ε of flipping. Example 1 can be modeled with the BSC model.
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1.5.3 Cope with noisy channels
Transmitting a message over a channel can introduce multiple errors or erasures
of data bits. With all the errors, the receiver may not be able to tell what the
original message was supposed to be. To avoid this redundant information is
added to the original data before transmitting. The receiver is then hopefully
able to use this redundant information to check if any errors occurred, or some-
times even correct the any errors that where detected. The transformation of
data from one form to another form that is more robust against faults intro-
duced by the channel is the science of coding theory. Ultimately one would like
to correct as many bits possible using few redundant data bits.

The above is primary use cases for coding theory, but it can also be used for
cryptographic applications as will be explained later.

Let A be a source alphabet and A? be all sequences of As. A code C : M →
A? is an injective mapping from a set M to codewords of A?, and each codword
is just a sequence of codeword symbols from an alphabet A. An encoder for
C is just an algorithm performing the mapping C, while a decoder for C is an
algorithm that first maps an element of A?to a codeword of C (or fails) and then
proceeds to find the preimage of the found codeword under C. Transmission
of a codeword over a channel may introduce errors such that it is no longer
a proper codeword. A Maximum Likelihood (ML) decoder always finds the
codeword that most likely was sent . Whether or not a decoder is ML depends
on the properties of the channel. A minimum distance decoder always finds
the codeword that most closely resembles the received word, i.e. the codeword
with the lowest edit distance. A special case of edit distance for fixed length
binary sequences is the Hamming distance. The minimum distance decoders
stays minimum distance decoders even if the properties of the channel changes.
If A has a zero element, the weight of a codeword in C is the number of non-zero
entries. The minimum distance of C is the minimum distance between any two
distinct codewords.

If C : Ak → An where k and n are integers, then C is called a block code.
The code rate of a block code C is given as R (C) = log |C| /n log |A| and as
such is a measure of how much redundant information that is included in the
codewords. Usually the basis used for the logarithms is 2 which means that the
unit of R (C) is bits. If the minimum distance of a block code C is d then this
gives an upper bound of (d− 1) /2 for the number of correctable errors and d−1
for the number of detectable errors.

1.5.4 Linear block codes
A [n, k] linear block code C is an injective mapping from Fkq to a linear subspace
of a vector space Fnq with dimension k, where Fq is a finite field of q elements.
The size of C is qk. The linear code can be generated by all linear combinations
of k linearly independent codewords. Let G be the (k × n) matrix having these
linear indendent vectors as rows. G is called a generator matrix for C and each
m ∈ Fkq generates a unique linear combination in Fnq when multiplied with G.
The codewords of C can also be defined in terms of a ((n−k)×n) check matrix
H. In this case a word c is a codeword if and only if it satisfies all the check
rows of H, this means that the product cHT must equal the 0-vector.

A generator matrix for a linear code generates the same set of codewords even
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after any combination of elementary row operations (row swaps, row scalings
with nonzero scalar and additions with other rows). However, the mapping
between messages and codewords is changed under such operations, and in that
regard the code is changed. All invertible matrices can be written as a product
of elementary row operations. If G is a generator matrix and A is an invertible
matrix then AG generates the same set of codewords as G. If A also happens to
be a permutation matrix the weights of the vectors v, vA and

(
AvT

)T are equal.
Assume there is a known efficient decoder which can decode t errors for the code
generated by G. A message m is encoded as mGP where P is a permutation
matrix. Under transmission some errors occurs so that the received word is
mGP+e where e is a vector of weight as most t. To find the original message the
receiver (which happens to know P ) can observe this relation (mGP + e)A−1 =
mG+ eP−1. eP−1 has the same weight as e and therefore the efficient decoder
can be used to decode mG+eP−1 to m. For another example, assume that A is
invertible, but not necessarily a permutation, and mAG+e is received. Because
AG generates the same set of codewords as G the efficient decoder is applicable
and will return mA from which m is found as mAA−1.

A (k × n) generator matrix is said to be on systematic or standard form if the
leftmost (k × k) block is the identity matrix. A generator matrix on systematic
form greatly simplifies the decoding procedure as the k first bit of any codeword
is the original message. The code generated by G in sytematic form is also said
to be systematic in its first k coordinate positions.

If G is on standard form [Ik|P ] then a parity check matrix for G is given as
H =

[
−PT |In−k

]
. Note that neither the parity check nor the generator matrix

is unique and a given parity check matrix may not be as suitable for certain
decoders as others.

1.5.5 Binary Goppa code
Let g (x)be an irreducible polynomial over F2m of degree t without multiple
roots and let L be a sequence of n distinct elements in from F2m that aren’t
roots of g (x). Let V be the (n× t) Vandermonde matrix of the sequence L, that
is Vi,j = Lji where i ∈ {0, ..., n− 1} and j ∈ {0, ..., t− 1}. Let D be a (n× n)

diagonal matrix with entry Di,i = g (Li)
−1. A (t× n) parity check matrix for

the Binary Goppa code defined by g (x) and L is given as H = V TD or simply
Hi,j = Lij · g (Lj)

−1 where i ∈ {0, ..., t− 1} and j ∈ {0, ..., n− 1}. From here
one can find the ((n− t)× n) generator matrix. The most widely used decoder
is Patterson’s algorithm which can correct t errors.

1.5.6 Quasi-cyclic codes
A quasi-cyclic (QC) code is a linear block code which can be generated by a
block-circulant generator matrix G. A block-circulant matrix can be partitioned
into equally sized square blocks such that each block has a circulant structure.
The number of blocks that partitions a row in G is called index n0 of the QC
code. The order r of the circulant square blocks is also called the order the
QC code. The length of each codeword is in that regard n0r. The number of
circulant blocks partitioning any column of G will be referred to as the number
k0. Furthermore the dimension of C is k0r. The notation:(n0, k0)-QC code,
specifies explicitly the values of n0 and k0.
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Circulant blocks of order r in Fr×rq is ring-isomorphic to the quotient polyno-
mial ringR = Fq [X] / (Xr − 1). An isomorphism maps the first row (a0, ..., ar−1)
of any circulant matrix to the polynomial a0 + a1X + ... + ar−1X

r−1 ∈ R.
The product of two polynomials A = a0 + a1X + ... + ar−1X

r−1 and B =
b0 + b1X + ... + br−1X

r−1 in R is given by the following formula A · B =
a0 ·b0 +a1br−1X+ ...+ar−1b1X

r−1. Furthermore, addition is given by A+B =
(a0 + b0) + (a1 + b1)X + ...+ (ar−1 + br−1)Xr−1. Because of this the circulant
blocks can be represented as polynomials in R. Using the alternative represen-
tation for the circulant blocks the generator matrix of a (n0, k0)-QC code can
be viewed as an (k0 × n0) matrix over the polynomials in R.

1.5.7 Regular binary MDPC codes
A regular Moderate Density Parity Check (MDPC) code is a binary linear block
code with a ((n− k)× n) parity check matrix H of moderately low density, but
constant row weight. Moderately low density means that the weight of the rows
grows sublinear in n, typically O (log n) or O (

√
n). By contrast, a Low Density

Parity Check (LDPC) code has row weights that are constant in n.

1.5.7.1 Decoding MDPC codes

For decoding a binary MDPC code one can among others use a simple Bit
Flipping (BF) algorithm or a much more complex belief propagation method[15].
Belief propagation has shown itself very efficient for decoding LDPC codes,
however with MDPC codes one can expect a much higher frequency of short
cycles in H’s Tanner graph. Belief propagation method doesn’t deal well with
graphs containing many short cycles. One of the greatest advantage of belief
propagation is its capability of making use of “soft” information, i.e. instead of
inputs bits being in either of two states it can carry a probability of being in
either state. For the cryptographic applications of MDPC codes that will be
discussed later only hard errors are considered.

The Tanner graph of H is a bipartite graph and can be constructed from H
by creating a n − k parity check nodes

{
p0, ..., p(n−k)−1

}
and n variable nodes

{v0, ..., vn−1}. pi is connected to vj if and only if the bit at Hi,j is 1. Assume
that a parity check is satisfied if the sum of its input is 0. A single flip BF
algorithm goes as follows. First initialize the values of the variable nodes with
the initial (hard) beliefs given by the input word. For each of the parity check
nodes, mark them as either satisfied or unsatisfied depending on whether the
sum of all connected nodes is 0 or not. If all parity checks are satisfied the
algorithm outputs the current beliefs on the variable nodes, otherwise flip value
of the variable node that is connected to most unsatisfied parity check nodes
and reevaluate the check nodes.
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Code-based systems

The problem that code-based cryptosystems are ultimately based upon is the
hardness of decoding a random linear code. This problem cannot be solved in
polynomial time. However, there exist non-random and quasi-random linear
codes that admit polynomial-time decoding algorithms.

McEliece-like and Niederreiter-like systems are the two main categories of
code based systems. At the core McEliece-like systems always publish some
kind of encoder for some error-correcting code together with error correction
capability of the decoder while the decoder itself is kept private. Encryption is
then done by encoding the message and then applying some amount of random
errors not surpassing the error correction capability of the encoder. Decryption
is done by decoding the received message using the secret decoder.

2.1 Trapdoor based on linear block codes
In 1978, Berlekamp, McEliece and van Tilborg showed the problem of decoding
a general linear code and the problem of finding weights of a general linear code
is NP-Complete[8]. For a binary linear code C with a generator matrix G and a
check matrix H, assume that the word c = mG+ e was received over a channel
that uniformly distributes a number of errors over the codeword. The syndrome
is computed as s = cHT = (mG+ e)HT = mGHT + eHT = eHT . This means
that to find e one can find a solution to the system s = eHT with e having either
some expected weight or having the smallest weight possible. What Berlekamp,
McElice and van Tiborg showed was that finding such a solution e is hard for a
general linear code.

Now, if one knows about an efficient decoder for a linear code and distin-
guishing it from a random code is NP, then it can be used together with general
decoding problem to form a trapdoor. Here the efficient decoder is the additional
information one needs to solve the problem easily.

15
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2.2 Noisy channel coding versus code-based cryp-
tography coding

When considering transmissions of n-bits codewords over a BSC with error
probability ε one expects the probability of any number of errors to follow a
binomial distribution with mean εn. The error correcting code should have an
error correction capability higher than the mean so that it is able to all errors
up to a reasonable threshold.

When error correcting codes are used as part of a code-based cryptosystems,
a channel that distributes a fixed or less than a fixed number t of errors uniformly
over the codeword is used. That is, after n bits have passed through the channel
at most t of those bits where flipped while the others remained untouched. In
contrast to the binary symmetric channel, this channel depends on previous
outcomes. Because there is a known upper bound for the number of errors that
can occur it is possible to use a decoder with an error correction capability very
close to t.

2.3 McEliece cryptosystem
The McEliece cryptosystem was developed by Robert J. McEliece in 1978[17]
and its security is based on the hardness of decoding a general linear code
and the difficulty of distinguishing a Goppa code from a random linear code.
Up until recently the McEliece cryptosystem did not get a lot of attention,
partly because of the very large key size of the original proposal. The original
system uses binary irreducible Goppa codes, which is defined by an irreducible
polynomial g(x) of degree t over a finite field F2mwithout multiple zeroes and
a sequence L of n distinct elements, also from F2m , that are not roots of g(x).
The minimum distance is 2t + 1 and it can correct t errors. There is also a
generalized version where any linear t error correcting code can be used instead
of a binary Goppa code.

Algorithm 2.1 McEliece Key Generation

1. Decide desirable values for codeword lengthn and error correction capa-
bility t.

2. Find a binary Goppa code with a generator matrix G ∈ Fk×n2 and having
a decoder that are able to correct t errors.

3. Create a random permutation matrix P ∈ Fn×n2 .

4. Create an invertible scrambler matrix S ∈ Fk×k2 .

5. Compute SGP

6. Public key is (SGP, t)

7. Private key is (S,G, P )
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Algorithm 2.2 McEliece Encryption
Given message m ∈ Fk2 and public key (SGP, t)

1. Compute mSGP

2. Generate binary error string e of weight t

3. Return mSGP + e

Algorithm 2.3 McEliece Decryption
Given ciphertext mSGP + e ∈ Fn2 and private key (S,G, P )

1. Compute mSG+ eP−1 = (mSGP + e)P−1

2. Decode mSG+ eP−1 to get mS using the efficient decoder.

3. Return m = mSS−1

The purpose of the scrambler and permutation matrix is to hide the structure
of the private generator matrix G. If an attacker is able to find G the task of
finding an efficient decoder is well studied and not too hard therefore hiding G
is very important.

While the process of encryption and decryption can be done very efficiently
the main drawbacks of the MEC is its huge key sizes compared to the security
level it provides and message big message expansion.

McEliece originally suggested to use n = 1024, k = 524 and t = 50 for 80
bits security, but that was back in 1978 and these parameters is now insufficient.
Bernstein, Lange and Peters’ improvement to Stern’s attack reduced the security
of MEC with the original parameters to about 58 bits.

More recently PQCRYPTO has recommended to use n = 6960, k = 5413
and t = 119 for 2128 bits post-quantum security[5]. This gives a public key of
n · k = 37674480 bits.

2.4 Niederreiter cryptosystem
Very similar to the McEliece cryptosystem is the Niederreiter cryptosystem[22].
Instead of operating in the codeword domain, the Niederreier cryptosystem
operates in the syndrome domain. It first encodes the message to vectors of
length n. It is yet unbroken when Goppa codes are used.

The Niederreiter cryptosystem has an advantage over the McEliece cryp-
tosystem in that the ciphertext messages can be shorter.
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Algorithm 2.4 Niederreiter key generation

1. Select a linear code which are able to correct t errors, has a known efficient
decoder and generator matrix G ∈ Fk×n2 .

2. Generate a parity check matrix H ∈ F(n−k)×n
2 for G.

3. Create a random permutation matrix P ∈ Fn×n2 .

4. Create an invertible scrambler matrix S ∈ F(n−k)×(n−k)
2 .

5. Compute SHP ∈ F(n−k)×n
2 .

6. Public key is (SHP, t)

7. Private key is (S,H, P )

Algorithm 2.5 Niederreiter encryption
Given plaintext m ∈ Fk2 and public key SHP

1. m is encoded as a binary string with length n and weight t becoming
f (m) = e.

2. Return chipertext SHPeT

Algorithm 2.6 Niederreiter decryption

Given ciphertext SHPeT ∈ F(n−k)
2 and private key (S,H, P )

1. Compute HPeT = S−1
(
SHPeT

)
2. Use the efficient decoder to find PeT from HPeT

3. Compute e =
(
P−1

(
PeT

))T
4. Return plaintext m = f−1 (e)



Chapter 3

Implementing a McEliece-like
system

In this part various implementation details that can be helpful when implement-
ing a McEliece-like system are discussed. This is not supposed to be a complete
guide and the steps shown are not necessarily the best ways to accomplish a
given task.

3.1 Constructing, representing and computing with
finite fields

Finite fields are widely used in both cryptography and coding theory, therefore
it may not come as a surprise that they have found their use in McEliece-
like cryptosystems. Finite fields have many beneficial properties making them
appropriate in several situations, especially where multiplicative inverses are
required.

3.1.1 About fields and finite fields
A set F and two binary operations + : F × F → F and · : F × F → F called
addition and multiplication is a field if the following conditions are satisfied:

• ∀a, b, c ∈ F : (a+ (b+ c) = (a+ b) + c), Addition is associative

• ∃0 ∈ F : (∀a ∈ F : (0 + a = a)), Exists an additive identity element 0

• ∀a ∈ F : (∃ − a ∈ F : (a+ (−a) = 0)), Exists a negative (additive inverse)
of every element

• ∀a, b ∈ F : (a+ b = b+ a), Addition is commutative

• ∀a, b, c ∈ F : a · (b · c) = (a · b) · c, Multiplication is associative

• ∃1 ∈ F/{0} : (∀a ∈ F : (1 · a = a)), Exists a multiplicative identity ele-
ment 1 different from the additive identity element

19
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• ∀a ∈ F :
(
∃a−1 ∈ F :

(
a · a−1 = 1

))
, Exists a multiplicative inverse for

every element except 0

• ∀a, b ∈ F : (a · b = b · a), Multiplication is commutative

• ∀a, b, c ∈ F : (a · (b+ c) = (a · b) + (a · c)), Multiplication distributes over
addition

Additionally if the set F is finite it is called a finite field. The number of elements
in a field is called its order. For finite fields, this order is always a prime power.
Furthermore for every prime power q there exists fields with order q and they
are all isomorphic, which means they are structurally identical up to relabeling
of their elements.

To simplify the syntax involved when adding an additive inverses or multi-
plying with multiplicative inverses two new binary operations is defined. First,
subtraction− : F ×F → F performs the mapping a− b = a+ (−b). In the same
way, division / : F × F → F performs the mapping a/b = a · b−1.

3.1.1.1 Primitive fields

Prime fields are finite fields of prime order p and are convenient in the sense
that they are isomorphic to Zp and therefore can be easier to compute with. All
finite fields that are not a primitive field is an extension of a primitive field.

3.1.1.2 Additional warning regarding integer types in hardware

Humans, with some exceptions, are not flawless. For the author, abstract alge-
bra (and mathematics in general) doesn’t come easy, and therefore some warn-
ings of possible mistakes have been included, even if obvious for some.

The following is a warning regarding the hardware supported integer types
found in most computers. As finite fields of order 28, 216, 232, 264 exists it is
easy to think (at least for the author it was) that the 8-, 16-, 32-, and 64-bit
types together with addition and multiplication modulo 28, 216, 232, and 264

respectively are finite fields. However, none of these are finite fields as they lack
multiplicative inverses for several numbers. For instance the element 2 does not
have a multiplicative inverse in any of them. In fact, no Zq is a field unless q is
a prime, in which case it’s always a field.

3.1.2 Comfort of a programming language
Hardware details are complicated, and to avoid diving into a mess of com-
patibility issues the abstractions and simplifications provided by programming
languages is helpful. Here it is assumed that the cost of these abstractions does
not account for more than some small constant factors.

Assume the following primitives types are provided: “u8”, “u16”, “u32” and
“u64”, whose names indicated their sizes in bits. Addition and multiplication
with these types can be configured to behave equivalently to the corresponding
operations in Z8, Z16, Z32 and Z64 respectively, but division has a different
semantic. Also there exists a remainder operation which for these unsigned
types is the same as a modulo operation on an integer. For the rest of the
section the primitive data types may be referred to as containers, as this is their
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primary use case. To avoid confusion between field operations and operations
on the containers provided by the programming language, the field addition,
multiplication, subtraction and division are appended a subscript with the order
of the field they applies to. As all fields of a given order are isomorphic there
should not be any ambiguity of the meaning of this notation.

3.1.3 Representing primitive fields
Field elements needs to be represented using one of the primitive data types or
some complex data structure emulating larger or smaller containers. If elements
of a primitive field of order p should be stored, then at least dlog2 (p)e bits
are required from the container type. For reasons that will become clear in
the following section it can be advantageous to require twice as many bits,
i.e.d2 · log2 (p)e bits, for storing intermediate results of multiplication with these
elements.

Storage Largest prime order
8 bit 251
16 bit 65 521
32 bit 4 294 967 291
64 bit 18 446 744 073 709 551 557

Table 3.1: Largest prime order field for
containers

With such a requirement the
largest primitive field that can be rep-
resented with a 32-bit container is
one of order p = 4.294.967.291, but
to store the result of the multipli-
cation before the modulo reduction
takes place a 64-bit container should
be available as well. If fields of larger
order are required it is possible to em-
ulate larger containers.

Currently the containers themselves are not aware of which field the ele-
ment they represent belongs to. It is possible to make them self-aware in the
sense that they are part of a structure containing or with a reference to this
meta-data. In this thesis however, a slightly different approach is used where a
structure containing all necessary field meta-data is created independently and
operations on the field element containers is always done from the context of
this structure. The main reason for this decision was to save some memory and
avoid unnecessary data duplication. Elements of the same field are commonly
aggregated into more complex types like matrices, and data duplication can
significantly impact their total storage size.

3.1.4 Computing with primitive fields
Field addition and multiplication can be regarded as a two step computational
processes. The first one is an additive step or multiplicative step, which is then
followed by a reduction step. There is also other methods that takes

3.1.4.1 Addition

The first step of a field addition is to do a regular integer addition, but for this
to work one must make sure that no overflow takes place, i.e. that the result
can fit within the container. To keep the sum of two n-bit numbers at most
n+ 1 bits are needed.

After the addition step the result needs to be reduced modulo the order of
the field. The operands of the addition is never lager than p − 1 and therefore
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the largest achievable result is 2 (p− 1) = 2p − 2. So if the sum is larger or
equal to p, the reduction is performed by subtracting p only once.

3.1.4.2 Multiplication

Just as with addition an overflow of the container must be prevented. To keep
the product of two n-bit numbers at most 2n bits are needed. An integer division
operation can be used to find what multiple of p must be subtracted to reduce
the result, but a more straightforward and possibly better solution is to just use
the remainder operation, which for positive integers should be equivalent to a
modulo operation.

3.1.4.3 Subtraction

When doing integer subtraction, if the left hand side is strictly less than the right
an overflow will happen. To prevent this p can be added to the left hand operand
before the subtraction takes place in this case. Reduction is unnecessary as the
result will be less than p anyway.

3.1.4.4 Division

Division is the same as multiplying the left hand operand with the inverse of the
right hand operand. The inverse can be found by using the extended Euclidean
algorithm. Note that all elements except zero have multiplicative inverse. The
procedure is shown through the following example.

Example 2. Finding the multiplicative inverse of 8004 in GF (65521) using the
extended Euclidean algorithm and then using this number to solve 5000/8004.

i ri qi ti

0 65521 — 0
1 8004 r0/r1 = 8 1
2 r0 − q1 · r1 = 1489 r1/r2 = 5 t0 − q1 · t1 = 65513
3 r1 − q2 · r2 = 559 r2/r3 = 2 t1 − q2 · t2 = 41
4 r2 − q3 · r3 = 371 r3/r4 = 1 t2 − q3 · t3 = 65431
5 r3 − q4 · r4 = 188 r4/r5 = 1 t3 − q4 · t4 = 131
6 r4 − q5 · r5 = 183 r5/r6 = 1 t4 − q5 · t5 = 65300
7 r5 − q6 · r6 = 5 r6/r7 = 36 t5 − q6 · t6 = 352
8 r6 − q7 · r7 = 3 r7/r8 = 1 t6 − q7 · t7 = 52628
9 r7 − q8 · r8 = 2 r8/r9 = 1 t7 − q8 · t8 = 13245
10 r8 − q9 · r9 = 1 r9/r10 = 2 t8 − q9 · t9 = 39383

The last non-zero remainder is 1, indicates that 8004 and 65521 are relatively
prime.

8004 · 39383 = 1 so 8004−1 = 39383
5000/8004 = 5000 · 39383 = 24395

As seen from the example, the process of finding a multiplicative inverse can
be expensive and therefore division using this approach will also be relatively
slow compared to the other field operations. For small fields it may be possible
to store the inverse of every element and then look them up in a table when
needed.
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3.1.4.5 Fields of order 2

For fields of order two, the process of addition and multiplication can be sim-
plified. Addition in the field behaves the same way as a “bit-wise exclusive-or”
operation. Similarly multiplication can be carried out as a “bit-wise and” oper-
ation.

Another thing to notice is that addition and subtraction are identical oper-
ations.

3.2 Dealing with linear transformations
McEliece-like cryptosystems being code-based usually implies that a lot of lin-
ear transformations, more specifically matrix and vector computations, will be
needed. In this section various issues considering matrices, vectors and oper-
ations between them will be discussed. This includes different ways of storing
matrices of varying layouts and how to compute matrix products.

3.2.1 Schoolbook matrix multiplication
There is a number of sophisticated algorithms that can improve the performance
of a matrix multiplication, but these often have restrictions how the matrices are
laid out in memory. Many of the matrices that are dealt with in this thesis have
a lot of structure that can be used as an advantage for more efficient specialized
matrix multiplication. In these cases it is easier to base matrix multiplication
on the schoolbook algorithm and evolve it from there. Here is the algorithm for
the schoolbook matrix multiplication:

Algorithm 3.1 Schoolbook matrix multiplication

fn mult ip ly_matr ices (A: Matrix<r , s>, B: Matrix<s , t>) −> Matrix<r , t> {
l e t C: Matrix<r , t> = Matrix<r , t >: : ze ro
f o r a l l ( i , j , k ) in cartes ian_product ( ( 0 . . r ) , ( 0 . . t ) , ( 0 . . s ) ) {

C[ i ] [ j ] += A[ i , k ] ∗ B[ k , j ]
}
re turn C

}

3.2.2 Composite matrices
To better take advantage of the fact that matrices can consist of sub-matrices
with different structure one can consider composite matrices.

Example 3. Systematic matrices
Consider the followingm×n matrix A = [I|B] where I is the identity matrix

and B is some unstructured matrix. A naive storage approach for A would store
every individual entry into an array costing mn times the size of each entry .
The leftmostm×m sub-matrix of A is the identity matrix and a better approach
for storing this matrix is often to just store the rightmost m ×m − n entries.
In many cases some matrices will be systematic by assumption when used in
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code-based cryptosystems and therefore no additional meta-information needs
to be stored.

Representing composite matrices compactly doesn’t help very much if one
cannot do computations with them. The most common computation that will
be needed is a vector matrix product. Assume the following composite m × n
matrix is given along with a row vector v.

A =

 A0,0 · · · A0,n

...
. . .

...
Am,0 · · · Am,n


v = (v0, ..., vm−1)

Also let ri be the row range that sub-matrix Ai,j occupies in A and vri be
the sub-vector of v only containing the elements within the the range ri. The
product can be computed as follows:

vA = (vr0A0,0 + · · ·+ vrmAm,0) | · · · | (vr0A0,n + · · ·+ vrmAm.n)

This way, if for example A0,0 is the identity matrix, then the this part vr0A0,0

can be computed very efficiently as simply vr0 .

3.2.3 Very sparse matrices
If a matrix has a very few number of non-zero elements it can be more efficient
to just store the coordinates of these elements together with their values instead
of storing the whole matrix.

Multiplying two sparse matrices can be done as follows:

Algorithm 3.2 Multiplication of sparse matrices

fn mult ip ly_sparse_matr ices (A: Matrix<r , s>, B: Matrix<s , t>) −> Matrix<r , t> {
l e t C: Matrix<r , t> = Co l l e c t i on <( int , int ,T)>
f o r a l l ( i , k , x ) in A {

f o r a l l (k , j , y ) in B {
C[ i ] [ l ] += A[ i , s ] ∗ B[ s , j ]

}
}

}

3.2.4 Circulant square blocks
Circulant blocks can be fully determined by just the first row or column. Let
A be an m × n circulant matrix block and A(i,j) be the element at row i and
column j, then A(i,j) = A(i−j mod m,0) = A(0,j−i mod n).

Multiplying two circulant matrices is done by multiplying the first row of
the left hand matrix with the first column of the right hand matrix. The result
is also circulant matrix.
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3.2.5 Generating quasi cyclic matrices
There is a need to generate invertible circulant matrices. Parameters should be
the size n, the cyclic shift , and the weight w of the rows.

Algorithm 3.3 Construct QC-MDPC matrix, then check for invertibility

1. Generate a vector of length n containing only zeroes. Pick w non-repeating
indices independently and set the correponding values to ones. The vector
and n0 now fully describes a quasi cyclic matrix.

2. Check for invertability by checking if the matrix is row equivalent to the
identity matrix using gauss-jordan elimination. If the matrix is invertible
we are done, otherwise we redo the process.

Constructing QC-MDPC matric, then check for invertibility This
method can generate all possible invertible quasi-cyclic matrices. On the other
hand the extra check for invertability is releatively costly and so increases the
computational complexity. There is also a problem of having to redo the process
when the matrix was singular which is also costly, however it has been shown
that the chances of getting a singluar matrix is low.

Using the methods by Fabsic et al. Recently Fabsic et al.[11] showed
that for some values of n, generating a invertible circulant matrix with some
prescribed number of ones is easy. They identified the following special cases:

• n is prime, the order of 2 in Zn is n− 1 and w is odd

• n is a power of 2 and w is odd

For these cases they have provided algorithms to solve the problem.

3.2.6 Permutations
While a permutation function can be represented as a matrix this is not a very
efficient way representation. A permutation matrix is characterized by having
exactly one 1 on each row and column while the rest is 0, which means that only
n of n2 elements is of interest. An alternative way of representing a permutation
is as a vector p = (p0, ..., pn−1) where pi is an integer between 0 and n− 1 and
indicates that the element at position i should be moved to position pi. A
permutation can be performed in place
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Modifications and conversions

4.1 Loidreau’s Modification
Loidreau’s Modification[16] makes it more difficult to break the OW-CPA prop-
erty of the McEliece cryptosystem. It does so by applying a linear transforma-
tion that maps the code into itself. The way error vectors is generated is changes
so that instead of choosing an error vector of decodable weight it chooses an
error vector such that after applying the linear transformation it has decodable
weight. Another good property of Loidreau’s modification is that it does not
increase the size of the public key.

4.2 Conversions
As explained earlier it is often beneficial for the generator matrix of a code to
be in systematic form which makes it easier to extract the message after errors
have been removed. When a systematic generator matrix G is used to encrypt a
message m the resulting encoded string with errors z will look like the following
mG+z = (m||p) +z where p is redundant information which allows decoding.
Because Len (m||p) is much larger than Weight (z), the overall content of the
plaintext is directly visible in the ciphertext. To prevent that the message is
transmitted in almost clear text it is important to apply a conversion.

Another important challenge the conversion needs to tackle is to hide the
structure of the underlying code so that it is difficult to extract information
about the private decoder by looking at the public key.

Overall, the goal of a conversion is to transform a cryptosystem with some
security properties into a different system with better properties, preferably
IND-CCA2.

The original MEC uses a permutation and a row scramble matrix to
Several generic conversions for the McEliece cryptosystem have been dis-

cussed by Kobara and Imai, and they also came up with some conversions that
are designed specially with the McEliece cryptosystem in mind. This section
mostly gives an overview of their work, with some additional notes.

All of the discussed conversions depends upon a bijective function Conv (z̄)
which converts an integer z̄ ∈ ZN , where N = C (n, t) into a corresponding error
vector z. And its inverse is represented as Conv−1 (z). This correspondence

26
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between an integer 0 ≤ z̄ < N = C (n, t) and a unique t-combination is often
refereed to as the combinatorial number system of degree t. Let ct > · · · >
c2 > c1 be the positions in the error vector which are 1. The corresponding
integer is z̄ = C (ct, t) + · · · + C (c2, 2) + C (c1, 1). Finding the combination
ct > · · · > c2 > c1 from an integer z̄ can be done using a greedy algorithm
which always subtracts the largest possible value C (ci, i) from z̄ such that the
result is greater or equal to 0. The process is repeated until the result is zero.

Also note that the discussed conversions assumes MEC variants with input
and output both strings of symbols over the binary field.

4.2.1 Insufficient conversions
As noted by Kobara and Imai, the Optimal Asymmetric Encryption Padding
(OAEP) by Bellar and Rogaway does not work as intended with the McEliece-
like it requires the underlying primitive to be a One-Way Trapdoor Permutation
which McEliece-like systems are not.

Fujisaki-Okamot’s Simple Conversion is also not suitable as the McEliece
cryptosystem is distinguishable under chosen ciphertext attacks.

4.2.2 Pointcheval’s generic conversion
The McEliece primitive can be categorized as a partial trapdoor one-way func-
tion. The requirement for an encrypton function to be a PTOWF is that it
should be infeasible to get back the plaintext from the ciphertext unless some
extra secret information is provided for which case it becomes easy to get back
the plaintext.

Pointcheval’s generic conversion transform any PTOWF into a PKC which
is IND-CCA2.

4.2.3 Fujisaki-Okamoto’s generic conversion
This conversion converts one-way encryption functions into a PKC which is
IND-CCA2.

4.2.4 Kobara-Imai’s conversions
The generic conversion obviously work for MEC, but in terms of overhead data it
is possible to do much better by creating a conversion specially tailored towards
MEC, which have been done by Kobara and Imai.

All of Kobara-Imai’s conversions have depends on the parameters of n, k and
t of the MEC in addition to the length of some constant sequence Len (Const)
and the length of some randomly generated sequence Len (r), all of which is
publicly known.
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Attacks against code-based
systems and countermeasures

5.1 Generalized Information-Set-Decoding Attacks
This attack amounts to finding a set of k coordinates which are error free in the
received word. Here k is the length of the plaintext block.

Consider a standard McEliece encryption: c = mḠ+ e where Ḡ is SGP .
Now, let ck be the vector only containing k selected positions in c. Ḡk is the

corresponding selected columns from Ḡ and ek the positions in e.
e is very sparse so there is a chance of picking k error free coordinates. In

these cases ek is zero so ck = mḠk + ek = mḠk. By some luck Ḡk is invertible
which means one can find m as

(
mḠk

)
Ḡ−1k . This variant is the specialized

Information-Set-Decoding. The Generalized Information-Set-Decoding attack
allows finding m by guessing a value ek which may not be zero.

5.1.1 Countermeasure
Apply Loidreau’s modification or increase the size of the parameters.

5.2 Reaction Attacks
A reaction attack is made possible by observing and taking advantage of the
different reactions by a legit recipient of some ciphertext.

5.2.1 A message recovery attack
Assume a receiver who has the private key reacts to incoming messages in two
different ways. If the errors where uncorrectable or the plaintext was meaning-
less a repeat request is returned. Otherwise, an acknowledgment or nothing is
returned. If Alice want to send a message to Bob, an adversary can copy the
ciphertext during transmission. Then one or a few bits can be flipped and sent
to Bob. If the bits flipped was not part of the error vector the total weight of
the error will increase and so Bob will not be able to correct the errors. Hence,
a repeat request should be expected. On the other hand, if the bits flipped

28
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was partially a part of the error vector in such a way that the total number of
errors does not exceed the amount expected by Bob then one should expect an
acknowledgment. By repeating the procedure a number of times for the same
ciphertext one can identify the error vector. Then one can use the generalized
information set decoding attack to find the plaintext.

5.2.1.1 Countermeasure

Apply conversion by Kobara and Imai.

5.2.2 GJS attack: a key recovery attack using decoding
errors

Another type of reaction attack was recently published by Qian Guo, Thomas
Johansson and Paul Stankovski. Their attack against the QC-MDPC system
can recover the secret key of the system.

For their attack they use the notion of a distance spectrum. For a bit pattern
x = [x0, ..., xk−1] with some length k the distance spectrum is defined asD (x) ={
d : 1 ≤ d ≤

⌊
k
2

⌋
,∃a, b ∈ Z, xa = 1, xa+d mod k = 1

}
. The same distance d can

appear multiple times and in the pattern and therefore they also introduce the
multiplicity µ (d). The idea behind the attack is that if one is able to find the
distance spectrum of the private key h0 it is possible to find the h0 itself.

Reconstruction follows a simple procedure. Assume d0 is the smallest dis-
tance in D (h0). Set the zeroth and d0-th position to 1. Then test the bit at
position 2d0. If the distances from this bit to the previously set bits all ap-
pears in the D (h0) set the bit, otherwise test the bit at position 2d0 + 1. Also
remember that the total length of h0 is k.

To obtain the distance spectrum D (h0) one can observe the decoding error
probabilities for different error patterns. Their observation is that if an error
pattern with at least one pair with distance d is used then the decoding error
probability when d ∈ D (h0) is smaller than if d /∈ D (h0).

While their attack was made specifically for the QC-MDPC system, there
is no reason to believe that other code-based systems with non-zero decoding
failure probability cannot be attacked by a similar type of attack.

5.2.2.1 Circumvention

Low decoding error probability for valid error patterns As suggested
by the attack authors one possible countermeasure is to keep the decoding er-
ror probability very small which makes the attack harder to utilize, here they
suggest a decoding error probability of 2−80 for 80-bit security. As a result a
more modest value of t may need to be chosen which can potentially open up
for other types of attacks.

Also obviously it is important that if a decoder is able to successfully correct
more than t errors for a received cipher text it should respond with a decoding
error anyway. This prevents an attacker from experimenting with adding more
errors than intended to increase the decoding error ratio.

Using key pairs for only a limited number of transmissions By chang-
ing the keys after a limited number of transmissions there will not be enough
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trials for the attack to give a good estimate for decoding error probabilities for
various error patterns. This may open up for various denial of service attacks as
a receiver can be spammed with random messages and thus forcing the receiver
to update the keys sooner than expected.

Make the main observation less noticeable A different approach to cir-
cumvent the attack is to, in some way, make the main observation less significant
so that the error probability when d ∈ D (h0) is no longer noticeably smaller.
At key creation one can find the error correction failure rates for error patterns
with ds compared to the rest. Let the average difference be ∆. Now determine
a random partitioning of all error patterns containing a distance in D (h0) into
two subset A and B where B contains about ∆ percent of the total. If the
decoding of a received word reveals an error pattern with a distance in D (h0)
then lookup the error pattern to see if its a part of A or B. If its a part of B
then return a decoding error.

Consequences are more complex key generation and decryption. Also finding
a good way of efficiently representing the partitioning can be difficult.

Introducing fake ds If one is willing to reduce t slightly, at key creation one
can create a sufficiently large set of fake ds which will be biased with less decod-
ing errors at the decryption step. Whether or not an error pattern over some
message should return an error or not must be determined by a deterministic
function and not some random function as this will allow the attacker to send
the same error pattern twice to check if it contains fake ds. The trickiest part
is of course to make the fake ds indistinguishable from the real ones.

This countermeasure has a slight impact on general decoding capability t
and adds some extra complexity to the decryption and the key generation step.
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MDPC and QC-MDPC
McEliece

As mention earlier one of the main issues with the McEliece cryptosystem is the
huge public key required to obtain a decent security level. Numerous modifica-
tions to the original system have been proposed trying to reduce the key size,
many of which have been challenged with severe security vulnerabilities.

One of the more promising proposals is based upon replacing the Goppa
codes used in the original system with Low Density Parity Check (LDPC) codes.
LDPC codes is a class of linear forward error correcting block codes first dis-
covered by Robert G. Gallager in 1960. They are known for having an error
correction capability very close to the Shannon limit. An LDPC code can be
uniquely specified as the null space of a parity-check matrix H. For a linear
block code to be in the class of regular LDPC codes, the parity check matrix
must satisfy the 4 additional properties. First, the weight of each row is con-
stant. Second, the weight of each column is constant. Third, any two columns
cannot have more than one 1 in common. Finally, it is required that both the
row weight and column weight are small compared to the length of the code and
number of parity checks respectively. There is also a less strict class of LDPC
codes without the second and third requirement.

Some PKCs using LDPC codes is vulnerable to KPA attacks aiming at find-
ing low weight codewords in the dual code of the public code. These low weight
codewords can then be used to construct a LDPC matrix which reveals an effi-
cient decoder.

A very similar family of codes is Moderately Density Parity Check Codes
(MDPC). In contrast to the LDPC codes the number of non-zero entries in each
row of the parity check matrix grows with the size of the matrix, usually by a
growth rate of O (log (n)). As with LDPC codes there is also a variant of the
McEliece cryptosystem which uses MDPC codes as suggested by Misoczki et al..
An advantage of using an MDPC or LDPC code is that they have little to none
apparent algebraic structure. The scrambler and permutation matrix in the
original McEliece system can therefore become redundant as their purpose was
solely to hide the algebraic structure of the underlying code. Also compared
to the LDPC codes there is a larger amount of valid parity check matrices,
and thus increasing the size of the private key space. Decoders for MDPC codes
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Algorithm 6.1 Classical multiplication

Input: Two polynomials a(x) =
∑d−1
i=0 αix

i and b(x) =
∑d−1
i=0 βix

i

1. Partition the polynomials into n blocks all of which having exactly ω terms
with a possible exception of the last term which are allowed to have ω+ δ
terms where δ is some integer less than or equal to zero.

2. Compute a(x) =
∑d−1
i=0 αix

i =
(∑ω−1

i=0 αix
i
)

+
(∑2ω−1

i=ω αix
i
)

+ · · · +(∑(n−1)ω−1
i=(n−2)ω αix

i
)

+
(∑nω−1+δα

i=(n−1)ω αix
i
)

generally have a lower error-correction capability than decoders for LDPC codes
and this is probably one of the greatest disadvantages of using such codes in a
McEliece-like cryptosystem. This implies that fewer errors can be introduced
in the encryption phase.

While LDPC and MDPC codes are good because of their lack of algebraic
structure they do only partially solve the problem of large key-sizes. Since the
density of the parity check matrix is low, only storing the coordinates of the non-
zero entries can be more efficient, especially for very large matrices. The public
key is however not necessarily of low density. Multiple proposals suggest to
use quasi-cyclic variants of LDPC and MDPC codes. The quasi-cyclic structure
provides opportunities to reduce the size of the private parity check matrix
and public generator matrix drastically. In the suggested QC-MDPC system
by Misoczki et al., the parity check matrix consists of circulant block, each of
which can be represented by only the first row.

Performing matrix multiplication for very large matrices are in general rel-
atively expensive with a computational complexity of O(n2.807355) for the best
known practical algorithm. However, in the quasi-cyclic case the matrices in-
volved in the computations will be block circulant which allows for much faster
computations. When doing matrix multiplication for general matrices one is
limited by an absolute lower bound for the complexity of O(n2) because one
must look at each of the n2 elements of each of the two matrices at least once.
In the circulant case, however, the matrices is fully determined by the first row
and therefore one can expect multiplication to be performed with a complexity
closer to O(n).

Consider a classic matrix multiplication algorithm where each entry a in the
resulting matrix is the dot product of a corresponding row in the left operand
and a corresponding column in the right operand. If both the right and left
operand are circulant the result will also be a circulant matrix.

A useful fact that is stated in a lot of papers is that there exists an iso-
morphism between the algebra of circulant matrices in Fp×p2 and the ring of
polynomials in F2[x]/(xp+ 1). This means that the circulant matrix multiplica-
tions can be reduced to the problem of multiplying two polynomials which are
much less complex.

A different proposal is to let the generator matrix be composed of circulant
blocks. This means that the size of the public key can be reduced.

Using Moderate Density Parity Check codes for the McEliece cryptosystem
was suggested by Misoczki et al. [21]. An advantage of using quasi cyclic codes
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Algorithm 6.2 QC-MDPC Key Generation
Given n and n0 where gcd(n, n0) = 1

1. Construct H = [H0, H1, . . . ,Hn0−1] where Hi is a p × p circulant block,
by picking a random vector of length n with weight w.

2. Public key is G =

 I

(
H−1n0−1 ·H0

)T(
H−1n0−1 ·H1

)T
...(

H−1n0−1 ·Hn0−2
)T


3. Private key is H

Algorithm 6.3 QC-MDPC Encryption
Let m ∈ Fn−r2 be the plaintext to be encrypted and (G, t) the public key

1. Generate an error vector e with weight t

2. Compute and return mG+ e

is that the public generator matrix can be represented by only the first row and
thereby reducing the size of the public key drastically.

6.1 Relation between private and public key
From how the QC-MDPC keys are generated it is not immediately clear that it
is (or if it is) hard to retrieve the original parity check matrix from the public
generator matrix. The public generator has the following form:

G =

 I

CT0
CT1
...

CTn0−2


Where Ci is a circulant and probably dense matrix. Each Ci are constructed

from
(
H−1n0−1 ·Hi

)
. Here H−1n0−1

is a common factor in all Ci, so if found, the
reconstruction of H can easily be accomplished. For this problem it may be
easier to regard the circulant matrices as polynomials. The goal is to find a
common factor for all Cis. If n0 − 1 is large, this common factor is with high
probability H−1n0−1. Also, the other factors Hi should be of moderately low

Algorithm 6.4 QC-MDC Decryption
Let mG+ e be the received ciphertext and H the private key

1. Find mG by applying the efficient decoder

2. Find and return m by extracting the first n− r positions of mG
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weight, which can possibly make the search a little easier.

6.2 Suggested parameters
Misoczki et al suggested the following parameters for their system:

Table 6.1: Misoczki et al. suggested parameters
Level security n0 n r w t QC-MDPC key-size

80 2 9602 4801 90 84 4801b
80 3 10779 3593 153 53 7186b
80 4 12316 3079 220 42 9237b
128 2 19714 9857 142 134 9857b
128 3 22299 7433 243 85 14866b
128 4 27212 6803 340 68 20409b
256 2 65542 32771 274 264 32771b
256 3 67593 22531 465 167 45062b
256 4 81932 20483 644 137 61449b

Operating on non-compressed matrices over F2 of the suggested sizes would
yield a very large memory footprint. SinceF2 only contains two distinct elements
one can represent each element by a single bit. However, in most computers the
smallest primitive that can be accessed and manipulated directly is a byte of
8-consecutive bits. To manipulate each bit directly it is possible to use a whole
byte to represent a single bit. For n = 81932 and r = 20483 the H matrix
will need 1.6 GB which is unacceptable for many applications. A different
approach is to utilize bitwise operations which most processors provides. This
allows indirect manipulation and access of individual bits within a byte and the
storage required will be reduced to about 200 MB.

From w it is evident that the matrices are fairly sparse. This allows a
different kind of representation where only the indices of the set bits are stored.
Using 32-bit integers one can represent indices up to 232 which is enough to give
each entry of the largest matrix a unique index. This gives a memory usage of
about 50 MB.

Another great feature of the matrix is its quasi cyclic structure which means
only the first row needs to be stored. With a bit set representation this gives a
memory usage of just 2.5kB.



Chapter 7

The NIST standardization
process

The National Institute of Standards and Technology (NIST) in the U.S. has
initiated a process to evaluate and standardize one or more post-quantum cryp-
tosystems and by the time of this writing the submissions of round one are
evaluated. The standardization is expected to be completed between 2022 and
2024.

The motivation for starting the process this early is, according to NIST,
a combination of two factors. First, there have been major progress in the
development of quantum computers. Second, the standardization process will
require a lot of effort, the transition between the currently used cryptosystems
and the quantum resistant replacements is expected to take time and the stan-
dardization and transition should be done well before any large-scale quantum
computers are build.

This chapter provides a rough overview of some of the code based submis-
sions. Most of the submission are so called Key Encapsulation Mechanisms
(KEM) which is encryption techniques for sharing a symmetric key using public
key algorithm. Ignoring signature schemes, the main usage for PKCs today is
for exchanging symmetric keys. This is probably the major reason why submit-
ters have chosen to focused on KEMs in precedence of more general purpose
PKCs. KEMs can be easier to secure as only a very limited number of messages
needs to be transmitted for the key exchange to take place, which makes var-
ious attack based on statistics collection difficult. Additionally, KEMs usually
do not require very large plaintext message blocks. For AES, which is a very
popular symmetric key cryptosystem, a very conservative key length option is
256-bits, and this is believed to remain conservative even in a post-quantum
world. Because the plaintext block length of the KEMs can be very short, a
large message expansion factor is less worrisome.

7.1 Security strength categories
NIST requires that systems, given some parameters specified by the system
designers, is classified by five categories:
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• Level 1: Complexity of attacks must be comparable or greater than that
required by a key search on a block cipher with 128-bit keys.

• Level 2: Complexity of attacks must be comparable or greater than that
required by a collision search on a 256-bit hash function.

• Level 3: Complexity of attacks must be comparable or greater than that
required by a key search on a block cipher with 192-bit keys.

• Level 4: Complexity of attacks must be comparable or greater than that
required by a collision search on a 384-bit hash function.

• Level 5: Complexity of attacks must be comparable or greater than that
required by a key search on a block cipher with 256-bit keys.

For a system to be in any of the levels it must satisfy the complexity requirement
with respect to any metric that NIST deems relevant. This can include number
of execution cycles, memory usage and more.

7.2 Proposals
This section contains a quick overview over the code based proposals. It is not
a complete overview and does not contain any signature schemes.

BIG QUAKE This proposal by Bardet et al. uses quasi-cyclic Goppa codes
in a Niederreiter-like PKC shown to be IND-CPA, and is then converted to a
IND-CCA2 KEM through a generic conversion[10].

The BIKE suite The Bit Flipping Key Encapsulation (BIKE) is a collection
of KEMs proposed by Aragon et al. [2]. The systems proposed are BIKE-1,
BIKE-2 and BIKE-3 which are all based upon quasi-cyclic codes and uses bit
flipping decoders. They have also shown that the systems are IND-CPA.

As the PKC key-pair is only used for a single key-exchange attacks like GJS
cannot be used.

BIKE-1 makes a trade-of between having a larger public key in exchange
of a faster key generation. Since BIKE is a key encapsulation protocol it is
important that the key generation procedure is fast as a new key pair must be
made for every new connection.

BIKE-2 can make use of a batch key generation technique described in the
proposal to significantly increase the efficiency of the key-generation step while
keeping a public key in systematic form.

Classical McEliece As the Classical McEliece system has withstood any
significant attacks since it was presented by R. J. McEliece in 1978, isn’t it only
natural to include it as one of the submissions? Well, despite its name, this
submission by Bernstein et al. presents a key encapsulation scheme designed to
be IND-CCA2 based on Niederreiter’s dual version of the McEliece’s encryption
using binary Goppa codes[9].

DAGS DAGS is a KEM by Banegas et al. that is IND-CCA and utilizes
structured algebraic codes.
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HQC and RQC Melchor et al. proposed HQC[19] which is a KEM obtained
through a conversion from a IND-CPA PKC. The conversion provides IND-
CCA2 security. HQC uses Tensor Product codes.

In a separate submission the same authors (except one) have also proposed
somewhat similar KEM called RQC[20]. Like RQC it achieves IND-CCA2 secu-
rity through a conversion, but in in contrast this KEM is focuses on Gabidulin
codes.

LAKE and LOCKER In a proposal by Aragon et al., a variation of low
rank parity check codes is used for their KEM called LAKE[3] which is IND-
CPA secure. In a separate submission by the same authors they introduces a
very similar KEM called LOCKER[4] which is IND-CCA2 secure.

LEDAkem and LEDApkc Baldi et al. have submitted both a key encapsu-
lation scheme and a public key cryptosystem. LEDAkem[6] is uses QC-LDPC
with a new decoding algorithm and used ephemeral keys to prevent attacks
like GJS. LEDAkem is IND-CPA secure. In the supporting documentation for
the LEDAkem system, table 3.2 shows that the size of the shared secret is
much larger than the encapsulated secret. This is inconsistent with the pro-
vided KAT.rsp file and also it does not make sense for the shared secret to get
smaller after encapsulation. The table does make sense if the column headings
are swapped, which was assumed when the data for the comparison below was
collected. The parameter sets with n0 = 4 was chosen in the comparison as the
authors claims that is the most advantageous choice.

LEDApkc[7] is, like LEDAkem, based on QC-LDPC codes, but can transfer
much larger messages. It is protected against GJS attack by giving each keypair
a secure lifetime so that they must be renewed after a fixed number of decoding
failures is encountered. It uses a conversion to achieve IND-CCA2 security.

Lepton Lepton[28] is a IND-CCA secure key encapsulation mechanism intro-
duced by Yu et al. based on low-noise instances of the learning parity with
noise problem which is a special case of the decoding problem for random linear
codes.

McNie McNie[12] by Galvez et al. is a hybrid version of the McEliece and
the Niederreiter cryptosystem using low rank parity check codes. It obtains
IND-CCA2 security through a conversion.

NTS-KEM Albretch et al.’s submission proposes the NTS-KEM[1], which
obviously from its name is a KEM. The system can be seen as a variant of the
McEliece or Niederreiter PKC, but is in contrast a KEM. It achieves IND-CCA
security through a conversion.

Ouroboros-R Melchor et al. have presented a IND-CPA secure KEM based
on QC low rank parity check codes called Ouroboros-R[18].

QC-MDPC KEM QC-MDPC KEM[27] is a KEM from Yamanda based on
a QC-MDPC McEliece variant and obtains IND-CPA security. It can be used
with ephemeral keys to prevent attacks like GJS.
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RLCE-KEM The RLCE-KEM[26] by Wang is a KEM which is specified over
all efficiently decodable linear codes with generalized Reed-Solomon codes being
recommended. By using a conversion, it is claimed to be IND-CCA2 secure.

7.3 Comparison
The data for this comparison is collected from the corresponding submission
papers and / or estimated from the provided KAT.rsp files. In some cases
where data was not explicitly given by neither, but clear instruction on how
to calculate was stated, the values have been found using these instructions.
Some numbers have been converted to a common format for easier comparison.
Message expansion is calulated from the ciphertext and plaintext length.

The KAT.rsp is used to verify that the submissions work as expected. For
given seeds they contains the expected generated public key (pk), expected gen-
erated private key (sk), expected ciphertext (ct) and expected shared secret (ss),
all provided as hexadecimal numbers. In most cases the number of hexadecimal
pairs in each number match the number of bytes stated by the authors to be
the byte length of the value in the submission papers. However, this is not true
for all submissions, like for instance is the case with the BIKE suite.

Some of the submissions also uses a session key, ephemeral key or alike.
These have not been specifically accounted for.

While most of the submissions do contain timings for encryption / encapsu-
lation, decryption / decapsulation and key generation, the measurements have
been performed on different machines with varying capabilities and in that re-
gard they are not comparable. A possibility could have been to run benchmarks
on the same device to compare them, but then the implementations may not be
likewise optimized for the given device. Nevertheless, it would not give much
meaningful insight as devices are different and some systems may be more suited
for some devices than others.

Some submissions includes multiple parameter sets for each security level, in
these cases a parameter set was chosen pseudorandomly unless otherwise stated
either above or in the table. If no parameter set was provided for a given security
level then it is left blank.

System Level 1 Level 2-3 Level 4-5

BIG QUAKE

Private key 118176b 246880b 334432b
Public key 203856b 673056b 1198400b
Ciphertext 1608b 3264b 3936b
Plaintext 256b 256b 256b
Expansion 6.28 12.75 15.38

BIKE-1

Private key 2130b 2296b 4384b
Public key 20326b 43786b 65498b
Ciphertext 20326b 43786b 65498b
Plaintext 256b 256b 256b
Expansion 79.40 171.04 255.85

BIKE-2

Private key 2130b 3296b 4384b
Public key 10163b 21893b 32749b
Ciphertext 10163b 21893b 32749b
Plaintext 256b 256b 256b
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Expansion 39.70 85.52 127.93

BIKE-3

Private key 2010b 3168b 4522b
Public key 22054b 43366b 72262b
Ciphertext 22054b 43366b 72262b
Plaintext 256b 256b 256b
Expansion 86.54 169.40 282.27

Classic McEliece

Private key 111288b
Public key 8378552b
Ciphertext 1808b
Plaintext 256b
Expansion 7.50

DAGS

Private key 3461120b 10272768b 17542176b
Public key 54080b 67584b 92928b
Ciphertext 4416b 7552b 12928b
Plaintext 512b 512b 512b
Expansion 8.62 14.75 25.25

HQC

Private key 320b 320b 320b
Public key 22552b 40920b 59336
Ciphertext 44976b 81712b 118544b
Plaintext 512b 512b 512b
Expansion 87.85 159.59 231.53

LAKE

Private key 320b 320b 320b
Public key 3384b 5088b 6632b
Ciphertext 3384b 5088b 6632b
Plaintext 512b 512b 512b
Expansion 6.61 9.94 12.95

LEDAkem

Private key 192b 256b 320b
Public key 51264b 105216b 181632b
Ciphertext 17088b 35072b 60544b
Plaintext 256b 384b 512b
Expansion 66.75 91.33 118.25

LEDApkc

Private key 192b 256b 320b
Public key 27840b 57600b 99072b
Ciphertext 55680b 115200b 198144b
Plaintext 29520b 60464b 103176b
Expansion 1.89 1.91 1.92

Lepton

Private key 320b 448b 592b
Public key 8360b 16416b 16416b
Ciphertext 15728b 23784b 31912b
Plaintext 256b 256b 256b
Expansion 61.44 92.91 124.66

LOCKER

Private key 8400b 11032b 11856b
Public key 7979b 9991b 11021b
Ciphertext 8491b 10503b 11533b
Plaintext 512b 512b 512b
Expansion 16.58 20.51 22.53

McNie

Private key 2720b 3720b 4672b
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Public key 2776b 3896b 5040b
Ciphertext 3376b 4720b 6088b
Plaintext 1720b 2688b 3456b
Expansion 1.96 1.75 1.76

NTS-KEM

Private key 73728b 140192b 159120b
Public key 2555904b 7438080b 11357632b
Ciphertext 1024b 1296b 2024b
Plaintext 256b 256b 256b
Expansion 4.00 5.06 7.91

Ouroboros-R

Private key 9440b 11920b 17024b
Public key 9440b 11920b 17024b
Ciphertext 9440b 11920b 17024b
Plaintext 512b 512b 512b
Expansion 18.44 23.28 33.25

QC-MDPC KEM

Private key 1440b 2272b 4384b
Public key 4801b 9857b 32771b
Ciphertext 9858b 19970b 65798b
Plaintext 256b 256b 256b
Expansion 38.51 78.01 257.02

RLCE-KEM

Private key 1439568b 3520064b 8385408b
Public key 947528b 2298968b 5936712b
Ciphertext 6280b 9904b 16184b
Plaintext 512b 512b 512b
Expansion 12.27 19.34 31.61

RQC

Private key 1491b 2741b 3510b
Public key 1491b 2741b 3510b
Ciphertext 1555b 2805b 3574b
Plaintext 64b 64b 64b
Expansion 24.30 43.83 55.84

Some of the systems in the table above use seed expansion procedures. This
means that even if for instance the private key for some system is small when
stored away it needs to be expanded to actually be usable in computations.

Though, it is bad to exclude candidates by just looking at their key and
message sizes there are some systems that clearly stands out as less suitable
for certain applications than the rest. For example, DAGS, having a private
key of almost a half megabyte for security level 1, can be challenging to deploy
on certain embedded devices with very limited memory. On the other hand, a
half megabyte is not a lot and its probably something most modern devices can
afford, especially if it means less complex encryption and decryption procedures
and lower power consumption. When it comes to message expansion the overall
trend is that the KEMs have larger expansions than the more general PKCs.
McNie and LEDApkc, which are both general PKCs, have message expansion of
factor less than 2, while the KEMs lies everywhere from a factor of 4 to several
hundreds.

Figure 7.1, 7.2 and 7.3 compares the systems according to their private key
size, public key size and ciphertext size respectively. Note that the three dia-
grams are all using the logarithmic scale base 2 which may lead to the impression
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Figure 7.1: Private key sizes

that the systems are more alike than they actually are.
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Figure 7.2: Public key sizes
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Figure 7.3: Chipertext sizes



Chapter 8

Afterthoughts and conclusion

The original goals of this project involved creating an overview of post-quantum
cryptosystems and compare them with respect to security, key sizes, message
expansion and complexity. It turned out to be a difficult task when one re-
ally doesn’t understand the systems that are being compared. Some of the
vocabulary used in associated papers were hard to grasp, and because of lim-
ited mathematical intuition and knowledge it was difficult to follow some of the
deductions. In that regard this thesis is a “best effort” type of work, but what
else was there to expect really?

The NIST Post-Quantum Cryptography standardization process helped en-
lighten many innovative post-quantum solutions. This thesis has aggregated
some of the characteristics of the code-based PKCs candidates. Even if it wasn’t
particularly useful, it did to some degree provide perception of what one can
expect in terms of public key, private key, ciphertext and plaintext sizes in a
possibly code-based standard.

Also, one of the goals of this thesis was to actually implement a McEliece-
like system. The implementation took a lot of time and ended up as a failure.
In retrospect there are several reasons why the implementation work failed:

• Lack of understanding of the system that was being implemented.

• Inexperience with software projects of this kind and to some degree soft-
ware development in general.

• Unawareness of tools that could have made the implementation work less
extensive.

• No clear scope of the implementation work.

Nevertheless, even if the implementation didn’t succeed, it provided some in-
sight into various different implementation obstacles, a few of which wouldn’t
even have been necessary to overcome to complete the project. This thesis has
explained, in various details, some of these obstacles and how one could have
solved them.
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8.1 Further work
While code-based cryptography is certainly interesting for post-quantum cryp-
tography many of the system proposals with a few exceptions have had a rel-
atively short lifespan before they have been broken. Starting to use one of
these systems now is highly precarious. In the transition period before a large-
scale quantum computer is built, hybrid schemes that is based on both well-
established systems like RSA and ElGamal, and also a code based system could
be interesting as they have the potential to fall back to the security of RSA or
ElGamal if the code based system is broken.
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