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कर्मण्येवाधिकारस्ते मा फलेषु कदाचन। 
मा कर्मफलहेतुर्भूर्मा ते सङ्गोऽस्त्वकर्मणि॥ २-४७ 

 
Karmanye vadhikaraste Ma Phaleshu Kadachana, 

Ma Karmaphalaheturbhurma Te Sangostvakarmani 
Bhagwad Gita, Chapter 2: Verse 47 

 

 

Translated, 

- You have the right only to perform the work, but never to its fruits. 

Let neither the fruits of action be your motive, nor let your attachment be to 

inaction.  
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Summary 

 

Schizophrenia is a psychotic disorder with an estimated lifetime prevalence of ~1% 

worldwide. Despite reduced fecundity of patients, this rate is stable across population 

groups separated by geography and time. There is also evidence from the 

Mesopotamian culture ca 5000 years ago of symptoms that today would be classified 

as schizophrenia. To explain this stable occurrence of the disorder, the so-called 

‘Evolutionary hypothesis of schizophrenia’ has been gaining ground. The most well 

known of which was propositioned by T.J. Crow in 1998, though others including 

Huxley (1964) and Essen-Möller (1959) have also argued about selective advantages 

of the disorder. A key assertion made by Crow was the emergence of schizophrenia as 

a by-product of human evolution, as ‘the price humans pay for language’.  

 

In the past two decades, the emergence of genomic technologies and resources have 

made it possible to test the evolutionary aspect of Crow’s hypothesis. There is a 

growing body of evidence from the field of genomics that suggests human evolution 

may have played a role in the susceptibility to schizophrenia. 

 

Developments within the last five years have allowed researchers to trace the 

evolution of epigenomes giving an unprecedented window on gene-environment 

(GxE) interactions of the past several thousand to millions of years. In the present 

thesis, I undertake a body of work that investigates the evolutionary question of 

schizophrenia from this new field of evolutionary epigenetics. We first test whether 

human-specific methylated regions, determined in comparison to Neanderthals and 

Denisovans are enriched for schizophrenia markers. These methylated regions 

represent at least 750,000 years of evolution since the last common ancestor diverged 

from Neanderthals and Denisovans ( Paper I ). This was followed up by investigating 

primate-methylated regions that represent at least 13 MYA of epigenomic evolution ( 

Paper II ). Finally, we investigate whether human-specific methylated regions, as 
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defined in the first study are amenable to methylation variation in patients with 

schizophrenia ( Paper III ). 

 

We find evidence that recent evolution denoted by human-specific methylated regions 

tracing ~750,000 years of methylation development are enriched for schizophrenia 

markers. Primate methylation markers are not enriched for schizophrenia variants with 

the exception of the extended Major-Histocompatibility Region ( MHC ) region. 

Finally, we find evidence of methylation disruption in brain samples of patients with 

schizophrenia in regions that underwent human-specific methylation evolution. 

 

Our results provide support that recent evolution, denoted by methylation changes 

since the divergence of the common ancestor of humans, Neanderthals and 

Denisovans,  harbour more schizophrenia associated markers than expected by chance, 

and thus, may have played a role in susceptibility to schizophrenia at a group-level. 
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1. Introduction 

 

1.1 Schizophrenia 

 

Schizophrenia is a debilitating mental disorder that causes considerable loss in quality of 

life to the patient affected [1–3]  as well as significant costs to society [4–8]. The term 

‘schizophrenia’ was first coined by Eugen Bleuler in 1908 to classify a constellation of 

symptoms observed in the disorder using the Greek roots schizen (‘to split’) and phren 

(‘mind, spirit, soul’) [9–11]. 

 

 It can be diagnosed as per the Diagnostic and Statistical Manual for Mental Disorders 5 

(DSM 5) by the presence of characteristic symptoms such as delusions, hallucinations or 

disorganised speech in addition to catatonia or avolition. Additionally, there is a marked 

decrease in social and occupational function such as work, self-care and interpersonal 

relations. For a diagnosis, symptoms must be present for six months, including at least 

one month of characteristic symptoms. It is also necessary that schizoaffective or bipolar 

disorder with psychoses is ruled out, and that the patient is not abusing any drugs. 

Furthermore, if autism is present, then it needs to be accompanied by hallucinations for at 

least one month [12]. 

 

1.1.1 Historical perspectives 

 

The modern definition of schizophrenia owes a lot to the work of Eugen Bleuler and Emil 

Kraepelin from late 19th-early 20th century. However, they were neither the first to 

observe the disorder, nor the first to describe its symptoms. The disorder has 

accompanied mankind at least since humans started keeping written records [13,14].   
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Cuneiform tablets of Mesopotamia from the third millennium BCE [13,14] describe some 

of the earliest examples of symptoms that today would be classified as schizophrenia. 

The ancient Hindu texts of Vedas (ca 1400 BCE) provide descriptions of psychoses that 

is distinct from manic-depressive illness [14,15]. Other descriptions lie in the satires of 

Horace from the first century BCE and the writings of Roman physicians Caelius 

Aurelianus and Alexander of Tralles from the fifth and sixth century CE. The first 

century CE Hindu treatise on Ayurvedic medicine, ‘Charaka Samhita’  also describes 

symptoms akin to schizophrenia [16]. Reviewing the literature from the Middle Ages in 

Europe led Nigel M. Bark to conclude the existence of schizophrenia for at least 2000 

years [17–19]. 

 

1.1.2 From Dementia praecox to Schizophrenia 

 

Industrialization in Europe in the 18th-19th centuries led to an increased medical 

observation of patients with mental illnesses [18]. Several physicians from across Europe, 

therefore, took a keen interest in the development, diagnoses and nomenclature of the 

disorder. In 1801, Phillipe Pinel from France laid the groundwork for what Emil 

Kraepelin later termed ‘dementia praecox’ and Eugen Bleuler, ‘schizophrenia’. Pinel 

used the word ‘démence’, meaning ‘loss of mind' to describe the degradation of mental 

faculties of chronically ill, hospitalised mental patients. The word itself had been used in 

French literature since 1381 to describe the condition of mental deterioration [14].  In 

1847, Millingen emphasised the post-pubertal onset of the disease [20]. To highlight this 

aspect of the disorder, Benedict Augustin Morel coined the French term ‘démence 

précoce’  in  1852 that literally means ‘loss of mind at a young age’ that differentiated it 

from ‘démence senilis’ or ‘loss of mind due to old age’. 

  

In 1893, Emil Kraepelin introduced the term ‘dementia praecox’ in the 4th edition of his 

book [21]. Amongst the major contributions of Kraepelin were his division of psychotic 

illnesses into two categories: dementia praecox and manic-depressive insanity [14]. He 

made the observation that age of onset, familial history and premorbid personalities could 
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distinguish between the two kinds of illnesses and emphasised the presence of hereditary 

factors in his patients with dementia praecox. Furthermore, he was the first to challenge 

the notion of schizophrenia as a European phenomenon caused by industrialisation. He 

observed the remarkable similarity of symptoms in cases as far away as Singapore and in 

populations of Chinese, Malay, Tamils and Japanese [22]. He stated the necessity of 

finding the real cause of a disorder that did not depend on race, climate or food [14,22]. 

 

The Swiss psychiatrist Eugen Bleuler, however, differed with Kraepelinian concepts of 

the disorder [14]. He asserted that not all patients displayed symptoms at a young age, 

nor were they all equally likely to be predisposed to deterioration of their mental faculties 

[11]. Furthermore, Bleuler was influenced by the works of Wundt, Freud and Jung in his 

approach to mental illnesses [11,23]. He, therefore, brought forward the psychological 

aspects of the disorder in his work with Carl Jung [24] and introduced the concept of 

‘schizophrenia’ from ‘schizen’ meaning ‘to split’ and phren meaning the ‘mind’ [11]. 

While expanding the scope of the disorder, Bleuler’s work also helped characterise the 

disorder not as a single entity but rather as a heterogeneous mixture of several disorders- 

‘a genus, not a species’ [14,25]. 

 

Finally, Kurt Schneider [26], a German psychiatrist, paved the way for a systematic 

diagnostic system that was replicable between different psychiatrists (inter-rater 

reliability) [27] and whose principles were incorporated into current psychiatric 

diagnostic criteria [14]. 

 

1.1.3 The modern diagnostic system(s) 

 

The modern understanding of the disorder as described in Diagnostic and Statistical 

Manual for Mental Disorders (DSM), the International Statistical Classification of 

Diseases and Related Health Problems (ICD), as well as the Research Diagnostic Criteria 

(RDC), incorporates several concepts not only from Kraepelin and Bleuler, but also from 

Schneider [14]. 
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The RDC system was established in the 1970s [28–31] and had strict diagnostic criteria 

that excluded labelling patients as schizophrenics if they exhibited major affective 

disorder or other borderline disorders. Furthermore, the age of onset and duration of 

symptoms was also limited to forty years and six months respectively. These features 

helped improve the reliability of the psychiatric diagnostic systems in existence at the 

time [32,33].  This system was instrumental in the development and refinement of the 

diagnostic system from the American Psychiatric Association- the ‘Diagnostic and 

Statistical Manual of Mental Disorders (DSM)’. Before the RDC, the DSM-II had vague 

descriptions of the symptoms and diagnostic criteria [32,33]. Subsequent development of 

DSM-III [34] incorporated several elements from RDC and eventually became the de-

facto standard for diagnoses of psychiatric illnesses [32].  

 

The subsequent revision to DSM-IV [35] established one of the most widely used 

diagnostic criteria with high reliability and fair validity [36,37]  that was also used in one 

of the largest genetic investigations of the disorder [38]. The system emphasises the 

positive (hallucinations, delusions) [39,40] and negative symptoms of the disorder ( 

avolition, anhedonia, affective flattening, alogia)  while age restrictions have been 

dropped [14].  In this diagnostic system, the symptoms must have persisted over the 

previous six months with at least one month of hallucinations and delusions [14,35]. The 

latest iteration is the DSM-V [12,41]. It retains much of the diagnostic criteria used to 

define schizophrenia in DSM-IV but removes the classic schizophrenia subtypes, defines 

in further detail the relationship of schizophrenia to catatonia, expands upon the 

differences between schizophrenia and schizoaffective disorder and eliminates the 

prioritisation of Schneiderian ‘first-rank symptoms’ [12].   

 

Parallel to the definitions and diagnostic criteria of the American Psychiatric Association, 

the World Health Organization (WHO) developed its own set of diagnostic criteria-  the 

International Statistical Classification of Diseases and Related Health Problems (ICD), 

currently in its tenth iteration, ICD-10 [42,43]. This is a system that was entrusted to the 
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WHO, upon its creation in 1948 and has undergone several revisions [44]. The eleventh 

revision, ICD-11 is due for release in 2018 [44]. The ICD system is much broader in 

scope, includes criteria for the classification of other diseases and is widely used around 

the world for reporting mortality and morbidity statistics in contrast to the DSM that is 

limited only to mental disorders [44].  The system has good descriptive validity for 

schizophrenia [45] and has been more widely used in the clinical setting than DSM-IV 

that finds more use in research environments [46,47]. 

 

Research Domain Criteria (RDoC) is the third initiative for diagnosis of mental disorders 

like schizophrenia. It is published by the National Institute of Mental Health (NIMH), 

USA and has a significantly different approach compared to either DSM or ICD [48–50]. 

It is an initiative that seeks to incorporate new findings from the field of genetics and 

neuroscience into the classification of mental disorders. The initiative was launched due 

to a disconnect between clinically diagnosed schizophrenia cases and the 

pathophysiology being discovered by genetic and neuroscience approaches. The ultimate 

aim of the RDoC initiative is to significantly influence the diagnostic system of the future 

by integrating precise biological markers into the definition, classification and treatment 

of mental disorders [50]. 

 

In summary,  considerable effort is being put into diagnostic methods for psychiatric 

illnesses including schizophrenia. Many of these diagnostic methods share similarities, 

yet each system has its unique strengths and perspectives.  The inter-rater reliability of 

the diagnostic systems also varies considerably [51,52]. This is a measure of how 

consistently a person would get diagnosed with a particular illness by different 

psychiatrists. For example, Cheniaux et al. [52] found that schizophrenia is diagnosed 

twice as frequently using ICD-10 compared to DSM-IV. Furthermore, the inter-rater 

reliability from a theoretical maximum of 1 was only 0.59 and 0.56 for DSM-IV and 

ICD-10 respectively.  Thus, the same person might get a different diagnosis when 

analysed by a different psychiatrist or diagnostic system. The DSM-V fares even worse 

than DSM-IV with an inter-rater reliability of only 0.46 for schizophrenia [51].  This 
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makes the genetic and epigenetic study of schizophrenia challenging-  genetic and 

epigenetic studies focus on discrete, quantifiable and measurable units (genes and 

chemical changes to the genome), unlike the diagnostic system used to categorise the 

patients in the first place. The findings in this thesis must be understood with this caveat 

in mind. 

 

1.2 Brief primer on genetic studies of schizophrenia 

 

1.2.1 Genetic studies on schizophrenia 

 

Initial efforts to understand the genetics of schizophrenia relied on twin [53–56], family 

[15,57–59]  and adoption studies [60,61]. These studies revealed a heritability between 

60-90% [56,62,63] indicating a strong genetic component to the aetiology of the disorder. 

However, twin studies revealed a concordance rate of 40-60% for monozygotic twins 

[56,64,65] suggesting genetic factors did not entirely drive the disorder. 

 

Additionally, the advent of cytogenetic techniques, such as karyotyping enabled 

researchers to perform linkage analyses that investigates global chromosomal 

abnormalities amongst patients with schizophrenia. Chromosomal abnormalities have 

frequently been associated with the disorder [66] and include copy-number variations 

(CNVs)  [66–69].  

 

Prior to the sequencing of the whole human genome [70,71] research in the genetics of 

schizophrenia was often informed by the neurobiology of the disorder [72,73]. As such 

the research was hypothesis-driven with a focus on candidate genes [74] and regions 

involved in the regulation of pathways implicated in the aetiology of schizophrenia such 

as dopamine [75,76], serotonin [77,78], glutamate [79,80] and GABA [81].   
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 Although potential candidate genes involved in the aetiology of the disorder have been 

identified [82],  such as DISC1 (Disrupted in schizophrenia 1) [83–85], most of the genes 

identified in these studies have not been robust to subsequent replication studies 

[82,86,87]. This lack of replication at a population level may suggest that the genes 

implicated affect only the particular families studied. However, as recently reported, the 

evidence against the use of candidate gene approaches for schizophrenia genetics is 

conclusive due to the chance nature of the association of the top candidate genes [88,89]. 

 

Partly due to lack of success in determining consistent genes in the aetiology of the 

disorder and partly due to improvements in technology [90,91], a new wave of studies 

analysing the entire genome, namely genome-wide association study (GWAS) was 

performed [38,92–95].  

 

1.2.2 Genome-Wide Association Studies(GWAS) on schizophrenia 

 

After the sequencing of the human genome [70,71,96] and mapping of variation in 

human genomes at a population level [97], efforts were made to identify genome-wide 

candidates in the aetiology of schizophrenia. These GWAS have identified more than 

hundred different genetic loci associated with the disorder, giving support to the notion of 

schizophrenia as a complex disorder [38,92–95].  

 

The biggest difference between the GWAS approach and candidate-gene studies is that 

GWAS is hypothesis-free [98,99]. The methodology employed involves genotyping 

millions of single-nucleotide polymorphisms (SNPs) on genotyping microarrays. 

Frequency differences of specific SNPs between patients and controls help associate 

variants with the disease [100,101]. Thus, compared to candidate-gene approaches where 

hypothesis-driven loci are analysed, GWAS approaches allow one to interrogate the 

variation across the entire human genome including genic and non-coding regions. This 

helps derive new insights into the biology of the disorder [102]. 
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Results of most GWAS do not point to direct, causal associations between SNPs and 

disease. Instead, the majority of associations are non-causal, due to the phenomenon of 

linkage-disequilibrium (LD) between SNPs [100]. LD is the phenomenon where groups 

of markers tend to be inherited together more often than expected by chance due to 

common population ancestries [100]. LD is usually quantified by r2  that denotes the 

correlation between two markers [100]. Furthermore, most of the significant markers in 

GWAS results are found in non-coding regions of the genome [103–107]. 

 

The latest GWAS on schizophrenia revealed 108 loci associated with the disorder from 

which more than eighty were previously unreported [38]. These loci together contain 128 

SNPs that cross the genome-wide significance level (p < 5x10e-8). The loci provide 

support for known neurotransmitters implicated in the disorder such as those involving 

the dopaminergic and glutamatergic systems. Furthermore, the loci are not randomly 

distributed but show enrichment in enhancers of brain tissues and immune systems.  The 

authors note the convergence of pathways from those obtained with rare-variant analyses 

and genome-wide approaches. Additionally, as observed in other GWAS,  only a limited 

number of protein-coding variants were found [38].  

 

One way to gain insight into the role of non-coding regions in the aetiology of diseases is 

to utilise epigenetic approaches [103,108,109] that are discussed in the subsequent 

sections. 

 

1.3 Epigenetics in schizophrenia 

 

1.3.1 General Introduction to epigenetics 

 

Much work is going on to understand the genome [70,71,96,110,111], transcriptome 

[112–114] and proteome [113,115–118]. However, another layer of cellular information, 

stored in the form of epigenome has begun to attract attention and focused research [109].  
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This field has grown in importance in the last decade, especially after the sequencing of 

the human genome [70,71,119] and development of new sequencing technologies [120–

122]. Epigenetics is the study of heritable changes in gene regulation that occurs 

independently of the DNA sequence [123,124]. ‘Heritable’ in epigenetics implies stable 

transmission of chemical marks from one cell division to another. Epigenetic phenomena 

include molecular processes such as DNA methylation, histone modifications and 

chromatin re-organisation. These modifications are preserved when cells divide [125]. 

The study of these processes on a genome-wide scale is referred to as epigenomics. 

 

The main effect of epigenomic modification is to affect the organisation of the chromatin, 

which in turn affects gene expression or repression [126]. Indeed, researchers have begun 

looking at gene expression from the perspective of higher order DNA organisation, i.e. 

the chromatin. The chromatin is a protein-DNA complex comprised of DNA wrapped 

around a group of packaging proteins called histones, forming bead-like structures called 

nucleosomes. These nucleosomes subsequently help condense the DNA sufficiently to fit 

within the dimensions of a nucleus.                          
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Figure 1: Depiction of various epigenetic factors affecting chromatin organisation.  

Shown here is an expanded view of condensed chromatin found in a chromosome. Nucleosomes 

comprise of histone proteins whose tails are susceptible to chemical modifications. Individual CpG 

dinucleotides on the DNA strand can undergo methylation that influences DNA conformation that 

subsequently can regulate gene expression (Adapted from Brown WM, 2015 [127]). 

 

There are five different histone proteins named H1, H2A, H2B, H3 and H4. H2A-H2B 

form a dimer while H3 and H4 form a tetramer giving rise to an octamer around which 

146bp of DNA are wrapped. This forms a single nucleosome.  H1 acts as a linker histone 

which holds the spool of DNA in place and locks it together with the rest of the 

nucleosome. These histone proteins have an amino acid tail, and the N-terminal ends of 

these amino acid tails are subject to chemical modifications which are added via post-

translational modifications [128]. These modifications act as unique signatures 

determining gene regulation [109] and understanding these chemical signatures is one of 
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the key research areas in epigenetics. Thus, it is possible to predict which genes are going 

to be activated or repressed based on the presence or absence of these chemical groups.  

 

In addition, DNA methylation also provides another layer of control over chromosomal 

conformation [129]. DNA methylation was the first epigenetic modification to be 

characterised [130]. In this particular epigenetic modification, methyl groups are added to 

the 5’ends of cytosine residues in Cytosine-phosphate Guanine (CpG) dinucleotides to 

form 5-methylcytosine [130]. The methylated CpG binding proteins such as meCP1 and 

meCP2 subsequently bind to such methylated CpG dinucleotides [131]. These proteins 

have DNA binding domains and a transcription repression domain and can additionally 

recruit other factors that condense the chromatin resulting in the formation of 

heterochromatin that represses gene activity [132–134]. 

 

DNA methylation is a highly stable and heritable epigenetic mark [123,131,135]. Post-

implantation, de-novo methyltransferases DNMT3a and DNMT3b add methyl marks to 

the embryo [136]. Subsequent maintenance of methylation is carried out by another 

group of methyltransferases called DNMT1 with specificity to hemi-methylated DNA 

strands, i.e. the daughter DNA strands which are produced after each round of DNA 

replication [131].  

 

DNA methylation is implicated in a whole range of functions such as transcriptional 

silencing of genes [137], genome imprinting [138,139], regulation of tumour suppressor 

genes [140–142], X-chromosome inactivation [131,139], maintaining genomic integrity 

through silencing of transposons [143] and repetitive regions [131,144–146] . The 

promoter regions of many genes have CpG dinucleotides clustered into what is known as  

CpG islands [131].  Such CpG islands are usually protected from DNA methylation 

[131,144]. In healthy human cells, tumour suppressor genes are often hypo-methylated, 

and intergenic regions and repetitive elements are hyper-methylated [131,137]. In 

cancerous cells, the reverse is usually observed, i.e. genome-wide hypo-methylation and 

CpG island hyper-methylation [137–140]. This brings to attention the increasing 



  12 

 

 

relevance of studying DNA methylation in the context of diseases [137,146]. Among the 

unique characteristics of DNA methylation is the variation that occurs in the regions 

methylated between tissues [147], individuals [148] and related species [149].  Such 

regions are usually abbreviated as DMRs for differentially methylated regions. These 

variations are thought to contribute to phenotypic variations between people and may 

therefore potentially provide a way to describe susceptibility to complex diseases. 

Additionally, these regions have been found in or proximal to regions of recent evolution, 

indicating their role in the evolution of modern-day humans [150].  

 

1.3.2 DNA methylation and schizophrenia 

 

Efforts to understand the epigenetic machinery and especially DNA methylation in 

schizophrenia has primarily followed two approaches: candidate genes and genome-wide 

methodologies. Amongst candidate genes, aberrant DNA methylation has been 

implicated at the reelin gene (RELN) [151–154], brain-derived neurotrophic factor 

(BDNF) [155], DNA Methyltransferase 1 (DNMT1) [156] and Sex-determining Y-box 

containing gene 10 (SOX10) [157]. 

 

Reelin is produced in GABA-ergic neurons and is important for correct neuronal 

positioning during brain development [158]. It has been found to be hyper-methylated in 

the brain [153] as well as blood samples [152] of patients with schizophrenia. Mouse 

models of hyper-methylation of this gene have found a downregulation in Reelin gene 

expression levels [159,160]. A hypothesis involving increased activation of DNMT1 

leading to higher DNA methyltransferase activity has been proposed to explain the 

aberrant methylation at RELN [154,158]. Indeed, it has been observed that DNMT1 also 

has aberrant methylation in patients with schizophrenia. Specifically, DNA-

methyltransferase 1 is found to be overexpressed in the cortex of patient samples [156]. 

This increased activation of DNMT1 mirrors the subsequent downregulation of reelin 

observed in  GABA-ergic neurons in patients [161].   
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Downregulation of BDNF has also been observed in schizophrenia patients 

[155,162,163]. BDNF is important for nerve cell survival, neural differentiation and 

synaptic plasticity [164]. Significant hyper-methylation was found in peripheral blood 

cells from Japanese patients [155]. However, an earlier study found an opposite direction 

of effect with patients from Iran showing hypo-methylation compared to controls [165]. 

This discrepancy could be due to different methods employed or due to population 

differences. 

 

Abnormal DNA methylation has also been observed for SOX10 gene. It is an 

oligodendrocyte-specific transcription factor [166], and oligodendrocyte dysfunction has 

been observed in patients with schizophrenia [157]. Hyper-methylation of CpG island of 

SOX10 is associated with concomitant downregulation of the gene [157]. 

 

However, these candidate gene studies investigating the role of methylation in the 

disorder are not without their drawbacks. For example, different methods have been used 

to measure the methylation in candidate gene studies. This, however, may reflect the lack 

of a standardised technology in the then-nascent field, instead of poor study design. 

Furthermore, most of the candidate gene methylation studies were conducted on an 

insufficient number of sample sizes. Early studies on the RELN gene were conducted 

with only 5 [153] to 10 samples per group [151]. Furthermore, different studies analysed 

different regions of the brain making it challenging to make broad generalisations of 

methylation patterns in patient samples.   

 

Improvements in technology and cost helped initiate epigenome-wide analyses (EWAS) 

of methylation patterns in patients with schizophrenia. Unlike the variant association 

findings in candidate-gene studies of schizophrenia which could not be replicated in 

genome-wide studies, a majority of findings from methylation studies using candidate-

genes have been replicated in EWAS [166]. In addition, genome-wide scans of 

methylation have revealed novel pathways and genes involved in the aetiology of 

schizophrenia [166]. 
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As an example, the first EWAS for patients with schizophrenia by Mill and colleagues, 

[167] confirmed the role of GABAergic pathways in the aetiology of schizophrenia. 

Additionally, they found variation in regions associated with glutamatergic pathways as 

well as antipsychotic mediated effects on DNA methylation levels in the promoter region 

of Mitogen-activated protein kinase kinase 1 (MEK1) gene. Compared to candidate gene 

studies investigating the role of methylation, the sample size was considerably higher (n 

= 105, 35 cases with schizophrenia, 35 cases with bipolar disorder and 35 controls). 

However, the technology used at the time was not standardised and has now been 

superseded by microarrays from Illumina.  

 

Another paper by Xiao and colleagues [168] undertook a comprehensive look at the 

methylome and transcriptome of 2 brain regions: frontal cortex and anterior cingulate in 

patients with schizophrenia and those with bipolar disorders. They found significant 

differences in the methylation levels of these two regions between controls and patients 

with schizophrenia/bipolar disorder. Most interesting perhaps was their observation that 

the differentially methylated regions (DMRs) could accurately distinguish between cases 

and controls whereas differentially expressed genes could not. 

 

Similarly, Wockner and colleagues [169] performed EWAS in the post-mortem brains 

from 24 schizophrenia samples and 24 healthy controls. Using Illumina 450k array, they 

found significant methylation differences in more than 4000 probes across nearly 3000 

genes. It is known that antipsychotics can affect DNA methylation [170–172]. In this 

study all but two of the patients were consuming antipsychotics, so the effect of 

medication on the DNA methylation levels cannot be ruled out. 

 

Subsequently, another group also published EWAS for patients with schizophrenia from 

two different brain sample datasets [173]. Combined analyses by Wockner and 

colleagues [174] across the three different datasets [169,173] revealed differentially 

methylated regions (DMRs) in CERS3, DPPA5, PRDM9, DDX43, REC8, LY6G5C that 
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were consistently differentially methylated in patients with schizophrenia across the three 

different brain datasets. 

 

A recent review by Teroganova and colleagues [175] summarised the available evidence 

for DNA methylation alterations in schizophrenia from both candidate-gene and 

epigenome-wide approaches. They report that good agreement exists between candidate 

genes analysed for aberrant methylation and results from EWAS. 

  

However, a significant challenge in the field is the tissue heterogeneity of brain. 

Epigenetic marks such as DNA methylation are cell and tissue-specific [135]. However, 

in the studies described previously, the methylation signal is obtained from various 

regions of the brain that makes a direct comparison between studies challenging. Another 

challenge when performing methylation studies to study schizophrenia is the lack of 

information on antipsychotic medications. This is because they are known to influence 

DNA methylation [176]. Additionally, it is useful to know the demographic background 

of the patient samples since this can influence DNA methylation as well [177]. 

 

To account for some of these limitations, two analyses were recently published with a 

large sample size that also included information on the cellular composition and patient 

demographics - one using post-mortem brain tissue [178] and the other using whole 

blood [179]. Jaffe and colleagues [178] analysed post-mortem prefrontal cortex brains 

from 191 patient samples and 240 controls and found small but significant hypo-

methylation across more than 2000 probes in patients with schizophrenia. Furthermore, 

these probes were found to be enriched amongst a set of probes differentially methylated 

in fetal life [178] supporting a neurodevelopmental model of schizophrenia that suggests 

aetiological origins before birth [173].  

 

Hannon and colleagues [179] conducted the largest (n = 1714 )  EWAS of methylation 

differences in patients with schizophrenia performed to date using whole blood samples. 

The study focused on finding differentially methylated positions (DMPs) between 
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patients with schizophrenia  and controls across three different cohorts – a ‘discovery 

cohort’ with n=675 (patients = 353, controls = 322); a ‘replication cohort’ with n = 847 

(patients = 414, controls = 433) and 97 monozygotic twin pairs discordant for 

schizophrenia. In the discovery cohort, they identified over 1000 probes that were 

differentially methylated at a p-value < 10e-5 that were robust to methylomic variation 

from covariates such as cell composition, age, sex and smoking. Results from the 

replication and twin cohort showed high consistency in number and direction of 

methylation of top DMPs. A meta-analysis of the three datasets revealed a total of 343 

DMPs at an experiment wide-threshold of p-value < 10e-7 [179]. 

 

To identify differentially methylated regions (DMRs), they used two different methods 

that resulted in 12 to 76 DMRs. Some of these DMRs occurred in known regions of 

association such as the major histocompatibility locus (MHC) on chromosome 6 [179]. 

Furthermore, they observed that several of these DMRs had a combined p-value that was 

more significant than the individual probes contained within the DMRs highlighting, the 

importance of finding extended regions that are differentially methylated in patients with 

schizophrenia [179]. 

 

The current consensus in the field is that patients with schizophrenia show global hypo-

methylation with local hyper-methylation of specific genes and that administration of 

antipsychotics partially reverses the global hypo-methylation [166]. In our studies, we 

focused on DNA methylation because it is the most widely studied of all epigenetic 

changes [175]. Furthermore, as DNA methylation patterns can be inherited 

[123,132,180], this is the epigenetic modification that has been most thoroughly 

investigated from an evolutionary standpoint [149,150,181–184]. 

 

1.3.3 Gene x Environment (GxE) interactions 

 

Central to the premise of investigating the effect of methylation variation on the 

susceptibility to schizophrenia is the concept of gene by environment interactions (GxE). 
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Complex phenotypes, such as schizophrenia, can be influenced by both genetic and 

environmental factors. GxE analyses aim at understanding how the interaction between 

variation at the genotypic level and exposure to environmental risk can influence a 

phenotype. Different genotypes can cause different phenotypes even in the exposure to 

the same environmental stressors [185]. One of the first reports to look at such GxE 

interactions found evidence of the role of genotype in altering the phenotype in the 

presence of the same external stimuli of childhood violence. The study found that a 

polymorphism in the promoter region of the monoamine oxidase A enzyme gene 

(MAOA) modulates the susceptibility of developing aggressive tendencies in adulthood: 

those producing more MAOA were less susceptible to the detrimental effects of 

maltreatment [186]. However, investigating the role of GxE in a complex 

neuropsychological disorder like schizophrenia has been difficult because of the 

polygenic nature of the disorder. Existing literature points to the influence of 

environmental factors such as childhood trauma, cannabis consumption, migration and 

urban living environment as environmental risk factors for schizophrenia [187]. How 

exactly these environmental risks are influencing the development of the disorder 

remains unknown. Some studies have shown that environmental factors influence gene 

expression through epigenomic modifications. For instance, it is well known that physical 

exercise changes metabolism via epigenetic modifications [188,189]. However, the 

influence of environmental risk factors on the risk for schizophrenia through epigenetic 

mechanisms warrants future research. 

 

1.4 Evolutionary Hypothesis of Schizophrenia 

 

One of the most intriguing aspects of the disorder has been the remarkable persistence 

throughout recorded human history [13]. The incidence is roughly 1% [190,191] and is 

stable across populations separated by geography and time [192,193]. There are written 

records from the Mesopotamian culture ca 5000 years ago (YA) [13] that in today’s time 

would be classified as schizophrenia symptoms. 
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Thus, the disorder has been maintained in the human population despite reductions in 

fecundity of patients with schizophrenia [194,195]. The analyses of Swedish birth 

registry data with more than 2 million individuals born between 1950 to 1970 revealed 

that male schizophrenia patients had on average a nearly 80% reduction in the number of 

children [194] compared to the general population while female schizophrenia patients 

had half as many as the general population [194]. To explain the persistence of a disorder 

with such a substantial effect on fitness, the evolutionary hypothesis of schizophrenia was 

put forward. While some have argued for the existence of selective advantages of the 

disorder [190,196], the version that is most well known today is attributed to Timothy J. 

Crow [192,193,197,198]. 

 

T.J. Crow argued the disorder to be a by-product of human evolution through language 

[192,193]. To explain this, he proposed that lateralisation is fundamentally involved in 

the pathophysiology of schizophrenia [192,193].  Lateralization and cerebral asymmetry 

of the brain is the concept wherein specific cognitive tasks tend to be more dominant in 

one hemisphere over the other. These cognitive tasks, for example, include language 

[199]. According to Crow and the so-called bi-hemispheric theory  [193,200–203], the 

asymmetry of brain development permitted the separation of hemispheric function that 

enabled the evolution of language [192]. While lateralisation is observed in many species 

[204], it is the assertion of lateralisation of language that forms a key component of his 

evolutionary hypothesis. 

 

He makes the observation that patients with schizophrenia often have abnormal brain 

structure especially reduced lateralisation [192,193]. He asserts that it is this abnormal 

lateralisation that subsequently affects both language development and language 

perception in patients with the disorder such that they suffer from a dissociation between 

thought and speech that ultimately leads to the auditory hallucinations [192,193,205]. 

Thus, the involvement of language is seen by him as a key feature of schizophrenia, 

indeed identifying it as a disorder of language [192]. Crow, therefore, lays down the 
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fundamentals of the evolutionary hypothesis by arguing schizophrenia to be the ‘price 

humans pay for language’ [198].   

 

1.5 Why analyse through the prism of evolutionary epigenetics 

 

It is a challenge to design experiments that can test T.J. Crow’s assertion of the 

emergence of language during human evolution as a risk factor for schizophrenia.  The 

technologies and resources available allow the possibility to investigate regions of the 

genome that have evolved [206–208] and test for enrichment of schizophrenia markers in 

regions specific to human evolution [209–211]. This does not directly test the language 

component of Crow’s hypothesis. 

 

Genomic methods allow determination of genetic level changes on evolutionary 

timelines, but an important mediator of genetic changes is the environment which is 

impossible to investigate using genomic approaches alone [212,213]. In present-day 

species, the environmental effects on the genome are often investigated via epi-genomic 

approaches [214,215]. This is because the environment interacts with the genome through 

chemical modifications of the genome that affect gene regulation and gene expression 

[214,215]. Such environmental effects often leave long-lasting changes [216] that in 

certain species have been observed to persist for as many as 14 generations [217]. It is, 

therefore, now possible to trace the development and maintenance of epigenomic (and 

potentially environmental changes) for multiple generations in present-day species 

[216,217]. 

 

However, if one were to be interested in tracing the development of epigenome across 

historical time (and as a proxy the influence of environmental factors), it becomes 

imperative to use evolutionary epigenetic approaches that allow comparison of 

epigenomes from different time points [149,150,181]. Recently, efforts have been made 

to trace the evolution of epigenomes from primates to humans [149], humans with other 

extinct hominids [150], and even between ancient and modern humans [182] using 
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mainly methylation data   [149,150,182]. So, while the first anatomically modern humans 

emerged at least 300,000 years ago [218,219] and can be inferred to be human, it is 

known that modern human capabilities such as abstract thinking and organised societies 

did not develop until at least 70,000 years ago [220–227]. If we assume that the genome 

of the 300,000-year-old human fossil is similar to a modern-day human genome, then it is 

possible that GxE interactions mediated through epigenetic changes [215] could be one 

of the driving factors responsible for the emergence of intellectual abilities, language and 

possibly psychosis. 

 

 

 
Figure 2: Depiction of a phylogenetic tree with estimated times of divergence 

A phylogenetic tree providing a general view of evolution since the emergence of invertebrates.  

Except for the ancestors of the Homo lineage, all other species have survived to the present age. The 

tree of ancestors of Homo lineage is expanded in the next figure.  



  21 

 

 

 
Figure 3: Depiction of the expanded phylogenetic tree of the ancestors of Homo species.  

All ancestral species of Homo sapiens are extinct except for chimpanzees that survive to the present 

age. Chimpanzees, as such, are our closest living relatives. 

 

In this thesis,  to test the evolutionary hypothesis of schizophrenia, we primarily use two 

different kinds of evolutionary methylation data and determine if they are enriched for 

schizophrenia markers.  These methylation data contain regions of the human genome 

whose methylation levels have changed over evolutionary time frames. By checking for 

the enrichment of these methylated regions for schizophrenia markers, we can then 

determine if such regions where methylation levels have changed over evolutionary time 

in humans are localised in regions implicated in the aetiology of schizophrenia. We 

broadly categorise the two different methylation datasets as primate and non-primate 

differentially methylated regions (DMRs).  

 

The non-primate DMRs were obtained from the dataset of Gokhman et al., 2014 [150]. 

These are a group of methylated regions whose levels have changed over evolutionary 

time between modern humans, Neanderthals and Denisovans. These regions depict 
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changes in the methylation pattern since the divergence from the last common ancestor 

between the three hominids, ~750,000 YA [150]. 

 

The primate DMRs are another set of DMRs obtained from Hernando-Herraez et al. 

[149]. These trace the evolution of methylation through primate history from orangutans, 

through gorillas, chimpanzees and finally humans. Since the orangutans diverged from 

the human lineage ca 13 MYA and chimpanzees ca 6 MYA, these regions allow 

observation of methylation developments that took place in the lineage between 6 to 13 

MYA. While these datasets would not allow one to test whether language and 

schizophrenia are linked with evolution as per T.J. Crow, they would, however, allow 

one to investigate whether epigenomic evolution has taken place in genomic regions 

implicated in the aetiology of schizophrenia.  

 

Thus, using evolutionary epigenomic approaches allows one to not only investigate how 

methylomes evolved as species diverged from one another but also opens a window of 

research to investigate potential environmental changes that would accompany such 

epigenetic changes [182]. The latter aspect can be especially crucial in determining when 

humans developed superior intellectual capacities such as language and, according to T.J. 

Crow, the vulnerability to psychosis that came along with it [198]. 

 

 

 

 

 

 

 

 

 

 



  23 

 

 

2. Study Aims 

 

The overarching goal of our analyses was to uncover evolutionary epigenetic loci that are 

enriched for association with schizophrenia. 

 

GWAS studies have already implicated several genomic loci associated with 

schizophrenia while the various DMRs point to regions of the genome important from an 

evolutionary perspective. Methylation can influence the underlying genome sequence and 

conversely, the genome sequence may influence methylation. Therefore, we used both 

GWAS and DMR data, to test whether regions of the genome where methylation changes 

occurred over evolutionary time (DMRs) localise with markers associated with 

schizophrenia. 

 

In order of progression, we sought to address this in the following way: 

 

1. Determine whether evolutionary human-specific DMRs are enriched for human 

traits and phenotypes including schizophrenia. (Paper I) 

2. Determine whether primate DMRs show enrichment of association with 

schizophrenia markers. (Paper II) 

3. Determine whether evolutionary DMRs as defined in Paper I and containing 

significantly associated schizophrenia markers,  shows a different methylation pattern in 

patients with schizophrenia, compared to healthy controls.  (Paper III) 
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3. Method Summaries 

 

A consolidated summary of all the methods and datasets are given below in two broad 

categories (data acquisition and data analyses). The individual Papers I-III provide the 

details. 

 

3.1 Data Acquisition 

 

All three papers extensively used publicly available datasets that are described below. 

 

3.1.1 Differentially Methylated Region (DMR) data 

 

Coordinates of differentially methylated regions (DMRs) were obtained from two 

primary sources. For analyses presented in Paper I, the data was obtained from 

Supplementary Table S2 of Gokhman et al., 2014 [150]. This file contained DMRs 

inferred by comparing genome sequence of fossilised Neanderthal and Denisovan limb 

samples with methylation data from osteoblasts of modern humans. From the genomes of 

the Neanderthal and Denisovan samples, Gokhman and colleagues inferred methylation 

by utilising the natural degradation of methylated cytosine (C) to thymine (T). 

Unmethylated cytosines degrade to uracils, which were removed in the sequencing reads 

of Neanderthals and Denisovans [150]. Using the published high coverage genomes of 

Neanderthal [228] and Denisovan [229], the pre versus post-mortem Cs and Ts were 

determined to create a C→T ratio [150]. This was used to infer methylation in 

Neanderthals and Denisovans.  The methylation information, in the form of C→T ratio, 

was then compared with each of the three species and classified according to the hominid 

in which the methylation change occurred, i.e. human-specific, Neanderthal-specific and 

Denisovan-specific DMRs. These DMRs do not represent tissue-specific methylation but 

species-specific methylation [150]. DMRs that could not be classified reliably 

(unclassified DMRs) [150] were not used.  
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The second source of DMRs was from Hernando-Herraez et al. [230] that was used in 

Paper II.  The DMRs were determined by comparing the methylation profile from 

peripheral blood samples of orangutans, chimpanzees and gorillas with humans. This 

dataset contained hypo-methylated and hyper-methylated DMRs for each of the species. 

A pairwise comparison was performed to determine the DMRs, i.e. for a group of 

methylated regions in species A, regions that had lower (hypo-methylated) or higher 

methylation levels (hyper-methylated) in other species were found.  If a particular region 

in species-A was consistently hypo-methylated while it was hyper-methylated in other 

species, that region was termed as ‘species-A hypo-methylated region’. Similarly, hyper-

methylated regions for species-A was determined. Since our interest is in human 

evolution, we analysed human hypo and hyper-methylated DMRs for the enrichment of 

schizophrenia and other traits (Paper II).  In comparison to DMRs from Paper I that 

comprised of a comparison between modern humans and extinct hominids,  the DMRs in 

this paper are all from extant species.  These DMRs can be inferred to represent 

methylation changes since the point of divergence of the common ancestors of primates 

from humans.  Thus,  they represent an evolutionary course of history spanning at least 

13 MYA from orangutans [231,232] to 6 MYA when the common ancestors of 

chimpanzees and humans diverged from one another [231,232]. For distinguishing these 

DMRs from those used in Paper I, we refer to them as primate DMRs. 

 

3.1.2 Human Accelerated Region (HAR) data 

 

These are a group of regions in the human genome that are selectively accelerated. They 

were first described by Pollard et al. [206] by comparing human genomes with 

chimpanzee genomes to determine regions that remained conserved in chimpanzees but 

evolved rapidly in humans. Subsequent research by other groups has significantly 

expanded this list [208].  

 

Genomic coordinates were obtained from publicly available data (docpollard.com/2x) for 

three classes of human accelerated region: HARs, in which regions conserved in 
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mammals are accelerated in humans; PARs, in which regions conserved in mammals are 

accelerated in primates; and pHARs, in which regions conserved in primates (but not 

other mammals) are accelerated in humans.  

 

3.1.3 Neanderthal Selective Sweep (NSS) data 

 

Just like HARs describe the selective evolution of human genome in comparison with 

primates and other mammals, the Neanderthal selective sweep (NSS) describes the 

particular selection of specific nucleotides in the human genome over the Neanderthal 

genome. It thus offers evolutionary insight at a genomic level on regions of the human 

genome that likely diverged since splitting up from the last common ancestor of humans 

and Neanderthals [233,234].  

 

NSS data was obtained from Srinivasan et al. [209] as a list of markers with 

corresponding NSS values. Markers with negative values, indicating positive selection in 

humans, were selected and used for analysis. 

 

3.1.4 GWAS data 

 

In our analyses, we made extensive use of publicly available results from genome-wide 

association studies (GWAS). These studies analyse at a population level the frequency 

differences between groups of markers (single-nucleotide polymorphisms, SNPs) for 

specific phenotypes using a case-control study design. The final results from such studies 

usually provide information on SNPs with an association value in the form of the p-value. 

Summary statistics from thirteen different phenotypes were obtained from  their 

respective published GWAS studies : schizophrenia (SCZ) [38], bipolar disorder (BPD) 

[235], attention deficit hyperactivity disorder (ADHD) [236], rheumatoid arthritis (RA) 

[237], blood lipid markers (high density lipoprotein (HDL), low density lipoprotein 

(LDL), triglycerides (TG), total cholesterol (TC)) [238], blood pressure (systolic blood 
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pressure (SBP), diastolic blood pressure (DBP)) [239], body mass index (BMI) [240], 

height [241] and intelligence [242]. 

 

3.1.5 Methylation datasets 

 

Publicly available methylation datasets from GEO for brain at accession numbers 

GSE61107 [169], GSE6143 [173], GSE61380 [173], GSE74193 [178] and for blood at 

GSE80417 [179] were used. The analysis of methylation datasets requires a formatted 

text file, commonly called ‘Sample Sheet’ that details the information about the samples 

such as age, gender, specific well in the probe used for analysis etc. This was created 

with in-house scripts. 

 

3.2 Data Analyses 

 

3.2.1 SNP assignment to DMRs 

 

SNPs were assigned to DMRs with LDsnpR [243] using positional binning and LD 

(linkage disequilibrium)-based binning in R [244]. We used both methods because DMR-

localized SNPs that were not genotyped in a specific GWAS would be missed if we used 

positional binning alone [243]. 

 

3.2.2 Conditional Quantile-Quantile (QQ) plots 

 

QQ plots are a useful tool to visualise the spread of data and any deviations from 

expected null distributions. They are frequently utilised in GWAS to depict enrichment of 

true signals. When the observed distribution matches the expected distribution, a line of 

equality is obtained that depicts the null hypothesis. If the observed and expected 

distributions differ, there will be a deviation from this null line. Due to the extremely low 
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p-values in GWAS, it is common to depict p-values by converting them to negative log10 

values so that with smaller p-values, higher negative logarithmic values are obtained. We 

plotted the negative log10 of observed p-values against the expected negative log10 of a 

normal distribution. Leftwards deflections from the null line represent enrichment 

because this suggests a higher than expected chance of the observed data possessing true 

signals [245]. Conditional Q-Q plots are similar to quantile-quantile (QQ) plots but depict 

distributions of data ‘conditioned’ on particular criteria such as genomic annotation. 

Thus,  a specific stratum of data, e.g. p-values from a specific category of SNPs is 

compared against the whole dataset. In our case, we were interested to investigate the 

strata of data containing schizophrenia markers classified as being present within and in 

linkage disequilibrium (LD) with the DMR regions, compared to all the schizophrenia 

markers from the full GWAS. Enrichment occurred if the data distribution in the SNPs 

‘conditioned’ on DMRs showed greater leftward deflection than what is observed for all 

GWAS markers. 

 

3.2.3 INRICH 

 

INterval EnRICHment Analysis (INRICH) is a robust bioinformatics pipeline to 

determine enrichment of genomic intervals implicated by LD with predefined or custom 

gene sets [246]. It takes into account several potential biases that can otherwise lead to 

false positives. It is well suited for testing GWAS-implicated SNPs for association with 

gene sets as it controls for variable gene size, SNP density, LD within and between 

genes, and overlapping genes with similar annotations. We followed the procedure 

described previously [211], with the extended MHC region (chr6:25-35Mb) masked and 

SNPs with minor allele frequency (MAF) <0.05 excluded in the schizophrenia GWAS.  
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3.2.4 Pathway analysis 

 

Pathway analysis was performed using Ingenuity Pathway Analysis (IPA) from QIAGEN 

(www.qiagen.com/ingenuity, last accessed 26th August 2016). The reference set was 

Ingenuity Knowledge Base (Genes). Both direct and indirect relationships were analysed. 

All data sources were included with the confidence parameter set to experimentally 

observed and highly predicted pathways for humans. Under the category of ‘Tissues & 

Cell Lines’, we performed the analysis once with all organ systems and once with only 

the nervous system. 5338 enriched DMR SNPs were mapped to 349 unique RefSeq genes 

and 446 RefSeq genes in LD using the method of Schork et al. [245]. Genes in LD blocks 

containing enriched NSS markers were determined similarly. 4276 enriched NSS markers 

mapped to 648 overlapping RefSeq genes and 1363 RefSeq genes in LD. IPA was 

performed on these gene-lists. 

 

3.2.5 Selection of DMRs for patient analyses 

 

In Paper III, we use a total of 9 DMRs from more than 800 analysed in Paper I to test if 

they show disrupted methylation in patient samples.  These 9 DMRs were selected for 

containing SNPs associated with schizophrenia based on a study-wide significance 

threshold using the method of Moskvina et al. [247]. The study-wide threshold with 

Bonferroni correction was determined to be 2.4x10e-5  at α= 0.05. SNPs were found at or 

above this threshold spread across 9 DMRs: DMR10, DMR127, DMR203, DMR204, 

DMR236, DMR237, DMR291, DMR526 and DMR527. 

 

3.2.6 Methylation analyses 

 

The techniques for analysing methylation data from Illumina BeadChip platforms such as 

the 450k array [248,249] and the latest EPIC array [250] is an evolving field with several 

methods proposed for optimal pre-processing and normalisation of data [251–253].  
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In Paper III, altogether five different publicly available methylation datasets for 

schizophrenia patients were analysed. Four of these datasets were obtained from the 

prefrontal cortex of deceased schizophrenia patients while the fifth dataset was from 

peripheral blood samples. 

 

Raw IDAT files were available for the brain methylation dataset from Wockner et al. 

[169]. The preprocessing step was similar to the one reported by them [169]. Samples 

with missing age information were removed along with probes that failed at a detection 

p-value< 0.05 in 50% of the samples. The original analyses [169] also removed the 

probes on the sex chromosomes but, this was not done for the analyses in Paper III as 

none of the evolutionary DMRs selected were present on them. Additionally, due to the 

extremely sparse probe coverage in the DMRs, we performed the analysis without 

removing probes with SNPs. Subsequent normalisation was done using functional 

normalisation [251]. 

 

For the datasets from Pidsley et al. [173], only the normalised beta matrices were 

available. These were used directly in downstream analysis. However, two of the DMRs 

lacked probes: DMR526 and DMR527. These DMRs have only one probe each in the 

450k array. It is possible that Pidsley et al. [173] removed them during the pre-processing 

step for their analyses.  

 

The dataset from Jaffe et al. [178] initially comprised of more than 650 samples including 

prenatal samples. Since our interest in Paper III was to determine methylation variation 

in patients schizophrenia compared to a control population of similar age distribution, all 

pre-natal samples were excluded. The final analysis was performed on 191 schizophrenia 

samples and 231 control samples. 

 

For the analysis from blood samples using the discovery cohort from Hannon et al. [179] 

with 675 samples, the normalised beta matrix was directly used.  
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To determine the statistical significance of differentially methylated positions (DMPs), 

linear regression modelling with the limma [254] package in R [244] along with 

empirical Bayes [255]  in the minfi package [256] was implemented on the M values of 

individual probes. M values were obtained from the beta values as follows: 

! !"#$% = log2( !"#$
1 − !"#$) 

 

3.2.7 Statistical significance of DMRs 

 

After determining the statistical significance of the individual probes, it was essential to 

find a way to determine if the evolutionarily enriched DMRs show statistically significant 

methylation variation in patient samples compared to controls. Traditional methods of 

determining large regions of genomes with methylation variation rely on software such as 

bumphunter [257]. 

 

However, in our case, since the DMRs were already predefined, we utilised the comb-p 

algorithm [179,258] that can determine the statistical significance of custom regions. The 

algorithm is especially useful for array data due to the irregularly spaced nature of the 

probes. It calculates the correlation between probes and combines adjacent p-values using 

the Stouffer-Liptak-Kechris corrections [258]. Briefly, this correction weighs down a 

given p-value based on the correlation with nearby probes. We used the default 

parameters in the region_p programme [258] in this algorithm, to determine the statistical 

significance of methylation variation within the evolutionary DMRs. This programme 

also performs a Sidak one-step correction for multiple testing. We use the results from 

the Sidak correction to ascertain whether a given DMR shows statistically significant 

methylation difference in patient samples. 
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3.2.8 Visualisation of DMRs 

 

To visualise the methylation variation in the evolutionary DMRs showing statistically 

significant difference between patients and controls, we utilize the Gviz [259] package in 

R. Amongst the many useful features of the package is the ability to visualise custom 

data tracks with trendlines and annotation from most data tracks in the UCSC table 

browser [260]. Annotation information on the probes in the 450k array was obtained 

from Zhou et al. [253]. CpG Island information was downloaded from the 

AnnotationHub package [261]. SNP data and RefSeq data in hg19 was downloaded from 

UCSC Table Browser [260]. 

 

3.2.9 Annotation of evolutionarily enriched DMRs with Roadmap Epigenomics Data 

 

The evolutionary DMRs selected for containing schizophrenia-associated SNPs above the 

study-wide threshold were also annotated using the data available from the Roadmap 

Epigenomics consortia [262]. Prefrontal cortex data was available from sample E073 that 

was obtained from healthy controls aged 75 and 81 years old. The 18-state chromatin 

data was loaded in R and intersected with the coordinates of the 9 DMRs with the 

GenomicRanges package [263]. Information about the 18-states was downloaded from 

the Roadmap Epigenomics data portal. 
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4. Paper Summaries 

 

4.1 Paper I 

 

In this paper, we show that regions whose methylation levels changed specifically in the 

human branch compared to Neanderthals or Denisovans are enriched for markers of 

schizophrenia.  

 

We come to this conclusion by analysing various phenotypes and testing for enrichment 

both visually and statistically. 

 

For visual confirmation of enrichment, we implement the method from Schork et al. 

[245] that was also used successfully to depict enrichment in the Neanderthal selective 

sweep by Srinivasan et al. [209]. 

 

We did not find any evidence for enrichment of Neanderthal and Denisovan specific 

methylated regions for schizophrenia markers. However, the method may be suboptimal 

as the GWAS markers are based on the structure of human genome that may not be 

identical to Neanderthals and Denisovans. 

 

Our paper lends evidence to the evolutionary hypothesis of schizophrenia and suggests 

recent human evolution at play. 
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4.2 Paper II 

 

In this paper, we wanted to analyse if primate DMRs that denote methylation changes 

from ca 13 MYA could be enriched for schizophrenia markers. We undertook this study 

because we were interested in checking how far back the evolutionary lineage do 

methylation changes potentially remain enriched for schizophrenia (SCZ) markers. This 

could give clues to whether schizophrenia markers predated the Homo lineage. 

 

We separately undertook analyses in hypo- and hyper-methylated human regions, i.e. 

regions in the human genome that were either a) hypo-methylated in humans and hyper-

methylated in primates or b) hyper-methylated in humans and hypo-methylated in 

primates. 

 

We found evidence of enrichment for hypo-methylated human DMRs driven by the 

extended MHC  region and a considerable reduction in enrichment when the MHC region 

was masked. This suggests that the risk loci for SCZ in the extended MHC region are of 

an ancient origin and that they tend to have lost methylation over evolutionary time. 

When we remove the extended MHC region from the analyses, we lose the hypo-

methylated DMRs and the markers contained therein.  

 

In contrast, regions, which became hyper-methylated in humans compared to primates 

showed no evidence for enrichment in MHC region. The enrichment effect of hypo-

methylated DMRs was confirmed with INRICH for LD-implicated SCZ intervals below 

the genome-wide threshold. 

 

Furthermore, there was a negligible overlap of the primate DMRs with other evolutionary 

annotations including the human-specific DMRs from Paper I, HARs and NSS. This 

may suggest that different regions of the human genome underwent evolution and that 

these changes occurred at different evolutionary time points. 
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4.3 Paper III 

 

In this study, we investigated whether the evolutionary DMRs (from Paper I) that 

contain significantly associated schizophrenia markers above a study-wide threshold, also 

show variable methylation in patients with schizophrenia. We undertook the analyses 

using publicly available methylation datasets in brain and blood samples.  

 

We find statistically significant evidence of variable methylation in evolutionary DMRs 

in patient samples from the brain. The findings, however, could not be replicated in blood 

samples. This may be because schizophrenia is considered a brain disorder rather than a 

blood disorder.  

 

The DMRs showing variable methylation in patient samples occur in genes previously 

implicated in schizophrenia such as ZSCAN12P1, LINC00606, and FGFR1. These genes 

may be relevant from an evolutionary standpoint since they contain methylation regions 

important in human evolution.  Finally, we find a major limitation of the Illumina 450k 

BeadChip platform that has inadequate coverage of several of the evolutionary DMRs. 
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5. Discussion & Conclusion 

 

5.1 Methodological Considerations 

 

5.1.1 Mapping of DMRs and SNPs with LDsnpR 

 

A fundamental aspect of the present thesis has been the annotation of the evolutionary 

DMRs from Gokhman et al. [150] with SNPs from schizophrenia GWAS [38]. As 

presented in Paper I, this annotation was performed using the software LDsnpR [243] 

that was previously developed in the group [243].  Unlike other mapping tools such as 

Galaxy [264] and Genomic Ranges [263] that can provide information on overlaps, 

LDsnpR provides LD-based information as well [243]. This is useful because the 

individual nucleotides in the human genome are not independent of each other. There are 

places in the genome where groups of nucleotides tend to be inherited together and have 

low recombination. This biological phenomenon is exploited in designing GWAS chips 

where only a subset of all nucleotides is incorporated. This allows the chips to probe the 

entire genome by ‘tagging' regions with a few select SNPs. 

 

However, this advantage comes at the cost of resolution, i.e. any SNP associated with a 

trait actually specifies a particular region, but seldom the causative variant for the trait 

under investigation. Furthermore, since GWAS chips are designed using LD,  utilising 

only overlapping SNPs to annotate the DMRs could potentially lead to an 

underestimation of DMRs containing schizophrenia-associated SNPs. 

 



  37 

 

 

 
Figure 4: Depiction of DMR binning strategies.  

Using ‘Positional binning’, only SNPs overlapping a DMR are tagged. In this case, only 1 SNP 

is tagged to the DMR. This strategy would work if all SNPs were typed in a genotyping chip. 

However, due to the nature of LD in the human genome, there may be more SNPs within the 

DMR that are not directly genotyped in the GWAS chip. This is depicted in the case of ‘LD-

based binning’ where an additional SNP that is in LD with SNP2 is tagged to the DMR as 

SNP2’. Thus using ‘LD-based binning’, one can ‘capture’ more SNPs tagging to a particular 

DMR than using only ‘Positional-binning’ alone. 

 

Therefore, LDsnpR is an indispensable tool to circumvent the shortcoming of using only 

positional binning. The software was used for annotating all the GWAS SNPs to the 

DMRs through both LD-based and positional binning. A potential shortcoming of using 

LD-based information is that human populations have different LD-structures. However,  

this shortcoming was overcome using specific population background from the 1000 

Genomes project [110] for the European population. This was done keeping in view that 

the markers used in our study are obtained from the schizophrenia GWAS in which 49 
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out of 52 cohorts were of  European origin [38].  Similarly, the majority of samples from 

other GWAS were of European ancestry. 

5.1.2 Enrichment analyses with conditional Quantile-Quantile (QQ) plots 

 

The method of performing enrichment analysis with conditional quantile-quantile (QQ) 

plots is relatively new [245]. The regular QQ plots used in GWAS typically show the 

distribution of the observed p-values of SNPs from the expected distribution under the 

null hypothesis. Schork and colleagues [245] were the first to extend this method to 

depict distributions of SNPs selected (conditioned) on specific criteria and compare it to 

the overall distribution of SNPs. They found that trait association signals could be 

significantly enhanced with a concomitant improvement in false discovery rate (FDR) 

when SNPs were selected based on specific genomic annotations such as 5'UTRs, 

3'UTRs, Exons, Introns etc. [245]. We, therefore, used the same method and applied it to 

SNPs selected for annotating to DMRs. 

 

Traditionally, the deviations of test-statistics at the tail-end of QQ plots were assumed to 

occur due to population stratification or cryptic relatedness of cases [265]. However, as 

reported by another paper by Schork and colleagues [266], it is the polygenic architecture 

of complex traits that is displayed by the extreme deviations, and such deviations are not 

due to spurious association.  

 

Schork and colleagues [245] also provide a way to quantify the enrichment observed 

using a two-sample Kolmogorov-Smirnov test that analyses the empirical cumulative 

distribution frequencies (ecdf)  of specific strata of SNPs with that of intergenic SNPs. 

They also provide the so-called enrichment score given by normalised mean ( z-score2-1) 

where z-score denotes the effect size of the SNP under consideration: the number of 

standard deviations away from the mean of a normal (0,1) distribution.   

 

However, we could not quantify the enrichment observed in DMRs with these methods.  

We hypothesize this could be partly due to an inadequate number of SNPs tagging DMRs 
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compared to the overall number of SNPs in the GWAS. The two-sample Kolmogorov-

Smirnov test is dependent on sample sizes. In our case, we had a disproportionately 

smaller number of SNPs tagged to DMRs (~27,000) compared to the overall number of 

SNPs in the GWAS (~9.4 million full schizophrenia GWAS). Furthermore, Schork and 

colleagues [245], implement the test by comparing the specific category of SNPs against 

intergenic SNPs. In our opinion, intergenic SNPs would not be an appropriate 

background since many DMRs are themselves at intergenic regions, while others are in 

the gene bodies or promoters. This made the use of any other category of SNPs such as 

those tagging 5’UTR, exons, introns or 3’UTRs extremely challenging. 

 

Similarly, the enrichment score of the mean (z-score2-1) was implemented by normalising 

the various SNP categories against the category of SNPs possessing the highest z-scores. 

In the study by Schork et al. [245], this was the 5’UTR region, and therefore the z-scores 

of all other SNP categories (exons, introns etc.) were normalised against it. The method, 

therefore, could not be implemented for our dataset as our genomic category of DMR 

could not be normalised against any specific background set of known genomic 

annotation of exon, intron etc. There are several DMRs that are present in gene bodies 

and promoters, and since we wanted to test for enrichment of the entire DMRs, we could 

not directly implement the enrichment score as described by Schork and colleagues. 

 

It is due to these limitations that we chose to implement the INRICH pipeline [246] to 

quantify the enrichment observed in conditional QQ-plots [267]. 

 

5.1.3 Enrichment analyses with INRICH 

 

The INterval enRICHment analysis tool [246] implements permutation and bootstrapping 

procedures, to test LD-implicated genome intervals for the enrichment of specific gene-

sets. It is extremely valuable for testing regions implicated by GWAS studies as it 

corrects for several confounding factors such as variable gene size, overlapping genes, 

overlapping intervals, SNP density, LD within and between genes. The default 
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parameters involve performing 10,000 rounds of permutation to generate empirical 

significance values for each gene-set. This is followed by 5000 rounds of bootstrapping 

to correct for testing several different gene-sets [246]. Xu and colleagues [211] used this 

method to demonstrate enrichment of genes flanking HARs for schizophrenia. We 

implemented a similar procedure as them to demonstrate enrichment of genes flanking 

DMRs for schizophrenia and also independently verified enrichment of genes tagged by 

NSS for schizophrenia [267]. 

 

However, we failed to replicate the original findings of Xu and colleagues [267]. This 

might have been due to a different gene annotation or version. Additionally, they used 

specific background gene-sets in their INRICH analysis that we did not implement.  

During the INRICH analysis, it is possible to compare the enrichment of test gene-sets 

against a background gene-set.  As Xu and colleagues test for enrichment the primate 

HARs, i.e. regions conserved in non-human primates but evolved in humans, they make 

the argument of using a background set of primate orthologous gene-set instead of all 

human genes.   

 

However,  Xu and colleagues fail to mention if any enrichment was observed when using 

all human genes as background. This is important because the schizophrenia regions 

tested by them are generated on a genome-wide GWAS. If only primate orthologs are 

used as background, then it becomes crucial also to limit the schizophrenia-associated LD 

intervals to the orthologous regions. It is unclear whether this correction was performed.  

Hence, in our study, we utilized all human genes as background because a) the LD-

implicated intervals are derived from a genome-wide schizophrenia GWAS, b) NSS was 

generated on genome-wide scale, and c) we tested a set of genes flanking DMRs, NSS 

and HARs that together covered ~50% of known human genes. It is for these reasons we 

chose to argue against using specific background gene-sets in our INRICH analyses. 

 

An important caveat of the INRICH analyses is that the final p-values generated after 

permutation and bootstrapping procedures are dependent on the number of gene-sets 
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being tested. Testing only the DMR gene set will give a different p-value compared to 

testing a combined gene set flanking DMRs, NSS and all the different HARs. 

Furthermore, due to a random seed generator in the computational pipeline of INRICH, 

repeating the analysis will never give the same p-values as before, although the trend and 

direction remain same. It is, however, possible to obtain the same p-values if the same 

random seed generator is used in the new analyses. 

 

Lastly, as INRICH tests for gene sets, it is not directly comparable to polygenic 

enrichment methods such as conditional QQ plots that test enrichment at a SNP level. It 

is therefore important to consider how the gene sets are constructed. We used the 

identical procedure as described by Xu and colleagues of a 100kb flanking window for 

HARs [211]. However, this may or may not be an ideal window to tag genes for DMRs 

simply because we do not yet know the full functionality of the DMRs. An ideal gene set 

for DMRs would be genes that have been experimentally verified to be affected by the 

variable methylation brought about when the ancestors of modern humans diverged from 

those of Neanderthals and Denisovans ~750,000 years ago [268]. This would require 

future work. 

 

5.1.4 Evolutionary DMR analyses in patient samples 

 

From the results of Paper I that described the enrichment of human-specific DMRs for 

schizophrenia associated markers, the next task was to determine which of the DMRs 

should be analysed for functional analysis in patient samples. Since we wanted to focus 

on the DMRs that contained significantly associated schizophrenia markers, it was 

important to determine an appropriate threshold for the significance cutoff of the SNPs. 

Traditionally, for GWAS data containing millions of SNPs, the significance threshold is 

assigned using the Bonferroni correction for multiple testing [100]. This is an arbitrary 

figure based on the assumption of a million independent SNPs [269] on the GWAS chip 

that gives a genome-wide significance threshold of 5x10e-8 at α= 0.05. 
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However, unlike in a GWAS, the genome-wide threshold could not be used to determine 

DMRs containing significantly associated SNPs. In our case, we had ~27,000 SNPs 

tagging DMRs in LD. These SNPs are thus not independent of one another. It was, 

therefore, necessary to determine the appropriate number of independent SNPs to correct 

for in multiple testing. 

 

The method of Moskvina [247] was implemented in R [244]. The effective number of 

SNPs is estimated based on pairwise correlation, which accounts for underlying LD and 

provides more realistic estimates of independent SNPs.This was estimated to be  ~2048 

SNPs that was used to determine the study-wide significance threshold at α= 0.05 as 

follows:  

 

!"#$%&'$( !ℎ!"#ℎ!"# = 0.05
!"#$!% !"#$%& !" !"#$%$"#$"& !"#!# (2048) 

 

This gave a value of 2.4x10e-5. Subsequently, 9 DMRs were found to possess SNPs that 

crossed this threshold. 

 

Thus, in the analysis presented in Paper III, we assume that it is the DMRs possessing 

significantly associated schizophrenia SNPs that are relevant for an investigation. It is 

possible to speculate that there may be other evolutionary DMRs from Gokhman et al. 

[150] that do show methylation variation in patients with schizophrenia, despite not 

possessing significant schizophrenia-associated SNPs. This should be investigated in 

future studies, ideally with an upgraded Illumina methylation array that has improved 

coverage for these DMRs. This aspect of coverage of the evolutionary DMRs is 

discussed in the following section.  
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5.1.5 Methylation analyses in brain and blood samples 

 

The datasets utilised for carrying out the methylation analyses were performed in 

Illumina's HumanMethylation450 BeadChips also known as the 450k array [248,249]. 

Briefly, this is a microarray-based technology that measures methylation variation in the 

samples with the help of probes.  In the 450k array, there is a little more than 450,000 

probes (hence the name ) spread across the genome. These probes are used for measuring 

methylation variation at a specific CpG site in the genome and together cover 99% of all 

RefSeq genes, more than 19,000 unique CpG islands as well as 3000 probes at non-CpG 

sites [248]. 

 

When using this platform, each plate can analyse 96 samples at a time. These samples are 

distributed across eight slides, where each slide can handle 12 samples. The 12 samples 

are arranged in a grid of 2x6 cells, i.e. two columns and six rows. Each cell in this grid 

contains probes with two different types of chemistries: Infinium Type I probe and 

Infinium Type II probe. 

 

Type I probe was initially designed for the predecessor of the 450k array namely the 

Infinium 27k array [270]. This probe design utilizes two bead-bound probes per CpG 

location - one probe measures the methylated signal, the other measures the unmethylated 

signal.  After bisulphite conversion of sample DNA that converts unmethylated cytosines 

to uracil, for an unmethylated CpG, the probe for detecting unmethylated position 

hybridises to the DNA, followed by a successful single base pair extension of a 

fluorescent labelled nucleotide. The bead-bound probe for detecting methylation fails at 

the single base extension step and therefore does not emit a colour signal. 

 

For the methylated CpG, the other bead-bound probe for detecting methylated position 

hybridises, followed by a successful allele-specific single base extension. The 

methylation level at each CpG locus is then determined as the ratio of the signal from the 
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methylated probe to the total signal intensity (β). This value has a range from 0 for a 

completely unmethylated locus to 1 for a completely methylated locus. 

 

 
Figure 5: Depiction of the Type I probe design in the 450k array on methylated locus (Locus 1).  

Bisulphite treatment preserves the methylated cytosine base. The probe for detecting methylation 

(green), hybridises and successfully performs a single base amplification while the same results 

in failure for the probe detecting unmethylated loci (red) (Adapted from Illumina 450k array 

technical note at https:// www.illumina.com/documents/products/ technotes/ technote_ hm450_ 

data_ analysis_ optimization.pdf ) 
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Figure 6: Depiction of the Type I probe design in the 450k array on an unmethylated locus 

(Locus 2).  

Bisulphite treatment converts a non-methylated cytosine to thymine. The probe (red) for 

detecting an unmethylated locus successfully hybridises and performs single base extension 

while the same results in failure for the methylation detecting probe (green) (Adapted from 

Illumina 450k array technical note at https:// 

www.illumina.com/documents/products/technotes/technote_ hm450_ data_ analysis_ 

optimization.pdf) 
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Figure 7: Depiction of the Type II probe design in the 450k array. 

Locus 1 is a methylated CpG while Locus 2 is an unmethylated CpG. Bisulphite treatment 

converts all unmethylated cytosines to thymines (locus 2). A fluorescent-labelled nucleotide gets 

hybridised indicating presence or absence of methylation at a specific locus (Adapted from 

Illumina 450k array technical note at https:// 

www.illumina.com/documents/products/technotes/technote_ hm450_ data_ analysis_ 

optimization.pdf) 

 

About 70% of the probes in the 450k array are of Type 2 design [248]. This probe design 

utilises only one probe per CpG locus. This enables more probes to be assimilated in the 

array design, thereby expanding the coverage of CpG sites across the genome. In the 

Infinium Type II probe, after the probe hybridises to the bisulphite treated DNA, single 

base extension with a differentially labelled fluorescent nucleotide indicates the 
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methylation status. If the CpG site initially was methylated, then the 3' end of the probe 

incorporates a complementary nucleotide of G that has a green fluorescent label while a 

red fluorescent labelled A is incorporated if the original CpG site was unmethylated. 

 

Probes in the 450k array are 50bp in length  

(https://www.illumina.com/documents/products/technotes/technote_hm450_data_analysi

s_optimization.pdf). For the evolutionarily enriched DMRs, as depicted in the table 

below, the coverage is weak except for DMR204 where more than half of the DMR can 

be analysed with the probes. The results in Paper III, therefore, need to be viewed with 

this caveat in mind. 

 

DMR 

name 

Chr Start End Length No. of probes 

overlapping 

Percentage 

covered of 

DMR  

Probes 

needed for 

100% 

coverage 

DMR10 1 2378997 2379771 774 1 6.4% 15 

DMR127 3 10805466 10809820 4354 11 12.6% 871 

DMR203 6 28058845 28060341 1496 6 20.0% 30 

DMR204 6 28833654 28834570 916 10 54.6% 18 

DMR236 7 1952455 1953065 610 4 32.8% 12 

DMR237 7 2048069 2049043 974 3 15.4% 19 

DMR291 8 38287269 38289920 2651 1 1.8% 53 

DMR526 14 103745950 103746209 259 1 19.3% 51 

DMR527 14 104006646 104008448 1802 1 2.7% 16 

 

Table 1: Depiction of probe coverage of the 450k array in DMRs selected for patient analyses. 

The table summarises information on the 9 DMRs analysed in Paper III with genomic 

coordinates provided in hg19 and probe coverage in these DMRs from the 450k array. 
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Assuming that 100% probe coverage in these DMRs is needed for a more accurate 

understanding of methylation variation in patients with schizophrenia, the 450k platform 

is under-equipped to paint a full picture.  Since CpG sites are correlated to at least 50bp, 

one may not need as many probes as depicted in the table above. However, for a more 

accurate representation of the methylation variation in these evolutionary DMRs, the 

probe coverage needs to increase substantially. 

 

The poor probe coverage is especially relevant when considering the statistical tests in 

the comb-p algorithm [258]. As described previously under the Methods section, this 

algorithm is highly suitable for analysing methylation arrays where the probes, and thus 

their respective p-values, are unevenly spread across the genome. Comb-p determines the 

correlation between adjacent probes and helps combine adjacent p-values to determine 

true significance of probes or regions. In Paper III, the region_p programme of comb-p 

was used for determining the statistical significance of the methylation variation in the 

evolutionarily enriched DMRs. This programme initially computes the auto-correlation 

of probes up to the maximum length of the regions to be tested. It then performs the 

Stouffer-Liptak-Kechris correction where the p-value of each probe within a particular 

DMR is adjusted according to adjacent p-values as weighted according to the auto-

correlation. When neighbouring p-values are low, a given p-value gets pulled lower. 

Finally, a Sidak one-step correction for multiple testing is performed. For a given DMR, 

the number of tests to correct for is determined by the total length of bases covered by 

probes divided by the size of the region. Since this correction takes into account the 

number of bases covered by the probes in the DMRs, it may vary if a) probe coverage in 

the region is inconsistent, and, b) probes are dropped during pre-processing steps. 

 

An additional confounder in the analyses presented in Paper III relates to the variable 

cell composition of all the brain datasets analysed [174]. Although all the studies utilised 

brain samples from the prefrontal cortex, there is considerable variation in the ratio of 

neuronal to non-neuronal cells between the different datasets. In fact, when comparing 

the prefrontal cortex dataset from Wockner and colleagues [169] to the two datasets from 
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Pidsley et al. [173], the Pidsley datasets contained twice the proportion of neuronal cells 

in the schizophrenia samples as the dataset from Wockner et al. [174]. This may partly 

explain the opposite direction of effect in methylation observed in schizophrenia patients 

for DMR127. Furthermore, the data from Jaffe et al. [178] estimates cell composition 

using three additional cell populations apart from the neuronal and non-neuronal cell 

types. 

 

Finally, an interesting point to consider is the fact that the methylation in brain samples 

are all post-mortem while the methylation in blood samples is antemortem. We, 

therefore, do not know for sure, if the methylation difference observed in the brain 

samples from schizophrenia patients has more to do with the fact that the subjects had 

passed away or the fact that brain and blood do not share the same methylation profile in 

these evolutionarily enriched DMRs. One way to unravel this conundrum could be to test 

post-mortem blood samples with post-mortem brain samples. Additionally, it has been 

previously reported that the vast majority of probes do not show similar methylation 

profiles between brain and blood [271]. Thus, using blood to infer methylation variation 

in these evolutionary DMRs for patients with schizophrenia may not be optimal. 

 

 Furthermore, antipsychotics are known to influence DNA methylation levels and as such 

their effect cannot be ruled out [176,272,273]. As reported previously by Mill and 

colleagues [167], DNA methylation of a CpG island located upstream of MEK1 is 

correlated with lifetime antipsychotic usage in the brain. Similarly, FOSB is activated by 

administration of antipsychotic medications and was found to be hypo-methylated in 

female patients with major psychoses [167].  

 

However,  as reported previously [274], DNA methylation differences can be observed in 

antipsychotic-free patients using peripheral leukocyte samples. But the study may have 

potential limitations such as the relatively young age of patients ( mean age: 31.9 ± 9.7 

years) that suggests they were unlikely to be stable long-term patients with schizophrenia. 

Furthermore, the results may also be confounded due to the fact there are several 
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different cell types in leukocytes with their own specific DNA methylation signatures 

[275]. 

 

It has been suggested that certain antipsychotics like clozapine are superior to haloperidol 

due to the ability of clozapine to induce hypo-methylation in GABA and glutamatergic 

promoters [273]. A recent study [276] used peripheral blood samples and 450k array to 

look into the effects of clozapine on treatment-resistant patients with schizophrenia. They 

found significant methylation differences at more than 29,000 positions after one year of 

clozapine treatment. However, the study did not take into account the peripheral blood 

cell composition. 

 

5.1.6 Limitations of the study 

 

The epigenetic change of DNA methylation of CpG dinucleotides has been of prime 

focus in Papers I-III. This is, however, not the only epigenetic modification in the 

human genome. There are reports of variation in DNA methylation termed 5-

hydroxymethylation that we did not consider for investigation. Furthermore, research has 

revealed that 5-hydroxymethylation is a more common methylation modification in the 

brain [277,278] than in other organs. This makes the investigation of this epigenetic mark 

very relevant for brain disorders such as schizophrenia. We were however limited by the 

fact that the evolutionary epigenetic changes were investigated only in CpG (5-

methylcytosine) methylation and not 5-hydroxymethylation. We, therefore, limited 

ourselves to investigating only 5-methylcytosine and not 5-hydroxymethylation.  

 

Additionally, we did not investigate histone marks for similar reasons. To the best of our 

knowledge, they have not been investigated from an evolutionary point of view. RNA is 

also a vital component of epigenetic machinery [123,279], not considered in the present 

study. Although some forms of RNA molecules have been shown to be responsible for 

intergenerational inheritance [280], they have yet to be investigated from an evolutionary 
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standpoint. So far, it is only CpG methylation in the form of 5-methylcytosine that has 

been investigated from an evolutionary perspective [181–183]. 

 

In the context of psychiatric disorders, bipolar disorder is known to share genetic 

similarity with schizophrenia [281]. We failed to find evidence of enrichment of 

evolutionary human-specific DMRs for bipolar disorder associated SNPs. This could 

partly be due to the fact that bipolar disorder GWAS was underpowered [235] because of 

a moderate sample size (n = 7,481 cases and 9,250 controls). There is a new bipolar 

disorder study currently available as a pre-print on bioRxiv that we did not use [282]. 

Furthermore, as a limitation for the polygenic enrichment method employed, a future 

GWAS study on schizophrenia with more power could shift the p-value distribution 

entirely. This could cause more SNPs to cross the significance threshold and as such 

more evolutionary DMRs may be relevant for an investigation. 
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5.2 Biological significance of our results 

 

5.2.1 Discussion of results in Papers I-III 

 

 
Figure 8: Depiction of all evolutionary datasets tested in literature for the enrichment of 

schizophrenia markers 

The diagramme depicts various evolutionary annotations, superimposed on a phylogenetic tree, 

which have been tested in literature for the enrichment of schizophrenia markers. Red denotes 

lack of enrichment while green depicts positive enrichment for markers associated with 

schizophrenia. (Timeline estimates from the Smithsonian ( http://humanorigins.si.edu/) , 

Hasegawa et al 1985 [283] , Srinivasan et al 2017 [210] , Rogers et al 2017 [268] ) 

 

Taken altogether, our results hint at epigenomic evolution through methylation, having 

taken place in genomic regions implicated in the aetiology of schizophrenia (Paper I). 
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These regions harbour markers that are involved in the regulation of various neuro-

developmental pathways. The fact that methylation changes also took place in the very 

same regions suggest a complex gene by environment interaction in the evolution of 

humans, especially pathways that led to the development of our brain. It is known that 

various factors from the environment can make long-lasting changes in the DNA 

methylation patterns that can be subsequently inherited at a population level [284–286]. 

Thus, the true significance of our findings from an evolutionary standpoint suggests, the 

interaction of the epigenetic machinery through DNA methylation with environmental 

factors over the past 300,000 years when the first anatomically modern humans appeared 

on Earth [218,219]. These gene by environment interactions may in part have been 

responsible for changes in neuro-developmental pathways, some of which also affected 

neuro-developmental pathways implicated in the aetiology of schizophrenia.  

 

We also show that DNA methylation variation that occurred in Homo sapiens since the 

divergence of the common ancestor from the great apes are not enriched for markers of 

schizophrenia, with the exception of the extended MHC region (Paper II). This suggests 

that the evolutionary events of the past 300,000 years but not ca 6-7 MYA, may have 

influenced the DNA methylation of genomic regions associated in the aetiology of 

schizophrenia at a genome-wide level. In Paper II, we call the DMRs observed in humans 

by comparison with chimpanzees, gorillas and orangutans as primate DMRs. The 

observation of enrichment of primate DMRs for schizophrenia risk markers only in the 

extended MHC region might suggest that the immune system markers associated in 

schizophrenia have been undergoing evolution from a very long time. Indeed it has been 

shown that the MHC region bears signatures of both recent and ancient natural selection 

[287].  

 

The exact biological consequences of this enrichment of primate DMRs in the extended 

MHC region are however not easy to infer. This is because the extended MHC region is 

the most gene-dense region of the human genome containing over 250 genes at an 

average gene density of one gene every 16 kb along with extended linkage-



  54 

 

 

disequilibrium [287]. Thus it is challenging to infer which genes might have had their 

regulation affected by variation in DNA methylation. When we remove the extended 

MHC region from the analysis, any evidence of enrichment of primate DMRs disappears 

suggesting a highly localised evolution of the immune system markers in schizophrenia 

since the divergence from great apes.  

 

Finally, in Paper III, we investigate whether the DMRs from Paper I that contain 

schizophrenia markers above a study-wide threshold show disrupted methylation in 

patients with schizophrenia. We observe that some of these DMRs do show variation in 

patients samples. The variation is observed however only in brain tissue and not blood 

samples. This is the first attempt at investigating if regions whose methylation has 

evolved in Homo sapiens shows disrupted patterns of methylation in patients with 

schizophrenia. The results suggest LINC00606, ZSCAN12P1 and FGFR1 to be relevant 

from an evolutionary perspective and also important in the aetiology of schizophrenia as 

they contain SNPs associated with schizophrenia at or above the study-wide threshold of 

p = 2.4 x10e-5. Additionally, we find statistically significant variation in a DMR that 

does not overlap any particular gene. Data from the Roadmap Epigenomics Project [262] 

in the prefrontal cortex tissue suggests it to be present in a region demarcated as a 

‘bivalent enhancer'. Using Hi-C data in the hippocampus [288], we may speculate that 

this particular DMR could be important in the regulation of MARK3, a gene that has been 

implicated in disorders of astrocytes. 
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Figure 9: The potential regulatory role of DMR526 on MARK3  

The depiction of a Hi-C contact matrix with the approximate position of DMR 526 at chr14: 

103,745,950-103,746,209. Figure derived from Hi-C results on Hippocampus published by 

Schmitt et al., 2016 [288] and visualised in 3D Genome Browser at 

http://promoter.bx.psu.edu/hi-c/view.php 

 

5.2.2 An epigenetic perspective of the results in the broader context of recent human 

evolution  

 

It is important to place the results of the present body of work in the broader 

understanding of human evolution.  A variety of factors could have driven the human-

specific methylation changes. One could speculate about the potential environmental 

agents that might have influenced the methylation patterns over the past 300,000 years in 

Homo sapiens.   
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Climate fluctuations have often occurred over the past 800,000 years [289]. The period of 

rapid expansion of the human intellectual capacity and colonisation of the world co-

occurs with the last ice-age in which average temperatures in the South Pole reduced as 

much by 10 ºC along with a concomitant reduction in global CO2 levels [290]. These 

climatic changes could potentially have affected the food sources available to our 

ancestors. Food and dietary patterns are well known to affect DNA methylation patterns 

[291–293]. 

 
Figure 10: Depiction of the global climatic shifts over the past 800,000 years.  

The figure depicts variations in temperature and carbon dioxide (CO2) levels as observed at the 

South Pole. The emergence of modern Homo sapiens ca 70,000-40,000 YA occurs during the last 

ice age, while the oldest fossil of an anatomically modern H. sapiens is dated to ca 300,000 YA. 

(Source: National Research Council, 2010a, Lüthi, D et al., 2008 [290], Jouzel J et al. 2007 

[289], Reproduced with permission from National Academies Press). 
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Long-chain polyunsaturated fatty acids  (PUFA) are important components of brain 

phospholipids [294]. These include arachidonic acid (AA) from meat and 

docosahexaenoic acid (DHA) from fish.  Abnormal brain phospholipid metabolism has 

been observed in patients with schizophrenia [294]. It has been suggested that the diet of 

our ancestors, especially of those living along the sea-coast and inland lakes, was rich in 

consumption of fish [295]. A diet rich in fish would provide DHA to babies via their 

mother’s milk [295,296]. Long-term availability of PUFA from such food sources may 

have influenced the development of the brain [294] through epigenetic mechanisms 

[297]. This may represent yet another environmental means of altering DNA methylation 

in our ancestors. It remains unknown, however, the extent to which the consumption of 

fish and meat can influence methylation in the human-specific DMRs analysed in the 

present body of work. 

 

Some researchers have proposed that methylation changes can be driven by sequence 

changes [298] and while that may be true, there also exists the phenomenon of 

differential methylation between identical twins called ‘metastable epialleles’ [182]. 

Thus, not all methylation changes may be driven by the underlying genomic sequence. 

Gokhman and colleagues observed that only some but not all the human-specific 

methylation changes were influenced by the underlying genomic sequence [150]. 

 

Anatomically modern humans appeared on earth at least 300,000 years ago [218,219]. 

However, it is challenging to put an exact date on the emergence of superior mental 

abilities that define the modern Homo sapiens. In particular, anthropologists and 

archaeologists studying human evolution often cite the emergence of the superior 

intellectual abilities of Homo sapiens from about 70,000 years onwards [221]. This is the 

period from which there is irrefutable evidence of the emergence of art, religion 

[222,299] and possibly spoken language [227]. From an evolutionary perspective, it 

suggests a massive leap in the animal kingdom because Homo sapiens became the first to 

not only develop the capacity to think and imagine things that do not exist [222,299] but 

also to communicate the same ideas to other members of the species [227]. This aspect 
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would have been critical in the ability to coordinate and cooperate effectively with large 

groups numbering more than 150 individuals and even needed in keeping a group 

together [220,300].  

 

This ability to cooperate and form bonds with other members of their species, united by a 

shared belief system may have allowed larger groups of humans to co-exist. This aspect 

gains significance from the recent work by Rogers et al. [268] that suggests Neanderthals, 

although spread far and wide as evidenced by the rich collection of their fossils, existed 

in small bands of individuals. One could thus speculate that although for most of the time 

in existence, humans were not able to displace the Neanderthal from their natural 

habitats, the ‘intellectually-superior’ humans, characterised by larger, well-coordinated 

groups may have driven the smaller bands of Neanderthals to extinction ca 40,000 years 

ago [301]. 

 

Using the data from Gokhman et al. [150], we gain an insight into the methylation 

variation that has potentially occurred since the last common ancestor of humans, 

Neanderthals and Denisovans diverged ca 750,000 years ago [268]. There thus remains a 

gap in our knowledge of the evolutionary events occurring in the human lineage from the 

period of ca 750,000 to 300,000 years when anatomically modern humans appeared. 

Assuming the superior intellectual abilities appeared ca 70,000 years, then there remains 

another gap in our knowledge of evolutionary events that allowed the massive leap in 

intellectual capacity.  

 

Using the present study to determine when exactly in the period of the last 300,000 years 

[218,219] Homo sapiens developed their superior intellectual abilities or psychosis is 

therefore challenging. If the method used in the reconstruction of genomes of 

Neanderthals and Denisovans [150,302] could be implemented on samples of ancient 

Homo sapiens from different time periods [303–310] then theoretically it should be 

possible to reconstruct the methylomes of ancient humans [311]. Subsequently, a more 

‘time-series’ analyses of change in methylation patterns of regions controlling neuro-
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developmental processes implicated in schizophrenia and psychosis should be feasible. 

This idea has been further expanded upon by recent work from Gokhman et al. [182] and 

Hanghøj et al. [312]. 

 

Amongst the defining hallmarks of schizophrenia are hallucinations [313,314]- a 

phenomenon of imagining and experiencing things that do not exist. Also amongst the 

defining features of our species is the ability to think and imagine things that do not 

necessarily have a physical form of existence such as belief systems  [222,223,299]. 

Given that abstract thinking including art and religion appeared at least 40,000 years ago 

[222,299], it may very well be the case then that the earliest psychotic patients may have 

belonged in this period and not in the Homo sapiens of ca 300,000 year period [218,219]. 

The Homo sapiens from ca 300,000 years, though physically similar to modern humans, 

may, in fact, have had sub-developed intellectual skills in working memory [225] that in 

turn is critical in creativity [315–317].  Indeed, the rapid expansion of Homo sapiens 

from ca 70,000 years onwards might have been spurred by a distinct advantage over 

earlier Sapiens through the origin of language or belief systems [220,224,227] that may 

have allowed larger bands of individuals to cooperate, migrate and colonise the world 

[220,225,300]. One could speculate that within this ability to bring together massive 

numbers of individuals through religion [220] and language [227] may be where 

psychosis originated. The answer therefore to the origins of psychosis may thus 

ultimately lie in the origins of creativity, language and religion that may be answered 

through evolutionary epigenomics of ancient Homo sapiens [182,312]. 
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5.3 Conclusion &  Future Perspectives 

 

 
 

To recapitulate, we first tested if  (a) regions of recent methylation changes (non-primate 

DMRs) are enriched for association with schizophrenia and other human traits (Paper I). 

We followed it up by (b) testing enrichment of association for ancient methylation 

changes (primate DMRs) for human traits (Paper II) and finally, (c) whether 

differentially methylated regions (DMRs) that contain significantly associated 

schizophrenia SNPs show variable methylation in patients with schizophrenia (Paper 

III).  

 

Our original goal was to test T.J. Crow’s evolutionary hypothesis of schizophrenia, but 

our results are not conclusive.  Using evolutionary epigenetics datasets that together trace 

a period of development from ca 13 MYA to 750,000 YA, we find evidence of 

enrichment of recent, but not ancient methylation changes for schizophrenia associated 
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methylation

dmrs
snps

re
gi
on

s

evolutionary

human

dna

enrichment

da
ta

disorder

gene

ge
no

m
e

ge
ne

s

markers gwas

hu
m
an

s

...
probes

alsobrain

methylated

dmr

onech
an

ge
s

an
al
ys

es

di
ffe

re
nt

studiescpg

probe

ob
se

rv
ed

va
ria

tio
n

associated

en
ric

he
d

epigenetic

sp
ec

ifi
c

due
st
ud

y

evolution

re
gi
on

ye
ar
s

found

re
su

lts

species

blood

analysis

m
et
ho

ds

thus

ar
ra
yda
ta
se

ts

la
ng

ua
ge

diagnostic

modern

si
nc

etim
e

ge
no

m
ew

id
e

therefore

two

genomic

fir
st

system

number

obtained

homo

threshold

mental

ag
e

as
so

ci
at
io
n

compared

evidence

pe
rfo

rm
ed

cell

differentially
hypothesis

environmental

pr
es

en
t

across

several

factors

aetiology

implicated

po
pu

la
tio

n

controls

known

si
gn

ifi
ca

nc
e

another

important
sapiens

ad
di
tio

na
lly

symptoms
information

m
et
ho

d

pv
al
ue

s di
so

rd
er
s

le
as

t

statistical

work

ge
ne

tic
loci

show

availablemhc
pa

tie
nt

de
ve

lo
pm

en
t

cr
ite

ria

re
se

ar
ch

well

set

influence particular

fig
ur
e

test

pr
im

at
e

un
m
et
hy

la
te
d

snp

testing
significantapproaches

level

similar

hy
pe

rm
et
hy

la
te
d

recent

le
ve

ls

extended

lo
cu

s

pv
al
ue

ne
an

de
rth

al
s

coverage
ns

s

distribution

de
sc
rib

ed

candidate

pathways
analysed

co
m
m
on

gr
ou

ps

independent

hypomethylated

design

three

dataset

ne
an

de
rth

al

pl
ot
s

inrich

find

fact

ancient

amongst

subsequent

use

effect

ge
no

m
es

together

chromatin

m
od

ifi
ca

tio
ns

within

group
de

pi
ct
io
n

various patterns

suggests

an
ce

st
or
s

sc
ho

rk

bipolar

including

provide

single

icd

many

revealed

of
te
n

re
gu

la
tio

n

ex
pe

ct
ed

pr
ev

io
us

ly

ep
ig
en

et
ic
s

role

es
pe

ci
al
ly

fo
rm

la
st

proteins

subsequently

possible

containing

cortex

sa
m
pl
e

illumina

postmortem

background
oc

cu
rre

d

investigated

ago

investigate

intellectual

primates
gokhman
variable

case

base

co
rre

ct
io
n

ty
pe



  61 

 

 

SNPs. Our results in principle support the hypothesis that evolution may in part have 

contributed to schizophrenia risk. However, at present, we cannot ascertain whether the 

recent methylation changes harbouring schizophrenia markers are causative of the 

disorder or piggyback due to some hitherto unknown stochastic phenomenon. 

Furthermore, schizophrenia is a highly polygenic trait [266] that has shared pleiotropy 

with several traits [318–320]. Although we do not find enrichment of other trait-

associated markers with evolutionary DMRs (with the possible exception of height), we 

cannot rule out that the enriched DMRs affect the pathophysiology of other traits. 

 

Additionally, the hypothesis put forward by T.J. Crow stipulates a dysregulation of the 

language process being central in the aetiology of schizophrenia. Our current results 

neither confirm nor contradict this aspect of the hypothesis. This is partly due to the fact 

that the methods employed cannot test for language origin, proficiency or dysregulation. 

Furthermore, to utilise evolutionary methylation changes for language analysis, one 

would need much recent methylation data from a time where there is incontrovertible 

evidence of human civilisation and language flourishing [13]. 

 

In conclusion, while we find evidence to support the hypothesis that recent evolution may 

have played a role in modulating methylation in genomic regions associated in 

schizophrenia, the present methods lack the resolution to determine language 

dysregulation as a key component of human evolution and psychosis. As a consequence,  

there is much work that remains to be done to either prove or disprove T.J. Crow's 

evolutionary hypothesis that schizophrenia is the price humans pay for language. Future 

work should also investigate the human-specific DMRs using either an array technology 

with better probe resolution or whole-genome sequencing methods for measuring 

methylation variation in patients with schizophrenia. 
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Abstract

Background: One explanation for the persistence of schizophrenia despite the reduced fertility of patients is
that it is a by-product of recent human evolution. This hypothesis is supported by evidence suggesting that recently-
evolved genomic regions in humans are involved in the genetic risk for schizophrenia. Using summary statistics from
genome-wide association studies (GWAS) of schizophrenia and 11 other phenotypes, we tested for enrichment of
association with GWAS traits in regions that have undergone methylation changes in the human lineage compared to
Neanderthals and Denisovans, i.e. human-specific differentially methylated regions (DMRs). We used analytical tools
that evaluate polygenic enrichment of a subset of genomic variants against all variants.

Results: Schizophrenia was the only trait in which DMR SNPs showed clear enrichment of association that passed the
genome-wide significance threshold. The enrichment was not observed for Neanderthal or Denisovan DMRs.
The enrichment seen in human DMRs is comparable to that for genomic regions tagged by Neanderthal Selective Sweep
markers, and stronger than that for Human Accelerated Regions. The enrichment survives multiple testing performed
through permutation (n = 10,000) and bootstrapping (n = 5000) in INRICH (p < 0.01). Some enrichment of association
with height was observed at the gene level.

Conclusions: Regions where DNA methylation modifications have changed during recent human evolution
show enrichment of association with schizophrenia and possibly with height. Our study further supports the
hypothesis that genetic variants conferring risk of schizophrenia co-occur in genomic regions that have changed as the
human species evolved. Since methylation is an epigenetic mark, potentially mediated by environmental changes, our
results also suggest that interaction with the environment might have contributed to that association.

Keywords: Differentially methylated regions, Schizophrenia, Evolution, Epigenetics, Height, Neanderthal selective
sweep score, Human accelerated regions

Background
Schizophrenia is a psychiatric disorder that has been re-
ported throughout human history, possibly as far back as
5000 years [1, 2]. Family, twin and adoption studies estimate
that schizophrenia has a high heritability of 60–90% [3–6].
Today, schizophrenia is estimated to have a prevalence of

1%. It is associated with reduced fertility and increased mor-
tality [7–11], and its persistence despite this heavy burden is
paradoxical. Power et al. [11] leveraged Swedish registry data
to demonstrate the reduced fecundity of patients with
schizophrenia, despite the novel finding that sisters of indi-
viduals with schizophrenia had higher fitness than controls.
They henceforth suggested hitherto unknown mechanisms
for persistence of the disease. One explanation for this per-
sistence is that evolution has indirectly selected the disease
instead of eliminating it - the disease may co-segregate with
creativity and intellectual prowess, providing selective ad-
vantages to the kin of affected individuals [9, 12]. Crow first
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argued that language and psychosis may have common ori-
gins, which could explain the persistence of schizophrenia
in human populations [12, 13]. This evolutionary hypothesis
of the origins of schizophrenia can now be tested, thanks to
the identification of genetic factors implicated in schizophre-
nia [14–16] and the availability of datasets that reflect recent
genomic evolution in humans [17–19].
Large genome-wide association studies (GWAS) have

identified thousands of variants that are associated with
schizophrenia [14–16] but our mechanistic understand-
ing of the candidate variants is poor. One approach to
investigating the function of schizophrenia-associated
variants is comparative genomics, which investigates the
evolutionary relevance of certain genomic regions [20].
This field has introduced new datasets to test disease or-
igins in humans, including Human Accelerated Regions
(HARs) and Neanderthal Selective Sweep (NSS) scores
[18, 19]. HARs are genomic regions that are highly con-
served in non-human species, but have undergone rapid
sequence change in the human lineage [20–24]. Xu et al.
[18] showed that genes near HARs are enriched for as-
sociation with schizophrenia. Neanderthals were homi-
nids that co-existed and even bred with modern humans
[25, 26]. Comparison of Neanderthal and human gen-
ome sequences [27, 28] has revealed genomic regions
that have experienced a selective sweep in modern
humans, presumably following a favorable mutation
[28]. Negative NSS scores can be used to pinpoint muta-
tions (usually single nucleotide changes) that were posi-
tively selected in humans as they diverged from
Neanderthals. Srinivasan et al. [19] found that genomic
regions tagged by negative NSS scores show enrichment
of association with schizophrenia.
Using specific interpretation of genome sequencing

in two recently extinct hominids, Neanderthals and
Denisovans, Gokhman et al. [29] mapped genome-
wide methylation levels (i.e. the methylome) and com-
pared them to modern humans. While 99% of the
methylation maps were identical in the three homi-
nids, nearly 2000 differentially methylated regions
(DMRs) were identified, which give the first clues
about the role of epigenomic evolution in generating
anthropometric differences between modern humans
and their ancient cousins [29]. These DMRs provide a
dataset of evolutionary annotations complementary to
pre-existing datasets. Unlike HARs and NSS scores,
which are based on DNA sequence changes, DMRs
provide information on the evolution of epigenomes.
Since epigenomes can act as an interface with the en-
vironment [30, 31], these datasets provide the opportun-
ity to investigate environmentally driven evolutionary
changes. Keeping in mind the evolutionary hypothesis
for schizophrenia proposed by Crow, we thus exam-
ined if these evolutionary DMRs are enriched for

association with schizophrenia. We also examined a
range of human traits to compare the possible enrich-
ment in other traits. Using previously published meth-
odologies [19, 32, 33] and publicly available GWAS
datasets we systematically analyzed twelve diverse pheno-
types to investigate the potential role of regions suscep-
tible to epigenetic variation in the emergence of specific
traits in the human lineage.

Results
SNPs in human-specific DMRs are enriched for association
with schizophrenia.
The genomic locations of human-specific DMRs were
obtained from data published by Gokhman et al. [29]
(see Methods for full details). GWAS summary statis-
tics for 12 common traits were obtained from pub-
lished datasets: schizophrenia [14], bipolar disorder
(BPD) [34], attention deficit hyperactivity disorder
(ADHD) [35], rheumatoid arthritis [36], high density
lipoprotein [37], low density lipoprotein [37], triglyc-
erides [37], total cholesterol [37], systolic blood pres-
sure [38], diastolic blood pressure [38], body mass
index [39], and height [40]. The GWAS datasets are
summarized in Additional file 1, Table S1. For each
trait, we generated a list of single nucleotide polymor-
phisms (SNPs) within DMRs (positional annotation)
and a list of SNPs in linkage disequilibrium (LD-based an-
notation) with markers within DMRs (Additional file 1,
Table S1).
We used quantile-quantile (QQ) plots as described

by Schork et al. [32] to test whether the DMR SNPs
are enriched for association with the GWAS trait
compared to the complete set of SNPs (see Methods
for additional details). In such plots the baseline is
the null line of no difference between expected distri-
bution of p-values and observed p-values. Deviation
of the observed data distributions from the expected
data distribution indicates the presence of true associ-
ations. When the p-values for a set of selected
markers show greater leftwards deflection, they are
enriched for association compared to the overall
GWAS set. For the schizophrenia GWAS, enrichment
was observed both for SNPs in LD with markers in
DMRs (Fig. 1, Additional file 1: Fig. S1) and for SNPs
located within DMRs (Fig. 2). Although there was a
slight leftward deflection in the higher p-values
(smaller negative log10 of p-values) in some other
traits (e.g. height; Fig. 1, Additional file 2: Figure S1),
the observed enrichment only crosses the genome-
wide significance level of 5 × 10− 8 for the schizophrenia
SNPs. The enrichment of disease-associated markers in
DMRs is thus specific to schizophrenia and is independent
of LD.
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Human-specific DMR enrichment in schizophrenia is
independent of the MHC region, other genomic
annotations and total markers genotyped
The Major histocompatibility complex (MHC) region
harbors several significant schizophrenia markers and

could potentially bias our results because of long-range
LD. The QQ plots show that the enrichment remains
when the MHC is excluded (Fig. 1) or included (Fig. 2).
The schizophrenia GWAS had the highest density of

markers genotyped (~ 9.4 million) and thus had the most

Fig. 1 Enrichment of DMR SNPs across SCZ, BPD, BMI and Height. Quantile-Quantile (QQ) plots of GWAS SNPs for Schizophrenia (SCZ) with the
extended MHC region masked (chr6: 25-35 Mb), Bipolar Disorder (BPD), Body Mass Index (BMI) and Height. The X-axis shows expected -log10 p-
values under the null hypothesis. The Y-axis shows actual observed -log10 p-values. The values for all GWAS SNPs are plotted in pink while the
values for SNPs in linkage disequilibrium (LD) with DMRs are plotted in blue. Leftwards deflections from the null line (grey diagonal line) indicate
enrichment of true signals - the greater the leftward deflection, the stronger the enrichment. Genomic correction was performed on all SNPs with
global lambda

Fig. 2 Comparison of enrichment of association with schizophrenia for SNPs within Human, Neanderthal and Denisovan DMRs. The figure shows
QQ plots for all schizophrenia (SCZ) GWAS SNPs in green while SNPs within the species-specific DMRs are plotted in red. The location of the MHC
is unknown in Neanderthal and Denisovan genomes, so the MHC region was not masked in the human genome
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SNPs in DMR regions (Additional file 1: Table S1),
which could artificially inflate the enrichment. We nor-
malized the total number of DMR SNPs with the total
number of SNPs genotyped in each GWAS and found
that the proportion of SNPs in DMRs is nearly identical
for all traits (Additional file 1: Figure S3). To further
eliminate the possibility that the enrichment is due to
variation in the number of markers analyzed, we ex-
tracted ~ 2.4 million SNPs that were common across the
twelve GWAS. Although not as strong as with the full
set, the deflection observed for the schizophrenia GWAS
remains higher than any other trait (Additional file 1:
Figure S1), indicating the presence of significant disease
markers in DMRs. These validations point to a true en-
richment of association of the DMR SNPs with schizo-
phrenia that is independent of the number of markers in
a GWAS. It should be noted that we cannot rule out en-
richment in the ADHD and BPD GWAS, because they
are lacking in power (Additional file 1: Figure S1).
Additionally, we considered the distribution of

schizophrenia-associated SNPs based on genomic anno-
tations of 5′ untranslated regions (5’UTRs), Exons, In-
trons and 3′ untranslated regions (3’UTRs) [32].
Contrary to previously published findings [32], the en-
richment was highest for intronic SNPs and lowest for
5’UTR SNPs (Additional file 1: Figure S4).

Only human-specific DMRs are enriched for association
with schizophrenia
Next, we used QQ plots to test whether markers located
in the Neanderthal- and Denisovan-specific DMRs are
enriched for association with schizophrenia. Coordinates
for these DMRs were obtained from data published by
Gokhman et al., 2014 [29] (see Methods for details).
Since we do not know the precise coordinates of the
MHC for Neanderthals and Denisovans, the analysis for
human DMRs included the MHC region. No enrichment
was observed for Neanderthal or Denisovan DMRs (Fig.
2). It should be noted that this approach may not be ap-
propriate for testing Neanderthal- and Denisovan-
specific DMRs since (a) the schizophrenia GWAS was
conducted in humans; (b) SNP and LD information is
available only for humans; (c) the three hominids had
variable number of DMRs, which affected the number of
SNPs captured via positional annotation.

Comparison of human DMRs with other evolutionary
annotations
We compared the enrichment observed for the human
DMRs with the enrichment previously reported for NSS
markers and HARs [18, 19] (see Methods for details).
We first compared the enrichment via QQ plots and find
that the enrichment of human DMRs in schizophrenia is

comparable to that observed for NSS markers and far
greater than that observed for HARs (Fig. 3).
In these analyses, it was important to check the extent

of overlap of markers (SNPs) annotated to various gen-
omic regions of DMRs, NSS markers and HARs.
Reassuringly, the various evolutionary annotations do
not share the same group of markers, indicating that we
did not test the same regions or SNPs (Additional file 1:
Figure S2). The overlap between NSS markers and DMR
markers involved less than 0.5% of all NSS markers and
less than 0.2% of all DMR markers (Additional file 1:
Figure S2). The SNPs in the DMRs thus represent a dif-
ferent group of markers that have not been annotated or
analyzed previously from an evolutionary standpoint
(Additional file 2, Additional file 3).

Statistically-significant enrichment exists for human DMRs
To determine the statistical significance of the DMR en-
richment in schizophrenia, we utilized the INRICH soft-
ware pipeline. INRICH is a pathway analysis tool for
GWAS, designed for detecting enriched association sig-
nals of LD-independent genomic regions within bio-
logically relevant gene sets (in our case genes which
contain DMRs). It performs permutation and bootstrap-
ping procedures to determine the significance of associ-
ation of markers in LD intervals while maintaining the
SNP density and gene density of the original intervals
[33]. INRICH confirmed significant (p < 0.05) enrich-
ment of association for human DMRs with schizophre-
nia after correcting for multiple testing through
bootstrapping at most p-value thresholds of LD inter-
vals. Additionally, INRICH independently verified the
previously reported enrichment of NSS markers with
schizophrenia [19] (Fig. 4). Furthermore, INRICH identi-
fied gene-level enrichment of association for DMRs
with height (Additional file 1: Figure S5), while at the
SNP level the enrichment in height was seen only for
smaller effects, i.e. the enrichment did not remain
below p < 10− 8.

Pathway analysis
We utilized Ingenuity Pathway Analysis (IPA) to analyze
DMR SNPs that show enrichment of association with
schizophrenia (for details of the genes analyzed, please
refer to the ‘Pathway analysis’ section in the Methods).
We found ‘CREB signaling in neurons’ and ‘Synaptic
long term potentiation’ amongst the top canonical path-
ways when analyzing pathways overrepresented in ner-
vous system. Additionally, under physiological systems,
‘Nervous system development and function’ is also
enriched (Additional file 1: Table S2). We repeated the
same analysis for NSS markers as they also show enrich-
ment of association with schizophrenia. ‘CREB signaling
in neurons’ was also amongst the top canonical pathways
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Fig. 3 Comparison of enrichment of association with schizophrenia for SNPs in LD with various evolutionary annotations. QQ plots for association
with schizophrenia (SCZ) of SNPs in different evolutionary datasets (DMRs - red, NSS - orange, Primate HARs (pHARs) - blue, HARs - magenta,
PARs - dark green) versus schizophrenia GWAS with all SNPs (light green). SNPs are corrected for genomic inflation using global lambda

Fig. 4 INRICH test for enrichment of association of DMR, NSS and Accelerated Region gene sets. Corrected p-values based on performing
multiple testing with bootstrapping 5000 times, with p = 0.1 as threshold. The various evolutionary annotations compared are: DMR, human-specific
DMRs; NSS, Neanderthal Selective Sweep; HAR, mammalian conserved regions that are accelerated in humans; PAR, mammalian conserved regions
that are accelerated in primates; and PrimateHAR (pHAR), primate-conserved regions that are accelerated in humans
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for enriched NSS markers (Additional file 1: Table S4).
Additionally, we repeated the analyses with all organ sys-
tems and even then, ‘CREB signaling in neurons’ and ‘Syn-
aptic long term potentiation’ emerged amongst the top
canonical pathways for both enriched DMRs (Add-
itional file 1: Table S3) and enriched NSS (Additional file 1:
Table S5). This is an interesting result since there is very
little marker overlap between the DMR and NSS SNPs
(Additional file 1: Figure S2). Interestingly, genes contain-
ing enriched DMRs are also overrepresented in ‘Hair and
skin development’ when considering all organ systems
(Additional file 1: Table S3). This may suggest potential
gene-by-environment interactions, modulated by methyla-
tion variation over human evolution (see Discussion
below).

Discussion
Our results suggest that SNPs in regions of the human
genome that have undergone recent changes in DNA
methylation status are enriched for association with
schizophrenia, and to a lesser extent with height.
Amongst all the traits analyzed, the enrichment ob-
served in QQ plots was strongest for schizophrenia and
passed the genome-wide significance threshold of 5 ×
10− 8 when the MHC was both excluded (Fig. 1) and
included (Fig. 2). INRICH analysis confirms significant
enrichment (p < 0.01) in human DMRs that survived
multiple testing through bootstrapping (Fig. 4) for
association with schizophrenia, and also suggests a
possible effect on height (Additional file 1: Figure S5).
Xu et al. [18] and Srinivasan et al. [19] respectively

demonstrated that variants located in HARs and in
regions containing NSS markers were enriched for asso-
ciation with schizophrenia. In our study, we compared
the evolutionary enrichments of schizophrenia risk vari-
ants in DMRs, NSS markers and HARs. We validate the
results of Srinivasan et al. [19] (Fig. 3 and Fig. 4). HARs
do not show enrichment of disease markers by QQ plots
and INRICH, unlike NSS markers and DMRs (Fig. 3 and
Fig. 4). This difference with the report of Xu et al. could
be due to a different freeze of the gene database used; it
could also be because Xu et al. used a more stringent
Hardy-Weinberg equilibrium (HWE) threshold to filter
out markers from the schizophrenia GWAS [14], a step
we could not replicate as the genotype data are not pub-
licly available. We used the publicly available schizophre-
nia dataset that has a HWE p-value > 10− 6 in controls
and p-value > 10− 10 in cases [14]. Interestingly, all the
evolutionary annotations (DMRs, NSS markers and
HARs) cover different sections of the genome with very
little overlap between them (Additional file 1: Figure S2).
Between the three evolutionary annotations, nearly
70,000 SNPs occur around regions with evolutionary
significance (Additional file 1: Figure S2). Our results

supply a wealth of information on genomic regions that
are important for the evolution of humans and are also
enriched for schizophrenia risk variants (NSS markers
and DMRs, Additional file 3). In addition, our study
provides genetic support from two independent datasets
that regions which differ between modern and ancient
hominids could be implicated in the development of
schizophrenia. An interesting hypothesis to consider is
the possibility that methylation patterns are potentially
driven by the genomic sequence underneath. This
hypothesis is supported by preliminary findings
presented at the recently concluded World Psychiatrics
Genetics Congress [41]. As such it is possible that the
human specific DMRs analyzed here represent regions
of the human genome where the underlying sequence
might have diverged from Neanderthals and Denisovans.
This hypothesis may be partially true as Gokhman et al.
[29] observed that some, but not all of the methylation
changes were indeed driven by sequence changes. On
the other hand, there also exist metastable epialleles
where there are methylation differences in genetically
identical individuals [42]. As such, this would suggest
that not all methylation differences are driven by the
underlying genomic sequence alone. We did not test
whether the schizophrenia markers are human-specific
or not and therefore should be investigated in future
research.
Neanderthal- or Denisovan-specific DMRs showed no

enrichment of association (Fig. 2). This suggests that
SNPs conferring vulnerability to schizophrenia occur in
genomic regions whose methylation levels were altered
in the modern human lineage but not in the ancestral
lineages. It is possible that the evolutionary changes
driving the variation in methylation status could also
have made the human lineage more vulnerable to
schizophrenia. A caveat to this result is that the LD
structure in archaic genomes is unknown, so we cannot
test LD-based enrichment in Neanderthal or Denisovan
genomes. Our inter-lineage analyses with enrichment
plots were thus restricted to SNPs occurring exclusively
within DMRs. The other limitation to this comparative
approach is that the GWAS data is specific to modern
humans.
In previous studies [32], it was reported that 5’UTRs

are the functional annotation harboring the most associ-
ation with a given trait. However, the DMRs enriched
for association with schizophrenia tended to localize in
intronic regions (Additional file 1: Figure S4), which is
in agreement with the expectation that methylation re-
gions should not be localized in exons and UTRs. This
shows that using more information to label some gen-
omic regions in greater detail, such as potential regula-
tory regions in introns, might give a more precise
annotation of regions of association.
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Despite the genetic overlap between bipolar disorder
and schizophrenia, we do not find evidence of enrich-
ment of association of DMRs with bipolar disorder ei-
ther at the SNP level (Fig. 1, Additional file 1: Figure S1)
or the gene level (data available on request). This could
possibly be due to lack of sufficient power in the bipolar
disorder GWAS [34]. Additionally, the gene-level ap-
proach utilized by INRICH depicts enrichment of associ-
ation of human DMRs with height (Additional file 1:
Figure S5). This evidence is lacking at the SNP level as
depicted by QQ plots (Fig. 1, Additional file 1: Figure
S1). We speculate that this could be due to the differ-
ence in testing DMR-localized SNPs compared to genes
flanking human DMRs.
Although the DMRs utilized here were obtained from

bone samples, Gokhman et al. [29] assert that the DMRs
refer to species-specific methylation differences and not
tissue-specific variations [43]. Similarly, Hernando-
Herraez et al. [44] noted that species-specific DMRs
tend to be conserved across tissues and as such should
not represent tissue-specific variations. Other studies
also showed that neurological systems were enriched for
methylation differences even when the tissue samples
analyzed were not neurological [45–47]. Therefore, we
believe that our results are valid for a ‘brain’ phenotype
even though the DMRs were derived from non-brain tis-
sues. The enrichment seen for schizophrenia also cor-
roborates the results of Gokhman et al. [29] who
reported that DMRs were more enriched around genes
implicated in the nervous system amongst all the organ
systems tested for evolutionary changes in methylation
patterns. Hernando-Herraez et al. [44] also found that
methylation differences between humans and great apes
were located around genes controlling neurological and
developmental features. It is therefore possible that the
methylation differences were mediated by evolution of
genomic regions controlling neurodevelopmental pro-
cesses. The results of pathway analysis are consistent
with this. Both the DMR and NSS regions that are
enriched for association with schizophrenia contain
genes that are overrepresented in ‘CREB signaling in
neurons’ and ‘Synaptic long term potentiation’.
Our results hint that epigenomic evolution has taken

place in genomic regions implicated in the aetiology of
schizophrenia. Furthermore, these regions harbor
markers that are involved in the regulation of various
neurodevelopmental pathways. The fact that methylation
changes also took place in these very same regions sug-
gests a complex gene-by-environment interaction in the
evolution of humans, especially for pathways that led to
the development of our brain. While it is known that
various factors from the environment can make long-
lasting changes in DNA methylation patterns that can be
subsequently inherited at a population level [30, 31, 48],

the true significance of our findings from an evolutionary
standpoint suggests that the superior mental abilities of
our species may in part have been driven by environmen-
tal factors during the past 300,000 years [49, 50].
It is difficult to put an exact date on the emergence of

the superior mental abilities that define the modern
Homo sapiens. Anthropologists often date the onset of
the advanced intellectual abilities of Homo sapiens from
about 70,000 years onwards [51], a period which saw the
emergence of art, religion [52, 53] and possibly spoken
language [54]. From an evolutionary perspective, it sug-
gests a massive leap in the animal kingdom because
Homo sapiens became the first species not only to de-
velop the capacity to think and imagine things that do
not exist [52, 53], but also to communicate these ideas
to other members of the species [54]. This ability would
have been critical for effective coordination and cooper-
ation within large groups and may even have been
needed to keep a group together [55, 56]. The genomic
approach to analyze mental disorders used in the present
study and other studies can interrogate the effect of
changes which appeared in the last 300,000 years [49, 50],
but it will clearly be interesting to trace mores recent
changes. If a similar method used in the reconstruction of
Neanderthal and Denisovan genomes [29, 57] could be
implemented on samples of ancient Homo sapiens from
different time periods [58–65], then theoretically it should
be possible to reconstruct the methylomes and regions of
recent evolution from ancient humans [66]. Subsequently,
more detailed ‘time-course’ analyses of changes in methy-
lation patterns and in other regions of recent evolution
and their implications in schizophrenia will surely result
in more detailed elucidation of the evolutionary hypoth-
esis of schizophrenia. This is the promise of the novel
field of paleoepigenetics that seeks to infer past envir-
onmental cues that affected the epigenomes of an-
cient individuals [42, 43].

Conclusions
In summary, we have demonstrated that human gen-
omic regions whose methylation status was altered dur-
ing evolution are enriched in markers that show
association with schizophrenia. Our results concur with
previous genomic studies demonstrating that methyla-
tion changes in Homo sapiens have had the greatest im-
pact on the nervous system and provide evidence that
epigenomic evolution plays a role in conferring a high
risk of schizophrenia on humans. Future research should
attempt to perform a finer temporal resolution of the or-
igins of psychosis through the prism of evolutionary epi-
genomics. To explore the period of evolution before the
Homo lineage, it would also be interesting to determine
whether methylation signatures from primates are
enriched for schizophrenia markers. Future research
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should also investigate the influence of human-specific
DMRs on height.

Methods
Differentially methylated region data
Coordinates for DMRs were obtained from data publicly
available in Supplementary Table S2 of Gokhman et al.,
2014 [29]. This file contained DMRs inferred by compar-
ing genome sequence of fossilized Neanderthal and
Denisovan limb samples with methylation data from os-
teoblasts of modern humans. From the genomes of the
Neanderthal and Denisovan samples, Gokhman et al. in-
ferred methylation by utilizing the natural degradation
of methylated cytosine (C) to thymine (T) to create a
C→T ratio [29]. The methylation information, in the
form of C→T ratio, was then compared with each of the
three species and classified according to the hominid in
which the methylation change occurred, i.e. human-
specific, Neanderthal-specific and Denisovan-specific
DMRs. These DMRs do not represent tissue-specific
methylation but species-specific methylation [29]. The
human-specific DMRs comprise regions that have both
gained and lost methylation in comparison to Neander-
thal- and Denisovan-specific DMRs. DMRs that could
not be classified reliably in any of the three species (un-
classified DMRs) [29] were not used. Full methodo-
logical details for assigning DMRs are in the Additional
file of the original paper [29].

HAR data
Genomic coordinates were obtained from publicly avail-
able data (docpollard.com/2x) for three classes of human
accelerated region: HARs, in which regions conserved in
mammals are accelerated in humans; PARs, in which re-
gions conserved in mammals are accelerated in primates;
and pHARs, in which regions conserved in primates
(but not other mammals) are accelerated in humans.
Conversion to hg19 assembly was performed using the
liftOver tool from the UCSC Genome Browser.

NSS data
NSS data was obtained as a list of markers with corre-
sponding NSS values from Srinivasan et al. [19]. Markers
with negative values, indicating positive selection in
humans, were filtered out and used for analysis.

GWAS data
Summary statistics from GWAS of 12 common traits
were obtained from published datasets: schizophrenia
(SCZ) [14], bipolar disorder (BPD) [34], attention deficit
hyperactivity disorder (ADHD) [35], rheumatoid arthritis
(RA) [36], blood lipid markers (high density lipoprotein
(HDL), low density lipoprotein (LDL), triglycerides (TG),
total cholesterol (TC)) [37], blood pressure (systolic

blood pressure (SBP), diastolic blood pressure (DBP))
[38], body mass index (BMI) [39], and height [40]. For
studies published with hg18 coordinates (BPD, SBP, DBP,
HDL, LDL, TG, TC, ADHD, RA), conversion to hg19
was performed using the command line version of the
liftOver tool from the UCSC Genome Browser (http://
hgdownload.cse.ucsc.edu/downloads.html#utilities_
downloads). For BMI and height SNPs, the genomic co-
ordinates were obtained by mapping them to the assem-
bly of 1000 Genomes Project Phase 1 reference panel
SNPs [67].

SNP assignment to DMRs
SNPs were assigned to DMRs with LDsnpR [68] using
positional binning and LD (linkage disequilibrium)-
based binning in R [69]. We used both methods because
DMR-localized SNPs that were not genotyped in a spe-
cific GWAS would be missed if we used positional bin-
ning alone [68] (Additional file 1: Table S1). The LD file
utilized in HDF5 format was constructed on the Euro-
pean reference population of 1000 Genomes Project and
can be publicly downloaded at: http://services.cbu.uib.
no/software/ldsnpr/Download.

Enrichment analyses with stratified quantile-quantile (QQ)
plots
QQ plots are an effective tool to visualize the spread of
data and any deviations from the expected null distribu-
tions. They are frequently utilized in GWAS to depict
enrichment of true signals. When the observed distribu-
tion of data matches the expected distribution, there is a
lack of enrichment and a line of equality is obtained that
depicts the null hypothesis. A distribution such as this
reflects no enrichment of observed over expected data
distribution. However, if the observed and expected dis-
tributions differ, there will be deviation from this null
line. As described in detail by Schork et al. [32], left-
wards deflections from this null line represent enrich-
ment. The higher the leftward deflection, the greater is
the enrichment of true signals. In GWASs, due to the
extremely low p-values of SNPs, it is common to depict
p-values by converting them to negative log10 values so
that smaller p-values give higher negative logarithmic
values. We plotted the negative log10 of the observed p-
values of SNPs against the expected negative log10 of a
normal distribution. The distributions were corrected
for genomic inflation by λGC. This method of enrich-
ment was used to show for example [32] that specific
genomic regions are enriched for trait-associated SNPs
and are much more likely to associate with a given trait
than SNPs distributed across a genome. In other words,
when SNPs are stratified according to specific genomic
regions, there is a greater enrichment of true signals
than what is observed in the GWAS. Using a similar
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approach, we binned SNPs that fall in DMR regions and
plotted the stratified p-value distribution.

Enrichment analyses with INRICH
The stratified QQ plots are a useful visual tool for ob-
serving the presence or absence of enrichment of true
signals in a given set of SNPs. However, to quantify the
enrichment visually observed, we used the INterval En-
RICHment Analysis (INRICH) tool. It is a robust bio-
informatics pipeline to determine enrichment of
genomic intervals implicated by LD with predefined or
custom gene sets [33]. It takes into account several po-
tential biases that can otherwise lead to false positives. It
is well suited for testing GWAS-implicated SNPs for as-
sociation with gene sets as it controls for variable gene
size, SNP density, LD within and between genes, and
overlapping genes with similar annotations. We followed
the procedure described by Xu et al. [18], with the ex-
tended MHC region (chr6:25-35 Mb) masked and SNPs
with minor allele frequency (MAF) < 0.05 excluded. Full
details may be found in Additional file 1.

Pathway analysis
Pathway analysis was performed using Ingenuity Path-
way Analysis (IPA) from QIAGEN (https://www.qiagen.
com/no/shop/analytics-software/biological-data-tools/in-
genuity-pathway-analysis/, last accessed 26th August
2016). The reference set was Ingenuity Knowledge Base
(Genes). Both direct and indirect relationships were ana-
lyzed. All data sources were included with the confi-
dence parameter set to experimentally observed and
highly predicted pathways for Human. Under ‘Tissues &
Cell Lines’, we performed the analysis once with all
organ systems and once with only the nervous system.
5338 enriched DMR SNPs in 329 enriched DMRs (Add-
itional file 3) were mapped to 349 unique RefSeq genes
and 446 RefSeq genes in LD using the method of Schork
et al. [32]. Genes in LD blocks containing enriched NSS
markers were determined in a similar manner. 4276
enriched NSS markers mapped to 648 overlapping
RefSeq genes and 1363 RefSeq genes in LD. IPA was
performed on these gene lists.

Additional Files

Additional file 1: Additional Method, Figures and Tables (DOCX 475 kb)

Additional file 2: Annotation of all DMRs with schizophrenia-associated
SNPs. This file contains annotation of all the human-lineage specific DMRs
that are associated with schizophrenia markers. Details of the various
markers present within each DMR is provided, along with the marker with
most significant p-value. (XLSX 263 kb)

Additional file 3: Annotation of enriched DMRs with genes, promoters,
CpG islands and enhancers. This file contains detailed annotation of
those human-lineage specific DMRs that are enriched for association with
schizophrenia markers (except those in the MHC region). Compared to

Additional file 2, these DMRs represent those that are enriched and
whether they are present in any genes, promoters, enhancers or CpG
islands. (XLSX 26 kb)
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sets. The second stage employs multiple testing correction via 5000 rounds of 59	
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bootstrapping. Enrichment of a given interval is then determined by the likelihood of a 60	

chance overlap with a gene set over the empirically observed distribution. The final output 61	

from INRICH lists gene sets with an empirical p-value at a default of P = 0.1. This is not 62	

the threshold at which INRICH performs the statistical tests. It is only the threshold to 63	

control which gene sets are displayed in the output. The corrected p-value obtained via 64	

bootstrapping is also displayed alongside. Since bootstrapping is a very robust procedure 65	

and causes many gene sets that would otherwise be significant at an empirical level to lose 66	

significance, an empirical p-value default of 0.1 adjusts what gene sets are visible at the end 67	

of the analyses. INRICH also outputs global enrichment of unique genes in gene sets at 68	

three thresholds that describes an excess of enriched genes at nominal gene-set P = 0.001, 69	

0.01 and 0.05 (Lee et al (2012)).  70	

 71	
	72	

 	73	

  74	

 75	

 76	

	77	

	78	

	79	

	80	

	81	

	82	

	83	

	84	

	85	

	86	

	87	

	88	

	89	

	90	

	91	
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Additional Figures  93	

	94	

 	95	
Figure S1: Enrichment plots for common SNPs shared by all 12 GWAS   96	

Different numbers of SNPs were genotyped in the different GWAS, which could potentially 97	

bias our results. To test this, we generated a common set of ~2.4 million SNPs that was 98	

determined by intersecting the SNP lists across all twelve GWAS including all SNPs from the 99	

ADHD GWAS (~1.2 million SNPs). ADHD, attention deficit hyperactivity disorder; BPD, 100	

bipolar disorder; BMI, body mass index; DBP, diastolic blood pressure; HDL, high density 101	

lipoprotein; LDL, low density lipoprotein; RA, rheumatoid arthritis; SBP, systolic blood 102	

pressure; SCZ, schizophrenia; TC, total cholesterol; TG, triglycerides. We find that the 103	

number of SNPs does not influence our results for SCZ, as maximum enrichment is seen for 104	

SCZ even when the common set of SNPs is used. The common set of SNPs did not include 105	

MHC SNPs, so the MHC was not represented in this analysis.	106	

 	107	
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 	108	

 	109	

110	
 	111	

 	112	

Figure S2: Overlap of SNPs between various evolutionary annotations  113	

The figure shows that the overlap between the SNPs analysed for enrichment in various 114	

evolutionary annotations is very small. SNPs depicted here are those in LD with the respective 115	

regions at r2 ≥ 0.8. The biggest overlap is between the SNPs in the areas demarcated pHAR 116	

(regions conserved in primates that are accelerated in humans) and HAR (regions conserved in 117	

mammals that are accelerated in humans), where >50% of SNPs in LD with HARs are also in 118	

LD with pHARs. dmrH, human DMRs; NSS, NSS markers; PAR: regions conserved in 119	

mammals that are accelerated in primates.  	120	
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 	121	
 122	
Figure S3: Proportion of DMR SNPs per GWAS  123	

The figure depicts the normalization performed to determine if the varying number of markers 124	

genotyped in different GWAS influences the number of SNPs in DMRs.  The total number of 125	

SNPs obtained for DMRs in each trait was divided by the total number of SNPs present in the 126	

respective GWAS and multiplied by 100 to obtain the normalized percentage of SNPs in 127	

DMRs. Blue bars depict the normalized percentage for SNPs in LD with DMRs while yellow 128	

bars depict the normalized percentage for SNPs that are physically located within DMRs. We 129	

observe that the total number of SNPs genotyped in a GWAS does not influence the 130	

proportion of SNPs that are physically within the DMR regions. The same largely holds true 131	

for SNPs in LD with DMR regions except for ADHD, possibly because the GWAS was 132	

underpowered. 	133	

 	134	
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 	135	
Figure S4: SCZ SNPs in DMRs stratified by genome annotation 136	

The figure depicts (a) SCZ SNPs in linkage disequilibrium (LD) with DMRs (blue) and (b) 137	

SCZ SNPs within DMRs (blue) stratified according to the following genomic annotations: 138	

5’UTR (magenta), Exon (dark green), Intron (red), 3’UTR (orange). The light green line 139	

shows all SNPs from the SCZ GWAS.  140	

 141	

 142	

 143	

 144	
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 145	

 146	

Figure S5: INRICH test for enrichment of association of DMRs, NSS and Accelerated 147	

Regions with height  148	

Corrected p-values based on performing multiple testing with bootstrapping 5000 times and p=0.1 as 149	

threshold. LD clumps of height markers from p-value 1e-3 – 1e-8 were tested for enrichment in: 150	

DMR, human-specific DMRs; NSS, Neanderthal Selective Sweep; HAR, mammalian conserved 151	

regions that are accelerated in humans; PAR, mammalian conserved regions that are accelerated in 152	

primates; and PrimateHAR (pHAR), primate-conserved regions that are accelerated in humans. 153	

 154	

 155	
 156	
 157	
 158	
 159	
 160	
 161	
 162	
 163	
	164	
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Additional Tables  165	
	166	

Phenotype 	 Total Study	
Size (n)	

Number of 
SNPs (hg19)	

Reference	 SNPs within 
DMRs	

SNPs in LD 
with DMRs	

Schizophrenia 	 150,064	 9,444,320	 PGC2 (2014)	 3930	 29,954 	
Bipolar Disorder 	 63,766	 2,426,991	 Sklar et al (2011)	 938	 6711 	

Attention Deficit 	
Hyperactivity 	
Disorder 	

5,415	 1,206,332	  Neale et al (2010)	 542	 3970 	

Rheumatoid 	
Arthritis 	

41,282	 2,553,357	 Stahl et al (2010)	 884	 8187 	

High Density 	
Lipoprotein 	

99,900	 2,620,435	 Teslovich et al 
(2010)	

1006	 7603 	

Low Density 	
Lipoprotein 	

95,454	 2,620,568	 Teslovich et al 

(2010)	
1006	 7608 	

Triglycerides 	 96,598	 2,620,567	 Teslovich et al 

(2010)	
1006	 7663 	

Total Cholesterol 	 100,184	 2,620,450	 Teslovich et al 
(2010)	

1006	 7663 	

Systolic Blood 	
Pressure 	

200,000	 2,461,102	 ICBP GWAS (2011)	 894	 7157 	

Diastolic Blood 	
Pressure 	

200,000	 2,461,102	 ICBP GWAS (2011)	 894	 7157 	

Body Mass Index 	 339,224	 2,551,876	 Locke et al (2015)	 902	 7364 	

Height 	 253,288	 2,545,021	 Wood et al (2011)	 964	 7567 	

 	167	

Table S1: Summary of GWAS and DMR SNPs  168	

For each GWAS, the table shows the sample size, marker density, the reference to the 169	

specific study, the number of SNPs located within DMRs, and the numbed of SNPs in LD 170	

with DMRs. 	171	

 	172	

 173	

 	174	
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 	175	

 	176	

	177	
	 Top Canonical Pathways  P-value (Fisher’s Exact test) 	178	

Wnt/Ca+ pathway 	 1.34E-05 	

P2Y Purigenic Receptor Signalling Pathway 	 1.04E-04 	

Thioredoxin Pathway 	 1.07E-04 	

CREB Signalling in Neurons 	 1.45E-04 	

Synaptic Long Term Potentiation 	 1.49E-04 	

	 Top Physiological System Development and Function   	179	
Nervous System Development and Function 	 4.41E-02 - 2.23E-02 	

Tissue Morphology 	 2.23E-02 - 2.23E-02 	

 180	
Table S2: Pathway analysis results for genes in LD with enriched SNPs in DMRs (Nervous 181	

System only).  182	

  183	

	184	

  	185	

 	186	

	187	
	 Top Canonical Pathways  P-value(Fisher’s Exact test) 	188	

Wnt/Ca+ pathway  	 1.58E-05 	

P2Y Purigenic Receptor Signaling Pathway 	 1.14E-04 	

CREB Signaling in Neurons 	 1.49E-04 	

Synaptic Long Term Potentiation 	 2.05E-04 	

Thioredoxin Pathway 	 2.11E-04 	

	 Top Physiological System Development and Function   	189	
Nervous System Development and Function 	 4.42E-02 - 1.41E-02 	

Cardiovascular System Development and Function 	 4.42E-02 - 2.24E-02 	

Connective Tissue Development and Function 	 4.42E-02 - 2.24E-02 	

Hair and Skin Development and Function 	 2.24E-02 - 2.24E-02 	

Hematological System Development and Function 	 2.24E-02 - 2.24E-02 	

 190	
Table S3: Pathway analysis results for genes in LD with enriched SNPs in DMRs (All 191	

Organ Systems)  192	

	193	

	194	

	195	
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	196	
	 Top Canonical Pathways  P-value(Fisher’s Exact test) 	197	

CREB Signalling in Neurons 	 1.38E-04 	

IGF-1 Signalling 	 6.05E-04 	

T Cell Receptor Signalling 	 1.26E-03 	

Prolactin Signalling 	 1.27E-03 	

AMPK Signalling 	 1.31E-03 	

	 Top Physiological System Development & Function   	198	
Organismal Development 	 4.70E-03 - 4.70E-03 	

Tissue Development 	 4.70E-03 - 4.70E-03 	

Nervous System Development and Function 	 4.41E-02 - 1.35E-02 	

Tissue Morphology 	 4.41E-02 - 4.41E-02 	

 199	
Table S4: Pathway analysis results for genes in LD with enriched NSS markers (Nervous 200	

System only)  201	

	202	
	203	

	204	
	 Top Canonical Pathways  P-value(Fisher’s Exact test) 	205	

CREB Signalling in Neurons 	 1.53E-04 	

Protein Kinase A Signalling 	 3.02E-04 	

Synaptic Long Term Potentiation 	 8.90E-04 	

IGF-1 Signalling 	 9.67E-04 	

ERK/MAPK Signalling 	 1.57E-03 	

	 Top Physiological System Development & Function   	206	
Organismal Development 	 2.32E-02 - 4.23E-03 	

Tissue Development 	 2.32E-02 - 4.23E-03 	

Nervous System Development and Function 	 4.81E-02 - 1.21E-02 	

Connective Tissue Development and Function 	 2.32E-02 - 2.32E-02 	

Embryonic Development 	 2.32E-02 - 2.32E-02 	

 	207	
Table S5: Pathway analysis results for genes in LD with enriched NSS markers (All Organ 208	

Systems)   209	

	210	

	211	

	212	

 213	

 214	
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Abstract 

 

Introduction: The persistence of schizophrenia in human populations separated by 

geography and time led to the evolutionary hypothesis that proposes schizophrenia as 

a by-product of the higher cognitive abilities of modern humans. To explore this 

hypothesis, we used here an evolutionary epigenetics approach building on 

differentially methylated regions (DMRs) of the genome. 

Methods: We implemented a polygenic enrichment testing pipeline using the 

summary statistics of genome-wide association studies (GWAS) of schizophrenia and 

12 other phenotypes. We investigated the enrichment of association of these traits 

across genomic regions with variable methylation between modern humans and great 

apes (orangutans, chimpanzees and gorillas; primate DMRs) and between modern 

humans and recently extinct hominids (Neanderthals and Denisovans; non-primate 

DMRs).  

Results: Regions that are hypo-methylated in humans compared to great apes show 

enrichment of association with schizophrenia only if the major histocompatibility 

complex (MHC) region is included. With the MHC region removed from the analysis, 

only a modest enrichment for SNPs of low effect persists. The INRICH pipeline 

confirms this finding after rigorous permutation and bootstrapping procedures.  

 

Conclusion: The analyses of regions with differential methylation changes in humans 

and great apes do not provide compelling evidence of enrichment of association with 

schizophrenia, in contrast to our previous findings on more recent methylation 

differences between modern humans, Neanderthals and Denisovans. Our results 
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further support the evolutionary hypothesis of schizophrenia and indicate that the 

origin of some of the genetic susceptibility factors of schizophrenia may lie in recent 

human evolution. 

 

 

Key Words: schizophrenia; evolutionary hypothesis; epigenetics; differentially 

methylated regions; primates; Neanderthals. 
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1. Introduction 

 

Schizophrenia is a psychiatric disorder with a prevalence rate of 2.7-8.3/1,000 persons 

(Messias et al., 2007) and heritability estimated between 60-90% (Cardno et al., 1999; 

Lichtenstein et al., 2009; Skre et al., 1993; Sullivan et al., 2003). It occurs at quite 

similar rates across populations worldwide (Ayuso-Mateos, 2002; Brüne, 2004; 

WHO, 1973) and written records describing its symptoms exist dating back 5,000 

years (Jeste et al., 1985). This consistent persistence of the disease despite reduced 

fecundity (Brüne, 2004; Nichols, 2009) and increased mortality is a paradox (Bassett 

et al., 1996; Brown, 1997; Larson and Nyman, 1973), since the reduced fecundity of 

patients afflicted with schizophrenia does not appear to eliminate the disease from the 

population (Power et al., 2013) Part of the reason may be due to afflicted individuals 

reproducing prior to the onset of the disease (Markow, 2012). Another contributing 

factor could be that schizophrenia risk variants may have provided an advantage to 

the kin of the affected by conferring superior creative and intellectual abilities upon 

them (Kyaga et al., 2011; Nichols, 2009). To explain the constant occurrence of the 

disease, TJ Crow (Crow, 1997, 1995) proposed the so-called evolutionary hypothesis 

of schizophrenia, which  suggests that the disease is a consequence of human 

evolution: the higher cognitive abilities of modern-day humans, including language, 

may predispose to psychiatric illnesses such as schizophrenia (Crow, 2008, 2000, 

1997).  

 

In the post-genomic era (Lander et al., 2001; Venter et al., 2001), emerging lines of 

evidence are lending support to this hypothesis. Crespi et al. (Crespi et al., 2007) were 

amongst the first to show that genes with evidence of recent positive selection in 
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humans are also implicated more frequently in schizophrenia. More evidence has 

been provided by studies based on comparative genomics (Pollard et al., 2006; 

Srinivasan et al., 2015; Xu et al., 2015), a field in which genomes of progressively 

older species are compared to identify substitutions and mutations that help estimate 

divergence between the species. For instance, a group of regions defined by negative 

Neanderthal selective sweep (NSS) scores describe the selective evolution of genomic 

regions in modern-day humans over Neanderthals (Burbano et al., 2010; Green et al., 

2010). These regions were shown by Srinivasan et al. (2015) to be enriched for 

schizophrenia risk markers, in line with the evolutionary hypothesis of schizophrenia. 

Other regions known as human accelerated regions (HARs) (Gittelman et al., 2015; 

Pollard et al., 2006; Xu et al., 2015), first described by Pollard et al. (2006), show 

accelerated evolution in humans compared to primates or mammals. HARs have also 

provided some evidence of enrichment of association with schizophrenia (Xu et al., 

2015), but these findings may have been driven by a few genes since they were not 

replicated using a polygenic approach (Srinivasan et al., 2017, 2015) . 

 

While several studies have looked at the evolution of the genome (Bird et al., 2007; 

Bush and Lahn, 2008; Gittelman et al., 2015; Paaby and Rockman, 2014; Pollard et 

al., 2006), there are reports that the epigenome is evolving as well (Gokhman et al., 

2014; Hernando-Herraez et al., 2015, 2013; Mendizabal et al., 2014; Molaro et al., 

2011). This provides new insights into events leading to the speciation and divergence 

of modern humans. The epigenome refers to the layer of chemical modifications, such 

as methylation and histone modifications, to the genome that regulate gene expression 

(Bernstein et al., 2007; Kundaje et al., 2015; Rivera and Ren, 2013). For instance, 

Gokhman et al. (2014) compared the methylomes of humans with Neanderthals and 
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Denisovans. They reported that while 97% of the methylome was comparable 

between humans, Neanderthals and Denisovans, some regions showed differential 

methylation between the three hominids. Previously (Banerjee et al., 2017), we 

analysed the differentially methylated regions (DMRs) identified for Neanderthals, 

Denisovans and modern humans by Gokhman et al. (2014), and found evidence that 

the regions of the genome with human-specific DMRs harbour relatively more genetic 

variants associated with schizophrenia than the rest of the genome, i.e. the DMRs 

were enriched for SCZ markers both at the single-nucleotide polymorphism (SNP) 

level and at the gene level. These human-specific DMRs thus provide evidence of 

enrichment of methylation changes in regions harbouring genetic variants associated 

with schizophrenia, at least since the divergence from Neanderthals and Denisovans 

(Banerjee et al., 2017). 

 

Here, we sought to determine if evolutionarily older methylation differences can 

provide a further timeframe for the origin of schizophrenia risk markers in the human 

lineage. We asked whether we can find epigenetic evidence that the origin of 

schizophrenia risk markers predates the origins of the Homo genus, i.e. before the 

divergence of chimpanzees and humans around 6-8 million years ago (MYA) (Glazko 

and Nei, 2003; Langergraber et al., 2012). We tested this hypothesis by analysing 

primate DMRs that trace an evolutionary history of at least 13 million years (Glazko 

and Nei, 2003; Hasegawa et al., 1985; Rannala and Yang, 2003). We used the same 

statistical analyses as described by Lee et al. (2012), Schork et al. (2013), and 

Srinivasan et al. (2015) to test for polygenic enrichment of a set of markers from 

genome-wide association studies (GWAS). We interrogated regions of the human 

genome which are hypo- or hyper-methylated in comparison to the corresponding 
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ones in chimpanzees, gorillas and orangutans for enrichment of genetic variants 

associated with schizophrenia or other human traits. 
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2. Materials and methods 

 

2.1. GWAS data 

Summary statistics for thirteen different phenotypes were obtained from their 

respective published GWAS studies: schizophrenia (SCZ) (Ripke et al., 2014), bipolar 

disorder (BPD) (Sklar et al., 2011), attention deficit hyperactivity disorder (ADHD) 

(Demontis et al., 2017), rheumatoid arthritis (RA) (Stahl et al., 2010), blood lipid 

markers (high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides 

(TG), total cholesterol (TC)) (Teslovich et al., 2010), blood pressure (systolic blood 

pressure (SBP), diastolic blood pressure (DBP)) (Ehret et al., 2011), body mass index 

(BMI) (Locke et al., 2015), height (Wood et al., 2014) and intelligence (Sniekers et 

al., 2017). For studies published with hg18 coordinates (BPD, SBP, DBP, HDL, LDL, 

TG, TC, RA), conversion to hg19 was performed using the command line version of 

the liftOver tool from the UCSC Genome Browser (Karolchik et al., 2014) 

(http://hgdownload.cse.ucsc.edu/downloads.html #utilities_downloads). For BMI and 

height SNPs, the genomic coordinates were obtained by mapping them to the 

assembly of 1,000 Genomes Project (1KGP) Phase 1 reference panel SNPs (Durbin et 

al., 2012). 

 

2.2. Human hypo- and hyper-methylated regions from primate DMRs 

These methylated regions were retrieved from the study by Hernando-Herraez et al. 

(2015), who identified them by comparing the methylation profile of DNA from 

peripheral blood samples of orangutans, chimpanzees and gorillas to that of humans. 

Since the DMRs are determined by comparing humans with other primates, we refer 

to this set collectively as primate DMRs. Both hypo- and hyper-methylated DMRs 
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from humans were analysed. As these DMRs are identified in the same tissues in all 

samples, they are considered to represent species-specific methylation differences, not 

tissue-specific methylation differences (Gokhman et al., 2014). Altogether, the human 

hypo- and hyper-methylated DMRs can be used to represent an evolutionary course of 

history spanning from at least 13 MYA (Glazko and Nei, 2003; Langergraber et al., 

2012), when orangutans diverged from the common ancestors, to 6 MYA, when the 

chimpanzees and humans diverged from each other (Glazko and Nei, 2003; 

Langergraber et al., 2012). Since our interest was in human-specific enrichment, we 

focused the analyses on human hypo- and hyper-methylated DMRs. 

 

2.3. Differentially methylated regions (DMRs) from Neanderthals, Denisovans and 

modern humans 

As previously described (Gokhman et al., 2014), these methylated regions have been 

identified by comparing the methylomes of osteoblasts from modern-day humans 

with those from Neanderthals and Denisovans. We refer to them in this paper as non-

primate DMRs. Gokhman et al. (2014) devised a strategy utilizing information in the 

form of cytosine (C) to thymine (T) ratios to decipher the ancient methylomes of 

Neanderthals and Denisovans. Subsequently, they compared the methylomes of 

Neanderthals, Denisovans and modern humans and inferred the species in which the 

methylation variation likely took place; this information was used to classify the 

DMRs as Neanderthal-specific, Denisovan-specific and human-specific. These DMRs 

represent species-specific methylation (Gokhman et al., 2014). 

 

2.4. Neanderthal selective sweep (NSS) data 
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We obtained NSS marker data from Srinivasan et al. (2015). Negative scores for NSS 

markers indicate positive selection in humans. Markers with such scores were used in 

the downstream analyses. 

 

2.5. SNP assignment with LDsnpR 

The previously published R-based software package LDsnpR (Christoforou et al., 

2012) was utilized for assigning SNPs to the respective DMRs using LD (linkage 

disequilibrium)-based binning at r2 0.8 in R (R Core Team, 2017). LD-based binning 

makes it possible to determine whether SNPs from a specific GWAS are in LD with 

the DMR of interest. Using LD allows the capture of a greater number of relevant 

SNPs in comparison to an approach where only physically overlapping SNPs are 

considered. The LD file utilized was in HDF5 format and was constructed from the 

European reference population of 1KGP and can be publicly downloaded at: 

http://services.cbu.uib.no/software/ldsnpr/Download. 

 

2.6. Enrichment analyses based on stratified quantile-quantile (QQ) plots 

QQ plots are an essential method used in GWASs to depict the presence of true 

signals. They help to visually observe the spread of data and deviations from the null 

distribution. Under the null hypothesis, no difference is expected between the 

observed and expected distributions of data. As such, a line of no difference or null 

line is obtained that is equidistant from both X and Y axes. However, if the null 

hypothesis were to be false, there would be a deviation of the observed data 

distribution from the expected data distribution. As described in depth by Schork et al. 

(2013), a leftward deflection of the observed distribution from the null line represents 

enrichment – the greater the leftward deflection, the stronger the enrichment of true 
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signals. This method has been used recently not only to show how specific genomic 

annotation affects the distribution of disease SNPs with true signals (Schork et al., 

2013), but also to demonstrate that regions of recent evolution are enriched for 

schizophrenia markers (Banerjee et al., 2017; Srinivasan et al., 2015). We took the 

SNPs that are in LD with the DMR regions and plotted their p-value distributions 

from various GWASs. The observed p-value distributions were then determined to be 

enriched or not using conditional Q-Q plots as described by Schork et al. (2013). 

Genomic inflation was corrected by GC. 

 

2.7. INRICH-based enrichment analysis 

The stratified QQ plots provide a visual depiction of data distributions and enrichment 

of true signals within a stratum of data, but they do not quantify this enrichment. 

Therefore, we used the INterval EnRICHment (INRICH) analysis tool to statistically 

quantify the enrichment observed. This pipeline performs permutation and 

bootstrapping procedures to determine with statistical confidence whether LD-

implicated genomic intervals are enriched in specific gene sets (Lee et al., 2012). The 

INRICH analysis takes into account several potential biases that can otherwise lead to 

false positives, such as variable gene size, SNP density within genes, LD between and 

within genes, and overlapping genes in the gene sets. We used the same procedure 

reported previously (Banerjee et al., 2017; Xu et al., 2015) with SNPs in the extended 

MHC region and SNPs with MAF <0.05 excluded from the analysis. Additional 

details can be found in the Supplementary Information.  

 

3. Results 
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3.1. Co-localisation of human hypo-methylated regions and genetic variants 

associated with schizophrenia in the MHC. 

We ascertained whether there is any enrichment of human hypo- and hyper-

methylated regions in schizophrenia-associated SNPs. Using previously published 

methodology (Christoforou et al., 2012), we mapped schizophrenia markers to human 

hypo-methylated regions (hypo-DMRs) and hyper-methylated regions (hyper-DMRs). 

Out of a total of ~9.4 million SCZ markers obtained from the GWAS, 10,165 markers 

tagged hypo-DMRs and 4,503 tagged hyper-DMRs.  

 

Figure 1A shows the conditional QQ plots for schizophrenia markers (all markers, the 

hypo-DMR set and the hyper-DMR set) including those in the MHC region. For 

hypo-DMR markers (Supplementary Dataset 1), we observed a significant enrichment 

as depicted by the leftward deviation. No enrichment was observed for hyper-DMR 

markers. Since the MHC region is a region of extended linkage disequilibrium, which 

can bias the enrichment estimates, and since it is the main region of association with 

schizophrenia, we also tested the enrichment with the MHC region removed (Figure 

1B). Under these conditions there is a trend for enrichment of hypo-DMR markers at 

higher p-value thresholds, but this enrichment is substantially less than when the 

MHC is included (Figure 1A). 

 

3.2. Enrichment of markers is not seen for other human traits 

Next, we tested if the human hypo- and hyper-methylated regions are enriched for 

other human traits and phenotypes. We tested a total of thirteen different phenotypes, 

full details of which can be found in section 2.1. Each GWAS had been performed 

with a different number of genotyped SNPs, and this difference could potentially bias 
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our results. To circumvent this, we created a list of ~2.4 million common SNPs that 

were genotyped across all the phenotypes investigated in the present study. Only 

SNPs on this list were used for enrichment analysis. 

 

As can be seen in Fig. 2, no enrichment was observed in any of the traits, with the 

possible exception of height at higher p-value threshold markers. The common list of 

markers did not contain the MHC region and as such no enrichment is observed for 

schizophrenia either. 

 

3.3. Evidence of enrichment for hypo-methylated regions with SNPs at high p-values 

The enrichment plots allowed us to visually ascertain enrichment in the datasets. 

However, they did not give any indication of the statistical robustness of the 

enrichment. To ascertain if the human hypo- and hyper-methylated regions are 

statistically enriched for schizophrenia and height markers, we implemented the 

INRICH pipeline, which performs 10,000 permutations and 5,000 bootstrapping 

calculations, to determine with statistical confidence the enrichment observed (Lee et 

al., 2012). 

 

The INRICH analysis confirmed a significant (p<0.05) enrichment of association for 

human hypo-DMRs, but not hyper-DMRs, with schizophrenia at SNPs of higher p-

value thresholds (p<10e-3 to p<10e-4) (Fig. 3). This enrichment was at the gene level, 

and complemented the enrichment observed at the SNP level for higher p-value 

thresholds (Fig. 1B). Importantly, this enrichment persisted upon testing a pruned 

schizophrenia dataset (Supplementary Fig. 1). The enrichment was however not 

significant at the genome-wide threshold (p<5x10e-8) and was much weaker than that 
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observed for non-primate DMRs (Fig. 3). We also observed a similar trend for height 

where there was enrichment at SNPs of higher but not lower p-value thresholds. This 

enrichment was similarly less pronounced than for non-primate DMRs 

(Supplementary Fig. 2). 

 

 

4. Discussion 

 

In our study, we investigated if regions of the human genome whose methylation has 

evolved since the divergence of modern humans from great apes are enriched for 

markers of schizophrenia. We found  evidence that there is enrichment for hypo-

methylated DMRs driven by the MHC locus, a known risk region that harbours the 

most significant schizophrenia GWAS markers (Ripke et al., 2014). When the MHC 

region was excluded from the analysis, there remained a trend towards enrichment of 

hypo-DMRs driven by SNPs of higher p-value thresholds. This finding was 

complemented by the INRICH analyses that indicated significant enrichment among 

SNPs of higher p-value thresholds. When analysing a global SNP list common to 

GWAS of several traits, we failed to find evidence of enrichment of any trait with the 

possible exception of height at higher SNP p-value thresholds. We tested this further 

with the INRICH pipeline, which revealed gene-level enrichment of LD intervals for 

height markers below the genome-wide threshold (p<5x10e-8). Compared to our 

previous study, in which we demonstrated enrichment of association with 

schizophrenia for non-primate DMRs that were derived by comparing human, 

Neanderthal and Denisovan methylomes (Banerjee et al., 2017), the primate DMRs 

tested here show far less enrichment. The primate and non-primate DMRs have very 
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little overlap, which suggests that the methylation changes that took place since the 

divergence of modern humans from Neanderthals and Denisovans occurred in 

different regions of the genome compared to those that took place since divergence 

from great apes. 

 

The central role of the MHC region in the enrichment of human hypo-methylated 

regions poses interesting questions. The MHC region is known for its complex LD 

architecture, which renders the interpretation of genetic signals very challenging. 

Other groups have previously reported that the MHC region is one of the fastest 

evolving regions of the human genome (Meyer et al., 2017) and have implicated it in 

mate preference (Bernatchez and Landry, 2003; Kromer et al., 2016; Potts and 

Wakeland, 1990; Roberts et al., 2008; Winternitz et al., 2017), odour perception 

(Roberts et al., 2008; Santos et al., 2005) and immune response (Benacerraf, 1981; 

Horton et al., 2004). Recently it was shown that a large proportion of the association 

of the region with schizophrenia can be explained by complement C4 haplotypes that 

include C4 copy number variation (Sekar et al., 2016). Nevertheless, there remains a 

part of the association in this region that is unexplained (Gejman et al., 2011) and will 

need further investigation. It is interesting to consider the possibility that the MHC 

region and the immune system in general play a central role in evolution at the 

epigenomic as well as at the genomic level (Meyer et al., 2017; Potts and Wakeland, 

1990; Sommer, 2005; Traherne, 2008). The mechanisms by which hypo-methylation 

could influence the aforementioned processes are open to speculation since the MHC 

region has more than 200 genes in close physical proximity and LD with one another 

(Beck et al., 1999). This makes it hard to interpret the exact biological consequences 

of our findings.  
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Interestingly, the gene-level analysis via INRICH seems to suggest enrichment of 

SNPs of higher p-value thresholds in primate DMRs for both schizophrenia and 

height. This enrichment is far lower than what we found for non-primate DMRs for 

both schizophrenia and height (Banerjee et al., 2017) and which  persisted for 

schizophrenia even with pruned datasets.  

 

The very small overlap between primate and non-primate DMRs might suggest that 

the divergence from Neanderthals and Denisovans brought about more significant 

methylation changes in regions implicated in the aetiology of schizophrenia and 

height than the divergence from great apes. In other words, our results might suggest 

that the evolutionary factors that regulate methylation variation acted on different 

segments of the genome at different time points. So while the methylation variation 

since the divergence from Neanderthals and Denisovans may mark a genome-wide 

increase of schizophrenia susceptibility (Banerjee et al., 2017), the methylation 

variation from the time period between 13 and 6 MYA appears not to have 

significantly increased the risk for schizophrenia (except possibly for some markers in 

the MHC region),  

 

Our results are also in line with the findings of Srinivasan et al. (2017), who failed to 

find evidence of enrichment of schizophrenia using genomic markers of evolution 

dating back to 200 MYA. The same authors also reported enrichment of association 

for regions of more recent evolution in modern humans (Srinivasan et al., 2015). 

Interestingly, one of the evolutionary proxies used by Srinivasan and colleagues 

(2017), namely HARs, also showed enrichment for height, similar to our recent study 
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(Banerjee et al., 2017). This suggests that regions controlling both genomic and 

epigenomic variation in height may also be driven by recent evolution. Finally, our 

results agree well with the observation by Srinivasan et al. (2017) of some 

involvement of the MHC in an early evolutionary context. 

 

Although our results are in line with several findings in the field, the current methods 

have some limitations. Highly polygenic traits such as schizophrenia have a large 

number of genetic loci contributing to the aetiology of a disease (Bulik-Sullivan et al., 

2015; Schork et al., 2016). The ability to detect these large numbers of genetic loci is 

dependent on the sample size and adequate statistical power (Schork et al., 2016). 

Consequently, the polygenic enrichment methods may be limited by the statistical 

power of the respective GWAS and trait polygenicity. Furthermore, in the INRICH 

analysis that uses LD-clumping of SNPs at p<10e-3 to p<10e-8, higher p-value 

thresholds (e.g. p<10e-3) still include SNPs of lower p-values, even though they 

become progressively smaller minorities. Thus, although higher p-values increase the 

number of LD-clumps tested, we do not expect this to increase the Type I error rate 

(Lee et al., 2012). 

 

In conclusion, our results suggest that methylation markers tracing an evolutionary 

period dating back to 13 MYA (primate DMRs) are not enriched for schizophrenia 

markers, unlike methylation markers from a recent timeframe (non-primate DMRs) 

(Banerjee et al., 2017). Taken in consideration with previous studies of genomic 

markers of evolution dating back 200 MYA (Srinivasan et al., 2017), our results 

support the hypothesis that the origins of schizophrenia lie in more recent 
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evolutionary events, possibly after the divergence of modern-day humans from 

Neanderthals and Denisovans. 

 

 

Appendix A. Supplementary data 

Supplementary Information: Additional Methods, Figures and Tables 

Supplementary Dataset 1: Annotation of human hypo-methylated regions with 

markers of schizophrenia 
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Figure legends 

Fig. 1: Enrichment plots of hypo-DMR and hyper-DMR SNPs in schizophrenia 

Quantile-quantile (QQ) plots of GWAS SNPs for Schizophrenia (SCZ) with the 

extended MHC region (chr6: 25-35Mb) unmasked (A) and masked (B). Expected -

log10 p-values under the null hypothesis are shown on the X-axis. Observed -log10 p-

values are on the Y-axis. The values for all GWAS SNPs are plotted in dark green 

while the values for SNPs in linkage disequilibrium (LD) with hypo-methylated 

DMRs are plotted in blue and SNPs in LD with hyper-methylated DMRs are plotted 

in pink. A leftward deflection of the plotted p-values from the line for all GWAS 

SNPs indicates enrichment of true signals – the greater the leftward deflection, the 

stronger the enrichment. Genomic correction was performed on all SNPs with global 

lambda.  

 

Fig. 2: Enrichment plots of hypo-DMR and hyper-DMR SNPs across 

multiple traits   

Thirteen different GWASs were analysed using a common set of ~2.4 million 

SNPs. The p-values for the common set of GWAS SNPs are plotted in dark 

green; p-values for SNPs that tag hypo-methylated DMRs are plotted in blue; 

and p-values for SNPs that tag hyper-methylated DMRs are plotted in pink. 

ADHD, attention deficit hyperactivity disorder; BMI, body mass index; BPD, 

bipolar disorder; DBP, diastolic blood pressure; HDL, high density lipoprotein; 

LDL, low density lipoprotein; RA, rheumatoid arthritis; SBP, systolic blood 

pressure; SCZ, schizophrenia; TC, total cholesterol; TG, triglycerides. The 

MHC region was absent from the common set of SNPs. 
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Fig. 3: INRICH test for enrichment of association of DMR gene sets and NSS 

genes with SCZ, MHC masked 

A visual heatmap depicting p-values from bootstrapping with 5,000 iterations. The 

various evolutionary annotations compared are as follows. HypoDMR – human hypo-

methylated DMRs; HyperDMR – human hyper-methylated DMRs. HypoDMR and 

HyperDMR were taken from the study by Hernando-Herraez et al. (2013). dmrH – 

human-specific DMRs (Gokhman et al, 2014), which are referred to as non-primate 

DMRs in this manuscript. NSS - Neanderthal selective sweep. Datasets marked with * 

have been previously reported by Banerjee et al. (2017) and are presented here for 

comparison only.  

 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/322693doi: bioRxiv preprint first posted online May. 15, 2018; 



.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/322693doi: bioRxiv preprint first posted online May. 15, 2018; 



.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/322693doi: bioRxiv preprint first posted online May. 15, 2018; 



 

Analysis of differentially methylated regions in primates and non-primates provides 

support for the evolutionary hypothesis of schizophrenia  

 

Niladri Banerjee, Tatiana Polushina, Francesco Bettella,  

Vidar M. Steen, Ole A. Andreassen, Stephanie Le Hellard 

 

 

SUPPLEMENTARY MATERIAL 

 

Supplementary Methods        page 2 

Enrichment analysis with INRICH      page 2 

LD Pruning         page 3 

Supplementary Figures        page 4 

Supplementary Tables        page 8 

Supplementary References        page 10 

 

  



Supplementary Methods 

 

Enrichment Analysis with INRICH 

Before using INRICH to assess enrichment, it is necessary to generate genomic 

intervals to test for. For our purpose, we generated LD-implicated genomic intervals 

with PLINK (Purcell et al., 2007), using a procedure similar to that described by Lee et 

al. (2012). We generated intervals from SNPs at different disease significance 

thresholds through LD clumping in PLINK for index SNPs with p-values 1x10-3 to 

1x10-8. LD clumps were formed at r2=0.5 with the clump range limited to 250 kb. 

INRICH was run on all the sets of LD intervals using the default parameters described 

by Lee et al. (2012). The various gene sets tested were obtained using a procedure 

similar to that described by Xu et al. (2015), and included genes within a 100 kb 

flanking region of human-specific DMRs (dmrH), HARs, PARs, primate HARs, hypo-

methylated DMRs, hyper-methylated DMRs, and NSS markers. For NSS markers, 

genes were assigned via LD blocks of r2≥0.8 since NSS markers are single-base 

markers unlike the HARs and DMRs, which are interval regions. GENCODE v19 gene 

database (last accessed 5th February 2016) was used to map the genes to DMRs, NSS 

markers, HARs, hypo-methylated DMRs and hyper-methylated DMRs.  

To avoid counting the same region of the genome more than once and potentially 

inflating the test statistics, INRICH combines overlapping genes and overlapping LD-

implicated intervals. In this study, a total of 2480, 1010, 444, 206, 107 and 68 LD-

implicated intervals were analysed respectively for SNPs with p-values <=1x10-3, 1x10-

4, 1x10-5, 1x10-6, 1x10-7 and 1x10-8 in the schizophrenia GWAS. For the same p-values, 

a total of 4097, 2395, 1536, 1089, 860 and 678 intervals were analysed for the height 

GWAS, and a total of 711, 254, 96, 56,29 and 15 intervals were analysed for the 



pruned SCZ GWAS (see below). Statistical significance in INRICH is determined via a 

two-stage procedure utilizing empirical null distributions and bootstrapping procedures. 

In the first step, a user-defined number of permutations is used to determine the 

background null distribution of chance overlap between intervals and gene sets. This is 

then followed by multiple testing procedures via bootstrapping in the second step. We 

used the default INRICH parameters of 10,000 permutations and 5,000 rounds of 

bootstrapping (Lee et al., 2012). 

 

LD Pruning 

In GWAS studies, due to the phenomenon of LD, many SNPs end up providing similar 

information in terms of statistics. To avoid this redundancy and increase the robustness 

further, we also performed INRICH on the LD-implicated intervals of pruned sets of SNPs. 

We generated 100 randomly pruned sets for all SCZ GWAS SNPs and 100 randomly pruned 

sets for SCZ GWAS SNPs annotated to DMR regions. We mapped all SNPs to 1000 

Genomes genotypes and computed pairwise correlations for all markers. For 8,572,136 

GWAS SNPs and 26,975 DMR SNPs that were mapped to the 1000 Genomes genotypes, we 

repeated the LD pruning protocol from Schork et al. (2013). In that analysis, all non-SNP 

signals were excluded (for example, insertions and deletions). For further analysis, we 

masked the extended MHC region in the SCZ GWAS (chr6: 25Mbp-35Mbp, containing 

52,903 markers). SNPs were pruned randomly to approximate independence (r2<0.2) 100 

times. Finally, using PLINK, LD clumping was performed as described previously to generate 

LD intervals from ~180,000 pruned SNPs. 

  



Supplementary Figures 

 

 

 

 

Supplementary Fig. 1: INRICH test for enrichment of association of DMR gene sets and 

NSS gene sets with pruned sets of SCZ GWAS SNPs  

A visual heatmap depicting the p-values obtained from 5,000 bootstrap iterations. The various 

evolutionary annotations compared are as follows. HypoDMR – human hypo-methylated 

DMRs; HyperDMR – human hyper-methylated DMRs. HypoDMR and HyperDMR are taken 

from the study by Hernando-Herraez et al. (2013). dmrH - human-specific DMRs, which are 

referred to as non-primate DMRs in the manuscript of Gokhman et al. (2014). NSS - 

Neanderthal Selective Sweep markers. Datasets marked with * have been previously reported 

by Banerjee et al. (2017) and are shown here for comparison only.  



 

Supplementary Fig. 2: INRICH test for enrichment of association of DMR gene sets and 

NSS gene with height GWAS SNPs 

A visual heatmap depicting the p-values obtained from 5,000 bootstrap iterations. The various 

evolutionary annotations compared are as follows. HypoDMR – human hypo-methylated 

DMRs; HyperDMR – human hyper-methylated DMRs. HypoDMR and HyperDMR are taken 

from the study by Hernando-Herraez et al. (2013). dmrH – human-specific DMRs, which are 

referred to as non-primate DMRs in the manuscript of Gokhman et al. (2014). NSS – 

Neanderthal Selective Sweep markers. HAR – mammalian conserved regions that are 

accelerated in humans. PAR - mammalian conserved regions that are accelerated in primates. 

PrHAR (primate HAR) – primate-conserved regions that are accelerated in humans. Datasets 

marked with * have been previously reported by Banerjee et al. (2017) and are presented here 

for comparison only.  
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 Gokhman DMR 

(n = 891) 

Neanderthal DMR 

(n = 307) 

Denisovan DMR  

(n = 295) 

Human 

hypoDMR 

(n = 360) 

5 0 1 

 primate HAR 

(n = 1928) 

mammalian HAR  

(n = 556) 

PAR  

(n = 577) 

Human 

hypoDMR 

(n = 360) 

1 0 0 

 

Supplementary Table 1 Table describing the overlaps of various previously defined 

evolutionary annotations with human hypo-methylated DMRs. The cells show the number of 

regions of the respective annotations that overlap with at least one human hypo-methylated 

DMR. 

 

  



 Gokhman DMR  

(n = 891) 

Neanderthal DMR 

(n = 307) 

Denisovan DMR  

(n = 295) 

Human 

hyperDMR 

(n = 210) 

2 2 2 

 primate HAR  

(n = 1928) 

mammalian HAR 

(n = 556) 

PAR  

(n = 577) 

Human 

hyperDMR 

(n = 210) 

0 0 0 

 

 

Supplementary Table 2 Table describing the overlaps of various previously defined 

evolutionary annotations with human hyper-methylated DMRs. The cells show the number of 

regions of the respective annotations that overlap with at least one human hyper-methylated 

DMR. 
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Supplementary Dataset 1: Annotation of human hypo-methylated 
regions with markers of schizophrenia  

This dataset may be downloaded for review at 
https://www.dropbox.com/s/g48nubbem7v66nb/Banerjee_Supplementary_
Dataset_forPhD_Dissertation.xlsx?dl=0  
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