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Abstract

Birkeland Center for Space Science has proposed a campaign known as the Airborne
Lightning Observatory for FEGS & TGFs (ALOFT) to study Terrestrial Gamma-
Ray Flashes (TGFs). TGFs are the most energetic natural phenomena occurring in
the Earth’s atmosphere, and are important to our knowledge about the relationship
between the Earth and space. The ALOFT campaign will use a gamma-ray detector
instrument built by the University of Bergen which will be mounted to the NASA
ER-2 High-Altitude Airborne Science Aircraft.

This work covers the design and development of the embedded software used to
offload and operate the detector readout system of said instrument. A similar in-
strument was built and flown in 2017. The new instrument differs from this by
being implemented on a System on a Chip (SoC) embedded platform, reusing rel-
evant modules from the old instrument. The software has been implemented with
the FreeRTOS Realtime Operating System (RTOS). Design considerations to limit
complexity, and the impact of the radiation environment the instrument is to be
operated in, has been performed trough implementation of a checksum algorithm,
cyclic rewriting of registers, and modular design strategies.

A verification system has been realized with a prototype hardware setup, in which
test systems has been added to process synthetic TGF-events in the software and
hardware. Test with emulated data and a Telnet control interface has been success-
fully implemented. The current implementation focuses on modularity, and thus
offers a very good framework for further development of the instrument when cam-
paign specifications are decided.
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Chapter 1

Introduction

1.1 History
Lightning and its loud vibrant sound is something most people are familiar with.
Ancients believed the bolt of light coming down from the heavens was a sign of
furious and enraged gods, such as Thor from Norse mythology and Zeus from Greek
mythology. It was not until the 16th century that the true nature of this phenomenon
was revealed. The legend has it that Benjamin Franklin was the one who conducted
the experiment resulting in the scientific breakthrough. The experiment consisted
of a kite attached to a leyden jar using a silk string, an iron key, and some thin
metal wire. The goal was to confirm the hypothesis that lightning was an electric
phenomenon, by accumulating charge into the leyden yar.

In 1845 Michael Faraday linked electromagnetic radiation with electromagnetism by
showing that polarized light traveling through transparent materials responded to
magnetic fields. This discovery was later in the 1860s explained by James Clerk
Maxwell through four equations that unified electricity and magnetism as the same
force. It explained how a time-varying electric field acts as a magnetic field, the
electromagnetic spectrum.

Then, in 1886 so called "whistlers" were heard on a 22 km telephone line in Austria.
These "whistlers" are Very Low Frequency radio signals now associated with light-
ning discharges. They are audible in audio-frequency range as alternating whisteling
from a high to low frequency of about 1000 cycles per second. [1]

This brought on a new type of radio science, and with it, a tool to unlock the
mysteries of thunderclouds was born.

Over the time it has been realized that lightning is not the only electric phenomena
occurring in the Earths atmosphere. Transient Luminous Events are one type of such
phenomena. TLEs happen at a much greater altitude than regular lightning and
have the property of being visible to the naked eye just as lightning, although very
faint. Due to their relatively short duration, actually spotting them without any
equipment can be hard. Figure 1.1 displays a compilation of various photographed
TLEs and their relative sizes. Although visually impressive, there is no evidence
that TLEs emit any energetic radiation [2].

1



2 1.2. BACKGROUND AND MOTIVATION

Figure 1.1: A compilation of various photographed TLEs and their relative sizes.
Credits: Frankie Lucena, Spaceweathergallery.com

1.2 Background and Motivation
Understanding the relationship between the Earth’s magnetic field and the atmo-
sphere is the primary goal of the Birkeland Center for Space Science. Currently, four
different groups of scientists are working on separate research areas to understand
this relationship.

The focus of one of the groups is to understand the mechanism behind gamma
radiation detected from thunderclouds. By flying aircraft and spacecraft platforms
equipped with scientific instruments above thunderclouds, the goal is to understand
high-energetic natural occurring phenomena of the atmosphere, such as Transient
Luminous Events and Terrestrial Gamma Ray Flashes, or TGFs for short.

Detecting these phenomena is non-trivial, as they are happening on a sub-microsecond
scale. Thus, building detectors with fast readout systems that can sustain the harsh
environments found in and at the edge of space, are required to properly resolve the
event spectra.

1.3 Objective of this Thesis
The primary scope of this thesis is to initiate the process of developing and designing
software for an embedded readout system for the Airborne Lightning Observatory
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for FEGS & TGFs (ALOFT). ALOFT is an instrument which will be built by the
University of Bergen, and its primary goal is to aid in the study of Terrestrial
Gamma Ray Flashes. ALOFT will also be used to study other weaker atmospheric
phenomena.

ALOFT will be very similar to the FEGS BGO instrument which flew in the summer
of 2017 on the NASA ER-2 High-Altitude Airborne Science Aircraft. FEGS BGO
is a scintillator based instrument with a decentralized readout system. ALOFT will
also be scintillator based, but implemented on a single embedded System on a Chip
(SoC) platform. The SoC will contain a processor, and programmable logic in the
form of an FPGA module. This thesis will primarily focus on the software executed
on the processor.

The instrument will be flown at an altitude of 20 km, and thus will be operated in
an environment with higher radiation levels than the ones found at ground levels.
Determining the severity of this environment’s impact on the electronics used in the
instrument, and making design considerations accordingly, if any, should be done.

This thesis aims to define which parts of the instrument that should be implemented
on the programmable system. As many as possible of these functions are also imple-
mented. The instrument must be able to store the data gathered by the detectors to
a storage device. The bandwidth of the write operation to the storage device must
exceed the expected maximum data rate of 1.98 MB/s. A user interface accessible
trough ethernet for instrument control, should be implemented. The status of the
system should also be logged to a log file on the storage device, for retrieval post-
flight. A test system should be implemented by which synthetic data can be read
from a file, and used to simulate data output from the scintillator detectors. Feasi-
bility of implementing the software in an operating system environment contrary to
a bare bone environment should also be studied.

When successfully implemented, the end product is a system capable of receiving
data from a synthetic data file, process it the same way as the FEGS BGO instru-
ment, and store it on a storage device. Albeit implemented on a single SoC, using
less power and with higher performance and reliability.

1.4 Thesis Outline
Chapter 2: High-Energy Atmospheric Phenomena and the Radiation En-
vironment

The first part of this chapter provides the necessary background to give a brief
understanding of the physics behind TGFs. This is required to understand the
type and usage of instrumentation which is described in the second part of the
chapter. The second part also covers some of the campaigns which are currently
used in research related to TGFs. In the third part, the radiation environment at
the operating altitudes of ALOFT, and its impact on the electronics of ALOFT are
investigated.
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Chapter 3: FEGS BGO Instrument - Readout System

This chapter provides a summary of the readout system and Electric Ground Sup-
port Equipment (EGSE) of the FEGS BGO instrument. The chapter is provided
due to the importance of the FEGS BGO instrument to the design of ALOFT,
and should give a better understanding of the parts or functionalities migrated to
ALOFT.

Chapter 4: ALOFT Design

This chapter provides a comprehensive discussion and documentation for the hard-
ware and software to be used in the ALOFT readout system. The chapter covers
the system requirements, elaborates on the choice of hardware and software, reuse
of parts from FEGS BGO, and gives an introduction to the operating system being
used by the readout system.

Chapter 5: Embedded Readout Development

This chapter documents the software side of the readout system, along with the read-
out architecture. The chapter aims at giving an in-dept understanding of how the
different software modules work, and documents the overall software architecture.

Chapter 6: Testing

This chapter covers the testing of the system, along with the results and a description
of setups used when performing the tests.

Chapter 7: Conclusion and Outlook

In this chapter the ALOFT readout system with emphasis on the software side is
reviewed. Results from chapter 6 are discussed, and a conclusion is provided. The
chapter also includes information on work that is yet to be completed, or should be
implemented based on the conclusion.

Appendices

This part of the thesis contains appendices which contains extra details of how the
system works. They can prove useful for an operator of ALOFT, or for future
developers to review the system.

1.5 Citation Principles
Citation principles for this thesis are that all references that are listed before the
sentence punctuation is a reference to the original content of the information pro-
vided in that specific sentence only. References after a sentence punctuation are
referring to the information provided in all the sentences prior to the reference, up
to the last reference, or beginning of the paragraph. For larger sections containing
multiple paragraphs that all uses the same reference only, a small text is provided
which cites the reference.



Chapter 2

High-Energy Atmospheric Phenomena and
the Radiation Environment

2.1 Terrestrial gamma-ray flashes
In 1991, scientists discovered something strange. The Compton Gamma Ray Ob-
servatory (CGRO) along with its payload Burst and Transient Source experiment
(BATSE), originally intended to measure photons from galactic gamma-flashes picked
up signals coming from the Earth [3]. The gamma-ray flashes BATSE observed
originated from thunderclouds down on Earth. Although energetic radiation had
previously been detected radiating from thunderclouds, this was a brand new phe-
nomenon [4]. The Terrestrial Gamma Ray Flash (TGF) had been discovered. Figure
2.1 gives an artists illustration of how a TGF may appear. Gamma radiation (pink)
is being radiated into space, and electrons (yellow) and positrons (green) lines up
to follow along the Earths magnetic field lines due to them having electric charge.

5
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Figure 2.1: An artists illustration of a TGF event. The TGFs originates from regions
lower than 20 km and typical duration is in the order of a millisecond [2, chap. 4.1,
4.6 ]. Gamma-rays in pink, electrons in yellow, and positrons in light green. Credits:
NASA

2.1.1 Origin of runaway electrons

The following section is based on [2].

The most common mechanism for generating energetic radiation such as x- and
gamma-rays in the atmosphere, is through bremsstrahlung. Other mechanisms exist
as well, such as nuclear decay. In the atmosphere bremsstrahlung occurs between
so-called runaway free electrons and the atoms present in air. Runaway electrons
are electrons with a high amount of kinetic energy. Actually they are so energetic
that they behave relativistic. Bremsstrahlung will be further explained in section
2.1.2.

The runaway mechanism was first proposed in 1925 by C.T.R Wilson. He discovered
that electrons could become high-energetic when placed in electric fields. If the
energy gained from the field exceeded the loss from interacting with other particles
in the air, the electron will "run away". Electric fields where the energy gain becomes
positive is known as break-even fields, and can be calculated by equation 2.1 where
n is the relative air density compared to that of sea level.

Eb = 2.18 · 105V/m · n (2.1)

For runaway electrons to propagate large distances, a field strength about 30% higher
than Eb is required. This field strength is at comparable level to the maximum field
strengths seen in thunderclouds. The graph in figure 2.2 shows energy loss of an
electron per unit length as a function of kinetic energy. Energy loss comes from the
effective frictional force. eE (horizontal line) shows the force produced by a strong
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electric field. For an electron to reach a "runaway state", the loss from frictional
forces must be less than the energy gained. This is the case when the kinetic energy
of an electron surpasses the energy threshold εth. Such electrons are often referred
to as "seed" electrons.

kinetic energy (keV)

F
(k
eV

/c
m
)

eE

1000

eEc

100

10

eEb

1
10-2 100 εth 102 104 106

Figure 2.2: The effective frictional force experienced by a free electron (or positron)
moving through air at standard temperature and pressure as a function of kinetic
energy. [2].

It is suggested that seed electrons are provided by cosmic radiation- or radioactive
decay-sources. The seed electrons may cause an electron avalanche known as a Rel-
ativistic Runaway Electron Avalanche (RREA). RREAs result in runaway of a high
number of electrons. However, if the electric field strength exceeds the maximum
frictional force eEc, all free electrons may runaway without the need of an external
seed particle. This is known as "cold" or "thermal" runaway, and is thought to
happen during the propagation of lightning.

2.1.2 Bremsstrahlung

One very interesting property of matter can be observed when a fast moving electron
such as a runaway electron gets within close proximity of an atomic nucleus. As the
nucleus has a positive electric charge and the electron is negative, the coulomb force
will make the electron and the nucleus attract each other [5, p. 154]. Comparing
the mass of a nucleus with that of an electron, the former is larger by order of
magnitudes. When applying Newton’s third law (2.2), it becomes evidently that
the electron will undergo the greatest deviation from its state of movement when in
the electrical field of the nucleus. The path of the electron will start curving towards
the nucleus. Velocity is a vector quantity consisting of speed and direction, meaning
that the electron experiences a change in velocity although the speed is constant.
This radial acceleration produces some captivating properties, as the electron starts
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emitting electromagnetic radiation. It should be noted that when the emission
happens, the electron speed is decreased to keep the conservation of energy. [6, cap.
34-5].

F nucleus = F electron (2.2)

-

-

hf=E1-E2

E1
v1e

E2

v2

e

+

Figure 2.3: Relativistic electron passing by a positive nucleus, resulting in
Bremsstrahlung-emission. Illustration by Trex2001 under public domain.

This type of radiation is known as breaking radiation, or by its more common german
name bremsstrahlung. The amount of energy the photon obtains from the incoming
electron depends only on the kinetic energy of the electron, and its distance to
the nucleus when passing. The closer the electron gets to the nucleus, the more
energy gets released via the photon. As there are almost endless combinations of
distances and electron energies, the energy of bremsstrahlung emissions take form
of a continuous spectrum as seen in figure 2.4 with low energies being the most
abundant. This is caused by electrons having a higher probability to pass a nucleus
from a larger distance, thus giving off less energy. [7]
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Figure 2.4: Bremsstrahlung intensity as a function of photon energy. The maximum
photon energy is limited by the incoming photon’s energy loss when passing the
nucleus. The sharp decrease in low energy emission is due to absorption in the
detector materials. [7]

Usually photons produced by bremsstrahlung are classified as x-rays. The classifica-
tion comes from it being an energetic photon with an energy exceeding 1 keV and the
generating source is an electron. If the source of generation is from nuclear decay,
the high energetic photons are called gamma-rays. [2] An alternative classification
is to categorize gamma-rays as all photon energies above 1 MeV.

TGFs are the most energetic photon phenomenon with natural origin on Earth,
with energies up to tens of MeV [8]. With such high energies, they are classified as
gamma-rays, even though the source mechanism fits with the classification of x-rays.
The energies does also extend down to tens of keV for less energetic events.
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2.2 Instrumentation
This section covers the instrumentation used to detect the photon emissions coming
from TGFs. The section source is primarily [9].

2.2.1 Scintillators

Scintillators are a widely used material that combined with read-out and front-end
electronics can be used as an instrument in high-energy physics research, dosime-
try, medicinal physics, and environmental radiation protection. It takes use of a
phenomenon known as luminescence which describes the illumination of a material
without the material being heated. In scintillators, luminescence is caused by a
particle that hits the scintillator medium. The particle passes through the medium
and excites or ionizes some of the atoms in the medium. The excited atoms will
emit photons upon deexcitation. The emitted photon energy range depends on the
medium used, and the emitted light intensity is proportionally dependent on the
energy deposited.

This way, scintillators are useful for converting deposited energy into light, or down-
converting photon frequencies to values easier to survey. For this thesis, the gamma-
and x-ray photons emitted from TGFs are the incoming particles of interest. By the
use of a scintillator with a medium of Bismuth Germanate Oxide (BGO), the large
energy deposited by high frequency gamma- and x-ray photons can be converted to
light in the near visible spectrum.

2.2.2 Photomultiplier Tubes

Scintillators produces a number of low energy photons for each particle it gets bom-
barded with, and the goal now is to convert these photons into a sufficient strong
electric signal so that it can be further handled. Figure 2.5 shows a schematic of
a Photomultiplier Tube (PMT) connected to a scintillator that outputs low energy
photons. PMTs converts the photons into electrons by the use of the photoelectric
effect. When the photon is converted, multiple electrodes called dynodes acceler-
ates the electrons towards the anode by means of a high voltage. When an electron
bumps into the dynodes, it knocks loose more electrons and essentially causes an
avalanche of electrons. These "new" electrons are known as secondary emission and
increases the current measurable at the anode.
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Connector
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Figure 2.5: Schematic of a photomultiplier tube showing the inner workings and
arrangement of components. As has been described, the primary electron causes an
avalanche producing a lot of secondary electrons that increases the current at the
anode. Source: Wikipedia, Page name: Photomultiplier

2.3 Research and Ongoing Campaigns
The Birkeland Center for Space Science located in Bergen is a Norwegian Center
of Excellence with the objective of understanding the relationship and interactions
between Earth and Space. There are currently two big science campaigns related to
TGF detection and understanding, FEGS BGO and ASIM, with FEGS coming to
an end. A new campaign, ALOFT, wil continue were FEGS left off.

2.3.1 Atmosphere-Space Interactions Monitor - ASIM

Figure 2.6: Computer aided design model of the Atmosphere-Space Interactions
Monitor (ASIM) [10]
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The Atmosphere-Space Interactions Monitor (ASIM) contains two instruments, the
Modular X- and Gamma-ray Sensor (MXGS) and the Modular Multi-spectral Imag-
ing Array (MMIA) seen in red and orange in figure 2.6. MXGS was developed at
the Birkeland Center for Space Science and carries two sets of detectors for different
energy ranges. The low energy detector is a 128 by 128 pixelated CZT (CdZnTe)-
detector sensitive to the 15 keV to 400 keV spectral band. The pixelation combined
with a coded mask in front of this detector makes it possible to determine the TGF
source direction. For high energies, BGO detectors sensitive to the 200 keV to 40
MeV spectral band is used. [10]

One of the main questions for Atmosphere-Space Interactions Monitor (ASIM) to
answer, is to find out how common TGFs are. BATSE detected 10 TGFs annu-
ally, while the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)
detected 100 annually [11]. ASIM was successfully launched and mounted to the
Columbus module on the International Space Station in April 2018, with operations
ongoing. With preliminary results, it will detect around 800 TGFs annually.

Figure 2.7: ASIM can be seen mounted on the far right of the Columbus module
on the International Space Station in this illustration. Credits: ESA Concurrent
Design Facility

2.3.2 Fly’s Eye Geostationary Lightning Mapper Simulator -
FEGS-II

The Fly’s Eye GLM Simulator (FEGS) instrument was originally built to test and
validate lightning sensors to be used on National Oceanic and Atmospheric Adminis-
tration (NOAA)’s Geostationary Operational Environmental Satellite-R (GOES-R)
series of weather satellites. FEGS was mounted to a Lockheed ER-2 High-Altitude
Airborne Science Aircraft operated by NASA, which flied over thunderclouds to val-
idate the sensors. ER-2 is the civilian successor of the well famous U2 "dragon lady"
aircraft called U-2S. It is capable of operating at mission altitudes exceeding 70,000
feet and thus can be flown above the originating altitudes of TGFs. [12]



CHAPTER 2. HIGH-ENERGY ATMOSPHERIC PHENOMENA AND THE
RADIATION ENVIRONMENT 13

The University of Bergen was offered some of the spare room allocated to FEGS
to piggyback their own instrument. This has later been known as the FEGS BGO
instrument. FEGS BGOs mission is to study TGFs along with other weaker at-
mospheric phenomena. It is built of three BGO-detectors of the same type as the
MXGS instrument. FEGS flew during April and May 2017, with the data obtained
from these flights having an ongoing review at the time this thesis was written.

Figure 2.8: The ER-2 aircraft during a NASA campaign. Credits: NASA

2.3.3 The Airborne Lightning Observatory for FEGS & TGFs
- ALOFT

The Airborne Lightning Observatory for FEGS & TGFs (ALOFT) campaign is the
successor of FEGS BGO and will use the same NASA ER-2 High-Altitude Airborne
Science Aircraft platform to perform its mission. Even though the ASIM instrument
is operational, there is still a lot of need for an aircraft mounted instrument. The
main reason for this is that ASIM is in Low Earth Orbit (LEO) and therefore needs
to peek through a lot of atmosphere to detect atmospheric phenomena. This dense
atmosphere blocks out many of the dimmer phenomena.

With an instrument mounted to an aircraft, the distance between the detector and
phenomena, and thus also the amount of atmosphere between them gets decreased.
This means that a greater signal to noise ratio can be achieved, and ALOFT is
therefore capable of detecting phenomena which would be bellow the noise floor of
ASIM.

In this thesis, the name ALOFT will be referring to the BGO detector instrument
which is developed in this thesis and flown in the ALOFT campaign. Technically,
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the correct name of the instrument would be a separate name in the ALOFT II
suite, as the instrument suite of FEGS-II as a whole was named ALOFT. However,
as no name has been given to the new instrument, and to avoid further confusion
to anyone involved in the project, the single new BGO detector instrument will be
referred to as ALOFT only.

2.4 The Radiation Environment
As will be seen in section 2.5, radiation can cause many undesirable behaviours
in electronics. There are also very important considerations to make regarding
the use of humans in radiation environments, for instance astronauts. Therefore,
applications that are going to operate in radiation environments must be designed
to tolerate the radiation exposure with satisfying results.

For high-altitude atmospheric and LEO space applications, there are many design
similarities and considerations that can be made, as the environmental conditions
regarding radiation are quite similar. These similar environmental conditions comes
from both application taking place partially or totally outside of the atmosphere,
which at lower altitudes would acts as a shield against high-energetic particles. As
both applications are also within Earth’s magnetic field, they are still shielded to
some degree from high-energetic cosmic radiation.

The substantial source of radiation in an airborne or space-based instrument is
cosmic radiation. Cosmic radiation is a collection of particles originating from the
universe, with the Sun being the major contributor to the amount received on the
Earth. The amount originating from the Sun can be seen heavily increased during
a Solar Particle Event, such as a flare or Coronal Mass Ejection. Outside of the
atmosphere, the cosmic radiation consists of 85% protons, 13% α-particles, and 2%
heavy ions. The received dose from cosmic radiation at 1600 and 5000 meters above
sea level is twice and seven times the dose received at sea level, respectively. [13]

Some of these particles can cause problems by their own, but they can also interact
with atoms in the atmosphere, causing secondary emission such as gamma-rays
through bremsstrahlung, high-energetic neutrons, protons, and pions. Secondary
emissions increases the total number of radiation particles as they go through the
atmosphere, but at lower altitudes the atmospheric density is high enough to absorb
most of the particles. This can be seen in figure 2.9 which shows the relative neutron
flux as a function of altitude, obtained from a balloon flight experiment [14].
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Figure 2.9: Neutron flux as a function of altitude, measured from a balloon flight
experiment. The effects of secondary emissions and atmospheric absorption can
clearly be seen. [14]

Neutrons have the highest flux of the secondary emission particles. Figure 2.10 shows
the neutron energy spectrum measured and calculated at 40,000 Feet above ground
[15]. At 60,000 Feet which is similar to the flight altitude of the ER-2 Aircraft, the
neutron flux has been measured to be around 1.3 neutrons/cm2/second [16].

Boeing Model - Fit to 1974 NASA Ames Flight Data
Hess Measured Spectrum, 1959
Armstrong Calculated Spectrum, 1973
1997 ER-2 Measurements, Bonner Spheres
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Figure 2.10: Neutron energy spectrum in the atmosphere at 40000 feet above sea
level. [15]

As charged particles travels along the magnetic field lines of Earth’s magnetic field,
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radiation flux levels are higher at larger latitudes. Measurements at jet aviation
altitudes during a solar minimum have shown a 2.5 to 5 times increase in radiation
flux, in the polar regions compared with flights at equatorial latitudes. [17]

2.5 Radiation Design Considerations for ALOFT
When designing an instrument to be operated at high altitudes or in space, proper
consideration to the radiation environment must be taken to avoid the undesirable
effects of radiation. During the 2017 FEGS-campaign the ER-2 aircraft was operated
at 20 km altitude. The flight trajectory was between Georgia and Colorado in the
Continental United States [18]. For this trajectory, radiation is evidently lower
than a trajectory were the aircraft is flown at higher latitudes. However, as seen
in section 2.4, any equipment at these altitudes will be exposed to much higher
radiation intensity than at sea level. In addition to the radiation with cosmic origin,
the ER-2 will also be exposed to the radiation originating from the TGFs. As was
described in section 2.1.2, TGFs can have photon energies of tens of MeV. They do,
however, have such a low occurrence that it it believed that their impact on the
electronics can be neglected.

The effects of radiation can be divided into two categories; Long-term effects, and
Single-Event Effect (SEE). As the name indicates, long-term effects happens over a
longer time period than SEEs, and encompasses effects caused by the Total Ioniz-
ing Dose accumulated, and displacement damages. Displacement damages are not
particularly applicable to Complementary Metal-Oxide Semiconductor (CMOS) mi-
croelectronics, and due to the relatively short mission periods of ALOFT, the long
term effects are in general not applicable to the electronics discussed in this thesis
and will therefore not be discussed further. [19]

2.5.1 Single Event Effect (SEE)

SEEs are caused by the interaction with single charged particles and can cause great
problems in electronics. Their effects can be divided into soft and hard errors. Soft
errors are recoverable although they may have corrupted the data content in registers
and other memory devices. Hard errors however, induces permanent damage to the
device. [19]

Some hard error effects are Latchup, Burnout, and Gate Rupture. Latchups causes
permanent loss of functionality due to low-resistance paths forming between VDD and
GND in CMOS chips. Limiting the occurrence of latchups can only be performed
through changes to the CMOS design, and is therefore outside of the scope of this
thesis. Burnouts and Gate rupture effects on sub-micron metal-oxide-semiconductor
transistors are rare and minimal, but can contribute to a reduction in lifetime ex-
pectancy which is not important to ALOFT. [20]

Single-Event Upsets and Single-Event Transients

With the introduction of Dynamic RAM (DRAM) that used semiconductor tech-
nology in the 70’s, vendors were perplexed with the discovery of bits on the devices
randomly being flipped. Intel later identified the events being caused by α-particles
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originating from trace amounts of uranium and thorium in the microelectronics
package colliding with the silicon. When an α-particle strikes silicon, it generates
an electron-hole as the particle loses energy. These electron-holes act as carriers,
and if collected into the diffusion terminals of transistors, charge can be collected.
This increase in charge causes a current spike which is known as a Single-Event
Transient. If the charge is of comparable size to the node charge of the transistor,
the bit value stored on the transistor can be flipped. If the bit is flipped, the event
is categorised as a Single-Event Upset. Both single-event transients and single-event
upsets are classified as "soft errors". [21]

Single-event upsets caused by α-particles have the approximate same occurrence on
the ground as in aircraft, as the particles originate from the package. The problem
can be reduced by using high-quality materials for the package production. How-
ever, single-event upsets caused by high-energetic neutrons with energies larger than
10 MeV are 300 times more probable in the atmosphere than on the ground. When
compared, the contribution of single-event upsets caused by α-particles in atmo-
spheric applications are insignificant compared to the ones caused by high-energetic
neutrons. Incidents caused by α-particles are also quite rare, and therefore in general
can be neglected. [15]

2.5.2 Calculating the risk of SEEs

SEEs poses a risk to ALOFT, as they may alter register and storage values. Equation
2.3 gives the number of SEEs per hour, were Nbits is the number of configuration
bits on the device, σbit is the bit cross section given in cm2/bit, and φneutron is the
neutron flux per cm2.

SEE

hour
= Nbits · σbit · φneutron · 3600 (2.3)

ALOFT will be implemented on a 7 series FPGA from Xilinx. This is further
described in chapter 4. The bit cross section of this FPGA series is 6.99·10−15cm2/bit
[22]. In section 2.4, the neutron flux at 60,000 feet was found to be around 1.3
neutrons/cm2/second. The bitfile used for the FPGA has a size of 16.8 million bits.
Only a smaller fraction of these bits are actually used in the design, but to make a
conservative estimate all are assumed critical to the system.

For an 8 hour flight, this makes the probability of one single SEE to be around 4‰.
Conservative design rules do, however, suggest that design considerations should be
taken on the assumption of a case ten times worse. This means that the design
should be implemented with the assumption on a 4% likelihood of an SEE occurring
during a flight.

These numbers are very low, especially as the ALOFT instrument is non-critical
to the safety of the pilot of the ER-2, or any equipment for that matter. As will
be seen later in the thesis, some radiation design precautions have however, been
implemented in the software.
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Chapter 3

FEGS BGO Instrument - Readout System

The development of the ALOFT readout system is the main scope of this thesis,
but as discussed in section 2.3, the design and architecture of ALOFT will be heav-
ily inspired by the FEGS BGO instrument due to their mission similarities. This
chapter will explain the readout system of the FEGS BGO instrument. Figures and
the majority of the information is based on [23].

3.1 System Architecture
Figure 3.1 illustrates the readout and system architecture of FEGS BGO. There are
three major blocks in addition to the external Electric Ground Support Equipment
(EGSE). The major blocks are dotted and colour coded in light grey to represent ab-
stract components, namely the Data Acquisition Unit (DAU), the Read-Out Control
Unit (RCU), and the Data Processing Unit (DPU). Each will be further explained in
their respective subsections. In each of the major blocks, dark grey blocks illustrates
hardware with either firmware or software if present.

19
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Figure 3.1: Block diagram of the FEGS BGO instrument readout and system ar-
chitecture. The three major blocks in light grey encompasses the Data Acquisition
Unit (DAU), Read-Out Control Unit (RCU), and Data Processing Unit (DPU), in
addition to the Electric Ground Support Equipment (EGSE).

3.2 BGO Data Acquisition Unit
The DAU is a mechanical construction of three BGO detector modules, one fast
detector module, and voltage dividers. Each BGO detector module is a separate
BGO scintillator crystal with a PMT.

The output from the PMTs are low-pass filtered with a corner frequency of around
20 MHz. This is to remove any high-frequency components before each PMT-signal
is amplified by a preamplifier. The relative position in the readout-chain of the
preamplifier, low-pass filter and detector module can be seen in figure 3.2. The figure
also contains the Analog to Digital Converter (ADC) and ADC driver modules which
are described in section 3.3.
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Figure 3.2: Relative position of the detector modules, front-end electronics, and
ADCs in the FEGS BGO instrument.

3.3 Readout Control Unit
The RCU contains three ADCs and a Microsemi Igloo 2 Field Programmable Gate
Array (FPGA).

As the PMTs outputs analogue signals, it is necessary to convert them into digital
signals to efficiently process and handle them. This is done by the three ADCs,
one for each PMT channel. Each ADC runs in a differential signaling setup. By
using differential signaling, common mode noise and interference gets rejected. The
overall performance is also increased as the signaling is balanced, and the dynamic
range gets increased by a factor of two.

To create the differential signaling from the single ended analog PMT output, an
ADC driver is placed in front of the ADC in the readout-chain. This is illustrated in
figure 3.2. The ADCs used are the 12 bit RHF1201, operating at a 36 Msps sample
rate which is the same frequency as the main oscillator in the system.

The RCU is also connected to a GPS receiver called Copernicus II from the company
Trimble. The receiver provides a 1 Hz Pulse Per Second (PPS)-signal accurate within
60 ns rms. [24]

3.3.1 Firmware

Each ADC outputs a 12-bit data stream which is fed into the firmware running on the
flash based Igloo 2 FPGA. Figure 3.3 provides a block diagram of the various pulse
processing performed in the firmware. Each PMT channel is handled concurrently
in the firmware.
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Figure 3.3: Block diagram of the pulse processing performed in the FEGS BGO
firmware, implemented on the Igloo 2 FPGA. Solid blocks are implemented on the
FPGA.

Interfacing the firmware is performed through a set of registers. Each module in
the firmware contains a control register, and some also have a status register. The
control registers are 8 bit with 14 bit addresses.

Scientific Data Packets

Data from each of the firmware data channels are outputted in the form of a 48 bit
data packet called a Scientific Data Packet (SCDP). Table 3.1 displays the SCDP
normally outputted from the firmware.

2 bits 4 bits 1 bit 1 bit 1 bit 1 bit 6 bits 12 bits 20 bits
Flag bits Address OVF Fast Valley Spare Fast time tag Energy Time tag
’00’ 00 AA ’0’ ’0’ ’0’ ’0’ FF FFFF EE..EE TT..TT
47 46 45 42 41 40 39 38 37 32 31 20 19 0

Table 3.1: Normal SCDP.

The normal SCDP is transmitted for any gamma ray event were a sufficient delay
exists between two events. The first two bits are set depending on the OVF and
Fast flags. The address bits indicate which BGO detector module the data originates
from. Each SCDP contains a fast time tag and a course time tag. These are set using
the PPS-signal generated by the GPS receiver. The fast time tag has a resolution
of 27.78 ns, and the course time tag has a 1 µs resolution. The energy-field is the
detected energy with a value range from 0 to 4095.

When the OVF and Fast flags are set, the generated SCDPs are called Fast SCDP,
Overflow SCDP, and ADC Sample SCDP. Table 3.2 illustrates the different SCDPs
based on the flags.

OVF Fast Type
0 0 Normal
0 1 Fast
1 0 Overflow
1 1 ADC Sample

Table 3.2: SCDP types.
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Fast SCDP only differs from the normal SCDP by the Fast flag being set. Fast
SCDPs are created when the time between two event-pulses are too close to be
separated. The Overflow SCDP is transmitted when the ADC overflows for more
than one clock cycle. The fast time tag is then unused, and the energy-field is
replaced by the number of clock cycles the overflow exists.

2 bits 4 bits 1 bit 1 bit 1 bit 1 bit 6 bits 12 bits 20 bits
Flag bits Address OVF Fast Valley Spare Unused Overflow duration Time tag

Table 3.3: Overflow SCDP.

The ADC Sample SCDP is transmitted when the RCU is commanded to operate in
continous or triggered sample mode. In these modes, the raw unfiltered 12 bit ADC
value is included in the SCDP. Table 3.4 displays the ADC Sample SCDP.

2 bits 4 bits 1 bit 1 bit 1 bit 1 bit 6 bits 12 bits 20 bits
Flag bits Address OVF Fast Sample number Energy Time tag
’00’ 00 AA ’1’ ’1’ N N NN NN EE..EE TT..TT
47 46 45 42 41 40 39 38 37 32 31 20 19 0

Table 3.4: ADC Sample SCDP.

SCDPs for each respective channel are placed in separate First In First Out (FIFO)
memories. A Multiplexer (MUX) operated with round-robin scheduling is then used
to mux through the different FIFOs and makes the data available on a Low Voltage
Differential Signaling (LVDS) serial data line. The round-robin scheduling assigns
the total available time equally to each separate channel.

3.4 Data Processing Unit
The DPU is connected to the RCU using the LVDS link. The DPU consists of the
OpalKelly XEM6001 FPGA, and the Nuvo-3100VTC in-vehicle computer.

3.4.1 OpalKelly XEM6001

Communication to and from the Nuvo computer is handled over Universal Serial Bus
(USB), so the OpalKelly XEM6001 is used as an interfacing adapter between the
RCU LVDS and USB interface. The LVDS link provides a maximum data transfer
rate of 330 k packets per second. Saturation is only possible when the instrument
is running in the continuous sample mode, and equals to a data rate of 1.98 MB/s
for 48 bit SCDPs.

XEM6001 features the Xilinx Spartan-6 FPGA, which is well equipped to handle
the LVDS interfacing work. [25].
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Figure 3.4: Opal Kelly XEM6001 mounted in the FEGS BGO instrument.

3.4.2 Nuvo-3100VTC

The Nuvo-3100VTC is a fan-less in-vehicle computer that features small dimensions
and the required specifications to operate as DPU in FEGS BGO. With the used
hardware configuration it has been budgeted to use up to 47 W. The Nuvo is used
as DPU by writing the SCDPs received from the RCU onto a storage medium. The
Nuvo also handles firmware configuration through the register interface, and system
monitoring. This is performed by a C# software program called EGSE-software.
The Graphical User Interface (GUI) of the program can be seen in figure 3.5.

Figure 3.5: GUI of the FEGS BGO instrument Electric Ground Support Equipment
(EGSE).

The operating system on the Nuvo is a Realtime Operating System (RTOS)-version
of Microsoft Windows 10 which is configured to accept Remote Desktop Protocol
(RDP)-connections necessary for remote access by the EGSE.

The Nuvo also features watchdog functionality. Watchdog is a hardware mechanism
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which works by software resetting a timer before it reaches a predefined value. If the
software hangs or otherwise fails to reset the timer, the hardware will automatically
restart. This ensures that the Nuvo restart if the software behaves abnormally.

For storage of the acquired data, an industrial grade Single Level Cell (SLC) USB
flash drive is used. The flash drive is connected to the Nuvo using USB version 2.0.

3.5 Operation of FEGS BGO during Flight Cam-
paigns

To test and configure the FEGS BGO instrument, a cable harness connected to
the Nuvo can be pulled through the payload bay so that it is accessible at the aft.
External equipment connected to the instruments and airplane itself are normally
termed EGSE, but in this thesis the term will only reference systems connected
to the FEGS BGO and later the ALOFT instrument. The harness consists of an
HDMI video out cable to connect a monitor to the Nuvo, a USB-B extension cable
for easier access connecting and removing the USB flash drive, and a category 5E
ethernet cable. By connecting an external computer to the ethernet cable, an ad-hoc
network using static Internet Protocol (IP)-addressing can be created.

When connected, the EGSE-computer can connect to the Nuvo using RDP. RDP
does a pass-through of the display and audio of the Nuvo to the EGSE, and sends
mouse- and keyboard-input from the EGSE to the Nuvo. The RDP-connection is
primarily used to control the EGSE-software running locally on the Nuvo.

3.6 Review
Development of the FEGS BGO instrument was designed with reuse of software
and hardware from the ASIM campaign in mind. Reuse is great for shortening the
development time of an instrument, but if not done properly can make for a less
elegant solution. This is what happened to FEGS BGO.

As the new ALOFT campaign is built on the FEGS campaign, this is an excellent
opportunity to revise the design of the FEGS BGO instrument for it to better
accommodate the campaign requirements. In short, revising should remove the use
of proprietary software, and move the design onto a more efficient hardware solution.
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Chapter 4

ALOFT Design

In section 1.3 it was introduced that the Airborne Lightning Observatory for FEGS
& TGFs (ALOFT) will be an embedded version of the FEGS BGO instrument for
which the readout system was described in chapter 3.

FEGS BGO was presented as a decentralized system, with functionality spread over
multiple separate devices. ALOFT will use the same detector modules, but the
firmware and DPU will be implemented on a System on a Chip (SoC) embedded
platform.

Due to the expected mission similarity and reuse of firmware, detector modules,
and DPU functionality, the proposed design is based on the assumption of ALOFT
having overall similar requirements as those valid for FEGS BGO.

4.1 System On a Chip
Due to the constantly development of ever more complex systems, the use of SoC-
designs has become increasingly common. SoC is the term of systems combining
different hardware modules through a common bus, on a single chip. Example of
such modules could be memory units, I/O-peripherals, or a microprocessor. [21]

As the hardware modules are placed closer together than in conventional systems,
delays are much smaller, and higher bandwidth can be obtained. This reduces
some of the problems associated with building high-speed systems. Typically the
modules can be interchanged as they have been individually pre-designed, adding a
high degree of customizability-options for the system designer. SoC-designs with an
FPGA-block also increases customizability as additional blocks can be implemented
on the FPGA logic after the actual chip has been produced. From a designers
perspective, using a SoC-design increases the time that can be used in the behavioral
and structural design domains. These domains concern how the system behaves and
which parts that needs to be added to fulfill the desired behavior. Consequently,
less time is needed in the physical domain where tasks such as floorplanning and
actual chip geometry-design takes place. See for example [21].

Naturally, development time is reduced as sophisticated systems can be designed
without going through the hassle of coming up with every single subsystem de-
sign. SoC designs also aids in making the final product hierarchical, and decreases

27
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development time.

The SoC used for ALOFT is a dual-core microprocessor system embedded on an
FPGA. The microprocessor system in such systems are referenced as the programmable
system, and the FPGA as the programmable logic.

ALOFT uses the firmware from the FEGS BGO RCU, and much of the same func-
tionality as was found on the FEGS BGO DPU. As the firmware is already written
in the hardware description language VHDL, and thus intended to run on an FPGA,
it will be ported to the ALOFT programmable logic. This is currently being done at
the University of Bergen, and the results should be available in [26] when published.
Functionality earlier handled by the DPU are easiest implemented using software,
and thus wil be executed on the programmable system.

With most of the readout system implemented as VHDL and software on the em-
bedded SoC platform, it can easily be customized to meet additional mission and
design requirements later in the development. The remaining part of this thesis will
primarily focus on the design and implementation of the software responsible for the
DPU-like functionality.

4.2 System Requirements
The required functionality of the software can be divided into four tasks. The
primary task is data storage. This means to receive SCDPs from the firmware and
store them safely to a mass storage device. It is important to perform this task with
sufficient speed to avoid introduction of any bottlenecks, which would result in data
loss.

The second task is firmware configuration. As has been elaborated in section
3.3.1, the firmware is interfaced through a set of configuration and status registers.
ALOFT’s software must be able to configure the firmware through this interface,
preferably from a configuration table easy accessible when operating the instrument.

The third task is to log the status and health of the system. As the software is in
control of both the firmware and the rest of the readout system, it has a very good
position for monitoring the overall status of ALOFT. The log must be written to a
nonvolatile memory to ensure its survival, should the instrument be power cycled.

The fourth and final task is to provide a user interface to the instrument. The
interface must report information about ALOFT, and provide a way of manually
controlling the instrument. The interface should be easily accessible even when the
instrument is mounted in the ER-2 Aircraft. Preferably, the user interface should
also be available from ground services while in-flight through the ER-2 Instrument
Network described in section 4.9.

These four tasks must all be started automatically when power is connected.

4.2.1 Reliability

ALOFT will have fairly limited human interaction capabilities while in-flight. The
only interaction available will be through the user interface covered in section 4.9
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and the pilot operated Cockpit Experiment Control Panel (ECP) which is covered in
section 4.10. In essence, this means that the instrument needs to be highly reliable.
Reliability is defined as the probability of a system or component to function as
intended for a specified period of time, and generally it is as relevant for software as
it is hardware.

Hardware reliability in ALOFT is mostly relevant to the burn in phase, as the general
life time of electronics surpasses the use of the instrument. Extensive hardware
testing must be performed to ensure the removal of weak components.

The failure rate of software is at its peak during the test and debugging phase. When
this phase is completed and the software is deployed, the probability of failures are
usually at a minimum. The failure rate is constant beyond this point if no changes
are made. Upgrades can add additional complexity which will increase the overall
failure rate. In addition, as complexity increases, the maintainability decreases,
which again increases the probability of failure when the software is upgraded. [27]

Focus has been on keeping complexity low to increase maintainability. This has to
a large degree been achieved through regularity and the use of a hierarchical design
strategy. Regularity and hierarchical design are further explained in appendix C.1.

4.2.2 Hardware requirements

Data storage

The data storage requirements are based on two factors; required data rate, and total
amount of data. As seen in section 3.4, the FEGS BGO instrument had a maximum
data rate of 1.98 MB/s. This maximum data rate was, however, only reached when
the instrument operated in the continuos sample mode. As the limiting factor in
FEGS BGO has been removed in ALOFT the transfer rate is no longer limited
to the same rates. Higher data rates are not required for ALOFT, but it should
be emphasized that capabilities beyond the required data rate will ensure a lower
possibility of the software to induce a bottleneck in the readout chain.

ER-2’s maximum mission duration is 8 hours, providing about 7 hours of data
collection at the desired altitude. Normal missions last around 6.5 hours giving 5.5
hour of data collection. Theoretically, the instrument could generate around 50 GB
of data if operated in the continuos sampling mode for a max duration flight. 50
GB is, however, an unrealistic overestimation. Results from the FEGS campaign
indicates that even very conservative estimates does not surpass 7 GB of data. In
addition to the collected data, some space must be reserved for the system logging,
configuration table, and as will be introduced in section 4.7, a bootloader. These
files are negligible in terms of size compared to the collected data.

4.2.3 Software requirements

It has been decided that the software will be written in the programming language
C. C has the quite unique capability of providing syntax for both high- and low-
level programming. It is also architecture-independent and thus suited as a general
purpose language which is needed to perform the four main functionalities assigned
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to the ALOFT software. C++ would be another option, but is not truly supported
by the FreeRTOS operating system introduced in section 4.4 without making changes
to the kernel.

4.3 Xilinx Digilent Zybo SoC Trainer Board
A Xilinx Digilent Zybo SoC Trainer Board has been chosen to be used during de-
velopment. The board contains the Z-7010 SoC discussed in section 4.3.1. It also
features peripherals such as gigabit ethernet, SD memory card capability, USB with
On The Go support, HDMI, Audio in/out, Multiplexed I/O (MIO)- and General
Purpose I/O (GPIO)-ports.

Figure 4.1: Xilinx Digilent Zybo board [28]

Nonvolatile memory

The Zynq-7000 contains two Serial Peripheral Interface (SPI) bus controllers. These
can be used to interact with SD memory cards with serial mode support or other
hardware such as various sensors, real-time clocks, etc. [29]

On the Zybo development board, a micro SD connector can be found on the reverse
side of the board. Enabling the SPI controller in Xilinx’ software program Vivado
enables use of a connected micro SD memory card both as a mass storage device
by any application running on the board, and as a boot medium. To use the micro
SD memory card as a boot medium, the Mode jumper (JP5) must be positioned
to select "MicroSD", and the card must contain a bootloader on a FAT 16/32 file
system. [30]

Bootloaders are further covered in section 4.7.

4.3.1 Zynq-7000 Architecture

For development, the smallest member of the Xilinx Zynq-7000 All Programmable
SoCs-family, the Z-7010 has been used. The Z-7010 features a dual-core ARM®

CortexTM-A9 MPCoreTM based programmable system, and a high performance,
low-power Xilinx programmable logic, built with 28 nm process technology. A block
diagram of the Z-7010 architecture is seen in figure 4.2, with the programmable
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system embodied in light grey, and the programmable logic in dark grey. [29]

Figure 4.2: Block diagram exported from Xilinx Vivado of the Zynq-7000 architec-
ture. The programmable system containing many of the subsystems is contained in
a light grey block, while being interconnected with the programmable logic marked
in dark grey.

The Zynq-7000 system has two gigabit peripherals. They can be seen in figure 4.2
as ENET0 and ENET1. ENET0 will be used to provide the network required for
the user interface further described in section 4.9. On the Zybo development board,
a Realtek RTL8211E-VL PHY controller is used to provide a 10/100/1000BASE-T
ethernet connection interface to the peripheral.

4.4 FreeRTOS - A Realtime Operating System
Each of the software tasks described in section 4.2 could by varying degree be imple-
mented directly on the programmable system without an operating system. How-
ever, due to the complexity of having multiple different functionalities that may not
require the same priority in terms of processing time, it becomes very hard to find
arguments against the use of an operating system.

An effective step in cutting down on complexity is to use multithreading. Multi-
threading will be explained in section 4.5.

FreeRTOS, or Free Real Time Operating System, is essentially an operating system
to run bare bone applications with full multithreading support. It does not offer
much more than that, and this separates it from running a Linux distro such as
PetaLinux on the system. Using a Linux distro would probably cut some develop-
ment time as there are quite a lot of resources and "out of the box"-solutions easily
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implemented to do the job asked by ALOFT. A Linux distro would however draw
more resources than FreeRTOS, as the solutions would not be specifically designed
for the task at hand, but be adapted to fit in a "good enough"-solution.

As FreeRTOS is an RTOS, it can operate under strict defined time constraints.
FreeRTOS seems like a perfect compromise between constraining computing- and
power-resources, and providing an efficiently platform for development of a complex
system. FreeRTOS’ core source files are also conform to MISRA coding standard
guidelines [31].

4.5 Multithreading
The following section along with subsections are based on [32].

Applications can contain multiple tasks which themselves can occupy separate threads.
For a single core system only one task can run at a time, but multithreading makes
it possible to switch between these tasks so that they behave as if they were running
concurrently. The actual speed is, however, limited to the execution of one task at
a time. Dual core systems, such as the one found on the ARM Cortex-A9, enables
the possibility of running two concurrent tasks. This could be beneficial if the sys-
tem will ever require data rates which saturates the single core. For now, ALOFT
is designed to only use one of the cores, as it should provide enough performance.
Designing ALOFT for single core usage also cuts down on system complexity and
challenges related to development.

4.5.1 Scheduler

As only one task can be executed at a given time in a single core system, a framework
for deciding which task to be executed is essential to a multithreading system. This
decision process is known as scheduling. To help in deciding which task to execute,
the tasks are marked with a priority. There will also always be an idle-task created
by the operating system’s kernel that will have the lowest priority. For tasks to be
able to run, they need to have a higher priority than the idle task. Scheduling is
handled by a "scheduler", and FreeRTOS has one built into the kernel. It operates
in a round-robin policy mode, meaning that each task of the highest priority will
be executed by turn. It does not, however, guarantee that the available processing
time will be spread equally between them.

Up until now, a simplified view of tasks being either in a running or not running
state has been described. The reality of the FreeRTOS kernel is however somewhat
more complex, as there are actually four different task states; Running, Ready,
Suspended, and Blocked. Figure 4.3 illustrates how task transitions are performed
when different functions are called. If all tasks with the highest priority are placed
in the blocked or suspended state, the scheduler will move on to the tasks with the
second highest priority.
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Figure 4.3: State machine for the four different task states available in FreeRTOS,
Running, Ready, Suspended, and Blocked. Modified figure from [32].

For ALOFT, the scheduler algorithm is in a prioritized pre-emptive scheduling with
time slicing-configuration. This means that if a higher priority task is put into the
ready state when a lower priority task is in the running state, the lower priority
task will immediately be pre-empted out of the running state so that the state is
available for the high priority task. Maximum task priority is set to 8.

To avoid the highest priority tasks in ALOFT starving the lower priority tasks of
run-time, all tasks are put into the suspended state for a limited time period when
they have reached the end of instructions, unless deleted. Putting tasks into the
suspended state is done with the vTaskDelay() function call. It takes a number of
clock-cycles as input. If the function is combined with the pdMS_TO_TICKS()-
function, suspending can be defined in milliseconds.

Idle task

When the scheduler is started upon boot, the idle task will be created automatically.
As it has the lowest priority of all the tasks, it will only execute when there are no
other tasks in the ready state. The idle state can be used as a way to measure how
much of the processing time that is actually used by the system. As it does not
process any significant work, it reduces the processor’s power usage when operating
in the running state.
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4.6 Memory allocation
In programming, there are three ways of allocating memory. Static, automatic, and
dynamic. Automatic and dynamic allocates the memory at run-time, therefore mak-
ing it nearly impossible to determine the actual memory footprint. They can also
produce some nasty thread-behavior if not used with great care, as the program
might run into memory leaks or prove non-deterministic with regard to execution
time. Static allocation allocates the application writer’s requested amount of mem-
ory at compile time. Usage of static allocation creates a deterministic memory
footprint, and execution time can be specified by the application writer.

As the MISRA-C guidelines have been applied to this project, no use of dynamic
memory allocation is permitted unless great care is taken [33, p. 34, Dir. 4.12]. This
also covers automatic allocation. To comply, all usage of memory in the ALOFT
software has been statically allocated to its greatest extent.

4.7 First Stage Boot Loader
References for this section can be found in [29].

The configuration of the programmable logic is stored in Static RAM (SRAM)-
type internal latches, and thus is volatile. This means it has to be reloaded every
time power is cycled on the Zynq-7000 device. Reloading can be performed by the
programmable system using a bitstream-file.

The application running on the programmable system is stored in a memory module
known as the On-Chip Memory. The Zynq 7000 uses a power-on reset function which
resets all reset-capable registers when power is connected. Thus the application must
be uploaded to the on-chip memory every time power is cycled. Uploading to the
on-chip memory is handled by a Read-Only Memory known as the BootROM.

The device serving the boot image is known as a Master boot device, and in ALOFT
this is the micro SD memory card. A First Stage Boot Loader (FSBL) contains the
programmable system application, and can in addition also contain the bitstream
used to configure the programmable logic. The FSBL has in the previous chapter,
and will be further, referenced to as the bootloader.

In ALOFT, the bootloader has been created so that it contains the FreeRTOS
programmable system application, and also the bitstream to configure the pro-
grammable logic. The bootloader is placed on the micro SD memory card. With
this solution, no external computer is needed to program the ALOFT instrument
as it is done automatically from the SD-card partition when power is connected.
The bootloader has been generated using Xilinx’ software program SDK’s built-in
bootloader-tool along with bitstream exported from Xilinx Vivado. Changes to the
software or bitstream requires regeneration of the bootloader files. A tutorial on how
to generate the bootloader has been written and posted to the internal wiki-page of
the University of Bergen. Link to this tutorial can be found in appendix F.
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4.8 Storage
For development, a 128 GB Samsung Evo Plus Micro-SDXC card has been chosen.
The card is rated to class 10, meaning it can sustain a 10 MB/s minimum sequential
write speed [34]. With the expected data rate and capacity requirements elaborated
in section 4.2.2, this card will not pose any risk of introducing bottlenecks related to
these requirements. The card uses 3D Tripple Level Cell (TLC) NAND technology,
so the reliability may prove too low for use for other than testing purposes. SLC-
based cards are more suiting to the task, but usually comes with an increased cost.
For development, criteria was put on speed and capacity, and thus TLC technology
proved the best from an economically standpoint.

File System

According to [29], the Zybo can only be booted from FAT 16/32 file systems with
max card density of 32 GB. As the card used for development has a larger density, it
has been formatted into two separate partitions were only a smaller 32 GB partition
is used. Xilinx provides a library for usage of the FAT 32 file system. FAT 32
does however inherent a problematic attribute; The industry standard has volume
tables limited to 232-1 sectors. This makes the maximum individual file size the
system can handle around 4.3 GB, not compliant with the up to 7 GB of data being
accumulated. Section 5.8 will cover how this is solved by spreading the data over
multiple smaller files instead.

4.9 User Interface
Section 3.5 described how the user interface of FEGS BGO was available only
through the EGSE.

One feature of the ER-2 aircraft which FEGS BGO did not use, was the ER-2 In-
strument Network. In addition of providing aircraft housekeeping data and NTP
time services to the instruments, the ER-2 instrument network can also provide a
simple communication link between an instrument and ground web services. The
service is handled over an Iridium or Inmarsat satellite link, depending on require-
ments. Iridium packets are, however, often lost, and the link provided by Inmarsat
has a cost of $5.88/MB for data traffic above 6 MB/hour/aircraft. [35]

To be able to access the user interface while both at ground and in-flight through
the ER-2 Instrument Network, it has been found that running a Telnet server on
ALOFT provides a good solution. This non-GUI solution is extremely lightweight
which severely reduces resource usage on the instrument itself, and data usage is
very low compared with the RDP solution used on FEGS BGO. This means that the
interface can be used both with a direct point-to-point link between the instrument
and an external EGSE computer, and with the ER-2 Instrument Network for remote
in-flight access, without adding large costs for data traffic. More resource-intensive
tasks such as running a GUI overlay can instead be offloaded to the EGSE or ground
services using standalone software. With the GUI overlay, the user will be able
to send and receive commands with a much more user-friendly interface with for
example command-predefined buttons, instead of the command-line type of interface
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provided by telnet.

Accessing the instrument trough telnet still requires a cable harness as used on the
FEGS BGO instrument, and as of now requires the physically removal of the micro
SD memory card to offload data. In section 7.2.4, it is proposed how the data
offloading may be performed over TCP/IP at a later step in the development.

4.9.1 Communication protocol

Telnet is a widely used protocol used over an ethernet connection. It is compliant
with all large operating systems such as Linux, Windows, and Mac OS. Open source
software for communicating with telnet clients and servers are also widely available
for these OSs. Telnet makes accessibility easy and standardised, and removes the
need for proprietary software. Connection with the instrument will be on a closed
network provided by the ER-2 Instrument network, or a direct point-to-point link.
It should be noted that telnet does not provide any security as the data is sent in
plain text. However, as the network is closed, security such as the one offered by
the Secure Shell (SSH)-protocol is not a necessity, and would only add additional
overhead.

Sending packets of bits over a network using telnet is handled with either the Trans-
mission Control Protocol (TCP) or the User Datagram Protocol (UDP). The ER-2
Instrument Network requires instruments to use UDP, although it does not contain
the error detection and correction offered by TCP [35]. This, however, means higher
transfer rates can be achieved due to the minimal packet overhead. Data costs of
the Inmarsat link are also reduced as total data amount is lower.

4.10 Cockpit Experiment Control Panel
During flight, interaction with instruments is in addition to the ER-2 instrument
network available through the Cockpit Experiment Control Panel (ECP). The ECP
is operated by the pilot and consists of a simple ON/OFF switch, and two status
lights; an “ON” light, and a "FL" fail light. Request of additional switches is possible,
but in general it is expected that the instrument should handle itself when power is
provided.

The "ON" light should be illuminated as long as the instrument receives power.
Illumination of the fail light should only be used to signal the pilot that there is
a problem with the instrument. However, it is allowed for the "FL" light to be
illuminated while the instrument is powered up, but should be turned off when
data acquisition has started. The standard go-to procedure when the "FL" light
illuminates, is for the pilot to cycle instrument power with some timing constraints.
If the problem persists, a decision of aborting the mission will be made. [36]

As ALOFT will piggyback with the FEGS instrument, it is not expected that it
will have a dedicated switch and status lights on the ECP. However, if this decision
is changed, it would be a feature easily implemented in the software by making it
toggle a set of GPIO pins.
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4.11 GPS interface
The Copernicus II GPS receiver used to generate the PPS-signal for the RCU on
FEGS BGO, will also be used on ALOFT. The receiver is interfaced using the serial
communication standard RS232 with low voltages, and can therefore be handled
directly by the programmable system. [24]

4.12 Chapter Summary
In this chapter some of the design fundamentals to ALOFT has been decided. The
system will be implemented on a Xilinx Zynq Z-7010 SoC with an embedded dual
core ARM Cortex-A9 processor and 28 nm programmable logic. A micro SD memory
card will be used to store the data coming from the detectors, and hold other files
needed by the system.

The software running on the processor will be implemented in the FreeRTOS Re-
altime operating system, due to the software complexity. FreeRTOS enables multi-
threading which reduces the complexity of implementing all the features required.

The required features are to handle offloading of the detector data to a micro SD
memory card, provide a user interface for controlling the instrument, log the system
status to a log file, and configure the firmware running on the programmable logic.

User interface is to be provided through a telnet server which will be accessible both
on the ground and while in-flight through the ER-2 Instrument Network.
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Chapter 5

Embedded Readout Development

As recommended by [32], a demo application provided by FreeRTOS has been used
as a template for developing the ALOFT software. The most promising one was the
lwIP Echo server made with Light-weight Internet Protocol (LwIP) v2.0.2. It comes
bundled with FreeRTOS 10 in Xilinx SDK 2018.1. The template contains a bare
minimum framework for hosting a telnet server for a variety of different hardware
platforms. By default, the implemented functionality is to echo back any message
it receives on port 7.

To make the FreeRTOS able to function in a hardware environment, a set of hard-
ware drivers are needed. These are provided through software called a Board Sup-
port Package. By using the LwIP template, the necessary board support packages
comes preconfigured to allow use of the network hardware. To allow use of the fat32
filesystem, Xilinx’s library called xilffs has been added manually to the board sup-
port package. The package has been configured to allow usage of functions capable
of reading and writing full strings, not available by default.

5.1 System architecture
Figure 5.1 displays the architecture of the design developed in this thesis. The DAU
and ADCs are identical to the ones used on FEGS BGO. Data from the ADCs are
inputted into the firmware on the programmable logic. The programmable logic is
connected to the programmable system using two separate AXI-buses. The figure
gives a somewhat simplified view of the interconnection between the programmable
system and programmable logic. A more detailed view of the interconnection with
each of the AXI-buses can be found in section 5.8 and 5.9.

Software on the programmable system can read and write to files to the micro SD
memory card. These includes a log file, a file containing configuration parameters
for the firmware, a file containing data used for testing, and a number of files storing
the data produced by the detectors. In addition, the bootloader is stored on the
same partition.

39
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Figure 5.1: Architectural design of the ALOFT software.

Interprocess communication between the tasks has been solved with the use of queues
which are marked in a cyan colour in the figure. In general, this was only needed
for the system logging and user interface functionality. The use of modularity also
removed some of the need for interprocess communication as the tasks works mostly
independent of each other. Modularity is further explained in appendix C.

Table 5.1 lists the priorities set for each of the software tasks implemented in the
programmable system. In the programmable system in figure 5.1, the tasks have
been marked in yellow. A short description of each of the tasks follows, and are
further documented in their respective sections later in this chapter.
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Name Priority Level
Readout 8
Synthetic Data Reader 7
Checksum Generator 6
Firmware Configurator 5
Internal Message System 4
Command Interpeter System 3
Telnet Server 2
Idle Task 1

Table 5.1: Priority level of the different tasks

Readout

The Readout-task is responsible for offloading the detector data transmitted from
the firmware onto the micro SD memory card. It is triggered to start offloading
when the programmable system receives an interrupt from the programmable logic.
It is important for this task to complete the offloading before a new interrupt is sent,
to avoid loosing data. Therefore, the task is executed with the highest priority. The
Readout-task is further documented in section 5.8.

Synthetic Data Reader

The Synthetic Data Reader is used to write synthetic test data to the firmware
to verify the readout system. The task is executed with priority 7, which is the
second highest in the system. This is to avoid interruption by the scheduler doing a
context switch to another task, as it would make it harder to determine the timing
characteristics of the relationship between data being inputted into the firmware,
and readout. The Synthetic Data Reader is further documented in section 5.9.

Checksum Generator

The Checksum Generator calculates a checksum used to verify the content of the
configuration file used by the Firmware Configurator. As the Firmware Configurator
is dependent on this calculation, the task is executed with a priority of 6, one priority
over the Firmware Configurator. The Checksum Generator is further documented
in section 5.7.1.

Firmware Configurator

The Firmware Configurator parses configuration parameters from the file checked
by the checksum generator, and uses them to configure the firmware on the pro-
grammable logic by writing to its registers. The task is executed with a priority set
to 5, one priority lower than the Checksum Generator. The Firmware Configurator
is further documented in section 5.7.
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Internal Message System

The Internal Message System is a centralized messaging system used to provide
logging and task status monitoring in a multithreading environment. The messages
are written to a log file for permanent storage, the UART debugging interface over
USB, and to the Telnet Server for use in the Telnet user interface. Due to the
importance of the logging, the task is executed with the highest priority of the
tasks which are not polled by other stimuli. The priority is set to 4. Further
documentation of the Internal Message System can be found in section 5.4.

Telnet Server

The Telnet Server hosts the user interface, which can be accessed either by a com-
puter connected with a point to point link, or through the ER-2 Instrument Network.
The server outputs the messages received by the Internal Message System, and can
receive user input commands which are parsed and transmitted to the Command
Interpreter System. Due to its dependence on the Internal Message System, it is
executed with a priority set to 3. Further documentation on the Telnet Server can
be found in section 5.5.2.

Command Interpreter System

The Command Interpreter System is responsible for executing the correct response
based on user input through the user interface. Due to its dependence on the Telnet
Server, it is executed one priority lower, at 2. As the system has been design to
handle itself, user input is regarded as having the lowest importance, and thus this
task has the lowest priority in the system. The Command Interpreter System is
further documented in section 5.6.

5.2 Boot Sequence
Figure 5.2 demonstrates the boot sequence of the software. When power is connected
and the software application has been loaded from the bootloader, the queues used in
the application are created. Next, the file system partition on the micro SD memory
card is mounted for access by the application. As neither the readout system nor the
internal message system will function without it, it is essential that the mounting
task is initiated prior to them. The micro SD memory card initialization is further
described in section 5.3. If the initialization is successful, a register in the firmware
containing the firmware number is read. Reading the register serves two purposes;
Verifying the correct version number, and to ensure the programmable system has
access to the registers of the programmable logic.
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Figure 5.2: Boot sequence for the ALOFT software application.

Next, the interrupt controller on the processor and the Direct Memory Access
(DMA)-module used by the data readout are configured. The DMA is further de-
scribed in section 5.8. When configured, the tasks handling the Internal Message
System, the Telnet Server, the Command Interpeter System, the Readout, and the
Checksum Generator are all created and put into the ready state. None of the tasks
can be put into the running state before the FreeRTOS scheduler has been started.
When the scheduler is started, the readout task has the highest priority and thus is
the first to be put into the running state. Section 5.8 explains how the readout task
is then immediately put into the blocked state.

The checksum generator task has the second highest priority. As the readout task
is put into the blocked state, the checksum generator is put into the running state.
When the checksum generator has completed, the firmware configuration task is
created and put into the running state.
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5.3 SD Memory Card Initialization
To use the SD memory card as an application storage device, it must be mounted
by the operating system before it can be used. Mounting is a process in which the
operating system identifies the type of file system present on the storage device, and
initializes it for read and write operations. When completed, the file system on the
storage device is incorporated into the file system of the operating system through
a mount point where it can be accessed by an application.

In ALOFT, the syntax for mounting and checking for a successful mount has been
placed in a separate function. The function is called during the boot sequence as seen
in figure 5.2. This mounting function could have been implemented as a separate
task, but should only be required to run once during boot. A standalone function
is however sufficient to avoid overcomplicating the implementation.

The function comprises two parts; mounting the SD memory card, and checking if
the mount was successful. The first part is done by declaring a file system pointer
later used by all tasks using the file system, a path to specify which logical drive the
card is to be mounted to, and last, a variable to set a delayed mount.

As there is only one storage device to be used, the logical drive path is set to
0:/. As will be seen in section 7.2.1, the finalized system may be designed to use
different devices for the different files. In such case, the logical drive path must
be set accordingly. The delayed mount option, if set, means that the file system
will not be mounted until access to the card is requested by the application. For
ALOFT, delayed mount has been disabled for easier debugging of storage device-
related problems during boot.

5.4 Internal Message System
To enable monitoring of the system health, each task and function can report their
status which can be viewed through the user interface and a log file. In figure 5.3 the
architecture of the implemented message system can be seen. When a task is in the
running state, a message can be sent into the Internal Message Queue. The queue
is 16 elements deep. Messages are always written to the end of the queue which
operates with a First In First Out (FIFO) scheme. When writing to the queue, the
scheduler is denied context switching. This is to avoid other tasks being put into
the running state, which would result in only parts of a message being written to
the queue.

The messages consists of two parameters implemented with the C-object type struct;
a system message code, and a message in plain text. The system message codes are
further described in section 5.4.1. A task called the Internal Message System reads
message by message from the receiving end of the queue.
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Figure 5.3: Design architecture and flow of the messaging system used to report
information from the different tasks.

Figure 5.4 illustrates the flow of the task which is implemented as a loop. First, the
task checks if the internal message queue is empty. If it is, the task is put into the
blocked state for a total of 10 ms to avoid starving the processor of processing time.
If the queue is not empty, a log file is opened from the micro SD memory card. If
the file is not already present on the file system, the file is created by the software.

After the file has been opened, one message from the queue is written to the end
of the file. As the software always writes to the end of the file, there is no risk of
loosing data by overwriting the log content. When completed, the file is closed. Next,
the message written to the file is printed to the Universal Asynchronous Receiver-
Transmitter (UART)-interface which is further explained in section 5.5, and written
to the end of a queue named the Telnet Message Queue. The Telnet Message Queue
is 16 elements deep, and is used by the telnet server task documented in section
5.5.2.

The internal message system task has been implemented with the highest priority
of the tasks apart from the ones only placed in the ready state once or on request.
This is to ensure that the internal message queue is never overflowed, which could
result in debugging-critical messages being lost. To ensure tasks with lower priority
are not starved of processing time, the task is put into the blocked state for 10 ms
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Figure 5.4: Design architecture and flow of the messaging system used to report
information from the different tasks.

5.4.1 System Message Codes

All status messages can be categorised as either informational, warning, or error.
The first element in a message is a 3-character code which has been called a system
message code. These are used to help identify the nature and whereabouts of the
message. The four main types are characterized by the first character in the 3-
character number, and can be seen in table 5.2.

System Message Code Type Description
0xx OTHER Used for display formatting and similar uses
1xx INFO Information message
2xx WARNING Indicating that something might be wrong
3xx ERROR Something in the system has failed

Table 5.2: Types of system message codes implemented in the software.
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The second character tells which subsystem the message was sent from. Table 5.3
displays the mapped numbers. The only exception to messages coming from the
originated subsystem, are those related to task handling such as creating or deleting
tasks. They should always be identified by the subsystem number ’0’. A full list of
codes can be found in appendix E.

System Message Code Subsystem
x0x Task
x1x Queues
x2x SD memory card
x3x Telnet server
x4x Command Interpretation System
x5x Readout
x6x Checksum Generator
x7x Firmware Configurator
x8x Synthetic Data Reader

Table 5.3: System Message Code-identities for different subsystems.

5.5 User Interface
As discussed in section 4.9, using a telnet server to host the instrument’s user in-
terface has been found to fulfill the necessary requirements. In figure 5.1 the telnet
server task can be seen in the system architecture of ALOFT. The telnet server
provides a full user interface, capable of both outputting information, and receive
user input from a network client. Further information about the telnet server is
found in section 5.5.2. In addition, a UART interface has been implemented to help
debugging during the development.

5.5.1 UART

In section 5.4, it was explained how the internal message system printed messages
to the UART interface. As the messages are the same as the ones available with
the telnet interface, the UART interface can be used as a secondary way of mon-
itoring the system status. Input-capabilities through the UART interface has not
been implemented due to its intended usage as a debugging tool. Messages to be
transmitted are not stored in any way by the software. This means that no message
history can be obtained upon connecting through the UART interface, which differs
from the telnet interface.

On the Zybo, the UART interface is available over USB. The USB port on the Zybo
is a shared connector between a JTAG, and the UART interface. It can also be used
to power the Zybo. The JTAG interface has been used to program the system during
development. This bypasses the much more time consuming process of creating and
booting from a bootloader, which is inefficient when development is performed in
fast iterations. From the USB connector, an FTDI FT2232HQ USB-to-UART bridge
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converts the USB packets to UART data. The default protocol parameters needed
for the connection can be seen in table 5.4. During development, the text based
modem control software Minicom was used to connect to the UART interface.

Parameter Value
Baud Rate 115200
Character length 8 bits
Parity No
Stop bit 1

Table 5.4: Default protocol parameters for the UART-interface.

5.5.2 Telnet Server

The implemented telnet server has been developed based on the FreeRTOS lwIP
echo-server -demo. The LwIP is configured to run in socket-mode as it is used
in a multithreading environment. It should be noted that it is not a full telnet
server, but uses the standard telnet TCP/IP port 23, and access can be performed
using a standard telnet client. Figure 5.5 illustrates the flow of the telnet server
as implemented in ALOFT. When the task is started at boot-time, the network is
configured according to the settings which will be explained below.

The ER-2 instrument network normally requires the connected instruments to use
100BASE-T networking. It is possible to set the PHY controller to always use
100BASE-T, but instead auto-negotiation has been kept activated. This enables
the possibility of using 1000BASE-T which is rated for much higher data transfer
rates. Auto-negotiation is the feature in which network hardware automatically
detects and configures itself to communicate over the network with the fastest avail-
able standard of data transfer rates. With auto-negotiation activated, ALOFT will
automatically be configured to use the 100BASE-T standard when connected to the
ER-2 instrument network, and 1000BASE-T when connected using point-to-point
linking with a computer which supports the 1000BASE-T standard. This is benefi-
cial due to the much higher transfer rates provided by 1000BASE-T if data offloading
to a computer over a point-to-point network connection is ever implemented. This
is proposed in section 7.2.4.

If the auto-negotiation fails to detect the speed of the connection, the software is
halted. Therefore, proper connection should be ensured before the system is booted.
Alternatively, auto-negotiation should be disabled by default.

The ER-2 instrument network uses static IP-addressing and contains a Dynamic
Host Configuration Protocol (DHCP) server. The DHCP server offers the IP ad-
dresses to the instruments. Addresses are in the 10.9.x.x and 10.6.x.x private do-
main, depending on which of the two available aircraft are used. On ALOFT, the
telnet server is configured to use DHCP. With DHCP activated, the instrument
receives an IP address from the ER-2 DHCP server automatically. Should no IP
address be received, the telnet server does a failover to the settings seen in table 5.5.
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Figure 5.5: Flow chart of the telnet server task.

Board IP 10.42.0.2
Netmask 255.255.255.0
Gateway 10.42.0.1

Table 5.5: Default configuration parameters should the DHCP-request fail.

When the telnet server task has successfully set up the network, it awaits a con-
nection request on network port 23 from a telnet client. If connection is made
successfully, a new task is spawned called UI request. A flow diagram of the UI
request task can be seen in figure 5.6.

The task starts by checking if the client sent any commands by reading from the
socket. If the socket is empty, the task goes on to check if the internal message
queue is empty. If also the queue is empty, the task goes back to start. If the queue
is not empty, one message is read from the front of it, and written to the socket so
that the client can receive it.

If a command is received from the client, the task goes on to parse the received
string. Each command can consist of up to three parameters; The command, an
address, and a value. The parsing function separates these parameters with a space,
as delimiter character. When successfully parsed, the three parameters are sent
using structs to a queue called the command queue as seen in figure 5.1.

If a client disconnects, the task is deleted.
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Figure 5.6: Flow chart of the task handling the user interface.

Listing 1 illustrates the user interface presented when connection is made through
the UART interface and the system is booted. The telnet message queue is 16
elements deep. This means that only the last 16 messages processed by the internal
message system are written to the socket when a telnet client connects.
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110 :: Clearing internal message queue: SUCCESS
110 :: Clearing ethernet message queue: SUCCESS
110 :: Clearing command queue: SUCCESS
000 ::

000 :: ------ ALOFT detector system ------
000 :: Type ’help’ for list of commands
102 :: SD initialization: RUNNING
120 :: f_mount: OK
103 :: SD initialization: DONE
170 :: Firmware version: 209
102 :: Readout: RUNNING
152 :: Readout: Awaiting interrupt
102 :: Checksum Generator: RUNNING
160 :: Checksum Generator: Calculation complete
102 :: Logger: RUNNING
102 :: CIS: RUNNING
102 :: Telnet server: RUNNING
link speed for phy address 0: 1000
Board IP: 10.42.0.2
Netmask : 255.255.255.0
Gateway : 10.42.0.1
331 :: Telnet Server: DHCP request timed out
131 :: Telnet Server: Configuring default IP of 10.42.0.2

Listing 1: User interface when connected through the UART interface.

5.6 Command Interpretation System
As was seen in section 5.5.2, the telnet server parses and sends any received com-
mands to the command queue seen in figure 5.1. The command queue is 8 elements
deep. Figure 5.7 illustrates the flow of the task called the Command Interpretation
System. The task is created at boot time as documented in section 5.2, and has
been implemented as a loop.

When the task is in the running state, it polls the command queue for content.
If the queue is empty, the task is put into the blocked state for 10 ms to avoid
starvation of processing time for the lower priority tasks. If, however, the queue is not
empty, one command is read from the front. As was explained in section 5.5.2, the
commands can consist of up to three parameters. A switch case statement decides
which action to perform based on the first element of the command. Some actions
have been implemented as separate functions placed within the task, while others
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are implemented as separate tasks such as the Synthetic Data Reader described in
section 5.9.

When the task has been requested into the ready state, or the appropriate function
has completed, the task is put into the blocked state. This is to avoid starving lower
priority tasks of processing time.

Task start: 
Command

Interpretation  
System 

Read from Queue

Queue empty?

No

Task Delay: 10 ms

Yes

Switch case

Task  
resume / create:  

action taskAction function
Action function

Action functions

Figure 5.7: Flow chart of the task handling the command Interpretation system.

5.7 Configuring the Firmware
Upon boot, the firmware in the programmable logic is configured with default reg-
ister values. As the default configuration may not be the desired for the mission, a
reconfiguration with register parameters stored in a configuration table on the micro
SD memory card is initiated by the software. Figure 5.8 illustrates a simple view
of the flow of the configuration task responsible for firmware configuration, named
pl_config.
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Figure 5.8: Behavioural flow of the programmable logic configuration task.

Due to the possibility of SEEs corrupting the configuration registers, the register
values are regularly updated after the initial boot-time configuration. To automat-
ically update the configuration registers, the task has been implemented as a loop
which is paused for a set period between each run. When the task is running, it
blindly overwrites the content of the configuration registers with the parameters
found in the configuration table on the micro SD memory card.

Another possible way of solving the challenge of errors induced by SEEs, would
be to read the values of the configuration registers and compare them with the
configuration table. This would, however, require more processor time due to the
extra read operations, but would in a development phase may provide more accurate
information about the severity of the problem.

For testing purposes, the period of which the task is paused has been set to 60
seconds. This is very short, but was used to properly test the feature. From the
SEE-estimates calculated in section 2.5.2, it was found that the possibility of a SEE
to occur on the Z-7010 during an 8-hour flight is bellow 4%. The estimate was
calculated using the total number of bits on the chip. However, the configuration
registers in the firmware only account for a tiny percentage of the total number of
bits on the chip. This means that the probability of an error that can be resolved
by the automatic reconfiguration functionality, is very unlikely to occur. Possibly,
the automatic reconfiguration feature will therefore not be required on the finalised
system, or at least a much longer delay should be used to limit the processor usage.

Figure 5.9 illustrates the internal flow of pl_config. Initially after the task has
been created, it opens a file named config.txt containing the configuration table
from the micro SD memory card. One potential problem that could arise, is if the
configuration table itself has become corrupted by SEEs.

There are multiple ways to overcome this problem. One would be to use redundancy
by storing N number of copies of the original configuration table file. As each file
would be stored physically in different areas of the memory, it would be statistically
less likely for all copies to change their content as N increases. The problem with this
approach is that it would occupy a lot of memory, and require much processing time
as each copy of the file would need to be compared. It would, however, introduce a
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kind of error correction code to the system, that would make it possible to continue
operating by rewriting all the copies with the content of the most abundant version.

Task start: pl_config

Parse from SD
memory card file

EOF?

No

Write parsed value to
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Close file
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Checksum OK?

Compare checksum
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status
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Figure 5.9: Flow chart of the programmable logic configuration task.

For now, error detection will be sufficient. For error detection, a checksum algorithm
is used. A checksum algorithm calculates a value known as a "checksum" which
will depend on the content of the file. Checksum calculation is further explained
in section 5.7.1. If the file content changes, the checksum value will also change.
This way, the checksum of the configuration file can be compared with a checksum
calculated at boot-time. If they prove to be of different values, the file has been
modified and an error message will be thrown.

If the file containing the configuration table is successfully opened, the read pointer
is checked to not have reached the end of file. If the result is negative, a parse-
function is initiated. Listing 2 illustrates the correct syntax for the configuration
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file, for the parsing function to be able read it.

XPAR_BGO_TOP_0_BASEADDR,0x10,1
XPAR_BGO_TOP_0_BASEADDR,0x20,1
0x40000000,0x30,1

Listing 2: Snippet of configuration listings in config.txt.

Each valid configuration listing contains an address parameter, an address offset
parameter, and a value parameter. Each listing must be on separate lines in the
file, as the parser uses the newline character to differentiate them. Each of the
parameters must be separated by the comma character.

The address parameter can be in the form of a defined name in the software such as
the configuration listing on line one and two in listing 2, or a hexadecimal number
as seen on line three. For readability, it is strongly suggested to use the software
defined names. The offset and value parameters must be in the hex or integer form.

When a listing has been parsed, the value of the value parameter is written to the
address address + offset. This parsing and writing is done for each line of the
configuration table, until end of file is reached. The file is then closed, and the
task is put into the blocked state for a total of 60 seconds, before starting from the
beginning.

Manual changes to the configuration table can be achieved through direct modifica-
tion of the file using a computer capable of mounting the micro SD memory card, or
through the telnet user interface with the Memory Write Command (MWC). The
MWC-command syntax can be found in appendix A.

5.7.1 Checksum generator

The checksum generator calculates the checksum of config.txt at boot time. In
addition, it also re-calculates the checksum when the file is manually modified using
the MWC-command. Figure 5.10 illustrates the flow of the checksum generator task
named cksum_gen.
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Figure 5.10: Flow chart of the checksum generator cksum_gen.

When the task has been created, config.txt is opened from the micro SD memory
card. Each character in the file is then read into an array of the unsigned integer-
type uint8_t allowed by the MISRA guidelines. The separate values are then added
together to form a large number stored in a variable. If one of the characters in
config.txt changes, the total value changes. When calculation is completed, the
result is written to the firmware configurator task pl_config. The file is then closed,
and the task is deleted.

5.8 Data readout
Readout and storage of SCDPs from the firmware is the main priority of the soft-
ware. Figure 5.11 illustrates the readout architecture designed in cooperation with
Alexander Nikolai Nesse at the University of Bergen. Design of HDL architecture
on the programmable logic is the work of Nesse and is further documented in [26].

BGO Top is the firmware from FEGS BGO. The Stream wrapper is an interfacing
module written by Nesse to port BGO TOP to the AXI bus. When the stream
wrapper transmits an SCDP, the T_last signal is toggled high. As the AXI bus
can be configured both as 32 and 64 bit, there are two options for transmitting the
48 bit SCDPs. Option one would be to transmit the packages over the 64 bit bus,
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padded with zeros. Transmitting a padding is a waste of resources, and it has thus
been decided to instead use the 32 bit bus with a Width wrapper module by Xilinx.

The width wrapper uses the T_last signal to buffer a total of ten 48 bit SCDP
transmissions. This is equivalent to fifteen 32 bit packages, which is further written
into a FIFO memory module. 10 packets offers a good tradeoff between speed as
transferring chunks of data is faster to perform by the processor due to reduced
number of instructions, and the time packets are stored in volatile memory. SCDPs
in the FIFO is written to a Block RAM (BRAM) module using a stream to memory
mapped DMA module operating in direct register mode. The DMA is activated by
a T_last signal transmitted by the width wrapper when data is transmitted to the
FIFO.

BGO Top Stream
Wrapper

Width
wrapper FIFO S2MM  

DMA BRAM 

Software 

Interrupt

Programmable Logic

Interrupt
controller

Programmable System

T_last T_last

SCDP

SD Memory Card

DATAx.BIN

Hardware

HDL

Software

File

Figure 5.11: Data flow of the hardware readout.

The DMA has been configured to transmit an interrupt signal when a transmission
from the FIFO to the BRAM has been completed. This interrupt on complete
signal is received by the interrupt controller in the programmable system. Figure
5.12 illustrates the software behaviour when the interrupt is set. The readout task
is created at boot-time, and then immediately put into a suspended state. The
interrupt then triggers the task to resume. The SCDPs in the BRAM are read, and
then written to a file on the SD memory card. When the task is done, it returns to
a suspended state, awaiting a new interrupt from the DMA.



58 5.8. DATA READOUT

Create task:  
readout 

Task resume: 
readout 

Yes

Task suspend: 
readout 

Task: 
readout 

Interrupt
from DMA?

Figure 5.12: Behavioural flow of the software readout task.

Figure 5.13 illustrates the flow of the readout task as well as the interrupt handling
flow. At boot-time the readout task readout is created, running with the highest
priority compared to the other software tasks. The task is implemented as a loop,
and a task suspend command is immediately called at the start of it.

The interrupt from the DMA makes the processor switch to an Interrupt Service
Routine (ISR). Syntax allowed in an ISR is very strict, and the performed work pos-
sible is therefore very limited. The solution has been to call an ISR-safe task resume
command to resume the readout task. In addition, the ISR resets the interrupt
status, and re-enables the DMA run control.

When resumed by the ISR, the readout task opens a binary file on the micro SD
memory card called DATA1.BIN. If the file does not exist, it is created. Due to the
limitations of the fat file system as explained in section 4.8, the file size is limited to
232-1 Byte. Therefore, each time the readout task opens the file, it checks its size.
If the file is larger than 4 GB, the file name to be opened next time the task loops
is changed to DATA1.BIN. The number in the file name increases each time this
happens. The number starts at zero. Changing the threshold of when to create a
new file based on file size can be easily modified by a variable in the code.

Using a much lower threshold could prove useful as it would create many smaller
data files instead of a few large ones. Only a file which is open is at risk of getting
corrupted if power is removed during a write operation to the file. As the time spent
writing to each file is reduced when the threshold value is reduced, less data will be
corrupted should the instrument be exposed to a loss of power.

After successful file opening, a small loop routine reads the content of the BRAM
into an array. When completed, the array is written to the file which is then closed.
By first writing the BRAM content to the array, instead of directly to the file,
speed is increased. This is due to the file writing command having a much larger
overhead than writing to the array, and should therefore be used conservatively.
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Testing during development proved up to 95 % speed increase when this method
was applied.
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Figure 5.13: Readout task flow.

5.9 Test System for Synthetic Data
To verify the readout chain, a system has been added to send synthetic data into
the firmware, and then operate the instrument as if the data was received from the
ADC channels. Figure 5.14 illustrates the architecture developed in cooperation
with Alexander Nikolai Nesse. Design of HDL architecture on the programmable
logic is the work of Nesse and is further documented in [26]. Changing data input
source is performed with a MUX.

When a test-command is initiated through the user interface, a software task called
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synthetic_data_reader is created. This can be seen in figure 5.15 which illustrates
the task behaviour. The task parses synthetic data from a file on the micro SD
memory card into the FIFO in the programmable logic. When completed, the
software sets a GPIO signal high to indicate completion. The task is then deleted.

The GPIO signal initiates data readout of the FIFO. The data is streamed to the
MUX connected to the firmware.

Software 

Programmable
System

BGO Top

FIFO 

SD Memory Card

sdat.txt

GPIO 
"Data Ready" 

Programmable Logic
ADCs

MUX
Hardware

HDL

Software

File

Figure 5.14: Data flow of the synthetic data read-in system.
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Figure 5.15: Behavioural flow of the synthetic data reader task.

When the synthetic reader task is created, it first configures the firmware to work
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with the test system. This is done by instructing the firmware to switch the MUX
input from the ADCs to the synthetic data stream through a firmware register.

Next, a file named sdat.txt containing synthetic data in the form of line by line
integer values is opened from the micro SD memory card. The file is read line by
line, and the read values are written to the FIFO. An option has been added to print
the parsed data to the UART terminal for debugging purposes, known as verbose
mode. It should be noted that parsing with the verbose mode activated is very
slow due to the processing-intensive task of printing such a large amount of data to
UART. Verbose mode is therefore by default set to off.

When the end of file has been reached, the file is closed, and the data ready GPIO
signal is toggled. At completion, the task is deleted.
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Figure 5.16: Flow of the synthetic data reader task.

5.10 Known Problems
The git repository found in appendix B contains an updated issue tracker, were
access can be given by request if entitled. Two major issues not related to the code
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itself, is however highlighted bellow.

Linker removes libraries after SDK reboot

The linker in Xilinx SDK 2017.4 has a tendency to remove the -lxilffs flag, used to
include the xilinx fat file system library into the board support package. The flag is
removed upon reboot of Xilinx SDK, and by re-exporting the bitstream from Xilinx
Vivado. Currently the only solution is to edit the system.mms file in the board
support package, by removing xilffs, compile, and then add it again. Identifying and
then finding a solution to the problem required much time, and postponed much of
the progress at the start of the project. [37]

Xilffs-library has string functions disabled by default

The standard inclusion of the xilffs-library comes with string functions disabled. As
this library needs to be re-added every time Xilinx SDK is restarted (as described
in section 5.10), it is important to remember to re-enable these functions. This is
done by editing the definition of FILE_SYSTEM_USE_STRFUNC to equal to 2
in xparameters.h found in the include directory under the Board Support Package
directory of the project.
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Testing

Figure 6.1: Test setup showing the Zybo board connected using a CAT6 ethernet,
and USB cable.

Testing of the system was carried out at the University of Bergen. The test setup
consisted of the Zybo trainer board connected to a computer running Linux. The
board was connected through a CAT6 ethernet cable connected in apoint-to-point
configuration, and a USB cable connected to the UART/JTAG port (port J11).
Power was provided through the USB cable, and the micro SD memory card used
was a 128 GB Samsung Evo Plus Micro-SDXC.

Although the different subsystems of the software have been tested during devel-
opment, this chapter will present the tests used to verify that the objective of the

63
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thesis as seen in section 1.3 has been fulfilled. The reason for not presenting the
other tests is that their results are generally not so easily quantifiable. They are
also of little interest seen from a overview and current system status perspective.

The presented tests are a synthetic data read-in test which verifies its usage as a
test system, a readout test to verify the readout chain and that data is correctly
stored on the micro SD memory card, and a test were the system is operated as a
standalone system similar to how the finalized instrument will operate.

6.1 Prerequisites for the tests

6.1.1 Client-side Software

With the implemented solution, very little software is required on the client-side of
this setup. The client computer runs a full-size desktop version of the Linux distro
Ubuntu 16.04 LTS.

To properly connect the board to the computer without the use of a separate gateway
hosting a DHCP server, the DHCP server service has been hosted on the client com-
puter. This is easily done in Ubuntu by creating a new ethernet network connection
in the network manager, and through the configuration set it to share the connection
over IPv4. The shared connection IP address is by default within 10.42.0.x, with
the computer acting as gateway located at IP address 10.42.0.1.

For connecting to the telnet user interface, the virtual package telnet-client of version
0.14-40 has been used. It features a telnet client command line interface software,
running from a terminal window. Telnet-client comes bundled with Ubuntu 16.04
LTS, and the version is the latest release for the used version of Ubuntu as of August
2018.

Software for connecting to the UART interface was the text-based modem control
program Minicom. The software is not default to Ubuntu, and version 2.7-1build1
var installed using the Advanced Packaging Tool from the default library sources.
This version was the latest release for the used version of Ubuntu as of August 2018.

Test software

For triggering and monitoring of the integrated logic analyzer further described in
section 6.1.2, Xilinx Vivado version 2018.1 was used on the client computer. Access
to the analyzer is through the same USB port hosting the UART interface, and
executing the analysis thus had to be performed from the same computer.

Programming both the programmable logic and programmable system of the Zybo
was performed with Xilinx SDK version 2018.1. The same version of the software
was used to generate the bootloader files using the tutorial from appendix F.

6.1.2 Integrated Logic Analyzer

A Xilinx IP-block called an Integrated Logic Analyzer has been added to the pro-
grammable logic. The module buffers signals a set number of clock periods with
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probes connected to the different signal terminals of interest. The analyzer can be
used to monitor signals both internally to the programmable logic. As the pro-
grammable system is embedded in the programmable logic, the signals going in and
out of it can also be monitored. For the following tests, the sample data depth was
set to 8192 clock cycles.

6.1.3 Synthetic data

To test the system, a file containing synthetic data samples was used with the test
system documented in section 5.9. The file was created during the development of
FEGS BGO to test the firmware, but has been modified to be correctly parsed by
the software test system of ALOFT. The file contains 39600 12-bit values and thus
has a range of 0 to 4095. The data simulates noise along with multiple TGF-events
as outputted by the 12-bit ADCs. Figure 6.2 is a plot generated with a MATLAB
script of the values found in the file.
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Figure 6.2: Synthetic data used with the test system in ALOFT to verify the readout
chain. The Y axis displays the 12 bit ADC input value in range 0 to 4095, and X
axis displays the sample number.

As can be seen from the plot, the around 2000 first sample points are just pure noise.
It is, however, expected that the firmware will mark the first sample value above 0
as an event as it differs from the background noise measured to be 0 when started.
After the first real event at around sample point 2000, multiple events follow with
decreasingly lower values. Not easily seen in the plot, the events are also occuring
more frequent later in the file in order to test the firmware for the overflow and fast
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SCDPs. At the end of the file, the values goes back to noise only.

6.2 Synthetic data read-in
As testing the readout system is dependent on the test system described in section
5.9 which sends the synthetic data into the front of the readout chain, this was the
first test performed.

Listing 3 displays the output seen in the UART interface when the test-command
was issued through the telnet interface. As can be seen, the synthetic data reader
task is started and put into the running state. Verbose mode was set to OFF. The
task reaches the end of file, and thus completes. From this output it can also be
seen that something has happened with the rest of the system, as the readout task
has been triggered. This is further covered in section 6.3

102 :: Synthetic data: RUNNING
102 :: Synthetic data: Verbose mode OFF
102 :: Synthetic data: EOF
103 :: Synthetic data: DONE
150 :: Readout: Number of 32 bit packets written to SD: 15
152 :: Readout: Awaiting interrupt

Listing 3: Output from the UART interface after the test-command was issued
through the telnet interface.

By the output in listing 3, it has been verified that the synthetic data reader task
has been executed. Listing 4 shows the first ten values from the synthetic data file.
It should be noted that in the file itself they are separated by the newline character.
To verify that the test system works as intended, these values must be compared
with what is actually being registered as being put into the firmware.

47 66 63 45 40 60 56 46 61 55

Listing 4: First 10 values written to the firmware from the file containing the syn-
thetic data.

The intended behaviour of the test system was described in section 5.9, but in
summary; The software writes the data from the file to a FIFO module on the
programmable logic. When completed, the software asserts a GPIO pin to indicate
its completion. When the GPIO pin is asserted, the FIFO writes its content to the
firmware module BGO TOP.

Figure 6.3 shows the wave diagram output from the integrated logic analyzer when
triggered by the GPIO pin signal being set high. The yellow line indicates the the
location of the trigger point.
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Figure 6.3: Wave diagram from the integrated logic analyzer, showing the 10 first
data values being outputted from the FIFO when the GPIO signal is asserted.

Wave axi_gpio_0_gpio_io_o is from a probe connected to the GPIO pin. Wave
design_1_i/fifo_generator_0_dout is the 12-bit data line output of the FIFO con-
nected to the input of BGO TOP. By comparing the values outputted from the
FIFO with the values of the synthetic data file in listing 4, it can be seen that these
are the same. In addition, the data is not outputted from the FIFO before the GPIO
pin is set high, as designed.

6.3 Test of Readout
As the primary goal of the instrument is to store data from the BGO detectors,
testing of the readout chain has been the main priority in the testing phase. The
following test was performed to see if the firmware interrupted the processor at the
correct time, and if offloading was performed to the micro SD memory card. The
results shown in this section is the result of the synthetic data test described in
section 6.2. From listing 3 it could be seen that the readout was initiated.

Figure 6.4 is a screenshot of the wave diagram output from the integrated logic
analyzer, configured to trigger on the interrupt signal transmitted by the DMA
used for readout.

Figure 6.4: Wave diagram of data readout from the programmable logic.

In the wave diagram, data can be seen constantly flowing out of bgo_top_0_scdp_
out which is the BGO Top module described in section 5.8. For each valid SCDP out-
putted, the data valid signal bgo_top_0_scdp_dv goes high. When 10 of these pack-
ages has been sent through the stream wrapper, the t_last signal stream_wrapper_0_
t_last is asserted. This triggers the t_last signal axis_dwidth_converter_0_m_axis
_tlast from the width wrapper, to signal the DMA to begin transferring data into
the block memory. This may be easier seen in the wave diagram seen in figure 6.5.
Figure 6.5 is a zoomed-in version of figure 6.4.

Only 9 of the data valid signals are shown in the first diagram, as the first event was
detected when the firmware first received data. This was explained in section 6.1.3.
The output of the DMA has the signal name axi_dma_0_m_axi_s2mm_wdata and
can be seen starting and quickly completing data transfer when the t_last signal
from the width converter is asserted.
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When the DMA transfer has completed, it triggers the interrupt axi_dma_0_s2mm
_inrout. This verifies that the interrupt trigger of the programmable logic has been
correctly set up.

Figure 6.5: Wave

As described in section 5.8, the ISR should, if set up correctly, de-assert the interrupt
signal. This can be seen happening at the end of figure 6.4. Listing 5 shows a snippet
of the 36 first data bytes stored in the binary file on the memory card after running
the test. The software does not have any functionality to tell SCDPs apart, so no
newline character is inserted. Listing 5 has, however, been formatted so that each
SCDP are on a separate line. The firmware also outputs the SCDPs in a reversed
order. The listing has also been formatted to display the data in the correct order.

01 18 21 F1 8B 15
02 8E 00 01 8B 15
00 23 22 11 8B 1E
01 18 21 F1 8B 1F
02 8E 00 01 8B 1F
00 22 22 51 8B 28

Listing 5: Non-reversed SCDPs in hexadecimal format, separated by newline char-
acter.

By converting the hexadecimal numbers into binary numbers, the result is seen in
table 6.1. These are the correctly formated SCDPs and can be compared with table
3.1 of the packet format from section 3.3.1.

Flag Adr. OVF Fast Valley Spare Fast t.t Energy Time tag
00 00 00 0 1 0 0 01 1000 0010 0001 1111 0001 1000 1011 0001 0101
00 00 00 1 0 1 0 00 1110 0000 0000 0000 0001 1000 1011 0001 0101
00 00 00 0 0 0 0 10 0011 0010 0010 0001 0001 1000 1011 0001 1110
00 00 00 0 1 0 0 01 1000 0010 0001 1111 0001 1000 1011 0001 1111
00 00 00 1 0 1 0 00 1110 0000 0000 0000 0001 1000 1011 0001 1111
00 00 00 0 0 0 0 10 0010 0010 0010 0101 0001 1000 1011 0010 1000
47 46 45 42 41 40 39 38 37 32 31 20 19 0

Table 6.1: SCDPs outputted from the readout test, and formatted to the normal
SCDP format.

By comparing the SCDPs with the ones expected, they have been verified to be
correct. The expected values was found by [26], by running an hardware description
language testing workbench with the synthetic data on the firmware.
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6.4 Test of System in Stand-Alone Mode
As the finalized system will be operated using only the telnet user interface, it was
of interest to see if the system could be operated in a stand-alone configuration The
setup of this test is somewhat different as the system is booted from the bootloader
placed on the micro SD memory card. As the Zybo was programmed through JTAG
and also powered through the same port for the other tests, it was decided to power
it from a USB power bank to verify its independence in this test.

As with the finalized system, this also meant that the only way of monitoring and
controlling the system was through the telnet interface. Figure 6.6 shows the test
setup and execution.

Figure 6.6: Test setup showing the Zybo board connected using a CAT6 ethernet,
powered by a battery pack.

The Zybo is powered off the USB power bank, and connected to the computer using
a CAT6 ethernet cable. Seen in the picture, the computer was able to connect to
the telnet user interface in the terminal window. Issuing the test-command through
the interface was also verified as working. Afterwards, it was verified that the log
file and data file had been created and contained the expected content.

It was noted that when booting the system using the bootloader instead of program-
ming via JTAG, the time for the system to become ready was greatly reduced.
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6.5 Summary
Synthetic Data Read-in

Through the synthetic data read-in test in section 6.2, it has been verified that the
test system described in section 5.9 correctly parses the content of a file containing
synthetic 12-bit data values, and writes them to the firmware.

Test of Readout

The readout test documented in section 6.3 verified that the data outputted from
the firmware was correctly stored to the file on the micro SD memory card. It also
verified that the current implemented functionality of the firmware by [26] works as
intended.

Test of System in Stand-Alone Mode

Running the system off a battery bank, and booting the application from the boot-
loader on the micro SD memory card was performed in this test. The results verified
that the system behaves as intended, and could be controlled through the telnet in-
terface.



Chapter 7

Conclusion and Outlook

7.1 Conclusion
This thesis has described the specification, design and development of the software
layer for the ALOFT readout system. The readout system has been developed
on an embedded SoC platform containing both a programmable system, and pro-
grammable logic. Early in the project, it was found that implementing the software
executed on the programmable system on top of the real-time operating system
FreeRTOS would yield the most optimal solution due to the required software com-
plexity. The developed software is capable of writing scientific data packages out-
putted from the firmware onto a micro SD memory card, and throughout testing
indicates that the system is fast enough to not induce any bottlenecks. A single core
processor has been demonstrated to prove sufficient for the current version of the
software.

The firmware of the FEGS BGO instrument is currently being ported by another
master student to run on the programmable logic used in ALOFT. Interfacing this
firmware is performed through configuration and status registers. Automatic config-
uration of these registers from a configuration table on the micro SD memory card
has been implemented in the software on startup. Afterwards the configuration is
repeatedly performed with a 60 second interval to limit the impact of soft errors
caused by the radiation environment ALOFT operates in. Based on calculated es-
timates of the radiation induced error-occurrence, this feature may not be needed,
but has been kept for testing purposes. Error detection using a checksum algorithm
has also been added to detect corruption of the configuration table.

Manually configuring the registers and reading the values of the status registers can
be performed through the implemented user interface. The user interface is available
through a telnet server, and therefore only an ethernet cable is needed to control
the instrument. The user interface has two functions; Printing status messages, and
receiving user input. Status messages are sent from a common centralized hub called
the internal messaging system. All software subsystems can send status messages to
this hub. This makes it very easy to add additional subsystems to the software at a
later point. In addition, the messages are tagged with a unique identification code
to help identify the type of message, and the subsystem of origin. The messages are
also printed to any connected UART terminal, and logged to the micro SD memory
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card for later access.

The fundamentals of all the software subsystems are in place, but some modification
to the code may be required to make the finalised system behave exactly as intended.
The designed architecture offers high modularity through the use of multithreading
and functionality separation. As each task is to a large degree independent, remov-
ing, adding, and modifying tasks and functionality requires little effort. This is very
useful to the further development of ALOFT, as the exact requirements are yet to
be determined.

7.2 Further work
At this point, further testing of the software is needed. When the firmware has been
successfully ported, a synthetic data test will be able to verify much of the system.

There is still work to do on the readout system of ALOFT. As has been described
earlier, concurrent to the production of this thesis, Alexander Nikolai Nesse has
worked on porting the firmware used on the FEGS BGO to the Zynq-7000 platform,
and it will be described and documented in his thesis [26]. It is expected that
his thesis will provide an updated status of the readout system, and possibly also
provide request of additional requirements to the software. However, the following
are short notes on suggested work and functionality that should be added to the
system.

7.2.1 Using Multiple Storage Devices

The system developed in this thesis uses only one storage device; the micro SD
memory card. Having all the files on one such device can be adequate in a test
environment, but may require some redesigning in the future. It is not expected that
the finished instrument will be using the Zybo board, but the one used may very
well have micro SD memory card capability. It would, however, probably be better
to distribute the files to different devices. This would be to avoid accidents were the
bootloader or configuration file is accidentally modified or deleted when, for example,
making the storage device ready for a new flight by deleting the accumulated data
and log files. These devices would probably also benefit from being USB flash drives
instead, as they are generally much more robust and easier handled than the tiny
micro SD memory cards.

7.2.2 Improve Checksum Algorithm

The current checksum algorithm uses summation to calculate the total value of the
configuration file. If one of the characters changes, the total value changes.

One problem with this simple checksum algorithm is, that if multiple characters
changes, the total value may still be equal to the value calculated for the uncorrupted
file. It is also in-sensitive to the order of the characters changing. It is suggested
that the implemented checksum algorithm is either improved on these weaknesses,
or swapped for other checksum algorithms which addresses these weaknesses.
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7.2.3 Packet Format Compatibility with the ER-2 Instru-
ment Network and Data Reduction

The packets transmitted by the telnet user interface must be verified to be com-
patible with the ER-2 Instrument Network. The maximum packet size is normally
550 bytes, but can be increased by request if the Inmarsat link is used. In general,
this means that packet size will not be a problem with the currently implemented
system. Packet frequency may, however, be a problem, as there is a rate-limit of
one packet every ten seconds over the Iridium link. This can be increased on the
Inmarsat link, but in general may require the user interface packets to be buffered
before being sent over the network.

For better efficiency, both within the system and when using the user interface, a
redesign of the message format may be valuable. The current system transmits both
the system message code in addition to the message in plain text. Efficiency would
be very much improved by only transmitting the code, and then have standalone
software on the client side translating the codes to plain text.

7.2.4 Data offloading over TCP/IP

For the FEGS BGO instrument, the solution for offloading data was to remove the
flash drive the data was stored on, and insert it in a separate computer for offloading.
The flash drive was connected to the FEGS BGO using a USB extension cable which
was part of the harness for instrument access. This harness provided easy access to
offloading, as physical access to the instrument is limited.

Currently for ALOFT, the data is stored on a micro SD storage device which is
mounted underneath the Zybo development board. Although the Zybo development
board will not be the actual board used, micro SD mounting is typically similar.
Offloading data in such a system requires direct physical access to the instrument,
and other solutions should be looked at. The proposed solution is to implement
large quantity data transfer over TCP/IP with the ethernet interface. The interface
supports gigabit transfer speeds, and thus the current limiting factor would be the
read rate of the storage device which typically is found between 30-100 MB/s. It is
suggested to look at ways to implement the File Transfer Protocol to host an FTP
server on the Zybo. Such a solution would require the use of TCP instead of UDP
as used by the current EGSE-connection. This would be to ensure the offloading
data does not get corrupted while being transferred.

7.2.5 Graphical User Interface

Interfacing with ALOFT is done through the telnet server. The user interface pro-
vides a minimal way of monitoring the system and perform operations through a
series of commands. For easier readability of system monitoring and performing
command operations, the development of a simple GUI is suggested. A GUI would
provide a more intuitive way of monitoring the instrument as for instance graphs
could be added, and commands could be issued by typing in forms and pressing
virtual buttons.
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A GUI could be implemented in the form of a web-server or a standalone program
running on the EGSE. A solution using a web-server would need implementation on
the instrument’s programmable system. This would increase the processing load the
system handles, but it would remove the need for special software on the EGSE. A
standalone GUI software-solution running on the EGSE could interpret the messages
coming from the existing telnet server, and convert virtual button-presses in the GUI
software to predefined commands already present in the telnet user interface.

7.2.6 Limitations of the Z-7010

One limitation that caused some problems during development was the limited num-
ber of look-up tables and BRAM-cells available on the Z-7010. Although most
problematic to the development on the programmable logic, integrating the pro-
grammable system into it required good insight into the signalling happening on
the programmable logic. As was seen in section 6.1.2, this was handled using an
integrated logic analyzer. Adding additional probes and longer sample periods re-
quires a large amount of look-up tables. As the resource limit was easily reached,
the solution was to use only a limited number of probes at a time. This was time
consuming, as changes to the analyzer requires the bitstream to be regenerated, a
process that takes between 15 and 20 minutes on the computer used.

The synthetic data read-in system suffered from the limited number of BRAM-
cells on the chip. The reason was that the FIFO could not be set deeper than
16384 elements, meaning that writing the synthetic data file in the test performed
in section 6.2 had to be performed in three sequences for it to process the whole
file. To speed up development time, it would be beneficial to use a larger device
to overcome these debugging problems, although the Z-7010 seems large enough for
the finalized system.
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Appendix A

Coding Style

This project follows the Linux Kernel coding style, with the exception of using four-
spaced indentation instead of eight-spaced. Guidelines for the use of C language in
critical systems by MISRA have also been adopted. Maximum code line width is
set according to the ISO/ANSI screen size of 80 characters except when the code
contains text that will be printed to the screen. In such case, the text printed must
follow the ISO/ANSI standard with a max length of 80 characters. [38]

Naming convention Naming convention for C-code in the project has been to
use snake case due to its increased readability over camel case. This means that
compound words and phrases are separated with an underscore, so that camel case
becomes camel_case. This is different from camel case that would become camel-
Case. Characters should also be all lowercase. Named instances such as variables,
functions, etc. that are declared globally should always have a descriptive name.
Those that are only declared locally are allowed with a somewhat less descriptive
name, but should not decrease the maintainability of the code.

Handles and queues should always end with _handle or _queue to decrease the
chance of using the wrong item when referencing.
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Appendix B

Git Repository - Directory Tree

The following is a directory tree of the git repository containing the system developed
in this thesis. The directory tree only shows files and folders relevant to the work
presented in this thesis.

The repository can be pulled from the University of Bergen’s gitlab, if access has
been granted:

https://git.app.uib.no/master/ALOFT_embedded_solution_repo.git

ALOFT_embedded_solution_repo

aloft_embedded

FSBL (bootloader versions located here)

6_9_2018

BOOT.bin

output.bif

Programmable Logic

aloft_v0_2

aloft_v0_2.sdk

aloft_v0_2_ps

src (application files located here)

aloft_v0_2_ps_bsp (BSP sources located here)

aloft_v0_2.xpr (project file for Xilinx Vivado)

synthetic_simulation

sdat.txt

79



80



Appendix C

Methodology and Software Overview

This appendix contains a summary of the methodologies applied when developing
the software side of the ALOFT readout system. The source to the following sections
can be found in [21].

C.1 Hierarchical Design
The software developed in this thesis has been designed with the goal of having
an hierarchical design. This "divide and conquer"-strategy means that the soft-
ware has been divided into separate modules until each functionality can easily be
comprehended in a separate module. This "modularity" is evident by using tasks
in FreeRTOS (modules), and keep each task function in separated files. The total
system complexity has in this way been decreased, as the functionality of a module
may be used by other different modules, instead of having to write and maintain
multiples of specialized code sections which can only be used by one functionality.
This is called regularity and a prime example in ALOFT is the reuse of the code
used to write messages to the internal message system.

Modularity also comes with the benefit of being a nice aid when debugging. As
each module should ultimately only have one functionality, the module itself can be
tested as a standalone system. As it is also easier to understand which functionality
a specific module provides, determining the origin of an anomaly in a complete
system is also generally easier.

C.2 Debugging and Version Control
Debugging

As the main part of this thesis has been software development and architectural
design, debugging has been the number one most time-consuming task. When an
anomaly to the intended behaviour has been found, the routine has been to first
identify what intended behaviour was expected. The next step has been to postulate
an hypothesis for what might be the cause of the anomaly, and ultimately test the
hypothesis to make the necessary changes.
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Version Control

Version control has been handled using GIT. The repository can be found linked in
appendix B.



Appendix D

Operating manual

The following is a simple manual for operating the ALOFT through the telnet
interface.

Before Boot

Insert the micro SD memory card with the bootloader into the Micro SD-slot
found on the backside of the Zybo. The card must also contain the file with the
synthetic data called sdata.txt. The file containing the configuration parameters
called config.txt is not required. All files must placed in the root directory. A
10/100/1000BASE-T cable must also be connected between the EGSE computer
and the Zybo. The computer should have a running DHCP server.

Boot

Apply power to the Zybo, and turn it on using the onboard switch. After about
10 seconds, the telnet server should be available. The time may vary between the
usage of DHCP and Static IP allocation.

Accessing Telnet

From a EGSE computer running Ubuntu, the telnet server can be accessed using
the following CLI command:

telnet <IP>

The IP address can be found using a host discovery tool such as Nmap, or if no
DHCP-server is running, access can be made with the default IP address:

telnet 10.42.0.2

D.0.1 Reading binary data post flight

Reading large binary files can be done with ease by Python. First, navigate to the
directory containing a DATAx.BIN file obtained from ALOFT. Then issue the fol-
lowing command in CLI to launch python:

83



84

python

After launch, read the file as binary data:

>>> file0 = open(’DATAx.BIN’, ’rb’)

The content can then be put into an array for easier handling:

>>> array0 = file0.read()

This can take some time, especially if the file is still on the memory card. The speed
is, however, most likely limited to the maximum read rate of the memory card used,
depending on the computer used. Upon completion, the two following commands
can be issued to check the number of array elements (returning just over 500 mil-
lion elements in the example below), and the content of the array. Note: reading
the whole array is time consuming unless a specific range has been specified using
brackets.

>>> len(array0)
544768000

>>> array0

And last, range specified readout reading the first 1024 elements of the array:

>>> array0[0:1023]

It is advised to use Python for future data handling due to high data handling rates.
It also comprises a large toolbox of advanced data processing tools through libraries.
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Command Sheet & System Message Codes

E.1 Command Sheet
Table E.1 is a preliminary list of all available commands with description to oper-
ate ALOFT from a telnet client. Characters "<" and ">" displays the placement
of user parameters. To illustrate, writing the value 0xFFFFF to register address
0x50000000 can be issued by the Memory Write Command (MWC) by typing the
following into an active telnet connection and press enter:

mwc 0x50000000 0xFFFFF

Any offset to the address must be included in the address parameter.

Command Description
test Does a full readout using synthetic ADC-data taken

from a file on the SD-card.
mrc <address> Reads the value of the specified register address
mrc -a Lists all registers with their respective value.
mwc <address> <value> Writes <value> to register <address>.
mwc -a Rewrites all registers from the default configuration file

on SD.

Table E.1: Available commands in the ALOFT Telnet user interface.

E.2 System Message Codes

System Message Code Type Description
0xx OTHER Used for display formatting and similar uses
1xx INFO Information message
2xx WARNING Indicating that something might be wrong
3xx ERROR Something in the system has failed

Table E.2: Types of system message codes implemented in the software.
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System Message Code Subsystem
x0x Task.
x1x Queues.
x2x SD memory card.
x3x Telnet server.
x4x Command Interpretation System.
x5x Readout.
x6x Checksum Generator.
x7x Firmware Configurator.
x8x Synthetic Data Reader.

Table E.3: System Message Code-identity for different subsystems.
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Code Type Subsystem Description
102 INFO Tasks The named task is now running.
103 INFO Tasks The named task has been stopped or has

completed.
110 INFO Queue The named queue has successfully been

cleared.
120 INFO SD Card Memory card has been mounted.
121 INFO SD Card End of file has been reached.
130 INFO Telnet DHCP request success.
131 INFO Telnet System has been configured with the default

IP. See table 5.5.
132 INFO Telnet A client has connected to the telnet server.
150 INFO Readout Displays the number of scientific data pack-

ages that has been written to SD.
151 INFO Readout A new datafile has been created on the SD-

card.
152 INFO Readout The task awaits an interrupt from the ISR.
160 INFO Cks. Gen Calculation of the checksum has completed.
170 INFO FW Config Firmware version number.
230 WARNING Telnet DHCP is not activated.
231 WARNING Telnet An unknown command was received.
232 WARNING Telnet A client has disconnected from the telnet

server.
250 WARNING Readout The maximum individual file size allowed by

the system has been reached.
310 ERROR Queue The named queue was unsuccessfully cleared.
320 ERROR SD Card Failed to mount the SD card.
321 ERROR SD Card Could not open file in the specified task.
322 ERROR SD Card Could not seek in file in the specified task.
323 ERROR SD Card Could not read from file in the specified task.
324 ERROR SD Card Could not write to file in the specified task.
325 ERROR SD Card Could not close file in the specified task.
330 ERROR Telnet Error adding N/W interface.
331 ERROR Telnet DHCP request timed out.
332 ERROR Telnet Error reading from socket. Socket will be

closed.

Table E.4: Description of System Message Codes.
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Appendix F

Tutorials

The following is a list of tutorials created during the project. The tutorials have
been published on the internal wiki page of the University of Bergen.

F.1 FreeRTOS Bootloader generation in Xilinx SDK
For tutorial on generating a bootloader for FreeRTOS in Xilinx SDK, see [39].

F.2 Example project with AXI4 Lite peripheral on
the Zynq-7000

Tutorial on creating an example project with an AXI4 Lite peripheral on the Zynq-
7000 can be found in [40]. The peripheral is then accessed from the ARM A9 micro
processor.
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