
Privacy, Security, and Repair in
Distributed Storage Systems

Siddhartha Kumar

University of Bergen, Norway
2018

Thesis for the Degree of Philosophiae Doctor (PhD)

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Privacy, Security, and Repair
in Distributed Storage Systems

Siddhartha Kumar

2018

Thesis for the Degree of Philosophiae Doctor (PhD)

Date of defence: 17.10.2018

The material in this publication is covered by the provisions of the Copyright Act.

Print: Skipnes Kommunikasjon / University of Bergen

Title: Privacy, Security, and Repair in Distributed Storage Systems

© Copyright Siddhartha Kumar

Name: Siddhartha Kumar

Year: 2018

Privacy, Security, and Repair in
Distributed Storage Systems

Siddhartha Kumar

Dissertation for the degree of Philosophiae Doctor (PhD)

Department of Informatics
University of Bergen

August 2018

Acknowledgements

Eirik and Àlex, Suman and Bjørn, Mum and Dad, Simula UiB.

Thanks, for making the journey enjoyable.

ii Acknowledgements

Abstract

We are living in the age of information where our lives are shaped by information
and communication technologies. As a consequence, there is an explosion in
the amount of generated data. Distribute storage systems (DSSs) are a storage
technology wherein large amounts of data are stored on a network of inexpensive
storage nodes in a distributed fashion, in an efficient and inexpensive way. This
thesis explores three aspects of DSSs: efficient storage, security, and privacy.

We start with the description of DSSs as they are the underlying theme for the
majority of the thesis. For such systems, we propose a code construction that per-
forms efficient repair of failed systematic nodes with low repair complexity. We
construct such codes by concatenating two different classes of codes. The first
code serves to provide the ability to tolerate node failures, while the second allows
for efficient and low complexity repair. The proposed codes achieve better repair
bandwidth compared to maximum distance separable (MDS) codes, codes con-
structed using piggybacks, and local reconstruction/Pyramid codes, while they
have a better repair complexity compared to MDS, Zigzag, Pyramid codes, and
codes constructed using piggybacks.

Next, we consider the notion of information-theoretic security in DSSs. To
this end, we assume an eavesdropper model that has access to the data stored on
a subset of nodes and a subset of the data exchanged during the repair of nodes.
We present a secure coding scheme that is secure against this adversary. Fur-
thermore, the proposed scheme ensures an efficient node repair. The security is
achieved by appending the data with random symbols, and encoding the result-
ing sequence using a concatenated coding scheme consisting of a Gabidulin code
and a repairable fountain code.

We then move toward the problem of private information retrieval (PIR) in
DSSs. PIR is the problem of retrieving data from the nodes without revealing the
identity of the requested data (or files) to the nodes. A scheme that achieves PIR
is referred to as a PIR protocol, and its efficiency is determined by its PIR rate, i.e.,
the ratio of downloaded data and the requested file size. For the DSS scenario, we
present PIR protocols for two cases: first, where some nodes act as spies, which do
not collaborate, with a goal of determining what the user is requesting. We refer
to this scenario as the noncolluding case, and, second, where these nodes collab-
orate together in order to determine the request of a user, which we refer to as the
colluding case. For the noncolluding case, we show that it is possible to achieve
MDS-PIR capacity, i.e., the maximum PIR rate achieved by any protocol when
the DSS stores the data using an MDS code, even when the codes used by the
DSS are non-MDS. We go on to give a necessary and a sufficient condition based
on the structure of the storage code for our PIR protocol to achieve this capac-

iv Abstract

ity. We refer to such codes as MDS-PIR capacity-achieving codes. Furthermore,
we show that the rates achieved by these codes using the proposed protocol are
indeed equal to the maximum PIR rate achieved by these codes under any proto-
col. Subsequently, we show that cyclic codes, Reed-Muller (RM) codes, and a class
of distance-optimal local reconstruction codes are MDS-PIR capacity-achieving
codes. For the colluding case, we present a PIR protocol for DSSs that store data
using arbitrary linear codes. Following this, as in the noncolluding case, we give
a necessary and a sufficient condition based on the structure of the underlying
codes that allow the proposed protocol to achieve an upper bound on the PIR rate
and present codes that allow this. In particular, we show that if the underlying
codes are RM codes, then the protocol achieves the maximum PIR rate.

The concepts learned while finding solutions to the privacy issues for DSSs are
then applied to distributed caching in wireless networks, which is one of the fun-
damental techniques that will be implemented in future 5G wireless networks.
In the considered distributed caching scenario, the files are encoded using MDS
codes and then cached on the small-cell base stations (SBSs), with the goal to
reduce the backhaul usage. We introduce the notion of PIR in this setting and
present a protocol that achieves PIR. One essential difference between DSSs and
distributed caching is that in distributed caching the files to be cached are typ-
ically cached using codes with different rates that depend on the file popularity
distribution. We assume that the SBSs can collude and as such the protocol is
a generalization of the protocol considered for the colluding case in DSSs. As
a surprising result, we show that to minimize backhaul usage, uniform content
placement, i.e., the files are cached using a single code, is optimal.

Keywords: Concatenated codes, distributed caching, distributed storage sys-
tems, fountain codes, information-theoretic security, linear codes, node repair,
private information retrieval.

List of Papers

This thesis is based on the following publications:

Paper I
S. Kumar, A. Graell i Amat, I. Andriyanova, F. Brännström, E. Rosnes, Code Con-
structions for Distributed Storage With Low Repair Bandwidth and Low Repair
Complexity, IEEE Transactions on Communications, to appear.

Paper II
S. Kumar, E. Rosnes, A. Graell i Amat, Secure Repairable Fountain Codes, IEEE
Communications Letters, vol. 20, no. 8, August 2016.

Paper III
S. Kumar, H.-Y. Lin, E. Rosnes, A. Graell i Amat, Achieving Maximum Distance
Separable Private Information Retrieval CapacityWith Linear Codes, submitted to
IEEE Transactions on Information Theory, revised in August 2018.

Paper IV
H.-Y. Lin, S. Kumar, E. Rosnes, A. Graell i Amat, Asymmetry Helps: Improved
Private Information Retrieval Protocols for Distributed Storage, in Proc. IEEE In-
formation Theory Workshop (ITW), Guangzhou, China, November 2018.

Paper V
S. Kumar, A. Graell i Amat, E. Rosnes, L. Senigagliesi, Private Information Re-
trieval From a Cellular Network With Caching at the Edge, submitted to IEEE
Transactions on Communications.

vi List of Papers

Other publications by the author which are not included in this thesis, but are
included within the papers of the thesis, are:

• S. Kumar, A. Graell i Amat, I. Andriyanova, F. Brännström, A Family of Era-
sure Correcting Codes with Low Repair Bandwidth and Low Repair Complex-
ity, in Proc. IEEE Global Communications Conf. (GLOBECOM), San Diego,
CA, December 2015.

• S. Kumar, E. Rosnes, A. Graell i Amat, Private Information Retrieval in Dis-
tributed Storage Systems Using an Arbitrary Linear Code, in Proc. IEEE In-
ternational Symposium on Information Theory (ISIT), Aachen, Germany,
June 2017.

• H.-Y. Lin, S. Kumar, E. Rosnes, A. Graell i Amat, An MDS-PIR Capacity-
Achieving PIRProtocol forDistributed StorageUsingNon-MDSLinearCodes,
in Proc. IEEE International Symposium on Information Theory (ISIT), Vail,
CO, June 2018.

• S. Kumar, H.-Y. Lin, E. Rosnes, A. Graell i Amat, Local Reconstruction Codes:
A class of MDS-PIR Capacity-Achieving Codes, in Proc. IEEE Information
Theory Workshop (ITW), Guangzhou, China, November 2018.

Contents

Acknowledgements i

Abstract iii

List of Papers v

List of Figures xiii

List of Tables xv

A Introduction 1

1 Background 3
1.1 Organization . 7
1.2 Notations . 7

2 Distributed Storage Systems and Distributed Caching 9
2.1 Coding in Distributed Storage . 10
2.2 System Model for Distributed Storage 11
2.3 Codes for Distributed Storage . 12

2.3.1 Codes With Locality . 13
2.3.2 Regenerating Codes . 15
2.3.3 Codes From the Piggybacking Framework 15

2.4 Coding in Distributed Caching for Wireless Networks 16
2.5 System Model for Distributed Caching 17

2.5.1 Content Placement . 18
2.5.2 File Request . 19

3 Security 21
3.1 Introduction . 22
3.2 Eavesdropper Model . 22
3.3 Basic Principle . 23

3.3.1 Shamir’s Secret Sharing Scheme 23
3.3.2 Gabidulin Codes . 24

4 Private Information Retrieval 25
4.1 Introduction . 26
4.2 Privacy Model . 27

viii CONTENTS

4.3 Achieving PIR . 29
4.3.1 Finite PIR Protocol . 29
4.3.2 Asymptotic PIR Protocol . 30

4.4 Towards Arbitrary Linear Codes . 31
4.5 PIR in Distributed Caching . 34

4.5.1 Content Placement for the PIR Scenario 34

5 Conclusions and Future Work 35
5.1 Future Work . 37

Bibliography 44

B Papers 45

I CodeConstructions forDistributedStorageWithLowRepairBand-
width and Low Repair Complexity 47
1 Introduction . 49
2 System Model and Code Construction 51
3 Class A Parity Nodes . 53
4 Class B Parity Nodes . 55

4.1 Definitions and Preliminaries 55
4.2 Construction of Class B Nodes 56
4.3 Repair of a Single Data Node Failure: Decoding Schedule . . 57

5 A Heuristic Construction of Class B Nodes With Improved Repair
Bandwidth . 58
5.1 Construction Example . 60
5.2 Discussion . 61

6 Code Characteristics and Comparison 62
6.1 Code Rate . 62
6.2 Fault Tolerance . 62
6.3 Repair Bandwidth of Data Nodes 62
6.4 Repair Complexity of a Failed Data Node 63
6.5 Repair Bandwidth and Complexity of Parity Nodes 64
6.6 Encoding Complexity . 64
6.7 Code Comparison . 65

7 Conclusion . 70
A Proof of Theorem 1 . 70
B Class B Parity Node Construction 73

B.1 ConstructNode() . 74
B.2 ConstructLastNode() . 74
B.3 UpdateReadCost() . 74

References . 78

II Secure Repairable Fountain Codes 79
1 Introduction . 81
2 System Model . 82

2.1 Security Model . 83

CONTENTS ix

3 Gabidulin and Repairable Fountain Codes 83
3.1 Gabidulin Codes . 83
3.2 Repairable Fountain Codes 84

4 Secure Repairable Fountain Codes 84
5 Numerical Results . 88
6 Conclusion . 88
References . 89

III Achieving Maximum Distance Separable Private Information Re-
trieval Capacity with Linear Codes 91
1 Introduction . 93

1.1 Notations and Conventions 97
2 Definitions and Preliminaries . 98

2.1 Reed-Muller Codes . 98
2.2 Local Reconstruction Codes 100
2.3 UUV Codes . 101

3 System Model . 102
3.1 Privacy Model . 102

4 Finite MDS-PIR Capacity-Achieving Protocol for the Noncolluding
Case . 104
4.1 PIR Achievable Rate Matrix 104
4.2 Protocol 1 . 107
4.3 Achievable PIR Rate . 110
4.4 A [5, 3, 2]MDS-PIR Capacity-Achieving Code for 𝑓 = 2 . . . 112

5 Asymptotic MDS-PIR Capacity-Achieving Protocol for the Noncol-
luding Case . 114

6 MDS-PIR Capacity-Achieving Codes 120
6.1 Cyclic Codes . 122
6.2 Reed-Muller Codes . 122
6.3 Local Reconstruction Codes 123

7 Optimizing the PIR Rate for the Noncolluding Case 127
7.1 ComputeErasurePatternList() 128
7.2 ComputeMatrix() . 129

8 Multiple Colluding Nodes . 129
8.1 Protocol 3: The Multiple Colluding Case 130
8.2 Example . 133
8.3 Codes for Protocol 3 . 135
8.4 Codes Achieving the Maximum PIR Rate of Protocol 3 . . . 136
8.5 Optimizing the PIR rate . 138

9 Numerical Results . 139
10 Conclusion . 141
A Proof of Lemma 1 . 142
B Proof of Theorem 1 . 142
C Proof of Lemma 3 . 144
D Proof of Theorem 2 . 145
E Proof of Lemma 5 . 146
F Proof of Theorem 5 . 146

x CONTENTS

F.1 Proof of Step a) . 149
F.2 Proof of Step b) . 151

G Proof of Theorem 7 . 152
References . 158

IV Asymmetry Helps: Improved Private Information Retrieval Pro-
tocols for Distributed Storage 159
1 Introduction . 161
2 Preliminaries and System Model 162

2.1 Notation and Definitions . 162
2.2 System Model . 163
2.3 Privacy Model . 163
2.4 PIR Rate and Capacity . 163
2.5 MDS-PIR Capacity-Achieving Codes 164

3 PIR Capacity for MDS-PIR Capacity-Achieving Codes 165
4 Asymmetry Helps: Improved PIR Protocols 165

4.1 Protocol 1 From [9] is Not Optimal in General 166
4.2 Protocol A: A General Asymmetric PIR Protocol 167
4.3 Protocol B: An Asymmetric PIR Protocol for a Special Class

of Non-MDS-PIR Capacity-Achieving Codes 168
4.4 Protocol C: Code-Dependent Asymmetric PIR Protocol . . . 169

5 Numerical Results . 171
6 Conclusion . 171
A Proof of Theorem 4 . 171
B Proof of Theorem 5 . 174
C Proof of Theorem 6 . 177
References . 179

V Private InformationRetrieval FromaCellularNetworkWithCaching
at the Edge 181
1 Introduction . 183
2 System Model . 185

2.1 Content Placement . 185
2.2 File Request . 187
2.3 Private Information Retrieval and Problem Formulation . . 187

3 Private Information Retrieval Protocol 187
3.1 Query Construction . 188
3.2 Response Vectors . 190
3.3 Privacy . 191
3.4 Example . 192

4 Backhaul Rate Analysis: No PIR Case 194
5 Backhaul Rate Analysis: PIR Case 195

5.1 Optimal Content Placement 196
5.2 Popular Content Placement 197

6 Weighted Communication Rate . 198
7 Numerical Results . 199
8 Conclusion . 203

CONTENTS xi

A Proof of Theorem 1 . 204
References . 207

xii CONTENTS

List of Figures

2 Distributed Storage Systems and Distributed Caching 9
2.1 Illustration representing a typical DSS that stores 𝑓 files. 11
2.2 Example of a code with low repair locality. 13
2.3 A [20, 10] RFC over GF(𝑞) with 𝛼 = 1. 14
2.4 A [5, 3, 3]MSR code. 15
2.5 A [4, 2, 3] Piggyback code. 16
2.6 An example of distributed caching in a wireless network. 17

3 Security 21
3.1 Illustration of a simple information-theoretic secure scheme. . . . 23

4 Private Information Retrieval 25
4.1 Privacy model. 27
4.2 Query structure of the finite PIR protocol. 30
4.3 An example of an asymptotic PIR protocol. 32

I CodeConstructions forDistributedStorageWithLowRepairBand-
width and Low Repair Complexity 47
I.1 System model of the DSS. 51
I.2 A (7, 5) Class A code with 𝜏 = 1. 54
I.3 Class B parity nodes for the data nodes in Fig. I.2. 56
I.4 A heuristic construction of a (5, 4) Class B code. 59
I.5 Comparisons of different (𝑛, 𝑘, 𝑓) codes with 𝜈 = 8. 67
I.6 Comparisons of different (𝑛, 𝑘, 𝑓) codes with 𝜈 = 8. 68

II Secure Repairable Fountain Codes 79
II.1 Bipartite graphs representing a (6, 4) storage code. 82
II.2 An illustration of eavesdropped symbol by an eavesdropper in a

DSS (20, 10) using secure RFC. 85
II.3 Comparison of code rates for different classes of secure ECCs for

the (2, 2) eavesdropper model. 88

III Achieving Maximum Distance Separable Private Information Re-
trieval Capacity with Linear Codes 91
III.1 System Model. 102

xiv LIST OF FIGURES

V Private InformationRetrieval FromaCellularNetworkWithCaching
at the Edge 181
V.1 System model. 186
V.2 Illustration of content stored on 6 SBSs. 193
V.3 Backhaul rate as a function of the cache size constraint 𝑀 for a

system with 𝐹 = 200 files, 𝑁SBS = 316, and 𝛼 = 0.7. 200
V.4 Optimizedweighted communication rate as a function of the cache

size constraint𝑀. 201
V.5 Backhaul rate as a function of the density of SBSs 𝜆 and several

values 𝑀 for the scenario where SBSs are distributed according to
a PPP and 𝑇 = 1. 202

V.6 Backhaul rate as a function of the density of SBSs 𝜆 and several
values of 𝑀 for the scenario where SBSs are distributed according
to a PPP and 𝑇 = 2 and 𝑇 = 4. 203

List of Tables

I CodeConstructions forDistributedStorageWithLowRepairBand-
width and Low Repair Complexity 47
I.1 Comparison of (𝑛, 𝑘) codes that aim at reducing the repair band-

width. 66
I.2 Comparison of normalized repair complexity and bandwidth of

(𝑛, 𝑘, 𝑓) BASIC PM-MBR codes . 70
I.3 Improvement in normalized repair bandwidth of the proposed

(𝑛, 𝑘) codes when the Class B nodes are heuristically constructed. 70

III Achieving Maximum Distance Separable Private Information Re-
trieval Capacity with Linear Codes 91
III.1 Protocol 1 with a [5, 3, 2] non-MDS code for 𝑓 = 2. 113
III.2 Optimized values for the PIR rate for different codes having code

rates strictly larger than 1/2 for the case of noncolluding nodes. . 139
III.3 Optimized values for the PIR rate for different codes having code

rates at most 1/2 for the case of noncolluding nodes. 139
III.4 Optimized values for the PIR rate for different codes for the collud-

ing case with 𝑇 = 2 and 𝑇 = 3. 140

IV Asymmetry Helps: Improved Private Information Retrieval Pro-
tocols for Distributed Storage 159
IV.1 Protocol 1 with a [5, 3] non-MDS-PIR capacity-achieving code for

𝑓 = 2. 166
IV.2 Responses by Protocol C with a [9, 5] non-MDS-PIR capacity-

achieving code . 169
IV.3 PIR rate for different codes and protocols 171

xvi LIST OF TABLES

Part A

Introduc on

Chapter 1

Background

At the outset of the 21st century there was a remarkable trend: integrated
circuits–used in consumer products such as mobile phones, tablets, and personal
computers–were getting smaller, cheaper, and computationally faster. It contin-
ued to a point where these consumer products became easily accessible to the
general public. In parallel, the internet expanded due to technological advances
in fiber optics and microprocessors, giving easy and efficient access to the popu-
lation. This marked the start of the information age.

The information age is characterized by the fact that information and com-
munication technologies shape our lives, culture, and civic discourse [1]. In other
words, producing, digesting and processing information has become a norm.
This, in turn, has led to an explosion of digital data. In 2009, it was estimated
that there is at least an average of 200 terabytes of stored data per company with
more than 1000 employees across all sectors of the US economy [2]. Further-
more, according to an EMC report, by the year 2020, 40000 exabytes1 of data will
have been either created, replicated, or consumed worldwide annually [3]. In
fact, companies such as Google and Facebook handle terabytes of data each day.
For example, Facebook stores petabytes of data on its analytics cluster [4]. Stor-
ing such large amounts of data on a single device is inefficient, unreliable, and
expensive.

Distributed storage system (DSS) is a new concept introduced by the stor-
age industry to overcome such challenges. Distributed storage is a technique of
storing large amounts of data across a network of relatively inexpensive storage
devices (from hereon referred to as nodes). Storing data in such a manner intro-
duces scalability, which is to say that the storage capacity of such systems can be
scaled without destabilizing the DSS [5]. This can be achieved by simply adding
more nodes to the network whenever required. Furthermore, because nodes that
store data are inexpensive, it makes the whole DSS inexpensive when compared
to storing data on a single storage device with the same capacity.

On the other hand, by the same virtue, the nodes are vulnerable to failures.
Failures can occur due to many reasons. Prime among them are mechanical and
electrical issues [6]. They may also occur due to network outages when there is
a sudden influx of data flow in the network. Thus, it is essential to prevent data

11 exabyte equals 1000 petabytes, where one petabyte equals 1000 terabytes (TB), and TB
bytes.

4 Background

loss from node failures.
A common way to achieve this is by adding redundancy into the system by

encoding the stored data using an erasure correcting code. Addition of redun-
dancy increases the storage overhead. For example, DSSs like Google File System
(GFS) [7] and Hadoop Distributed File System (HDFS) [8] employ (3, 1) repeti-
tion codes, which ensures that the system can tolerate two node failures but at the
cost of large additional storage overhead. In simple words, every bit of data stored
on the system incurs a penalty of storing two extra bits. As an alternative to GFS
and HDFS, DSSs such as HDFS-Redundant Array of Independent Disks (RAID2)
and Distributed RAID were introduced. They can tolerate at most 2 node failures
while achieving significantly lower storage overhead [9]. On the downside, such
systems cannot tolerate many node failures. Current DSSs employed by Google
(GFS II) and Facebook use variants of Reed-Solomon (RS) codes to store data,
which can tolerate multiple node failures [10]. These codes are a class of maxi-
mum distance separable (MDS) codes, which when used on a DSS, allow them to
tolerate an optimal number of node failures for a given storage overhead.

Another issue that arises in DSSs is the repair problem. Nodes need to be re-
paired periodically to maintain the initial state of reliability of these systems. In
order for DSSs to achieve high throughputs, it is important to have efficient repair
of failed nodes. In other words, the node repair should involve as little data trans-
fer across the DSS network as possible. Thus, an efficient DSS involves designing
erasure correcting codes that not only balance reliability with storage overhead
but should also perform efficient node repair. AlthoughDSSs that useMDS codes
have the best reliability for a given storage overhead, they are inefficient in repair.
In contrast, local reconstruction codes (LRCs) [11, 12], minimum storage regener-
ating (MSR) codes [13, 14], and minimum bandwidth regenerating (MBR) codes
[13, 15] are some state-of-the-art erasure correcting codes for DSSs that are also re-
pair efficient.3 A further way to improve data throughputs is to reduce the repair
complexity, i.e., the number of operations required in the repair process. Gen-
erally speaking, most state-of-the-art codes require a high number of operations
for repairing nodes.

The main purpose of this thesis is to study distributed storage techniques for
storing large amounts of data. In particular, we study how to store large amounts
of data efficiently, securely, and privately access them in such systems. In this
thesis, we present a new class of codes for DSSs that have efficient repair and low
repair complexity. These codes are constructed by concatenating two different
classes of codes, where the first class of codes is a modified version of the classical
MDS codes with the goal of providing resilience against node failures, while the
second class of codes in conjunction with the first class provides efficient repair
and low repair complexity. We go on to characterize their fault tolerance, storage
overhead, efficiency in repair, and repair complexity.

With the increasing importance of DSSs in real-world applications, security
of these systems is becoming more and more crucial. The issue is further com-
pounded when data is stored on untrusted systems like peer-to-peer DSSs. Se-

2RAID is a separate class of storage technology that use repetition, single parity check, or Reed
Solomon codes to achieve reliability. Besides, they are highly parallelized to ensure high throughputs.

3In a parallel line of work, schemes for efficient repair of RS codes have been proposed [16, 17].

5

curity for distributed storage is classified into data storage, access to data, move-
ment of data, and management of data [18]. In this thesis, we focus on the first
class: security for data storage. Currently, the industry achieves security by ap-
plying cryptographic protocols to the systems [19, 20]. However, the downside of
such schemes is first, complex key management and secondly, a weak sense of se-
curity as it is dependent upon the computational power of the system [21]. As an
antithesis to cryptographic protocols, in this dissertation we look at security from
an information-theoretic perspective that provides security even if the system has
infinite computational power. Furthermore, we assume an eavesdropper adver-
sary that has access to the stored data on a subset of nodes of the DSS. The central
idea to achieve security in this scenario is by encoding the data and random bits
together and then storing them on the DSS [21–23]. This strong sense of security
comes at the cost of larger storage overhead. Thus, there is an interest in deter-
mining the best possible efficiency and coding schemes that can provide security.
With the aim of providing security and efficient repair of failed nodes in DSSs,
the authors in [21] presented secure MSR codes and secure LRCs. Furthermore,
they characterized the maximum achievable storage efficiency while maintain-
ing the security of the data stored and showed that their schemes achieved this.
Repairable fountain codes (RFCs) are another class of codes for DSSs. While pro-
viding efficient repair of failed nodes, unlike the codes above for DSSs, they can
efficiently encode data over a large number of nodes and parallelize access of data
from the nodes [24]. Since these are large codes, they can achieve higher storage
efficiency and fault tolerance. In this thesis, we present secure RFCs that retain
all the properties of RFCs while also providing security. The scheme is similar to
the one presented in [21], but the proofs involved are a further generalization of
the ones presented in [21, 22]. In particular, we provide a necessary and a suffi-
cient condition for any code to achieve security, unlike [21, 22], which give only a
sufficient condition.

Closely related to security is the notion of privacy, which is the ability to keep
oneself or information about oneself from others. With the explosion of infor-
mation in the world, it has gained significant traction in recent years [25]. DSSs
are employed in data centers around the world which are owned by third party
entities. Thus, in some cases, it is important to hide which data from the DSS
is requested by the users from such parties. Consider the example where stock
traders are trying to retrieve stock prices from a DSS that is hosted by a third
party. In this case, hiding the identity of the requested stock is crucial. A natu-
ral question to ask is as follows. Is it possible for a user to retrieve data from stor-
age devices (therefore, the 3rd party entities) without letting them knowwhat the
user asked? We refer to this as private information retrieval (PIR) and the schemes
that achieve this as PIR protocols. Achieving PIR comes at the cost of lower com-
munication efficiency, i.e., an increase in the cost of communication (upload and
download) [26]. PIR protocols can be classified into computational PIR protocols
and information-theoretic PIR protocols, where the difference lies in the assump-
tion of the computational power of the adversaries (here, the storage devices).
The former achieves privacy when the adversaries have limited computational
power, while the latter provides privacy even when the adversaries have infinite
computational power. In this thesis, we focus on information-theoretic PIR. Typ-

6 Background

ically, the communication efficiency of a PIR protocol is given by its PIR rate,
which is defined as the ratio of the amount of requested data and the amount
of data that needs to be downloaded to ensure privacy.4 Most works in the lit-
erature address PIR under the assumption that the data on the DSS is encoded
using MDS codes. Under the assumption that no nodes collude, in [27] the au-
thors provided the largest achievable PIR rate, referred to as MDS-PIR capacity,
for any PIR protocol. As mentioned earlier, MDS codes perform inefficient repair
of node failures.

In the thesis, we study PIR for the case where data is stored using an arbitrary
linear code. We assume that some nodes in the DSS may act as spies, which can
collaborate (the colluding case) or cannot collaborate (the noncolluding case)
in order to determine the identity of the requested file. Subsequently, we pro-
vide 3 PIR protocols for such a scenario. Protocols 1 and 2 provide privacy for
the noncolluding case. They differ in the fact that Protocol 1 requires the files
stored to have a size that is exponential in the number of files, while Protocol
2 is independent of the file size, thus making it more practical. We are first to
show that the MDS-PIR capacity is achievable even when the underlying storage
code is a non-MDS code. In particular, we prove that important classes of non-
MDS codes, namely cyclic codes, Reed-Muller (RM) codes, and distance-optimal
LRCs, achieve the MDS-PIR capacity under Protocol 1. Assuming that the num-
ber of files in the system tends to infinity, for the same class of underlying storage
codes, Protocol 2 achieves the MDS-PIR capacity asymptotically. Subsequently,
we show that these rates are indeed equal to the maximum PIR rate achieved by
these codes under any protocol. For such codes, we provide partial fundamental
reasons for why this happens, and in doing so, we connect the fields of PIR and
algebraic codes. For the remaining codes, we provide protocols that improve on
the PIR rates provided by Protocols 1 and 2. Finally, Protocol 3 provides privacy
when a subset of nodes in the DSS collude in order to obtain the identity of the
requested file. To the best of our knowledge, for most parameters, our protocol
provides the highest asymptotic PIR rates among all available protocols when a
subset of nodes collude.

In the current age of information, parallel to the evolution of the storage tech-
nology there has also been an evolution of the cellular wireless technology stan-
dard from 2G at the start of the millennium to current 4G. As of 2017, 4G technol-
ogy has been deployed in most countries5 and the technology itself has matured.
Furthermore, there is strong evidence that wireless data is exploding [28]. Ac-
cordingly, the future standard (referred to as 5G)must allow higher data rates and
lower latencies, while being energy and cost-efficient [29]. Caching content at the
edge of the wireless network is considered to be an attractive solution that could
be implemented to achieve lower latencies through lower backhaul rates [30]. A
future wireless network will most likely consist of densely populated small-cell
base stations (SBSs) which can cache content. Users accessing this wireless net-
work can download content from the neighboring SBSs, thus drastically reducing

4In the traditional information-theoretic sense, the size of the requested data is much larger than the
size of the query, thus download dominates the upload. As a consequence, the upload cost is commonly
neglected in the formulation of PIR rate.

5https://opensignal.com/reports/2017/11/state-of-lte

1.1 Organization 7

the backhaul usage, and hence the latency. Just like for DSSs, attaining privacy in
such networks is important. In this thesis, we consider PIR in a wireless network
where SBS cache content for a scenario where the SBSs can be adversaries. In light
of this, we present a PIR scheme that is a generalization of Protocol 3. Essentially,
this scheme assumes that files stored on the network can be encoded using codes
with different code rates, which is in contrast to DSSs where all files are stored
by encoding them using the same code. We also show that for the caching tech-
nique to be most effective it is best for the most popular files to be encoded using
a single code, which is in contrast to what is the best when privacy is not consid-
ered. Furthermore, in most cases, it is seen that popular content caching, i.e., the
most popular files are replicated and then cached on the SBSs, is optimal.

1.1 Organiza on

The thesis is an omnibus of published papers, or papers that are submitted for
publication. It is divided into two parts where Part 1 deals with the introduction
to the concepts in Papers I-V, while Part 2 contains these papers.

Part 1 is further divided into numerous chapters, where Chapters 2 and 3 are
concerned with Paper I and Paper II, respectively, and Chapter 4 deals with con-
cepts in Papers III-V. Chapter 2 is concerned with the evolution of codes for DSSs.
It further describes how to store data on these systems, which has relevance to Pa-
pers I-IV. It also describes some of the important families of codes for DSSs. The
chapter ends by briefly introducing distributed caching in wireless networks, and
describing the system model that is relevant to Paper V. Chapter 3 describes the
security model that is used in Paper II. In other words, it characterizes the adver-
sary. It goes on to provide the brief idea on how to achieve information-theoretic
security against such an adversary. The last chapter, Chapter 4, explains the PIR
system model and proceeds to provide the main ideas used by different PIR pro-
tocols in the literature. It provides the intuition behind the construction of PIR
protocols for DSSs that use arbitrary linear codes. Finally, it describes the PIR
problem in the distributed caching scenario, and mentions the differences rela-
tive to PIR in DSSs.

1.2 Nota ons

Notations used in Part 1 of the thesis are listed as follows.

• We use lowercase bold letters, uppercase bold letters, and uppercase calli-
graphic letters to denote vectors, matrices, and sets, respectively. For exam-
ple, 𝒙 denotes a vector while 𝑿 denotes a matrix, and 𝒳 denotes a set.

• The operator | ⋅ | denotes the cardinality of a set.
• The operator (⋅) denotes the transpose of a vector.

• The symbol ℕ represents the set of natural numbers {1, … , 𝑎}, while ℕ ∶
represents the set of natural numbers {𝑎, … , 𝑏}, where 𝑎 < 𝑏.

8 Background

• Consider the column vectors 𝒙 ,… , 𝒙 , then (𝒙 ∣ ⋯ ∣ 𝒙) denotes the
horizontal concatenation of the vectors. Similarly the horizontal concate-
nation of matrices 𝑿 ,… , 𝑿 with the same row dimension is denoted as
(𝑿 ∣ ⋯ ∣ 𝑿).

• The calligraphic letter 𝒞 denotes an [𝑛, 𝑘, 𝑑𝒞min] linear code of dimension 𝑘,
length 𝑛, and minimum distance 𝑑𝒞min over a Galois field GF(𝑞), where 𝑞 is a
prime or a power of a prime. As a shorthand notation, we sometimes neglect
𝑑𝒞min and represent the code 𝒞 with parameters [𝑛, 𝑘].

• We represent a submatrix of 𝑿 that is restricted by the column set 𝒥 and
row set ℐ as 𝑿|ℐ𝒥. Since 𝒞 can be seen as a codebook matrix, the shortened
and punctured codes are denoted by 𝒞ℐ𝒥, with column coordinates 𝒥 and row
coordinates ℐ.

• The function H(⋅) represents the entropy of its argument. The function
I(𝑋; 𝑌) represents the mutual information between random variables 𝑋 and
𝑌.

Nota onal Inconsistencies

The reader should be aware of the following notational inconsistencies occurring
throughout the manuscript.

• In Paper II, the length, dimension, and minimum distance of a Gabidulin
code are denoted by 𝑁,𝐾, and 𝐷min, respectively, whereas the respective pa-
rameters of the remaining codes in all papers are denoted by 𝑛, 𝑘, and 𝑑𝒞min.

• In the same paper, 𝑞 strictly represents a prime number, whereas in this
thesis and remaining papers it denotes either a prime number or a prime
number raised to some arbitrary integer exponent.

• 𝛽 represents the subpacketization of a storage code in Paper I, while in the
remaining papers and in this manuscript the same is denoted by 𝛼, and 𝛽
represents the striping of the stored files.

• The entropy function is represented by 𝐻(⋅) in Paper II, while in this
manuscript and the remaining papers it is represented as H(⋅).

• The number of files in the system in Papers III and IV is denoted by 𝑓, while
it is denoted by 𝐹 in Paper V.

• The acronym “LRC” in Paper I represents a specific code family as defined
in [12], whereas in Paper III it represents a class of codes that includes the
aforementioned codes.

• The codes are represented as (𝑛, 𝑘) in Papers I, II, and V, while in the re-
maining papers, they are either represented as [𝑛, 𝑘, 𝑑𝒞min] or [𝑛, 𝑘].

Chapter 2

Distributed Storage Systems and
Distributed Caching

Themajority of this thesis deals with practical issues faced in DSSs, and therefore
this chapter serves to enlighten the readers toward DSSs. It briefly describes the
need for erasure coding in DSSs and the reasons why traditional codes are ineffi-
cient in such systems. It goes on to explain the systemmodel, the state-of-the-art
codes, and the various parameters used to evaluate their performance.

In particular, Section 2.1 explains the evolution of erasure correcting codes in
DSSs and the motivation for going toward current state-of-the-art codes. Sec-
tion 2.2 then describes the general system model that is used in Papers I-IV. It
also describes the different parameters that are used to evaluate the performance
of storage codes. Finally, in Section 2.3, we give a brief description of some pop-
ular classes of storage codes.

10 Distributed Storage Systems and Distributed Caching

2.1 Coding in Distributed Storage

In coding theory, an [𝑛, 𝑘] erasure correcting code 𝒞 over GF(𝑞) is a mathematical
construct that encodes 𝑘 message symbols to obtain a codeword containing 𝑛 >
𝑘 code symbols, where all mathematical operations occur over the finite field
GF(𝑞). The code has a code rate of 𝑅𝒞 = 𝑘/𝑛, and a minimum distance of 𝑑𝒞min.
The former denotes the efficiency, while the latter relates to the erasure correcting
capability of the code, which equates to 𝑑𝒞min−1. For given values of 𝑛 and 𝑘, the
largest minimumdistance (ergo, the largest erasure correcting capability) is given
by the Singleton bound, i.e., 𝑑𝒞min ≤ 𝑛 − 𝑘 + 1. The [𝑛, 1] repetition codes are the
most trivial codes, where a singlemessage symbol is replicated 𝑛 times. Moreover,
they achieve the Singleton bound. Motivated by the triviality of such codes, early
DSSs such as GFS and HDFS used [3, 1] repetition codes where each message
symbol is replicated on 𝑛 = 3 nodes. Such systems can tolerate at most two node
failures. However, such a coding scheme is inefficient as the code rate is 1/3. To
counter this, recent DSSs such as GFS II and Quick File System by Google and
Oracle, respectively, have started to adopt classical MDS codes [10]. In particular,
these systems employ the [9, 6]RS code that has code rate 2/3. Such class of codes
has the distinction that their minimum distances achieve the Singleton bound,
hence achieving the best erasure correcting capability for a given code rate.

Traditionally, the 𝑛 code symbols obtained after the encoding using an [𝑛, 𝑘]
code are distributed among the 𝑛 nodes. As a consequence, the erasure correcting
capability translates to the number of node failures the DSS can tolerate. This
allows the DSS to be reliable as long as the number of nodes failed is less than
the number of node failures the code can tolerate. Thus, to ensure reliability over
long periods, the systems should repair failed nodes such that the number of node
failures does not exceed the tolerance level of the system. It may seem that MDS
codes are the best codes for DSSs as they achieve the best fault tolerance/storage
efficiency tradeoff. However, there is a caveat: the 𝑛 − 𝑘 redundant symbols are
a function of the 𝑘 message symbols. As a result, the repair of any failed node
requires downloading symbols from 𝑘 nodes in the system, thus making repair
costly. There are two aspects related to efficient repair, which are repair locality
and repair bandwidth. The repair locality determines the number of nodes that
need to be contacted in the repair of a failed node, while repair bandwidth is the
number of bits that need to be transferred over the network in order to repair
the failed node. MDS codes have locality equal to 𝑘 and repair bandwidth of 𝑘𝜈,
where 𝜈 is the symbol size in bits. This is in high contrast to the repetition code,
where the repair locality and bandwidth are 1 and 𝜈, respectively.

During the repair of a failed node, individual nodes are not accessible for other
network processes such as data download by users. Thus, a large repair local-
ity means that a significantly large number of nodes are inaccessible during the
repair, thereby affecting the data availability. On the other hand, larger repair
bandwidth results in high network data traffic, which in turn makes the repair
process dominate other network processes, hence reducing the performance of
the DSS. Accordingly, in recent years, the research has been focused on finding
erasure correcting codes for DSSs that are not only efficient in storage and can
tolerate node failures, but allow to repair node failures efficiently as well.

2.2 SystemModel for Distributed Storage 11

⋯ ⋯

⋮⋮

𝑐()
,

𝑐()
,

𝑐()
,

⋮

𝑛 storage nodes

(a)

(b)

Figure 2.1: Illustration representing a typical DSS that stores 𝑓 files.

2.2 SystemModel for Distributed Storage

We consider a DSS that stores 𝑓 files 𝑿(), … , 𝑿(), where each file 𝑿() = (𝑥()
,),

𝑚 ∈ ℕ , can be seen as a 𝛽 × 𝑘 matrix over GF(𝑝 ℓ), with 𝛽, 𝑘, 𝛼, ℓ ∈ ℕ, and
𝑝 some prime number. Each file is encoded using a linear code as follows. Let
𝒙() = (𝑥()

, , … , 𝑥()
,), 𝑖 ∈ ℕ , be a message vector corresponding to the 𝑖-th row

of 𝑿(). Each 𝒙() is encoded by an [𝑛, 𝑘] code 𝒞 over GF(𝑞) with 𝑞 ≝ 𝑝 , having
subpacketization 𝛼, into a length-𝑛 codeword 𝒄() = �𝑐()

, , … , 𝑐()
, �, where 𝑐()

, ∈
GF(𝑞ℓ), 𝑗 ∈ ℕ . For 𝛼 = 1, the code 𝒞 is referred to as a scalar code. Otherwise,
the code is called a vector code [31]. The 𝛽𝑓 generated codewords 𝒄() are then
arranged in the array 𝑪 = �(𝑪()) |… |(𝑪()) � of dimensions 𝛽𝑓 × 𝑛, where
𝑪() = �(𝒄()) |… |(𝒄()) � for 𝑚 ∈ ℕ . For a given column 𝑗 of 𝑪, we denote
the vector �𝑐()

, , … , 𝑐()
,

� as a coded chunk pertaining to file 𝑿(). The 𝑓 coded
chunks in column 𝑗 are stored on the 𝑗-th storage node as shown in Fig. 2.1(a),
and Fig. 2.1(b) shows a coded chunk corresponding to the 2nd file in the 𝑛-th
node, which consists of 𝛽 code symbols, 𝑐()

, , 𝑖 ∈ ℕ . In case the [𝑛, 𝑘] code 𝒞
is systematic, the nodes that store the systematic code symbols are referred to as
systematic nodes, while the nodes storing redundant symbols are referred to as
parity nodes.

We consider specific instances of the above systemmodel in Papers I and II in
contrast to Papers III and IV where we consider the exact model. In Paper I, we
keep 𝛽 = 1 and 𝛼 = 𝑘, whereas in Paper II, we keep 𝛽 = 1 and 𝛼 = 1. In the
following, for DSSs that use the code 𝒞, we briefly explain the code parameters
that parameterize the system performance.

1. Fault tolerance. The fault tolerance of a code determines the number of
node failures the corresponding DSS can tolerate at a time. It depends on

12 Distributed Storage Systems and Distributed Caching

the minimum distance of the code and is given as 𝑑𝒞min − 1.

2. Storage overhead. The storage overhead of a DSS parameterizes the stor-
age efficiency of the system. In particular, it is the ratio of total coded data
and the message size and is given as 𝑛/𝑘 = 1/𝑅𝒞. If the system stores un-
coded data, then it has a storage overhead of one. Since the storage overhead
is just the inverse of the code rate of the code used, throughout the thesis,
we alternate between storage overhead and code rate when talking about
the efficiency of the system.

3. Repair locality. It is a measure of the repair efficiency that parameterizes
the number of nodes that the DSS should connect to in order for it to repair
a single failed node. If 𝒞 is an MDS code, then the repair locality of the DSS
is 𝑘, on the other hand, if the code is a repetition code, then it has locality
1.

4. Repair bandwidth. The repair bandwidth determines the number of bits
that are communicated by the DSS in order to repair a failed node. In par-
ticular, let 𝜈 be the size of a code symbol in bits and 𝜆 the total number of
code symbols needed to repair a single code symbol in the failed node, then
the repair bandwidth of the system equals 𝜈𝜆𝛼 bits. For an efficient repair,
it is necessary that the repair bandwidth is small.

5. Complexity. In this thesis, the term complexity determines the number
of elementary operations required to complete a process. In computer sys-
tems, the complexity of a process is directly proportional to the hardware
costs. As such for DSSs it is important to have low complexity. In DSSs,
there are two important processes–encoding and repair. The complexity of
the respective processes is referred to as repair and encoding complexity.
Formally, repair complexity is defined as the number of elementary opera-
tions required in order to repair a failed node, whereas encoding complexity
is the number of elementary operations required to encode a file. Mathe-
matically, these processes occur over GF(𝑞), and thus addition andmultipli-
cation require 𝑂(𝜈) and 𝑂(𝜈) elementary operations, respectively,1 where
𝜈 = 𝛼ℓ⌈log 𝑝⌉.

2.3 Codes for Distributed Storage

In the past decade, there have been a plethora of codes designed specifically for
DSSs. In this section, we discuss erasure correcting codes that are relevant to this
thesis. We will be brief and refer the reader to the cited papers for their detailed
construction.

1It should be noted that the complexity of multiplication is quite pessimistic. However, for the sake
of simplicity, we assume it to be (). When the field is GF() there exist algorithms such as the
Karatsuba-Ofman algorithm [32, 33] and the Fast Fourier Transform [34–36] that lower the complexity to
() and (), respectively.

2.3 Codes for Distributed Storage 13

𝑥()
,

Node 1

𝑥()
,

Node 2

𝑥()
,

Node 3

𝑥()
,

Node 4

∑ 𝑥()
,

Node 5

∑ 𝑥()
,

Node 6

∑ 𝜐 𝑥()
,

Node 7

Figure 2.2: A DSS where 𝑓 = 𝛽 = 1 that uses a [7, 4, 3] erasure correcting code with
𝛼 = 1 over GF(𝑞) that is an example of a (2, 2) information locality code, where 𝜐 ∈
GF(𝑞), 𝑗 ∈ ℕ .

2.3.1 Codes With Locality

These codes are the ones that focus on reducing the repair locality. They can be
classified into two subclasses: (𝑟, 𝛿) information locality codes and (𝑟, 𝛿) code
symbol locality codes [37]. The former class of codes achieves a repair locality
of 𝑟 when at most 𝛿 − 1 systematic nodes have failed, while the latter class can
achieve the same for 𝛿−1 arbitrary node failures. The thesis is primarily focused
on (𝑟, 𝛿) information locality codes, which leads us to formally defining them as
follows.

Definition 1 ((𝑟, 𝛿) information locality code [37, Def. 2]). An [𝑛, 𝑘] code is said
to be an (𝑟, 𝛿) information locality code if there exist 𝐿c punctured codes 𝒞 ≝ 𝒞|𝒮
of 𝒞 with column coordinate set 𝒮 ⊂ ℕ for 𝑗 ∈ ℕ

c
. Furthermore, {𝒞|𝒮 } ∈ℕ c

must
satisfy the following conditions:

1. |𝒮 | ≤ 𝑟 + 𝛿 − 1, ∀ 𝑗 ∈ ℕ
c
,

2. 𝑑𝒞min ≥ 𝛿, ∀ 𝑗 ∈ ℕ
c
, and

3. rank �𝑮|⋃ 𝒮 � = 𝑘.

The ensuing codes have 𝑑𝒞min ≤ 𝑛 − 𝑘 + 1 − (⌈𝑘/𝑟⌉ − 1)(𝛿 − 1).
In other words, Definition 1 says that there are 𝐿c local codes in 𝒞 each having

a block length of at most 𝑟 + 𝛿 − 1, a minimum distance of at least 𝛿, and the
union of all local codes forms an information set. Examples of such codes out of
many in literature are Pyramid codes [11], LRCs [12], and locally repairable codes
[4]. These codes fall under the class of (𝑟, 2) information locality codes and are
known to be distance optimal, i.e, for a given locality 𝑟 they achieve the largest
minimum distance. Notably, LRCs and the locally repairable codes in [4], were
implemented by Microsoft and Facebook on their Windows Azure and HDFS-
XORBAS systems. Such codes achieve low repair locality by ensuring that a subset
of parity symbols are functions of a small number of message symbols.

Fig. 2.2 depicts a toy example of a DSS where 𝑓 = 𝛼 = 𝛽 = 1. The file 𝑿() is
encoded using a [7, 4, 3] code that is a (2, 2) information locality code and then
stored on seven nodes. Thus, the code has a repair locality of 2. For example,
consider that Node 1 has failed. Then, it can be repaired by downloading 𝑥()

,
and ∑ 𝑥()

, . On the other hand, the codes presented by the authors in [38, 39],
and RFCs [24] are examples of code symbol locality codes. Necessarily, in such
codes, each code symbol is a function of at most 𝑟 other symbols. As RFCs are
extensively used in Paper II, we briefly describe their construction below.

14 Distributed Storage Systems and Distributed Caching

𝑐(1)1,1 𝑐(1)1,2 𝑐(1)1,3 𝑐(1)1,4 𝑐(1)1,5 𝑐(1)1,6 𝑐(1)1,7 𝑐(1)1,8 𝑐(1)1,9 𝑐(1)1,10

𝑐(1)1,11 𝑐(1)1,12 𝑐(1)1,13 𝑐(1)1,14 𝑐(1)1,15 𝑐(1)1,16 𝑐(1)1,17 𝑐(1)1,18 𝑐(1)1,19 𝑐(1)1,20

𝑥(1)
1,1 𝑥(1)

1,2 𝑥(1)
1,3 𝑥(1)

1,4 𝑥(1)
1,5 𝑥(1)

1,6 𝑥(1)
1,7 𝑥(1)

1,8 𝑥(1)
1,9 𝑥(1)

1,10

Figure 2.3: A [20, 10] RFC over GF(𝑞) with 𝛼 = 1.

Repairable Fountain Codes

RFCs are scalar codes, and therefore they have 𝛼 = 1. An [𝑛, 𝑘, 𝑑𝒞min] systematic
RFC over GF(𝑞) encodes a message 𝒙() = (𝑥()

, , … , 𝑥()
,) into a codeword 𝒄() =

(𝑐()
, , … , 𝑐()

,), where 𝑖 ∈ ℕ . Because the codes are systematic, we have 𝑐()
, =

𝑥()
, , 𝑗 ∈ ℕ . For a fixed 𝑖, the parity symbols 𝑐()

, , 𝑗 ∈ ℕ ∶ , are constructed
according to the following three-step procedure.

1. Successively select 𝜉 = 𝑂(log 𝑘) message symbols 𝑥()
, independently and

uniformly at random with replacement.

2. For each of the 𝜉 message symbols, a coefficient is drawn uniformly at ran-
dom from GF(𝑞).

3. The parity symbol is then obtained as the linear combination of the 𝜉 chosen
message symbols, weighted by the corresponding coefficients.

Each of the 𝑛 code symbols is stored in a different storage node. From the code
construction, each parity symbol is a weighted sum of atmost 𝜉message symbols.
A parity symbol and the corresponding (at most) 𝜉 message symbols are referred
to as a local group. The existence of local groups is a hallmark of any erasure cor-
recting code having low locality. Unlike most codes with locality, which have only
disjoint local groups, RFCs also have overlapping local groups [24]. Furthermore,
for each systematic symbol there exist a number of disjoint local groups from
which it can be reconstructed. This allows multiple parallel reads of the system-
atic symbol, accessing the disjoint local groups. When a storage node fails, it is
repaired from one of its local groups. This requires the download of at most 𝜉
symbols (from the other at most 𝜉 nodes of the local group). Thus, RFCs have
low locality, 𝜉, and their repair bandwidth is 𝜉 log 𝑝. Also, RFCs are near MDS
codes.

Consider a DSS with 𝑓 = 𝛽 = 1, and where the file that is to be stored is
encoded using a [20, 10] RFC. Fig. 2.3 shows the encoding of this file using a bi-
partite graph, where circles represent the symbols of the file 𝑿() and the squares
represent the code symbols. Each code symbol is stored on an individual storage
node and is a weighted linear combination of its neighbors as shown in the figure.
In particular, each parity symbol is a sum of at most 𝜉 = 3message symbols.

2.3 Codes for Distributed Storage 15

𝑝 , = 𝑥()
, + 2𝑥()

, + 2𝑥()
,

𝑝 , = 𝑥()
, + 2𝑥()

, + 𝑥()
,

𝑝 , = 𝑥()
, + 𝑥()

, + 𝑥()
,

𝑝 , = 𝑥()
, + 𝑥()

, + 2𝑥()
,

Node 5

𝑝 , = 𝑥()
, + 𝑥()

, + 𝑥()
,

𝑝 , = 𝑥()
, + 𝑥()

, + 𝑥()
,

𝑝 , = 𝑥()
, + 𝑥()

, + 𝑥()
,

𝑝 , = 𝑥()
, + 𝑥()

, + 𝑥()
,

Node 4

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

Node 1

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

Node 2

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

Node 3

Figure 2.4: A [5, 3, 3] Zigzag code over GF(3) with 𝑓 = 𝛽 = 1 and 𝛼 = 4. With some
abuse of notation we represent the code as a [20, 12] array code over GF(3) where we
split each code symbol 𝑐()

, = 𝑥()
, = (𝑥 , , … , 𝑥 ,) , 𝑗 ∈ ℕ , and 𝑥 , ∈ GF(3), 𝑖 ∈ ℕ .

2.3.2 Regenera ng Codes

In the seminal paper [13], Dimakis et al. presented regenerating codes, a class of
codes that significantly reduce the repair bandwidth. Additionally, they showed
that there is a fundamental tradeoff between storage and repair bandwidth. For a
given 𝑟, the number of bits downloaded per contacted node 𝜓, and code param-
eters 𝑛 and 𝑘, the upper bound on the file size𝑀 is given as

𝑀 ≤ min{(𝑟 − 𝑖)𝜓, 𝛼}. (2.1)

By fixing 𝑀, 𝑟, and 𝑘 in (2.1) and plotting the resulting repair bandwidth as a
function of 𝛼 , i.e., the number of symbols stored per node, gives us the tradeoff.
There exist two extremum points: the MSR point and the MBR point. As the
names suggest, the MSR point is the point where 𝛼 is minimum, while the MBR
point is at the other end of the spectrum, where 𝜓 is minimized, i.e., the repair
bandwidth is minimized. Codes that achieve these two points are referred to as
MSR andMBR codes, respectively. Codes such as Zigzag [14], ProductmatrixMSR
[15], and minimum disk input/output repairable [40] codes are examples of MSR
codes. Such codes are also MDS codes. Fractional repetition [41] and Product
matrix MBR [15] codes are examples of MBR codes.

Fig. 2.4 illustrates a [5, 3, 3]Zigzag code. This code achieves a repair bandwidth
of 16 bits for the repair of any systematic symbol. For the same file size, an MDS
code has a repair bandwidth of 24 bits. Consider the repair of Node 2, then the
symbols 𝑥()

, and 𝑥()
, are recovered by downloading 𝑥()

, , 𝑥()
, , 𝑥()

, , 𝑥()
, , 𝑝 , , and

𝑝 , from Nodes 1, 3, and 4. The last two symbols 𝑥()
, and 𝑥()

, can be recovered
by downloading just 𝑝 , and 𝑝 , from Node 5 as the other required symbols are
already downloaded during the recovery of previous symbols. In total, 8 symbols
of size 2 bits are downloaded. Thus, in total 16 bits are downloaded.

2.3.3 Codes From the Piggybacking Framework

The piggybacking framework was first introduced in [42] and is applied over a
pre-existing erasure correcting code. Most commonly, the pre-existing code is an

16 Distributed Storage Systems and Distributed Caching

𝑥()
,

𝑥()
,

Node 1

𝑥()
,

𝑥()
,

Node 2

∑ 𝜐 , 𝑥()
,

∑ 𝜐 , 𝑥()
,

Node 3

𝜐 , 𝑥()
, − ∑ 𝜐 , 𝑥()

,

∑ 𝜐 , 𝑥()
, + 𝜐 , 𝑥()

,

Node 4

(b)

𝑥()
,

𝑥()
,

Node 1

𝑥()
,

𝑥()
,

Node 2

∑ 𝜐 , 𝑥()
,

∑ 𝜐 , 𝑥()
,

Node 3

∑ 𝜐 , 𝑥()
,

∑ 𝜐 , 𝑥()
,

Node 4

(a)

Figure 2.5: DSS with 𝑓 = 𝛽 = 1 that uses [4, 2, 3] erasure correcting codes over GF(𝑝)
with 𝛼 = 2 and 𝜐 , , 𝜐 , ∈ GF(𝑝). (a) Classical MDS code. (b) Piggybacking framework
applied to the MDS code.

MDS code. The concept involves taking carefully chosen linear combinations of
message symbols, referred to as piggybacks, and then add them to the parity sym-
bols of the code. This allows for lower repair bandwidth at the expense of higher
encoding and repair complexity. A rule of thumb is that both the encoding and
repair complexity are larger than those of the pre-existing code, while the repair
bandwidth is smaller than that of the pre-existing code. The codes presented in
[42–44] are some examples that use the piggybacking framework on top of an
MDS code, and have fault tolerance equal to that of the pre-existing MDS code.

Fig. 2.5(b) illustrates a [4, 2, 3] code from [42] that is able to reduce the repair
bandwidth of the systematic nodes. It starts by taking the [4, 2, 3] MDS code in
Fig. 2.5(a) and then adding piggybacks to it. In the above example, the piggybacks
𝜐 , 𝑥()

, and ∑ 𝜐 , 𝑥()
, + 𝜐 , 𝑥()

, are added and subtracted, respectively to the
parity symbols in Node 4. This modifies the code to the piggybacked code shown
in Fig. 2.5(b). Consider the repair of Node 1. The repair procedure is as follows:
recover 𝑥()

, by downloading 𝑥()
, and ∑ 𝜐 , 𝑥()

, from Nodes 2 and 3. Then,
download ∑ 𝜐 , 𝑥()

, + 𝜐 , 𝑥()
, to recover 𝑥()

, as the symbols 𝑥()
, , 𝑗 ∈ ℕ , are

already known to the user. The DSS downloads 4 symbols for the repair of Node
1. The repair of Node 2 also requires downloading the same number of symbols.
Thus, for systematic nodes, the code has a repair bandwidth of 4⌈log 𝑝⌉ bits.

2.4 Coding in Distributed Caching for Wireless Networks

Content delivery has evolved from the traditional broadcasting scenario where
the same content was broadcasted to all users to a content-on-demand scenario
characterized by the fact that users place requests in a highly asynchronous man-
ner. This, in addition to the fact that in recent years wireless networks have seen
an exponential increase in the number of users, has lead to an explosion of the
wireless traffic. To cope with this, a technique referred to as distributed caching

2.5 SystemModel for Distributed Caching 17

files

MBS

File library

User B

User A
SBS

Figure 2.6: A wireless network for content delivery consisting of an MBS and five SBSs.
Users download files from a library of 𝐹 files. The MBS has access to the library through
a backhaul link. Some files are also cached at SBSs using a (5, 3) MDS code. User A
retrieves a cached file from the three SBSs within range. User B retrieves a fraction 2/3
of a cached file from the two SBSs within range and the remaining fraction from the
MBS.

has been proposed. The concept of distributed caching is similar to that of dis-
tributed storage, where content is cached closer to the end users (in densely
deployed SBSs [30, 45, 46] or directly in the mobile devices [46–48]) in a dis-
tributed manner. Similar to distributed storage, error correcting codes can be
used to make caching more efficient. However, unlike distributed storage where
the codes are used for storage, here coding reduces the latency in the content de-
livery to the users, as well as the backhaul traffic [30]. In this thesis, we consider
the distributed coded caching scenario where content is cached on SBSs.

In a distributed coded caching scenario, each file (or piece of data stored at
the macro base station (MBS)) is fragmented into 𝑘 packets, depending on its
popularity, and then encoded using an [𝑛, 𝑘] erasure correcting code to obtain
𝑛 coded packets. These are then stored across a subset of 𝑛 SBSs. A user who
wishes to download a file downloads a fraction of it from neighboring SBSs, while
the remaining fraction is downloaded from the MBS. The easiest way to achieve
the benefits of caching is to perform popular content caching, which amounts to
cache a copy of the most popular files on the SBSs. This is equivalent to using
a repetition code to cache the content. The authors of [49, 50] were one of the
first to show that caching content on wireless networks is beneficial. In addition,
they showed that popular content caching is suboptimal. Later on, in [30, 45] it
was shown that using MDS codes can significantly improve the performance of
caching systems. In particular, [45] showed that using MDS codes in distributed
caching reduces the download delay, and [30] showed that it reduces the amount
of data downloaded from an MBS.

2.5 SystemModel for Distributed Caching

We consider a cellular network where a macro-cell is served by an MBS. Mobile
users wish to download files from a library of 𝐹 files that is always available at the

18 Distributed Storage Systems and Distributed Caching

MBS through a backhaul link. We assume all files of equal size.2 In particular,
each file consists of 𝛽𝐿 bits and is represented by a 𝛽 × 𝐿 matrix 𝑿(),

𝑿() =
�̃�()
⋮
�̃�()

where upperindex 𝑖 = 1,… , 𝐹 is the file index. Therefore, each file can be seen
as divided into 𝛽 stripes �̃�(), … , �̃�() of 𝐿 bits each. The file library has popularity
distribution 𝒑 = (𝑝 ,… , 𝑝), where file 𝑿() is requested with probability 𝑝 . We
also assume that𝑁SBS SBSs are deployed to serve requests and offload traffic from
theMBSwhenever possible. To this purpose, each SBS has a cache size equivalent
to𝑀 files. The considered scenario is depicted in Fig. 2.6.

2.5.1 Content Placement

File 𝑿() is partitioned into 𝛽𝑘 packets of size 𝐿/𝑘 bits and encoded before being
cached in the SBSs. In particular, each packet is mapped onto a symbol of the
field GF(𝑞), with 𝛿 ≥ . For simplicity, we assume that is integer

and set 𝛿 = . Thus, stripe �̃�() can be equivalently represented by a stripe

𝒙(), 𝑎 ∈ ℕ , of symbols over GF(𝑞). Each stripe 𝒙() is then encoded using an
(𝑁SBS, 𝑘)MDS code 𝒞 over GF(𝑞) into a codeword 𝒄() = (𝑐(), , … , 𝑐(), SBS

), where
code symbols 𝑐(), , 𝑗 ∈ ℕ SBS

, are over GF(𝑞).
The encoded file can be represented by a 𝛽 × 𝑁SBS matrix 𝑪() = (𝑐(),). Code

symbols 𝑐(), , are then stored in the 𝑗-th SBS (the ordering is unimportant). Thus,
for each file 𝑿(), each SBS caches one coded symbol of each stripe of the file, i.e.,
a fraction 𝜇 = 1/𝑘 of the 𝑖-th file. As 𝑘 ∈ ℕ

SBS
,

𝜇 ∈ ℳnoPIR ≜ {0, 1/𝑁SBS, 1/(𝑁SBS − 1),… , 1/2, 1}, (2.2)

where 𝜇 = 0 implies that file 𝑿() is not cached.
Since each SBS can cache the equivalent of𝑀 files, the 𝜇 ’s must satisfy

𝜇 ≤ 𝑀.

We define the vector 𝝁 = (𝜇 ,… , 𝜇) and refer to it as the content placement.
Also, we denote by 𝒞𝝁MDS the caching scheme that uses MDS codes {𝒞 } according
to the content placement 𝝁.

2Assuming files of equal size is without loss of generality, since content can always be divided into
chunks of equal size.

2.5 SystemModel for Distributed Caching 19

2.5.2 File Request

Mobile devices request files according to the popularity distribution𝒑 = (𝑝 ,… , 𝑝).
Without loss of generality, we assume 𝑝 ≥ 𝑝 ≥ … ≥ 𝑝 . The user request is
initially served by the SBSs within communication range. We denote by 𝛾 the
probability that the user is served by 𝑏 SBSs and define 𝜸 = (𝛾 ,… , 𝛾

SBS
). If the

user is not able to completely retrieve 𝑿() from the SBSs, the additional required
symbols are fetched from the MBS. Using the terminology in [30], the average
fraction of files that are downloaded from the MBS is referred to as the backhaul
rate, denoted by Rbh, and defined as

Rbh ≜
average no. of bits downloaded from the MBS

𝛽𝐿 .

Note that for the case of no caching Rbh = 1.
As in [30, 45, 47, 48], we assume that the communication is error free.

20 Distributed Storage Systems and Distributed Caching

Chapter 3

Security

This chapter serves as the introduction to the notion of information-theoretic se-
curity in DSSs. Then, it goes on to define and characterize the adversary assumed
in this thesis. Finally, it briefly explains the idea of how to achieve security against
such an adversary.

Specifically, Section 3.1 serves to introduce the concept of security in DSSs. In
Section 3.2, the system model for security is described. In particular, it defines
and characterizes the adversary in detail. The last section, Section 3.3, provides a
brief idea of how security is achieved in this scenario.

22 Security

3.1 Introduc on

Security in DSSs is analyzed through their resilience towards active or passive
attacks [51, 52]. Active attacks are those attacks where the adversary actively in-
jects errors into the stored data or modifies it, whereas passive attacks include
an adversary who eavesdrops the stored or transmitted data. There are two ways
to achieve security against such attacks: the cryptographic and the information-
theoretic approach. For DSSs, the cryptographic approach entails key manage-
ment, which can become complicated and cumbersome.

On the contrary, the information-theoretic approach involves coding schemes
that are easier to handle. In DSSs, coding schemes are used to ensure reliabil-
ity against node failures. Combined with the fact that the information-theoretic
approach has a stronger sense of security, it is natural to look for information-
theoretic security solutions for DSSs. In particular, in this thesis, we consider
information-theoretic solutions against a passive attack adversary (from hereon
referred to as the eavesdropper).

The authors of [23] were the first to consider the security aspect of DSSs. They
considered adversaries which performed either an active attack, a passive attack,
or a combination of the two. In particular, for the passive attack, they considered
an eavesdropper model where the eavesdropper has access to at most ℓ < 𝑘
arbitrary nodes. They derived the secrecy capacity, i.e., the maximum size of the
file such that security against the eavesdropper is maintained, at the MBR point.
Furthermore, they provided constructions of secure MBR codes. These codes are
MBR codes with the added benefit of being secure against the eavesdropper. In
[22], the authors generalized the eavesdroppermodel, where in addition to having
access to the data in ℓ nodes, the eavesdropper has access to the data downloaded
in the repair of ℓ distinct nodes where ℓ + ℓ < 𝑘. They presented secure MBR
and MSR code constructions that allowed the DSS to achieve security against the
eavesdropper. For the same eavesdropper model, in [21], the authors presented
the secrecy capacity at the MSR point for linear schemes, and an upper bound
on the maximum file size that can be stored in the DSS using distance-optimal
LRCs such that it is secure against the eavesdropper. As such, they also provided
secure MSR codes that achieved the secrecy capacity, and secure LRCs that can
store files having file size equal to the upper bound they derived. Such codes
achieve efficient repair while being secure against the eavesdropper.

3.2 Eavesdropper Model

In this thesis (and more particularly in Paper II), we consider the (ℓ , ℓ) eaves-
dropper model [21, 22], where the eavesdropper can passively observe, but not
modify, the content of ℓ = ℓ + ℓ < 𝑘 storage nodes. Out of the ℓ nodes,
the eavesdropper can observe the symbols stored in a subset of ℓ storage nodes,
which we denote by 𝒮 (|𝒮 | = ℓ). Furthermore, it can observe the data down-
loaded during the repair of a subset of ℓ storage nodes, denoted by 𝒮 (|𝒮 | = ℓ),
where 𝒮 ∩ 𝒮 = ∅. This model is relevant in the scenario where nodes are lo-
cated at different geographical locations. Peer-to-peer storage systems are exam-

3.3 Basic Principle 23

𝑥()
, + 𝑟

Node 1

𝑟

Node 2

𝑥()
, + 𝜐𝑟

Node 3

Figure 3.1: Illustration of an information-theoretic secure scheme for a DSS with 𝑓 =
𝛽 = 1. Here 𝑟 ∈ GF(𝑞) is the key and it is chosen uniformly at random from GF(𝑞), and
𝜐 ∈ GF(𝑞).

ples of such DSSs [22]. We denote the subset of storage nodes from which data
is downloaded to repair storage nodes in 𝒮 by 𝒮d. We will refer to the symbols
𝒆 the eavesdropper obtains as the eavesdropped symbols. We also assume that
the eavesdropper has perfect knowledge of the erasure correcting code used for
encoding. In the following, we formally define when a DSS is secure against the
aforementioned eavesdropper model.

Definition 2 ([21, 22]). Let 𝒆 be the vector of eavesdropped symbols that the eaves-
dropper obtains from the storage nodes in 𝒮 ∪ 𝒮d. A DSS storing a message 𝒙
(possibly encoded by an erasure correcting code) is said to be completely secure
against an (ℓ , ℓ) eavesdropper if the mutual information between the message
and the eavesdropped symbols is zero, i.e., I(𝒙; 𝒆) = 0.

3.3 Basic Principle

Any information-theoretic solution involves coding of the file and the key (which
is a random sequence of symbols that are uniformly picked at random from a
Galois field). Thus, in essence the security comes at the cost of larger storage
overhead. Fig. 3.1 illustrates this. The scheme uses a [3, 2] code 𝒞 of rate 𝑅𝒞 =
2/3, which encodes a modified message (𝑥()

, + 𝑟, 𝑟). Notice that the storage
overhead increases from 3/2 to 3. This simple scheme ensures security against
an (ℓ = 1, ℓ = 0) eavesdropper, while the retrieval of the file securely requires
downloading symbols from any 2 nodes. For security against larger values of ℓ
and ℓ , one must look towards nontrivial solutions.

3.3.1 Shamir's Secret Sharing Scheme

Shamir provided one nontrivial solution in [53] that can be adapted toDSSs (more
specifically, to DSSs described in this thesis). In the following, we describe the
scheme in [53].

Consider that the DSS has to store the file 𝑧 ∈ GF(𝑞) securely. The user
chooses a polynomial 𝑞(𝑥) = 𝑎 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 of degree 𝑘 − 1, where
𝑎 = 𝑧 and 𝑎 ∈ GF(𝑞), 𝑖 ∈ ℕ , is chosen uniformly at random. It then evalu-
ates the polynomial at 𝑛 points that are then stored on 𝑛 nodes. In particular, the
𝑗-th node stores 𝑞(𝑥), 𝑥 ∈ GF(𝑞). Given any subset of these 𝑘 evaluations, the
authenticated user can recover 𝑧 by polynomial interpolation. More importantly,
an adversary who has access to at most 𝑘 − 1 evaluations cannot recover the file
𝑧. However, implementing such a solution on DSSs leads to inefficient repair of

24 Security

nodes as one needs to download data from 𝑘 nodes. So the question arises, is it
possible to construct a secure scheme that allows efficient repair?

Consider a concatenated coding scheme (consisting of an outer and an inner
code), where the code symbols from the inner code are stored on 𝑛 storage nodes.
Then, the repair of any storage node depends on the inner code. Furthermore,
notice that in the secret sharing scheme, the security is achieved using the evalu-
ation of polynomials. Therefore, the concatenation scheme can bemade secure if
the code symbols of the inner code are evaluations of a polynomial. To this end,
we assign two criteria: 1) The outer code is an evaluation of a linearized polyno-
mial, and 2) the inner code is a repair-efficient code for a DSS. We construct a
concatenation scheme where the outer code is a Gabidulin code [54] as it meets
criterion 1), and the inner code is either an LRC or an MSR code. In [21], the
authors used this concatenation scheme to achieve security against an (ℓ , ℓ)
eavesdropper. Motivated by the advantages of RFCs presented in Section 2.3, in
Paper II we use the same concatenation scheme albeit with an inner RFC. As a
result, in the following subsection, we present the construction of an [𝑁, 𝐾, 𝐷𝒞

min]
Gabidulin code 𝒞.

3.3.2 Gabidulin Codes

Gabidulin codes are a class of rank codes [54]. An [𝑁, 𝐾, 𝐷𝒞
min] Gabidulin code

𝒞 (over GF(𝑝), 𝛼 ∈ ℕ) of length 𝑁, dimension 𝐾, and minimum rank distance
𝐷𝒞
min, can correct up to𝐷𝒞

min−1 rank erasures. Gabidulin codes aremaximum rank
distance codes, i.e., they achieve the Singleton bound, 𝐷𝒞

min ≤ 𝑁−𝐾 + 1, and are
obtained by evaluations of polynomials. More specifically, Gabidulin codes use
linearized polynomials.

Definition 3. A linearized polynomial 𝑓(𝑦) of degree 𝑡 > 0 over GF(𝑝) has the
form

𝑓(𝑦) = 𝑎 𝑦 ,

where 𝑎 ∈ GF(𝑝) and 𝑎 ≠ 0.
A message 𝒙 = (𝑥 ,… , 𝑥) is encoded using an (𝑁, 𝐾) Gabidulin code as follows.

1. Construct a polynomial 𝑓(𝑦) = ∑ 𝑥 𝑦 .

2. Evaluate 𝑓(𝑦) at 𝑁 linearly independent (over GF(𝑝)) points {𝑦 , … , 𝑦 } ⊂
GF(𝑝) to obtain a codeword (𝑓(𝑦), … , 𝑓(𝑦)).

Decoding proceeds as follows.

1. Obtain any 𝐾 evaluations at 𝐾 linearly independent (over GF(𝑝)) points.
Otherwise, decoding fails.

2. Performpolynomial interpolation on the𝐾 evaluations and recover the orig-
inal message 𝒙 by solving a system of linear equations.

Chapter 4

Private Informa on Retrieval

In this chapter, we introduce the concept of information-theoretic PIR in DSSs.
The PIR problem in DSSs refers to the problem of downloading data from the
nodes in a DSS without letting them know the identity of the requested file. The
chapter starts by bringing to attention the evolution of PIR schemes that allow
the user to achieve PIR. It then provides a systemmodel that characterizes the ad-
versary and the intuition behind the PIR schemes in the literature. Subsequently,
it explains the PIR problem in distributed caching, and how it is different from
the DSS model.

The chapter is divided into four sections. Section 4.1 provides the background
that traces the evolution of PIR schemes. Section 4.2 then goes on to describe
the privacy model that is used in Papers III and IV, and provides information-
theoretic conditions for any scheme (or protocol) to achieve PIR. In Section 4.3,
a brief intuition behind PIR protocols is provided where it is assumed that the
DSS stores data using MDS codes. Section 4.4 discusses the need to provide PIR
protocols for DSSs that store data using an arbitrary linear code. Furthermore,
it provides a brief glimpse into the details of the construction of such protocols.
Finally, Section 4.5 introduces the PIR problem to distributed caching.

26 Private Information Retrieval

4.1 Introduc on

Chor et al. [26, 55] first introduced the so-called PIR problem in the theoretical
computer science literature. They introduced the concept of an 𝑛-server PIR pro-
tocol, where it was assumed that the (binary) data was replicated on 𝑛 nodes (or
servers). From a coding theory perspective, it means that the PIR protocol was
conditioned on the fact that the DSS uses an [𝑛, 1, 𝑛] storage code. Furthermore,
they assumed that none of the nodes collude to obtain the identity of the file.
The efficiency of the protocol was judged by the protocol’s communication effi-
ciency that accounted for the upload and the download cost. Subsequently, for
the same storage model [56–58] presented PIR protocols that further improved
the communication cost. In [59], the authors presented a PIR protocol where
data was coded and then stored on the 𝑛 storage nodes.

With the rise in popularity of DSSs and the knowledge that coding provides
benefits, the study of PIR protocols has attracted the information theory commu-
nity. Most information-theoretic works on PIR assume that the size of the data
is significantly larger than the sizes of the queries sent to the nodes of the DSS.
Therefore, the download cost dominates the upload cost, and it determines the
efficiency of a PIR protocol. The efficiency is characterized by the PIR rate, which
is defined as the ratio of the size of the requested data and the amount of data
downloaded by the protocol, where higher PIR rate means better efficiency.

The authors of [60] were the first to introduce PIR schemes for DSSs, where
data is stored using two explicitly designed codes. In [61], the authors presented
an upper bound on the PIR rate for a particular class of PIR protocols. In [62],
the authors presented PIR codes that when used with a traditional 𝑛-server PIR
protocol, allows the DSS to achieve the PIR property. These codes allow the DSS
to achieve low storage overhead, and at the same time allow for the resulting PIR
protocol to achieve the same communication efficiency as the 𝑛-server PIR pro-
tocol. Given an arbitrary number of files stored on a DSS that uses an [𝑛, 1, 𝑛]
repetition code, the authors of [63] derived the replicated-PIR capacity, which is
the largest PIR rate for any 𝑛-server PIR protocol, when the nodes do not col-
lude. Additionally, they provided a PIR protocol that achieves this. Extending
this work, the authors in [27] derived the MDS-PIR capacity for a DSS where files
are stored using an MDS code and where its nodes do not collude. They also
presented a PIR protocol that achieved it. Since the MDS-PIR capacity depends
on the number of files, in this dissertation we refer to it as the finite MDS-PIR
capacity. The authors in [64] presented a PIR protocol for a DSS that uses an
[𝑛, 𝑘, 𝑛 − 𝑘 + 1] MDS code to store data. When no nodes collude, they showed
that their protocol achieves the asymptotic MDS-PIR capacity, i.e., the MDS-PIR
capacity for an infinite number of files. The MDS-PIR capacity when the nodes
are allowed to collude is still an open problem except in few particular cases [65]
and for repetition codes [66]. In [67], the authors presented a PIR protocol for
DSSs that stored data using generalized RS codes and ensured privacy even when
the nodes collaborated. When the nodes collude, their protocol achieved a better
PIR rate than the protocol in [64].

Parallel to the works on traditional PIR protocols, there has been some ex-
citing research on variations of PIR for DSSs. In [68], the authors studied the

4.2 Privacy Model 27

⋯ ⋯

𝑸() 𝑸() 𝑸() 𝑸()

𝒓 𝒓 𝒓 𝒓

𝑛 storage nodes

Figure 4.1: Illustration of a DSS containing 𝑛 nodes that store 𝑓 files. The user sends the
queries 𝑸(), 𝑗 ∈ ℕ , to the storage nodes and receives responses 𝒓 .

problem of symmetric PIR, and presented the symmetric PIR capacity for linear
schemes under the assumption that the DSS uses an MDS code and nodes are al-
lowed to collude. In symmetric PIR, the user should not only retrieve the data
privately but also not learn anything about other data that is stored on the DSS.
Another interesting variation is the robust PIR introduced in [69], where a subset
of nodes fail to respond back to the user, nodes can collude, and the DSS uses a
repetition code. The authors of [70] presented a PIR protocol for the single server
case, i.e., where all nodes in the DSS collude. In particular, they make use of side
information available to the user to obtain an efficient protocol.

4.2 Privacy Model

We consider a DSS where a set of 𝑇 nodes may act as spies. Further, they might
collude and hence they are referred to as colluding nodes. In addition, it is as-
sumed that the remaining nonspy nodes do not collaborate with the spy nodes.
The scenario of a single spy node (𝑇 = 1) in the DSS is analogous to having a sys-
tem with no colluding nodes. Let 𝒯 ⊂ ℕ , |𝒯| = 𝑇, denote the set of spy nodes
in the DSS. The role of the spy nodes is to determine which file 𝑿() is accessed
by the user. We assume that the user does not know 𝒯, since otherwise it can
trivially achieve PIR by avoiding contacting the spy nodes. To retrieve file 𝑿()

from the DSS, the user sends a 𝑑 × 𝛽𝑓 matrix query 𝑸() over GF(𝑞) ⊆ GF(𝑞ℓ) to
the 𝑙-th node for all 𝑙 ∈ ℕ . The query matrices are represented in the form of 𝑑
subquery vectors 𝒒() of length 𝛽𝑓 as

𝑸() = ⎛
⎜

⎝

𝒒()
𝒒()
⋮
𝒒()

⎞
⎟

⎠

= ⎛
⎜

⎝

𝑞(), 𝑞(), ⋯ 𝑞(),
𝑞(), 𝑞(), ⋯ 𝑞(),
⋮ ⋮ ⋯ ⋮

𝑞(), 𝑞(), ⋯ 𝑞(),

⎞
⎟

⎠

.

28 Private Information Retrieval

The 𝑖-th subqueries 𝒒(), 𝑙 ∈ ℕ , of the 𝑛 queries aim at recovering Γ unique code
symbols1 of the file 𝑿(). In response to the received query matrix, node 𝑙 sends
the column vector

𝒓 = (𝑟 , , … , 𝑟 ,) = 𝑸() �𝑐()
, , … , 𝑐()

, , … , 𝑐()
,

� , (4.1)

referred to as the response vector, back to the user as illustrated in Fig. 4.1. We
refer to 𝑟 , as the 𝑖-th subresponse of the 𝑙-th node. Perfect information-theoretic
PIR for such a scheme is defined in the following.

Definition 4. Consider a DSS with 𝑛 nodes storing 𝑓 files in which a set of 𝑇 nodes
𝒯 = {𝑡 , … , 𝑡 } ⊂ ℕ , 1 ≤ |𝒯| = 𝑇 ≤ 𝑛 − 𝑘, act as colluding spies. A user who
wishes to retrieve the𝑚-th file sends the queries 𝑸(), 𝑙 ∈ ℕ , to the storage nodes,
which return the responses 𝒓 . This scheme achieves perfect information-theoretic
PIR if and only if

Privacy: H �𝑚|𝑸(), … , 𝑸() � = H(𝑚); (4.2a)
Recovery: H �𝑿()|𝒓 , … , 𝒓 � = 0. (4.2b)

Queries satisfying (4.2a) ensure that the file requested by the user is indepen-
dent of the queries. Thus, the colluding nodes in 𝒯 do not gain any additional in-
formation regarding which file is requested by the user by observing the queries.
The recovery constraint in (4.2b) ensures that the user is able to recover the re-
quested file from the responses sent by the DSS.

The efficiency of a PIR protocol, given by its PIR rate, is defined as the amount
of retrieved data per unit of total amount of downloaded data, since it is assumed
that the content of the retrieved file dominates the total communication cost
[61, 64].

Definition 5. The PIR rate of a PIR protocol, denoted by R, is the amount of infor-
mation retrieved per downloaded symbol, i.e.,

R ≜ 𝛽𝑘
𝑛𝑑 .

Since the size of each file is 𝛽𝑘, the parameters 𝑑 and Γ should be chosen such
that 𝛽𝑘 = Γ𝑑. For the (file-independent) Protocols 2 and 3 in Paper III to be
practical, we may select

𝛽 = LCM(𝑘, Γ)
𝑘 and 𝑑 = LCM(𝑘, Γ)

Γ , (4.3)

as it ensures that we have the smallest values of 𝛽 and 𝑑. This is not the case
for Protocol 1 in Paper III, where 𝛽 is exponential in the number of files in order
achieve optimal PIR rates. By choosing the values above for 𝛽 and 𝑑, the PIR rate
for Protocols 2 and 3 become

R = Γ
𝑛.

1In general, the -th subqueries recover unique code symbols such that among the ∑ recovered
code symbols there are distinct information symbols. However, for the sake of simplicity, we assume

for all .

4.3 Achieving PIR 29

We will write R(𝒞) to highlight that the PIR rate depends on the underlying stor-
age code 𝒞. The maximum achievable PIR rate is the PIR capacity. It was shown
in [27] that for the noncolluding case and for a given number of files 𝑓 stored
using an [𝑛, 𝑘]MDS code, the MDS-PIR capacity, denoted by C , is

C ≜ 𝑛 − 𝑘
𝑛 1 − �𝑘

𝑛
� . (4.4)

Throughout the paper we refer to the capacity in (4.4) as the finite MDS-PIR ca-
pacity as it depends on the number of files. When the number of files 𝑓 → ∞, the
asymptotic MDS-PIR capacity is

C ≜ 𝑛 − 𝑘
𝑛 . (4.5)

It was shown in [61, Th. 3] that the PIR rate for a DSS with noncolluding nodes
is upperbounded by C for a special class of linear retrieval schemes. In the
case of colluding nodes, an explicit upper bound is currently unknown, as well
as an expression for the MDS-PIR capacity. Some initial work for the case of two
colluding nodes has recently been presented in [65], and when the storage codes
are repetition codes the MDS-PIR capacity has been derived in [66].

4.3 Achieving PIR

The trivial way to achieve PIR is to download everything from the DSS. However,
such a naive scheme is inefficient. In fact, when the DSS consists of just a single
node, and when the user does not have any side information then the only way
to achieve PIR is the trivial way. A way to achieve a more efficient PIR protocol
is to add redundancy in the DSS. The simplest way to realize this is by adding
more nodes (containing replicated data) into the system. Again, from a coding
perspective, this is a DSS that uses an [𝑛, 1, 𝑛] repetition code. In this section, we
provide the intuition behind two protocols. The first protocol, which we refer to
as the finite PIR protocol, was given in [63] and achieves the MDS-PIR capacity in
(4.4), while the second protocol, whichwe refer to as the asymptotic PIR protocol,
was given in [64] and achieves the asymptotic MDS-PIR capacity in (4.5). For the
sake of simplicity in the explanations, we consider a DSS (with parameter 𝛼 = 1)
storing 𝑓 = 2 files using a [2, 1, 2] repetition code.

4.3.1 Finite PIR Protocol

The protocol is based on two main principles that are applied iteratively.

1. Enforcing symmetry within each node.

2. Exploiting side information in order to recover desired message symbols.

By the first principle, we mean that from each node an equal number of message
symbols should be downloaded from each file. Doing this obfuscates the knowl-
edge of the desired file to the nodes, thus ensuring privacy. Doing this means that

30 Private Information Retrieval

Node 1 Node 2

𝑦() 𝑦()

𝑦() 𝑦()

𝑦() + 𝑦() 𝑦() + 𝑦()

Figure 4.2: Query structure of the finite PIR protocol for the DSS that uses a [2, 1, 2]
repetition code with parameters 𝛼 = 1 and 𝛽 = 4.

the user downloads undesired symbols from undesired files. The second princi-
ple says that these undesired symbols, which can be treated as side information,
should be used to recover additional desired message symbols further, thus en-
suring that the protocol is as efficient as possible. We explain these ideas using
an example.

We consider a DSS that uses a [2, 1, 2] repetition code to encode 𝑓 = 2 files
and then stores them across 2 storage nodes. The code is scalar (𝛼 = 1), and
𝛽 = 4. In particular the files 𝑿(), 𝑚 ∈ ℕ , are of size 4 × 1, and as such 𝑿() =
(𝑥()

, , ⋯ , 𝑥()
,) ∈ GF(𝑞) . Suppose that the user requests file 𝑿(). For such a

system, the queries to the nodes are summarized in Fig. 4.2, where

𝑦() = 𝑥()
(), , 𝑖 ∈ ℕ .

Function 𝜋(⋅) ∶ ℕ → ℕ represents a random permutation that is done pri-
vately and is known just to the user. Note that the goal of the user is to recover
{𝑦(), … , 𝑦()} as this ensures the complete recovery of 𝑿(). The protocol can be
broken into three steps. In Step 1, from Nodes 1 and 2 it downloads 𝑦() and 𝑦(),
respectively. These are the symbols desired by the user. However, to ensure pri-
vacy, it needs to download an equal number of symbols from the remaining files
(Principle 1). Thus, Step 2 involves downloading 𝑦() and 𝑦() from Node 1 and
Node 2, respectively. These are the undesired symbols, which we would like to
use in order to retrieve additional desired symbols (Principle 2). Step 3) involves
downloading sums 𝑦() + 𝑦() from Node 1 and 𝑦() + 𝑦() from Node 2. Down-
loading these sums still ensures privacy as one symbol from each file participates
in both sums. From previous steps, 𝑦() and 𝑦() are known. As a consequence
the user can obtain 𝑦() and 𝑦(), respectively. In this way, the user has obtained
𝑦(), … , 𝑦(). The PIR rate of the resulting protocol is R([2, 1, 2]) = 4/6 = 2/3.
Though the protocol seems simple, it quickly explodes as the number of files in-
creases, and when the DSS uses some nontrivial code.

4.3.2 Asympto c PIR Protocol

Unlike the previous protocol, the asymptotic PIR protocol is much simpler, in
the sense that the protocol is independent of the number of files in the system.
Essentially the protocol entails queries that are a sum of a random vector and a

4.4 Towards Arbitrary Linear Codes 31

deterministic vector, where each vector in the query plays a crucial role. Adding
the random vector to the deterministic vector makes this sum also random, thus
ensuring that the queries are statistically independent of the desired file index. As
a result, the protocol maintains privacy, whereas the deterministic vector allows
for the recovery of the requested file. The recovery occurs in an ensuing way.
The response generated by the respective nodes as in (4.1) from the queries above
leads to the creation of response symbols that are linear combinations of some
interference symbols, or linear combinations of such symbols with the desired
message symbols. Themessage symbols (thus, the desired file) are then recovered
by interference cancellation through solving systems of linear equations. We will
explain this in more detail in the following through an example.

As mentioned at the start of the section, we assume that the DSS has two
storage nodes and stores two files using a [2, 1, 2] scalar (𝛼 = 1) repetition code.
Unlike the previous protocol, in this protocol we assume that 𝛽 = 1 and as such,
the files𝑿() = 𝑥()

, , 𝑚 ∈ ℕ . Suppose the userwants to retrieve𝑿(). It generates
query matrices as follows,

𝑸() = 𝒒() = (𝑢 , 𝑢) + (0, 0) = (𝑢 , 𝑢),
𝑸() = 𝒒() = (𝑢 , 𝑢) + (1, 0) = (𝑢 + 1, 𝑢),

where 𝑢 ∈ GF(𝑞), 𝑗 ∈ ℕ , is chosen uniformly at random from the Galois field.
Thereafter, it sends 𝑸(), 𝑙 ∈ ℕ , to the 𝑙-th node. To the nodes, their respective
queries appear random. Thus, the nodes individually are unable to determine
the requested file. Furthermore, in the second query 𝑸(), a deterministic vector
(1, 0) is added to the random vector. The position of the element one in the
deterministic vector dictates which file the user requests. In this case, since the
goal is to retrieve 𝑿(), the one occurs at the first position while the remaining
positions are filled with zeros. The nodes compute responses according to (4.1),

𝒓 = 𝑟 , = 𝑢 𝑥()
, + 𝑢 𝑥()

, ,
𝒓 = 𝑟 , = 𝑢 𝑥()

, + 𝑢 𝑥()
, + 𝑥()

, .
(4.6)

The user then obtains the requested file by performing 𝒓 −𝒓 . This can be inter-
preted as cancelling the interference 𝑢 𝑥()

, +𝑢 𝑥()
, to obtain 𝑥()

, . Such a proto-
col, though simple, achieves a PIR rate of R([2, 1, 2]) = 1/2, which is lower than
the PIR rate of the finite PIR protocol. Although the number of symbols down-
loaded from the servers is low (it is 2 in this example), Chor et al. in [55] stated
that this protocol is inefficient as the upload cost is high. However, if we assume
that the files 𝑿() are very big then the download cost dominates the upload cost
and therefore the scheme is efficient.

4.4 Towards Arbitrary Linear Codes

All state-of-the-art PIR protocols ([27, 63, 64]) proposed in the literature are con-
structed using the principles mentioned in the previous section. Furthermore,

32 Private Information Retrieval

𝑥()
,

𝑥()
,

Node 1

𝑥()
,

𝑥()
,

Node 2

𝑥()
, + 𝑥()

,

𝑥()
, + 𝑥()

,

Node 3

Figure 4.3: ADSS that uses a [3, 2, 2] single parity check codewith parameters𝛼 = 𝛽 = 1,
and 𝑓 = 2.

they consider that data is stored using an MDS code. As it was previously men-
tioned in Chapter 2, MDS codes are inefficient for DSSs. In particular, MDS-
coded DSSs have inefficient repair. To counter this problem, codes based on
locality have gained prominence in the DSS literature. Some examples of such
codes were presented in [11, 12, 37–39]. For simplicity, we refer to such class of
codes as LRCs. Another class of repair efficient codes are MBR codes [15, 41]. A
common trait across these two classes of codes is that they are not MDS codes.
That being the case, in this thesis we present PIR protocols where we relax the
MDS property assumption.

To explain the intuition behind the construction of an optimal PIR protocol
for a DSS that uses an arbitrary linear code, we make use of an example. More
specifically, we consider the DSS in Fig. 4.3 that uses a single parity check (SPC)
code. Although SPCs are MDS codes, we use it in the example to provide an
alternative view of the construction that is more related to the structure of the
code used in the DSS. This in turn provides an intuition for constructing PIR
protocols for an arbitrary linear code. Assume that the user wants to retrieve
𝑿() from the DSS in Fig. 4.3 and it uses the asymptotic PIR protocol. The user
would generate query matrices 𝑸(), 𝑙 ∈ ℕ , of size 2 × 2, i.e., she would send
𝑑 = 2 subqueries to each node. For explanation purposes, we focus on the first
subqueries sent to the nodes,

𝒒() = (𝑢 , 𝑢) + (1, 0) = (𝑢 + 1, 𝑢),
𝒒() = 𝒒() = (𝑢 , 𝑢).

The user sends these subqueries to the nodes and then gets back the correspond-

4.4 Towards Arbitrary Linear Codes 33

ing subresponses as follows,

𝑟 , = 𝒒() 𝑥()
,

𝑥()
,

= 𝑢 𝑥()
, + 𝑢 𝑥()

, + 𝑥()
, ≜ 𝐼 + 𝑥()

, ,

𝑟 , = 𝒒() 𝑥()
,

𝑥()
,

= 𝑢 𝑥()
, + 𝑢 𝑥()

, ≜ 𝐼 ,

𝑟 , = 𝒒() 𝑥()
, + 𝑥()

,
𝑥()

, + 𝑥()
,

= 𝑢 𝑥()
, + 𝑢 𝑥()

, + 𝑢 𝑥()
, + 𝑢 𝑥()

, ≜ 𝐼 + 𝐼 ,

where 𝐼 and 𝐼 are the interference symbols. To recover 𝑥()
, , one needs to know

what 𝐼 is. Of course one can get it through interference cancellation. However,
we look at it from a different perspective. We consider (𝐼 , 𝐼) to be a random
message vector that is encoded using a [3, 2, 2] SPC to give a codeword (𝐼 , 𝐼 , 𝐼 +
𝐼). In the above system of equations, 𝐼 is unknown; thus we consider it as an
erasure. In other words, the user has the erasure-corrupted codeword

(?, 𝐼 , 𝐼 + 𝐼).

Solving for 𝐼 corresponds to a decoding problem of the [3, 2, 2] SPC code 𝒞. We
know for a fact that this SPC code can correct a single erasure. As the codeword
has a single erasure, the user can obtain 𝐼 , and therefore obtain 𝑥()

, . By swapping
the queries toNodes 1 and 2, one can recover 𝑥()

, in a similar way, and thus recover
the whole file 𝑿().

What we see in the above example is that in the 𝑖-th subquery, 𝑖 ∈ ℕ , if
𝒒(), 𝑗 ∈ ℕ , is a sum of a random and a deterministic vector then this corresponds
to having the 𝑗-th coordinate in some imaginary codeword of 𝒞 erased. Moreover,
for complete recovery, we would like to obtain all code symbols of this codeword.
In other words, we should be able to perform successful decoding. To improve
the efficiency of the protocol, one should have a large number (say Γ) of 𝑖-th
subqueries to the 𝑛 nodes to be a sum of a random and a deterministic vector. The
question is: how large can Γ be before breaking the protocol? A trivial answer is
that we can set Γ = 𝑑𝒞min−1 as this is the number of erasures a code 𝒞 can correct
irrespective of the positions in which they occur.

Yet, nontrivially one can have Γ in the range 𝑑𝒞min − 1 < Γ ≤ 𝑛 − 𝑘 because it
is possible to correct Γ > 𝑑𝒞min − 1 erasures in a codeword, if the erasures occur
at specific positions. This depends on the structure of the code 𝒞. In Papers III
and IV, we use this fact to construct optimal PIR protocols for a DSS that uses
a linear code and show that it is possible to achieve the MDS-PIR capacity even
when the DSS uses non-MDS codes. Furthermore, we give partial results on when
this is possible, which is related to the generalized Hamming weights and code
automorphisms of the underlying code 𝒞 of the DSS.

34 Private Information Retrieval

4.5 PIR in Distributed Caching

In the distributed caching scenario, we assume that some of the SBSs are spy
nodes that (potentially) collaborate with each other. On the other hand, we as-
sume that the MBS can be trusted. The users wish to retrieve files from the wire-
less network, but do not want the spy nodes to learn any information about which
file the user requests. The goal is to retrieve data from the network privately,
while minimizing the use of the backhaul link, i.e., while minimizing Rbh. Thus,
the goal is to optimize the content placement 𝝁 to minimize Rbh. Furthermore,
the 𝐹 files in the cellular network are encoded using 𝐹 codes 𝒞 , 𝑖 ∈ ℕ , with a
code rate 𝑅𝒞 in accordance to their popularity distribution 𝒑. As a consequence,
the PIR problem in distributed caching can somewhat be seen as a generalization
of the PIR problem in DSSs.

4.5.1 Content Placement for the PIR Scenario

For the PIR scenario, the content placement in the SBSs is slightly different from
the content placement (see Section 2.5.1) when the PIR property is not the objec-
tive. We explain the difference in the following. The systemmodel for distributed
caching described in Section 2.5 says that the 𝑖-th file 𝑿(), 𝑖 ∈ ℕ , is partitioned
into 𝛽𝑘 packets of size 𝐿/𝑘 bits that are then encoded using an [𝑁SBS, 𝑘] code to
obtain 𝛽𝑁SBS coded packets. These are then stored on 𝑁SBS SBSs. As mentioned
in Section 4.3, to achieve PIR, it is necessary to have redundancy in the system.
Therefore, unlike in Section 2.5, for the PIR scenario 𝑘 < 𝑁SBS. In particular, the
content placement 𝝁 in the SBSs must satisfy

𝜇 ∈ ℳ ≜ {0, 1/(𝑁SBS − 1),… , 1/2, 1}.

Note that 𝜇 = 1/𝑁SBS is not allowed. This is in contrast to the case of no PIR,
where 𝑘 = 𝑁SBS (and hence 𝜇 = 1/𝑁SBS) is possible (see (2.2)).

Chapter 5

Conclusions and Future Work

In this chapter, we summarize the contributions from the attached papers and
provide potentially interesting ideas to extend the work presented in this thesis.
This thesis covers three main aspects of distributed storage, which are individu-
ally covered in Papers I-IV. They are efficient storage in DSSs, security in DSSs,
and privacy in DSSs. In this regard, Paper V is a bit different as it concerns privacy
in wireless networks.

Repair Efficient Codes for Distributed Storage (Paper I)

In Paper I, we propose a new coding scheme for DSSs that performs efficient
repair of a systematic node failure with low repair complexity. These codes are
constructed using two smaller codes. The first code, named as the Class A code, is
constructed using anMDS code, and thenmodified using a piggybacking scheme.
The aim of the ClassA code is to provide the fault tolerance as well as, through the
piggybacking scheme, reduce the read cost for the repair of a number of symbols
in the failed node. The second code, referred to as Class B code, is constructed in
such a way that its parity symbols are a sum of certain systematic symbols, such
that it can repair the remaining symbols in the failed node at low read cost and
with low repair complexity. This ensures that the repair of the failed node occurs
with low repair bandwidth and complexity.

In the paper, we provide two constructions of the Class B codes. The first is
based on a very simple mathematical construct, and the second is based on a
more complicated heuristic algorithm that further reduces the repair bandwidth
compared to the first construction. Subsequently, for our proposed codes we
characterize the fault tolerance, repair bandwidth, repair complexity, and encod-
ing complexity. Finally, we numerically compare the performance of the code
with various state-of-the-art codes. Our codes have a better repair complexity
compared to Zigzag codes [14], MDS codes, Piggyback codes [42], generalized
Piggyback codes [43], exact-repairable MDS codes [44], binary addition and shift
implementable cyclic convolutional product matrix MBR codes [71], and in some
cases better than Pyramid codes [11]. They also achieve a better repair bandwidth
compared to MDS codes, Piggyback codes, generalized Piggyback codes, exact-
repairable MDS codes, and are in some cases better than LRCs [12] and Pyra-
mid codes. Interestingly, our proposed codes have a subpacketization that grows

36 Conclusions and Future Work

linearly with the code dimension. Thus, they are good for memory constrained
DSSs.

Security in Distributed Storage (Paper II)

In Paper II, we provide a coding scheme that ensures information-theoretic secu-
rity against an (ℓ , ℓ) eavesdropper. The scheme involves serially concatenating
a Gabidulin code with an RFC. The Gabidulin code ensures that the concatenated
code provides security, while the RFC provides efficient repair of failed nodes and
allows multiple parallel reads of data symbols stored on the DSS. To prove the
information-theoretic security, we introduce a necessary and a sufficient condi-
tion for no information leakage to the eavesdropper. In fact, this condition is a
further generalization of the sufficient condition in [21, 22]. The scheme of using
a Gabidulin code as an outer code with an inner code to provide security, as well
as, efficient repair of failed nodes was first proposed by [21]. In particular, their
construction had either an MSR code or an LRC as the inner code. Unlike LRCs,
RFCs have overlapping local groups. Thus, we generalize the proofs in [21].

Privacy in Distributed Systems (Papers III, IV, and V)

Papers III and IV deal with the PIR problem in DSSs. Paper III considers a DSS
where data is stored using an arbitrary linear code and gives PIR protocols for such
systems. The fundamental work in Paper III shows that it is possible to achieve the
MDS-PIR capacity with a class of linear codes, and gives the structural properties
of this class of codes. Paper IV shows that this rate is indeed the fundamental
limit on the maximum PIR rate for any PIR protocol given the same underlying
class of storage codes. For DSSs that do not use codes in this class, Paper IV also
presents PIR protocols with improved PIR rates.

In particular, in Paper III we provide three PIR protocols, referred to as Proto-
cols 1, 2, and 3. Protocols 1 and 2 achieve the PIR property under the assumption
that the nodes in the DSS do not collude, whereas Protocol 3 achieves the PIR
property even when the above condition is relaxed, i.e., the nodes are allowed to
collude. Protocol 1 achieves a better PIR rate (when the DSS has a finite number
of files) than Protocol 2, it requires the files stored to be exponentially large in
the number of files, and is more complex than Protocol 2. Highlights of the two
protocols are that Protocol 1 achieves the finite MDS-PIR capacity and Protocol
2 achieves the asymptotic MDS-PIR capacity even when the underlying storage
code is non-MDS. Surprisingly enough, the two protocols achieve their respec-
tive MDS-PIR capacity for the same class of codes, which we refer to as the MDS-
PIR capacity-achieving codes. Thus, we show that the MDS property required to
achieve finite/asymptotic MDS-PIR capacity [27, 63, 64] is strictly unnecessary
and overly restrictive. We then delve into the fundamentals of such codes and go
on to provide a necessary condition based on generalizedHammingweights and a
sufficient condition based on the automorphisms of the underlying storage codes.
Subsequently, we prove that cyclic codes, RM codes, and distance-optimal infor-
mation locality codes are MDS-PIR capacity-achieving codes. In the case when
the DSS stores data using other codes, we provide an optimization algorithm that

5.1 Future Work 37

maximizes the PIR rate of these protocols. After that, we consider the scenario
where the nodes are allowed to collude. For such a scenario, we provide Protocol 3
that is a generalization of the protocol in [67] and improves its PIR rate. The pro-
tocol is based on three codes: the storage code, the query code, and the retrieval
code. The query code characterizes the query of the protocol while the retrieval
code determines the retrieval process. Unlike the protocol in [67], Protocol 3
achieves a PIR rate that is not limited to the minimum distance of the retrieval
code for an arbitrary underlying storage code. Besides generalized RS codes [67]
and RM codes [72], we show that codes based on the (𝒰|𝒰 + 𝒱) construction,
where 𝒰 can be an arbitrary binary linear code and 𝒱 is a repetition code, can
be used with this protocol. Furthermore, we prove that RM codes achieve the
maximum PIR rate achievable by this protocol. As in the noncolluding case, we
provide a necessary and a sufficient condition to achieve the maximum PIR rate
for Protocol 3.

In Paper IV, we consider the noncolluding case. It starts from where Paper III
ends by proving that PIR rates achieved by Protocol 1, for a given number of files in
the system, are indeed equal to the maximum PIR capacity achieved by any pro-
tocol when the DSS uses MDS-PIR capacity-achieving codes. Furthermore, this
implies that the rates achieved by Protocol 2, when the DSS uses the codes men-
tioned above, are equal to the asymptotic PIR capacity achieved by any protocol.
When the DSS uses codes that are not in the class of MDS-PIR capacity-achieving
codes, we present protocols that improve upon the PIR rate achieved by Proto-
cols 1 and 2. In particular, we present a file-dependent and a file-independent PIR
protocol that improve on the PIR rates of Protocols 1 and 2, respectively. Such pro-
tocols are based on the subcode property of the underlying storage code in the
DSS.

In Paper V, we shift our focus from DSSs to DC where we look at privacy in
wireless networks that cache content on several SBSs in order to reduce the back-
haul usage. In the paper, we add the PIR problem to the traditional caching prob-
lem and ask the question what is the best content placement, such that the PIR
property is achieved. In particular, we consider that multiple SBSs can collude.
To this extent we present a PIR protocol that is an extension of Protocol 3 to the
case where data is stored using codes with different code rates, depending upon
the popularity of the data. We go on to derive the backhaul rate of the system and
formulate the optimal content placement optimization. Interestingly, contrary to
the case of the traditional caching problem, we show that uniform content allo-
cation is optimal [30]. In other words, all content should be encoded with the
same code rate (uniform rate) and then stored on SBSs. Additionally, we see nu-
merically that for specific scenarios, the best coding scheme is a repetition code.
In other words, popular content caching is optimal for specific scenarios.

5.1 Future Work

This thesis is concerned with wide-ranging topics of efficient storage, security,
and privacy inDSSs and as such hasmuch potential when it comes to future work.
Some of the important extensions of the work done in the appended papers are

38 Conclusions and Future Work

listed below.

1. One important extension would be to present new code constructions that
have low repair bandwidth and low repair complexity for the repair of arbi-
trary failed nodes. Additionally, it would be interesting if this can be further
extended to the scenario of simultaneous node repair.

2. It would be interesting to design coding schemes that achieve information-
theoretic security in conjunction with PIR protocols. Trivially, one can use a
secure coding scheme with the PIR protocols suggested in this thesis but is
this the best way? Can the common randomness in the coding scheme and
queries be leveraged?

3. Because Protocol 3 is quite restrictive, it cannot be used with any storage
code and any given number of nodes that collude. Alternative constructions
to Protocol 3 is one of the obvious extensions.

4. Another interesting future work is to determine the PIR capacity (for any
storage code) when nodes are not allowed to collude, and when they are
allowed to collude.

5. In Paper V, the systemmodel assumed is simple as we assume that the MBS
is not an adversary. It would be quite interesting to look at PIR protocols that
achieve privacy not just from SBSs but also from theMBS. Subsequently, the
question to ask is what is the best content placement in this scenario.

Bibliography

[1] R. Kluver, “Globalization, informatization, and intercultural communica-
tion,” American Commun. Journal, vol. 3, no. 3, May 2000.

[2] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H.
Byers, “Big data: The next frontier for innovation, competition, and produc-
tivity,” McKinsey Global Institute, Tech. Rep., May 2011.

[3] J. Gantz andD. Reinsel, “THEDIGITALUNIVERSE IN 2020: Big Data, Bigger
Digital Shadows, and Biggest Growth in the Far East,” EMC Corporation,
Tech. Rep., 2012.

[4] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur, “XORing elephants: Novel erasure codes for big
data,” in Proc. 39th Very Large Data Bases Endowment (VLDB), Trento, Italy,
Aug. 2013.

[5] S. Abiteboul, I. Manolescu, P. Rigaux, M. Rousset, and P. Senellart,WebData
Managment. Cambridge University Press, 2011.

[6] S. Sankar, M. Shaw, K. Vaid, and S. Gurumurthi, “Datacenter scale evalua-
tion of the impact of temperature on hard disk drive failures,” ACM Trans.
Storage, vol. 9, no. 2, pp. 6:1–6:24, Jul. 2013.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” SIGOPS
Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, Oct. 2003.

[8] J. J. Hanson, “An Introduction to the Hadoop Distributed File System,” IBM,
Tech. Rep., Feb. 2011.

[9] A. Datta and F. Oggier, “An overview of codes tailor-made for better re-
pairability in networked distributed storage systems,” ACM Special Interest
Group on Algo. and Computation Theory, vol. 44, no. 1, pp. 89–105, Mar. 2013.

[10] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie, “Scale-RS: An efficient scaling
scheme for RS-coded storage clusters,” IEEE Trans. Parallel and Distributed
Systems, vol. 26, no. 6, pp. 1704–1717, Jun. 2015.

[11] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade
space for access efficiency in reliable data storage systems,” in Proc. IEEE Int.
Symp. Network Comput. and Appl. (NCA), Cambridge, MA, Jul. 2007.

40 Conclusions and Future Work

[12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in Windows Azure storage,” in Proc. USENIX
Annual Technical Conf., Boston, MA, Jun. 2012.

[13] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Net-
work coding for distributed storage systems,” IEEE Trans. Inf. Theory, vol. 56,
no. 9, pp. 4539–4551, Sep. 2010.

[14] I. Tamo, Z.Wang, and J. Bruck, “Zigzag codes: MDS array codes with optimal
rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1597–1616, Mar. 2013.

[15] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–5239,
Aug. 2011.

[16] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” IEEE
Trans. Inf. Theory, vol. 63, no. 9, pp. 5684–5698, Sep. 2017.

[17] I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed-Solomon codes:
Achieving the cut-set bound,” May 2017, arXiv:cs/1706.00112v1 [cs.IT].
[Online]. Available: https://arxiv.org/abs/1706.00112

[18] F. Knop, S. R. Patil, and L. Coyne, “IBM spectrum scale security,” IBM, Tech.
Rep., Jan. 2017.

[19] J. Garay, R. Gennaro, C. Jutla, and T. Rabin, “Secure distributed storage and
retrieval,” in Proc. Int.Workshop Dist. Algo. (WDAG), Saarbrüken, Germany,
Sep. 1997.

[20] R. Pletka and C. Cachin, “Cryptographic security for a high-performance
distributed file system,” in Proc. IEEE Conf. on Mass Storage Sys. and Tech.
(MSST), San Diego, CA, Sep. 2007.

[21] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Optimal
locally repairable and secure codes for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 60, no. 1, pp. 212–236, Jan. 2014.

[22] N. B. Shah, K. V. Rashmi, and P. V. Kumar, “Information-theoretically secure
regenerating codes for distributed storage,” in Proc. IEEE Global Telecom-
mun. Conf. (GLOBECOM), Houston, TX, Dec. 2011.

[23] S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic dis-
tributed storage systems against eavesdropping and adversarial attacks,”
IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6734–6753, Oct. 2011.

[24] M. Asteris and A. G. Dimakis, “Repairable fountain codes,” IEEE J. Sel. Areas
Commun., vol. 32, no. 5, pp. 1037–1047, May 2014.

[25] “Informational privacy in the digital age,” American Civil Liberties Union
(ACLU), Tech. Rep., Feb. 2015.

BIBLIOGRAPHY 41

[26] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information
retrieval,” in Proc. Annual IEEE Symp. Foundations Comp. Sci. (FOCS), Mil-
waukee, WI, Oct. 1995, pp. 41–50.

[27] K. Banawan and S. Ulukus, “The capacity of private information retrieval
from coded coded database,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1945–
1956, Mar. 2018.

[28] “Visual netorking index,” Cisco, Tech. Rep., 2014.

[29] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and
J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6,
pp. 1065–1082, Jun. 2014.

[30] V. Bioglio, F. Gabry, and I. Land, “Optimizing MDS codes for caching at the
edge,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), San Diego, CA,
Dec. 2015, pp. 1–6.

[31] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient scheme
for tolerating double disk failures in RAID architectures,” IEEE Trans. Com-
put., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[32] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on au-
tomata,” Sov. Phys. Doklady, vol. 7, no. 7, pp. 595–596, Jan. 1963.

[33] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba algorithm
for efficient implementations,” Jul. 2006. [Online]. Available: https:
//eprint.iacr.org/2006/224.pdf

[34] J. M. Pollard, “The fast Fourier transform in a finite field,” Math. Comput.,
vol. 25, no. 114, pp. 365–374, 1971.

[35] R. E. Crandall and C. Pomerance, Prime Numbers: A Computational Perspec-
tive. Springer, 2001.

[36] S. Gao and T. Mateer, “Additive fast Fourier transforms over finite fields,”
IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6265–6272, Dec. 2010.

[37] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with local
regeneration and erasure correction,” IEEE Trans. Inf. Theory, vol. 60, no. 8,
pp. 4637–4660, Aug. 2014.

[38] D. Papailiopoulos and A. Dimakis, “Locally repairable codes,” IEEE Trans. Inf.
Theory, vol. 60, no. 10, pp. 5843–5855, Oct. 2014.

[39] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE
Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.

[40] Y. Wang, X. Yin, and X. Wang, “MDR codes: A new class of RAID-6 codes
with optimal rebuilding and encoding,” IEEE J. Sel. Areas Commun., vol. 32,
no. 5, pp. 1008–1018, May 2014.

42 Conclusions and Future Work

[41] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for repair
in distributed storage systems,” in Proc. 48th Annual Allerton Conf. Com-
mun., Control, and Comput., Monticello, IL, Sep./Oct. 2010.

[42] K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,” IEEE
Trans. Inf. Theory, vol. 63, no. 9, pp. 5802–5820, Sep. 2017.

[43] S. Yuan andQ. Huang, “Generalized piggybacking codes for distributed stor-
age systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Washing-
ton, DC, Dec. 2016.

[44] A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko, “MDS code construc-
tions with small sub-packetization and near-optimal repair bandwidth,”
IEEE Trans. Inf. Theory, to appear.

[45] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire,
“Femtocaching: Wireless content delivery through distributed caching
helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–8413, Dec. 2013.

[46] A. Piemontese and A. Graell i Amat, “MDS-coded distributed storage for low
delay wireless content delivery,” in Proc. IEEE Int. Symp. on Turbo Codes and
Itr. Inf. Processing (ISTC), Brest, France, Sep. 2016.

[47] J. Pedersen, A. Graell i Amat, I. Andriyanova, and F. Brännström, “Dis-
tributed storage in mobile wireless networks with device-to-device commu-
nication,” IEEE Trans. Commun., vol. 64, no. 11, pp. 4862–4878, Nov. 2016.

[48] ——, “Optimizing MDS coded caching in wireless networks with device-
to-device communication,” 2018, arXiv:1701.06289v2 [cs.IT]. [Online].
Available: https://arxiv.org/abs/1701.06289

[49] U. Niesen, D. Shah, and G.W.Wornell, “Caching in wireless networks,” IEEE
Trans. Inf. Theory, vol. 58, no. 10, pp. 6524–6540, Oct. 2012.

[50] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[51] O. Goldreich, Foundations of Cryptography: Volume II, Basic Applications.
Cambridge, U. K.: Cambridge University Press, 2004.

[52] H. Delfs and H. Knebl, Introduction to Cryptography: Principles and Appli-
cations, 2nd ed. New York, NY, USA: Springer-Verlag, 2007.

[53] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
Nov. 1979. [Online]. Available: http://doi.acm.org/10.1145/359168.359176

[54] E. M. Gabidulin, “Theory of codes with maximum rank distance,” Problems
Inf. Transmiss., vol. 21, pp. 1–12, Jul. 1985.

[55] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information
retrieval,” Journal of the ACM, vol. 45, no. 6, pp. 965–981, Nov. 1998.

BIBLIOGRAPHY 43

[56] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, “Breaking the
𝑂(𝑛 /()) barrier for information-theoretic private information retrieval,”
in Proc. Annual IEEE Symp. Foundations Comp. Sci. (FOCS), Vancouver, BC,
Canada, Nov. 2002, pp. 261–270.

[57] S. Yekhanin, “Towards 3-query locally decodable codes of subexponential
length,” Journal of the ACM, vol. 55, no. 1, pp. 1–16, Feb. 2008.

[58] K. Efremenko, “3-query locally decodable codes of subexponential length,” in
Proc. 41th Annual ACM Symp. Theory Comput. (STOC), Bethesda, MD, Jun.
2009, pp. 39–44.

[59] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their
applications,” in Proc. 36th Annual ACM Symp. Theory Comput. (STOC),
Chicago, IL, Jun. 2004, pp. 262–271.

[60] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of download
ensures perfectly private information retrieval,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Honolulu, HI, Jun./Jul. 2014, pp. 856–860.

[61] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval for
coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), HongKong, China,
Jun. 2015, pp. 2842–2846.

[62] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with low stor-
age overhead,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Hong Kong, China,
Jun. 2015, pp. 2852–2856.

[63] H. Sun and S. A. Jafar, “The capacity of private information retrieval,” IEEE
Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[64] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information re-
trieval from MDS coded data in distributed storage systems,” to app. in IEEE
Trans. Inf. Theory, 2018.

[65] H. Sun and S. A. Jafar, “Private information retrieval from MDS coded data
with colluding servers: Settling a conjecture by Freij-Hollanti et al.” IEEE
Trans. Inf. Theory, vol. 64, no. 2, pp. 1000–1022, Feb. 2017.

[66] ——, “The capacity of robust private information retrieval with colluding
databases,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2361–2370, Apr. 2018.

[67] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private infor-
mation retrieval from coded databases with colluding servers,” SIAM J. Appl.
Algebra Geom., vol. 1, no. 1, pp. 647–664, Nov. 2017.

[68] Q. Wang and M. Skoglund, “Linear symmetric private information retrieval
for MDS coded distributed storage with colluding servers,” Aug. 2017,
arXiv:1708.05673v1 [cs.IT]. [Online]. Available: https://arxiv.org/abs/1708.
05673

44 Conclusions and Future Work

[69] H. Sun and S. A. Jafar, “The capacity of robust private information retrieval
with colluding databases,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2361–
2370, Apr. 2018.

[70] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson, “Pri-
vate information retrieval with side information: The single server case,”
in Proc. 55th Annual Allerton Conf. Commun, Control, and Comput., Monti-
cello, IL, Oct. 2017.

[71] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC codes: Low-complexity
regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory,
vol. 62, no. 6, pp. 3053–3069, Jun. 2016.

[72] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, A.-L. Horlemann-Trautmann,
D. Karpuk, and I. Kubjas, “Reed-Muller codes for private information
reterival,” in Proc. 10th Int. Workshop Coding Cryptography (WCC), Saint-
Petersburg, Russia, Sep. 2017.

Part B

Papers

P I

Code Construc ons for Distributed Storage With Low Repair
Bandwidth and Low Repair Complexity

SiddharthaKumar, AlexandreGraell i Amat, IrynaAndriyanova, Fredrik Brännström,
and Eirik Rosnes

IEEE Transactions on Communications, to appear, 2018.

Parts of this paper were presented at the IEEE Global Communications Conference
(GLOBECOM), San Diego, CA, December 2015.

The layout has been revised.

1 Introduction 49

Abstract

We present the construction of a family of erasure correcting
codes for distributed storage that achieve low repair band-
width and complexity at the expense of a lower fault tol-
erance. The construction is based on two classes of codes,
where the primary goal of the first class of codes is to pro-
vide fault tolerance, while the second class aims at reduc-
ing the repair bandwidth and repair complexity. The re-
pair procedure is a two-step procedure where parts of the
failed node are repaired in the first step using the first code.
The downloaded symbols during the first step are cached in
the memory and used to repair the remaining erased data
symbols at minimal additional read cost during the second
step. The first class of codes is based on MDS codes mod-
ified using piggybacks, while the second class is designed
to reduce the number of additional symbols that need to be
downloaded to repair the remaining erased symbols. We nu-
merically show that the proposed codes achieve better repair
bandwidth compared toMDS codes, codes constructed using
piggybacks, and local reconstruction/Pyramid codes, while a
better repair complexity is achieved when compared toMDS,
Zigzag, Pyramid codes, and codes constructed using piggy-
backs.

1 Introduc on

In recent years, there has been a widespread adoption of distributed storage sys-
tems (DSSs) as a viable storage technology for Big Data. Distributed storage pro-
vides an inexpensive storage solution for storing large amounts of data. Formally,
a DSS is a network of numerous inexpensive disks (or nodes) where data is stored
in a distributed fashion. Storage nodes are prone to failures, and thus to losing
the stored data. Reliability against node failures (commonly referred to as fault
tolerance) is achieved by means of erasure correcting codes (ECCs). ECCs are a
way of introducing structured redundancy, and for a DSS, it means addition of
redundant nodes. In case of a node failure, these redundant nodes allow com-
plete recovery of the data stored. Since ECCs have a limited fault tolerance, to
maintain the initial state of reliability, when a node fails a new node needs to be
added to the DSS network and populated with data. The problem of repairing a
failed node is known as the repair problem.

Current DSSs like Google File System II and Quick File System use a family of
Reed-Solomon (RS) ECCs [1]. Such codes come under a broader family of max-
imum distance separable (MDS) codes. MDS codes are optimal in terms of the
fault tolerance/storage overhead tradeoff. However, the repair of a failed node re-
quires the retrieval of large amounts of data from a large subset of nodes. There-
fore, in the recent years, the design of ECCs that reduce the cost of repair has
attracted significant attention. Pyramid codes [2] were one of the first code con-

50 P I

structions that addressed this problem. In particular, Pyramid codes are a class
of non-MDS codes that aim at reducing the number of nodes that need to be con-
tacted to repair a single failed node, known as the repair locality. Other non-MDS
codes that reduce the repair locality are local reconstruction codes (LRCs) [3] and
locally repairable codes [4, 5]. Such codes achieve a low repair locality by ensur-
ing that the parity symbols are a function of a small number of data symbols,
which also entails a low repair complexity, defined as the number of elementary
additions required to repair a failed node. Furthermore, for a fixed locality LRCs
and Pyramid codes achieve the optimal fault tolerance.

Another important parameter related to the repair is the repair bandwidth,
defined as the number of symbols downloaded to repair a single failed node. Di-
makis et al. [6] derived an optimal repair bandwidth-storage per node tradeoff
curve and defined two new classes of codes for DSSs known as minimum storage
regenerating (MSR) codes and minimum bandwidth regenerating (MBR) codes
that are at the two extremal points of the tradeoff curve. MSR codes are MDS
codes with the best storage efficiency, i.e., they require a minimum storage of
data per node (referred to as the sub-packetization level). On the other hand,
MBR codes achieve the minimum repair bandwidth. Product-Matrix MBR (PM-
MBR) codes and Fractional Repetition (FR) codes in [7] and [8], respectively, are
examples of MBR codes. In particular, FR codes achieve low repair complexity at
the cost of high storage overheads. Codes such as minimum disk input/output
repairable (MDR) codes [9] and Zigzag codes [10] strictly fall under the class of
MSR codes. These codes have a high sub-packetization level. Alternatively, the
MSR codes presented in [11–18] achieve the minimum possible sub-packetization
level.

Piggyback codes presented in [19] are another class of codes that achieve a
sub-optimal reduction in repair bandwidth with a much lower sub-packetization
level in comparison to MSR codes, using the concept of piggybacking. Piggy-
backing consists of adding carefully chosen linear combinations of data symbols
(called piggybacks) to the parity symbols of a given ECC. This results in a lower
repair bandwidth at the expense of a higher complexity in encoding and repair
operations. More recently, the authors in [20] presented a family of codes that
reduce the encoding and repair complexity of PM-MBR codes while maintaining
the same level of fault tolerance and repair bandwidth. However, this comes at
the cost of large alphabet size. In [21], binary MDS array codes that achieve opti-
mal repair bandwidth and low repair complexity were introduced, with the caveat
that the file size is asymptotic and that the fault tolerance is limited to 3.

In this paper, we propose a family of non-MDS ECCs that achieve low repair
bandwidth and low repair complexity while keeping the field size relatively small
and having variable fault tolerance. In particular, we propose a systematic code
construction based on two classes of parity symbols. Correspondingly, there are
two classes of parity nodes. The first class of parity nodes, whose primary goal is
to provide erasure correcting capability, is constructed using an MDS code mod-
ified by applying specially designed piggybacks to some of its code symbols. As
a secondary goal, the first class of parity nodes enable to repair a number of data
symbols at a low repair cost by downloading piggybacked symbols. The second
class of parity nodes is constructed using a block code whose parity symbols are

2 SystemModel and Code Construction 51

...
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Class A parities Class B parities𝑘 data nodes

𝑘
da

ta
sy
m
bo

ls

𝑛A + 𝑛B − 2𝑘 parity nodes

Figure I.1: System model of the DSS.

obtained through simple additions. The purpose of this class of parity nodes is
not to enhance the erasure correcting capability, but rather to facilitate node re-
pair at low repair bandwidth and low repair complexity by repairing the remain-
ing failed symbols in the node. Compared to [22], we provide two constructions
for the second class of parity nodes. The first one is given by a simple equation
that represents the algorithmic construction in [22]. The second one is a heuris-
tic construction that is more involved, but further reduces the repair bandwidth
in some cases. Furthermore, we provide explicit formulas for the fault tolerance,
repair bandwidth, and repair complexity of the proposed codes and numerically
compare with other codes in the literature. The proposed codes achieve better
repair bandwidth compared to MDS codes, Piggyback codes, generalized Piggy-
back codes [23], and exact-repairable MDS codes [24]. For certain code parame-
ters, we also see that the proposed codes have better repair bandwidth compared
to LRCs and Pyramid codes. Furthermore, they achieve better repair complexity
than Zigzag codes, MDS codes, Piggyback codes, generalized Piggyback codes,
exact-repairable MDS codes, and binary addition and shift implementable cyclic-
convolutional (BASIC) PM-MBR codes [20]. Also, for certain code parameters, the
codes have better repair complexity than Pyramid codes. The improvements over
MDS codes, MSR codes, and the classes of Piggyback codes come at the expense
of a lower fault tolerance in general.

2 SystemModel and Code Construc on

We consider the DSS depicted in Fig. I.1, consisting of storage nodes, of which
𝑘 are data nodes and 𝑛 − 𝑘 are parity nodes. Consider a file that needs to be
stored on the DSS. We represent a file as a 𝑘×𝑘matrix 𝑫 = [𝑑 ,], called the data
array, over GF(𝑞), where GF(𝑞) denotes the Galois field of size 𝑞, with 𝑞 being
a prime number or a power of a prime number. In order to achieve reliability
against node failures, the matrix 𝑫 is encoded using an (𝑛, 𝑘) vector code [25]
to obtain a code matrix 𝑪 = [𝑐 ,], referred to as the code array, of size 𝑘 × 𝑛,
𝑐 , ∈ GF(𝑞). The symbol 𝑐 , in 𝑪 is then stored at the 𝑖-th row of the 𝑗-th node
in the DSS. Thus, each node stores 𝑘 symbols. Each row in 𝑪 is referred to as

52 P I

a stripe so that each file in the DSS is stored over 𝑘 stripes in 𝑛 storage nodes.
We consider the (𝑛, 𝑘) code to be systematic, which means that 𝑐 , = 𝑑 , for
𝑖, 𝑗 = 0,… , 𝑘 − 1. Correspondingly, we refer to the 𝑘 nodes storing systematic
symbols as data nodes and the remaining 𝑛 − 𝑘 nodes containing parity symbols
only as parity nodes. The efficiency of the code is determined by the code rate,
given by 𝑅 = 𝑘 /𝑘𝑛 = 𝑘/𝑛. Alternatively, the inverse of the code rate is referred
to as the storage overhead.

For later use, we denote the set of message symbols in the 𝑘 data nodes as
𝒟 = {𝑑 , } and by 𝒫 , 𝑡 = 𝑘,… , 𝑛 − 1, the set of parity symbols in the 𝑡-th node.
Subsequently, we define the set 𝒟ℐ ⊆ 𝒟 as

𝒟ℐ = {𝑑 , ∈ 𝒟 ∣ (𝑖, 𝑗) ∈ ℐ},
where ℐ is an arbitrary index set. We also define the operator (𝑎 + 𝑏) ≜ (𝑎 +
𝑏) mod 𝑘 for integers 𝑎 and 𝑏.

Our main goal is to construct codes that yield low repair bandwidth and low
repair complexity of a single failed data node. We focus on the repair of data
nodes since the raw data is stored on these nodes and the users can readily access
the data through these nodes. Thus, their survival is a crucial aspect of a DSS.
To this purpose, we construct a family of systematic (𝑛, 𝑘) codes consisting of
two different classes of parity symbols. Correspondingly, there are two classes of
parity nodes, referred to as Class A and Class B parity nodes, as shown in Fig. I.1.
Class A and Class B parity nodes are built using an (𝑛A, 𝑘) code and an (𝑛B, 𝑘)
code, respectively, such that 𝑛 = 𝑛A + 𝑛B − 𝑘. In other words, the parity nodes
from the (𝑛, 𝑘) code correspond to the parity nodes of Class A and Class B codes.
The primary goal of Class A parity nodes is to achieve a good erasure correcting
capability, while the purpose of ClassB nodes is to yield low repair bandwidth and
low repair complexity. In particular, we focus on the repair of data nodes. The
repair bandwidth (in bits) per node, denoted by 𝛾, is proportional to the average
number of symbols (data and parity) that need to be downloaded to repair a data
symbol, denoted by 𝜆. More precisely, let 𝛽 be the sub-packetization level of the
DSS, which is the number of symbols per node.1 Then,

𝜆 = 𝛾
𝜈𝛽 , (I.1)

where 𝜈 = 𝑚⌈log 𝑝⌉ is the size (in bits) of a symbol in GF(𝑞), where 𝑞 = 𝑝 for
some prime number 𝑝 and positive integer 𝑚. 𝜆 can be interpreted as the repair
bandwidth normalized by the size (in bits) of a node, and will be referred to as
the normalized repair bandwidth.

The main principle behind our code construction is the following. The repair
is performed one symbol at a time. After the repair of a data symbol is accom-
plished, the symbols read to repair that symbol are cached in thememory. There-
fore, they can be used to repair the remaining data symbols at no additional read
cost. The proposed codes are constructed in such a way that the repair of a new
data symbol requires a low additional read cost (defined as the number of ad-
ditional symbols that need to be read to repair the data symbol), so that 𝜆 (and
hence 𝛾) is kept low.

1For our code construction, , but this is not the case in general.

3 Class A Parity Nodes 53

Definition 6. The read cost of a symbol is the number of symbols that need to
be read to repair the symbol. For a symbol that is repaired after some others, the
additional read cost is defined as the number of additional symbols that need to be
read to repair the symbol. (Note that symbols previously read to repair other data
symbols are already cached in the memory and to repair a new symbol only some
extra symbols may need to be read.)

3 Class A Parity Nodes

Class A parity nodes are constructed using a modified (𝑛A, 𝑘) MDS code, with
𝑘 + 2 ≤ 𝑛A < 2𝑘, over GF(𝑞). In particular, we start from an (𝑛A, 𝑘) MDS code
and apply piggybacks [19] to some of the parity symbols. The construction of
Class A parity nodes is performed in two steps as follows.

1) Encode each row of the data array using an (𝑛A, 𝑘) MDS code (same code
for each row). The parity symbol 𝑝A, is obtained as2

𝑝A, = 𝛼 , 𝑑 , , 𝑗 = 𝑘,… , 𝑛A − 1, (I.2)

where 𝛼 , denotes a coefficient in GF(𝑞) and 𝑖 = 0,… , 𝑘−1. Store the parity
symbol in the corresponding row of the code array. Overall, 𝑘(𝑛A−𝑘) parity
symbols are generated.

2) Modify some of the parity symbols by adding piggybacks. Let 𝜏, 1 ≤ 𝜏 ≤
𝑛A − 𝑘 − 1, be the number of piggybacks introduced per row. The parity
symbol 𝑝A, is updated as

𝑝A,p, = 𝑝A, + 𝑑(A) , , (I.3)

where 𝑢 = 𝑛A − 𝜏,… , 𝑛A − 1, the second term in the summation is the
piggyback, and the superscript p in 𝑝A,p, indicates that the parity symbol
contains piggybacks.

The fault tolerance (i.e., the number of node failures that can be tolerated) of
Class A codes is given in the following theorem.

Theorem 1. An (𝑛A, 𝑘) Class A code with 𝜏 piggybacks per row can tolerate

𝑓 = 𝑛A−𝑘−𝜏+ � (A) (A) � if 𝜏 ≥ 𝜉

𝑛A − 𝑘 if 𝜏 < 𝜉
�

node failures, where 𝜉 = (A) (A) .

Proof. See Appendix A.

54 P I

𝒫A 𝒫A

𝑑 , 𝑑 , 𝑑 , 𝑑 , 𝑑 ,

𝑑 , 𝑑 , 𝑑 , 𝑑 , 𝑑 ,

𝑑 , 𝑑 , 𝑑 , 𝑑 , 𝑑 ,

𝑑 , 𝑑 , 𝑑 , 𝑑 , 𝑑 ,

𝑑 , 𝑑 , 𝑑 , 𝑑 , 𝑑 ,

𝑝A, 𝑝A, + 𝑑 ,

𝑝A, 𝑝A, + 𝑑 ,

𝑝A, 𝑝A, + 𝑑 ,

𝑝A, 𝑝A, + 𝑑 ,

𝑝A, 𝑝A, + 𝑑 ,

𝒬

𝒳

Figure I.2: A (7, 5) Class A code with 𝜏 = 1 constructed from a (7, 5)MDS code. 𝒫A and
𝒫A are the parity nodes. For each row 𝑗, colored symbols belong to 𝒟ℛ .

We remark that for 𝜏 < 𝜉, Class A codes are MDS codes.
When a failure of a data node occurs, Class A parity nodes are used to repair

𝜏 + 1 of the 𝑘 failed symbols. Class A parity symbols are constructed in such a
way that, when node 𝑗 is erased, 𝜏 + 1 data symbols in this node can be repaired
reading the (non-failed) 𝑘 − 1 data symbols in the 𝑗-th row of the data array and
𝜏 +1 parity symbols in the 𝑗-th row of Class A parity nodes (see also Section 4.3).
For later use, we define the set ℛ as follows.

Definition 7. For 𝑗 = 0,… , 𝑘 − 1, the index set ℛ is defined as

ℛ = {(𝑗, (𝑗 + 1)), (𝑗, (𝑗 + 2)), … , (𝑗, (𝑗 + 𝑘 − 1))}.

Then, the set 𝒟ℛ is the set of 𝑘 − 1 data symbols that are read from row 𝑗 to
recover 𝜏 + 1 data symbols of node 𝑗 using Class A parity nodes.

Example 1. An example of a Class A code is shown in Fig. I.2. One can verify that
the code can correct any 2 node failures. For each row 𝑗, the set 𝒟ℛ is indicated in
red color. For instance, 𝒟ℛ = {𝑑 , , 𝑑 , , 𝑑 , , 𝑑 , }.

Themain purpose of ClassA parity nodes is to provide good erasure correcting
capability. However, the use of piggybacks helps also in reducing the number of
symbols that need to be read to repair the 𝜏 + 1 symbols of a failed node that
are repaired using the Class A code, as compared to MDS codes. The remaining
𝑘−𝜏−1 data symbols of the failed node can also be recovered from Class A parity
nodes, but at a high symbol read cost of 𝑘. Hence, the idea is to add another class
of parity nodes, namely Class B parity nodes, in such a way that these symbols
can be recovered with lower read cost.

2We use the superscript A to indicate that the parity symbol is stored in a Class A parity node.

4 Class B Parity Nodes 55

4 Class B Parity Nodes

Class B parity nodes are obtained using an (𝑛B, 𝑘) linear block code with 𝑛B <
2𝑘−𝜏 over GF(𝑞) to encode the 𝑘×𝑘 data symbols of the data array. This generates
𝑘(𝑛B−𝑘) Class B parity symbols, 𝑝B, , 𝑖 = 0,… , 𝑘 −1, 𝑙 = 𝑛A, … , 𝑛 − 1. In [22], we
presented an algorithm to construct Class B codes. In this section, we present a
similar construction in a much more compact, mathematical manner.

4.1 Defini ons and Preliminaries

Definition 8. For 𝑗 = 0,… , 𝑘 − 1, the index set 𝒬 is defined as

𝒬 = {((𝑗 + 𝜏 + 1) , 𝑗), ((𝑗 + 𝜏 + 2) , 𝑗), … , ((𝑗 + 𝑘 − 1) , 𝑗)}.

Assume that data node 𝑗 fails. It is easy to see that the set 𝒟𝒬 is the set of
𝑘 − 𝜏 − 1 data symbols that are not recovered using Class A parity nodes.

Example 2. For the example in Fig. I.2, the set𝒟𝒬 is indicated by hatched symbols
for each column 𝑗, 𝑗 = 0,… , 𝑘 − 1. For instance, 𝒟𝒬 = {𝑑 , , 𝑑 , , 𝑑 , }.

For later use, we also define the following set.

Definition 9. For 𝑗 = 0,… , 𝑘 − 1, the index set𝒳 is defined as

𝒳 = {(𝑗, (𝑗 + 1)), (𝑗, (𝑗 + 2)), … , (𝑗, (𝑗 + 𝑘 − 𝜏 − 1))}.

Note that 𝒳 = ℛ ∩ {∪ 𝒬 }.
Example 3. For the example in Fig. I.2, the set 𝒟𝒳 is indicated by hatched sym-
bols for each row 𝑗. For instance, 𝒳 = ℛ ∩ {𝒬 ∪ 𝒬 ∪ 𝒬 ∪ 𝒬 ∪ 𝒬 } =
{(0, 1), (0, 2), (0, 3)}, thus we have 𝒟𝒳 = {𝑑 , , 𝑑 , , 𝑑 , }.

The purpose of ClassB parity nodes is to allow the recovery of the data symbols
in𝒟𝒬 , 𝑗 = 0,… , 𝑘−1, at a low additional read cost. Note that after recovering 𝜏+1
symbols using Class A parity nodes, the data symbols in the sets 𝒟ℛ are already
stored in the decoder memory. Therefore, they are accessible for the recovery of
the remaining 𝑘−𝜏−1 data symbols using Class B parity nodes without the need
of reading them again. The main idea is based on the following proposition.

Proposition 1. If a ClassB parity symbol 𝑝B is the sum of one data symbol 𝑑 ∈ 𝒟𝒬
and a number of data symbols in 𝒟𝒳 , then the recovery of 𝑑 comes at the cost of
one additional read (one should read parity symbol 𝑝B).

This observation is used in the construction of Class B parity nodes in Sec-
tion 4.2 below to reduce the normalized repair bandwidth 𝜆. In particular, we
add up to 𝑘−𝜏−1 Class B parity nodes which allow to reduce the additional read
cost of all 𝑘(𝑘−𝜏−1) data symbols in all𝒟𝒬 ’s to 1. (The addition of a single Class
B parity node allows to recover one new data symbol in each 𝒟𝒬 , 𝑗 = 0,… , 𝑘 − 1,
at the cost of one additional read.)

56 P I

𝒫B 𝒫B 𝒫B

𝑑 , + 𝑑 , + 𝑑 ,

𝑑 , + 𝑑 , + 𝑑 ,

𝑑 , + 𝑑 , + 𝑑 ,

𝑑 , + 𝑑 , + 𝑑 ,

𝑑 , + 𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 ,

𝑑 ,

𝑑 ,

𝑑 ,

𝑑 ,

Figure I.3: Class B parity nodes for the data nodes in Fig. I.2.

4.2 Construc on of Class B Nodes

For 𝑡 = 0,… , 𝑘 − 1, each parity symbol in the 𝑙-th Class B parity node, 𝑙 =
𝑛A, … , 𝑛 − 1, is sequentially constructed as

𝑝B, = 𝑑(A) , +
A

𝑑 ,() . (I.4)

The construction above follows Proposition 1 wherein 𝑑(A) , ∈ 𝒟𝒬 and
{𝑑 ,() } A ⊂ 𝒟𝒳 . This ensures that the read cost of each of the 𝑘
symbols 𝑑(A) , is 1. Thus, the addition of each parity node leads to 𝑘 data
symbols to have a read cost of 1. Note that adding the second term in (I.4) ensures
that 𝑘(𝑘−𝜏−1) data symbols are repaired by the Class B parity nodes. The same
principle was used in [22]. It should be noted that the set of data symbols used in
the construction of the parity symbols in (I.4) may be different compared to the
construction in [22]. However, the overall average repair bandwidth remains the
same.

Remark 1. For the particular case 𝑛B − 𝑘 = 𝑘 − 𝜏 − 1 one may neglect the second
term in (I.4). The resulting codes would still have the same repair bandwidth and
lower repair complexity than the codes built from (I.4). However, this construction
would not allow rate-compatible Class B codes.

In the sequel, we will refer to the construction of Class B parity nodes accord-
ing to (I.4) as Construction 1.
Example 4. With the aim to construct a (10, 5) code, consider the construction
of an (8, 5) Class B code where the (7, 5) Class A code, with 𝜏 = 1, is as shown in
Fig. I.2. For 𝑡 = 0,… , 𝑘 − 1, the parity symbols in the first Class B parity node (the
7-th node) are

𝑝B, = 𝑑() , + 𝑑 ,() = 𝑑() , + 𝑑 ,() + 𝑑 ,() .

4 Class B Parity Nodes 57

The constructed parity symbols are as seen in Fig. I.3, where the 𝑡-th row in node𝒫B

contains the parity symbol𝑝B, . Notice that𝑑() , ∈ 𝒟𝒬 and {𝑑 ,() , 𝑑 ,() } ⊂
𝒟𝒳 . In a similar way, the parity symbols in nodes 𝒫B and 𝒫B are

𝑝B, = 𝑑() , + 𝑑 ,() = 𝑑() , + 𝑑 ,()

and

𝑝B, = 𝑑() , + 𝑑 ,() = 𝑑() , ,

respectively.
Consider the repair of the first data node in Fig. I.2. The symbol 𝑑 , is recon-

structed using 𝑝A, . This requires reading the symbols 𝑑 , , 𝑑 , , 𝑑 , , and 𝑑 , . Since
𝑝A, is a function of all data symbols in the first row, reading 𝑝A, +𝑑 , is sufficient
for the recovery of 𝑑 , . From Fig. I.3, the symbols 𝑑 , , 𝑑 , , and 𝑑 , can be recov-
ered by reading just the parities 𝑑 , +𝑑 , +𝑑 , , 𝑑 , +𝑑 , , and 𝑑 , , respectively.
Thus, reading 5+4 = 9 symbols is sufficient to recover all the symbols in the node,
and the normalized repair bandwidth is 9/5 = 1.8 per failed symbol. Amore formal
repair procedure is presented in Section 4.3.

Adding 𝑛B − 𝑘 Class B parity nodes allows to reduce the additional read cost
of 𝑛B−𝑘 data symbols from each𝒟𝒬 , 𝑗 = 0,… , 𝑘−1, to 1. However, this comes at
the cost of a reduction in the code rate, i.e., the storage overhead is increased. In
the above example, adding 𝑛B−𝑘 = 3 Class B parity nodes leads to the reduction
in code rate from 𝑅 = 5/7 to 𝑅 = 5/10 = 1/2. If a lower storage overhead
is required, Class B parity nodes can be punctured, starting from the last parity
node (for the code in Example 4, nodes 𝒫B, 𝒫B, and 𝒫B can be punctured in
this order), at the expense of an increased repair bandwidth. If all Class B parity
nodes are punctured, only Class A parity nodes would remain, and the repair
bandwidth is equal to the one of the Class A code. Thus, our code construction
gives a family of rate-compatible codes which provides a tradeoff between repair
bandwidth and storage overhead: adding more Class B parity nodes reduces the
repair bandwidth, but also increases the storage overhead.

4.3 Repair of a Single Data Node Failure: Decoding Schedule

The repair of a failed data node proceeds as follows. First, 𝜏 + 1 symbols are
repaired using Class A parity nodes. Then, the remaining symbols are repaired
using Class B parity nodes. With a slight abuse of language, we will refer to the
repair of symbols using Class A and Class B parity nodes as the decoding of Class
A and Class B codes, respectively.

We will need the following definition.

58 P I

Definition 10. Consider a Class B parity node and let 𝒫B denote the set of parity
symbols in this node. Also, let 𝑑 ∈ 𝒟𝒬 for some 𝑗 and 𝑝B ∈ 𝒫B be the parity symbol
𝑝B = 𝑑 + ∑ ∈𝒟 𝑑 , where 𝒟 ⊂ 𝒟, i.e., the parity symbol 𝑝B is the sum of 𝑑 and a
subset of other data symbols. We define �̆� = 𝒟 ∪ {𝑑}.

Suppose that node 𝑗 fails. Decoding is as follows.
• Decoding the Class A code. To reconstruct the failed data symbol in the
𝑗-th row of the code array, 𝑘 symbols (𝑘 − 1 data symbols and 𝑝A,) in the
𝑗-th row are read. These symbols are now cached in the memory. We then
read the 𝜏 piggybacked symbols in the 𝑗-th row. By construction (see (I.3)),
this allows to repair 𝜏 failed symbols, at the cost of an additional read each.

• Decoding theClassB code. Each remaining failed data symbol𝑑 , ∈ 𝒟𝒬 is
obtained by reading a Class B parity symbol whose corresponding set �̆� (see
Definition 10) contains 𝑑 , . In particular, if several Class B parity symbols
𝑝B, contain 𝑑 , , we read the parity symbol with largest index 𝑗 . This yields
the lowest additional read cost.

5 A Heuris c Construc on of Class B Nodes With Improved
Repair Bandwidth

In this section, we provide a way to improve the repair bandwidth of the fam-
ily of codes constructed so far. More specifically, we achieve this by providing
a heuristic algorithm for the construction of the Class B code, which improves
Construction 1 in Section 4 for some values of 𝑛 and even values of 𝑘.

The algorithm is based on a simple observation. Let 𝑝B and 𝑝B be two parity
symbols constructed from 𝜌 data symbols in 𝒟 in two different ways as follows:

𝑝B = 𝑑 , + 𝑑 , + 𝑑 , +⋯+ 𝑑 , , (I.5)

𝑝B = 𝑑 , + 𝑑 , + 𝑑 , +⋯+ 𝑑 , , (I.6)

where 𝑑 , ∈ 𝒟𝒬 (see Definition 8), 𝑖 , … , 𝑖 ≠ 𝑖, and 𝑑 , , 𝑑 , , … , 𝑑 , ∈ 𝒟𝒳
(see Definition 9). Note that the only difference between the two parity symbols
above is that 𝑝B does not involve 𝑑 , (and that 𝑝B does not involve 𝑑 ,). This
has a major consequence in the repair of the data symbols 𝑑 , , 𝑑 , , … , 𝑑 , and
𝑑 , , 𝑑 , , … , 𝑑 , using 𝑝B and 𝑝B, respectively. Consider the repair using parity
symbol 𝑝B. From Proposition 1, it is clear that the repair of symbol 𝑑 , will have
an additional read cost of 1, since the remaining 𝜌 − 1 data symbols are in 𝒟𝒳 .
As the symbol 𝑑 , ∈ 𝒟𝒬 and 𝑑 , ∈ 𝒟𝒳 , from Proposition 1 and the fact that
𝑑 , , … , 𝑑 , ∉ 𝒟𝒳 , we can repair 𝑑 , with an additional read cost of 𝜌 − 1.
The remaining 𝜌−2 symbols each have an additional read cost of 𝜌, whereas the
symbols repaired using 𝑝B incur an additional read cost of 1 for the symbol 𝑑 ,
and 𝜌 for the remaining symbols. Clearly, we see that the combined additional
read cost, i.e., the sumof the individual additional read costs for each data symbol
using 𝑝B is lower (by 1) than that using 𝑝B.

5 A Heuristic Construction of Class B Nodes 59

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝒫A

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝒫A 𝒫B 𝒫B,h

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , 𝑝A, 𝑝A, + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

𝑑 , + 𝑑 ,

(a) (b)

Figure I.4: A (7, 4) code constructed from a (6, 4) Class A code with 𝜏 = 1 and a (5, 4)
Class B code. (a) Class B node constructed according to Construction 1 in Section 4. (b)
A different configuration of the Class B node that reduces the repair bandwidth.

In the way Class A parity nodes are constructed and due to the structure of
the sets 𝒟𝒬 and 𝒟𝒳 , it can be seen that 𝑑 , ∈ 𝒟𝒬 and 𝑑 , ∈ 𝒟𝒳 when 𝑘 ≥
2(𝜏 + 1). From Construction 1 of the Class B code in Section 4 we observe that
for odd 𝑘 and 𝑘 > 2(𝜏 + 1), the parity symbols in node 𝒫B are as in (I.5) for
𝑛A ≤ 𝑙 ≤ 𝑛A + ⌊𝑘/2⌋ − 𝜏 − 1. Furthermore, for 𝑛A + ⌊𝑘/2⌋ − 𝜏 ≤ 𝑙 ≤ 𝑛 − 1,
the parity symbols in node 𝒫B have the structure in (I.6). On the other hand,
for 𝑘 even and 𝑘 ≥ 2(𝜏 + 1), the parity symbols in the node 𝒫B are as in (I.5)
for 𝑛A ≤ 𝑙 ≤ 𝑛A + 𝑘/2 − 𝜏 − 2. However, contrary to case of 𝑘 odd, the parity
symbols in the node𝒫B

A / follow (I.6). But since 𝑘 ≥ 2(𝜏+1), we know that
𝑑 , ∈ 𝒟𝒬 and 𝑑 , ∈ 𝒟𝒳 . Thus, it is possible to construct some parity symbols in
this node as in (I.5), and Construction 1 of Class B nodes in the previous section
can be improved. However, the improvement comes at the expense of the loss of
the mathematical structure of Class B nodes given in (I.4).

Example 5. Consider the (7, 4) code as shown in Fig. I.4. Fig. I.4(a) shows the node
𝒫B using Construction 1 in Section 4, while Fig. I.4(b) shows a different configu-
ration of the node 𝒫B. Note that 𝑘 = 2(𝜏 + 1) = 4. Thus, each pair (𝒟𝒬 , 𝒟𝒳)
contains one symbol 𝑑 , and 𝑑 , . The node 𝒫B has parity symbols according to
(I.6), while 𝒫B,h has two parity symbols as in (I.5) and two parity symbols accord-
ing to (I.6). The configuration of the (7, 4) code arising from Construction 1 has a
normalized repair bandwidth of 2, while the (7, 4) code with node𝒫B,h in Fig. I.4(b)
has a repair bandwidth of 1.875, i.e., an improvement is achieved.

In order to describe the modified code construction, we define the function
read(𝑑, 𝑝B) as follows.
Definition 11. Consider the construction of the parity symbol 𝑝B as 𝑝B = 𝑑 +
∑ ∈𝒟 𝑑 (see Definition 10). Then,

read(𝑑, 𝑝B) = |�̆�\𝒟𝒳 |.

For a given data symbol 𝑑, the function read(𝑑, 𝑝B) gives the additional num-
ber of symbols that need to be read to recover 𝑑 (considering the fact that some

60 P I

symbols are already cached in the memory). The set �̆� represents the set of data
symbols that the parity symbol 𝑝B is a function of. We use the index set𝒰 to rep-
resent the indices of such data symbols. We denote by 𝒰 , 𝑡 = 0,… , 𝑘 − 1, the
index set corresponding to the 𝑡-th parity symbol in the node (there are 𝑘 parity
symbols in a parity node).

In the following, denote by 𝑨 = [𝑎 ,] a temporary matrix of read costs for the
respective data symbols in 𝑫 = [𝑑 ,]. After Class A decoding,

𝑎 , =
∞ if 𝑑 , ∈ ∪ 𝒟𝒬
𝑘 if 𝑖 = 𝑗
1 otherwise

� . (I.7)

In Section 5.1 below, we will show that the construction of parities depends upon
the entries of 𝑨. To this extent, for some real matrix 𝑴 = [𝑚 ,] and index set
ℐ, we define Ψ(𝑴ℐ) as the set of indices of matrix elements of 𝑴 from ℐ whose
values are equal to the maximum of all entries in𝑴 indexed by ℐ. More formally,
Ψ(𝑴ℐ) is defined as

Ψ(𝑴ℐ) = (𝑖, 𝑗) ∈ ℐ ∣ 𝑚 , = max
(,)∈ℐ

𝑚 , .

The heuristic algorithm to construct the Class B code is given in Appendix B
and we will refer to the construction of the Class B code according to this al-
gorithm as Construction 2. In the following subsection, we clarify the heuristic
algorithm to construct the Class B code with the help of a simple example.

5.1 Construc on Example

Let us consider the construction of a (7, 4) code using a (6, 4) Class A code and a
(5, 4)ClassB code. In total, there are three parity nodes; two ClassA parity nodes,
denoted by𝒫A and𝒫A, respectively, and one ClassB parity node, denoted by𝒫B,h,
where the upper index h is used to denote that the parity node is constructed
using the heuristic algorithm. The parity symbols of the nodes are depicted in
Fig. I.4. Each parity symbol of the Class B parity node is the sum of 𝑘−𝜏−1 data
symbols 𝑑 , ∈ ∪ 𝒟𝒬 , constructed such that the read cost of each symbol 𝑑 , is
lower than 𝑎 , as shown below.

1. Construction of 𝒫B,h

Each parity symbol in this node is constructed using 𝜌 = 𝑘 − 𝜏 − 1 = 2
unique symbols as follows.

1.a Since no symbols have been constructed yet, we have 𝒰 = ∅, 𝑡 =
0,… , 3. (This corresponds to the execution of Line 1 to Line 19 of Algo-
rithm 2 in Appendix B.)

1.b Select 𝑑 , ∈ 𝒟𝒬 such that its read cost is maximum, i.e., 𝑑 , ∈ 𝒟 (𝑨𝒬).
Choose 𝑑 , = 𝑑 , , as 𝑎 , = ∞. Note that we choose 𝑑 , since 𝑑 , ∈
𝒟𝒳 .

5 A Heuristic Construction of Class B Nodes 61

1.c Construct 𝑝 , = 𝑑 , + 𝑑 , (see Line 4 of Algorithm 2). Correspond-
ingly, we have 𝒰 = {(2, 0), (0, 2)}.

1.d Recursively construct the next parity symbol in the node as follows.
Similar to Item 1.b, choose 𝑑 , ∈ 𝒟 (𝑨𝒬). Construct 𝑝 , = 𝑑 , + 𝑑 , .
Likewise, we have 𝒰 = {(3, 1), (1, 3)}

1.e For the next parity symbol, note that 𝑑 , is already used in the con-
struction of 𝑝 , . The only possible choice of symbol in 𝒟𝒬 is 𝑑 , , but
𝑑 , ∉ 𝒟𝒳 . Therefore, we choose 𝑑 , ∈ 𝒟 (𝑨𝒬 ⧵∪ 𝒰) (see Line 7 of Al-
gorithm 2). In particular, since 𝑎 , = ∞, we choose 𝑑 , = 𝑑 , . Then,
Lines 8 to 11 of Algorithm 2 are executed.

1.f Choose an element 𝑑 , ∈ 𝒟𝒳 \∪ 𝒰 . In other words choose a symbol
in 𝒟𝒳 which has not been used in 𝑝 , and 𝑝 , . We have 𝑑 , = 𝑑 , .
Construct 𝑝 , = 𝑑 , + 𝑑 , . Thus, 𝒰 = {(1, 2), (2, 3)}.

1.g To construct the last parity symbol, we look for data symbols from the
sets 𝒟𝒬 and 𝒟𝒳 . However, all symbols in 𝒟𝒬 have been used in the
construction of previous parity symbols. Therefore, we cyclically shift
to the next pair of sets (𝒟𝒬 , 𝒟𝒳). Following Items 1.e and 1.f, we have
𝑝 , = 𝑑 , + 𝑑 , and 𝒰 = {(3, 0), (0, 1)}.

Note that |𝒰 | = 2 for all 𝑡, thus this completes the construction of the (7, 4)
code. The Class B parity node constructed above is depicted in Fig. I.4(b).

5.2 Discussion

In general, the algorithm constructs 𝑛B−𝑘 parity nodes, 𝒫B
A
, … , 𝒫B , recursively.

In the 𝑙-th Class B node, 𝑙 = 𝑛A, … , 𝑛 − 1, each parity symbol is a sum of at most
𝜌 = 𝑘−𝜏−1−𝑙+𝑛A symbols 𝑑 , ∈ ∪ 𝒟𝒬 . Each parity symbol 𝑝 , , 𝑡 = 0,… , 𝑘−1,
in the 𝑙-th Class B parity node with 𝜌 > 1 is constructed recursively with 𝜌 − 1
recursion steps. In the first recursion step, each parity symbol 𝑝 , is either equal
to a single data symbol or a sum of 2 data symbols. In the latter case, the first
symbol 𝑑 , ∈ 𝒟𝒬 is chosen as the symbol with the largest read cost 𝑎 , . The
second symbol is 𝑑 , ∈ 𝒟𝒳 if such a symbol exists. Otherwise (i.e., if 𝑑 , ∉ 𝒟𝒳),
symbol 𝑑 , ∈ 𝒟𝒳 is chosen. In the remaining 𝜌 −2 recursion steps a subsequent
data symbol 𝑑 , ∈ 𝒟𝒳 (if it exists) is added to 𝑝 , . Doing so ensures that 𝑘
symbols have a new read cost that is reduced to 1 when parity symbols 𝑝 , are
used to recover them. Having obtained these parity symbols, the read costs of all
data symbols in ∪ 𝒟𝒬 are updated and stored in 𝑨. This process is repeated for
successive parity nodes. If 𝜌 = 1 for the 𝑙-th parity node, its parity symbols 𝑝 ,
are equal to the data symbols 𝑑 , ∈ 𝒟𝒬 whose read costs 𝑎 , are the maximum
possible.

In the above example, only a single recursion for the construction of 𝒫B,h is
needed, where each parity symbol is a sum of two data symbols.

62 P I

6 Code Characteris cs and Comparison

In this section, we characterize different properties of the codes presented in Sec-
tions 3-5. In particular, we focus on the fault tolerance, repair bandwidth, repair
complexity, and encoding complexity. We consider the complexity of elementary
arithmetic operations on field elements of size 𝜈 = 𝑚⌈log 𝑝⌉ in GF(𝑞), where
𝑞 = 𝑝 for some prime number 𝑝 and positive integer 𝑚. The complexity of ad-
dition is 𝑂(𝜈), while that of multiplication is 𝑂(𝜈), where the argument of 𝑂(⋅)
denotes the number of elementary binary additions.3

6.1 Code Rate

The code rate for the proposed codes is given by 𝑅 =
A B

. It can be seen that
the code rate is bounded as

𝑘
3𝑘 − 𝜏 − 2 ≤ 𝑅 ≤ 𝑘

𝑘 + 3.

The upper bound is achieved when 𝑛A = 𝑘 + 2, 𝜏 = 1, and 𝑛B = 𝑘 + 1, while the
lower bound is obtained from the upper bounds on 𝑛A and 𝑛B given in Sections 3
and 4.

6.2 Fault Tolerance

The proposed codes have fault tolerance equal to that of the corresponding Class
A codes, which depends on the MDS code used in their construction and 𝜏 (see
Theorem 1). Class B nodes do not help in improving the fault tolerance. The rea-
son is that improving the fault tolerance of the Class A code requires the knowl-
edge of the piggybacks that are strictly not in the set ∪ 𝒟 , while Class B nodes
can only be used to repair symbols in ∪ 𝒟 .

In the case where the ClassB code has parameters (𝑛B = 𝑘+1, 𝑘), the resulting
(𝑛 = 𝑛A + 1, 𝑘) code has fault tolerance 𝑛A − 𝑘 for 𝜏 < 𝜉, i.e., one less than that
of an (𝑛 = 𝑛A + 1, 𝑘)MDS code.

6.3 Repair Bandwidth of Data Nodes

According to Section 4.3, to repair the first 𝜏 + 1 symbols in a failed node, 𝑘 − 1
data symbols and 𝜏 + 1 Class A parity symbols are read. The remaining 𝑘 − 𝜏 − 1
data symbols in the failed node are repaired by reading Class B parity symbols.

Let 𝑓 , 𝑙 = 𝑛A, … , 𝑛−1, denote the number of parity symbols that are used from
the 𝑙-th Class B node according to the decoding schedule in Section 4.3. Due to

3It should be noted that the complexity of multiplication is quite pessimistic. However, for the sake
of simplicity we assume it to be (). When the field is () there exist algorithms such as the
Karatsuba-Ofman algorithm [26, 27] and the Fast Fourier Transform [28–30] that lower the complexity to
() and (), respectively.

6 Code Characteristics and Comparison 63

Construction 1 in Section 4, we have

𝑓
A
= 𝑓

A
= ⋯ = 𝑓 = 1,

𝑓 = 𝑘 − 𝜏 − 1 −
A

𝑓 = 𝑘 − 𝜏 − 𝑛 + 𝑛A.
(I.8)

The Class B nodes 𝑛A, … , 𝑛 − 2 are used to repair 𝑛 − 1 − 𝑛A symbols with an
additional read cost of 𝑛−1−𝑛A (1 per symbol). The remaining 𝑘−𝜏−𝑛+𝑛A =
𝑓 erased symbols are corrected using the (𝑛−1)-th Class B node. The repair of
one of the 𝑓 symbols entails an additional read cost of 1. On the other hand,
since the parity symbols in the (𝑛 − 1)-th Class B node are a function of 𝑓
symbols, the repair of the remaining 𝑓 − 1 symbols entails an additional read
cost of at most 𝑓 each. In all, the 𝑘 − 𝜏 − 1 erased symbols in the failed node
have a total additional read cost of atmost 𝑛−𝑛A+(𝑓 −1)𝑓 . The normalized
repair bandwidth for the failed systematic node is therefore given as

𝜆s ≤ 𝑘 + 𝜏 + 𝑛 − 𝑛A + (𝑓 − 1)𝑓
𝑘 = 2𝑘 − 2𝑓 + 𝑓

𝑘 .

Note that 𝑓 is function of 𝜏, and it follows from Section 6.2 and (I.8) that when
𝜏 increases, the fault tolerance reduces while 𝜆s improves. Furthermore, as 𝑛B in-
creases (thereby as 𝑛 increases), 𝑓 decreases. This leads to a further reduction
of the normalized repair bandwidth.

6.4 Repair Complexity of a Failed Data Node

To repair the first symbol requires 𝑘multiplications and 𝑘−1 additions. To repair
the following 𝜏 symbols require an additional 𝜏𝑘 multiplications and additions.
Thus, the repair complexity of repairing 𝜏 + 1 failed symbols is

𝐶A
r = 𝑂((𝑘 − 1)𝜈 + 𝑘𝜈) + 𝑂(𝜏𝑘(𝜈 + 𝜈)).

For Construction 1, the remaining 𝑘 − 𝜏 − 1 failed data symbols in the failed
node are corrected using 𝑘 − 𝜏 − 1 parity symbols from 𝑛B − 𝑘 Class B nodes. To
this extent, note that ∑

A
𝑓 = 𝑘−𝜏−1. The repair complexity for repairing the

remaining 𝑘 − 𝜏 − 1 symbols is

𝐶B
r =

A

𝑂(𝑓(𝑘 − 𝜏 − 2 − 𝑙 + 𝑛A)𝜈). (I.9)

From (I.8), (I.9) simplifies to

𝐶B
r =

A

𝑂((𝑘 − 𝜏 − 2 − 𝑙 + 𝑛A)𝜈) + 𝑂((𝑘 − 𝜏 − 𝑛 + 𝑛A)(𝑘 − 𝜏 − 1 − 𝑛 + 𝑛A)𝜈).

64 P I

For Construction 2, the final 𝑘 − 𝜏 − 1 failed data symbols require at most
𝑘 − 𝜏 − 2 additions, since Class B parity symbols are constructed as sums of at
most 𝑘 − 𝜏 − 1 data symbols. The corresponding repair complexity is therefore

𝐶B
r ≤ 𝑂((𝑘 − 𝜏 − 2)(𝑘 − 𝜏 − 1)𝜈).

Finally, the total repair complexity is 𝐶s
r = 𝐶A

r + 𝐶B
r .

6.5 Repair Bandwidth and Complexity of Parity Nodes

We characterize the normalized repair bandwidth and repair complexity of Class
A and B parity nodes.

ClassAnodes consist of 𝑛A−𝑘MDSparity nodes of which 𝜏 nodes aremodified
with a single piggyback. Thus, the repair of each parity symbol in the 𝑛A − 𝑘 − 𝜏
non-modified nodes requires downloading 𝑘 data symbols. To obtain the parity
symbol, one needs to perform 𝑘 − 1 additions and 𝑘 multiplications. Thus, each
parity symbol in these nodes has a repair bandwidth of 𝑘 and a repair complex-
ity of 𝑂((𝑘 − 1)𝜈 + 𝑘𝜈), while each erased parity symbol in the 𝜏 piggybacked
nodes requires reading 𝑘 + 1 data symbols. Such parity symbols are obtained by
performing 𝑘 − 1 additions and 𝑘 multiplications to get the original MDS par-
ity symbol and then finally a single addition of the piggyback to the MDS parity
symbol is required. Overall, the normalized repair bandwidth is 𝑘 + 1 and the
normalized repair complexity is 𝑂(𝑘(𝜈 + 𝜈)). In average, the normalized repair
bandwidth and the normalized repair complexity of Class A parity nodes are

𝜆p,A = 𝑘 + 𝜏
𝑛A − 𝑘, 𝐶p,A

R = 𝑂 �(𝑘 − 1)𝜈 + 𝑘𝜈 + 𝜏𝜈
𝑛A − 𝑘

�,

respectively.
Considering the 𝑖-th Class B node, the repair of an erased parity symbol re-

quires downloading 𝑘 − 𝜏 − 1 − 𝑖, 𝑖 = 0,… , 𝑛B − 𝑘 − 1, data symbols. The repair
entails 𝑘 − 𝜏 − 2− 𝑖 additions, and the average normalized repair bandwidth 𝜆p,B
and repair complexity 𝐶p,B

r are given as

𝜆p,B =
∑ B 𝑘 − 𝜏 − 1 − 𝑖

𝑛B − 𝑘 = 1
2

�3𝑘 − 2𝜏 − 𝑛B − 1 �,

𝐶p,B
r = 𝑂 �∑

B 𝑘 − 𝜏 − 2 − 𝑖
𝑛B − 𝑘 𝜈 � = 𝑂 �1

2(3𝑘 − 2𝜏 − 𝑛B − 3)𝜈 �.

6.6 Encoding Complexity

The encoding complexity, denoted by 𝐶e, is the sum of the encoding complexities
of Class A and Class B codes. The generation of each of the 𝑛A − 𝑘 Class A parity
symbols in one row of the code array, 𝑝A, in (I.2), requires 𝑘 multiplications and
𝑘 − 1 additions. Adding data symbols to 𝜏 of these parity symbols according to

6 Code Characteristics and Comparison 65

(I.3) requires an additional 𝜏 additions. The encoding complexity of the Class A
code is therefore

𝐶A
e = 𝑂((𝑛A − 𝑘)(𝑘𝜈 + (𝑘 − 1)𝜈)) + 𝑂(𝜏𝜈).

According to Sections 4 and 5, the parity symbols in the first Class B parity
node are constructed as sums of at most 𝑘 − 𝜏 − 1 data symbols, and each parity
symbol in the subsequent parity nodes is constructed as a sum of data symbols
from a set of size one less. Therefore, the encoding complexity of the ClassB code
is

𝐶B
e ≤

A

𝑂((𝑘 − 𝜏 − 1 − 𝑖)𝜈)

= 𝑂 �1
2(𝑛 − 𝑛A)(2𝑘 − 2𝜏 − 3 − 𝑛 + 𝑛A)𝜈 �.

(I.10)

Note that for Construction 1 the upper bound on 𝐶B
e in (I.10) is tight. Finally,

𝐶e = 𝐶A
e + 𝐶B

e .

6.7 Code Comparison

In this section, we compare the performance of the proposed codes with that of
several codes in the literature, namely MDS codes, exact-repairable MDS codes
[24], MDR codes [9], Zigzag codes [10], Piggyback codes [19], generalized Piggy-
back codes [23], EVENODDcodes [25], Pyramid codes [2], and LRCs [3]. Through-
out this section, we compare the repair bandwidth and the repair complexity of
the systematic nodes with respect to other codes, except for exact-repairableMDS
and BASIC PM-MBR codes. The reported repair bandwidth and complexity for
these codes are for all nodes (both systematic and parity nodes).

Section 6.7 provides a summary of the characteristics of the proposed codes as
well as different codes proposed in the literature.4 In the table, column 2 reports
the value of 𝛽 (see (I.1)) for each code construction. For our code, 𝛽 = 𝑘, unlike
for MDR and Zigzag codes, for which 𝛽 grows exponentially with 𝑘. This implies
that our codes require less memory to cache data symbols during repair. On the
contrary, EVENODD codes have a lower sub-packetization and repair complexity,
but this comes at the cost of having the same repair bandwidth asMDS codes. The
Piggyback codes presented in the table and throughout this section are from the
piggybacking design 1 in [19], which provides efficient repair for only data nodes.
The fault tolerance 𝑓, the normalized repair bandwidth 𝜆, the normalized repair
complexity, and the encoding complexity, discussed in the previous subsections,
are reported in columns 3, 4, 5, and 6, respectively.

In Figs. I.5 and I.6, we compare our codes with Construction 1 for the Class
B codes (i.e., the codes are constructed as shown in Sections 3 and 4) with other
codes in the literature. We remark that the Pyramid codes in Fig. I.6 refer to

4The variables (,) and in Section 6.7 are defined in [19] and [3], respectively. The definition of ℓ
comes directly from that is defined in [19].

66 P I

𝛽
Fa
ul
t
To
l-

er
an

ce
N
or
m
.R

ep
ai
r
B
an

d.
N
or
m
.R

ep
ai
r
C
om

pl
.

En
c.
C
om

pl
ex
it
y

M
D
S

1
𝑛
−
𝑘

𝑘
𝑂(
(𝑘

−
1)
𝜈+

𝑘𝜈
)

𝑂(
(𝑛

−
𝑘)
(𝑘

−
1)
𝜈+

𝑘𝜈
)

LR
C
[3
]

1
𝑟+

1
𝑂(
(⌈

⌉−
1)
𝜈)

𝑟𝑂
((
𝑘
−
1)
𝜈+

𝑘𝜈
)+

(𝑛
−
𝑘
−
𝑟)
𝑂(
(⌈

⌉−
1)
𝜈)

M
D
R
[9
]

2
2

𝑂(
𝑘
−
1)

𝑂(
2(
𝑘
−
1)
)

Zi
gz
ag

[1
0]

(𝑛
−
𝑘)

𝑛
−
𝑘

𝑂(
(𝑘

−
1)
𝜈+

𝑘𝜈
)

𝑂(
(𝑛

−
𝑘)
(𝑘

−
1)
𝜈+

𝑘𝜈
)

Pi
gg
yb
ac
k

[1
9]

2
𝑛
−
𝑘

(
)(

)
(

ℓ
)

–
–

EV
EN

O
D
D
[2
5]
𝑘
−
1

2
𝑘

𝑂(
(𝑘

−
1)
𝜈)

𝑂(
𝜈)

Pr
op

os
ed

co
de
s

𝑘
𝑓

𝜆s
𝐶s r
/𝑘

𝐶 e

Ta
bl
e
I.1
:
C
om

pa
ri
so
n
of
(𝑛
,𝑘
)c

od
es

th
at

ai
m

at
re
du

ci
ng

th
e
re
pa
ir
ba
nd

w
id
th
.
Th

e
re
pa
ir
ba
nd

w
id
th

an
d
th
e
re
pa
ir
co
m
pl
ex
it
y
ar
e

no
rm

al
iz
ed

pe
r
sy
m
bo

l,
w
hi
le

th
e
en
co
di
ng

co
m
pl
ex
it
y
is
gi
ve
n
pe
r
ro
w
of

th
e
co
de

ar
ra
y.

N
ot
e
th
at

fo
r
M
D
R
an
d
EV

EN
O
D
D

co
de
s,

𝑛
=
𝑘
+
2
w
he
re
𝑘
is
pr
im

e
fo
rE

V
EN

O
D
D
co
de
s.

6 Code Characteristics and Comparison 67

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 90

100

200

300

400

500

600

700

800

(8, 4, 3), (7, 4, 2)
(10, 5, 4), (9, 5, 3), (8, 5, 2)

(13, 9, 3)(12, 8, 3)

(10, 5, 5), (9, 5, 4), (8, 5, 3)

(8, 4, 4), (7, 4, 3)

(13, 9, 4)

(12, 8, 4)

(7, 4, 3)
(8, 4, 4)

(8, 5, 3)

(12, 8, 4)

(13, 9, 4)

(8, 5, 3)(9, 5, 4)
(10, 5, 5)

(8, 4, 4) (7, 4, 3)

(13, 9, 4)

(12, 8, 4)

(8, 4, 2)
(10, 5, 2)(9, 5, 2)

(13, 9, 3)(12, 8, 3)

(8, 4, 3) (10, 5, 3)
(9, 5, 3)

(10, 5, 4)
(8, 4, 2)

(7, 4, 2)
(10, 5, 2)

(9, 5, 2)
(8, 5, 2)

normalized repair bandwidth (𝜆)

no
rm

al
iz
ed

re
pa
ir
co
m
pl
ex
it
y

MDS
LRC [3]
Zigzag [10]
Piggyback [19]
Our code, 𝜏 = 1, 𝑛A = 𝑘 + 2
Our code, 𝜏 = 1, 𝑛A = 𝑘 + 3
Our code, 𝜏 = 1, 𝑛A = 𝑘 + 4
Our code, 𝜏 = 2, 𝑛A = 𝑘 + 3

Figure I.5: Comparisons of different (𝑛, 𝑘, 𝑓) codes with 𝜈 = 8.

the basic Pyramid codes in [2], while the exact-repairable MDS codes refer to the
(2, 𝑛 − 𝑘, 𝑛 − 1) exact-repairable MDS codes from [24, Sec. IV]. The aforemen-
tioned notation, unlike our notation in this paper, refers to an (𝑛, 𝑘, 𝑛 − 𝑘) code
that has 𝜆 ≤ 2 , 𝛽 = 𝑛 − 𝑘, and repair locality of 𝑛 − 1. For generalized Piggy-
back codes [23], we choose 𝛽 = 𝑘. Also note that the parameters 𝑠, 𝑝 are chosen
according to [23, Eq. 20], i.e., 𝑠 = 𝑘√

√
or 𝑠 = 𝑘√

√
and 𝑝 = 𝑘 − 𝑠,

whichever pair of values gives the lowest repair bandwidth. In case of a tie, the
pair that gives the lowest repair complexity was chosen. In particular, the fig-
ure plots the normalized repair complexity of (𝑛, 𝑘, 𝑓) codes over GF(2) (𝜈 = 8)
versus their normalized repair bandwidth 𝜆. In the figure, we show the exact re-
pair bandwidth for our proposed codes, while the reported repair complexities
and the repair bandwidths of the other codes, except for Piggyback, generalized
Piggyback, and exact-repairable MDS codes, are from Section 6.7.5 For Piggy-
back, generalized Piggyback, and exact-repairable MDS codes exact values for
the repair bandwidth and the repair complexity are calculated directly from the
codes. Furthermore, for a fair comparison we assume the parity symbols in the
first parity node of all storage codes to be weighted sums. The only exception is
the LRCs and the exact-repairable MDS codes, as the code design enforces the
parity-check equations to be non-weighted sums. Thus, changing it would alter
the maximum erasure correcting capability of the LRC and the repair bandwidth
of the exact-repairable MDS code. We also assume that the LRCs and the Pyra-
mid codes have a repair locality of 𝑘/2. For the generalized Piggyback codes, we

5For LRCs the expressions for the repair bandwidth and the repair complexity tabulated in Section 6.7
are used when is a divisor of . When is not a divisor of , exact values for the repair
bandwidth and the repair complexity are calculated directly from the codes.

68 P I

1.5 2 2.5 3 3.5 4 4.5 5 5.5 60

100

200

300

400

500

600

700

800

900

(7, 4, 2), (8, 4, 3)

(8, 5, 2), (9, 5, 3), (10, 5, 4)

(12, 8, 3)
(13, 9, 3)

(7, 4, 3)(8, 4, 4)

(8, 5, 3)
(9, 5, 4)(10, 5, 5)

(12, 8, 4)

(13, 9, 4)

(7, 4, 3)

(8, 4, 4)
(8, 5, 3)

(9, 5, 4)

(10, 5, 5)

(13, 9, 4)

(12, 8, 4)

(8, 4, 2)
(10, 5, 2) (9, 5, 2)

(13, 9, 3)(12, 8, 3)

(8, 4, 3) (10, 5, 3)
(9, 5, 3)

(10, 5, 4)
(8, 4, 2)

(7, 4, 2)
(10, 5, 2)

(9, 5, 2)
(8, 5, 2)

normalized repair bandwidth (𝜆)

no
rm

al
iz
ed

re
pa
ir
co
m
pl
ex
it
y

Pyramid [2]
Generalized Piggyback [23]
Exact-repairable MDS [24]
Our code, 𝜏 = 1, 𝑛A = 𝑘 + 2
Our code, 𝜏 = 1, 𝑛A = 𝑘 + 3
Our code, 𝜏 = 1, 𝑛A = 𝑘 + 4
Our code, 𝜏 = 2, 𝑛A = 𝑘 + 3

Figure I.6: Comparisons of different (𝑛, 𝑘, 𝑓) codes with 𝜈 = 8.
assume that the codes have sub-packetization 𝛽 = 𝑘. For the Piggyback codes,
we consider the construction that repairs just the data nodes. Therefore, they
have a sub-packetization of 2.

The best codes for a DSS should be the ones that achieve the lowest repair
bandwidth and have the lowest repair complexity. As seen in Fig. I.5, MDS codes
have both high repair complexity and repair bandwidth, but they are optimal
in terms of fault tolerance for a given 𝑛 and 𝑘. Zigzag codes achieve the same
fault tolerance and high repair complexity as MDS codes, but at the lowest re-
pair bandwidth. At the other end, LRCs yield the lowest repair complexity, but
a higher repair bandwidth and worse fault tolerance than Zigzag codes. Piggy-
back codes, generalized Piggyback codes, and exact-repairable MDS codes have
a repair bandwidth between those of Zigzag and MDS codes, but with a higher
repair complexity. Strictly speaking, they have a repair complexity higher than
MDS codes. For a given storage overhead, our proposed codes have better re-
pair bandwidth than MDS codes, Piggyback codes, generalized Piggyback codes,
and exact-repairable MDS codes. In particular, the numerical results in Figs. I.5
and I.6 show that for different code parameters with 𝜏 = 1 and 𝑛A−𝑘 = 2 our pro-
posed codes yield a reduction of the repair bandwidth in the range of 64%−50%,
39.13%− 30.43%, 43.04%− 33.33%, and 33.33%− 30%, respectively. Further-
more, our proposed codes yield lower repair complexity as compared toMDS, Pig-
gyback, generalized Piggyback, exact-repairable MDS, and Zigzag codes. Again,
the numerical analysis in Figs. I.5 and I.6 shows that for different code parameters
with 𝜏 = 1 and 𝑛A−𝑘 = 2 our proposed codes yield a reduction of the repair com-
plexity in the range of 58.18% − 47.86%, 64.75% − 55.23%, 59.26% − 49.30%,
78.70% − 67.93%, and 58.18% − 47.86%, respectively. However, the benefits in
terms of repair bandwidth and/or repair complexity with respect to MDS codes,
Zigzag codes, and codes constructed using the piggybacking framework come at

6 Code Characteristics and Comparison 69

a price of a lower fault tolerance. For fixed (𝑛, 𝑘, 𝑓) it can be seen that the pro-
posed codes yield a reduction of the repair bandwidth in the range of 7.69%−0%
compared to LRCs and Pyramid codes, while in some cases, for the latter codes
our proposed codes achieve a reduction of the repair complexity in the range of
24.44% − 15.18%.

In Table I.2, we compare the normalized repair complexity of the proposed
codes with Construction 1 for the Class B code and BASIC PM-MBR codes pre-
sented in [20]. BASIC PM-MBR codes are constructed from an algebraic ring ℛ ,
where each symbol in the ring is a binary vector of length 𝑚. In order to have
a fair comparison with our codes, we take the smallest possible field size for our
codes and the smallest possible ring size for the codes in [20]. Furthermore, to
compare codes with similar storage overhead, we consider BASIC PM-MBR codes
with repair locality, denoted by 𝛿b, that leads to the same file size as for our pro-
posed codes (which is equal to 𝑘) and code length 𝑛 such that the code rate
(which is the inverse of the storage overhead) is as close as possible to that of
our proposed codes. The Class A codes of the proposed codes in the table are
(𝑛A, 𝑛A − 𝑓) RS codes. The codes are over GF(𝑛A + 1) if 𝑛A + 1 is a prime (or a
power of a prime). If 𝑛A + 1 is not a prime (or a power of prime), we construct
an (𝑛 , 𝑛 − 𝑓) RS code over GF(𝑛 + 1), where 𝑛 + 1 is the smallest prime (or
the smallest power of a prime) with 𝑛 + 1 ≥ 𝑛A + 1, and then we shorten the
RS code to obtain an (𝑛A, 𝑛A − 𝑓) Class A code. In the table, the parameters for
the proposed codes are given in columns 1 to 5 and those of the codes in [20]
in columns 6 to 9. The code rates 𝑅 and 𝑅b of the proposed codes and the BA-
SIC PM-MBR codes6 are given in columns 4 and 7, respectively. The smallest
possible field size for our codes and the smallest possible ring size for the BASIC
PM-MBR codes are given in columns 5 and 9, respectively. The normalized re-
pair complexity7 for BASIC PM-MBR codes, 𝐶b

r , is given in column 10, while the
normalized repair complexity of the proposed codes, 𝐶r, is given in column 11.
The normalized repair bandwidth for BASIC PM-MBR codes, 𝜆b, is given in col-
umn 12, while the normalized repair bandwidth of the proposed codes, 𝜆, is given
in the last column. It can be seen that the proposed codes achieve significantly
better repair complexity. However, this comes at the cost of a lower fault toler-
ance for the codes in rows 2 and 3 (but our codes have significantly higher code
rate) and higher repair bandwidth (since BASIC PM-MBR codes are MBR codes,
their normalized repair bandwidth is equal to 1). For the (9, 5, 3) code, the same
fault tolerance of the (8, 5, 3) code in [20] is achieved, despite the fact that the
proposed code has a higher code rate. We remark that FR codes achieve a better
(trivial) repair complexity compared to our proposed codes. However, this comes
at a cost of 𝑅 < 0.5 and they cannot be constructed for any 𝑛, 𝑘, and 𝛿, where 𝛿
is the repair locality.

In Table I.3, we compare the normalized repair bandwidth of the proposed
codes using Construction 1 and Construction 2 for Class B nodes. In the table,

6BASIC PM-MBR codes have code rate b / b, where � � (b) is the file size and
b ∈ { , , … , }.

7The normalized repair complexity of BASIC PM-MBR codes is b
r (. b .)()/ [20].

Such codes have b, , and . The value of is conditioned on the code length (see
[20, Th. 14]).

70 P I

Proposed 𝑛A 𝜏 𝑅 GF(𝑞) BASIC PM-MBR 𝑅b 𝛿b ℛ 𝐶b
r 𝐶r 𝜆b 𝜆

(9, 5, 3) 8 1 0.5556 GF(11) (8, 5, 3) 0.4464 7 ℛ 135 44 1 2.4
(11, 7, 3) 10 2 0.6364 GF(11) (11, 7, 4) 0.4454 10 ℛ 187.5 66.2857 1 3
(14, 9, 3) 12 2 0.6428 GF(13) (14, 9, 5) 0.4450 13 ℛ 384 70.6667 1 3.5556

Table I.2: Comparison of normalized repair complexity and bandwidth of (𝑛, 𝑘, 𝑓) BASIC
PM-MBR codes

Code 𝑛A 𝜏 𝜆C 𝜆C Improvement

(7, 4) 6 1 2 1.875 6.25%
(10, 6) 9 2 2.5 2.4167 3.33%
(13, 8) 12 3 3 2.9375 2.08%
(14, 8) 12 3 2.375 2.3125 2.63%
(16, 10) 15 4 3.5 3.45 1.43%

Table I.3: Improvement in normalized repair bandwidth of the proposed (𝑛, 𝑘) codes
when the Class B nodes are heuristically constructed.

with 𝜆C and 𝜆C , we refer to the normalized repair bandwidth for Construction 1
and Construction 2, respectively. For the codes presented, it is seen that the
heuristic construction yields an improvement in repair bandwidth in the range
of 1% − 7% with respect to Construction 1.

7 Conclusion

In this paper, we constructed a new class of codes that achieve low repair band-
width and low repair complexity for a single node failure. The codes are con-
structed from two smaller codes, Class A and B, where the former focuses on the
fault tolerance of the code, and the latter focuses on reducing the repair band-
width and complexity. It is numerically seen that our proposed codes achieve
better repair complexity than Zigzag codes, MDS codes, Piggyback codes, gen-
eralized Piggyback codes, exact-repairable MDS codes, BASIC PM-MBR codes,
and are in some cases better than Pyramid codes. They also achieve a better
repair bandwidth compared to MDS codes, Piggyback codes, generalized Piggy-
back codes, exact-repairable MDS codes, and are in some cases better than LRCs
and Pyramid codes. A side effect of such a construction is that the number of
symbols per node that need to be encoded grows only linearly with the code di-
mension. This implies that our codes are suitable for memory constrained DSSs
as compared to Zigzag and MDR codes, for which the number of symbols per
node increases exponentially with the code dimension.

A Proof of Theorem 1

Consider an arbitrary set of 𝜏 ≤ 𝜏 piggybacked nodes, denoted by 𝒯 =
{𝑗 , 𝑗 , … , 𝑗 }, 𝑗 = 𝑗 − (𝑛A − 𝜏) + 1, 𝑗 ∈ {𝑛A − 𝜏,… , 𝑛A − 1}. Then, the

A Proof of Theorem 1 71

repair of the 𝑖-th row, 𝑖 = 0,… , 𝑘 − 1, using the piggybacked nodes in 𝒯,
would depend upon the knowledge of the data symbols (piggybacks) in the rows
(𝑖 + 𝑗) , (𝑖 + 𝑗) , … , (𝑖 + 𝑗) . This is because the knowledge of the piggy-
backs in these rows allows to obtain the original MDS parity symbols in the 𝑖-th
row. In the following, we use this observation. We first proceed to prove that if
𝜏 (𝜏 +𝑛A−𝑘−𝜏) < 𝑘, then 𝜃 + 𝜏 ≤ 𝑛A−𝑘−𝜏+ 𝜏 data nodes can be corrected
using 𝜃 non-modified parity nodes and the 𝜏 piggybacked nodes in 𝒯. Using this
we will complete the proof of Theorem 1.

Lemma 1. Consider an (𝑛A, 𝑘) Class A code with 𝑘 + 2 ≤ 𝑛A < 2𝑘. The code
consists of 𝜏 piggybacked nodes and 𝑛A−𝑘 − 𝜏 non-modified MDS parity nodes. If
𝜏 (𝜏 + 𝑛A − 𝑘 − 𝜏) < 𝑘, then the code can correct 𝜃 + 𝜁 data node failures using
𝜃 ≤ 𝑛A − 𝑘 − 𝜏 non-modified parity nodes and the 𝜏 piggybacked parity nodes in
the set 𝒯 = {1,… , 𝜏 } for 𝜁 ≤ 𝜏 ≤ 𝜏.
Proof. We consider first the case when 𝜁 = 𝜏 . Then, assume that 𝜃+𝜁 data nodes
fail and there exists a sequence 𝑖, (𝑖 +1) , … , (𝑖 −1+𝜏) of 𝜏 data nodes that are
available. By construction, the parity symbol 𝑝A,p() , A

, 𝑡 ∈ 𝒯, is (see (I.3))
given by

𝑝A,p() , A
= 𝑝A() , A

+ 𝑑() ,() , (I.11)

where 𝑗 = 0,… , 𝑘 − 1. To recover all data symbols, set 𝑖 = (𝑖 + 𝜏) and perform
the following steps.

1. Obtain the 𝜁 = 𝜏 MDS parity symbols 𝑝A() , A
, 𝑡 ∈ 𝒯 (see (I.11)) in

the (𝑖 −1) -th row. This is possible because the piggybacks in the (𝑖 −1) -
th node are available.

2. Using the 𝜃 + 𝜁 MDS parity symbols and 𝑘 − 𝜃 − 𝜁 data symbols in the
(𝑖 − 1) -th row, recover the missing 𝜃 + 𝜁 symbols in the (𝑖 − 1) -th row
of the failed data nodes.

3. 𝑖 ← (𝑖 − 1) .

4. Repeat Items 1), 2), and 3) 𝜏 −1 times. This ensures that the failed symbols
in the 𝜏 rows 𝑖 , (𝑖 + 1) , … , (𝑖 − 1 + 𝜏) are recovered. This implies that
the piggyback symbols

𝑑 ,() , … , 𝑑() ,() in node (𝑖 − 1) ,
𝑑 ,() , … , 𝑑() ,() in node (𝑖 − 2) ,

⋮
𝑑 ,() in node (𝑖 − 𝜏) ,

(I.12)

are recovered. In other words, (I.12) says that in the (𝑖 − 𝑡) -th node, 𝜏 +
1 − 𝑡 piggybacked symbols are recovered. More specifically, for 𝑡 = 1, 𝜏
piggybacked symbols are recovered. Thus,

5. repeat Items 1) and 2), and set

72 P I

6. 𝑖 ← (𝑖 −1) . We thus recover the 𝑖 -th row and obtain the piggyback sym-
bols in𝒟ℛ \𝒟𝒳 . This increases the number of obtained piggyback symbols
by 1 in the next 𝜏 nodes 𝑖 , (𝑖 − 1) , … , (𝑖 + 𝜏 − 1) . In a similar fashion,
we now have 𝜏 piggybacked symbols in the 𝑖 -th node, and Items 5) and 6)
are repeated until all 𝑘 rows have been recovered. With this recursion, one
recovers the 𝜃 + 𝜏 = 𝜃 + 𝜁 failed data nodes.

For the case when 𝜁 < 𝜏 , the aforementioned decoding procedure is still able
recover 𝜃+𝜁 data node failures. This is because, in order to repair failed symbols
in the (𝑖 − 1) -th row, one needs just 𝜁 < 𝜏 MDS parity symbols from 𝒯 ⊆ 𝒯.
If the (𝑖 − 1) -th node is available, then 𝜁 piggybacks allow to recover the MDS
parity symbols (see Item 1)). On the contrary, if the (𝑖 − 1) -th node has been
erased, then 𝜁 piggybacks are obtained from (I.12).

Note that the argument above assumes that 𝜏 consecutive data nodes are
available. Thus, in order to guarantee that any 𝜃 + 𝜁 data nodes can be cor-
rected, we consider the worst case scenario for node failures, where we equally
spread 𝜃 + 𝜁 data node failures across the 𝑘 data nodes. Since

𝑘
𝜃 + 𝜁 ≥

𝑘
𝑛A − 𝑘 − 𝜏 + 𝜏 > 𝜏 ,

where the last inequality follows by the assumption on 𝜏 stated in the lemma, it
follows that the largest gap of non-failed data nodes in the worst case scenario is
indeed greater than or equal to 𝜏 .

The above lemma shows that the Class A code can correct up to 𝑛A−𝑘−𝜏+𝜏
erasures using non-modified parity nodes and 𝜏 modified parity nodes, provided
the condition on 𝜏 is satisfied.

To prove that the code can correct 𝑛A−𝑘−𝜏+𝜏 arbitrary node failures, let us
assume that 𝜌 Class A parity nodes and 𝑛A−𝑘−𝜏+𝜏 −𝜌 data nodes have failed.
More precisely, let 𝜌 ≤ 𝑛A − 𝑘 − 𝜏 non-modified nodes, 𝜌 ≤ 𝜏 piggybacked
nodes in 𝒯, and 𝜌 ≥ 0 remaining piggybacked nodes, where 𝜌 + 𝜌 + 𝜌 = 𝜌,
fail. Clearly, it can be seen that there are 𝑛A − 𝑘 − 𝜏 − 𝜌 non-modified parity
nodes and a set of 𝜁 = 𝜏 − 𝜌 modified nodes 𝒯 ⊆ 𝒯 available. Also, note
that the number of data node failures is 𝜌 less than the number of combined
available piggybacked nodes in𝒯 and available non-modified parity nodes. Thus,
using Lemma 1 with 𝜃 = 𝑛A − 𝑘 − 𝜏 − 𝜌 − 𝜌 and 𝜁 = 𝜏 − 𝜌 , it follows that
𝜃 + 𝜁 = (𝑛A − 𝑘 − 𝜏 − 𝜌 − 𝜌) + (𝜏 − 𝜌) = 𝑛A − 𝑘 − 𝜏 + 𝜏 − 𝜌 data nodes can
be repaired. The remaining 𝜌 failed parity nodes can then be repaired using the
𝑘 data symbols in the 𝑘 data nodes.

We remark that the decoding procedure in Lemma 1 in essence solves a system
of linear equations by eliminating 𝜏 𝑘 variables (piggybacks) in 𝜏 parity nodes.
Once the piggybacks are eliminated, the 𝑘(𝜃 + 𝜏) data symbols are obtained by
solving 𝑘 systems of linear equations. Thus, the decoding procedure is optimal,
i.e., it is maximum likelihood decoding.

Consider the quadratic function 𝜓(𝜏) = 𝜏 + (𝑛A − 𝑘 − 𝜏)𝜏 − 𝑘. According
to the proof of Lemma 1 when 𝜓(𝜏) ≥ 0, the decoding procedure fails as one can
construct a failure pattern for the data nodes where the largest separation (in the

B Class B Parity Node Construction 73

Algorithm 1: Class B node construction when 𝑘 is even
Initialization:
𝑨 = [𝑎 ,] as defined in (I.7)
𝑛 = 𝑛A + 𝑛B − 𝑘 with 𝑛B < 2𝑘 − 𝜏 and 𝑛A < 2𝑘

1 for 𝑙 ∈ {𝑛A, … , 𝑛 − 1} do
2 𝜌 ← 𝑘 − 𝜏 − 1 − 𝑙 + 𝑛A
3 if 𝑙 ≤ 𝑛A + 𝑘/2 − 𝜏 − 2 then
4 𝒫B,h ← 𝒫B

5 else if 𝑙 > 𝑛A + 𝑘/2 − 𝜏 − 2 and 𝜌 > 1 then
6 𝒫B,h ← ConstructNode(𝑨, 𝜌)
7 else if 𝑙 > 𝑛A + 𝑘/2 − 𝜏 − 2 and 𝜌 = 1 then
8 𝒫B,h ← ConstructLastNode()
9 end
10 𝑨 ← UpdateReadCost()
11 end

number of available nodes) between the failed nodes would be strictly smaller
than 𝜏 . The largest 𝜏 such that 𝜓(𝜏) < 0 can be determined as follows. By
simple arithmetic, one can prove that 𝜓(𝜏) is a convex function with a negative
minima and with a positive and a negative root. Therefore,

0 ≤ 𝜏 < 𝜉 = (𝑛A − 𝑘 − 𝜏) + 4𝑘 − (𝑛A − 𝑘 − 𝜏)
2 ,

where 𝜉 is the positive root of 𝜓(𝜏). Furthermore, it may happen that 𝜏 < 𝜉.
Therefore, the maximum number of node failures that the code can tolerate is

𝑓 = 𝑛A−𝑘−𝜏+ � (A) (A) � if 𝜏 ≥ 𝜉

𝑛A − 𝑘 if 𝜏 < 𝜉
� .

B Class B Parity Node Construc on

In this appendix, we give an algorithm that constructs 𝑛B−𝑘 Class B parity nodes
𝒫B,h

A
, … , 𝒫B,h . The algorithm is a heuristic for the construction of Class B parity

nodes such that the repair bandwidth of failed nodes is further reduced in com-
parison with Construction 1 in Section 4.

The nodes 𝒫B,h, 𝑙 = 𝑛A, … , 𝑛 − 1, are constructed recursively as shown in Al-
gorithm 1. The 𝑘 parity symbols in the 𝑙-th node are sums of at most 𝜌 data
symbols 𝑑 , ∈ ∪ 𝒟𝒬 . The construction of the 𝑙-th node for 𝑙 ≤ 𝑛A+𝑘/2−𝜏−2
(see Line 4) is identical to that resulting from Construction 1 in Section 4. The
remaining parity nodes 𝒫B,h, 𝑙 > 𝑛A+𝑘/2−𝜏−2, are constructed using the sub-
procedures ConstructNode(𝑨, 𝜌) and ConstructLastNode(). After the con-
struction of each parity node, the read costs of the data symbols 𝑑 , are updated
by the sub-procedure UpdateReadCost(). In the following, we describe each of
the above-mentioned sub-procedures.

74 P I

B.1 ConstructNode()
This sub-procedure allows the construction of the 𝑙-th Class B parity node, where
each parity symbol in the node is a sum of at most 𝜌 data symbols. The algorithm
for the sub-procedure is shown inAlgorithm 2. Here, the algorithm is divided into
two parts. The first part (Line 1 to Line 19) adds at most two data symbols to each
of the 𝑘 parity symbols, while the second part (Line 21 to Line 43) adds at most
𝜌 − 2 data symbols.

In the first part, each parity symbol 𝑝B, , 𝑡 = 0,… , 𝑘 − 1, is recursively con-
structed by adding a symbol 𝑑 , ∈ 𝒟𝒬 \∪ 𝒰 which has a corresponding read cost
𝑎 , that is the largest among all symbols indexed by 𝒬 \ ∪ 𝒰 (see Line 2 and
Line 7). The next symbol added to 𝑝B, is 𝑑 , ∈ 𝒟𝒳 if such a symbol exists (Line 4).
Otherwise, the symbol added is 𝑑 , ∈ 𝒟𝒳 \∪ 𝒰 if such a symbol exists (Line 10).
The set 𝒰 denotes the index set of data symbols from 𝒟 that are added to 𝑝B, .
Note that there exist multiple choices for the symbol 𝑑 , . A symbol 𝑑 , such that
there is a valid 𝑑 , ∈ 𝒟𝒳 is preferred, since it allows a larger reduction of the
repair bandwidth.

The second part of the algorithm chooses recursively at most 𝜌 −2 data sym-
bols that should participate in the construction of the 𝑘 parity symbols. The al-
gorithm chooses a symbol 𝑑 , ∈ 𝒟𝒳 \∪ 𝒰 ≠ ∅ such that read(𝑑 , , 𝑝B, +𝑑 ,) <
𝑎 , (see Line 23). In other words, choose data symbols such that their read
cost do not increase. It may happen that 𝒟𝒳 \∪ 𝒰 = ∅. If so, select 𝑑 , ∈
∪ 𝒟𝒳 \∪ 𝒰 such that 𝑑 , ∈ 𝒟𝒰 and 𝑎 , > 1, for some 𝑖 ≠ 𝑖, exists, and then
add 𝑑 , to the parity symbol 𝑝B, (see Line 33). If 𝑑 , does not exist, then an ar-
bitrary symbol 𝑑 , ∈ ∪ 𝒟𝒳 \∪ 𝒰 is added (see Line 37). This process is then
repeated 𝜌 − 2 times.

B.2 ConstructLastNode()
This procedure constructs the 𝑙-th Class B parity node that has 𝜌 = 1. In other
words, each parity symbol 𝑝B, is a data symbol 𝑑 , ∈ ∪ 𝒟𝒬 . The procedure
works as follows. First, initialize 𝒰 to be the empty set for 𝑡 = 0,… , 𝑘 − 1. Then,
for 𝑡 = 0,… , 𝑘−1, assign first the data symbol 𝑑 , to the parity symbol 𝑝B, , where
𝑑 , ∈ 𝒟 (𝑨∪ 𝒬 ⧵∪ 𝒰), and then subsequently add (𝑖, 𝑗) to 𝒰 . Note that for each
iteration there may exist several choices for 𝑑 , , in which case we can pick one of
these randomly.

B.3 UpdateReadCost()
After the construction of the 𝑙-th node, we update the read costs of all data sym-
bols 𝑑 , ∈ ∪ 𝒟𝒬 . These updated values are used during the construction of the
(𝑙 + 1)-th node. The read cost updates for the parity symbol 𝑝B, , 𝑡 = 0,… , 𝑘 − 1,
are

𝑎 , = read(𝑑 , , 𝑝B,), ∀𝑑 , ∈ 𝒟𝒰 .

B Class B Parity Node Construction 75

Algorithm 2: ConstructNode (𝑨, 𝜌)
Initialization:
, ←
𝒰 ← ∅, , … ,

1 while ∀ |𝒰 | do
2 Select , ∈ 𝒟 (𝑨𝒬 \∪ 𝒰) s.t. ∃ , ∈ 𝒟𝒳 , ,

3 if , exists then
4 B

, ← , ,
5 𝒰 ← 𝒰 ∪ {(,), (,)}; ←
6 else
7 Select , ∈ 𝒟 (𝑨𝒬 \∪ 𝒰)

8 if , exists then
9 if ∃ , ∈ 𝒟𝒳 \∪ 𝒰 s.t. (, , B

, ,) , and , then
10 B

, ← , ,
11 𝒰 ← 𝒰 ∪ {(,), (,)}; ←
12 else
13 B

, ← ,
14 𝒰 ← 𝒰 ∪ {(,), (,)}; ←
15 end
16 end
17 end
18 ← ()
19 end
20 , ←
21 while ∀ |𝒰 | do
22 if 𝒟𝒳 \∪ 𝒰 ∅ then
23 if ∃ , ∈ 𝒟𝒳 \∪ 𝒰 s.t. (, , B

, ,) , and , then
24 B

, ← B
, ,

25 𝒰 ← 𝒰 ∪ {(,)}; ←
26 else if A then
27 𝒰 ← 𝒰 ∪ (,)}; ←
28 end
29 else
30 if |𝒰 | then
31 Select , ∈ ∪ 𝒟𝒳 \∪ 𝒰 s.t. , ∈ 𝒟𝒰 and , for some

32 if , exists then
33 B

, ← B
, ,

34 𝒰 ← 𝒰 ∪ {(,)}; ←
35 else
36 Select , ∈ ∪ 𝒟𝒳 \∪ 𝒰

37 B
, ← B

, ,
38 𝒰 ← 𝒰 ∪ {(,)}; ←
39 end
40 end
41 end
42 ← ()
43 end
44 return { B

, , … , B
, }

76 P I

References

[1] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie, “Scale-RS: An efficient scaling
scheme for RS-coded storage clusters,” IEEE Trans. Parallel and Distributed
Systems, vol. 26, no. 6, pp. 1704–1717, Jun. 2015.

[2] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade
space for access efficiency in reliable data storage systems,” in Proc. IEEE Int.
Symp. Network Comput. and Appl. (NCA), Cambridge, MA, Jul. 2007.

[3] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in Windows Azure storage,” in Proc. USENIX
Annual Technical Conf., Boston, MA, Jun. 2012.

[4] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur, “XORing elephants: Novel erasure codes for big
data,” in Proc. 39th Very Large Data Bases Endowment (VLDB), Trento, Italy,
Aug. 2013.

[5] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” IEEE
Trans. Inf. Theory, vol. 60, no. 10, pp. 5843–5855, Oct. 2014.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inf. Theory,
vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[7] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–5239,
Aug. 2011.

[8] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for repair
in distributed storage systems,” in Proc. 48th Annual Allerton Conf. Com-
mun., Control, and Comput., Monticello, IL, Sep./Oct. 2010.

[9] Y. Wang, X. Yin, and X. Wang, “MDR codes: A new class of RAID-6 codes
with optimal rebuilding and encoding,” IEEE J. Sel. Areas Commun., vol. 32,
no. 5, pp. 1008–1018, May 2014.

[10] I. Tamo, Z.Wang, and J. Bruck, “Zigzag codes: MDS array codes with optimal
rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1597–1616, Mar. 2013.

[11] V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra, “Polynomial length MDS
codeswith optimal repair in distributed storage,” inProc. 45thAsilomarConf.
Signals, Syst. and Comput. (ASILOMAR), Pacific Grove, CA, Nov. 2011.

[12] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternate construction of
an access-optimal regenerating code with optimal sub-packetization level,”
in Proc. 21st Nat. Conf. Commun. (NCC), Mumbai, India, Feb. 2015.

REFERENCES 77

[13] J. Li, X. Tang, and U. Parampalli, “A framework of constructions of minimal
storage regenerating codes with the optimal access/update property,” IEEE
Trans. Inf. Theory, vol. 61, no. 4, pp. 1920–1932, Apr. 2015.

[14] Z. Wang, I. Tamo, and J. Bruck, “Explicit minimum storage regenerating
codes,” IEEE Trans. Inf. Theory, vol. 62, no. 8, pp. 4466–4480, Aug. 2016.

[15] B. Sasidharan, M. Vajha, and P. V. Kumar, “An explicit, coupled-layer
construction of a high-rate MSR code with low sub-packetization level,
small field size and all-node repair,” Sep. 2016, arXiv: 1607.07335v3. [Online].
Available: https://arxiv.org/abs/1607.07335

[16] M. Ye and A. Barg, “Explicit constructions of optimal-accessMDS codes with
nearly optimal sub-packetization,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp.
6307–6317, Oct. 2017.

[17] J. Li, X. Tang, and C. Tian, “A generic transformation for optimal repair band-
width and rebuilding access in MDS codes,” in Proc. IEEE Int. Symp. Inf. The-
ory (ISIT), Aachen, Germany, Jun. 2017.

[18] N. Raviv, N. Silberstein, and T. Etzion, “Constructions of high-rate minimum
storage regenerating codes over small fields,” IEEE Trans. Inf. Theory, vol. 63,
no. 4, pp. 2015–2038, Apr. 2017.

[19] K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,” IEEE
Trans. Inf. Theory, vol. 63, no. 9, pp. 5802–5820, Sep. 2017.

[20] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC codes: Low-complexity
regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory,
vol. 62, no. 6, pp. 3053–3069, Jun. 2016.

[21] H. Hou, P. P. C. Lee, Y. S. Han, and Y. Hu, “Triple-fault-tolerant binary MDS
array codes with asymptotically optimal repair,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Aachen, Germany, Jun. 2017.

[22] S. Kumar, A. Graell i Amat, I. Andriyanova, and F. Brännström, “A family
of erasure correcting codes with low repair bandwidth and low repair com-
plexity,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), San Diego, CA,
Dec. 2015.

[23] S. Yuan andQ. Huang, “Generalized piggybacking codes for distributed stor-
age systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Washing-
ton, DC, Dec. 2016.

[24] A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko, “MDS code construc-
tions with small sub-packetization and near-optimal repair bandwidth,”
IEEE Trans. Inf. Theory, to appear.

[25] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient scheme
for tolerating double disk failures in RAID architectures,” IEEE Trans. Com-
put., vol. 44, no. 2, pp. 192–202, Feb. 1995.

78 P I

[26] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on au-
tomata,” Sov. Phys. Doklady, vol. 7, no. 7, pp. 595–596, Jan. 1963.

[27] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba algorithm
for efficient implementations,” Jul. 2006. [Online]. Available: https:
//eprint.iacr.org/2006/224.pdf

[28] J. M. Pollard, “The fast Fourier transform in a finite field,” Math. Comput.,
vol. 25, no. 114, pp. 365–374, Apr. 1971.

[29] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspec-
tive. Springer, 2001.

[30] S. Gao and T. Mateer, “Additive fast Fourier transforms over finite fields,”
IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6265–6272, Dec. 2010.

P II

Secure Repairable Fountain Codes

Siddhartha Kumar, Eirik Rosnes, and Alexandre Graell i Amat

IEEE Communications Letters, vol. 20, no. 8, August 2016.

The layout has been revised.

1 Introduction 81

Abstract

In this letter, we provide the construction of repairable
fountain codes (RFCs) for distributed storage systems that
are information-theoretically secure against an eavesdropper
that has access to the data stored in a subset of the storage
nodes and the data downloaded to repair an additional sub-
set of storage nodes. The security is achieved by adding ran-
dom symbols to the message, which is then encoded by the
concatenation of a Gabidulin code and an RFC. We compare
the achievable code rates of the proposed codes with those
of secure minimum storage regenerating codes and secure
locally repairable codes.

1 Introduc on

The design of information-theoretically secure distributed storage systems (DSSs)
has attracted a significant interest in the last few years [1, 2]. DSSs use erasure
correcting codes (ECCs) to yield fault tolerance against storage node failures. The
resiliency of the DSS against passive attacks is a goodmeasure of its security. Pas-
sive attacks are those where the attacker (referred to as the eavesdropper) gains
access to a subset of storage nodes and thereby to partial information on the data
stored on the DSS. Information-theoretic security against such attacks involves
mixing of information symbols (called themessage) with random symbols, prior
to encoding by an ECC, in a manner such that the eavesdropper does not gain
any information about the original message even if he has access to some code
symbols.

Using this idea, [1, 2] provided explicit constructions of minimum storage re-
generating (MSR) codes that achieve security for an (ℓ , ℓ) eavesdropper model
where the eavesdropper has access to the content of ℓ storage nodes and the data
that needs to be downloaded to repair ℓ additional storage nodes. The design of
secure locally repairable codes (LRCs) was also addressed in [2]. In particular, to
achieve security, random symbols are appended to the message and the result-
ing vector of symbols is precoded by a Gabidulin code [3] prior to encoding by
an LRC (or MSR code) in [2]. Achieving security comes at the expense of a lower
code rate with respect to the original LRC (or MSR code), due to appending ran-
dom symbols to the message [2]. For the LRC- and MSR-based secure codes, the
authors in [2] derived the maximum message size (equivalently, the maximum
code rate) that allows to achieve security. Moreover, the code constructions in
[2] achieve this maximum. A sufficient condition for the information leakage to
the eavesdropper to be zero was also given in [1, 2].

LRCs [4] andMSR codes [5] are appealing code families because they are repair
efficient. Repairable fountain codes (RFCs) are another class of repair-efficient
ECCs [6]. Like LRCs, they yield a good locality, which implies that few storage
nodes are involved in the repair of a failed node.

In this letter, we present the construction of RFCs that are information-
theoretically secure for the (ℓ , ℓ) eavesdropper model. As in [2], we achieve

82 P II

𝑐 𝑐 𝑐 𝑐

𝑚 𝑚 𝑚 𝑚

𝑐 𝑐

(a)

𝑐 𝑐 𝑐 𝑐

𝑚 𝑚 𝑚 𝑚

𝑐 𝑐

(b)

Figure II.1: A DSS with 6 storage nodes employing a (6, 4) ECC. 𝒎 = (𝑚 ,𝑚 ,𝑚 ,𝑚)
is encoded into the codeword 𝒄 = (𝑐 , 𝑐 , 𝑐 , 𝑐 , 𝑐 , 𝑐). Each code symbol is stored in a
storage node. (a) Bipartite graph of the (6, 4) ECC; squares and circles represent code
symbols (storage nodes) and message symbols, respectively. (b) Example of a (1, 1)
eavesdropper, where 𝒮 = {𝑐 } and 𝒮 = {𝑐 } (in red). Gray symbols are the symbols
that the eavesdropper obtains.

security by appending random symbols to the message and precoding by a
Gabidulin code. We prove that the proposed code construction is completely
secure for the (ℓ , ℓ) eavesdropper model. To prove security, we give a neces-
sary condition for the information leakage to the eavesdropper to be zero, thus
extending the sufficient condition in [1, 2]. Our proof differs from the one in [1, 2]
and is based on simple information theory equalities. We compare the achiev-
able code rates (the maximum code rate that allows to achieve security) of the
proposed codes with those of secure MSR codes and LRCs in [2]. We show that,
for a given rate of the underlying code (RFC, LRC, orMSR code), secure RFCs yield
the same achievable code rates as those of secure LRCs and better than those of
secure MSR codes when the rate of the underlying code is high enough.

2 SystemModel

We consider a DSS with 𝑛 storage nodes, each storing one symbol. A message
𝒎 = (𝑚 ,𝑚 ,… ,𝑚), of length 𝑘 symbols 𝑚 ∈ GF(𝑞), 𝑖 = 1,… , 𝑘, where 𝑞 is
a prime and 𝑝 is a positive integer, is first encoded using an (𝑛, 𝑘) ECC of rate
𝑅 = 𝑘/𝑛 into a codeword 𝒄 = (𝑐 , 𝑐 , … , 𝑐) of length 𝑛. Each of the 𝑛 code
symbols 𝑐 , 𝑖 = 1,… , 𝑛, is then stored into a different storage node. We assume
that code symbol 𝑐 is stored in the 𝑖th storage node and, with a slight abuse of
notation, we will refer to both code symbol and storage node 𝑖 by 𝑐 .

Example 1. The bipartite graph shown in Fig. II.1(a) represents amessage stored on
aDSSwith 𝑛 = 6 storage nodes using a (6, 4) ECC. Each code symbol 𝑐 , 𝑖 = 1,… , 6,
is a linear combination of its neighboringmessage symbols𝑚 , 𝑖 = 1,… , 4 (circles).
Each code symbol (squares) is stored on a different storage node.

3 Gabidulin and Repairable Fountain Codes 83

2.1 Security Model

We consider an (ℓ , ℓ) eavesdropper model [2], where the eavesdropper can pas-
sively observe, but not modify, the content of ℓ = ℓ +ℓ < 𝑘 storage nodes. Out
of the ℓ nodes, the eavesdropper can observe the symbols stored in a subset of ℓ
storage nodes, which we denote by 𝒮 (|𝒮 | = ℓ). Furthermore, it can observe
the data downloaded during the repair of a subset of ℓ storage nodes, denoted by
𝒮 (|𝒮 | = ℓ), where 𝒮 ∩ 𝒮 = ∅. This model is relevant in the scenario where
nodes are located at different geographical locations. Peer-to-peer storage sys-
tems are examples of such DSSs [1]. We denote the subset of storage nodes from
which data is downloaded to repair storage nodes in 𝒮 by 𝒮 . We will refer to the
symbols the eavesdropper obtains as the eavesdropped symbols. We also assume
that the eavesdropper has perfect knowledge of the ECC used for encoding.

Definition 1 ([1, 2]). Let 𝒆 be the vector of eavesdropped symbols that the eaves-
dropper obtains from the storage nodes in 𝒮 ∪ 𝒮 . A DSS storing a message 𝒎
(possibly encoded by an ECC) is said to be completely secure against an (ℓ , ℓ)
eavesdropper if themutual information between themessage and the eavesdropped
symbols is zero, i.e., 𝐼(𝒎; 𝒆) = 0.
Example 2. Fig. II.1(b) shows an example of a (1, 1) eavesdropper where 𝒮 = {𝑐 }
and 𝒮 = {𝑐 }. Thus, the eavesdropper obtains 𝑐 = 𝑚 and the downloaded data
𝑐 = 𝑚 + 𝑚 and 𝑐 = 𝑚 , and thereby 𝑚 , during the repair of 𝒮 = {𝑐 }. In
all, the eavesdropper obtains the symbols 𝑚 ,𝑚 ,𝑚 , and 𝑐 = 𝑚 + 𝑚 , colored
in gray in the figure.

3 Gabidulin and Repairable Fountain Codes

We summarize Gabidulin codes and RFCs, which are the building blocks of the
secure RFCs presented in Section 4.

3.1 Gabidulin Codes

Gabidulin codes are a class of rank codes [3]. An (𝑁, 𝐾) Gabidulin code (over
GF(𝑞)) of length 𝑁, dimension 𝐾, and minimum rank distance 𝐷 , can cor-
rect up to 𝐷 − 1 rank erasures. Gabidulin codes are maximum rank distance
codes, i.e., they achieve the Singleton bound, 𝐷 ≤ 𝑁−𝐾+1, and are obtained
by evaluations of polynomials. More specifically, Gabidulin codes use linearized
polynomials.

Definition 2. A linearized polynomial 𝑓(𝑦) of degree 𝑡 > 0 over GF(𝑞) has the
form

𝑓(𝑦) = 𝑎 𝑦 ,

where 𝑎 ∈ GF(𝑞) and 𝑎 ≠ 0.

84 P II

A message 𝒎 = (𝑚 ,… ,𝑚) is encoded using an (𝑁, 𝐾) Gabidulin code as
follows.

1. Construct a polynomial 𝑓(𝑦) = ∑ 𝑚 𝑦 .

2. Evaluate 𝑓(𝑦) at 𝑁 linearly independent (over GF(𝑞)) points {𝑦 , … , 𝑦 } ⊂
GF(𝑞) to obtain a codeword (𝑓(𝑦), … , 𝑓(𝑦)).

Decoding proceeds as follows.

1. Obtain any 𝐾 evaluations at 𝐾 linearly independent (over GF(𝑞)) points.
Otherwise, decoding fails.

2. Performpolynomial interpolation on the𝐾 evaluations and recover the orig-
inal message𝒎 by solving a system of linear equations.

3.2 Repairable Fountain Codes

An (𝑛, 𝑘) systematic RFC encodes a message 𝒎 = (𝑚 ,… ,𝑚) ∈ GF(𝑞) , 𝑞 >
𝑘, into a codeword 𝒄 = (𝑐 , … , 𝑐), where 𝑐 = 𝑚 for 𝑖 = 1,… , 𝑘. The parity
symbols 𝑐 , 𝑖 = 𝑘 + 1,… , 𝑛, are constructed according to the following three-step
procedure.

1. Successively select 𝜉 = 𝑂(log 𝑘) message symbols independently and uni-
formly at random with replacement.

2. For each of the 𝜉 message symbols, a coefficient is drawn uniformly at ran-
dom from GF(𝑞) ⊂ GF(𝑞).

3. The parity symbol is then obtained as the linear combination of the 𝜉 chosen
message symbols, weighted by the corresponding coefficients.

Each of the 𝑛 code symbols is stored in a different storage node. From the code
construction, each parity symbol is a weighted sum of atmost 𝜉message symbols.
A parity symbol and the corresponding (at most) 𝜉 message symbols is referred
to as a local group. The existence of local groups is a hallmark of any ECC having
low locality. Unlike LRCs, which have only disjoint local groups, RFCs also have
overlapping local groups [6]. Furthermore, for each systematic symbol there ex-
ist a number of disjoint local groups from which it can be reconstructed. This
allows multiple parallel reads of the systematic symbol, accessing the disjoint lo-
cal groups. When a storage node fails, it is repaired from one of its local groups.
This requires the download of at most 𝜉 symbols (from the other at most 𝜉 nodes
of the local group). Thus, RFCs have low locality, 𝜉, and their repair bandwidth
is 𝜉𝑝 log 𝑞. Also, RFCs are near maximum distance separable codes.

4 Secure Repairable Fountain Codes

In this section, we present the construction of RFCs that are secure against the
(ℓ , ℓ) eavesdropper model. The proposed secure RFCs are obtained by concate-
nating a Gabidulin code and an RFC. More precisely, consider an (𝑛, �̃�) RFC such

4 Secure Repairable Fountain Codes 85

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐

�̃� �̃� �̃� �̃� �̃� �̃� �̃� �̃� �̃� �̃�

Figure II.2: A (20, 10) secure RFC. Storage nodes 𝒮 = {𝑐 } and 𝒮 = {𝑐 } are eaves-
dropped. Gray symbols are the symbols that the eavesdropper obtains.

that each parity symbol is a random linear combination of up to 𝜉 randomly cho-
sen input symbols. Let𝒎 denote the message of length 𝑘 = �̃�−ℓ −𝜉ℓ symbols.
A codeword of the proposed secure RFC is constructed as follows.

1. Append to𝒎 a random vector 𝒓 = (𝑟 , … , 𝑟) of length 𝑢 = ℓ +𝜉ℓ symbols,
drawn independently and uniformly at random fromGF(𝑞), thus obtaining
the vector �̃� = (𝒎, 𝒓).

2. Outer code. Encode �̃� using a (�̃�, �̃�) Gabidulin code to obtain the interme-
diate codeword �̃� = (�̃� , … , �̃� ̃) = (𝑓(𝑦), … , 𝑓(𝑦 ̃)).

3. Inner code. Encode �̃� using an (𝑛, �̃�) RFC into the codeword 𝒄 = (𝑐 , … , 𝑐).
The 𝑛 code symbols are then stored in 𝑛 storage nodes.

Remark 1. A GF(𝑞)-linear combination of evaluations of a linearized polynomial
𝑓(𝑦) = ∑ 𝑎 𝑦 of some degree 𝑡 over GF(𝑞) (seeDefinition 2) is itself an evalua-
tion of the same linearized polynomial. In particular,∑ 𝛾 𝑓(𝛽) = 𝑓 ∑ 𝛾 𝛽 ,
where 𝜅 is a positive integer, 𝛾 ∈ GF(𝑞), and 𝛽 ∈ GF(𝑞), i.e., 𝑓(⋅) is a linear map
over GF(𝑞) [2, Remark 8]. Thus, each code symbol 𝑐 , 𝑖 = 1,… , 𝑛, is an evaluation
of a linearized polynomial 𝑓(⋅) of degree at most �̃� − 1 and with coefficients from
�̃� at some point 𝑦 ∈ GF(𝑞), i.e., 𝑐 = 𝑓(𝑦) = ∑ ̃ �̃� 𝑦 .

Example 3. Fig. II.2 depicts a toy example of a (20, 10) secure RFC for a (1, 1)
eavesdropper. Here, �̃� comprises 𝑘 = �̃� − ℓ − 𝜉ℓ = 6 message symbols and
𝑢 = ℓ + 𝜉ℓ = 4 random symbols. �̃� is encoded using the concatenation of
a (10, 10) Gabidulin code and a (20, 10) RFC. Due to the outer encoding by the
Gabidulin code, each code symbol 𝑐 , 𝑖 = 1,… , 20, is an evaluation of a linearized
polynomial (see Remark 1). Another consequence is that the final code retains the
repair properties of the inner code (the RFC). For this example, the code locality is
𝜉 = 3.

In the following, we show that the proposed secure RFCs achieve complete
security for the (ℓ , ℓ) eavesdropper model. We first prove a sufficient and nec-
essary condition for 𝐼(𝒎; 𝒆) = 0 using an alternative proof to the one in [1, 2].

86 P II

Theorem 1. Let𝒎 be a message which is stored in a DSS by first appending to it
a vector 𝒓 of random symbols and then encoding (𝒎, 𝒓) by an ECC. Also, let 𝒆 be
the vector of code symbols the eavesdropper has access to. Then, the information
leakage to the eavesdropper is zero, i.e., 𝐼(𝒎; 𝒆) = 0, if and only if 𝐻(𝒓|𝒆,𝒎) =
𝐻(𝒓) − 𝐻(𝒆).
Proof. We prove the theorem using simple information theory equalities,

𝐼(𝒎; 𝒆) = 𝐻(𝒎) − 𝐻(𝒎|𝒆)
()= 𝐻(𝒎) − 𝐻(𝒎|𝒆) + 𝐻(𝒆|𝒎, 𝒓)
= 𝐻(𝒎) − 𝐻(𝒎|𝒆) + 𝐻(𝒆|𝒎) − 𝐼(𝒓; 𝒆|𝒎)
()= 𝐻(𝒆) − 𝐼(𝒓; 𝒆|𝒎)
= 𝐻(𝒆) − 𝐻(𝒓|𝒎) + 𝐻(𝒓|𝒆,𝒎)
()= 𝐻(𝒆) − 𝐻(𝒓) + 𝐻(𝒓|𝒆,𝒎),

where (𝑎) follows from the fact that 𝐻(𝒆|𝒎, 𝒓) = 0, since eavesdropped symbols
are a function of𝒎 and 𝒓, (𝑏) follows from 𝐻(𝒆) − 𝐻(𝒆|𝒎) = 𝐻(𝒎) − 𝐻(𝒎|𝒆),
and (𝑐) follows from the fact that 𝒓 and𝒎 are stochastically independent of each
other, i.e., 𝐻(𝒓|𝒎) = 𝐻(𝒓). Thus,

𝐼(𝒎; 𝒆) = 0 ⇔ 𝐻(𝒓|𝒆,𝒎) = 𝐻(𝒓) − 𝐻(𝒆). (II.1)

We remark that in [1] and [2, Lem. 4] a sufficient condition on 𝐼(𝒎; 𝒆) = 0was
proved, whereas Theorem 1 gives a sufficient and necessary condition. ECCs for
which Theorem 1 is satisfied do not leak any information, i.e., they are completely
secure.

In Theorem 2 below, we use the following lemma to prove that our proposed
code construction is completely secure for the (ℓ , ℓ) eavesdropper model.

Lemma 1. Consider the (ℓ , ℓ) eavesdropper model. For the proposed code con-
struction (with 𝑢 = ℓ +𝜉ℓ random symbols 𝒓),𝐻(𝒆) ≤ 𝐻(𝒓) = (ℓ +𝜉ℓ)𝑝 log 𝑞,
where 𝒆 is the vector of code symbols the eavesdropper has access to.

Proof. Consider the repair of a single storage node 𝑐 in 𝒮 , and let Γ() denote
the local group (there are many) used for the repair of storage node 𝑐 . Each local
group contains one inner code parity symbol and at most 𝜉 inner code message
symbols to which it is connected. Thus, |Γ()| ≤ 𝜉 + 1. Since the inner code
parity symbol is a GF(𝑞)-weighted linear combination of the (at most) 𝜉 inner
code message symbols from the local group, Γ() contains at most 𝜉 stochastically
independent symbols. Considering the repair of all storage nodes in 𝒮 , it follows
by the argument above that at most 𝜉ℓ stochastically independent inner code
symbols are eavesdropped during the repair process. Also, since each storage
node stores a single symbol, the eavesdropper has access to an additional ℓ inner
code symbols from the storage nodes in 𝒮 . Hence, in total, the eavesdropper has
access to at most ℓ + 𝜉ℓ stochastically independent symbols from 𝒄. Thus,

4 Secure Repairable Fountain Codes 87

𝐻(𝒆) ≤ (ℓ + 𝜉ℓ)𝑝 log 𝑞. Furthermore, since 𝒓 contains 𝑢 = ℓ + 𝜉ℓ uniform
independent random symbols, 𝐻(𝒓) = (ℓ + 𝜉ℓ)𝑝 log 𝑞, and the result follows.

Theorem 2. The code comprising of a Gabidulin code as its outer code and an RFC
as its inner code, which encodes a vector �̃� = (𝒎, 𝒓) that consists of a message𝒎
of length 𝑘 and a random vector 𝒓 of length 𝑢 = ℓ + 𝜉ℓ is completely secure for
the (ℓ , ℓ) eavesdropper model.

Proof. To prove security, we show that 𝐻(𝒓|𝒆,𝒎) = 𝐻(𝒓) − 𝐻(𝒆), which is equiv-
alent to 𝐼(𝒎; 𝒆) = 0 according to Theorem 1. Each eavesdropped symbol 𝑒 ,
𝑖 = 1,… ,𝑤, where 𝑤 = |𝒆|, corresponds to a code symbol and therefore is an
evaluation of 𝑓(⋅) at some point 𝑧 ∈ {𝑦 ,… , 𝑦 } ⊂ GF(𝑞), where 𝑐 = 𝑓(𝑦) (see
Remark 1). Thus, for 𝑖 = 1,… ,𝑤,

𝑒 = 𝑓(𝑧) =
̃

�̃� 𝑧 = 𝑚 𝑧 + 𝑟 𝑧 (II.2)

since �̃� = (𝒎, 𝒓). In the following, 𝒓 = (𝑟 , … , 𝑟) is assumed to be the unknowns
(the message𝒎 and the eavesdropper vector 𝒆 are assumed to be known) in the
linear system of equations defined in (II.2).

Let 1 ≤ 𝜈 ≤ 𝑤 (by definition) be the number of GF(𝑞)-linear independent
symbols of {𝑒 , … , 𝑒 }, denoted by �̃� = (�̃� , … , �̃�). The corresponding vector of
points from {𝑧 , … , 𝑧 } is denoted by �̃� = (�̃� , … , �̃�). From (II.2), �̃� = 𝒃(�̃�,𝒎) +
𝒓 ⋅ 𝑨(�̃�), where 𝒃(�̃�,𝒎) is a length-𝜈 row vector and 𝑨(�̃�) is a 𝑢 × 𝜈 matrix. Since
{�̃� , … , �̃� } are GF(𝑞)-linear independent, the matrix 𝑨(�̃�) is of full column-rank
(i.e., its column space is a vector space over GF(𝑞) of dimension 𝜈), and since
the 𝑢 random symbols in 𝒓 are chosen independently and uniformly at random
fromGF(𝑞), {�̃� , … , �̃� } are also stochastically independent uniformly distributed
random variables over GF(𝑞) (�̃� is uniformly distributed over GF(𝑞) for all 𝑖
and �̃� is uniformly distributed over GF(𝑞)). Finally, since 𝑒 ∈ {𝑒 , … , 𝑒 } ⧵
{�̃� , … , �̃� } can be written as a GF(𝑞)-linear combination of {�̃� , … , �̃� }, it follows
that 𝐻(𝒆) = 𝐻(�̃�) = 𝜈 ⋅ 𝑝 log 𝑞. From Lemma 1, 𝐻(𝒆) ≤ 𝐻(𝒓). Thus, 𝑢 ≥ 𝜈 since
𝐻(𝒆) = 𝜈 ⋅ 𝑝 log 𝑞 and 𝐻(𝒓) = 𝑢 ⋅ 𝑝 log 𝑞. The conditional entropy 𝐻(𝒓|𝒆,𝒎)
is equal to the logarithm (base-2) of the number of solutions of (II.2) when the
number of unknowns 𝑢 is larger than or equal to the number of independent
equations 𝜈, i.e., when 𝑢 ≥ 𝜈. Hence, 𝐻(𝒓|𝒆,𝒎) = (𝑢 − 𝜈)𝑝 log 𝑞 = 𝐻(𝒓) − 𝐻(𝒆)
from which the result follows from (II.1) (see Theorem 1).

Example 4. Consider the (20, 10) secure RFC over 𝐺𝐹(𝑞) in Fig. II.2 that encodes
themessage𝒎 = (𝑚 ,… ,𝑚) of 6 symbols and a vector 𝒓 = (𝑟 , … , 𝑟) of 4 random
symbols. Each 𝑐 , 𝑖 = 1,… , 20, is an evaluation of a linearized polynomial 𝑓(⋅) at
𝑦 . For the (1, 1) eavesdropper model, the scenario where 𝒮 = {𝑐 } and 𝒮 =
{𝑐 }, i.e., the eavesdropper gains access to the symbols 𝒆 = (𝑐 , 𝑐 , 𝑐 , 𝑐 = 𝑐 +
𝑐 + 𝑐), is depicted. It can easily be seen that 𝐻(𝒓) = 4𝑝 log 𝑞, 𝐻(𝒆) = 3𝑝 log 𝑞,
and 𝐻(𝒓|𝒆,𝒎) = (4 − 3)𝑝 log 𝑞. Therefore, there is no information leakage to the
eavesdropper.

88 P II

10 20 30 40 50 60 70 80 90 1000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

�̃�

C
od

e
ra
te

(𝑘
/𝑛

)

Secure MSR code, �̃�/𝑛 = 0.5
Secure RFC, 𝜉 = 3, �̃�/𝑛 = 0.5
Secure MSR code, �̃�/𝑛 = 0.8
Secure RFC, 𝜉 = 3, �̃�/𝑛 = 0.8
Secure LRC, 𝑟 = 3, �̃�/𝑛 = 0.5
Secure LRC, 𝑟 = 3, �̃�/𝑛 = 0.8

Figure II.3: Comparison of code rates for different classes of secure ECCs for the (2, 2)
eavesdropper model.

5 Numerical Results

We compare the proposed secure RFCs with the secure MSR codes and secure
LRCs in [2] in terms of the maximum code rate 𝑘/𝑛 that allows to achieve secu-
rity. In particular, we consider (𝑟, 𝛿) 𝑑min−optimal LRCs [2], where 𝑟 is the code
locality (and thus has an analogous meaning to 𝜉 for RFCs) and 𝑑min is the min-
imum distance of the code. Each local group of such a code can be seen as a
subcode (punctured from the LRC) of minimum distance at least 𝛿.

In Fig. II.3, we fix the code rate of the inner code (RFC, LRC, orMSR code), �̃�/𝑛,
to 0.5 and 0.8, and plot the achievable code rates (the maximum 𝑘/𝑛 that allows
to achieve security) for the (2, 2) eavesdroppermodel as a function of �̃�. Note that
�̃�/𝑛 is an upper bound on the achievable code rate 𝑘/𝑛, since to achieve security
a number of random symbols needs to be appended to the message of length
𝑘. Note also that 𝑛 is the total number of storage nodes. We remark that, unlike
LRC- and RFC-basedDSSs, where each code symbol is stored in a different storage
node, for MSR codes each storage node stores 𝛼 = (𝑛 − �̃�) ̃ code symbols. For
a fair comparison between RFCs and LRCs, we set 𝑟 = 𝜉 and 𝛿 = 2. It can be
seen that the achievable code rates for secure RFCs and secure LRCs are identical.
On the other hand, secure RFCs yield higher achievable code rates compared to
secure MSR codes for �̃�/𝑛 = 0.8, while the opposite is observed for �̃�/𝑛 = 0.5.

6 Conclusion

Weproposed a code construction based on RFCs that is secure against the (ℓ , ℓ)
eavesdropper model. We gave a necessary and sufficient condition for the infor-
mation leakage to the eavesdropper to be zero, and subsequently proved that the
proposed construction is completely secure. The proposed secure RFCs yield the

REFERENCES 89

same achievable code rates as LRCs, and higher than MSR codes (when the code
rate of the underlying code is high enough). An interesting extension of this work
would be the design of secure and repair-efficient vector RFCs, i.e., code symbols
are distributed over the storage nodes, each containing 𝛼 > 1 code symbols.

References

[1] N. B. Shah, K. V. Rashmi, and P. V. Kumar, “Information-theoretically secure
regenerating codes for distributed storage,” in Proc. IEEE Global Telecom-
mun. Conf. (GLOBECOM), Houston, TX, Dec. 2011.

[2] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Optimal
locally repairable and secure codes for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 60, no. 1, pp. 212–236, Jan. 2014.

[3] E. M. Gabidulin, “Theory of codes with maximum rank distance,” Problems
Inf. Transmiss., vol. 21, pp. 1–12, Jul. 1985.

[4] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, MA, Jul. 2012.

[5] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inf. Theory,
vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[6] M. Asteris and A. G. Dimakis, “Repairable fountain codes,” IEEE J. Sel. Areas
Commun., vol. 32, no. 5, pp. 1037–1047, May 2014.

90 P II

P III

Achieving Maximum Distance Separable Private Informa on
Retrieval Capacity With Linear Codes

Siddhartha Kumar, Hsuan-Yin Lin, Eirik Rosnes, and Alexandre Graell i Amat

Submitted to IEEE Transactions on Information Theory, revised August 2018.

The paper was presented in part at the IEEE International Symposium on Informa-
tion Theory (ISIT), Aachen, Germany, June 2017, at the IEEE International Sym-
posium on Information Theory (ISIT), Vail, CO, USA, June 2018, and at the IEEE
Information Theory Workshop (ITW), Guangzhou, China, November 2018.

The layout has been revised.

1 Introduction 93

Abstract

We propose three private information retrieval (PIR) pro-
tocols for distributed storage systems (DSSs) where data is
stored using an arbitrary linear code. The first two proto-
cols, named Protocol 1 and Protocol 2, achieve privacy for
the scenario with noncolluding nodes. Protocol 1 requires a
file size that is exponential in the number of files in the sys-
tem, while the file size required for Protocol 2 is independent
of the number of files and is hence simpler. We prove that,
for certain linear codes, Protocol 1 achieves the maximum
distance separable (MDS) PIR capacity, i.e., the maximum
PIR rate (the ratio of the amount of retrieved stored data per
unit of downloaded data) for a DSS that uses an MDS code
to store any given (finite and infinite) number of files, and
Protocol 2 achieves the asymptotic MDS-PIR capacity (with
infinitely large number of files in the DSS). In particular, we
provide a necessary and a sufficient condition for a code to
achieve the MDS-PIR capacity and prove that cyclic codes,
Reed-Muller (RM) codes, and a class of distance-optimal lo-
cal reconstruction codes achieve both the finiteMDS-PIR ca-
pacity (i.e., with any given number of files) and the asymp-
totic MDS-PIR capacity with Protocols 1 and 2, respectively.
Furthermore, we present a third protocol, Protocol 3, for the
scenario withmultiple colluding nodes, which can be seen as
an improvement of a protocol recently introduced by Freij-
Hollanti et al. Similar to the noncolluding case, we provide
a necessary and a sufficient condition to achieve the maxi-
mum possible PIR rate of Protocol 3. Moreover, we provide a
particular class of codes that is suitable for this protocol and
show that RM codes achieve the maximum possible PIR rate
for the protocol. For all three protocols, we present an algo-
rithm to optimize their PIR rates.

1 Introduc on

In data storage applications, besides resilience against disk failures and data pro-
tection against illegitimate users, the privacy may also be of concern. For in-
stance, one may be interested in designing a storage system in which a file can
be downloaded without revealing any information of which file is actually down-
loaded to the servers storing it. This form of privacy is usually referred to as
private information retrieval (PIR). PIR is important to, e.g., protect users from
surveillance and monitoring.

PIR protocols were first studied in the computer science literature by Chor et
al. in [1, 2], which introduced the concept of an 𝑛-server PIR protocol, where a
binary storage node is replicated among 𝑛 servers (referred to as nodes) and the
aim is to privately retrieve a single bit from the storage nodes while minimizing

94 P III

the total upload and download communication cost. Additionally, an 𝑛-server
PIR protocol assumes that the 𝑛 nodes do not collude in order to reveal the iden-
tity of the requested bit. The communication cost in [1] was further reduced in
[3–5]. Since then, coded PIR schemes have been introduced, where data is en-
coded (as opposed to simply being replicated) across several nodes [6]. With the
advent of distributed storage systems (DSSs), where the user data is encoded and
then stored on 𝑛 nodes, there has been an increasing interest in implementing
coded PIR protocols for these systems.

In recent years PIR has become an active research area in the information the-
ory community with a fundamental difference in the measurement of efficiency.
In the information-theoretic sense, the message sizes are much larger than the
size of all queries sent to the storage nodes. Thus, rather than accounting for
both the upload and the download cost, download cost forms the primary mea-
surement of efficiency as the upload cost can be neglected. The ratio between
the requested file size to the amount of downloaded data is referred to as the PIR
rate, where higher PIR rates mean higher efficiency. The highest achievable PIR
rate for any 𝑛-server PIR protocol is referred to as the PIR capacity.

In the information theory literature, the authors in [7] were the first to present
PIR protocols for DSSs where data is stored using codes from two explicit linear
code constructions. In [8], the authors presented upper bounds on the tradeoff
between the storage and the PIR rates for a certain class of linear PIR protocols.
In [9], Fazeli et al. introduced PIR codes which, when used in conjunction with
traditional 𝑛-server PIR protocols, allow to achieve PIR on DSSs. These codes
achieve high code rates without sacrificing on the communication cost of an 𝑛-
server PIR protocol. In [10], given an arbitrary number of files, the authors derived
the PIR capacity for noncolluding and replicated databases, where the data can
be seen as being encoded by a particular class of maximum distance separable
(MDS) codes, the repetition codes. For the case of noncolluding nodes, Banawan
and Ulukus [11] derived the PIR capacity for DSSs using an [𝑛, 𝑘] MDS code to
store a given number of files, referred to as the MDS-PIR capacity. In this paper,
we will refer to theMDS-PIR capacity for a given finite number of files as the finite
MDS-PIR capacity. In [12], a PIR protocol forMDS-codedDSSs and noncolluding
nodes was proposed and shown to achieve the finite MDS-PIR capacity. A PIR
protocol for the case of colluding nodes was also proposed in [12]. Here, we will
refer to the MDS-PIR capacity for an infinite number of files as the asymptotic
MDS-PIR capacity. Note that the MDS-PIR capacity for the colluding case is
still unknown in general, except for some special cases [13] and for repetition
codes [14]. The problem of symmetric PIR for DSSs was recently considered in
[15], where an expression for the symmetric PIR capacity for linear schemes in
the general case of colluding nodes and an MDS linear storage code was derived.
In the symmetric case, the user should not only be able to privately retrieve the
requested file from the system, but also learn nothing about the other files stored
from the retrieved data. See also the relatedwork [16], which deals with replicated
databases. The PIR capacity for the case where a given number of storage nodes
fail to respond (so-called robust PIR)was given in [14] for the scenario of colluding
servers with replication coding.

In the storage community, it is well-known that MDS codes are inefficient in

1 Introduction 95

the repair of failed nodes. In particular, they have large repair locality, i.e., the
repair of a failed node requires contacting a large number of nodes.1 Repair is es-
sential to maintain the initial state of reliability of the DSS. To address low repair
locality, Pyramid codes [19], locally repairable codes [20], local reconstruction
codes (LRCs) [21, 22], and locally recoverable codes [23] are some non-MDS codes
that have been proposed. These four classes of codes follow the same design phi-
losophy and for simplicity, we will refer to them generically as LRCs. Following
the motivation of using non-MDS codes in DSSs, the authors of [24] presented a
PIR protocol for DSSs that store data using arbitrary linear codes for the scenario
of noncolluding nodes. Independently, Freij-Hollanti et al. in [25] presented a
PIR protocol that ensures privacy even when a subset of at most 𝑛 − 𝑘 nodes col-
lude. The protocol is based on two codes, the storage code and the query code,
which defines the queries. The retrieval process is then characterized by the re-
trieval code, which is the Hadamard product of these two codes. The PIR rate of
the protocol is upperbounded by (𝑛 − �̃�)/𝑛, where �̃� is the dimension of the re-
trieval code. The authors showed that with generalized RS (GRS) codes for the
storage and query codes, the upper bound on the PIR rate is achieved. To the
best of our knowledge, in the asymptotic regime when the number of files tends
to infinity, the PIR rate (𝑛 − �̃�)/𝑛 is the highest achievable PIR rate known so
far. Moreover, they showed that their protocol could work with certain non-MDS
codes. However, for non-MDS codes (e.g., Reed-Muller (RM) codes where con-
sidered in [26]) the PIR rates that can be achieved by the protocol in [25] are lower
than the upper bound (𝑛 − �̃�)/𝑛.

In this paper, as an extension of [24], we present three PIR protocols for DSSs
using arbitrary linear codes. These protocols share the fact that all of them are
constructed by making use of correctable erasure patterns and information sets
of the underlying storage code. We first focus on the noncolluding scenario and
propose two PIR protocols, referred to as Protocol 1 and Protocol 2. Protocol 1 re-
quires a file size that is exponential in the number of files in the system, while
the file size required for Protocol 2 is independent of the number of files and
is therefore simpler. Furthermore, Protocol 1 is designed such that its PIR rate
depends on the number of files in the system, while Protocol 2 is such that its
PIR rate is independent of the number of files. We prove that, interestingly, for
certain non-MDS code families, Protocol 1 achieves the finite MDS-PIR capacity
(and hence the asymptotic MDS-PIR capacity as well) and Protocol 2 achieves the
asymptotic (i.e., when the number of files tends to infinity) MDS-PIR capacity.
Thus, we show that the MDS property required to achieve the MDS-PIR capacity
in [10–12] is not necessary and overly restrictive. In particular, we give a suffi-
cient condition based on automorphisms and a necessary condition connected
to the generalized Hamming weights of the underlying storage code to achieve
theMDS-PIR capacity for Protocols 1 and 2. We prove that cyclic codes, RM codes,
and distance-optimal information locality codes achieve the finite MDS-PIR ca-
pacity (and thus the asymptotic MDS-PIR capacity, too) with Protocol 1 and the
asymptotic MDS-PIR capacity with Protocol 2. For other codes, we present an

1In a parallell line of work, schemes for efficient repair (in terms of repair bandwidth) of Reed-Solomon
(RS) codes have been proposed [17, 18].

96 P III

optimization algorithm for Protocols 1 and 2 such that they can achieve the best
possible PIR rates.

We furthermore present a third protocol, Protocol 3, for the scenario of mul-
tiple colluding nodes and non-MDS storage codes. This protocol is based on and
improves the protocol in [25, 26], in the sense that it achieves higher PIR rates.
We extend the necessary and the sufficient condition from the noncolluding case
to provide joint conditions on the storage and query codes to achieve the upper
bound (𝑛 − �̃�)/𝑛 on the PIR rate of Protocol 3. Moreover, we show that Pro-
tocol 3 achieves the upper bound (𝑛 − �̃�)/𝑛 on the PIR rate for RM codes and
some non-MDS codes. We also provide an optimization algorithm for the proto-
col to optimize the PIR rate. Such an optimization is in itself an extension of the
optimization algorithm for Protocols 1 and 2 for the case of noncolluding nodes.
Besides GRS and RM codes as in [25, 26], we also prove that (𝒰|𝒰 + 𝒱) codes
[27] with 𝒰 being an arbitrary linear code and 𝒱 a repetition code can be used in
conjunction with Protocol 3. We finally give examples of all-symbol locality LRCs
with good PIR rates.

The main contributions of the paper are summarized in the following:

• For the noncolluding case, we propose two PIR protocols, Protocol 1 and
Protocol 2 (Sections 4 and 5), and provide a necessary and a sufficient con-
dition for a code to achieve the MDS-PIR capacity under these protocols
(Theorems 3 and 4, respectively, in Section 6).

• For the noncolluding case, we show that important classes of non-MDS
codes, namely cyclic codes, RM codes, and distance-optimal information
locality codes achieve the finiteMDS-PIR capacity and the asymptoticMDS-
PIR capacity under Protocols 1 and 2, respectively (Corollaries 7 and 8
and Theorem 5, respectively, in Section 6).

• For the colluding case, we propose Protocol 3 that achieves higher asymp-
totic PIR rates for non-MDS codes (equal to its upper bound) than the best
known protocol [25, 26]. Similar to the noncolluding case, a necessary and
a sufficient condition for the protocol to achieve PIR rates equal to its upper
bound is provided (Corollary 10 and Theorem 8, respectively, in Section 8).
Independently of this work, by using an approach similar to ours, in [28] the
authorsmodified the protocol in [26] and showed that the PIR rate (𝑛−�̃�)/𝑛
is achievable for transitive codes.2 However, the protocol in [28] requires a
much larger number of stripes and query sizes than our proposed Protocol
3, since it is based on transitive subgroups of the automorphishm groups of
the storage and query codes, and thus is less practical.

• For both the noncolluding and colluding cases, we provide an algorithm that
optimizes the PIR rate of the underlying code (Sections 7 and 8.5).

The remainder of this paper is organized as follows. We provide some defi-
nitions and preliminaries in Section 2. In Section 3, we provide a general system

2Note that the proposed sufficient condition (Theorem 8) is not equivalent to the concept of transitive
codes in [28] when there are at least colluding nodes (in the noncolluding case the concept of transitive
codes in [28] reduces to our sufficient condition (Theorem 4)).

1 Introduction 97

model for the three PIR protocols proposed in the paper. In Section 4 and ??, we
present Protocols 1 and 2 for the scenario with noncolluding nodes. In Section 6,
we give a necessary and a sufficient condition for codes to achieve the MDS-PIR
capacity and prove that several families of codes achieve it. In Section 7, we give
an optimization algorithm to optimize the PIR rate. In Section 8, we consider the
scenario with colluding nodes and propose Protocol 3. In the same section, we
also present a family of storage codes that can be used with this protocol. Lastly,
we provide a necessary and a sufficient condition to achieve an upper bound on
the PIR rate for this protocol, and we show that RM codes satisfy the sufficient
condition and thus achieve the upper bound on the PIR rate of Protocol 3. In Sec-
tion 9, we optimize Protocols 1, 2, and 3 to maximize their PIR rates for different
storage codes under the scenarios of noncolluding and colluding nodes. Finally,
some conclusions are drawn in Section 10.

1.1 Nota ons and Conven ons

In this paper, we use the following notations. We use lower case bold letters to
denote vectors, upper case bold letters to denote matrices, and calligraphic upper
case letters to denote sets. For example: 𝒙, 𝑿, and 𝒳 denote a vector, a matrix,
and a set, respectively. An identity matrix of order𝑚 is denoted as 𝑰 . An all-zero
matrix of dimensions 𝑎 ×𝑏 is denoted as 𝟎 × , while an all-one matrix of dimen-
sions 𝑎 × 𝑏 is referred to as 𝟏 × . (⋅) represents the transpose of its argument
and ⟨⋅, ⋅⟩ denotes the scalar dot product between two vectors. The operator ∘ rep-
resents the Hadamard product. As such, 𝒙 ∘ 𝒚 represents the Hadamard product
of two length-𝑛 vectors 𝒙 and 𝒚. Consider the column vectors 𝒙 ,… , 𝒙 , then
(𝒙 |… |𝒙) represents the horizontal concatenation of the column vectors. Sim-
ilarly, the horizontal concatenation of the matrices 𝑿 ,… , 𝑿 , all with the same
number of rows, will be denoted by (𝑿 |… |𝑿). We represent a submatrix of 𝑿
that is restricted in columns by the set ℐ and in rows by the set 𝒥 by 𝑿|𝒥ℐ , and the
matrix rank of 𝑿 by rank (𝑿). The function LCM(𝑎, 𝑏) computes the lowest com-
mon multiple of two real numbers 𝑎 and 𝑏, and 𝑎 ∣ 𝑏 denotes that 𝑎 is a divisor
of 𝑏, while the function H(⋅) represents the entropy of its argument.

In the rest of the paper, 𝒞 will denote a linear code over a finite field GF(𝑞).
The operations over GF(𝑞), such as addition, multiplication, etc., will be clearly
understood from the context. We use the customary code parameters [𝑛, 𝑘] to
refer to a code of blocklength 𝑛 and dimension 𝑘, having a code rate 𝑅𝒞 = 𝑘/𝑛.
The dimension of a code 𝒞 will sometimes be denoted by dim (𝒞). Furthermore,
[𝑛, 𝑘, 𝑑𝒞min] represents an [𝑛, 𝑘] code of minimumHamming distance 𝑑𝒞min. Since a
code 𝒞 can be seen as a codebook matrix, the shortened and punctured codes are
denoted by𝒞|𝒥ℐ , with column indices ℐ and row coordinates𝒥. In addition,𝑯𝒞,𝑮𝒞,
and 𝒞 represent a parity-check matrix, a generator matrix, and the dual code,
respectively, of 𝒞. We denote byℕ the set of all positive integers,ℕ ≜ {1, 2, … , 𝑎},
and ℕ ∶ ≜ {𝑛 , 𝑛 + 1,… , 𝑛 } for two positive integers 𝑛 ≤ 𝑛 , 𝑛 , 𝑛 ∈ ℕ. The
Hamming weight of a binary vector 𝒙 is denoted by 𝑤H (𝒙), while the support
of a vector 𝒙 (either binary or nonbinary), i.e., the set of nonzero entries of 𝒙,
will be denoted by 𝜒(𝒙). Note that sometimes, for the sake of convenience, we

98 P III

will omit the superscripts and/or the subscripts if the arguments we refer to are
contextually unambiguous. Also, with some abuse of language, the index of a
coordinate of a vector is sometimes referred to simply as the coordinate. With
some abuse of language, we sometimes interchangeably refer to binary vectors as
erasure patterns under the implicit assumption that the ones represent erasures.
An erasure pattern (or binary vector) 𝒙 is said to be correctable by a code 𝒞 if
matrix 𝑯𝒞| (𝒙) has rank |𝜒(𝒙)|. Finally, for ease of notation, we will refer to a
matrix with constant row weight, constant column weight, and constant row and
column weight equal to 𝑎 as an 𝑎-row regular, 𝑎-column regular, and 𝑎-regular
matrix, respectively.

2 Defini ons and Preliminaries

In this section, we review some basic notions in coding theory and some classes
of codes that will be used throughout the paper.

Definition 1. Let 𝒞 be an [𝑛, 𝑘] code defined over GF(𝑞). A set of coordinates of 𝒞,
ℐ ⊆ ℕ , of size 𝑘 is said to be an information set if and only if 𝑮𝒞|ℐ is invertible.
Definition 2. Let 𝒟 be a subcode of an [𝑛, 𝑘] code 𝒞. The support of 𝒟 is defined
as

𝜒(𝒟) ≜ {𝑗 ∈ ℕ ∶ ∃ 𝒙 = (𝑥 ,… , 𝑥) ∈ 𝒟, 𝑥 ≠ 0}.
It is noted that

𝜒(𝒟) =
𝒙∈𝒟

𝜒(𝒙),

where 𝜒(𝒙) denotes the support of 𝒙.
Next, we introduce the concept of generalized Hamming weights [29].

Definition 3. The 𝑠-th generalizedHammingweight of an [𝑛, 𝑘] code𝒞, denoted by
𝑑𝒞, 𝑠 ∈ ℕ , is defined as the cardinality of the smallest support of an 𝑠-dimensional
subcode of 𝒞, i.e.,

𝑑𝒞 ≜ min � 𝜒(𝒟) ∶ 𝒟 is an [𝑛, 𝑠] subcode of 𝒞 �.
For the sequel, we introduce the notion of Hadamard product [30] of vector

spaces.

Definition 4. Let𝒳 and𝒴 be two vector spaces inGF(𝑞) . TheHadamard product
of 𝒳 and 𝒴, denoted by 𝒳 ∘ 𝒴, is defined as the space in GF(𝑞) generated by the
Hadamard products 𝒙 ∘ 𝒚 for all 𝒙 ∈ 𝒳 and 𝒚 ∈ 𝒴.

2.1 Reed-Muller Codes

We review the family of binary linear RM codes [31] and then quickly summarize
a result related to information sets of an RM code. We adapt the concept and
definition from [27, Ch. 13], and the details can be found therein.

2 Definitions and Preliminaries 99

Definition 5. For a given 𝑚 ∈ ℕ, the 𝑣-th order binary RM code ℛ(𝑣,𝑚) is an
[𝑛, 𝑘] code with length 𝑛 = 2 and code dimension 𝑘 = ∑ � � for 𝑣 ∈ {0} ∪
ℕ , constructed as the linear space spanned by the set of all 𝑚-variable Boolean
monomials of degree at most 𝑣.

For example, ℛ(2, 3) can be viewed as the linear space spanned by the set of
Boolean monomials {1, 𝑧 , 𝑧 , 𝑧 , 𝑧 𝑧 , 𝑧 𝑧 , 𝑧 𝑧 }.

Next, we introduce a way to number the coordinate index of an RM codeword.
Without loss of generality, since there are in total 𝑛 = 2 codeword coordinates,
each coordinate index 𝑗 ∈ ℕ can be described by a binary column 𝑚-tuple
𝝁 = (𝜇 ,… , 𝜇) , 𝜇 ∈ GF(2), such that

𝑗 ≜ 1 + 𝜇 2 . (III.1)

For instance, for 𝑚 = 4, the 7-th coordinate of an RM code corresponds to
(0 1 1 0) . Hence, a set of coordinates ℐ ⊆ ℕ can alternatively be written
as a set of corresponding𝑚-tuples for RM codes.

Let 𝑽 be an𝑚×𝑚 invertible matrix over GF(2) and 𝝈 ∈ GF(2) × be a length-
𝑚 binary column vector. It is well-known that the coordinate transformation
mapping 𝝁 onto 𝑽𝝁+𝝈 is an automorphism for the RM code [27, Ch. 13]. Hence,
we obtain the following important property concerning information sets for RM
codes.

Proposition 2. Let ℐ = {𝝁 } ∈ℕ ⊆ GF(2) × be an information set of ℛ(𝑣,𝑚),
and define the following coordinate set

ℐ ≜ {𝑔(𝝁)∶ 𝝁 ∈ ℐ},
where 𝑔(𝝁) ≜ 𝑽𝝁 + 𝝈 for an arbitrary 𝑚 × 𝑚 invertible binary matrix 𝑽 and an
arbitrary 𝝈 ∈ GF(2) × . Then, ℐ also forms an information set of the RM code.

For the sake of simplicity, throughout the paper we assume 𝑽 = 𝑰 .

Example 1. Consider the RM code ℛ(1, 3) with generator matrix

𝑮ℛ(,) =
1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

.

The 𝑖-th row of𝑮ℛ(,) corresponds to the 𝑖-thmonomial of the set of Booleanmono-
mials {1, 𝑧 , 𝑧 , 𝑧 }, 𝑖 ∈ ℕ . It can be seen that any codeword ofℛ(1, 3) corresponds
to a linear combination of the Boolean monomials as 𝑤 1 + 𝑤 𝑧 + 𝑤 𝑧 + 𝑤 𝑧 ,
where 𝑤 ∈ GF(2), 𝑖 ∈ ℕ . Clearly, ℐ = {(0 0 0) , (1 0 0) , (0 1 0) , (0 0 1) }
forms an information set for ℛ(1, 3). Pick an automorphism 𝑔 with 𝑽 = 𝑰 being
the identity matrix and 𝝈 = (0 0 1) . Then,

ℐ = {𝑔(𝝁) = 𝝁 + 𝝈∶ 𝝁 ∈ ℐ}
= {(0 0 1) , (1 0 1) , (0 1 1) , (0 0 0) }

is also an information set of ℛ(1, 3).

100 P III

The following lemma shows how to determine an information set for an RM
code.

Lemma 1. Consider the RM codeℛ(𝑣,𝑚) with 𝑣 ∈ {0}∪ℕ ,𝑚 ∈ ℕ. Then, the set
of𝑚-tuples given by

ℐ ≜ {𝝁 ∈ GF(2) × ∶ 𝑤H (𝝁) ≤ 𝑣}
is an information set for ℛ(𝑣,𝑚).
Proof. The proof is based on the definition of RM codes. The details are given in
Appendix A.

Lemma 1 can be extended to nonbinary generalized RM codes (see the com-
prehensive work in [32] that determines the information sets for generalized RM
codes).

2.2 Local Reconstruc on Codes

LRCs are a family of codes that are used in DSSs because of their low repair local-
ity, i.e., they need to contact a relatively low number of nodes in order to repair a
failed node. Systematic codes that focus on lowering the locality for the system-
atic nodes (i.e., the nodes that store the systematic code symbols; see the system
model in Section 3) are referred to as information locality codes. Examples of such
codes are presented in [19, 21]. On the contrary, LRCs that achieve low locality for
all nodes are referred to as all-symbol locality codes. The codes presented in [23]
are examples of all-symbol locality codes. Formally, information locality codes
are defined as follows.

Definition 6 ((𝑟, 𝛿) information locality code[22, Def. 2]). An [𝑛, 𝑘] code is said
to be an (𝑟, 𝛿) information locality code if there exist 𝐿c punctured codes 𝒞 ≜ 𝒞|𝒮
of 𝒞 with column coordinate set 𝒮 ⊂ ℕ for 𝑗 ∈ ℕ

c
. Furthermore, {𝒞|𝒮 } ∈ℕ c

must
satisfy the following conditions:

1. |𝒮 | ≤ 𝑟 + 𝛿 − 1, ∀ 𝑗 ∈ ℕ
c
,

2. 𝑑𝒞min ≥ 𝛿, ∀ 𝑗 ∈ ℕ
c
, and

3. rank �𝑮|⋃ 𝒮 � = 𝑘.

The overall code 𝒞 hasminimumHamming distance 𝑑𝒞min ≤ 𝑛−𝑘+1−(⌈𝑘/𝑟⌉−
1)(𝛿−1) and can repair up to 𝛿−1 systematic nodes by contacting 𝑟 storage nodes.
In other words, Definition 6 says that there are 𝐿c local codes in 𝒞 each having a
block length of at most 𝑟 + 𝛿 − 1, a minimum Hamming distance of at least 𝛿,
and the union of all local codes forms an information set. Codes that achieve the
upper bound on theminimumHamming distance are known as distance-optimal
(𝑟, 𝛿) information locality codes and have the following structure.

Definition 7 (Distance-optimal (𝑟, 𝛿) information locality code [22, Th. 2.2]).
Let 𝑟 ∣ 𝑘 such that 𝐿c = 𝑘/𝑟. An (𝑟, 𝛿) information locality code 𝒞 as defined in
Definition 6 is distance-optimal if:

3 SystemModel 101

1. Each local code 𝒞|𝒮 , 𝑗 ∈ ℕ c
, is an [𝑟+𝛿−1, 𝑟]MDS code defined by a parity-

check matrix 𝑯𝒞|𝒮 = (𝑷 |𝑰) of dimensions (𝛿 − 1) × (𝑟 + 𝛿 − 1) and
minimum Hamming distance 𝑑

𝒞|𝒮
min = 𝛿.

2. The sets {𝒮 } ∈ℕ c
are disjoint, i.e., 𝒮 ∩ 𝒮 = ∅ for all 𝑗, 𝑗 ∈ ℕ

c
, 𝑗 ≠ 𝑗 .

3. The code 𝒞 has a parity-check matrix of the form

𝑯 = ⎛
⎜

⎝

𝑷 𝑰
𝑷 𝑰

⋱
𝑷

c
𝑰

𝑴 𝟎 𝑴 𝟎 ⋯ 𝑴
c

𝟎 𝑰

⎞
⎟

⎠

(III.2)

where the matrices𝑴 ,… ,𝑴
c
are arbitrary matrices in GF(𝑞) of dimensions (𝑛 −

𝐿c(𝑟 + 𝛿 − 1)) × 𝑟, and 𝑎 ≜ 𝑛 − 𝐿c(𝑟 + 𝛿 − 1).

For ease of exposition, we refer to the local parities as the parity symbols that
take part in local codes, while the parity symbols that are not part of the 𝐿c local
codes are referred to as global parity symbols. According to Definition 7, there
exist 𝑛 − 𝐿c(𝑟 + 𝛿 − 1) global parities and 𝐿c(𝛿 − 1) local parities. We partition
the coordinates of these parities into 𝐿 + 1 sets, where 𝐿 ≜ � �. For 𝑖 ∈ ℕ ,
we have

𝒫 =
{(𝑗 − 1)𝑛c + 𝑟 + 1,… , 𝑗𝑛c} if 𝑗 ∈ ℕ

c
,

{(𝑗 − 1)𝑛c + 1,… , 𝑗𝑛c} if 𝑗 ∈ ℕ
c ∶ ,

{𝐿𝑛c + 1,… , 𝑛} if 𝑗 = 𝐿 + 1,
� (III.3)

where 𝑛c ≜ 𝑟 + 𝛿 − 1 is the block length of each local code. The sets 𝒫 , 𝑗 ∈
ℕ

c
, represent the coordinates of the local parities of the 𝑗-th local code 𝒞 . The

remaining sets 𝒫 , 𝑗 ∈ ℕ
c ∶ , represent the coordinates of the global parities

of 𝒞. As such, the set 𝒫 = ⋃ 𝒫 represents the parity coordinates of 𝒞.

2.3 UUV Codes

Consider an [𝑛 , 𝑘] code 𝒰 and an [𝑛 , 𝑘] code 𝒱 both over GF(𝑞). An [𝑛 =
2𝑛 , 𝑘 = 𝑘 + 𝑘] (𝒰 ∣ 𝒰 + 𝒱) code [27] (herein referred to as a UUV code) has
codewords of the form (𝒖 ∣ 𝒖 + 𝒗), where 𝒖 ∈ 𝒰 and 𝒗 ∈ 𝒱. A UUV code has
generator matrix

𝑮UUV = 𝑮𝒰 𝑮𝒰
𝟎 × 𝑮𝒱 ,

where 𝑮𝒰 and 𝑮𝒱 are the generator matrices of 𝒰 and 𝒱, respectively. One can
construct RM codes using UUV codes in an iterative manner [27, p. 374].

102 P III

⋯ ⋯

⋮⋮

𝑐()
,

𝑐()
,

𝑐()
,

⋮

𝑸() 𝑸() 𝑸() 𝑸()

𝒓 𝒓 𝒓 𝒓

𝑛 storage nodes
(a)

(b)(c)

Figure III.1: System Model. (a) The colored boxes in each storage node represent the 𝑓
coded chunks pertaining to the 𝑓 files. (b) Coded chunk corresponding to the 2nd file
in the 𝑛-th node. It consists of 𝛽 code symbols, 𝑐()

, , 𝑖 ∈ ℕ . (c) The user sends the
queries 𝑸(), 𝑙 ∈ ℕ , to the storage nodes and receives responses 𝒓 .

3 SystemModel

We consider a DSS that stores 𝑓 files 𝑿(), … , 𝑿(), where each file 𝑿() = (𝑥()
,),

𝑚 ∈ ℕ , can be seen as a 𝛽 × 𝑘 matrix over GF(𝑝 ℓ), with 𝛽, 𝑘, 𝛼, ℓ ∈ ℕ, and
𝑝 some prime number. Each file is encoded using a linear code as follows. Let
𝒙() = (𝑥()

, , … , 𝑥()
,), 𝑖 ∈ ℕ , be a message vector corresponding to the 𝑖-th row

of 𝑿(). Each 𝒙() is encoded by an [𝑛, 𝑘] code 𝒞 over GF(𝑞) with 𝑞 ≜ 𝑝 , having
subpacketization 𝛼, into a length-𝑛 codeword 𝒄() = �𝑐()

, , … , 𝑐()
, �, where 𝑐()

, ∈
GF(𝑞ℓ), 𝑗 ∈ ℕ . For 𝛼 = 1, the code 𝒞 is referred to as a scalar code. Otherwise,
the code is called a vector code [33]. The 𝛽𝑓 generated codewords 𝒄() are then
arranged in the array 𝑪 = �(𝑪()) |… |(𝑪()) � of dimensions 𝛽𝑓 × 𝑛, where
𝑪() = �(𝒄()) |… |(𝒄()) � for 𝑚 ∈ ℕ . For a given column 𝑗 of 𝑪, we denote
the column vector �𝑐()

, , … , 𝑐()
,

� as a coded chunk pertaining to file 𝑿(). The 𝑓
coded chunks in column 𝑗 are stored on the 𝑗-th storage node, 𝑗 ∈ ℕ , as shown in
??(a). In case the [𝑛, 𝑘] code 𝒞 is systematic, the nodes that store the systematic
code symbols are referred to as systematic nodes.

3.1 Privacy Model

We consider a DSS where a set of 𝑇 nodes may act as spies. Further, they might
collude and hence they are referred to as colluding nodes. In addition, it is as-
sumed that the remaining nonspy nodes do not collaborate with the spy nodes.
The scenario of a single spy node (𝑇 = 1) in the DSS is analogous to having a sys-

3 SystemModel 103

tem with no colluding nodes. Let 𝒯 ⊂ ℕ , |𝒯| = 𝑇, denote the set of spy nodes
in the DSS. The role of the spy nodes is to determine which file 𝑿() is accessed
by the user. We assume that the user does not know 𝒯, since otherwise it can
trivially achieve PIR by avoiding contacting the spy nodes. To retrieve file 𝑿()

from the DSS, the user sends a 𝑑 × 𝛽𝑓 matrix query 𝑸() over GF(𝑞) ⊆ GF(𝑞ℓ) to
the 𝑙-th node for all 𝑙 ∈ ℕ . The query matrices are represented in the form of 𝑑
subquery vectors 𝒒() of length 𝛽𝑓 as

𝑸() = ⎛
⎜

⎝

𝒒()
𝒒()
⋮
𝒒()

⎞
⎟

⎠

= ⎛
⎜

⎝

𝑞(), 𝑞(), ⋯ 𝑞(),
𝑞(), 𝑞(), ⋯ 𝑞(),
⋮ ⋮ ⋯ ⋮

𝑞(), 𝑞(), ⋯ 𝑞(),

⎞
⎟

⎠

.

The 𝑖-th subqueries 𝒒(), 𝑙 ∈ ℕ , of the 𝑛 queries aim at recovering Γ unique code
symbols3 of the file 𝑿(). In response to the received query matrix, node 𝑙 sends
the column vector

𝒓 = (𝑟 , , … , 𝑟 ,) = 𝑸() �𝑐()
, , … , 𝑐()

, , … , 𝑐()
,

� , (III.4)

referred to as the response vector, back to the user as illustrated in ??(c). We refer
to 𝑟 , as the 𝑖-th subresponse of the 𝑙-th node. Perfect information-theoretic PIR
for such a scheme is defined in the following.

Definition 8. Consider a DSS with 𝑛 nodes storing 𝑓 files in which a set of 𝑇 nodes
𝒯 = {𝑡 , … , 𝑡 } ⊂ ℕ , 1 ≤ |𝒯| = 𝑇 ≤ 𝑛 − 𝑘, act as colluding spies. A user who
wishes to retrieve the𝑚-th file sends the queries 𝑸(), 𝑙 ∈ ℕ , to the storage nodes,
which return the responses 𝒓 . This scheme achieves perfect information-theoretic
PIR if and only if

Privacy: H �𝑚|𝑸(), … , 𝑸() � = H(𝑚); (III.5a)
Recovery: H �𝑿()|𝒓 , … , 𝒓 � = 0. (III.5b)

Queries satisfying (III.5a) ensure that the file requested by the user is inde-
pendent of the queries. Thus, the colluding nodes in 𝒯 do not gain any addi-
tional information regarding which file is requested by the user by observing the
queries. The recovery constraint in (III.5b) ensures that the user is able to recover
the requested file from the responses sent by the DSS.

The efficiency of a PIR protocol is defined as the amount of retrieved data per
unit of total amount of downloaded data, since it is assumed that the content of
the retrieved file dominates the total communication cost [8, 12].

Definition 9. The PIR rate of a PIR protocol, denoted by R, is the amount of infor-
mation retrieved per downloaded symbol, i.e.,

R ≜ 𝛽𝑘
𝑛𝑑 .

3In general, the -th subqueries recover unique code symbols such that among the ∑ recovered
code symbols there are distinct information symbols. However, for the sake of simplicity, we assume

for all .

104 P III

Since the size of each file is 𝛽𝑘, the parameters 𝑑 and Γ should be chosen such
that 𝛽𝑘 = Γ𝑑. For the (file-independent) Protocols 2 and 3 in Sections 5 and 8 to
be practical, we may select

𝛽 = LCM(𝑘, Γ)
𝑘 and 𝑑 = LCM(𝑘, Γ)

Γ , (III.6)

as it ensures the smallest values of 𝛽 and 𝑑. This is not the case for Protocol 1 in
Section 4, where 𝛽 is exponential in the number of files in order achieve optimal
PIR rates. By choosing the values above for 𝛽 and 𝑑, the PIR rate for Protocols 2
and 3 become

R = Γ
𝑛.

We will write R(𝒞) to highlight that the PIR rate depends on the underlying stor-
age code 𝒞. The maximum achievable PIR rate is the PIR capacity. It was shown
in [11] that for the noncolluding case and for a given number of files 𝑓 stored using
an [𝑛, 𝑘]MDS code, the MDS-PIR capacity, denoted by C , is

C ≜ 𝑛 − 𝑘
𝑛 1 − �𝑘

𝑛
� . (III.7)

Throughout the paper we refer to the capacity in (III.7) as the finite MDS-PIR
capacity as it depends on the number of files. On the contrary when the number
of files 𝑓 → ∞, the asymptotic MDS-PIR capacity is

C ≜ 𝑛 − 𝑘
𝑛 . (III.8)

It was shown in [8, Th. 3] that the PIR rate for a DSS with noncolluding nodes
is upperbounded by C for a special class of linear retrieval schemes. In the
case of colluding nodes, an explicit upper bound is currently unknown, as well
as an expression for the MDS-PIR capacity. Some initial work for the case of two
colluding nodes has recently been presented in [13].

4 Finite MDS-PIR Capacity-Achieving Protocol for the Noncol-
luding Case

In this section, we propose a capacity-achieving protocol, named Protocol 1, that
achieves the finite MDS-PIR capacity in (III.7) for the scenario of noncolluding
nodes. The protocol is inspired by the protocol introduced in [11].

4.1 PIR Achievable Rate Matrix

In [10], the concept of exploiting side information for PIR problems was intro-
duced. By side information we mean additional redundant symbols not related
to the requested file but downloaded by the user in order to maintain privacy.

4 Finite MDS-PIR Capacity-Achieving Protocol for the Noncolluding Case 105

These symbols can be exploited by the user to retrieve the requested file from the
responses of the storage nodes. In [11, Sec. V.A], it was shown that a [5, 3, 3]MDS
storage code can be used to achieve the finite MDS-PIR capacity, where the side
information is decoded by utilizing other code coordinates forming an informa-
tion set in the code array. For instance, the authors chose the 𝜈 = 5 information
sets ℐ = {1, 2, 3}, ℐ = {1, 4, 5}, ℐ = {2, 3, 4}, ℐ = {1, 2, 5}, and ℐ = {3, 4, 5} of
the [5, 3, 3] MDS code in their PIR achievable scheme. Observe that in {ℐ } ∈ℕ
each coordinate of the [5, 3, 3] code appears exactly 𝜅 = 3 times. This motivates
the following definition.

Definition 10. Let 𝒞 be an arbitrary [𝑛, 𝑘] code. A 𝜈 × 𝑛 binary matrix 𝜦 , (𝒞) is
said to be a PIR achievable ratematrix for𝒞 if the following conditions are satisfied.

1. The Hamming weight of each column of 𝜦 , is 𝜅, and
2. for each matrix row 𝝀 , 𝑖 ∈ ℕ , 𝜒(𝝀) always contains an information set.

In other words, each coordinate 𝑗 of 𝒞, 𝑗 ∈ ℕ , appears exactly 𝜅 times in
{𝜒(𝝀)} ∈ℕ , and every set 𝜒(𝝀) contains an information set.

Lemma 2. If a matrix 𝜦 , (𝒞) exists for an [𝑛, 𝑘] code 𝒞, then we have

𝜅
𝜈 ≥ 𝑘

𝑛,

where equality holds if 𝜒(𝝀), 𝑖 ∈ ℕ , are all information sets.

Proof. Since by definition each row 𝝀 of 𝜦 , always contains an information set,
we have 𝑤H (𝝀) ≥ 𝑘, 𝑖 ∈ ℕ . Let 𝒗 , 𝑗 ∈ ℕ , be the 𝑗-th column of 𝜦 , . If we look
at 𝜦 , from both a row-wise and a column-wise point of view, we obtain

𝜈𝑘 ≤ 𝑤H (𝝀) = 𝑤H 𝒗 = 𝜅𝑛,

from which the result follows. Clearly, equality holds if 𝜒(𝝀), 𝑖 ∈ ℕ , are all
information sets.

Example 2. Consider the [5, 3, 2] systematic code with generator matrix

𝑮 =
1 0 0 1 0
0 1 0 1 0
0 0 1 0 1

.

One can easily verify that

𝜦 , =
0 1 1 1 1
1 0 0 1 1
1 1 1 0 0

is a PIR achievable rate matrix for this code.

106 P III

Before we state our main results, in order to clearly illustrate our example and
the following achievability proof, we first introduce the following definition.

Definition 11. For a given 𝜈 × 𝑛 PIR achievable rate matrix 𝜦 , (𝒞) = (𝜆 ,), we
define the PIR interference matrices 𝑨 × = (𝑎 ,) and 𝑩()× = (𝑏 ,) for the
code 𝒞 with

𝑎 , ≜ 𝑢 if 𝜆 , = 1, ∀𝑗 ∈ ℕ , 𝑖 ∈ ℕ , 𝑢 ∈ ℕ ,
𝑏 , ≜ 𝑢 if 𝜆 , = 0, ∀𝑗 ∈ ℕ , 𝑖 ∈ ℕ , 𝑢 ∈ ℕ .

Note that in Definition 11, for each 𝑗 ∈ ℕ , distinct values of 𝑢 ∈ ℕ should
be assigned for all 𝑖. Thus, the assignment is not unique in the sense that the
order of the entries of each column of 𝑨 and 𝑩 can be permuted. For 𝑗 ∈ ℕ ,
let 𝒜 ≜ {𝑎 , ∶ 𝑖 ∈ ℕ } and ℬ ≜ {𝑏 , ∶ 𝑖 ∈ ℕ }. Note that the 𝑗-th column of
𝑨 contains the row indices of 𝜦 whose entries in the 𝑗-th column are equal to 1,
while 𝑩 contains the remaining row indices of 𝜦. Hence, it can be observed that
ℬ = ℕ ⧵𝒜 , ∀ 𝑗 ∈ ℕ .

Definition 12. By 𝒮(𝑎|𝑨 ×) we denote the set of column coordinates of matrix
𝑨 × = (𝑎 ,) in which at least one of its entries is equal to 𝑎, i.e.,

𝒮(𝑎|𝑨 ×) ≜ {𝑗 ∈ ℕ ∶ ∃ 𝑎 , = 𝑎, 𝑖 ∈ ℕ }.

The following claim can be directly verified.

Claim 1. 𝒮(𝑎|𝑨 ×) contains an information set of code 𝒞, ∀𝑎 ∈ ℕ . Moreover, for
an arbitrary entry 𝑏 , of 𝑩()× , 𝒮(𝑏 , |𝑨 ×) = 𝒮(𝑎|𝑨 ×) ⊆ ℕ ⧵ {𝑗} if 𝑏 , = 𝑎.

We illustrate the previous points in the following example.

Example 3. Continuing with Example 2 and following Definition 11, we obtain

𝑨 × = 2 1 1 1 1
3 3 3 2 2 and 𝑩 × = 1 2 2 3 3

for 𝜦 , . One can see that 𝒜 ∪ ℬ = ℕ , ∀ 𝑗 ∈ ℕ . Moreover, for instance, take
𝑎 = 1, then 𝒮(1|𝑨 ×) = {2, 3, 4, 5} contains an information set of the [5, 3, 2]
systematic code of Example 2.

Now consider the two matrices

𝑐()
, , 𝑐()

, , ⋯ 𝑐()
, ,

⋮
𝑐()

, , 𝑐()
, , ⋯ 𝑐()

, ,

and
𝑐()

, , 𝑐()
, , ⋯ 𝑐()

, ,
⋮

𝑐()
, , 𝑐()

, , ⋯ 𝑐()
, ,

of code symbols of the 𝑚-th file, where 𝜇 ∈ ℕ ∪ {0}. Observe that if the user
knows the first matrix of code symbols, from Claim 1, since the coordinate set
𝒮(𝑏 , |𝑨 ×) ⊆ ℕ ⧵{𝑗} contains an information set and the user knows the struc-
ture of the storage code 𝒞, the code symbols 𝑐()

, , of the second matrix can
be obtained. The intuition behind the definition of the interference matrices 𝑨

4 Finite MDS-PIR Capacity-Achieving Protocol for the Noncolluding Case 107

and 𝑩 is as follows. Assume that 𝑿() is requested. Protocol 1 requires the user
to download the side information ∑ 𝑐()

, , based on 𝑨 and also to download
code symbols as sums of code symbols from the requested file and the side infor-
mation∑ 𝑐()

, , based on𝑩. Claim 1 then indicates that the side information
∑ 𝑐()

, , based on 𝑩 can be reliably decoded and hence we can obtain the re-
quested file by cancelling the side information. Here, the entries of 𝑨 and 𝑩 are
respectively marked in red and blue. We are now ready to state Protocol 1.

4.2 Protocol 1

The proposed Protocol 1 generalizes the MDS-coded PIR protocol in [11] to DSSs
where files are stored using an arbitrary linear code. Inspired by [10] and [11], a
PIR capacity-achievable scheme should follow three important principles: 1) en-
forcing symmetry across storage nodes, 2) enforcing file symmetry within each
storage node, and 3) exploiting side information of undesired symbols to retrieve
new desired symbols. Note that principle 1) is in general not a necessary require-
ment for a feasible PIR protocol. However, as pointed out in [11] and [13], any PIR
scheme can be made symmetric, hence we keep this principle for the purpose of
simplifying the implementation.

The PIR achievable rate matrix 𝜦 , for the given storage code 𝒞 plays a central
role in the proposed PIR protocol. Moreover, the protocol requires 𝛽 = 𝜈 stripes
and exploits the corresponding PIR interference matrices 𝑨 × and 𝑩()× .
Note that the number of stripes depends on the number of files 𝑓, hence Pro-
tocol 1 depends on 𝑓 as well. We first outline the steps of the protocol, and then
we will prove that the proposed protocol satisfies the perfect privacy condition
of (III.5a) and results in the PIR rate of Theorem 1 below. Without loss of gener-
ality, we assume that the user wants to download the first file, i.e., 𝑚 = 1. The
algorithm is composed of four steps as described below. In Appendix B, we show
that the algorithm generates 𝑑 × 𝛽𝑓 query matrices 𝑸(), 𝑙 ∈ ℕ , with

𝑑 = 𝜅
𝜈 − 𝜅

�𝜈 − 𝜅 �.

Step 1. Index Prepara on

For all files, the user interleaves the query indices for requesting the rows of 𝑪()

randomly and independently of each other. This is equivalent to generating the
interleaved code array 𝒀() = �(𝒚()) |… |(𝒚()) � , ∀𝑚 ∈ ℕ , with rows

𝒚() = 𝒄()
(), 𝑖 ∈ ℕ ,

where 𝜋(⋅) ∶ ℕ → ℕ is a random permutation, which is privately known to
the user only. Therefore, when the user requests code symbols from each storage
node, this procedure is designed to make the requested row indices to be random
and independent of the requested file index.

108 P III

Step 2. Download Symbols in the 𝑖-th Repe on

The user downloads the needed symbols in 𝜅 repetitions. In the 𝑖-th repetition,
𝑖 ∈ ℕ , the user downloads the required symbols in a total of 𝑓 rounds. Each rep-
etition comprises 𝑓 rounds. In the𝑚-th round, the user downloads symbols that
are linear sums of code symbols from any𝑚 files,𝑚 ∈ ℕ . Using the terminology
in [11], the user downloads two types of symbols in each round, desired symbols,
which are directly related to the requested file index 𝑚 = 1, and undesired sym-
bols, which are not related to the requested file index𝑚 = 1, but are exploited to
decode the requested file from the desired symbols. For the desired symbols, we
will distinguish between round ℓ = 1 and round ℓ ∈ ℕ ∶ .

Undesired symbols. The undesired symbols refer to sums of code symbols
which do not contain symbols from the requested file. For every round ℓ, ℓ ∈
ℕ , the user downloads the code symbols

�
∈ℳ

𝑦()
(()U() U(ℓ))⋅ , , , … ,

∈ℳ
𝑦()
(()U() U(ℓ))⋅ , , ,

… ,
∈ℳ

𝑦()
(()U() U(ℓ))⋅ , , , … ,

∈ℳ
𝑦()
(()U() U(ℓ))⋅ , ,

� (III.9)

for all 𝑗 ∈ ℕ and for all possible subsetsℳ ⊆ ℕ ∶ , where |ℳ| = ℓ and

U(ℓ) ≜
ℓ

𝜅 ()(𝜈 − 𝜅) .

In contrast to undesired symbols, desired symbols are sums of code symbols
which contain symbols of the requested file. The main idea of the protocol is
that the user downloads desired symbols that are linear sums of requested sym-
bols and undesired symbols from the previous round.

Desired symbols in the first round. In the first round, the user downloads 𝜅 ⋅
U(1) = 𝜅𝜅 ()(𝜈 − 𝜅) = 𝜅 undesired symbols from each storage node.
However, these symbols cannot be exploited directly. Hence, due to symmetry,
in round ℓ = 1, the user downloads the 𝜅 desired symbols

�𝑦()
(,) , , … , 𝑦()

(,) ,
� (III.10)

from the 𝑗-th storage node, 𝑗 ∈ ℕ , i.e., the user also downloads 𝜅 symbols for
𝑚 = 1 from each storage node.

Desired symbols in higher rounds. In the (ℓ+1)-th round, ℓ ∈ ℕ , in order
to exploit the side information, i.e., the undesired symbols from the previous

4 Finite MDS-PIR Capacity-Achieving Protocol for the Noncolluding Case 109

round, the user downloads the symbols

�𝑦()
D(ℓ)⋅ , , +

∈ℳ
𝑦()
(()U() U(ℓ))⋅ , , , … ,

𝑦()
(D(ℓ) ())⋅ , , +

∈ℳ
𝑦()
(()U() U(ℓ))⋅ , , ,

𝑦()
(D(ℓ) ())⋅ , , +

∈ℳ
𝑦()
(()U() U(ℓ))⋅ , , , … ,

𝑦()
�D(ℓ) (U(ℓ) U(ℓ))() �⋅ , ,

+
∈ℳ

𝑦()
(()U() U(ℓ))⋅ , , , … ,

𝑦()
(D(ℓ) ())⋅ , , +

∈ℳN(ℓ)

𝑦()
(()U() U(ℓ))⋅ , , , … ,

𝑦()
(D(ℓ))⋅ , , +

∈ℳN(ℓ)

𝑦()
(()U() U(ℓ))⋅ , ,

� (III.11)

for all distinct ℓ-sized subsetsℳ ,… ,ℳN(ℓ) ⊆ ℕ ∶ , where 𝑗 ∈ ℕ ,N(ℓ) ≜ �
ℓ

�,
and

D(ℓ) ≜ 𝜅 +
ℓ

�𝑓 − 1
ℎ

�𝜅 ()(𝜈 − 𝜅) .

This indicates that for each combination of filesℳ , 𝑙 ∈ ℕN(ℓ), the user downloads
�U(ℓ) − 1 − U(ℓ − 1) + 1 �(𝜈 − 𝜅) new desired symbols from each storage node,
and since there are in totalN(ℓ) combinations of files, in each roundD(ℓ) − 1−
D(ℓ − 1) + 1 extra desired symbols are downloaded from each storage node.

Exploiting the side information. Using the fact that for a linear code 𝒞 any
linear combination of codewords is also a codeword, and together with Claim 1,
it is not too hard to see that by fixing an arbitrary coordinate 𝑗 ∈ ℕ , there always
exist some coordinates 𝒮 ⊂ ℕ ⧵{𝑗} (see Claim 1) such that for a subsetℳ ⊆ ℕ ∶
with |ℳ| = ℓ, the so-called aligned sum

�
∈ℳ

𝑦()
(()U() U(ℓ))⋅ , , , … ,

∈ℳ
𝑦()
(()U() U(ℓ))⋅ , ,

�

for ℓ ∈ ℕ and 𝑖 ∈ ℕ , can be decoded. Consequently, in the (ℓ + 1)-th round,
from each storage node 𝑗 we can collect code symbols related to 𝑚 = 1 from the
desired symbols, i.e.,

�𝑦()
D(ℓ)⋅ , , , … , 𝑦()

(D(ℓ))⋅ , ,
� (III.12)

is obtained.

110 P III

Symmetry across storage nodes. In the previous steps, since the user down-
loads the same amount of required symbols for each 𝑗 ∈ ℕ and for every round,
symmetry across storage nodes is ensured.

File symmetry within each storage node. To ensure that the privacy condi-
tion of (III.5a) is fulfilled, we have to make sure that in each round ℓ ∈ ℕ of each
repetition, for each storage node and for every combination of filesℳ ⊆ ℕ with
|ℳ| = ℓ, the user requests the same number of linear sums 𝜂(ℳ) ≜ ∑ ∈ℳ 𝑦()

, ,
where 𝜂 depends on𝑚. This will be shown to be inherent from the protocol (see
proof of Theorem 1 in Appendix B). In addition, since the user always requests the
same number of linear sums for every combination of files, the scheme also im-
plies that the frequencies of requested code symbols pertaining to each individual
file index 𝑚 ∈ ℕ among all the linear sums are the same for each storage node.

Step 3. Complete 𝜅 Repe ons

The user repeats Step 2 until 𝑖 = 𝜅. We will show that by our designed param-
eters U(ℓ) and D(ℓ), the user indeed downloads in total 𝛽 = 𝜈 stripes for the
requested file (see again Appendix B).

Step 4. Shuffling the Order of Queries to Each Node

The order of the queries to each storage node is uniformly shuffled to prevent the
storage node to be able to identify which file is requested from the index of the
first downloaded symbol.

4.3 Achievable PIR Rate

The PIR rate, R(𝒞), of Protocol 1 in Section 4.2 for a DSS where 𝑓 files are stored
using an arbitrary [𝑛, 𝑘] code 𝒞 is given in the following theorem.

Theorem 1. Consider a DSS that uses an [𝑛, 𝑘] code 𝒞 to store 𝑓 files. If a PIR
achievable rate matrix 𝜦 , (𝒞) exists, then the PIR rate

R(𝒞) = (𝜈 − 𝜅)𝑘
𝜅𝑛 1 − �𝜅

𝜈
� (III.13)

is achievable.

Proof. See Appendix B.

We remark that from Lemma 2, (III.13) is smaller than or equal to the finite
MDS-PIR capacity in (III.7) since

R(𝒞) =
�1− �

�1− � � �
= 𝜈𝑘
𝜅𝑛 1 + 𝜅

𝜈 +⋯+ �𝜅
𝜈

� ≤ 1 + 𝑘
𝑛 +⋯+ �𝑘

𝑛
� ,

(III.14)

4 Finite MDS-PIR Capacity-Achieving Protocol for the Noncolluding Case 111

and it becomes the finite MDS-PIR capacity in (III.7) if there exists a matrix 𝜦 ,
for 𝒞 with = . The inequality in (III.14) follows from Lemma 2.

Corollary 1. If a PIR achievable rate matrix 𝜦 , (𝒞) with = exists for an [𝑛, 𝑘]
code 𝒞, then the finite MDS-PIR capacity in (III.7) is achievable.

This gives rise to the following definition.

Definition 13. A PIR achievable rate matrix 𝜦 , (𝒞) with = for an [𝑛, 𝑘] code
𝒞 is called anMDS-PIR capacity-achievingmatrix, and 𝒞 is referred to as anMDS-
PIR capacity-achieving code.

We remark that there might exist codes that are MDS-PIR capacity-achieving
for which an MDS-PIR capacity-achieving matrix does not exist.

Note that the largest achievable PIR rate in the noncolluding case where data
is stored using an arbitrary linear code is still unknown. Interestingly, it is ob-
served from Lemma 2 and (III.14) that the largest possible achievable PIR rate for
an arbitrary linear code with Protocol 1 strongly depends on the smallest possi-
ble value of for which a PIR achievable rate matrix 𝜦 , exists. We stress that
the existence of an MDS-PIR capacity-achieving matrix 𝜦 , does not necessarily
require (𝜈, 𝜅) = (𝑛, 𝑘), but = .

Since the existence of a PIR achievable rate matrix is connected to the infor-
mation sets of a code, we review a widely known result in coding theory.

Proposition 3 ([34, Th. 1.4.15]). Let 𝒞 be an [𝑛, 𝑘, 𝑑min] code. Then, every set of
𝑛−𝑑min+1 coordinates of 𝒞 contains an information set. Furthermore, 𝑛−𝑑min+1
is the smallest number of coordinates with this property.

Lemma 3. For a given [𝑛, 𝑘, 𝑑𝒞min] code 𝒞, there always exists a PIR achievable rate
matrix 𝜦 , with

𝜈 = 𝑘 +min 𝑘, 𝑑𝒞min − 1 .
Proof. See Appendix C.

A lower bound on the largest possible achievable PIR rate obtained from The-
orem 1 and Lemma 3 is given as follows.

Corollary 2. Consider a DSS that uses an [𝑛, 𝑘, 𝑑𝒞min] code 𝒞 to store 𝑓 files. Then,
the PIR rate

R(𝒞) = min 𝑘, 𝑑𝒞min − 1
𝑛 1 − � 𝑘

𝑘 +min 𝑘, 𝑑𝒞min − 1
�

is achievable.

We remark that because every set of 𝑘 coordinates of an [𝑛, 𝑘] MDS code is
an information set, we can construct 𝑛 information sets by cyclically shifting an
arbitrary information set 𝑛 times, hence an MDS-PIR capacity-achieving matrix
𝜦 , of an MDS code can be easily constructed. In other words, Protocol 1 with
MDS codes is MDS-PIR capacity-achieving (see Corollary 1) and MDS codes are a
class of MDS-PIR capacity-achieving codes.

112 P III

Remark 1. Since minimum storage regenerating (MSR) codes are MDS codes [35],
it follows that MSR codes are also MDS-PIR capacity-achieving codes.

In Section 7, we will give a necessary and a sufficient condition for an arbitrary
linear code to be MDS-PIR capacity-achieving under Protocol 1 and give certain
families of MDS-PIR capacity-achieving codes. For illustration purposes, in the
next subsection, we give an example of an MDS-PIR capacity-achieving code.

4.4 A [5, 3, 2]MDS-PIR Capacity-Achieving Code for 𝑓 = 2
In this subsection, we compute the PIR achievable rate of a [5, 3, 2] non-MDS
code for a DSS that stores two files, 𝑓 = 2, and show that it is MDS-PIR capacity-
achieving.

Let 𝒞 be a non-MDS [5, 3, 2] binary code with generator matrix

𝑮 =
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

. (III.15)

One can see that the 𝜈 × 𝑛 = 5 × 5matrix

𝜦 , = ⎛
⎜

⎝

1 1 1 0 0
1 0 0 1 1
0 1 0 1 1
0 1 1 1 0
1 0 1 0 1

⎞
⎟

⎠
is a PIR achievable rate matrix. From 𝜦 , , we obtain the following sets:

𝜒(𝝀) = {1, 2, 3}, 𝜒(𝝀) = {1, 4, 5}, 𝜒(𝝀) = {2, 4, 5},
𝜒(𝝀) = {2, 3, 4}, 𝜒(𝝀) = {1, 3, 5}.

All of these sets contain an information set of 𝒞 (see Definition 10). Furthermore,
we get the following PIR interference matrices

𝑨 × =
1 1 1 2 2
2 3 4 3 3
5 4 5 4 5

, 𝑩 × = 3 2 2 1 1
4 5 3 5 4 .

One can see that Claim 1 holds. For example, 𝒮(3|𝑨 ×) = {2, 4, 5} contains an
information set for 𝒞.

In the next step, for each 𝑚 ∈ ℕ and for 𝛽 = 𝜈 = 5 , we first generate the
interleaved code array 𝒀() with row vectors 𝒚() = 𝒄()

(), 𝑖 ∈ ℕ , by a randomly
selected permutation function 𝜋(⋅). Suppose that the user wishes to obtain 𝑿().
We list all downloaded sums of code symbols in ??, which is similar to [11, Ta-
ble II]. Similar to the PIR protocol in [11], Protocol 1 requires 𝑓 = 2 rounds in each
repetition, and the scheme needs to be repeated 𝜅 = 3 times. Note that since
the protocol requests an equal amount of code symbols associated with 𝑿() and
𝑿(), it is straightforward to see that the privacy constraint is satisfied.

4 Finite MDS-PIR Capacity-Achieving Protocol for the Noncolluding Case 113

Server 1 Server 2 Server 3 Server 4 Server 5

𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() ,

𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() ,

𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() ,

ro
un

d
1

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

re
pe
ti
ti
on

1

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ ,

rn
d.

2

𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ ,
𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() ,
𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() ,
𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() ,

ro
un

d
1

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

re
pe
ti
ti
on

2

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

𝑦()
⋅ , + 𝑦()

, 𝑦()
⋅ , + 𝑦()

, 𝑦()
⋅ , + 𝑦()

, 𝑦()
⋅ , + 𝑦()

, 𝑦()
⋅ , + 𝑦()

,

rn
d.

2

𝑦()
⋅ , + 𝑦()

, 𝑦()
⋅ , + 𝑦()

, 𝑦()
⋅ , + 𝑦()

, 𝑦()
⋅ , + 𝑦()

, 𝑦()
⋅ , + 𝑦()

,
𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() ,
𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() ,
𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() ,

ro
un

d
1

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

re
pe
ti
ti
on

3

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ ,

rn
d.

2

𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ ,

Table III.1: Protocol 1 with a [5, 3, 2] non-MDS code for 𝑓 = 2.

It should be mentioned that here we strongly make use of the PIR interfer-
ence matrices. For example, in round 2 of repetition 1 (see ??), since the user
knows 𝒞, the code symbols 𝑦()

⋅ , , 𝑦()
⋅ , , and 𝑦()

⋅ , can be obtained by know-
ing {𝑦()

⋅ , , 𝑦()
⋅ , , 𝑦()

⋅ , } and {𝑦()
⋅ , , 𝑦()

⋅ , , 𝑦()
⋅ , }, from which the corre-

sponding coded symbols {𝑦()
⋅ , , 𝑦()

⋅ , , 𝑦()
⋅ , } can be obtained by cancelling

the side information. Since {1, 2, 3} is an information set, the corresponding re-
quested file vector of length 𝑘 can also be decoded. Hence, in summary, it is
sufficient to reliably decode 5 = 25 different length-𝑘 requested file vectors for
𝑚 = 1. In summary, for 𝑓 = 2, the user downloads 3 × 5 undesired symbols
based on (III.9) and (3 + 2) × 5 = 25 desired symbols according to (III.10) and
(III.11) in each repetition. Hence, the PIR achievable rate is equal to

R = 3 ⋅ 25
3 ⋅ (25 + 15) =

5
8 = 1−

1− � �
,

which corresponds to the finite MDS-PIR capacity in (III.7) with 𝑓 = 2, i.e., the
[5, 3, 2] non-MDS code given by (III.15) is MDS-PIR capacity-achieving.

114 P III

5 Asympto c MDS-PIR Capacity-Achieving Protocol for the
Noncolluding Case

In this section, we present Protocol 2, a file-independent PIR protocol that
achieves the asymptotic MDS-PIR capacity in (III.8) for the case of noncollud-
ing nodes. We assume that the DSS uses an [𝑛, 𝑘] code 𝒞 over GF(𝑞) of rate 𝑅𝒞
and subpacketization 𝛼. For such a code 𝒞, the user designs the 𝑙-th, 𝑙 ∈ ℕ ,
query as

𝑸() = 𝑼 + 𝑽(), (III.16)

where𝑼 = (𝑢 ,) is a 𝑑×𝛽𝑓matrix whose elements 𝑢 , are chosen independently
and uniformly at random from GF(𝑞) and whose purpose is to make 𝑸() appear
random and thus ensure privacy. 𝑽() = �𝑣(), � is a 𝑑 × 𝛽𝑓 deterministic binary
matrix over GF(𝑞), where 𝑣(), = 1means that the 𝑗-th symbol in node 𝑙 is accessed
by the 𝑖-th subquery of𝑸(), that allows recovery of the requested data by the user.
Matrix 𝑽() is constructed from a 𝑑 × 𝑛 matrix �̂�, as explained below.

Let ℐ , … , ℐ be 𝛽 information sets for 𝒞 (which are implicitly linked to the 𝛽
stripes of each file) and define ℱ ≜ {𝑖 ∈ ℕ ∶ 𝑙 ∈ ℐ } to be the set of indices of the
information sets ℐ , … , ℐ containing the 𝑙-th coordinate of 𝒞. Then �̂� = (�̂� ,) is
a binary matrix of size 𝑑 × 𝑛 that has the following structure.

C1. Each row, denoted by �̂� , 𝑖 ∈ ℕ , has Hamming weight 𝑤H (�̂�) = Γ.

C2. Each row �̂� is an erasure pattern that is correctable by 𝒞.

C3. Each column, denoted by 𝒕 , 𝑙 ∈ ℕ , has weight 𝑤H (𝒕) = |ℱ |, i.e., the
weight of the 𝑙-th column of �̂� is the number of times the 𝑙-th coordinate of
the storage code 𝒞 appears in the 𝛽 information sets ℐ , … , ℐ .

For later use, we call the vector (𝑤H (𝒕) , … ,𝑤H (𝒕)) the column weight profile of
�̂�.

Matrix𝑽() is constructed from �̂� such that if �̂� , = 1, then the 𝑖-th subquery of
the 𝑙-th query, 𝒒(), accesses a code symbol stored in the 𝑙-th node. Additionally, �̂�
is a matrix having strictly Γ𝑑 nonzero entries, ensuring that Γ𝑑 code symbols are
downloaded by the protocol. We defer the intuition behind the three conditions
above until later in this section. More precisely, matrix 𝑽() is constructed from �̂�
as follows. For 𝑙 ∈ ℕ , 𝑽() has the form

𝑽() = 𝟎 ×() ∣ 𝜟 ∣ 𝟎 ×() ,

where 𝜟 is the 𝑑 × 𝛽 binary matrix

𝜟 = 𝝎 () | 𝝎 () | … | 𝝎 () , (III.17)

with𝝎 , 𝑖 ∈ ℕ , being the 𝑖-th 𝛽-dimensional unit vector, i.e., a length-𝛽 weight-
1 binary vector with a single 1 at the 𝑖-th position and 𝝎 = 𝟎 × . Also, given a

5 Asymptotic MDS-PIR Capacity-Achieving Protocol 115

chosen 𝑑 × 𝑛 matrix �̂�,

𝑗() = 𝑠() if �̂� , = 1,
0 otherwise,

� (III.18)

where 𝑠() ∈ ℱ and 𝑠() ≠ 𝑠() for 𝑖 ≠ 𝑖 , 𝑖, 𝑖 ∈ ℕ . This completes the construction
of the protocol.

Now, we provide the intuition behind conditions C1, C2, and C3 above.

• Condition C1 stems from the fact that the user should be able to recover Γ
unique code symbols of the requested file 𝑿() from the 𝑖-th subqueries 𝒒()
that are sent to the 𝑛 nodes. Thus, each row of �̂� should have exactly Γ ones.

• For C2, consider an arbitrary row �̂� of �̂�. The corresponding set of 𝑛 sub-
queries {𝒒(), … , 𝒒()} trigger a response from the 𝑛 nodes of the form

𝑟 , =
𝑌 + 𝜙 if �̂� , = 1,
𝑌 otherwise,

�

where 𝜙 represents an arbitrary code symbol present in the 𝑙-th node, and
𝑌 is some interference symbol generated due to the product between 𝒒()
and the content of the 𝑙-th node. The vector (𝑌 ,… , 𝑌) represents a code-
word of 𝒞 (see also Theorem 2 below and its proof in Appendix D for further
details). In order to recover 𝜙 , 𝑙 ∈ 𝜒(�̂�), we need to know 𝑌 . This can be
seen as a decoding problem over the binary erasure channel. In other words,
the 𝑖-th row of �̂� should correspond to an erasure pattern that is correctable
by 𝒞.

• ConditionC3 comes from the fact that the protocol should be able to recover
𝑤H (𝒕) unique code symbols from the 𝑙-th node.

We remark that for a code 𝒞, �̂� and {ℐ } ∈ℕ need not be unique. Furthermore,
each set ℐ , 𝑖 ∈ ℕ , can alternatively be represented as a correctable erasure pat-
tern �̄� = (�̄� , , … , �̄� ,), where �̄� , = 0, ∀ 𝑙 ∈ ℐ . Also, the information sets {ℐ } ∈ℕ
can alternatively be defined by a matrix �̄� of size 𝛽 × 𝑛 as

�̄� =
�̄�
⋮
�̄�

.

The two matrices �̂� and �̄� can be stacked into the matrix 𝑬 = (𝑒 ,) as

𝑬 = �̂�
�̄� . (III.19)

To meet the conditions above, the only requirement is that for each 𝑙 ∈ ℕ ,
𝑤H (𝒕) = 𝛽 − 𝑤H (𝒘), where 𝒕 and 𝒘 are columns of �̂� and �̄�, respectively.
This is equivalent to finding a (𝛽 + 𝑑) × 𝑛 𝛽-column regular matrix 𝑬 in which

116 P III

each row is a correctable erasure pattern. Hence, we conclude that the require-
ments for 𝑬 are equivalent to finding a PIR achievable rate matrix

𝜦 , (𝒞) = 𝟏()× − 𝑬()× . (III.20)

In the following lemma, we prove that our construction of the queries ensures
that the privacy condition (III.5a) is satisfied.

Lemma4. Consider aDSS that uses an [𝑛, 𝑘] codewith subpacketization𝛼 to store
𝑓 files, each divided into 𝛽 stripes. Then, the queries 𝑸(), 𝑙 ∈ ℕ , designed as in
(III.16) satisfy H �𝑚|𝑸() � = H(𝑚), where 𝑙 ∈ ℕ represents the spy node.

Proof. The queries 𝑸(), 𝑙 ∈ ℕ , are a sum of a random matrix 𝑼 and a determin-
istic matrix 𝑽(). The resulting queries have elements that are independently and
uniformly distributed at random from GF(𝑞). Hence, any𝑸() obtained by the spy
node is statistically independent of 𝑚. This ensures that H �𝑚|𝑸() � = H(𝑚).

The following theorem shows that Protocol 2 achieves perfect information-
theoretic PIR, and it gives its achievable PIR rate, R(𝒞). Note that to prove perfect
information-theoretic PIR it remains to be shown that from the responses 𝒓 in
(III.4) sent by the nodes back to the user, one can recover the requested file, i.e.,
that the constructed PIR protocol satisfies the recovery condition in (III.5b).

Theorem 2. Consider a DSS that uses an [𝑛, 𝑘] code with subpacketization 𝛼 to
store 𝑓 files, each divided into 𝛽 stripes. If there exists a Γ-regular matrix 𝑬 satis-
fying conditions C1, C2, and C3, then H �𝑿()|𝒓 , … , 𝒓 � = 0 and the PIR rate

R(𝒞) = Γ
𝑛 ≤ 𝑛 − 𝑘

𝑛
is achievable.

Proof. See Appendix D.

Theorem 2 generalizes [12, Th. 1] to any linear code.

Corollary 3. If for an [𝑛, 𝑘] code 𝒞 there exists an (𝑛 − 𝑘)-regular matrix 𝑬 satis-
fying conditions C1, C2, and C3, then Protocol 2 achieves the asymptotic MDS-PIR
capacity C in (III.8).

Remark 2. From (III.20), if there exists an (𝑛−𝑘)-regular matrix𝑬 satisfying con-
ditionsC1,C2, andC3, a𝜦 , MDS-PIR capacity-achievingmatrixwith = exists.
Thus, if a code achieves the asymptotic MDS-PIR capacity C with Protocol 2, it
also achieves the finite MDS-PIR capacity C with Protocol 1.

Note that parameters Γ, 𝛽, and 𝑑 (which are not explicitly mentioned in the
theorem) have to be carefully selected such that a Γ-row regular matrix �̂� (sat-
isfying condition C3) actually exists with a valid collection of information sets
{ℐ } ∈ℕ . In the following corollary, we provide a valid set of values.

5 Asymptotic MDS-PIR Capacity-Achieving Protocol 117

Corollary 4. Let 𝒞 be an [𝑛, 𝑘, 𝑑𝒞min] code. For Γ = min 𝑘, 𝑑𝒞min − 1 , it holds that

H �𝑿()|𝒓 , … , 𝒓 � = 0, (III.21)

and the PIR rate R(𝒞) = , 𝒞
min is achievable.

Proof. Let 𝑑 = 𝑘 and 𝛽 = Γ. Then, (III.21) follows directly from Theorem 2, since
we have shown in Lemma 3 that the required matrix 𝜦 , (𝒞) exists for 𝒞, and
the existence of 𝑬()× follows from (III.20).

The above corollary provides a lower bound on the value of Γ for any code. In
other words, it allows us to design a PIR protocol with PIR rate greater than or
equal to , 𝒞

min . We remark that with a better designed �̂�, it may be possible
to achieve a higher PIR rate. For systematic codes with rate 𝑅𝒞 > 1/2, a better
lower bound on themaximumachievable PIR rate compared to that of Corollary 4
is given below.

Corollary 5. Let𝒞 be an [𝑛, 𝑘] systematic codewith𝑅𝒞 > 1/2 and𝑯𝒞 = (𝑷 ∣ 𝑰).
Consider the [𝑛 = 𝑘, 𝑘] code𝒞 with parity-checkmatrix𝑯𝒞 = 𝑷. For Γ = 𝑑𝒞min−1,
it holds that

H �𝑿()|𝒓 , … , 𝒓 � = 0, (III.22)

and the PIR rate R(𝒞) = 𝒞
min is achievable.

Proof. As for the proof of Corollary 4, let 𝑑 = 𝑘 and 𝛽 = Γ. Then, (III.22) follows
directly from Theorem 2. Select 𝑘 erasure patterns 𝒆 , 𝑖 ∈ ℕ , of length 𝑘 and
𝑤H 𝒆 = 𝑑𝒞min − 1. The patterns are all correctable by the code 𝒞 . Thus, the
erasure patterns

𝒆 = (𝒆 , 0,⋯ , 0)

are also correctable by 𝒞. Choosing the information sets ℐ = ℕ , 𝑖 ∈ ℕ , the
required Γ-regular matrix 𝑬()× can then be constructed from {𝒆 } ∈ℕ and
{ℐ } ∈ℕ .

Observe that 𝑅𝒞 > implies 𝑘 > 𝑑𝒞min − 1. In [25], under the assumption that
𝑘 > 𝑑𝒞min − 1, a PIR protocol achieving a PIR rate of

𝒞
min was given. Note that

𝑑𝒞min ≤ 𝑑𝒞min, and thus R(𝒞) ≥ 𝒞
min for our construction.

Below we give two examples to elucidate Protocol 2. Example 4 illustrates the
PIR protocol when the underlying code has rate 𝑅𝒞 > 1/2, with parameters 𝑑 = 𝑘
and 𝛽 = Γ. On the other hand, Example 5 uses an underlying code that has rate
𝑅𝒞 < 1/2, again with parameters 𝑑 = 𝑘 and 𝛽 = Γ.
Example 4. Consider a DSS that uses the [5, 3, 2] scalar (𝛼 = 1) binary code 𝒞 in
Section 4.4 (with generator matrix given in (III.15)) to store a single file by dividing
it into 𝛽 stripes. Its parity-check matrix is given by

𝑯𝒞 = (𝑷|𝑰) = 1 1 0 1 0
0 1 1 0 1 .

118 P III

To determine the value of the parameter 𝛽, we compute the minimum Hamming
distance 𝑑𝒞min of the [𝑛 = 3, 𝑘 = 1] code 𝒞 with parity-check matrix 𝑯𝒞 = 𝑷.
From 𝑯𝒞 it follows that 𝑑𝒞min = 3. Hence, from Corollary 5, 𝛽 = 2. Let the file to
be stored be denoted by the 2 × 3 matrix 𝑿 = (𝑥 ,), where the message symbols
𝑥 , ∈ GF(2ℓ) for ℓ ∈ ℕ. Then,

𝑪 = 𝑥 , 𝑥 , 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 ,
𝑥 , 𝑥 , 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 ,

.

The user wants to download the file 𝑿 from the DSS and sends a query 𝑸(), 𝑙 ∈ ℕ ,
to the 𝑙-th storage node. The queries take the form shown in (III.16). For 𝑙 ∈ ℕ , we
construct the matrix 𝑽() = 𝜟 by choosing an appropriate matrix �̂�. To do this, we
carefully choose the information sets ℐ = {1, 2, 3} and ℐ = {1, 2, 3} (and hence
𝑽() = 𝑽() = 𝟎 ×). This allows us to generate a column weight profile in �̂�. More
specifically, let 𝒕 be the 𝑙-th column of �̂�, 𝑙 ∈ ℕ . We have 𝑤H (𝒕) = 𝑤H (𝒕) =
𝑤H (𝒕) = 2 and 𝑤H (𝒕) = 𝑤H (𝒕) = 0. A valid matrix �̂� is

�̂� =
1 0 1 0 0
1 1 0 0 0
0 1 1 0 0

and we construct 𝜟 according to (III.17). Focusing on the first column of �̂�, we
can see that the first two rows have a one in the first position. Thus, we choose
𝑗() = 𝑠(), 𝑗() = 𝑠(), and 𝑗() = 0, since �̂� , = 1, �̂� , = 1, and �̂� , = 0. We take
𝑠(), 𝑠() ∈ ℕ . We arbitrarily choose 𝑠() = 1 and 𝑠() = 2 to get

𝜟 =
𝝎
𝝎
𝝎

=
1 0
0 1
0 0

.

Similarly, we construct

𝜟 =
0 0
1 0
0 1

and 𝜟 =
0 1
0 0
1 0

.

The queries 𝑸() are sent to the respective nodes and the responses

𝒓 =
, , , , ,
, , , , ,

, , , ,
=

,
, ,

𝒓 =
, , , ,

, , , , ,
, , , , ,

= ,
,

,

𝒓 =
, , , , ,

, , , ,
, , , , ,

=
,

,
,

5 Asymptotic MDS-PIR Capacity-Achieving Protocol 119

𝒓 = , ,
, ,
, ,

, ,
, , = ,

𝒓 = , ,
, ,
, ,

, ,
, , = ,

where 𝐼 = ∑ 𝑢 , 𝑥 , and 𝑖 = 3(ℎ−1)+ℎ , with ℎ, ℎ ∈ ℕ , are collected by the
user. Notice that each storage node sends back 𝑘 = 3 symbols. The user obtains
the requested file as follows. Knowing 𝐼 , the user obtains 𝐼 and 𝐼 from the first
components of 𝒓 and 𝒓 . This allows the user to obtain 𝑥 , and 𝑥 , . In a similar
fashion, knowing 𝐼 the user gets 𝐼 from the second component of 𝒓 , then uses this
to obtain 𝐼 from the second component of 𝒓 . This allows the user to obtain 𝑥 ,
and 𝑥 , . Similarly, knowing 𝐼 allows the user to get 𝐼 from the third component of
𝒓 . Knowing 𝐼 allows the user to obtain 𝐼 from the third component of 𝒓 , which
then allows to recover the symbols 𝑥 , and 𝑥 , . In this way, the user recovers all
symbols of the file and hence recovers 𝑿. Note that R = ⋅

⋅ = , which is equal to
the asymptotic MDS-PIR capacity C in (III.8).

Example 5. Consider a DSS consisting of 𝑛 = 7 storage nodes that store a single
file 𝑿. The DSS uses a [7, 3, 4] scalar binary code 𝒞. The parity-check matrix of the
code is

𝑯𝒞 =
0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

.

We take 𝛽 = Γ = 𝑛−𝑘 = 4. File𝑿 is of size 𝛽×𝑘 and hence consists of 𝛽𝑘 symbols
in GF(2ℓ). Accordingly, the code array is

𝑪 =
𝑥 , 𝑥 , 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , + 𝑥 ,
𝑥 , 𝑥 , 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , + 𝑥 ,
𝑥 , 𝑥 , 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , + 𝑥 ,
𝑥 , 𝑥 , 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , 𝑥 , + 𝑥 , + 𝑥 ,

.

The queries sent to each node, each consisting of 𝑑 = 𝑘 = 3 subqueries take the
form in (III.16). The aim of each subquery is to recover Γ code symbols using the
PIR protocol. In order to do so, we construct the information sets {ℐ } ∈ℕ . With
careful consideration, we choose ℐ = {3, 4, 6}, ℐ = {2, 6, 7}, ℐ = {1, 3, 4}, and
ℐ = {1, 5, 6}. The column weight profile of �̂� is (2, 1, 2, 2, 1, 3, 1). A valid matrix �̂�
is

�̂� =
0 0 1 1 1 1 0
1 1 0 1 0 1 0
1 0 1 0 0 1 1

.

120 P III

Note that each erasure pattern in �̂� (each row) is correctable by the code 𝒞. As in
Example 4, we map the columns of �̂� and {ℐ } ∈ℕ to the matrix 𝑽() and obtain

𝜟 =
0 0 0 0
0 0 1 0
0 0 0 1

, 𝜟 =
0 0 0 0
0 1 0 0
0 0 0 0

,

𝜟 =
1 0 0 0
0 0 0 0
0 0 1 0

, 𝜟 =
1 0 0 0
0 0 1 0
0 0 0 0

,

𝜟 =
0 0 0 1
0 0 0 0
0 0 0 0

, 𝜟 =
1 0 0 0
0 1 0 0
0 0 0 1

, 𝜟 =
0 0 0 0
0 0 0 0
0 1 0 0

.

As an example, we next show the reconstruction of symbols from the first pair of
subqueries and subresponses. We have

𝑟 , = 𝐼 , 𝑟 , = 𝐼 , 𝑟 , = 𝐼 + 𝑥 , ,
𝑟 , = 𝐼 + 𝐼 + 𝑥 , + 𝑥 , , 𝑟 , = 𝐼 + 𝐼 + 𝑥 , + 𝑥 , ,
𝑟 , = 𝐼 + 𝐼 + 𝑥 , + 𝑥 , , 𝑟 , = 𝐼 + 𝐼 + 𝐼 ,

where 𝑟 , denotes the first subresponse from the 𝑙-th node, 𝐼 = ∑ 𝑢 , 𝑥 , and
𝑖 = 3(ℎ − 1) + ℎ , ℎ, ℎ ∈ ℕ . Clearly, the subresponses 𝑟 , , 𝑟 , , and 𝑟 , allow the
user to obtain the three interference symbols 𝐼 , 𝐼 , and 𝐼 . This is solely because the
first row of �̂� (pertaining to the first subqueries) is an erasure pattern correctable by
𝒞. Having this knowledge, the user obtains the symbols 𝑥 , , 𝑥 , +𝑥 , , 𝑥 , +𝑥 , ,
and 𝑥 , + 𝑥 , from the remaining subresponses. From the obtained code symbols
the user can decode 𝑥 , , 𝑥 , , and 𝑥 , , hence obtaining the message symbols in
the first row of 𝑪. The code symbol 𝑥 , + 𝑥 , is used to decode 𝑥 , , 𝑥 , , and 𝑥 ,
from the code symbols that are further obtained from the third subresponse. In the
same way, the remaining two subresponses allow the recovery of 𝛽𝑘 = 12message
symbols.

The PIR rate is R= ⋅
⋅ = , which is equal to the asymptotic MDS-PIR capacity

C in (III.8).

6 MDS-PIR Capacity-Achieving Codes

For given values of 𝑛 and 𝑘, whether an [𝑛, 𝑘] code is MDS-PIR capacity-achieving
or not is of great interest. In this section, we provide a necessary condition for
an arbitrary linear code to achieve the MDS-PIR capacities C and C . Further-
more, we prove that certain important families of codes, namely cyclic codes,
RM codes, and a class of distance-optimal reconstruction codes are MDS-PIR
capacity-achieving. For Protocol 2, the MDS-PIR capacity-achieving proofs for
these classes of codes assume 𝛽 = 𝑛 − 𝑘 and 𝑑 = 𝑘, which are not necessary the
minimum values given in (III.6). However, in the numerical results section (see
Tables III.2 and III.3) we show examples for which Protocol 2 also achieves the
MDS-PIR capacity for 𝛽 and 𝑑 in (III.6).

6 MDS-PIR Capacity-Achieving Codes 121

As shown in the previous sections, the only requirement for a code𝒞 to achieve
capacity is that there exists an MDS-PIR capacity-achieving matrix 𝜦 , (𝒞) (or a
(Γ = 𝑛 − 𝑘)-regular matrix 𝑬 of size (𝛽 + 𝑑) × 𝑛). In other words, the code 𝒞
should be able to correct 𝛽 + 𝑑 erasure patterns of 𝑛 − 𝑘 erasures that satisfy the
regularity condition of 𝑬.

Let us first consider a fact for any information set of an [𝑛, 𝑘] code.
Proposition 4 ([34, Th. 1.6.2]). If ℐ is an information set of an [𝑛, 𝑘] code 𝒞, then
ℕ ⧵ ℐ is an information set for its [𝑛, 𝑛 − 𝑘] dual code 𝒞 .

Based on Proposition 4, the subsequent result follows.

Corollary 6. The dual of an [𝑛, 𝑘]MDS-PIR capacity-achieving code is an [𝑛, 𝑛−𝑘]
MDS-PIR capacity-achieving code.

To check the MDS-PIR capacity-achievability of a linear code, sometimes it
might be easier to verify the MDS-PIR capacity-achieving condition for its dual
code.

Next, we derive a useful result that gives the relation between an information
set and a subcode of dimension 𝑠.
Lemma 5. Given an [𝑛, 𝑘] code 𝒞, for any information set ℐ and an 𝑠-dimensional
subcode 𝒟 ⊆ 𝒞, we have

�ℐ ∩ 𝜒(𝒟) � ≥ 𝑠.

Proof. See Appendix E.

Now, we are able to provide a necessary condition for a code to achieve the
MDS-PIR capacity.

Theorem 3. If an MDS-PIR capacity-achieving matrix exists for an [𝑛, 𝑘] code 𝒞,
then

𝑑𝒞 ≥ 𝑛
𝑘𝑠, ∀ 𝑠 ∈ ℕ . (III.23)

Proof. By definition there exists a PIR achievable rate matrix 𝜦 , (𝒞) with = .
This means that there exist information sets ℐ , 𝑖 ∈ ℕ , such that in {ℐ } ∈ℕ each
coordinate 𝑗 of 𝒞, 𝑗 ∈ ℕ , appears exactly 𝜅 times. Let 𝒟 be any subcode of
dimension 𝑠 of the [𝑛, 𝑘] code 𝒞. This implies that

𝜅 𝜒(𝒟) = �ℐ ∩ 𝜒(𝒟) � ()
≥ 𝜈𝑠,

where (𝑎) follows from Lemma 5. Based on the definition of 𝑑𝒞, 𝑠 ∈ ℕ , there
exists a rank-𝑠 subcode 𝒟∗ that achieves 𝑑𝒞. We then have

𝑑𝒞 ≥ 𝜈
𝜅𝑠 =

𝑛
𝑘𝑠, ∀ 𝑠 ∈ ℕ .

122 P III

Based on the necessary condition, it can be shown that the code𝒞 in Example 2
is not MDS-PIR capacity-achieving with Protocol 1, since 𝑑𝒞 = 3 < ⋅ 2, i.e., it is
impossible to find an MDS-PIR capacity-achieving matrix 𝜦 , for this code.

We would like to emphasize that it seems that the necessary condition for
MDS-PIR capacity-achieving matrices in Theorem 3 is also a sufficient condition.
We have performed an exhaustive search for codes with parameters 𝑘 ∈ ℕ and
𝑛 ∈ ℕ (except for [𝑛, 𝑘] = [10, 5] and [𝑛, 𝑘] = [11, 4 ≤ 𝑘 ≤ 7]) and seen that
for codes that satisfy the necessary condition, there always exists an MDS-PIR
capacity-achieving matrix. Therefore, we conjecture that (III.23) in Theorem 3
is an if and only if condition for the existence of an MDS-PIR capacity-achieving
matrix.

Conjecture 1. An MDS-PIR capacity-achieving matrix 𝜦 , (𝒞) with = exists
for an [𝑛, 𝑘] code 𝒞 if and only if

𝑑𝒞 ≥ 𝑛
𝑘𝑠, ∀ 𝑠 ∈ ℕ .

In the following, we provide a sufficient condition for MDS-PIR capacity-
achieving codes by using the code automorphisms of an [𝑛, 𝑘] code[27, Ch. 8].

Theorem 4. Given an [𝑛, 𝑘] code 𝒞, if there exist 𝑛 distinct automorphisms
𝜋 ,… , 𝜋 of 𝒞 such that for every code coordinate 𝑗 ∈ ℕ , {𝜋 (𝑗), … , 𝜋 (𝑗)} = ℕ ,
then the code 𝒞 is an MDS-PIR capacity-achieving code.

Proof. Since any [𝑛, 𝑘] code 𝒞 contains at least one information set ℐ, the auto-
morphisms {𝜋 } ∈ℕ guarantee that

ℐ ≜ {𝜋 (𝑗)∶ 𝑗 ∈ ℐ}, 𝑖 ∈ ℕ ,

are all information sets of 𝒞. By assumption, for a given 𝑗 ∈ ℐ, we have
{𝜋 (𝑗), … , 𝜋 (𝑗)} = ℕ . Since there are in total 𝑘 coordinates in ℐ, every co-
ordinate appears exactly 𝑘 times in {ℐ } ∈ℕ , and hence an MDS-PIR capacity-
achieving matrix 𝜦 , (𝒞) satisfying Definition 13 exists.

Using their known code automorphisms and Theorem 4, it is easy to prove
that the families of cyclic codes and RM codes achieve the MDS-PIR capacity.

6.1 Cyclic Codes

Corollary 7. Cyclic codes are MDS-PIR capacity-achieving codes.

Proof. The result follows from the fact that for an [𝑛, 𝑘] cyclic code 𝒞 any set of
𝑘 consecutive coordinates forms an information set. Hence, there exist 𝑛 valid
distinct automorphisms of 𝒞 satisfying Theorem 4.

6.2 Reed-Muller Codes

Corollary 8. RM codes are MDS-PIR capacity-achieving codes.

6 MDS-PIR Capacity-Achieving Codes 123

Proof. Consider an arbitrary RM codeℛ(𝑣,𝑚)with 𝑣 ∈ {0}∪ℕ for some𝑚 ∈ ℕ.
We will show that there exists a PIR achievable rate matrix 𝜦 , for ℛ(𝑣,𝑚) for
(𝜅, 𝜈) = (𝑘, 𝑛). Let us consider the automorphisms 𝑔(𝝁) ≜ 𝝁+𝝈 for all 2 -tuples
of 𝝈 ∈ GF(2) × , and order them as 𝑔 ,… , 𝑔 , 𝑛 = 2 (see Section 2.1). Since any
[𝑛, 𝑘] RM code contains at least one information set ℐ, Proposition 2 guarantees
that

ℐ ≜ {𝑔 (𝝁)∶ 𝝁 ∈ ℐ}, 𝑖 ∈ ℕ ,
are all information sets for the RM code. This implies that for a given 𝝁 ∈ ℐ,
among {ℐ } ∈ℕ , the set

{𝝁 + 𝝈 , 𝝁 + 𝝈 ,… , 𝝁 + 𝝈 }
forms the vector space GF(2) × . There are in total 𝑘 coordinates 𝝁 of ℐ, hence
every𝑚-tuple represented coordinate appears exactly 𝑘 times, and we are able to
find 𝑛 distinct automorphisms satisfying Theorem 4.

We remark here that because of the property of invertible and affine automor-
phisms for binary RM codes, it is not too hard to see that the MDS-PIR capacity-
achievability of RM codes can be extended to nonbinary generalized RM codes
[36]. The detailed discussion is omitted. Furthermore, note that in the inde-
pendent work [28] it was also shown that RM codes can achieve the asymptotic
MDS-PIR capacity, albeit with a protocol that requires a much larger 𝛽 and 𝑑.

Besides cyclic codes and RM codes, there exist other families of codes satisfy-
ing Theorem 4, for instance, the class of low-density parity-check (LDPC) codes
constructed from array codes [37, 38]. We further emphasize that the proof of
Theorem 4 indicates that the automorphisms of an [𝑛, 𝑘] code are very important
to design an MDS-PIR capacity-achieving matrix.

6.3 Local Reconstruc on Codes

In this subsection, we prove that a certain family of LRCs achieve the MDS-PIR
capacity by directly showing the existence of (𝑛 − 𝑘)-regular 𝑛 × 𝑛 matrix 𝑬.

Consider an [𝑛, 𝑘] distance-optimal (𝑟, 𝛿) information locality code (see Def-
inition 7) for which the (𝑛 − 𝑘) × 𝑛 matrix

𝑷 𝑷 ⋯ 𝑷
c 𝑰𝑴 𝑴 ⋯ 𝑴
c

≜ 𝑯MDS (III.24)

is the parity-check matrix of an [𝑛 , 𝑘] MDS code over GF(𝑞), where 𝑛 = 𝑛 −
(𝐿c−1)(𝛿 −1).4 For such a class of codes, we give an explicit construction of the
matrix 𝑬 in order to design the PIR protocol.

Recall that 𝐿 = �
c

�, 𝑛c = 𝑟 + 𝛿 − 1, and let �̄� ≜ 𝑛 mod 𝑛c. We consider

𝑬 =
𝑬 , 𝑬 , … 𝑬 ,
⋮ ⋮ ⋮ ⋮

𝑬 , 𝑬 , … 𝑬 ,

4Examples of codes that satisfy (III.24) are Pyramid codes, the LRCs in [21], and codes from the parity-
splitting construction of [22].

124 P III

having (𝐿 + 1) submatrices 𝑬 , , 𝑙, ℎ ∈ ℕ . For any 𝑙, ℎ ∈ ℕ , the submatrices
𝑬 , have dimensions 𝑛c×𝑛c, 𝑬 , has dimensions 𝑛c× �̄�, 𝑬 , has dimensions
�̄� × 𝑛c, and 𝑬 , has dimensions �̄� × �̄�. We denote by 𝒆(), 𝑙 ∈ ℕ , the 𝑖-th
row of �𝑬 , | … |𝑬 , �. The coordinates of 𝒆() represent the coordinates of the
code 𝒞 defined by its parity-check matrix in (III.2). Furthermore, each row vector
is subdivided into 𝐿 + 1 subvectors 𝒆(), , 𝑗 ∈ ℕ , as

𝒆() = (𝑒(), , … , 𝑒(),) = (𝒆(), , … , 𝒆(), , 𝒆
()
,).

The subvectors 𝒆(), , … , 𝒆(), are of length 𝑛c, while 𝒆(), is of length �̄�. Correspond-
ingly, we can think about 𝑬 as partitioned into 𝐿+1 column partitions, where the
first 𝐿c partitions correspond to the 𝐿c local codes and the remaining 𝐿 + 1 − 𝐿c
partitions correspond to global parities (see also (III.3)). We can write 𝑬 as

𝑬 ≜

⎛
⎜
⎜
⎜
⎜
⎜

⎝

𝒆()

⋮
𝒆()

c

⋮
𝒆()

c

𝒆()

⋮
𝒆()

̄

⎞
⎟
⎟
⎟
⎟
⎟

⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝒆()
, 𝒆()

, ⋯ 𝒆()
, 𝒆()

,
⋮ ⋮ ⋯ ⋮ ⋮

𝒆()
c, 𝒆()

c, ⋯ 𝒆()
c, 𝒆()

c,
⋮ ⋮ ⋯ ⋮ ⋮

𝒆()
c, 𝒆()

c, ⋯ 𝒆()
c, 𝒆()

c,

𝒆()
, 𝒆()

, ⋯ 𝒆()
, 𝒆()

,
⋮ ⋮ ⋯ ⋮ ⋮

𝒆()
̄ , 𝒆()

̄ , ⋯ 𝒆()
̄ , 𝒆()

̄ ,

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

We refer to the set of rows 𝒆(), … , 𝒆()
c
as the 𝑙-th row partition of 𝑬.

For convenience, we divide 𝑬 into four submatrices �̃�,𝑾, 𝒁, and 𝑶 defined as

�̃� ≜ ⎛
⎜

⎝

𝒆()
, 𝒆()

, ⋯ 𝒆()
,

𝒆()
, 𝒆()

, ⋯ 𝒆()
,

⋮ ⋮ ⋯ ⋮
𝒆()

c, 𝒆()
c, ⋯ 𝒆()

c,

⎞
⎟

⎠

,𝒁 ≜ ⎛
⎜

⎝

𝒆()
,

𝒆()
,
⋮

𝒆()
c,

⎞
⎟

⎠

,

𝑾≜
𝒆()

, 𝒆()
, ⋯ 𝒆()

,
⋮ ⋮ ⋯ ⋮

𝒆()
̄ , 𝒆()

̄ , ⋯ 𝒆()
̄ ,

, 𝑶 ≜
𝒆()

,
⋮

𝒆()
̄ ,

, (III.25)

where �̃� is an 𝑛c𝐿 × 𝑛c𝐿 matrix, having 𝐿 submatrices 𝑬 , , 𝑙, ℎ ∈ ℕ .
In the following, we give a systematic construction of 𝑬 such that it is (𝑛−𝑘)-

regular. The construction involves two steps.

a) Initialize matrices �̃�,𝑾, 𝒁, and 𝑶. Matrix 𝒁 is initialized to the all-zero
matrix of dimensions 𝑛c𝐿 × �̄�. Matrices 𝑾 and 𝑶 are initialized by setting
𝑒()
, = 1, 𝑖 ∈ ℕ ̄ , 𝑗 ∈ 𝒫 = ⋃ 𝒫 , where 𝒫 corresponds to the parity

coordinates of 𝒞 and the sets 𝒫 are defined in Section 2.2 (see (III.3)). Let
𝑚= � �,𝑚 = 𝑚+ 1, 𝜌 = ⋯ = 𝜌 = 𝑚 , and 𝜌 = ⋯ = 𝜌 = 𝑚, where

6 MDS-PIR Capacity-Achieving Codes 125

𝑡 = (𝑛 − 𝑘) mod 𝐿. Matrix �̃� is initialized with the structure

�̃� =
𝝅 𝝅 ⋯ 𝝅
𝝅 𝝅 ⋯ 𝝅
⋮ ⋮ ⋯ ⋮
𝝅 𝝅 ⋯ 𝝅

, (III.26)

where each matrix entry 𝝅 , 𝑙 ∈ ℕ , is a 𝜌 -regular square matrix of order 𝑛c.
Notice that due to the structure in (III.26), �̃� has row and column weight
equal to 𝑛 − 𝑘, and subsequently each row of 𝑬 has weight 𝑛 − 𝑘. Note also
that the columns of 𝑬 with coordinates in 𝒫 , 𝑗 ∈ ℕ , have column weight
𝑛 − 𝑘 + �̄�, while the columns with coordinates in 𝒫 have weight �̄�.

b) Swapping elements between �̃� and 𝒁. In the 𝑖-th row partition, we con-
sider a set of row coordinates ℛ() from which 𝑠() ∈ {0} ∪ ℕ ones from
columns of the 𝑗-th column partition with coordinates in 𝒫 , 𝑗 ∈ ℕ , are
swapped with zeroes in the corresponding rows of 𝒁. Furthermore, the
condition ∑ 𝑠() ≤ �̄� must be satisfied. For convenience, we define
𝒔() = (𝑠(), … , 𝑠()). The swapping of elements is performed iteratively with
�̄� iterations. We describe the procedure for iteration 𝑗 ∈ ℕ ̄ . For the first
row partititon, consider that 𝒔() with 𝑠() = 1 and 𝑠() = 0, ∀𝑧 ∈ ℕ \{𝑗},
for some 𝑗 ∈ ℕ , such that the resulting erasure patterns (see description
below) are correctable by 𝒞, exists. In other words, for all 𝑖 ∈ ℛ() and
𝑝 ∈ 𝒫 (where index 𝑗 is such that 𝑠() = 1) the one at coordinate (𝑖 , 𝑝) of �̃�
is swapped with a zero at coordinate (𝑖 , 𝑗) of 𝒁 (this corresponds to coor-
dinate (𝑖 , 𝑛c𝐿+𝑗) of 𝑬). Then, for the remaining row partitions 𝑖 = 2,… , 𝐿,
consider 𝒔() to be the (𝑖−1)-th right cyclic shift of 𝒔() and repeat the swap-
ping procedure for the first row partition, i.e., swap the one at coordinate
(𝑖 , 𝑝) with the zero at coordinate (𝑖 , 𝑗) for all 𝑖 ∈ ℛ() and 𝑝 ∈ 𝒫 . Note
that we have performed ∑ |𝑃 | = 𝑛 − 𝑘 − �̄� swaps from the columns of �̃�
with coordinates in the set ∪ 𝒫 to the 𝑗 -th column of 𝒁. Thus, each col-
umn in ∪ 𝒫 has column weight 𝑛−𝑘+�̄�−1 and the (𝑛c𝐿+𝑗)-th column
has column weight 𝑛 − 𝑘 − �̄� + �̄� = 𝑛 − 𝑘. Letting 𝑗 = 𝑗 + 1 and repeating
the above procedure �̄� times ensures 𝑬 to be (𝑛 − 𝑘)-regular.

This completes the construction of 𝑬, which has row and column weight 𝑛 − 𝑘.
In the following theorem, we show that each row of 𝑬 (considered as an erasure
pattern) can be corrected by any code from the class of distance-optimal (𝑟, 𝛿)
information locality codes whose parity-check matrices are as in (III.2) and are
compliant with (III.24). Thus, this class of codes is MDS-PIR capacity-achieving.

Theorem 5. An [𝑛, 𝑘] distance-optimal (𝑟, 𝛿) information locality code 𝒞 with
parity-check matrix as in (III.2) and satisfying (III.24) is an MDS-PIR capacity-
achieving code.

Proof. See Appendix F.

126 P III

In the following, we present an example to illustrate the construction of the
matrix 𝑬. The existence of such a matrix ensures that the PIR protocols pre-
sented in Sections 4 and 5 achieve the finite MDS-PIR capacity C in (III.7) and
the asymptotic MDS-PIR capacity C in (III.8), respectively.

Example 6. Consider an [𝑛 = 7, 𝑘 = 4] Pyramid code 𝒞 that is constructed from
an [𝑛 = 6, 4] RS code over GF(2) with parity-check matrices

𝑯𝒞 =
𝑧 1 1 0 0 0 0
0 0 0 𝑧 𝑧 1 0
𝑧 1 0 𝑧 𝑧 0 1

and

𝑯MDS = 𝑧 1 𝑧 𝑧 1 0
𝑧 1 𝑧 𝑧 0 1 ,

respectively, where 𝑧 denotes a primitive element of GF(2). It is easy to see that 𝒞
is a distance-optimal (𝑟 = 2, 𝛿 = 2) information locality code. We have 𝑛c = 3,
𝐿 = 2, and �̄� ≜ 𝑛 mod 𝑛c = 1. Since 𝜌 = 2 and 𝜌 = 1, we get

�̃� = 𝝅 𝝅
𝝅 𝝅 =

⎛
⎜
⎜

⎝

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

⎞
⎟
⎟

⎠

, 𝒁 =
⎛
⎜
⎜

⎝

0
0
0
0
0
0

⎞
⎟
⎟

⎠

,

where𝝅 is a 2-regular 3×3matrix and𝝅 is picked as the identity matrix. The set
of parity coordinates is 𝒫 = {3, 6, 7}, and we set 𝑒()

, = 𝑒()
, = 𝑒()

, = 1. As such,
we get

𝑾 = 0 0 1 0 0 1 and 𝑶 = 1 .

This completes Step a) of the construction above. Note that each row of 𝑬 has now
weight 3. The second step of the procedure (Step b)) is as follows. Consider the first
iteration, 𝑗 = 1. In the first row partition we choose 𝒔() = (𝑠() = 1, 𝑠() = 0).
Furthermore, 𝑠() + 𝑠() = �̄� = 1. Taking ℛ() = {2}, we do the swap between the
coordinates (𝑖 = 2, 𝑝 = 3 ∈ 𝒫) and (𝑖 , 𝑗). For the second row partition we have
𝒔() = (0, 1) which is a right cyclic shift of 𝒔(). Taking ℛ() = {6}, we do the swap
between the coordinates (𝑖 = 6, 𝑝 = 6 ∈ 𝒫) and (𝑖 , 𝑗). Thus, we have

𝑒()
, = 0, 𝑒()

, = 1,
𝑒()

, = 0, 𝑒()
, = 1.

7 Optimizing the PIR Rate for the Noncolluding Case 127

Algorithm 1: Optimizing the PIR rate
Input: Distributed storage code 𝒞 of length 𝑛
Output: Optimized matrix 𝑬opt and largest possible Γ

1 Γ ← min 𝑘, 𝑑𝒞min − 1
2 𝑬opt ← ∅, Γopt ← Γ
3 ℒ ← ComputeErasurePatternList(𝒞, 𝑛 − 𝑘)
4 while Γ ≤ 𝑛 − 𝑘 do
5 ℒ ← ComputeErasurePatternList(𝒞, Γ)
6 if ℒ ≠ ∅ then
7 𝑬 ← ComputeMatrix(ℒ , ℒ)
8 if 𝑬 ≠ ∅ then
9 𝑬opt ← 𝑬, Γopt ← Γ
10 else
11 return (𝑬opt, Γopt)
12 end
13 end
14 Γ ← Γ + 1
15 end
16 return (𝑬opt, Γopt)

Since �̄� = 1, this completes Step b), which results in

𝑬 =
⎛
⎜
⎜
⎜

⎝

1 1 0 1 0 0 0
0 1 0 0 1 0 1
1 0 1 0 0 1 0
1 0 0 1 1 0 0
0 1 0 0 1 1 0
0 0 1 1 0 0 1
0 0 1 0 0 1 1

⎞
⎟
⎟
⎟

⎠

.

The entries in red indicate the swapped values within each row. It can easily be
verified that each row of 𝑬 is an erasure pattern that is correctable by code 𝒞.

7 Op mizing the PIR Rate for the Noncolluding Case

For codes for whichwe are not able to prove that they achieve theMDS-PIR capac-
ity, in this section we provide an algorithm to optimize Protocols 1 and 2 in order
to achieve the highest possible PIR rate R for a given code by taking the structure
of the underlying code into consideration. The algorithm is given in Algorithm 1
and is based on Theorem 2. In particular, we need to find a (𝑑 + 𝛽) × 𝑛 matrix 𝑬
(III.19) in which �̂� consists of erasure patterns of weight Γ that are all correctable
by 𝒞, and in which �̄� corresponds to information sets of 𝒞 (the support of each
row is the complement of an information set). In addition, it is required that each
column weight of �̂� is equal to the corresponding column weight of 𝟏 − �̄� (see
Section 5). Note that from the resulting matrix 𝑬 we can find a PIR achievable
rate matrix by taking its binary complement as in (III.20) (see Section 5), thus
optimizing Protocols 1 and 2 in Sections 4 and 5, respectively.

128 P III

The main issues that need to be addressed are the efficient enumeration of
the set of erasure patterns of a given weight Γ (�̂�) and also of weight 𝑛 − 𝑘
(�̄�, corresponding to information sets) that can be corrected by 𝒞, and the ef-
ficient computation of the matrix 𝑬. These issues are addressed by the sub-
procedures ComputeErasurePatternList(𝒞, ⋅) and ComputeMatrix(ℒ , ℒ), in
Lines 3, 5 and 7 of Algorithm 1, and discussed below in Sections 7.1 and 7.2, re-
spectively. Here, ℒ and ℒ correspond to erasure patterns for �̂� and �̄�, re-
spectively. We remark that the algorithm will always return a valid 𝑬 ≠ ∅, since
initially Γ = min 𝑘, 𝑑𝒞min − 1 . This follows directly from the fact that we can
construct an arbitrary �̂� with row weights Γ such that its column weights match
the corresponding weights in 𝟏 − �̄�. Each row in �̂� is an erasure pattern that is
correctable by 𝒞.

Let 𝑑 = 𝑘 and 𝛽 = 𝑛 − 𝑘. In the particular case of 𝒞 being a rate 𝑅𝒞 > 1/2
systematic MDS code, 𝑑𝒞min = 𝑛 − 𝑘 + 1, and the algorithm will do exactly one
iteration of the main loop. This follows directly from the construction of 𝑬: the
matrix 𝑬 can be constructed by taking the support of an arbitrary information set
of 𝒞 and cyclically shifting it 𝑛 times to construct an 𝑛×𝑛 PIR achievable rate ma-
trix, after which the resulting matrix is complemented as (III.20) to get 𝑬. In this
case, the overall PIR scheme reduces to the one described in [12, Sec. IV] for sys-
tematic MDS codes of rate 𝑅𝒞 > 1/2. Clearly, for general MDS codes (including
nonsystematic codes) of rate 𝑅𝒞 > 1/2, the same construction of 𝑬 works, and
the algorithm will perform exactly one iteration of the main loop also for nonsys-
tematic MDS codes. In the case of 𝒞 being a rate 𝑅𝒞 ≤ 1/2 general MDS code,
the initial value of Γ becomes 𝑘 (since Γ = min 𝑘, 𝑑𝒞min − 1 = min(𝑘, 𝑛−𝑘) = 𝑘),
but the algorithm will also find a valid matrix 𝑬 for Γ = 𝑛 − 𝑘 ≥ 𝑘. Again, the
existence of 𝑬 follows from the same argument of cyclically shifting an existing
information set 𝑛 times. In the general case of 𝑑 ≠ 𝑘 and 𝛽 ≠ 𝑛 − 𝑘, a similar
argument to the one above can be made.

7.1 ComputeErasurePatternList()

Computing a list of erasure patterns that are correctable for a given short code
can be done using any maximum likelihood (ML) decoding algorithm. For small
codes, all length-𝑛 binary vectors of weight Γ (or 𝑛 − 𝑘) correspond to erasure
patterns that are correctable can be found by exhaustive search, while for longer
codes a random search can be performed, in the sense of picking length-𝑛 binary
vectors of weight Γ (or 𝑛 − 𝑘) at random, and then verifying whether the corre-
sponding erasure patterns are correctable or not. Alternatively, one can apply a
random permutation 𝜋 to the columns of 𝑯𝒞, apply the Gauss-Jordan algorithm
to the resulting matrix to transform it into row echelon form, collect a subset of
size Γ of the column indices of leading-one-columns,5 and finally apply the inverse
permutation 𝜋 to this subset of column indices. The resulting set corresponds
to erased coordinates in 𝒞 that can be recovered by the code. Finally, one can
check whether all cyclic shifts of the added erasure pattern are correctable or not

5The leading-one-columns are the columns containing a leading one, where the first nonzero entry in
each matrix row of a matrix in row echelon form is called a leading one.

8 Multiple Colluding Nodes 129

and add the correctable cyclic shifts to ℒ (or ℒ).

7.2 ComputeMatrix()

Given the lists ℒ and ℒ of erasure patterns of weight Γ and 𝑛−𝑘, respectively,
that are correctable for 𝒞, we construct a �|ℒ | + |ℒ | � × 𝑛 matrix, denoted by
𝜳 = (𝜓 ,), in which each row 𝑖 ∈ ℕ|ℒ | is one of the erasure patterns from ℒ
and each row 𝑖 ∈ ℕ|ℒ | ∶|ℒ | |ℒ | is one of the erasure patterns from ℒ . The
problem is now to find a 𝑑×𝑛 submatrix �̂� of the upper part of𝜳 (rows 1 to |ℒ |)
and a 𝛽 × 𝑛 submatrix �̄� of the lower part of 𝜳 (rows |ℒ | + 1 to |ℒ | + |ℒ |)
such that the column weight of each of the 𝑛 columns is the same for �̂� and the
binary complement of �̄�. This can be formulated as an integer program (in the
integer variables 𝜂 ,… , 𝜂|ℒ | |ℒ |) in the following way,

maximize
|ℒ | |ℒ |

𝜂

s. t.
|ℒ |

𝜂 𝜓 , =
|ℒ | |ℒ |

|ℒ |
𝜂 (1 − 𝜓 ,), ∀𝑗 ∈ ℕ ,

𝜂 ∈ {0, 1}, ∀𝑖 ∈ ℕ|ℒ | |ℒ |, (III.27)
|ℒ |

𝜂 = 𝑑, and
|ℒ | |ℒ |

|ℒ |
𝜂 = 𝛽.

A valid (𝑑+𝛽)×𝑛matrix𝑬 is constructed from the rows of𝜳with 𝜂 -values equal
to one in any feasible solution of (III.27). When |ℒ | + |ℒ | is large, solving
(III.27) may become impractical (solving a general integer program is known to
be NP-hard), in which case one can take several random subsets (of some size)
of the lists ℒ and ℒ , construct the corresponding matrices𝜳, and try to solve
the program in (III.27).

8 Mul ple Colluding Nodes

In this section, we consider the scenario where 𝑇 > 1 nodes act as spies and
have the ability to collude. In particular, we propose a protocol for this scenario
that improves upon the PIR protocol in [25]. We refer to the protocol in [25] as
the (𝒞, �̄�)-retrieval protocol (or scheme), since it is based on two linear codes: an
[𝑛, 𝑘] code 𝒞 and an [𝑛, �̄�] code �̄�, where 𝒞 is the underlying storage code of the
DSS and �̄� defines the queries. Furthermore, the retrieval process is defined by
an [𝑛, �̃�] code �̃� that is the Hadamard product of 𝒞 and �̄�, �̃� = 𝒞 ∘ �̄�. The protocol
yields privacy against at most 𝑇 = 𝑑�̄�min−1 colluding nodes under the assumption
that the code �̄� with 𝑑�̄�min = 𝑇+1 exists for the given 𝑇 (existing in the sense that
the Hadamard product of 𝒞 and �̄� has rate strictly smaller than 1).

130 P III

Originally, the protocol was designed to work with GRS codes, a class of MDS
codes, i.e., both codes 𝒞 and �̄� are GRS codes. In this case �̄� has parameters
[𝑛, �̄� = 𝑇], the retrieval code �̃� has parameters [𝑛, �̃� = 𝑘+𝑇−1], and the PIR rate
is

RGRS =
𝑛 − (𝑘 + 𝑇 − 1)

𝑛 .

For non-MDS codes, the protocol achieves a PIR rate

R(𝒞, �̄�) = 𝑑�̃�min − 1
𝑛 ,

which is lower than RGRS. In general, when the underlying codes are arbitrary
codes, it can be shown that the PIR rate of the (𝒞, �̄�)-retrieval protocol is upper-
bounded by

RUB ≜
𝑛 − �̃�
𝑛 . (III.28)

In particular, the (𝒞, �̄�)-retrieval protocol in [25] achieves a PIR rateR(𝒞, �̄�) < RUB

for non-MDS codes. Furthermore, it was shown in [26] that if 𝒞 is either a GRS
code or an RMcode, then �̄� always exists for any𝑇 ≤ 𝑛−𝑘. In this section, we look
at this protocol from the perspective of arbitrary linear codes 𝒞 and propose an
improved protocol, referred to as Protocol 3, that achieves a higher PIR rate RP3,
where R(𝒞, �̄�) ≤ RP3 ≤ RUB ≤ RGRS. In particular, we show that the upper bound
RUB can be achieved for some non-MDS codes. Also, for a given 𝑇 we present a
code family for 𝒞 for which �̄� exists.

8.1 Protocol 3: The Mul ple Colluding Case

The protocol presented here, referred to as Protocol 3, can be seen as an exten-
sion of Protocol 2 in Section 5. We assume that each file 𝑿() = �𝑥()

, �, 𝑚 ∈ ℕ ,
of size 𝛽 × 𝑘 is stored using an [𝑛, 𝑘] code 𝒞 over GF(𝑞), where 𝑥()

, ∈ GF(𝑞ℓ) for
some ℓ ∈ ℕ. Let �̄� be an [𝑛, �̄�] code over GF(𝑞). The code �̄� is used to design
the query matrix 𝑸(), of dimensions 𝑑 × 𝛽𝑓, where 𝒒() is the 𝑖-th subquery of
𝑸() (see Section 3.1). Furthermore, �̄� characterizes 𝑇, i.e., the maximum number
of colluding nodes the PIR protocol can handle whilst maintaining information-
theoretic privacy. As for Protocol 2, 𝛽 and 𝑑 are taken as small as possible ac-
cording to (III.6). The response vector corresponding to the 𝑖-th subquery 𝒒(),
denoted by 𝝆() = (𝑟 , , … , 𝑟 ,) , is a collection of the 𝑛 response symbols 𝑟 , from
the 𝑛 storage nodes and is related to the codewords of an [𝑛, �̃�] code �̃� = 𝒞 ∘ �̄�.
Furthermore, �̃� characterizes the PIR rate of the protocol.

Query Construc on

The protocol requires that the user constructs queries by choosing 𝛽𝑓 codewords
�̄�() = (�̄�()

, , … , �̄�()
,), 𝑖 ∈ ℕ and 𝑚 ∈ ℕ , drawn independently and uniformly

8 Multiple Colluding Nodes 131

at random from the code �̄�. It then constructs the vector

�̊� = (�̊�(), … , �̊�()), 𝑙 ∈ ℕ ,

where �̊�() = (�̄�()
, , … , �̄�()

,). Thus, the vector �̊� is of length 𝛽𝑓. The vector �̊�()

is a collection of the entries of the 𝑙-th coordinates of the codewords �̄�(), … , �̄�()

that pertain to the 𝑚-th file. We denote by 𝒥 ⊆ ℕ , 𝑖 ∈ ℕ , |𝒥 | = Γ, the set of
nodes from which the protocol obtains code symbols pertaining to the 𝑚-th file
from the 𝑖-th subresponses.

Similar to Protocol 2 presented in Section 5 for the case of noncolluding nodes,
we need to construct a matrix �̂� and 𝛽 information sets {ℐ } ∈ℕ . The matrix �̂� is
a 𝑑 × 𝑛 binary matrix where each row represents an erasure pattern of weight Γ
correctable by �̃� = 𝒞 ∘ �̄�. The column weight profile of �̂� is determined from
{ℐ } ∈ℕ as in Section 5. Note that 𝒥 is the support of the 𝑖-th row vector of �̂�.
Let𝑚 denote the index of the requested file. Then, the 𝑖-th subquery to node 𝑙 is
constructed as

𝒒() = �̊� + 𝜹(), (III.29)

where

𝜹() = 𝝎 () () if 𝑙 ∈ 𝒥 ,
𝝎 otherwise,

� (III.30)

for 𝑙 ∈ ℕ , where 𝝎 , 𝑡 ∈ ℕ , is the 𝑡-th (𝛽𝑓)-dimensional unit vector and
𝝎 = 𝟎 × . The index 𝑠() is defined as

𝑠() ∈ ℱ = {𝑡 ∈ ℕ ∶ 𝑙 ∈ ℐ } (III.31)

and 𝑠() ≠ 𝑠() for 𝑖 ≠ 𝑖 , 𝑖, 𝑖 ∈ ℕ . The index 𝑠() denotes the symbol downloaded
from the 𝑠()-th row of the chunk pertaining to 𝑿() of the 𝑙-th node in response
to the 𝑖-th subquery. Clearly, we see that the symbols downloaded from all nodes
form 𝛽 information sets as ∑ |𝒥 | = ∑ |ℐ | = 𝛽𝑘.

Note that in (III.29), the vector �̊� introduces randomness such that privacy is
ensured, while the vector 𝝎 is deterministic and is properly designed such that
the requested file can be recovered by the user.

Response Construc on

For the 𝑖-th subquery, the response symbol from the 𝑙-th node is constructed as

𝑟 , = ⟨𝒒(), (𝑐()
, , … , 𝑐()

,)⟩. (III.32)

The response symbol in (III.32) is the dot product between the subquery vector
to the 𝑙-th node and the content of that node. The user obtains a response vector

132 P III

𝝆(), consisting of response symbols from 𝑛 nodes as

𝝆() =
𝑟 ,
𝑟 ,
⋮
𝑟 ,

= ⎛
⎜

⎝

�̄�()
, 𝑐()

,
�̄�()

, 𝑐()
,

⋮
�̄�()

, 𝑐()
,

⎞
⎟

⎠
∈ �𝒙∈((ℓ)) ∶ 𝑯�̃�𝒙 𝟎 �

+⎛
⎜

⎝

𝑜()
𝑜()
⋮
𝑜()

⎞
⎟

⎠

, (III.33)

where 𝑯�̃� is the parity-check matrix of the code �̃�,6 the symbol 𝑜() denotes the
symbol obtained from the 𝑙-th node corresponding to the 𝑖-th subquery, and

𝑜() = 𝑐()
, if 𝑙 ∈ 𝒥 ,

0 otherwise,
�

where 𝑖 = 𝑠(). These symbols are obtained by post-processing (III.33) as follows,

𝑯�̃�𝝆() = 𝑯�̃�⎛⎜

⎝

𝑜()
𝑜()
⋮
𝑜()

⎞
⎟

⎠

. (III.34)

This completes the construction of the PIR protocol. In the following, we prove
that this protocol satisfies the PIR conditions (III.5a) and (III.5b) in Definition 8.

Lemma 6. Consider a DSS that uses an [𝑛, 𝑘] code with subpacketization 𝛼 to
store 𝑓 files, each divided into 𝛽 stripes, and assume the privacy model of Sec-
tion 3.1 with a set 𝒯 = {𝑡 , … , 𝑡|𝒯|} ⊂ ℕ of |𝒯| ≤ 𝑇 ≤ 𝑑�̄�min − 1 colluding
nodes. Then, the subqueries 𝒒(), 𝑙 ∈ ℕ , 𝑖 ∈ ℕ , designed as in (III.30) satisfy
H �𝑚|𝑸(), … , 𝑸(|𝒯|) � = H(𝑚).
Proof. The addition of a deterministic vector in(III.30) does not change the prob-
ability distribution of the vectors 𝒒(), … , 𝒒(|𝒯|). The same can be said about their
joint distribution. Furthermore, in each query matrix 𝑸(), 𝑙 ∈ {𝑡 , … , 𝑡|𝒯|}, the
subqueries 𝒒() are independent of each other. Thus, the proof follows the same
lines as the proof of [25, Th. 8].

Theorem 6. Consider a DSS that uses an [𝑛, 𝑘] code 𝒞 with subpacketization 𝛼 to
store 𝑓 files, each divided into𝛽 stripes. Let �̄� be an [𝑛, �̄�] code such that there exists
an [𝑛, �̃�] code �̃� = 𝒞 ∘ �̄� of rate 𝑅�̃� < 1. If there exists a Γ-row regular 𝑑 × 𝑛 binary
matrix �̂� in which each row is a correctable erasure pattern for �̃� and satisfying
condition C3, then H(𝑿()|𝝆(), … , 𝝆()) = 0 and the PIR rate

RP3 =
Γ
𝑛 ≤ RUB (III.35)

is achievable.
6Note that the upload cost of the PIR scheme in [25, 26] grows linearly with . However, the requested

upload cost can actually be ignored by extending the field size of the stored files.

8 Multiple Colluding Nodes 133

Proof. By assumption there exists a matrix �̂� of size 𝑑 × 𝑛 having row weight Γ.
Furthermore, again by assumption, each row of �̂� is an erasure pattern that is
correctable by �̃�. From (III.30), (III.34) results in

𝑯�̃�𝝆() = 𝑯�̃�| (�̂�)𝝆(),
where �̂� is the 𝑖-th row of �̂�. The above linear system of equations is full rank as
𝑯�̃�| (�̂�) is full rank. This is because �̂� is a correctable erasure pattern for �̃�. As
such, the Γ symbols {𝑜()} ∈𝒥 are obtained. From all responses, the user obtains
Γ𝑑 = 𝛽𝑘 code symbols of the code𝒞. Furthermore, from (III.31), these Γ𝑑 symbols
are part of the 𝛽 information sets {ℐ } ∈ℕ of 𝒞. Thus, H �𝑿()|𝝆(), … , 𝝆() � =
0.

Unlike [25], where the authors consider sets 𝒥 with a fixed structure, we gen-
eralize the sets to match arbitrary codes 𝒞, �̄�, and �̃�. In particular, the sets in
[25] were constructed targeting MDS codes, in which case the PIR rate of the
(𝒞, �̄�)-retrieval protocol is upperbounded by RUB in (III.28), as mentioned ear-
lier. However, the use of these sets for arbitrary codes 𝒞 and �̄� does not allow
to obtain the requested file 𝑿(). Thus, Theorem 6 can be seen as a general-
ization of [25, Th. 7] where the PIR rate for non-MDS codes was shown to be
R(𝒞, �̄�) = (𝑑�̃�min − 1)/𝑛< RUB. Our proposed protocol can achieve higher rates as
illustrated in the following corollary. In particular, we will show that the upper
bound RUB is achievable for some classes of non-MDS codes.

Corollary 9. If for an [𝑛, 𝑘] code 𝒞 and an [𝑛, �̄�] code �̄� there exists an [𝑛, �̃�] code
�̃� = 𝒞 ∘ �̄� of rate 𝑅�̃� < 1 and an (𝑛 − �̃�)-row regular 𝑑 × 𝑛 binary matrix �̂� in
which each row is a correctable erasure pattern by �̃� and satisfying condition C3,
then Protocol 3 achieves the upper bound RUB.

As for Protocol 2, the parameters Γ, 𝛽, and 𝑑 (which are not explicitly men-
tioned in Theorem 6) have to be carefully selected such that a Γ-row regular ma-
trix �̂� (satisfying condition C3) actually exists with a valid collection of informa-
tion sets {ℐ } ∈ℕ for 𝒞.

8.2 Example

Lemma 6 proves that the proposed protocol provides privacy up to 𝑇 = 𝑑�̄�min − 1
colluding nodes. This is illustrated in the example below.

Consider a DSS with 𝑛 = 12 nodes that stores a single file 𝑿() of size 1 × 4.
𝑿() is encoded using the [12, 4, 6] binary code 𝒞 with parity-check matrix

𝑯𝒞 =

⎛
⎜
⎜
⎜
⎜

⎝

0 1 1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟

⎠

.

134 P III

Let �̄� = 𝒞, and the code �̃� = 𝒞 ∘ �̄� has parity-check matrix

𝑯�̃� = 1 1 1 1 0 0 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1 1 .

Note that the dual code �̄� has minimum Hamming distance 𝑑�̄�min = 3, thus
this protocol protects against 𝑇 = 𝑑�̄�min − 1 = 2 colluding nodes. Choosing Γ =
𝑑�̃�min − 1 = 1, one can use the PIR protocol as presented in [25] to get a PIR rate
of R(𝒞, �̄�) = . However, we can set Γ = 2 and use Protocol 3 to achieve a higher
PIR rate. Note that the value of Γ cannot be greater than 2 as the number of
redundant symbols in �̃� is 2. We choose

�̂� = 0 0 0 0 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 0 0 0

and ℐ = {2, 3, 9, 12}. Thus, 𝛽 = 1 and𝑑 = 2. Note that each rowof �̂� is an erasure
pattern that is correctable by the [12, 10, 2] code �̃�, and that ℐ is an information
set of 𝒞. In order to form all the queries (each query consists of 𝑑 = 2 subqueries),
we need to choose 𝑠(), 𝑠(), 𝑠(), and 𝑠(). From (III.31), we have

𝑠() = 1, 𝑠() = 1, 𝑠() = 1, and 𝑠() = 1.

Now, consider the first subqueries. The query vectors 𝒒() and 𝒒() are

𝒒() = �̊� + 𝝎 = �̊� + 1,
𝒒() = �̊� + 𝝎 = �̊� + 1,

and 𝒒() = �̊� , ∀ 𝑙 ∈ ℕ \{9, 12}. The corresponding response vector is

𝝆() = ⎛
⎜

⎝

�̄�()
, 𝑐()

,
�̄�()
, 𝑐()

,
⋮

�̄�()
, 𝑐()

,

⎞
⎟

⎠
∈ �𝒙∈((ℓ)) ∶ 𝑯�̃�𝒙 𝟎 �

+

⎛
⎜
⎜
⎜
⎜

⎝

0
⋮
0
𝑐()

,
0
0

𝑐()
,

⎞
⎟
⎟
⎟
⎟

⎠

.

Finally, the user computes

𝑯�̃�𝝆() = 𝑯�̃�

⎛
⎜
⎜
⎜
⎜

⎝

0
⋮
0
𝑐()

,
0
0

𝑐()
,

⎞
⎟
⎟
⎟
⎟

⎠

= 𝑐()
,

𝑐()
,

.

8 Multiple Colluding Nodes 135

In a similar manner, from 𝝆() the user obtains 𝑐()
, and 𝑐()

, . Clearly, the indices of
the symbols downloaded by the user form the information set ℐ , from which we
can obtain the requested file 𝑿(). The PIR rate of the scheme is R(𝒞, �̄�) = = ,
i.e., double of the PIR rate of the protocol in [25]. Furthermore, it achieves the
upper bound in (III.35).

A limiting factor for Protocol 3 is that the upper bound on the PIR rate RUB in
(III.35) depends on the dimension of �̃�. Furthermore, in order to achieve the PIR
property with large 𝑇, one requires �̄� to be of large dimension such that �̄� has
large minimum Hamming distance. Therefore, for arbitrary 𝒞 and �̄� the chances
that �̃� = 𝒞∘�̄� has rate 𝑅�̃� = 1 (the code does not even correct a single erasure) are
quite high for large values of 𝑇, since the Hadamard product is highly nonlinear.
In other words, the probability that RUB = 0 is high. Below, we present code
constructions for which RUB > 0.

8.3 Codes for Protocol 3

As seen in the preceding sections, the codes 𝒞 and �̄� must be chosen such that
the code �̃� = 𝒞 ∘ �̄� has rate 𝑅�̃� < 1 for the PIR protocol to work. In this section,
we provide a family of codes 𝒞 and �̄� that satisfy 𝑅�̃� < 1 for a given 𝑇.

In particular, we show that a special class of UUV codes can be used for the
codes 𝒞 and �̄� to obtain a valid �̃�. Let 𝒰 be an [𝑛 , 𝑘] code and 𝒱 an [𝑛 , 1]
repetition code, both over GF(2). We construct the [𝑛 = 2𝑛 , 𝑘 = 𝑘 + 1] code
𝒞 = (𝒰 ∣ 𝒰 + 𝒱) with generator matrix

𝑮𝒞 = 𝑮𝒰 𝑮𝒰
𝟎 × 𝟏 ×

. (III.36)

Theorem 7. Let 𝒰 be an [𝑛 , 𝑘] binary code where 𝑛 ≥ 𝑘 + 2 and 𝒱 an [𝑛 , 1]
binary repetition code. Then, the [𝑛 = 2𝑛 , 𝑘 = 𝑘 + 1] codes 𝒞 and �̄� constructed
using (III.36) ensure that the vector space �̃� = 𝒞 ∘ �̄� of length 𝑛 is a linear code of
dimension strictly less than 𝑛, i.e., 𝑅�̃� < 1.

Proof. See Appendix G.

Theorem 7 proves that for an arbitrary linear code 𝒰, the UUV code ensures
that �̃� < 𝑛 and thus �̃� is a valid code. The fact that any code 𝒰 can be used in
the protocol makes the UUV construction attractive. Also, the UUV construction
may produce 𝑑min-optimal binary linear codes. For instance, the codes 𝒞 and �̄� in
Section 8.2 are optimal binary linear codes. One drawback of the UUV construc-
tion, however, is that the constructed codes are in general low rate codes.

In [26], the authors showed that choosing 𝒞 and �̄� to be RM codes with care-
fully selected parameters ensures that �̃� is also an RM code of dimension �̃� < 𝑛.
However, the PIR rate is very low [26, Th. 15]. In the following subsection, we show
that RM codes can indeed achieve a higher PIR rate of R = (𝑛 − �̃�)/𝑛 = RUB.

136 P III

8.4 Codes Achieving the Maximum PIR Rate of Protocol 3

In order to consider the codes achieving the maximum possible PIR rate for Pro-
tocol 3, we give a definition similar to Definition 10 in Section 4.

Definition 14. Let 𝒞 be an [𝑛, 𝑘] code and �̄� an [𝑛, �̄�] code. Denote by �̃� = 𝒞∘�̄� the
�̃�-dimensional code generated by theHadamard product of𝒞 and �̄�. A (𝑘+𝑛−�̃�)×𝑛
binary matrix �̃� , ̃ is called a PIR maximum rate matrix for Protocol 3 if the
following conditions are satisfied.

1. �̃� , ̃ is a 𝑘-column regular matrix, and

2. there are exactly 𝑘 rows {𝝀 } ∈ℕ and 𝑛− �̃� rows {𝝀 } ∈ℕ ̃ of �̃� , ̃ , such
that ∀ 𝑖 ∈ ℕ , 𝜒(𝝀) is an information set for �̃� and ∀ 𝑖 ∈ ℕ ̃ , 𝜒(𝝀) is
an information set for 𝒞.

Similar to the case of noncolluding nodes in Section 5, it is not difficult to show
that the existence of a 𝑘 × 𝑛 matrix �̂� for the code �̃� = 𝒞 ∘ �̄� and an (𝑛 − �̃�) × 𝑛
matrix �̄� for the code 𝒞 is equivalent to the existence of 𝜦 , ̃ .

The following corollary follows immediately from a similar reasoning as for
Theorem 3.

Corollary 10. If a PIR maximum rate matrix �̃� , ̃ exists for Protocol 3, then

𝑑𝒞 ≥ 𝑛 − �̃�
𝑘 𝑠, ∀ 𝑠 ∈ ℕ ,

𝑑�̃� ≥ 𝑠, ∀ 𝑠 ∈ ℕ ̃ .
Proof. Using an argumentation similar to the proof of Theorem 3, the existence
of a PIR maximum rate matrix for Protocol 3 implies that there exist 𝑘 informa-
tion sets {ℐ̃ } ∈ℕ of �̃� and 𝑛 − �̃� information sets {ℐ } ∈ℕ ̃ of 𝒞 such that each
coordinate 𝑗 of 𝒞 appears exactly 𝑘 times in {ℐ̃ } ∈ℕ ∪ {ℐ } ∈ℕ ̃ , 𝑗 ∈ ℕ . Hence,
we obtain

𝑘 𝜒(𝒟) = �ℐ̃ ∩ 𝜒(𝒟) �+
̃
�ℐ ∩ 𝜒(𝒟) �

≥
̃
�ℐ ∩ 𝜒(𝒟) � ≥ (𝑛 − �̃�)𝑠;

𝑘 𝜒(�̃�) = �ℐ̃ ∩ 𝜒(�̃�) � +
̃
�ℐ ∩ 𝜒(�̃�) �

≥ �ℐ̃ ∩ 𝜒(�̃�) � ≥ 𝑘𝑠,

8 Multiple Colluding Nodes 137

where 𝒟 is an [𝑛, 𝑠] subcode of 𝒞, 𝑠 ∈ ℕ , and �̃� is an [𝑛, 𝑠] subcode of �̃�, 𝑠 ∈
ℕ ̃ .

It can be seen from the proof above that we can only have |ℐ̃ ∩ 𝜒(𝒟)| ≥ 0
for an information set ℐ̃ of �̃� and a subcode 𝒟 ⊆ 𝒞 (or |ℐ ∩ 𝜒(�̃�)| ≥ 0 for an
information set ℐ of 𝒞 and a subcode �̃� ⊆ �̃�). Hence, unlike in Conjecture 1, we
do not conjecture this necessary condition to be sufficient.

Similar to Theorem 4 for the noncolluding case, we provide a sufficient con-
dition for codes to achieve the maximum possible PIR rate of Protocol 3 by using
code automorphisms of 𝒞 and �̃�.
Theorem 8. Let 𝒞 be an [𝑛, 𝑘] code, �̄� an [𝑛, �̄�] code, and �̃� = 𝒞 ∘ �̄�. If there
exist 𝑘 information sets ℐ̃ , … , ℐ̃ of �̃�, an information set ℐ of 𝒞, and 𝑛 − �̃� distinct
automorphisms of 𝒞 such that for every code coordinate 𝑗 ∈ ℐ, 𝑖 ∈ ℕ ,

ℐ̃ ∪ {𝜋 (𝑗), … , 𝜋 ̃ (𝑗) � = {1, 2, … , 𝑛},

then the codes 𝒞 and �̃� achieve the maximum possible PIR rate of Protocol 3, i.e.,
RUB.

Proof. Since there exist 𝑛 − �̃� distinct automorphisms of 𝒞 such that ℐ ≜
{𝜋 (𝑗)∶ 𝑗 ∈ ℐ}, 𝑗 ∈ ℕ ̃ , are information sets of 𝒞, and for every code coor-
dinate 𝑗 ∈ ℐ, 𝑖 ∈ ℕ ,

ℐ̃ ∪ {𝜋 (𝑗), … , 𝜋 ̃ (𝑗) � = {1, 2, … , 𝑛},

each code coordinate ℎ ∈ ℕ appears exactly 𝑘 times in {ℐ̃ } ∈ℕ ∪{ℐ } ∈ℕ ̃ , which
shows the existence of a PIR maximum rate matrix �̃� , ̃ for Protocol 3.

We now show that RM codes achieve the maximum PIR rate of Protocol 3.

Corollary 11. Let 𝒞 be an [𝑛, 𝑘]RMcodeℛ(𝑣,𝑚), �̄� an [𝑛, �̄�]RMcodeℛ(�̄�,𝑚), and
�̃� = 𝑘 + �̄�, where 𝑛 = 2 , 𝑘 = ∑ � �, and �̄� = ∑ ̄ � �. Then, a PIR maximum
rate matrix �̃� , ̃ exists for Protocol 3, and its PIR rate is

RP3 =
𝑛 − �̃�
𝑛 = RUB.

Proof. It can be easily shown that �̃� = 𝒞∘�̄� is an RM codeℛ(�̃�,𝑚)with �̃� = 𝑣+�̄�.
Consider two information sets ℐ and ℐ̃ of 𝒞 and �̃�, respectively. (Lemma 1 gives
one way to construct these two information sets.) We construct the 𝑘 + 𝑛 − �̃�
information sets

ℐ̃ ≜ {𝝈 + 𝝁 ∶ 𝝈 ∈ ℐ̃}, 𝑖 ∈ ℕ ,
ℐ ≜ {𝝁 + �̄� ∶ 𝝁 ∈ ℐ}, 𝑗 ∈ ℕ ̃ ,

where {𝝁 } ∈ℕ and {�̄� } ∈ℕ ̃ are the numbered binary𝑚-tuples in ℐ andGF(2) × ⧵
ℐ̃, respectively. From Proposition 2, {ℐ̃ } ∈ℕ and {ℐ } ∈ℕ ̃ are information sets for
�̃� and 𝒞, respectively.

138 P III

To prove the existence of a PIR maximum rate matrix for Protocol 3 with 𝒞 =
ℛ(𝑣,𝑚) and �̄� = ℛ(�̄�,𝑚), it is sufficient to show that each 𝑚-tuple representing
a coordinate of the RM code appears exactly 𝑘 times in the 𝑘 +𝑛− �̃� constructed
information sets above. Without loss of generality, the 𝑖-th information set ℐ̃ ,
𝑖 ∈ ℕ , can be written as

ℐ̃ = {𝝁 + 𝝈 ,… , 𝝁 + 𝝈 ̃ },

where 𝝈 ∈ ℐ̃, 𝑗 ∈ ℕ ̃ . Furthermore, consider the 𝑖-th elements across all sets ℐ ,
𝑗 ∈ ℕ ̃ . They have the form

𝝁 + �̄� ,

where 𝝁 ∈ ℐ. Since �̄� ∈ GF(2) × ⧵ ℐ̃ and 𝝈 ∈ ℐ̃, the set

{𝝁 + 𝝈 ,… , 𝝁 + 𝝈 ̃ } ∪ {𝝁 + �̄� , … , 𝝁 + �̄� ̃ }

with cardinality 𝑛 = 2 is equal to GF(2) × , i.e., the set containing the elements
of the 𝑖-th information set ℐ̃ and the 𝑖-th elements 𝝁 +�̄� in all sets ℐ is equal to
the set of all binary 𝑛 = 2 tuples. Therefore, we are able to find 𝑘 information
sets {ℐ̃ } ∈ℕ of �̃�, an information set ℐ of 𝒞, and 𝑛 − �̃� distinct automorphisms
𝜋 (𝝁) = 𝝁 + �̄� of 𝒞, 𝑗 ∈ ℕ ̃ , satisfying Theorem 8. This completes the proof.

We remark again that Corollary 11 can be extended to nonbinary generalized
RM codes. Finally, note that in the independent work [28] it was also shown
that RM codes can achieve the maximum possible PIR rate of the (𝒞, �̃�)-retrieval
protocol, i.e., RUB, for transitive codes. However, it is important to highlight that
our Protocol 3 requires a much smaller 𝛽 (number of stripes) and a significant
smaller 𝑑 (number of subqueries). Indeed, the protocol in [28] requires very large
𝛽 and 𝑑 (in the order of 10000 for the example provided), and thus our protocol
is more practical.

8.5 Op mizing the PIR rate

For those codes for which we do not have a proof that RUB is achieved, we now
provide an algorithm to optimize the PIR rate RP3 such that it comes closer to
the upper bound RUB. The algorithm is identical to Algorithm 1 for the case of
noncolluding nodes with some key differences which we highlight below.

• In Line 1, Γ in initialized to 1.
• The while loop in Line 4 runs up to 𝑛 − �̃�.
• The first argument to the subprocedure ComputeErasurePatternList(⋅, Γ)
is changed from 𝒞 to 𝒞 ∘ �̄� in Line 5.

With these minor modifications, Algorithm 1 can be used to optimize the PIR
rate in the case of 𝑇 colluding nodes. Numerical results are presented below in
Section 9. Note that Γ is initialized to 1 as opposed to min 𝑘, 𝑑𝒞min − 1 in the

9 Numerical Results 139

Code 𝑑𝒞min 𝑑𝒞min Rnon opt Ropt C

𝒞 ∶ [5, 3] (Example 4) 2 3 0.4 0.4 0.4
𝒞 ∶ [11, 6] 4 4 0.2727 0.4545 0.4545
𝒞 ∶ [12, 8] Pyramid 4 4 0.25 0.3333 0.3333
𝒞 ∶ [18, 12] Pyramid 5 5 0.2222 0.3333 0.3333
𝒞 ∶ [16, 10] LRC 5 5 0.25 0.3750 0.3750
𝒞 ∶ [154, 121] LRC 4 6 0.0325 0.2013 0.2143
𝒞 ∶ [187, 121] LRC 7 16 0.0802 0.3262 0.3529

Table III.2: Optimized values for the PIR rate for different codes having code rates strictly
larger than 1/2 for the case of noncolluding nodes.

Code 𝑑𝒞min Rnon opt Ropt C

𝒞 ∶ [7, 3] (Example 5) 4 0.4286 0.5714 0.5714
𝒞 ∶ [9, 4] LRC ([23, Ex. 1]) 5 0.4444 0.5555 0.5555
𝒞 ∶ [12, 6] LRC ([23, Ex. 2]) 6 0.4167 0.5 0.5

Table III.3: Optimized values for the PIR rate for different codes having code rates at
most 1/2 for the case of noncolluding nodes.

case of noncolluding nodes. This is because �̂� and �̄� of 𝑬 are based on different
codes. This also guarantees that the algorithm always returns 𝑬opt ≠ ∅ (assuming
𝑑�̃�min ≥ 2), since in this case all weight-1 erasure patterns are correctable by �̃�, and
a valid matrix 𝑬 can be trivially constructed.

9 Numerical Results

In this section, we present maximized PIR rates for the PIR protocols described
in Sections 4, 5 and 8. Unless specified otherwise, these protocols are optimized
using Algorithm 1 with minimum possible values for the parameters 𝛽 and 𝑑 as
given in (III.6). In contrast to Sections 6 to 6.3, where different classes of codes
were proved to be MDS-PIR capacity-achieving, we consider here other codes
(with two exceptions as detailed below) and their highest possible PIR rates. The
results are tabulated in Tables III.2 and III.3 for the case of noncolluding nodes,
and in Table III.4 for the colluding case. Results in Table III.2 are for code rates
strictly larger than 1/2, while codes of rate atmost 1/2 are tabulated in Table III.3.

In Tables III.2 and III.3, C (see (III.8)) is the asymptotic MDS-PIR capacity
and Ropt is the optimized PIR rate computed from Algorithm 1. In Table III.2,

Rnon opt =
𝒞
min , while in Table III.3, Rnon opt =

𝒞
min . In Table III.4, CLB, ≜

() is a lower bound (taken from [25]) on the asymptoticMDS-PIR capacity
in the case of at most 𝑇 colluding nodes, while Ropt is the optimized PIR rate
computed from Algorithm 1 and Rnon opt =

�̃�
min .

The code 𝒞 in Table III.2 is from Example 4, 𝒞 is an [11, 6] binary linear code
with optimumminimum Hamming distance, while codes 𝒞 and 𝒞 are Pyramid

140 P III

Code 𝒞 �̄� �̃� 𝑑𝒞min 𝑇 Rnon opt Ropt RUB CLB,

𝒞 ∶ [9, 4] LRC ([23, Ex. 1]) RS[9, 2] RS(9, 6) 5 2 0.3333 0.3333 0.3333 0.4444
𝒞 ∶ [12, 6] LRC ([23, Ex. 2]) RS[12, 2] RS(12, 8) 6 2 0.3333 0.3333 0.3333 0.4167
𝒞 ∶ [12, 4] (Section 8.2) 𝒞 [12, 10, 2] 6 2 0.0833 0.1667 0.1667 0.5833
𝒞 ∶ [12, 4] LRC ([23, Ex. 5]) RS[12, 2] [12, 7, 5] 6 2 0.3333 0.4167 0.4167 0.5833
𝒞 ∶ [26, 9] (𝒰 ∣ 𝒰 + 𝒱) 𝒞 [26, 22, 1] 8 3 0 0.1538 0.1538 0.5769
𝒞 ∶ [32, 6] (𝒰 ∣ 𝒰 + 𝒱) 𝒞 [32, 16, 8] 16 3 0.2188 0.5 0.5 0.75

Table III.4: Optimized values for the PIR rate for different codes for the colluding case
with 𝑇 = 2 and 𝑇 = 3.

codes, taken from [19], of locality 4 and 6, respectively, 𝒞 is an LRC of local-
ity 5 borrowed from [20]. In [39], a construction of optimal (in terms of min-
imum Hamming distance) binary LRCs with multiple repair groups was given.
In particular, in [39, Constr. 3], a construction based on array LDPC codes was
provided. The minimum Hamming distance of array LDPC codes is known for
certain sets of parameters (see, e.g., [40] and references therein). Codes 𝒞 and
𝒞 in Table III.2 are optimal LRCs based on array LDPC codes constructed using
[39, Constr. 3] and having information locality 11. The protocols for these two
underlying codes have 𝛽 = Γ and 𝑑 = 𝑘.

Code 𝒞 in Table III.3 is the dual code of the [7, 4, 3] Hamming code and is
taken from Example 5, while the codes 𝒞 and 𝒞 are 𝑑min-optimal LRCs over
GF(13) of all-symbol locality 2 and 3, respectively, taken from [23] (see Examples 1
and 2, respectively, in [23]). These two codes are also tabulated in Table III.4. The
corresponding �̄� codes are RS codes and their parameters are given in Table III.4
(an RS code of length 𝑛 and dimension 𝑘 is denoted by RS[𝑛, 𝑘]). Code 𝒞 (from
Table III.4) is taken fromSection 8.2, while code𝒞 (also fromTable III.4) is taken
from [23] (see Example 5 in [23]). Note that 𝒞 is an LRC of length 12 over GF(13)
with two disjoint recovering sets of sizes 2 and 3, respectively, for every symbol
of the code (all-symbol locality). Code 𝒞 (from Table III.4) is a [26, 9, 8] binary
UUV code that is close to an optimal binary linear code (the best known code
for these parameters has a minimum Hamming distance of 9), while the code
𝒞 is a UUV code where 𝒰 is a [16, 5, 8] RM code (the code ℛ(1, 4)). Note that
𝒞 becomes the RM code ℛ(1, 5). Due to the high computational complexity of
Algorithm 1 for 𝒞 , we are unable to compute the maximum rate of Protocol 3
for the minimum values of 𝛽 and 𝑑. Instead, we take 𝛽 = Γ and 𝑑 = 𝑘 and use
Corollary 11 to obtain the maximum rate of the protocol.

It is observed in Tables III.2 and III.3 that in the case of noncolluding nodes,
the optimized PIR rateRopt is equal to the asymptotic capacityC for all tabulated
codes except 𝒞 and 𝒞 . Note that the codes 𝒞 , 𝒞 , and 𝒞 –𝒞 do not fall within
the code families that we proved are MDS-PIR capacity-achieving (see Section 6).
Thus, the results in Tables III.2 and III.3 show that, interestingly, other codes can
achieve the asymptotic MDS-PIR capacity as well. On the other hand, 𝒞 and 𝒞
satisfy the conditions of Theorem 5. Thus, they are MDS-PIR capacity-achieving
with 𝛽 = Γ and 𝑑 = 𝑘. The results in the table show that they also achieve
C for 𝛽 and 𝑑 as in (III.6). Also, note that by the nature of the optimization
procedure (see Remark 2), MDS-PIR capacity-achieving matrices Λ , of all tabu-

10 Conclusion 141

lated codes except 𝒞 and 𝒞 are found. This implies that they are also MDS-PIR
capacity-achieving codes for any finite number of files and must satisfy the nec-
essary condition based on generalized Hamming weights in Theorem 3. Due to
the high computational complexity of Algorithm 1, it is difficult to maximize the
PIR rates of 𝒞 and 𝒞 . Therefore, it is an open problem whether or not they are
MDS-PIR capacity-achieving codes. For the colluding case (see Table III.4) the
lower bound CLB, on the asymptotic MDS-PIR capacity is not achieved, even af-
ter optimization. To the best of our knowledge, GRS codes are the only known
class of codes where this bound is actually achieved [25]. On the other hand, the
upper bound RUB (from (III.35)) is attained in all cases.

10 Conclusion

We presented three different PIR protocols, namely Protocol 1, Protocol 2, and
Protocol 3, for DSSs where data is stored using an arbitrary linear code. We first
considered the case when no nodes in the DSS collude. Under this scenario, Pro-
tocols 1 and 2 achieve the PIR property. We proved that, for certain non-MDS
codes, Protocol 1 achieves the finite MDS-PIR capacity (and also the asymptotic
MDS-PIR capacity) and Protocol 2, which is a much simpler protocol compared
to Protocol 1, achieves the asymptotic MDS-PIR capacity. Thus, the MDS prop-
erty is not necessary in order to achieve the MDS-PIR capacity (both finite and
asymptotic). We also provided a necessary and a sufficient condition for codes to
beMDS-PIR capacity-achieving. The necessary condition is based on generalized
Hammingweightswhile the sufficient condition is obtained fromautomorphisms
of linear codes. We proved that cyclic codes, RM codes, and distance-optimal in-
formation locality codes are MDS-PIR capacity-achieving codes. For other codes,
we provided an optimization algorithm that optimizes Protocols 1 and 2 in order
to maximize their PIR rates. We also considered the scenario where a subset of
nodes in the DSS collude. For such a scenario, we proposed Protocol 3, which is
an improvement of the PIR protocol by Freij-Hollanti et al. The improvement al-
lows the protocol to achieve even higher PIR rates, and the PIR rates for non-MDS
codes are no longer limited by their code rates. Subsequently, we presented an
optimization algorithm to optimize the PIR rate of the protocol, and a family of
codes based on the classical (𝒰 ∣ 𝒰 + 𝒱) construction that can be used with this
protocol. Furthermore, as for the noncolluding case, we provided a necessary
and a sufficient condition to achieve the maximum possible PIR rate of Proto-
col 3. Moreover, we proved that RM codes satisfy the sufficient condition and
can achieve much higher PIR rates than previously reported by Freij-Hollanti et
al. Finally, we presented some numerical results on the PIR rates for several linear
codes, including distance-optimal all-symbol locality LRCs constructed by Tamo
and Barg.

142 P III

A Proof of Lemma 1

We need to ensure that given a 𝑘 × 𝑛 generator matrix 𝑮 of ℛ(𝑣,𝑚) with 𝑘 =
∑ � � and 𝑛 = 2 , the 𝑘 × 𝑘 matrix 𝑮|ℐ that comprises the columns of the
generator matrix indexed by the coordinates of ℐ is invertible. We are going to
elaborate on this by considering all the monomials 𝑧 ⋯𝑧 , 𝜇 ∈ GF(2), in a so-
called graded lexicographic order, where each vector𝝁 = (𝜇 ,… , 𝜇) ∈ GF(2) ×

defines a column of the generatormatrix𝑮 according to (III.1). Formally speaking,
denote 𝑧 ⋯𝑧 by 𝒛𝝁. We say 𝒛𝝁 ≺ 𝒛𝝁 either if 𝑤H (𝝁) < 𝑤H (𝝁) or if 𝑤H (𝝁) =
𝑤H (𝝁) and the topmost nonzero entry of 𝝁−𝝁 (subtraction is over the reals) is
positive. For instance, in graded lexicographical ordering we have 𝑧 ≺ 𝑧 ≺ 𝑧 ≺
𝑧 𝑧 ≺ 𝑧 𝑧 ≺ 𝑧 𝑧 ≺ 𝑧 𝑧 𝑧 for𝑚 = 3.

Now we are ready for the proof. It is noted that a basis of ℛ(𝑣,𝑚) can be
viewed as ℬ ≜ {1, 𝑧 , 𝑧 , 𝑧 , …} = {𝒛𝝁 ∶ 𝑤H (𝝁) ≤ 𝑣}. Let us list the monomials in
ℬ in graded lexicographical order, and let the ℓ-th monomial 𝑓ℓ(𝒛) of the ordered
list represent the ℓ-th row of 𝑮, ℓ ∈ ℕ . According to the generator matrix con-
struction of ℛ(𝑣,𝑚), it is known that the (ℓ, 𝝁) entry of 𝑮 is equal to the value
of the ℓ-th monomial 𝑓ℓ(𝒛) at 𝒛 = 𝝁 [27, Ch. 13]. Furthermore, given a column
coordinate 𝝁 ∈ ℐ, for ℓ ∈ ℕ , we have

𝑓ℓ(𝝁) =
1 if 𝒛𝝁 = 𝑓ℓ(𝒛),
0 if 𝒛𝝁 ≺ 𝑓ℓ(𝒛).

�

Thus, the (𝒛𝝁, 𝝁) entry can be seen as a pivot of𝑮|ℐ and𝑮|ℐ is obviously invertible.

B Proof of Theorem 1

The proof is completed by showing that the following statements are true.

File symmetry within each storage node. For all repetitions, we investigate
file symmetry for every possible combination of files in each round within each
storage node. In the first round (ℓ = 1) of all 𝜅 repetitions, it follows from (III.9)
that, for each 𝑚 ∈ ℕ ∶ , the downloaded number of undesired symbols 𝑦()

, is
equal to 𝜅U(1) = 𝜅 , while for the desired symbols, from (III.10), it follows
that the user requests 𝜅 code symbols for 𝑦()

, . In the (ℓ + 1)-th round of
all 𝜅 repetitions, ℓ ∈ ℕ , arbitrarily choose a combination of files ℳ ⊆ ℕ ∶ ,
where |ℳ| = ℓ. It follows from (III.11) that the total number of requested desired
symbols for files pertaining to {1} ∪ℳ is equal to

(𝜈 − 𝜅) � �U(ℓ) − 1 � −U(ℓ − 1) + 1 � = (𝜈 − 𝜅)𝜅 (ℓ)(𝜈 − 𝜅)ℓ
= 𝜅 (ℓ)(𝜈 − 𝜅)ℓ.

On the other hand, for the undesired symbols, it follows from (III.9) that in the
(ℓ + 1)-th round the user requests

𝜅 � �U(ℓ + 1) − 1 � −U(ℓ) + 1 � = 𝜅𝜅 (ℓ)(𝜈 − 𝜅)ℓ = 𝜅 (ℓ)(𝜈 − 𝜅)ℓ

B Proof of Theorem 1 143

linear sums for a combination of filesℳ ⊆ ℕ ∶ , |ℳ| = ℓ + 1. Thus, in rounds
ℕ , an equal number of linear sums for all combinations of files ℳ ⊆ ℕ are
downloaded. By construction, these are linear sums of unique code symbols per-
taining to 𝑓 files. Thus, symmetry in all 𝑓 − 1 rounds is ensured. In the 𝑓-th
round, only desired symbols are downloaded. Since each desired symbol is a lin-
ear combination of code symbols from all 𝑓 files, an equal number of linear sums
is again downloaded from each file. Therefore, symmetry within each node and
in each round is ensured.

The 𝛽 × 𝑘 file 𝑿() can be reliably decoded. In the first round (ℓ = 1) of all 𝜅
repetitions, ∀ 𝑠 ∈ ℕ , the user has downloaded the matrix

𝑦()
(,) , ⋯ 𝑦()

(,) ,
⋮ ⋯ ⋮

𝑦()
(,) , ⋯ 𝑦()

(,) ,

of code symbols. Given an 𝑎 ∈ ℕ , recalling Definitions 11 and 12, it follows that
for each 𝑠 ∈ ℕ , the coordinate set 𝒮 �𝜅 (𝑎−1)+𝑠 �𝜅 (𝑨 × −𝟏 ×)+𝑠𝟏 × �
contains an information set. Hence, the (𝜅 (𝑎 − 1) + 1)-th, … , (𝜅 (𝑎 − 1) +
𝜅)-th stripes are recovered. Since 𝑎 , ∈ ℕ , we know until now that the user
has obtained the 1-st, 2-nd, … , (𝜅 (𝑣−1)+𝜅)-th stripes. Note that 𝜅 (𝑣−
1) + 𝜅 = D(0)𝜈. Moreover, owing to (III.12), in the (ℓ = ℓ + 1)-th round of
all 𝜅 repetitions with ℓ ∈ ℕ , ∀ 𝑠 ∈ ℕD(ℓ)∶(D(ℓ)) the matrices

𝑦()
⋅ , , ⋯ 𝑦()

⋅ , ,
⋮ ⋯ ⋮

𝑦()
⋅ , , ⋯ 𝑦()

⋅ , ,

of code symbols are downloaded. Similarly, fix an 𝑠 ∈ ℕD(ℓ)∶(D(ℓ)). Then,
∀𝑎 ∈ ℕ , the coordinate set 𝒮 �𝑠𝜈+𝑎 �𝑠𝜈𝟏 × +𝑨 × �must contain an information
set, and the user can recover the (𝑠𝜈 + 1)-th, … , (𝑠𝜈 + 𝜈)-th stripes. Observe that
in the last (ℓ = (𝑓 − 1) + 1)-th round, the row index of the last recovered strip
is equal to (D(𝑓 − 1) − 1)𝜈 + 𝜈. Hence, the total number of stripes the user has
recovered is

�D(𝑓 − 1) − 1 �𝜈 + 𝜈 =
ℓ

�𝑓 − 1
ℓ

�𝜅 (ℓ)(𝜈 − 𝜅)ℓ − 1 𝜈 + 𝜈

= (𝜈 − 1)𝜈 + 𝜈 = 𝜈 .

This indicates that the user has restored all 𝜈 stripes for 𝑿(), and 𝑿() is in fact
reliably reconstructed.

The PIR achievable rate is expressed as (III.13). According to (III.9), since there
are �

ℓ
� combinations of files other than the first file with index𝑚 = 1, the user

144 P III

has downloaded

𝜅 �𝑓 − 1
ℓ

� �U(ℓ) − 1 −U(ℓ − 1) + 1 � = 𝜅 �𝑓 − 1
ℓ

�𝜅 (ℓ)(𝜈 − 𝜅)ℓ

= �𝑓 − 1
ℓ

�𝜅 ℓ(𝜈 − 𝜅)ℓ

undesired symbols from each storage node in the ℓ-th round, ℓ ∈ ℕ . Moreover,
from (III.10) and (III.11), the user has downloaded 𝜅 desired symbols from each
storage node in round ℓ = 1, and

D(ℓ) − 1 −D(ℓ − 1) + 1 = �𝑓 − 1
ℓ

�𝜅 (ℓ)(𝜈 − 𝜅)ℓ

extra desired symbols from each storage node in the (ℓ + 1)-th round, ℓ ∈ ℕ .
In summary, the total download cost for Protocol 1 using 𝜦 , (𝒞) is equal to

𝑛𝑑 = total number of undesired symbols+ total number of desired symbols

= 𝜅𝑛
ℓ

�𝑓 − 1
ℓ

�𝜅 ℓ(𝜈 − 𝜅)ℓ + 𝜅𝑛
ℓ

�𝑓 − 1
ℓ

�𝜅 (ℓ)(𝜈 − 𝜅)ℓ

= 𝜅𝑛 � 𝜅
𝜈 − 𝜅

ℓ

�𝑓 − 1
ℓ

�𝜅 (ℓ)(𝜈 − 𝜅)ℓ +
ℓ

�𝑓 − 1
ℓ

�𝜅 (ℓ)(𝜈 − 𝜅)ℓ �

= 𝜅𝑛 𝜅
𝜈 − 𝜅(𝜈 − 𝜅) + 𝜈

= 𝜅𝑛
𝜈 − 𝜅

�𝜅𝜈 − 𝜅 + 𝜈 − 𝜅𝜈 �

= 𝜅𝑛
𝜈 − 𝜅

�𝜈 − 𝜅 �.

Therefore, the PIR achievable rate R(𝒞) is given by

R(𝒞) = 𝛽𝑘
𝑛𝑑 = 𝜈 𝑘

�𝜈 − 𝜅 � =
()

�1− � � �
.

C Proof of Lemma 3

By setting 𝜅 = 𝑘 and using Definition 11, we prove the existence of 𝜦 , with
𝜈 = 𝑘 + min 𝑘, 𝑑𝒞min − 1 . In fact, given an [𝑛, 𝑘, 𝑑𝒞min] code 𝒞, observe that for
an interference matrix 𝑨 × derived from a valid 𝜦 , , 𝒮(𝑎|𝑨 ×)must contain an
information set ∀𝑎 ∈ ℕ . We first choose Γ = min 𝑘, 𝑑𝒞min − 1 information sets
of 𝒞. Note that since every code contains at least one information set, one can
always arbitrarily choose Γ information sets even if some of them are repeatedly

D Proof of Theorem 2 145

chosen. Let us denote the selected information sets by ℐ , 𝑖 ∈ ℕ , and start to
construct the corresponding matrix 𝑨 × with

𝑎 , = 𝑘 + 𝑖, if 𝑗 ∈ ℐ , 𝑖 ∈ ℕ . (III.37)

In this way, 𝑘Γ entries of 𝑨 × are constructed. Next, denote the remaining non-
constructed entries in each column of 𝑨 × by

𝒜 ≜ �𝑎 (), , … , 𝑎 ()
(),

�, 𝑗 ∈ ℕ ,

where 𝑠(𝑗) ≤ 𝑘 is the total number of nonconstructed entries in each column.
Hence, there are in total 𝑘𝑛 − 𝑘Γ = 𝑘(𝑛 − Γ) nonconstructed entries as follows,

�𝑎 (), , … , 𝑎 ()
(),

, … , 𝑎 (), , … , 𝑎 ()
(),

�. (III.38)

If we consecutively assign {1, … , 𝑘} to the entries of 𝑨 × in (III.38) and repeat
this process 𝑛 − Γ times, the remaining 𝑘(𝑛 − Γ) entries of 𝑨 × will certainly
be constructed. Note that since we consecutively assign values of ℕ and the
largest number of empty entries of each column of 𝑨 × is 𝑘, it is impossible
to have repeated values of ℕ in each column of the constructed 𝑨 × . From
(III.37) and (III.38), it can be seen that each 𝑎 ∈ ℕ occurs in 𝑛 − Γ columns of
𝑨 × . From Proposition 3, we can then say that the set 𝒮(𝑎|𝑨 ×) of cardinality
𝑛−Γ ≥ 𝑛−(𝑑𝒞min−1) contains an information set. For the remaining 𝑎 ∈ ℕ ∶ ,
(III.37) ensures that 𝒮(𝑎|𝑨 ×) contains an information set. Thus, this procedure
will result in a valid PIR interference matrix 𝑨 × . The proof is then completed,
since we can construct a PIR achievable rate matrix 𝜦 , from 𝑨 × .

D Proof of Theorem 2

Consider the 𝑖-th subresponse of each response 𝒓 . Out of the 𝑛 subresponses
generated from the 𝑛 storage nodes, there are Γ subresponses originating from a
subset of nodes 𝒥 ⊂ ℕ , |𝒥| = Γ, of the form

𝑟 , = 𝑌 + 𝑐()
, , ∀ 𝑙 ∈ 𝒥, 𝑠 ∈ ℕ . (III.39)

𝑌 is referred to as code interference symbol. Considering 𝑮𝒞 = (𝑔 ,), for 𝑙 ∈ ℕ ,
each code symbol and code interference symbol have the form

𝑐()
, = 𝑔 , 𝑥()

, , (III.40)

𝑌 = 𝑔 , 𝐼() , (III.41)

where 𝑥()
, is an information symbol of 𝒞, and

𝐼() =
()

𝑢 , 𝑥()
() ,

146 P III

is an interference symbol. To obtain Γ code symbols from (III.39), the user re-
quires the knowledge of the code interference symbols 𝑌 . This is obtained from
the remaining 𝑛 − Γ subresponses of the nodes in 𝒥 ≜ ℕ ⧵ 𝒥, which are

𝑟 , = 𝑌 , ∀𝑙 ∈ 𝒥. (III.42)

From (III.40) and (III.41) we can observe that the interference symbols 𝑌 have
the same form as the code symbols of 𝒞. Since there are Γ unknowns, solving
(III.42) resembles ML decoding of the code 𝒞. (III.42) is a full rank system in
the unknowns 𝐼 , … , 𝐼 (from the third requirement of �̂� in Section 5) in GF(𝑞ℓ).
Hence, knowing the interference symbols allows the recovery of Γ unique (from
the first requirement for �̂� in Section 5) code symbols from the 𝑖-th subquery as
the user has the knowledge of 𝑌 , 𝑙 ∈ 𝒥. In a similar way, from all subqueries,
the user obtains 𝑑Γ = 𝛽𝑘 unique code symbols pertaining to file 𝑿(). These 𝛽𝑘
code symbols are part of 𝛽 information sets (from the second requirement of �̂�
in Section 5 and (III.18)). Furthermore, since each information set is implicitly
linked to a unique stripe of the requested file and 𝑠 ∈ ℕ (see (III.39)) is selected
(without repetition) from ℱ (see (III.18)), 𝑘 code symbols from each stripe are
obtained, and the user can recover the whole file 𝑿(), from which it follows that
H �𝑿()|𝒓 , … , 𝒓 � = 0.

E Proof of Lemma 5

We prove the inequality by using the well-known Sylvester’s rank inequality:7 If
𝑼 is an 𝑠 × 𝑘 matrix and 𝑮 is a matrix of size 𝑘 × 𝑛, then

rank (𝑼𝑮) ≥ rank (𝑼) + rank (𝑮) − 𝑘.
Let𝒞 be an [𝑛, 𝑘] codewith generatormatrix𝑮. Given an arbitrary information

set ℐ, 𝑮|ℐ is by definition invertible (see Definition 1). We next choose an arbitrary
subcode 𝒟 ⊆ 𝒞 of rank 𝑠 that can be generated by 𝑼𝑮 for some 𝑠 × 𝑘 matrix 𝑼 of
rank 𝑠.

Applying Sylvester’s rank inequality, we have

rank (𝑼(𝑮|ℐ)) ≥ 𝑠 + 𝑘 − 𝑘 = 𝑠.
Because each basis vector of the space 𝑼(𝑮|ℐ)must at least contain one nonzero
component, this leads to

ℐ ∩ 𝜒(𝒟) = 𝜒(𝒟|ℐ) = 𝜒(𝑼(𝑮|ℐ)) ≥ 𝑠,
where 𝜒(𝒟) is the support of 𝒟 (see Definition 2).

F Proof of Theorem 5

The proof is a two-step procedure. First, we prove that all rows in 𝑬 after Step a)
are correctable by 𝒞. Secondly, we prove that the swaps in certain rows in Step

7The proof of this inequality is available in the literature on linear algebra, so here we omit the proof.

F Proof of Theorem 5 147

b) ensure that the resulting rows are correctable erasure patterns. We start by
proving two key lemmas (Lemmas 7 and 8 below), which will form the basis of
the overall proof of the theorem.

Lemma 7. Let 𝒞 be an [𝑛, 𝑘] distance-optimal (𝑟, 𝛿) information locality code con-
sisting of 𝐿c local codes and with parity-check matrix as in (III.2). Additionally, it
adheres to the condition in (III.24). Then, 𝒞 can simultaneously correct 𝛿 − 1 + 𝜈
erasures, 𝜈 ≥ 0, in each local code 𝒞|𝒮 provided that the number of global parities
available is at least 𝜈 +⋯+ 𝜈

c
.

Proof. We begin by defining 𝑯𝒞|ℐ𝒥 as the submatrix of 𝑯𝒞 restricted in columns
by the set 𝒥 and in rows by the set ℐ. For 𝑗 ∈ ℕ

c
, consider the 𝑗-th local code.

Let ℰ denote the set of coordinates that are erased in the 𝑗-th local code, where
|ℰ | = 𝛿 − 1 + 𝜈 . Let

ℛ = {(𝛿 − 1)(𝑗 − 1) + 1,… , (𝛿 − 1)𝑗} ∪ 𝒜

be a set of rows of 𝑯𝒞 of cardinality |ℛ | = |ℰ |, where 𝒜 ⊂ ℕ
c() ∶(),

𝒜 = 𝜈 , is a set of rows of 𝑯𝒞 (which correspond to parity-check equations of
the available global parities). In order to prove the lemma one needs to prove that

rank �𝑯𝒞 �∪ ℛ
∪ ℰ

� =
c

(𝛿 − 1 + 𝜈). (III.43)

For each 𝑗 ∈ ℕ
c
and 𝑗 ≠ 𝑗, assume that there exists a set𝒜 ⊂ ℕ

c() ∶()
such that𝒜 ∩𝒜 = ∅. Then, it follows thatℛ ∩ℛ = ∅, and since ℰ ∩ℰ = ∅,

rank �𝑯𝒞 �∪ ℛ
∪ ℰ

� =
c

rank �𝑯𝒞|ℛℰ �.

Thus, to show (III.43) it is sufficient to show that

rank �𝑯𝒞|ℛℰ � = 𝛿 − 1 + 𝜈 (III.44)

for all 𝑗 ∈ ℕ
c
.

To show this, consider now the [𝑛 , 𝑘]MDS code 𝒞 whose parity-checkmatrix
is given by 𝑯MDS in(III.24). Let 𝒮 ⊂ ℕ denote a set of coordinates of 𝒞 of
cardinality 𝒮 = 𝑘 + 𝛿 − 1 + 𝜈 . More specifically,

𝒮 = {1,… , 𝑘} ∪ {𝑘 + 1,… , 𝑘 + 𝛿 − 1} ∪ ℬ ,

where ℬ = {𝑎 − 𝐿c(𝛿 − 1) + (𝛿 − 1) + 𝑘 ∶ 𝑎 ∈ 𝒜 } ⊂ ℕ ∶ . In other words,
the set 𝒮 consists of 𝑘 systematic coordinates and 𝛿 − 1 + 𝜈 parity coordinates
of 𝒞 . The punctured code 𝒞 = 𝒞 |𝒮 is defined by a parity-check matrix 𝑯𝒞 of
dimensions (𝛿 − 1 + 𝜈) × (𝑘 + 𝛿 − 1 + 𝜈) that is a submatrix of 𝑯MDS. Since
the punctured code of an MDS code is also an MDS code [41], 𝒞 has minimum

148 P III

Hamming distance 𝑑𝒞min = 𝛿+𝜈 = 𝛿+ 𝒜 . Note that for some column index set
𝒥 ⊂ ℕ , |𝒥| = |ℰ |, one can build 𝑯𝒞|ℛℰ = 𝑯𝒞 |𝒥. From the MDS property,
it follows that

rank �𝑯𝒞|ℛℰ � = rank �𝑯𝒞 |𝒥 � = 𝛿 − 1 + 𝜈 .

Finally, if the total number of global parities is at least ∑ c 𝜈 , we can assign
to the set𝒜 , 𝑗 ∈ ℕ

c
, a set of 𝜈 rows of𝑯𝒞 corresponding to global parity-checks

such that the sets 𝒜 are all disjoint, hence (III.44) holds for all 𝑗 ∈ ℕ
c
, and

(III.43) follows, which completes the proof.

Lemma 8. Consider an erasure pattern 𝒆 of length 𝑛 of the form

𝒆 = (𝑒 ,… , 𝑒) = (𝒆 ,… , 𝒆 , 𝒆),
where the subvectors 𝒆 ,… , 𝒆 are all of length 𝑛c = 𝑟 + 𝛿 − 1 and 𝒆 is of length
�̄� = 𝑛 mod 𝑛c. Let 𝜒(𝒆), 𝑗 ∈ ℕ , be the support of 𝒆 and 𝑡 = (𝑛 − 𝑘) mod 𝐿. If
|𝜒(𝒆)| = ⋯ = |𝜒(𝒆)| = 𝑚 , |𝜒(𝒆)| = ⋯ = |𝜒(𝒆)| = 𝑚, and |𝜒(𝒆)| = 0,
where𝑚= � � and𝑚 = 𝑚 + 1, then 𝒆 is correctable by 𝒞.
Proof. The erasure pattern 𝒆 is divided into 𝐿 + 1 partitions represented by 𝒆 =
(𝑒

c() , … , 𝑒
c
), 𝑗 ∈ ℕ , where 𝒆 , 𝑗 ∈ ℕ

c
, corresponds to the coordinates of

the 𝑗-th local code, and 𝒆
c

, … , 𝒆 correspond to the coordinates of the global
parities of 𝒞.

The set 𝜒(𝒆), 𝑗 ∈ ℕ , is the set of coordinates erased from the 𝑗-th partition,
and we construct the erasure patterns 𝒆 , 𝑗 ∈ ℕ , such that |𝜒(𝒆)| = 𝛿 − 1 + 𝜈
with

𝜈 = 𝑚 − (𝛿 − 1) if 𝑗 ∈ ℕ ,
𝑚 − (𝛿 − 1) if 𝑗 ∈ ℕ ∶ ,

�

where 𝑡 = (𝑛 − 𝑘) mod 𝐿, and let 𝜒(𝒆) = ∅. In other words, we construct
the erasure patterns such that the erasures are distributed as equally as possible
across the first 𝐿 partitions.

FromDefinition 7, it follows that𝑛−𝑘 ≥ (𝛿−1)𝐿c+(𝐿−𝐿c)(𝑟+𝛿−1) ≥ 𝐿(𝛿−1)
(where the last inequality follows from 𝐿 ≥ 𝐿c), hence 𝛿−1 is an integer satisfying
the inequality 𝐿(𝛿 − 1) ≤ 𝑛 − 𝑘, and subsequently 𝛿 − 1 ≤ . The integer 𝑚
is the largest integer such that 𝑚 ≤ . Therefore, 𝛿 − 1 ≤ 𝑚. To show that
𝒆 is correctable it is enough to show that the erasures in the 𝐿c local codes can
be corrected, since in this case we have a nonerased information set for 𝒞, which
allows to correct the remaining erasures in 𝒆.

From Lemma 7, to correct 𝛿 − 1 + 𝜈 erasures in the 𝑗-th local code for all
𝑗 ∈ ℕ

c
, the number of global parities available, 𝛾tot + �̄�, must be

𝛾tot + �̄� ≥
c

𝜈 = 𝑚 𝑡 +𝑚(𝐿c − 𝑡) − 𝐿c(𝛿 − 1) if 𝑡 ≤ 𝐿c,
𝑚 𝐿c − 𝐿c(𝛿 − 1) if 𝑡 > 𝐿c,

� (III.45)

F Proof of Theorem 5 149

where 𝛾tot is the number of global parities available in the (𝐿c + 1)-th, … , 𝐿-th
partitions and �̄� = 𝑛 − 𝑛c𝐿 is the number of global parities in the (𝐿 + 1)-th
partition. By counting the number of global parities not erased in 𝐿−𝐿c partitions,
we get

𝛾tot =
(𝑛c −𝑚)(𝐿 − 𝐿c) if 𝑡 ≤ 𝐿c,
(𝑛c −𝑚)(𝑡 − 𝐿c) + (𝑛c −𝑚)(𝐿 − 𝑡) if 𝑡 > 𝐿c.

� (III.46)

By substituting (III.46) into (III.45), we get (after performing some simple arith-
metic) the condition

𝑛 − 𝑘 −𝑚𝐿 ≥ 𝑡,
which is valid for both cases of 𝑡 (𝑡 ≤ 𝐿c and 𝑡 > 𝐿c). By definition of 𝑡 and𝑚, the
above inequality is met with equality, and it follows that 𝒆 is a correctable erasure
pattern.

F.1 Proof of Step a)

Let �̃�,𝑾, 𝒁, and 𝑶 be submatrices of 𝑬 as shown in (III.25). We begin the proof
by proving that each of the 𝑛c𝐿 rows of the matrix ��̃� ∣ 𝒁 � are correctable erasure
patterns, where �̃� is defined in (III.26). This is proved by induction on the row
partitions of ��̃� ∣ 𝒁 �.

Base Case. Consider the first row partition of ��̃� ∣ 𝒁 �, given by

𝝅 𝝅 ⋯ 𝝅 𝟎
c× ̄ .

For each row vector 𝒆(), 𝑖 ∈ ℕ
c
, in this row partition, where the subscript 𝑖 indi-

cates the row index and the superscript the row partition, consider the subvectors
𝒆()
, , … , 𝒆()

, . From Step a) in Section 6.3, for all 𝑖 ∈ ℕ
c
, the 𝑗-th subvectors 𝒆()

,
have support of cardinality |𝜒(𝒆()

,)| = 𝑚 for all 𝑗 ∈ ℕ , where 𝑡 = (𝑛−𝑘) mod 𝐿,
|𝜒(𝒆()

,)| = 𝑚 for 𝑗 ∈ ℕ ∶ , and |𝜒(𝒆()
,)| = 0. Thus, the vectors 𝒆() in the first

row partition of ��̃� ∣ 𝒁 � have the same structure as the erasure pattern 𝒆 from
Lemma 8 and are therefore erasure patterns that are correctable by 𝒞. Note that
the number of global parities available in the (𝐿c + 1)-th, … , 𝐿-th subvectors of
vector 𝒆(), 𝛾()

tot , is 𝛾()
tot = 𝛾tot, hence 𝛾()

tot + �̄� = 𝛾tot + �̄� ≥ ∑ c 𝜈 and from the
proof of Lemma 8 the error pattern 𝒆() is correctable.

Inductive Step. Assume that the vectors 𝒆(), 𝑖 ∈ ℕ
c
, in the 𝑙-th row partition

of ��̃�|𝒁 � are correctable by 𝒞 and that each local code 𝒞|𝒮 can correct 𝛿−1+𝜈()
erasures, 𝑗 ∈ ℕ

c
. The row vectors are taken from the matrix

𝝅 () 𝝅 () ⋯ 𝝅 () 𝟎
c× ̄ ,

where 𝜎 ≜ (𝐿 (𝐿 − 1)⋯1) denotes a cycle whose mapping is 𝐿 ↦ (𝐿 − 1) ↦ ⋯ ↦
1 ↦ 𝐿. The (𝐿 + 1)-th subvectors satisfy |𝜒(𝒆(),)| = 0. From Lemma 7, the

150 P III

underlying characteristic of the vectors 𝒆() is that they are correctable erasure
patterns if the number of global parities not erased in 𝒆(), 𝛾()tot + �̄�, is larger than
or equal to ∑ c 𝜈().
In the (𝑙 + 1)-th row partition of ��̃�|𝒁 �, the 𝑛c rows have the form

𝝅 () 𝝅 () ⋯ 𝝅 () 𝟎
c× ̄ .

Due to the cyclic shifts, for 𝑗 ∈ ℕ , all the 𝑗-th subvectors of the vectors 𝒆() in
row partition 𝑙 + 1, 𝑙 ∈ ℕ , have support size |𝜒(𝒆()

,)| = |𝜒(𝒆(), ())|. Thus,
there exist two indices 𝑗 , 𝑗 ∈ ℕ , 𝑗 ≠ 𝑗 , such that

|𝜒(𝒆()
,)| − |𝜒(𝒆(),)| = |𝜒(𝒆(),)| − |𝜒(𝒆()

,)|,
|𝜒(𝒆()

,)| = |𝜒(𝒆(),)|, ∀𝑗 ∈ ℕ ⧵ {𝑗 , 𝑗 }.
(III.47)

One can see that there are at most 4 (depending on 𝑡 and 𝐿c) choices for the pair
(𝑗 , 𝑗) as follows.

Case 1. 𝑗 , 𝑗 ∈ ℕ : From (III.47), it follows that 𝜈() − 𝜈() = 𝜈() − 𝜈(),
𝜈() = 𝜈(), and 𝛾()tot = 𝛾()

tot . Thus, we have ∑ c 𝜈() = ∑ c 𝜈() = 𝛾()tot + �̄� =
𝛾()
tot + �̄�.
Case 2. 𝑗 , 𝑗 ∈ ℕ

c ∶ : From (III.47), it follows that 𝛾()
tot = 𝛾()tot and∑ c 𝜈() =

∑ c 𝜈(). Therefore, ∑ c 𝜈() = 𝛾()
tot + �̄�.

Case 3. 𝑗 ∈ ℕ
c
, 𝑗 ∈ ℕ

c ∶ : From (III.47), it follows that 𝜈()−𝜈() = 𝛾()
tot −

𝛾()tot . Moreover, it can be seen that ∑ , ∈ℕ c
𝜈() = ∑ , ∈ℕ c

𝜈(). Hence, we
have

c

𝜈() =
, ∈ℕ c

𝜈() + 𝜈()

=
, ∈ℕ c

𝜈() + (𝜈() − 𝜈()) + 𝜈()

=
, ∈ℕ c

𝜈() + (𝛾()
tot − 𝛾()tot) + 𝜈()

=
c

𝜈() + (𝛾()
tot − 𝛾()tot)

()= 𝛾()tot + �̄� + (𝛾()
tot − 𝛾()tot)

= 𝛾()
tot + �̄�,

where (𝑏) holds since ∑ c 𝜈() = 𝛾()tot + �̄�.

F Proof of Theorem 5 151

Case 4. 𝑗 ∈ ℕ
c ∶ , 𝑗 ∈ ℕ

c
: Following an argumentation similar to Case 3, we

have ∑ c 𝜈() = 𝛾()
tot + �̄�.

In each of the above cases we see that the condition 𝛾tot + �̄� ≥ ∑ c 𝜈() is
satisfied (with equality). From the proof of Lemma 8, the 𝑛c rows in the (𝑙+1)-th
row partition of ��̃�|𝒁 � are correctable by 𝒞, which completes the inductive step.

The rows of (𝑾 ∣ 𝑶) as shown in Step a) in Section 6.3 have support corre-
sponding to only the parity symbols of 𝒞. Thus, these rows are all correctable
by 𝒞, and it follows from the above arguments that each row of 𝑬 is an erasure
pattern that is correctable by 𝒞.

F.2 Proof of Step b)

We now address the second part of the proof. Note that the column coordinates
in 𝒫 , 𝑗 ∈ ℕ , have column weight 𝑛 − 𝑘 + �̄� after Step a). Step b) involves the
swapping of one entries from these coordinates with zero entries in the column
coordinates of 𝒁. The swapping is done to ensure that the column weight of
the columns in 𝒫 , 𝑗 ∈ ℕ , is reduced to 𝑛 − 𝑘, while those of the columns of
𝒁 are increased to 𝑛 − 𝑘 − �̄�. Since 𝑶 is an all-one matrix, the columns of 𝑬 in
𝒫 have also weight 𝑛 − 𝑘. It is possible to show that such a swapping always
exists. Overall, the resulting matrix 𝑬 is (𝑛 − 𝑘)-column regular. To ensure that
the erasure patterns are correctable, we use Lemma 7. For each row, we need to
satisfy

c

𝜈 ≤ 𝛾tot + �̄�. (III.48)

Clearly, if for a certain row of (�̃� ∣ 𝒁) a one from a column from a column par-
tition in ℕ

c ∶ (corresponding to �̃�) is swapped with a zero in a column from
partition 𝐿 + 1 (corresponding to 𝒁), then the resulting erasure pattern is still
correctable by 𝒞 as (III.48) is still valid. On the other hand, for 𝑗 ∈ ℕc, if for a cer-
tain row of (�̃� ∣ 𝒁) a one from the 𝑗-th column partition is swapped with a zero
in the (𝐿 + 1)-th column partition, then such a row is still a correctable erasure
pattern provided that 𝜈 > 0 before the swap. This is easy to see as the swapping
procedure reduces 𝜈 by one and reduces �̄� by one. Thus, (III.48) is still satisfied.
From the aforementioned arguments and the fact that each row of any row par-
tition of (�̃� ∣ 𝒁) has at most �̄� swaps of ones occurring from the set of ℕ column
partitions and zeroes from the (𝐿+1)-th partition, valid swaps are possible if and
only if

c

𝜈 +
c

𝜌 ≥ �̄�. (III.49)

152 P III

As 𝜈 = 𝜌 − (𝛿 − 1), the left hand side of (III.49) can be lowerbounded as

c

𝜈 +
c

𝜌 = 𝜌 − 𝐿c(𝛿 − 1) ≥ 𝜌 − 𝐿(𝛿 − 1) = 𝑛 − 𝑘 − 𝐿(𝛿 − 1).

(III.50)

From (III.50), 𝑘 = 𝐿c𝑟, and �̄� = 𝑛 − 𝐿(𝑟 + 𝛿 − 1), (III.49) reduces to 𝐿 ≥ 𝐿c. By
definition, this is always true. Thus, there exist �̄� valid swaps from each row of
each row partition of (�̃� ∣ 𝒁) that ensure that the resulting erasure patterns are
still correctable by 𝒞.

Each of the �̄� iterations of the systematic procedure in Step b) assumes that
in the first row partition there exists a valid swap. Over all iterations, this means
that there should exist at most �̄� valid swaps in any row of the row partition.
From the discussion above, this is clearly true. This means that all rows in this
partition are correctable erasure patterns. For the remainder row partitions, the
column indices from where ones are swapped correspond to cyclic shifts of the
indices from the first row partition. From (III.26), it is seen that �̃� has a cyclic
structure. Therefore, the swaps in the 𝑖-th row partition ensure that each row is
still a correctable erasure pattern. This completes the proof.

G Proof of Theorem 7

To prove the theorem we need the following lemma.

Lemma 9. Let 𝒞 be an [𝑛 = 2𝑛 , 𝑘 = 𝑘 + 1] binary code constructed from an
[𝑛 , 𝑘] code 𝒰 through the (𝒰 ∣ 𝒰 + 𝒱) construction, where 𝒱 is an [𝑛, 1] binary
repetition code. The generator matrix 𝑮𝒞 of 𝒞 is given in (III.36). Let �̄� = 𝒞 and
𝑮�̄� = 𝑮𝒞. Then, the code �̃� = 𝒞 ∘ �̄� is a vector space of dimension

dim(�̃�) ≤ 𝑘 + 𝑛 + 1 if 𝑛 − 𝑘 ≤ � �,
2𝑘 + � � + 1 otherwise.

� (III.51)

Proof. From Definition 4, we know that �̃� ∈ �̃� has the form �̃� = (𝑐 �̄� , … , 𝑐 �̄�),
where 𝒄 = (𝑐 , … , 𝑐) ∈ 𝒞 and �̄� = (�̄� , … , �̄�) ∈ �̄�. Considering 𝑮𝒞 = (𝑔 ,) and
𝑮�̄� = (𝑔 ̄

,), the vector space �̃� is spanned by the row space of

𝑮�̃� = ⎛

⎝

𝑔 , 𝒈 ̄ 𝑔 , 𝒈 ̄ ⋯ 𝑔 , 𝒈 ̄

𝑔 , 𝒈 ̄ 𝑔 , 𝒈 ̄ ⋯ 𝑔 , 𝒈 ̄

⋮ ⋮ ⋯ ⋮
𝑔 , 𝒈 ̄ 𝑔 , 𝒈 ̄ ⋯ 𝑔 , 𝒈 ̄

⎞

⎠

, (III.52)

where the vector 𝒈 ̄, 𝑗 ∈ ℕ , denotes the 𝑗-th column vector of 𝑮�̄�. The
matrix 𝑮�̃� is a matrix consisting of 𝑘 row vectors (corresponding to code-
words of �̃�) of length 𝑛. We divide 𝑮�̃� into 𝑘 submatrices 𝑮�̃�, where 𝑮�̃� =
(𝑔 , 𝒈 ̄|𝑔 , 𝒈 ̄| … |𝑔 , 𝒈 ̄), 𝑖 ∈ ℕ (see (III.52)). From (III.36) and since 𝑮𝒞 = 𝑮�̄�,

G Proof of Theorem 7 153

we have 𝑔 , = 𝑔 ̄
, = 0, 𝑗 ∈ ℕ , and 𝑔 , = 𝑔 ̄

, = 1, 𝑗 ∈ ℕ ∶ . Therefore,
(III.52) can be expanded to

𝑮�̃� =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝑔 ,
⎛
⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,

0

⎞
⎟

⎠

⋯ 𝑔 ,
⎛
⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,
0

⎞
⎟

⎠

𝑔 ,
⎛
⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,
1

⎞
⎟

⎠

⋯ 𝑔 ,
⎛
⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,

1

⎞
⎟

⎠

𝑔 ,
⎛
⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,

0

⎞
⎟

⎠

⋯ 𝑔 ,
⎛
⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,
0

⎞
⎟

⎠

𝑔 ,
⎛
⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,
1

⎞
⎟

⎠

⋯ 𝑔 ,
⎛
⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,

1

⎞
⎟

⎠
⋮ ⋯ ⋮ ⋮ ⋯ ⋮

0⎛⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,

0

⎞
⎟

⎠

⋯ 0⎛⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,
0

⎞
⎟

⎠

1⎛⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,
1

⎞
⎟

⎠

⋯ 1⎛⎜

⎝

𝑔 ̄
,

𝑔 ̄
,
⋮

𝑔 ̄
,

1

⎞
⎟

⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

(III.53)

Furthermore, let 𝑮𝒰 = (𝑔 ,) be the generator matrix of𝒰. From (III.36), we have
𝑔 , = 𝑔 ̄

, = 𝑔 , for 𝑖 ∈ ℕ and 𝑗 ∈ ℕ . For 𝑖, 𝑗 ∈ ℕ , we denote the 𝑖-th row of
the 𝑗-th submatrix 𝑮�̃� as𝒘(). For 𝑖 ∈ ℕ , the 𝑖-th row of the 𝑖-th submatrix 𝑮�̃�
is given as

𝒘() = (𝑔 , 𝑔 ̄
, , 𝑔 , 𝑔 ̄

, , … , 𝑔 , 𝑔 ̄
,). (III.54)

Since 𝑔 ̄
, = 𝑔 , ∈ GF(2), (III.54) reduces to 𝒘() = (𝑔 , , 𝑔 , , … , 𝑔 ,). Further-

more, from (III.36) we see that 𝑔 , = 𝑔 , = 𝑔 , , 𝑗 ∈ ℕ , 𝑖 ∈ ℕ . Therefore,
these 𝑘 = 𝑘 − 1 rows form the 𝑘 basis vectors of the code space (𝒰,𝒰) and can
be arranged in a matrix as

𝑮𝒰 𝑮𝒰 . (III.55)

The 𝑘-th row of 𝑮�̃� can be written as

𝒘() = (0, 0, … , 0, 𝑔 , , 𝑔 , , … , 𝑔 ,)
()= (0, 0, … , 0, 𝑔 , , 𝑔 , , … , 𝑔 ,),

where (𝑐) results from the structure of 𝑮𝒞 in (III.36). Stacking together the 𝑘-th
row of all 𝑘 submatrices 𝑮�̃�, 𝑖 ∈ ℕ , results in the 𝑘 row vectors

𝟎 × 𝑮𝒰 . (III.56)

154 P III

In a similar way, the rows 𝒘(), 𝑖 ∈ ℕ , of the 𝑘-th submatrix 𝑮�̃� result in the
matrix

𝟎 × 𝑮𝒰
𝟎 × 𝟏 ×

. (III.57)

Of the remaining (𝑘 − 1)(𝑘 − 2) rows in (III.53), since 𝒞 = �̄�, there exist � �
distinct rows as follows,

𝜣 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝑔 , 𝑔 ̄
, 𝑔 , 𝑔 ̄

, ⋯ 𝑔 , 𝑔 ̄
,

𝑔 , 𝑔 ̄
, 𝑔 , 𝑔 ̄

, ⋯ 𝑔 , 𝑔 ̄
,

⋮ ⋮ ⋯ ⋮
𝑔 , 𝑔 ̄

, 𝑔 , 𝑔 ̄
, ⋯ 𝑔 , 𝑔 ̄

,
𝑔 , 𝑔 ̄

, 𝑔 , 𝑔 ̄
, ⋯ 𝑔 , 𝑔 ̄

,
⋮ ⋮ ⋯ ⋮

𝑔 , 𝑔 ̄
, 𝑔 , 𝑔 ̄

, ⋯ 𝑔 , 𝑔 ̄
,

⋮ ⋮ ⋯ ⋮
𝑔 , 𝑔 ̄

, 𝑔 , 𝑔 ̄
, ⋯ 𝑔 , 𝑔 ̄

,

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

Furthermore, from the construction of 𝒞 in (III.36), we have (𝑔 , , … , 𝑔 ,) =
(𝑔 , , … , 𝑔 ,) = (𝑔 , , … , 𝑔 ,), 𝑖 ∈ ℕ and because �̄� = 𝒞, we have
(𝑔 ̄

, , … , 𝑔 ̄
,) = (𝑔 ̄

, , … , 𝑔 ̄
,). Therefore,

𝜣 = 𝜽 � �× 𝜽 � �× , (III.58)

where 𝜽 � �× is a binary matrix of size � � × 𝑛 . From (III.55)–(III.58), 𝑮�̃� can
be written as

𝑮�̃� =
⎛
⎜⎜

⎝

𝑮𝒰 𝑮𝒰
𝟎 × 𝑮𝒰
𝟎 × 𝑮𝒰
𝜽 � �× 𝜽 � �×
𝟎 × 𝟏 ×

⎞
⎟⎟

⎠

.

Using Gaussian elimination, 𝑮�̃� can be reduced to

𝑮�̃� =
⎛
⎜⎜

⎝

𝑮𝒰 𝟎 ×
𝟎 × 𝑮𝒰
𝟎 × 𝟎 ×
𝜽 � �× 𝜽 � �×
𝟎 × 𝟏 ×

⎞
⎟⎟

⎠

. (III.59)

Let𝑮𝒰 = �𝑰 |𝑷 ×() �, where𝑷 ×() is the paritymatrix of size 𝑘 × (𝑛 − 𝑘).
We now count the number of independent rows in the matrix

𝑮𝒰
𝜽 � �×

=
𝑰 𝑷 ×()

𝜽 � �×
.

REFERENCES 155

Upon performing Gaussian elimination, we get

𝑰 𝑷 ×()
𝟎 � �× 𝜟 � �×()

,

where 𝜟 � �×() is a matrix of dimensions � � × (𝑛 − 𝑘) with elements in

GF(2). Hence, we have rank (𝜟) ≤ min � � �, (𝑛 − 𝑘) �. From this and (III.59),
we can easily see that

�̃� = rank �𝑮�̃� � = 𝑘 + 𝑘 + rank (𝜟) + 1 ≤ 𝑘 + 𝑛 + 1 if 𝑛 − 𝑘 ≤ � �,
2𝑘 + � � + 1 otherwise.

�

Lemma 9 gives an upper bound on the dimension of �̃�. In order to prove
dim(�̃�) < 𝑛, we check when the upper bound in (III.51) is at most 𝑛 − 1. For the
first case in (III.51), we need to show

�̃� ≤ 𝑘 + 𝑛 + 1 ≤ 2𝑛 − 1.

Clearly, this is true since 𝑛 ≥ 𝑘 +2 by assumption. For the second case in (III.51)
we have to show

�̃� ≤ 2𝑘 + �𝑘
2

� + 1 ≤ 2𝑛 − 1.

Since 𝑛 > � � + 𝑘 , the above inequality reduces to

�𝑘
2

� > 2.

Clearly, this is true for 𝑘 ∈ ℕ ∶ . In the following, we argue for 𝑘 ∈ ℕ . Since
𝑛 ≥ 𝑘 + 2 by assumption, we have

2𝑛 − 1 ≥ 2(𝑘 + 2) − 1 = 2𝑘 + 3 > 2𝑘 + �𝑘
2

� + 1,

for 𝑘 ∈ ℕ . Therefore, dim(�̃�) < 𝑛 for 𝑛 ≥ 𝑘 + 2.

References

[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information
retrieval,” in Proc. Annual IEEE Symp. Foundations Comp. Sci. (FOCS), Mil-
waukee, WI, Oct. 1995, pp. 41–50.

[2] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information
retrieval,” Journal of the ACM, vol. 45, no. 6, pp. 965–981, Nov. 1998.

156 P III

[3] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, “Breaking the
𝑂(𝑛 /()) barrier for information-theoretic private information retrieval,”
in Proc. Annual IEEE Symp. Foundations Comp. Sci. (FOCS), Vancouver, BC,
Canada, Nov. 2002, pp. 261–270.

[4] S. Yekhanin, “Towards 3-query locally decodable codes of subexponential
length,” Journal of the ACM, vol. 55, no. 1, pp. 1–16, Feb. 2008.

[5] K. Efremenko, “3-query locally decodable codes of subexponential length,” in
Proc. 41th Annual ACM Symp. Theory Comput. (STOC), Bethesda, MD, Jun.
2009, pp. 39–44.

[6] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their
applications,” in Proc. 36th Annual ACM Symp. Theory Comput. (STOC),
Chicago, IL, Jun. 2004, pp. 262–271.

[7] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of download
ensures perfectly private information retrieval,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Honolulu, HI, Jun./Jul. 2014, pp. 856–860.

[8] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval for
coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), HongKong, China,
Jun. 2015, pp. 2842–2846.

[9] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with low stor-
age overhead,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Hong Kong, China,
Jun. 2015, pp. 2852–2856.

[10] H. Sun and S. A. Jafar, “The capacity of private information retrieval,” IEEE
Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[11] K. Banawan and S. Ulukus, “The capacity of private information retrieval
from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1945–1956,
Mar. 2018.

[12] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information re-
trieval fromMDS coded data in distributed storage systems,” 2018, to app. in
IEEE Trans. Inf. Theory.

[13] H. Sun and S. A. Jafar, “Private information retrieval from MDS coded data
with colluding servers: Settling a conjecture by Freij-Hollanti et al.” IEEE
Trans. Inf. Theory, vol. 64, no. 2, pp. 1000–1022, Feb. 2018.

[14] ——, “The capacity of robust private information retrieval with colluding
databases,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2361–2370, Apr. 2018.

[15] Q. Wang and M. Skoglund, “Linear symmetric private information retrieval
for MDS coded distributed storage with colluding servers,” Aug. 2017,
arXiv:1708.05673v1 [cs.IT]. [Online]. Available: https://arxiv.org/abs/1708.
05673

REFERENCES 157

[16] ——, “Secure symmetric private information retrieval from colluding
databases with adversaries,” Jul. 2017, arXiv:1707.02152v1 [cs.IT]. [Online].
Available: https://arxiv.org/abs/1707.02152

[17] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” IEEE
Trans. Inf. Theory, vol. 63, no. 9, pp. 5684–5698, Sep. 2017.

[18] I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed-Solomon codes:
Achieving the cut-set bound,” May 2017, arXiv:cs/1706.00112v1 [cs.IT].
[Online]. Available: https://arxiv.org/abs/1706.00112

[19] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade
space for access efficiency in reliable data storage systems,” in Proc. IEEE Int.
Symp. Net. Comp. Appl. (NCA), Cambridge, MA, Jul. 2007, pp. 79–86.

[20] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur, “XORing elephants: Novel erasure codes for big
data,” in Proc. 39th Very Large Data Bases Endowment (VLDB), Trento, Italy,
Aug. 2013, pp. 325–336.

[21] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in Windows Azure storage,” in Proc. USENIX
Annual Tech. Conf., Boston, MA, Jun. 2012.

[22] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with local
regeneration and erasure correction,” IEEE Trans. Inf. Theory, vol. 60, no. 8,
pp. 4637–4660, Aug. 2014.

[23] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE
Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.

[24] S. Kumar, E. Rosnes, and A. Graell i Amat, “Private information retrieval in
distributed storage systems using an arbitrary linear code,” in Proc IEEE Int.
Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017, pp. 1421–1425.

[25] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private infor-
mation retrieval from coded databases with colluding servers,” SIAM J. Appl.
Algebra and Geom., vol. 1, no. 1, pp. 647–664, Nov. 2017.

[26] R. Freij-Hollanti, O. Gnilke, C. Hollanti, A.-L. Horlemann-Trautmann,
D. Karpuk, and I. Kubjas, “Reed-Muller codes for private information
reterival,” in Proc. 10th Int. Workshop Coding Cryptography (WCC), Saint-
Petersburg, Russia, Sep. 2017.

[27] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
Amsterdam, The Netherlands: North-Holland, 1977.

[28] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, A.-L. Horlemann-Trautmann,
D. Karpuk, and I. Kubjas, “𝑡-private information retrieval schemes using
transitive codes,” Dec. 2017, arXiv:1712.02850v1 [cs.IT]. [Online]. Available:
https://arxiv.org/abs/1712.02850

158 P III

[29] V. K. Wei, “Generalized Hamming weights for linear codes,” IEEE Trans. Inf.
Theory, vol. 37, no. 5, pp. 1412–1418, Sep. 1991.

[30] R. A. Horn and C. R. Johnson,Matrix Analysis, 2nd ed. Cambridge Univer-
sity Press, 2013.

[31] I. S. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Trans. IRE Prof. Gro. Inf. Theory, vol. 4, no. 4, pp. 38–49, Sep. 1954.

[32] J. D. Key, T. P. McDonough, and V. C. Mavron, “Information sets and par-
tial permutation decoding for codes from finite geometries,” Finite Fields Th.
App., vol. 12, no. 2, pp. 232–247, Jun. 2006.

[33] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient scheme
for tolerating double disk failures in RAID architectures,” IEEE Trans. Com-
put., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[34] W. C. Huffman and V. Pless, Eds., Fundamentals of Error-Correcting Codes.
Cambridge, UK: Cambridge University Press, 2010.

[35] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inf. Theory,
vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[36] P. Delsarte, J. M. Goethals, and F. J. MacWilliams, “On generalized Reed-
Muller codes and their relatives,” Inf. Contr., vol. 16, no. 5, pp. 403–442, Jul.
1970.

[37] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. 2nd Int.
Symp. Turbo Codes & Rel. Topics (ISTC), Brest, France, Sep. 2000, pp. 543–
546.

[38] K. Yang and T. Helleseth, “On the minimum distance of array codes as LDPC
codes,” IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3268–3271, Dec. 2003.

[39] J. Hao and S.-T. Xia, “Constructions of optimal binary locally repairable
codes with multiple repair groups,” IEEE Commun. Lett., vol. 20, no. 6, pp.
1060–1063, Jun. 2016.

[40] E. Rosnes, M. A. Ambroze, and M. Tomlinson, “On the minimum/stopping
distance of array low-density parity-check codes,” IEEE Trans. Inf. Theory,
vol. 60, no. 9, pp. 5204–5214, Sep. 2014.

[41] C. Feyling, “Punctured maximum distance separable codes,” Electron. Lett.,
vol. 29, no. 5, pp. 470–471, Mar. 1993.

P IV

Asymmetry Helps: Improved Private Informa on Retrieval Pro-
tocols for Distributed Storage

Hsuan-Yin Lin, Siddhartha Kumar, Eirik Rosnes, and Alexandre Graell i Amat

In Proc. IEEE Information Theory Workshop (ITW), Guangzhou, China, Novem-
ber 2018.

The proofs of the theorems presented here were not included in the paper presented
at ITW. We will include these proofs in the extended version of the paper, titled
“On the Fundamental Limit of Private Information Retrieval for Coded Distributed
Storage”, for possible future publication in a journal.

The layout has been revised.

1 Introduction 161

Abstract

We consider private information retrieval (PIR) for dis-
tributed storage systems (DSSs) with noncolluding nodes
where data is stored using a non maximum distance sepa-
rable (MDS) linear code. It was recently shown that if data is
stored using a particular class of non-MDS linear codes, the
MDS-PIR capacity, i.e., the maximum possible PIR rate for
MDS-coded DSSs, can be achieved. For this class of codes,
we prove that the PIR capacity is indeed equal to the MDS-
PIR capacity, giving the first family of non-MDS codes for
which the PIR capacity is known. For other codes, we pro-
vide asymmetric PIR protocols that achieve a strictly larger
PIR rate compared to existing symmetric PIR protocols.

1 Introduc on

The concept of private information retrieval (PIR) was first introduced by Chor
et al. [1]. A PIR protocol allows a user to privately retrieve an arbitrary data item
stored in multiple servers (referred to as nodes in the sequel) without disclosing
any information of the requested item to the nodes. The efficiency of a PIR pro-
tocol is measured in terms of the total communication cost between the user and
the nodes, which is equal to the sum of the upload and download costs. In dis-
tributed storage systems (DSSs), data is encoded by an [𝑛, 𝑘] linear code and then
stored on 𝑛 nodes in a distributed manner. Such DSSs are referred to as coded
DSSs [2, 3].

One of the primary aims in PIR is the design of efficient PIR protocols from
an information-theoretic perspective. Since the upload cost does not scale with
the file size, the download cost dominates the total communication cost [3, 4].
Thus, the efficiency of a PIR protocol is commonly measured by the amount of
information retrieved per downloaded symbol, referred to as the PIR rate. Re-
cently, Sun and Jafar derived the maximum achievable PIR rate, the so-called PIR
capacity, for the case of DSSs with replicated data [5, 6]. In the case where the
data stored is encoded by an MDS storage code (the so-called MDS-coded DSS)
and no nodes collude, a closed-form expression for the PIR capacity, referred to
as theMDS-PIR capacity, was derived in [7].

In the earlier work [8–10], the authors focused on the properties of non-MDS
storage codes in order to achieve the MDS-PIR capacity. In particular, in [9, 10] it
was shown that the MDS-PIR capacity can be achieved for a special class of non-
MDS linear codes, which, with some abuse of language, we refer to as MDS-PIR
capacity-achieving codes (there might exist other codes outside of this class that
achieve the MDS-PIR capacity). However, it is still unknown whether the MDS-
PIR capacity is the best possible PIR rate that can be achieved for an arbitrarily
coded DSS. In particular, an expression for the PIR capacity for coded DSSs with
arbitrary linear storage codes is still missing.

In this paper, we first prove that the PIR capacity of coded DSSs that use the
class of MDS-PIR capacity-achieving codes introduced in [9] is equal to theMDS-

162 P IV

PIR capacity. We then address the fundamental question of what is themaximum
achievable PIR rate for an arbitrarily coded DSS. To this purpose, we mainly con-
sider non-MDS-PIR capacity-achieving codes. Most of the earlier works focus
on designing symmetric PIR protocols and it was shown in [5, 7, 11] that any PIR
scheme can be made symmetric for MDS-coded DSSs. However, this is in general
not the case for non-MDS codes. Specifically, we propose an asymmetric PIR pro-
tocol, Protocol A, that allows asymmetry in the responses from the storage nodes.
For non-MDS-PIR capacity-achieving codes, Protocol A achieves improved PIR
rates compared to the PIR rates of existing symmetric PIR protocols. Further-
more, we present an asymmetric PIR protocol, named Protocol B, that applies
to non-MDS-PIR capacity-achieving codes that can be written as a direct sum of
MDS-PIR capacity-achieving codes. Finally, we give an example showing that it
is possible to construct an improved (compared to Protocol A) asymmetric PIR
protocol. However, the protocol is code-dependent and strongly relies on find-
ing good punctured MDS-PIR capacity-achieving subcodes of the non-MDS-PIR
capacity-achieving code.

2 Preliminaries and System Model

2.1 Nota on and Defini ons

Wedenote byℕ the set of all positive integers and byℕ ≜ {1, 2, … , 𝑎}. Vectors are
denoted by lower case bold letters, matrices by upper case bold letters, and sets
by calligraphic upper case letters, e.g., 𝒙,𝑿, and𝒳 denote a vector, a matrix, and a
set, respectively. In addition,𝒳c denotes the complement of a set𝒳 in a universe
set. For a given index set 𝒮, we also write 𝑋𝒮 and 𝑌𝒮 to represent �𝑋() ∶ 𝑚 ∈ 𝒮 �
and �𝑌 ∶ 𝑙 ∈ 𝒮 �, respectively. The fonts of random and deterministic quantities
are not distinguished typographically since it should be clear from the context.
We denote a submatrix of 𝑿 that is restricted in columns by the set ℐ by 𝑿|ℐ. The
function LCM(𝑛 , 𝑛 , … , 𝑛) computes the lowest common multiple of 𝑎 positive
integers 𝑛 , 𝑛 , … , 𝑛 . The function H (⋅) represents the entropy of its argument
and I (⋅ ; ⋅) denotes the mutual information of the first argument with respect to
the second argument. (⋅) denotes the transpose of its argument. We use the
customary code parameters [𝑛, 𝑘] to denote a code 𝒞 over the finite field GF(𝑞)
of blocklength 𝑛 and dimension 𝑘. A generator matrix of 𝒞 is denoted by 𝑮𝒞,
while 𝒞𝑮 represents the corresponding code generated by 𝑮. The function 𝜒(𝒙)
denotes the support of a vector 𝒙, while the support of a code 𝒞 is defined as the
set of coordinates where not all codewords are zero. A set of coordinates of 𝒞,
ℐ ⊆ ℕ , of size 𝑘 is said to be an information set if and only if 𝑮𝒞|ℐ is invertible.
The 𝑠-th generalized Hamming weight of an [𝑛, 𝑘] code 𝒞, denoted by 𝑑𝒞, 𝑠 ∈ ℕ ,
is defined as the cardinality of the smallest support of an 𝑠-dimensional subcode
of 𝒞.

2 Preliminaries and SystemModel 163

2.2 SystemModel

We consider a DSS that stores 𝑓 files 𝑿(), … , 𝑿(), where each file 𝑿() = (𝑥()
,),

𝑚 ∈ ℕ , can be seen as a random 𝛽 × 𝑘 matrix over GF(𝑞) with 𝛽, 𝑘 ∈ ℕ. Assume
that each entry 𝑥()

, of 𝑿() is chosen independently and uniformly at random
from GF(𝑞),𝑚 ∈ ℕ . Thus,

H 𝑿() = L, ∀𝑚 ∈ ℕ ,
H 𝑿(), ..., 𝑿() = 𝑓L (in 𝑞-ary units),

where L ≜ 𝛽 ⋅ 𝑘. Each file is encoded using a linear code as follows. Let
𝒙() = �𝑥()

, , … , 𝑥()
, �, 𝑖 ∈ ℕ , be a message vector corresponding to the 𝑖-th

row of 𝑿(). Each 𝒙() is encoded by an [𝑛, 𝑘] code 𝒞 over GF(𝑞) into a length-
𝑛 codeword 𝒄() = �𝑐()

, , … , 𝑐()
, �. The 𝛽𝑓 generated codewords 𝒄() are then

arranged in the array 𝑪 = �(𝑪()) |… |(𝑪()) � of dimensions 𝛽𝑓 × 𝑛, where
𝑪() = �(𝒄()) |… |(𝒄()) � . The code symbols 𝑐()

, , … , 𝑐()
, , 𝑚 ∈ ℕ , for all 𝑓

files are stored on the 𝑙-th storage node, 𝑙 ∈ ℕ .

2.3 Privacy Model

To retrieve file 𝑿() from the DSS, the user sends a random query 𝑄() to the
𝑙-th node for all 𝑙 ∈ ℕ . In response to the received query, node 𝑙 sends the
response 𝐴() back to the user. 𝐴() is a deterministic function of 𝑄() and the
code symbols stored in the node.

Definition 1. Consider a DSS with 𝑛 noncolluding nodes storing 𝑓 files. A user
who wishes to retrieve the 𝑚-th file sends the queries 𝑄(), 𝑙 ∈ ℕ , to the storage
nodes, which return the responses 𝐴(). This scheme achieves perfect information-
theoretic PIR if and only if

Privacy: I �𝑚;𝑄(), 𝐴(), 𝑿(), … , 𝑿() � = 0, ∀𝑙 ∈ ℕ , (IV.1)

Recovery: H �𝑿() �𝐴(), … , 𝐴(), 𝑄(), … , 𝑄() � = 0. (IV.2)

2.4 PIR Rate and Capacity

Definition 2. The PIR rate of a PIR protocol, denoted by R, is the amount of infor-
mation retrieved per downloaded symbol, i.e., R≜

D
, whereD is the total number

of downloaded symbols for the retrieval of a single file.

We will write R(𝒞) to highlight that the PIR rate depends on the underlying
storage code 𝒞. It was shown in [7] that for the noncolluding case and for a given
number of files 𝑓 stored using an [𝑛, 𝑘]MDS code, the MDS-PIR capacity is

C
[,] ≜ 𝑛 − 𝑘

𝑛 1 − �𝑘
𝑛

� , (IV.3)

164 P IV

where superscript “[𝑛, 𝑘]” indicates the code parameters of the underlying MDS
storage code. When the number of files 𝑓 tends to infinity, (IV.3) reduces to

C
[,] ≜ lim

→
C
[,] = 𝑛 − 𝑘

𝑛 ,

which we refer to as the asymptotic MDS-PIR capacity. Note that for the case of
non-MDS linear codes, the PIR capacity is unknown.

2.5 MDS-PIR Capacity-Achieving Codes

In [9], two symmetric PIR protocols for coded DSSs, named Protocol 1 and Pro-
tocol 2, were proposed and shown to achieve the MDS-PIR capacity for certain
important classes of non-MDS codes. Their PIR rates depend on the following
property of the underlying storage code 𝒞.

Definition 3. Let 𝒞 be an arbitrary [𝑛, 𝑘] code. A 𝜈 × 𝑛 binary matrix 𝜦 , (𝒞) is
said to be a PIR achievable ratematrix for𝒞 if the following conditions are satisfied.

1. The Hamming weight of each column of 𝜦 , is 𝜅, and

2. for each matrix row 𝝀 , 𝑖 ∈ ℕ , 𝜒(𝝀) always contains an information set.

The following theorem gives the achievable PIR rate of Protocol 1 from [9,
Thm. 1].

Theorem 1. Consider a DSS that uses an [𝑛, 𝑘] code 𝒞 to store 𝑓 files. If a PIR
achievable rate matrix 𝜦 , (𝒞) exists, then the PIR rate

R , S(𝒞) ≜
(𝜈 − 𝜅)𝑘

𝜅𝑛 1 − �𝜅
𝜈

� (IV.4)

is achievable.

In (IV.4), we use subscript S to indicate that this PIR rate is achievable by the
symmetric Protocol 1 in [9]. Define R ,S(𝒞) as the limit of R , S(𝒞) as the number
of files 𝑓 tends to infinity, i.e., R , S(𝒞) ≜ lim → R , S(𝒞) = () . The asymptotic
PIR rate R ,S(𝒞) is also achieved by the file-independent Protocol 2 from [9].

Corollary 12. If a PIR achievable rate matrix 𝜦 , (𝒞)with = exists for an [𝑛, 𝑘]
code 𝒞, then the MDS-PIR capacity (IV.3) is achievable.

Definition 4. A PIR achievable rate matrix 𝜦 , (𝒞) with = for an [𝑛, 𝑘] code 𝒞
is called an MDS-PIR capacity-achieving matrix, and 𝒞 is referred to as an MDS-
PIR capacity-achieving code.

In the following, we briefly state a main result for Protocol 1 and Protocol 2
from [9] and compare the required number of stripes and download cost of these
protocols.

3 PIR Capacity for MDS-PIR Capacity-Achieving Codes 165

Theorem 2. If an MDS-PIR capacity-achieving matrix exists for an [𝑛, 𝑘] code 𝒞
with = , then the PIR rates C[,] and C

[,] are achievable by Protocol 1 and
Protocol 2 from [9], respectively, using the corresponding required 𝛽 andD. From
Definition 2, we have

𝑛D
𝛽 =

𝑘 �C[,] � for Protocol 1,

𝑘 �C[,] � for Protocol 2.
� (IV.5)

Furthermore, the smallest number of stripes 𝛽 of Protocol 1 and Protocol 2 is equal
to 𝜈 and LCM(,) , respectively.

The following theorem from [9, Thm. 3] provides a necessary condition for the
existence of an MDS-PIR capacity-achieving matrix.

Theorem 3. If an MDS-PIR capacity-achieving matrix exists for an [𝑛, 𝑘] code 𝒞,
then 𝑑𝒞 ≥ 𝑠, ∀ 𝑠 ∈ ℕ .

3 PIR Capacity for MDS-PIR Capacity-Achieving Codes

In this section, we prove that the PIR capacity of MDS-PIR capacity-achieving
codes is equal to the MDS-PIR capacity.

Theorem 4. Consider a DSS that uses an [𝑛, 𝑘]MDS-PIR capacity-achieving code
𝒞 to store 𝑓 files. Then, the maximum achievable PIR rate over all possible PIR
protocols, i.e., the PIR capacity, is equal to the MDS-PIR capacity C[,] in (IV.3).

Proof. See Appendix A.

Theorem 4 provides an expression for the PIR capacity for the family of MDS-
PIR capacity-achieving codes (i.e., (IV.3)). Moreover, for any finite number of files
𝑓 and in the asymptotic case where 𝑓 tends to infinity, the PIR capacity can be
achieved using Protocols 1 and 2 from [9], respectively.

4 Asymmetry Helps: Improved PIR Protocols

In this section, we present three asymmetric PIR protocols for non-MDS-PIR
capacity-achieving codes, illustrating that asymmetry helps to improve the PIR
rate. By asymmetry we simply mean that the number of symbols downloaded
from the different nodes is not the same, i.e., for any fixed𝑚 ∈ ℕ , the entropies
H(𝐴()), 𝑙 ∈ ℕ , may be different. This is in contrast to the case of MDS codes,
where any asymmetric protocol can be made symmetric while preserving its PIR
rate [5, 7, 11]. We start with a simple motivating example showing that the PIR
rate of Protocol 1 from [9] can be improved for some underlying storage codes.

166 P IV

Node 1 Node 2 Node 3 Node 4 Node 5

𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() ,

𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() ,

ro
un

d
1

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

re
pe
ti
ti
on

1

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

rnd. 2 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ ,
𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() ,
𝑦()

() , 𝑦()
() , 𝑦()

() , 𝑦()
() , 𝑦()

() ,

ro
un

d
1

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

re
pe
ti
ti
on

2

𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ , 𝑦()

⋅ , 𝑦()
⋅ ,

rnd. 2 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ , 𝑦()
⋅ , + 𝑦()

⋅ ,

Table IV.1: Protocol 1 with a [5, 3] non-MDS-PIR capacity-achieving code for 𝑓 = 2.

4.1 Protocol 1 From [9] is Not Op mal in General

Example 1. Consider the [5, 3] code 𝒞 with generator matrix

𝑮 =
1 0 0 1 0
0 1 0 1 0
0 0 1 0 1

.

The smallest possible value of for which a PIR achievable rate matrix exists is
and a corresponding PIR achievable rate matrix is

𝜦 , =
0 1 1 1 1
1 0 0 1 1
1 1 1 0 0

.

It is easy to verify that 𝜦 , above is a PIR achievable rate matrix for code 𝒞. Thus,
the largest PIR rate for 𝑓 = 2 files with Protocol 1 from [9] is R , S = ⋅ = . In
Table IV.1 (taken from [9, Sec. IV]), we list the downloaded sums of code symbols
when retrieving file𝑿() and 𝑓 = 2 files are stored. In the table, for each𝑚 ∈ ℕ and
𝛽 = 𝜈 = 3 , the interleaved code array𝒀() with row vectors 𝒚() = 𝒄()

(), 𝑖 ∈ ℕ ,
is generated (according to Protocol 1 from [9]) by a randomly selected permutation
function 𝜋(⋅). Observe that since {2, 3, 4} ⊂ 𝜒(𝝀𝟏) = {2, 3, 4, 5} is an information
set of 𝒞, the five sums of

�𝑦()
() , , 𝑦

()
() , , 𝑦

()
⋅ , , 𝑦()

⋅ , + 𝑦()
⋅ , , 𝑦()

⋅ , �

are not necessarily required to recover 𝑿(). For privacy concerns, notice that the
remaining sums of code symbols from the 5-th node would be

�𝑦()
⋅ , , 𝑦()

() , , 𝑦
()
⋅() , , 𝑦

()
⋅ , , 𝑦()

⋅ , + 𝑦()
⋅ , �.

This ensures the privacy condition, since for every combination of files, the user
downloads the same number of linear sums. This shows that by allowing asym-
metry in the responses from the storage nodes, the PIR rate can be improved to

= = , which is much closer to the MDS-PIR capacity C[,] = = .

4 Asymmetry Helps: Improved PIR Protocols 167

Example 1 indicates that for a coded DSS using a non-MDS-PIR capacity-
achieving code, there may exist an asymmetric PIR scheme that improves the
PIR rate of the symmetric Protocol 1 from [9].

4.2 Protocol A: A General Asymmetric PIR Protocol

In this subsection, we show that for non-MDS-PIR capacity-achieving codes, by
discarding the redundant coordinates that are not required to form an informa-
tion set within 𝜒(𝝀), 𝑖 ∈ ℕ , it is always possible to obtain a larger PIR rate
compared to that of Protocol 1 from [9].

Theorem 5. Consider a DSS that uses an [𝑛, 𝑘] code 𝒞 to store 𝑓 files. If a PIR
achievable rate matrix 𝜦 , (𝒞) exists, then the PIR rate

R , A(𝒞) ≜ �1 − 𝜅
𝜈

� 1 − �𝜅
𝜈

� (IV.6)

is achievable.

Proof. See Appendix B.

We will make use of the following lemma from [9, Lem. 2].

Lemma 1. If a matrix 𝜦 , (𝒞) exists for an [𝑛, 𝑘] code 𝒞, then we have

𝜅
𝜈 ≥ 𝑘

𝑛,

where equality holds if 𝜒(𝝀), 𝑖 ∈ ℕ , are all information sets.

Proposition 1 can be easily verified using Lemma 1.

Proposition 5. Consider a DSS that uses an [𝑛, 𝑘] code 𝒞 to store 𝑓 files. Then,
R , S(𝒞) ≤ R , A(𝒞) ≤ C

[,] with equality if and only if 𝒞 is an MDS-PIR capacity-
achieving code.

Proof. The result follows since

R , S(𝒞) =
(𝜈 − 𝜅)𝑘

𝜅𝑛 1 − �𝜅
𝜈

�

≤ (𝜈 − 𝜅)𝑘
𝜅𝑛 − (𝜅𝑛 − 𝜈𝑘) 1 − �𝜅

𝜈
� (IV.7)

= �1 − 𝜅
𝜈

� 1 − �𝜅
𝜈

� = R , A(𝒞)

= 1 + 𝜅
𝜈 +⋯+ �𝜅

𝜈
� (IV.8)

≤ 1 + 𝑘
𝑛 +⋯+ �𝑘

𝑛
� = C

[,],

where both (IV.7) and (IV.8) hold since ≥ .

168 P IV

In the following, we refer to the asymmetric PIR protocol that achieves the PIR
rate in Theorem 5 as Protocol A (thus the subscriptA in R ,A(𝒞) in (IV.6)). Similar
to Theorem 1, there also exists an asymmetric file-independent PIR protocol that
achieves the asymptotic PIR rate R , A(𝒞) ≜ lim → R , A(𝒞) = 1− andwe simply
refer to this protocol as the file-independent Protocol A.1, Λ , (𝒞) can be used for
both the file-dependent Protocol A and the file-independent Protocol A.

4.3 Protocol B: AnAsymmetric PIR Protocol for a Special Class of Non-MDS-
PIR Capacity-Achieving Codes

In this subsection, we focus on designing an asymmetric PIR protocol, referred to
as Protocol B, for a special class of [𝑛, 𝑘] non-MDS-PIR capacity-achieving codes,
where the code is isometric to a direct sum of𝑃 ∈ ℕ MDS-PIR capacity-achieving
codes [12, Ch. 2]. Without loss of generality, we assume that the generator matrix
𝑮 of an [𝑛, 𝑘] non-MDS-PIR capacity-achieving code 𝒞 has the structure

𝑮 =
𝑮

𝑮
⋱

𝑮
, (IV.9)

where 𝑮 , of size 𝑘 × 𝑛 , is the generator matrix of a punctured MDS-PIR
capacity-achieving subcode 𝒞𝑮 , 𝑝 ∈ ℕ .

Theorem 6. Consider a DSS that uses an [𝑛, 𝑘] non-MDS-PIR capacity-achieving
code 𝒞 to store 𝑓 files. If the code 𝒞 is isometric to a direct sum of 𝑃 ∈ ℕ MDS-PIR
capacity-achieving codes as in (IV.9), then the PIR rate

R , B(𝒞) ≜
𝑘
𝑘

�C[,] � (IV.10)

is achievable. Moreover, the asymptotic PIR rate

R , B(𝒞) ≜ lim
→

R , B(𝒞) =
𝑘
𝑘

�C[,] � (IV.11)

is achievable by a file-independent PIR protocol.

Proof. See Appendix C.

We remark that Protocol B requires 𝛽 = LCM(𝛽 ,… , 𝛽) stripes, where 𝛽 ,
𝑝 ∈ ℕ , is the smallest number of stripes of either Protocol 1 or Protocol 2 for
a DSS that uses only the punctured MDS-PIR capacity-achieving subcode 𝒞𝑮 to
store 𝑓 files (see the proof in Appendix C and Theorem 2 for the smallest number
of stripes 𝛽).

Theorem 6 can be used to obtain a larger PIR rate for the non-MDS-PIR
capacity-achieving code in Example 1.

1As for Protocol 1 and Protocol 2 from [9, Remark 2]

4 Asymmetry Helps: Improved PIR Protocols 169

Subresponses Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

Subresponse 1 𝐼 + 𝑥()
, 𝐼 𝐼 + 𝑥()

, 𝐼 + 𝑥()
, 𝐼 + 𝑥()

, 𝐼 + 𝐼 𝐼 + 𝐼 𝐼 + 𝐼 + 𝐼 𝐼 + 𝐼 + 𝐼 + 𝐼
Subresponse 2 𝐼 𝐼 + 𝑥()

, 𝐼 𝐼 𝐼 + 𝐼 + 𝐼 + 𝐼

Table IV.2: Responses by Protocol C with a [9, 5] non-MDS-PIR capacity-achieving code

Example 2. Continuing with Example 1, by elementary matrix operations, the gen-
erator matrix of the [5, 3] code of Example 1 is equivalent to the generator matrix

1 0 1 0 0
0 1 1 0 0
0 0 0 1 1

= 𝑮
𝑮 .

It can easily be verified that both 𝒞𝑮 and 𝒞𝑮 are MDS-PIR capacity-achieving
codes. Hence, from Theorem 6, the asymptotic PIR rate

R , B =
2
3

1
1− + 1

3
1

1− = 3
8

is achievable. R , B = is strictly larger than both R ,S = and R ,A = .

4.4 Protocol C: Code-Dependent Asymmetric PIR Protocol

In this subsection, we provide a code-dependent, but file-independent asymmet-
ric PIR protocol for non-MDS-PIR capacity-achieving codes that cannot be de-
composed into a direct sum of MDS-PIR capacity-achieving codes as in (IV.9).
The protocol is tailor-made for each class of storage codes. The main principle of
the protocol is to further reduce the number of downloaded symbols by looking
at punctured MDS-PIR capacity-achieving subcodes. Compared to Protocol A,
which is simpler and allows for a closed-form expression for its PIR rate, Proto-
col C gives larger PIR rates.

The file-independent Protocol 2 from [9] utilizes interference symbols. An in-
terference symbol can be defined through a summation as [9]

𝐼 () ≜
()

𝑢 , 𝑥()
() , ,

where ℎ, ℎ ∈ ℕ and the symbols 𝑢 , are chosen independently and uniformly
at random from the same field as the code symbols.

Example 3. Consider a [9, 5] code 𝒞 with generator matrix

𝑮 = ⎛
⎜

⎝

1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 1 1 0
0 0 0 1 0 1 0 1 1
0 0 0 0 1 1 1 1 1

⎞
⎟

⎠

.

170 P IV

It has 𝑑𝒞 = 3 < ⋅ 2, thus it is not MDS-PIR capacity-achieving (see Theorem 3).
Note that this code cannot be decomposed into a direct sum of MDS-PIR capacity-
achieving codes as in (IV.9). The smallest for which a PIR achievable rate matrix
exists for this code is , and a corresponding PIR achievable rate matrix is

𝜦 , =
0 1 0 0 0 1 1 1 1
1 0 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0

.

The idea of the file-independent Protocol 2 from [9] is to use the information sets
ℐ = {2, 6, 7, 8, 9} and ℐ = {1, 3, 4, 5, 9} to recover the 𝛽𝑘 = 1 ⋅ 5 requested file
symbols that are located in ℐ = {1, 2, 3, 4, 5}. Specifically, we use the information
set ℐ to reconstruct the required code symbols located in 𝜒(𝝀)c = {1, 3, 4, 5} and
ℐ ⊆ 𝜒(𝝀) = {1, 3, 4, 5, 6, 7, 8, 9} to reconstruct the required code symbol located
in 𝜒(𝝀)c = {2}. Since the code coordinates {1, 2, 4, 5, 9} form an [𝑛 , 𝑘] = [5, 4]
punctured MDS-PIR capacity-achieving subcode 𝒞𝑮 with generator matrix

𝑮 =
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

,

it can be seen that the code coordinates {1, 4, 5, 9} are sufficient to correct the era-
sure located in 𝜒(𝝀)c. Therefore, compared to Protocol A, we can further reduce
the required number of downloaded symbols. The responses from the nodes when
retrieving file 𝑿() are listed in Table IV.2. The PIR rate of Protocol C is then equal
to

R , C =
1 ⋅ 5
𝑛 + 𝑛 = 5

14 < 4
9 = C

[,],

which is strictly larger than R , A = . Notice that it can readily be seen from Ta-
ble IV.2 that the privacy condition in (IV.1) is ensured.

Finally, we remark that, using the same principle as outlined above, other punc-
tured MDS-PIR capacity-achieving subcodes can be used to construct a valid pro-
tocol, giving the same PIR rate. For instance, we could pick the two punctured
subcodes 𝒞𝑮 and 𝒞𝑮 with generator matrices

𝑮 =
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 1

and 𝑮 = 1 0 1
0 1 1 ,

respectively.

Example 3 above illustrates the main working principle of Protocol C and how
the redundant set of code coordinates is taken into account. Its general descrip-
tion will be given in a forthcoming extended version. However, some numerical
results are given below, showing that it can attain larger PIR rates than Protocol A.

5 Numerical Results 171

Code R ,S R ,A R ,B R ,C C
[.]

𝒞 ∶ [5, 3] 2/3 0.3 0.3333 0.375 0.375 0.4
𝒞 ∶ [9, 5] 2/3 0.2778 0.3333 − 0.3571 0.4444
𝒞 ∶ [7, 4] 3/5 0.3810 0.4 − 0.4 0.4286
𝒞 ∶ [11, 6] 3/4 0.1818 0.25 − 0.2824 0.4545

Table IV.3: PIR rate for different codes and protocols

5 Numerical Results

In Table IV.3, we compare the PIR rates for different protocols using several binary
linear codes. The second column gives the smallest fraction for which a PIR
achievable rate matrix exists. In the table, code 𝒞 is from Example 1, code 𝒞
is from Example 3, 𝒞 is a [7, 4] code with generator matrix (1, 2, 4, 8, 8, 14, 5) (in
decimal form, e.g., (1, 0, 1, 1) is represented by 13) and 𝑑𝒞 = 5 < ⋅ 3, and
𝒞 is an [11, 6] code with generator matrix (1, 2, 4, 8, 16, 32, 48, 40, 24, 56, 55) and
𝑑𝒞 = 4 < ⋅ 3. Note that 𝒞 , 𝒞 , and 𝒞 cannot be decomposed into a direct
sum of MDS-PIR capacity-achieving codes as in (IV.9). For all presented codes
except 𝒞 , Protocol C achieves strictly larger PIR rate than Protocol A, although
smaller than the MDS-PIR capacity.

6 Conclusion

Weproved that the PIR capacity forMDS-PIR capacity-achieving codes is equal to
the MDS-PIR capacity for the case of noncolluding nodes, giving the first family
of non-MDS codes for which the PIR capacity is known. We also showed that
allowing asymmetry in the responses from the storage nodes yields larger PIR
rates compared to symmetric protocols in the literature when the storage code is a
non-MDS-PIR capacity-achieving code. We proposed three asymmetric protocols
and compared them in terms of PIR rate for different storage codes.

A Proof of Theorem 4

Achievability is by Theorem 1 and Corollary 12. Hence, in this appendix, we only
provide the converse proof of Theorem 4.

Before we proceed with the converse proof, we give some general results that
hold for any PIR protocol.

1. Given a query𝑄() sent to the 𝑙-th node,𝑚 ∈ ℕ , the response𝐴() received
by the user is a function of 𝑄() and the 𝑓 coded chunks (denoted by 𝒄 ≜
�𝑐()

, , … , 𝑐()
, , 𝑐

()
, , … , 𝑐()

,
�) that are stored in the 𝑙-th node. It follows that

H �𝐴() �𝑄(), 𝑿ℕ � = H �𝐴() �𝑄(), 𝒄 � = 0. (IV.12)

172 P IV

2. From the condition of privacy, the 𝑙-th node should not be able to differ-
entiate between the responses 𝐴() and 𝐴() when the user requests 𝑿(),
𝑚 ≠ 𝑚 . Hence,

H �𝐴() �𝒬,𝑿() � = H �𝐴() �𝒬,𝑿() �, (IV.13)

where 𝒬 ≜ �𝑄() ∶ 𝑚 ∈ ℕ , 𝑙 ∈ ℕ � denotes the set of all possible queries
made by the user. Although this seems to be intuitively true, a proof of this
property is still required and can be found in [13, Lem. 3].

3. Consider a PIR protocol for a coded DSS that uses an [𝑛, 𝑘] code 𝒞 to store
𝑓 files. For any subset of files ℳ ⊆ ℕ and for any information set ℐ of 𝒞,
we have

H �𝐴()
ℐ �𝑿ℳ , 𝒬 � =

∈ℐ
H �𝐴() �𝑿ℳ , 𝒬 �. (IV.14)

The proof uses the linear independence of the columns of a generator ma-
trix of 𝒞 corresponding to an information set, and can be seen as a simple
extension of [7, Lem. 2] or [13, Lem. 4].

Next, we state Shearer’s Lemma, which represents a very useful entropy
method for combinatorial problems.

Lemma 2 (Shearer’s Lemma [14]). Let𝒮 be a collection of subsets ofℕ , with each
𝑙 ∈ ℕ included in at least 𝜅members of𝒮 . For random variables𝑍 ,… , 𝑍 , we have

𝒮∈𝒮
H(𝑍𝒮) ≥ 𝜅H(𝑍 , … , 𝑍).

Now, we are ready for the converse proof. By Lemma 1, since the code 𝒞 is
MDS-PIR capacity-achieving, there exist 𝜈 information sets ℐ , … , ℐ such that
each coordinate 𝑙 ∈ ℕ is included in exactly 𝜅 members of ℐ = {ℐ ,… , ℐ } with
= .
Applying the chain rule of entropy we have

H �𝐴()
ℕ �𝑿ℳ , 𝒬 � ≥ H �𝐴()

ℐ �𝑿ℳ , 𝒬 �, ∀ 𝑖 ∈ ℕ .

Let 𝑚 ∈ ℳ and 𝑚 ∈ ℳc ≜ ℕ ⧵ℳ. Following similar steps as in the proof

A Proof of Theorem 4 173

given in [7, 13], we get

𝜈H �𝐴()
ℕ �𝑿ℳ , 𝒬 � ≥ H �𝐴()

ℐ �𝑿ℳ , 𝒬 �

=
∈ℐ

H �𝐴() �𝑿ℳ , 𝒬 � (IV.15)

=
∈ℐ

H �𝐴() �𝑿ℳ , 𝒬 � (IV.16)

= H �𝐴()
ℐ �𝑿ℳ , 𝒬 � (IV.17)

≥ 𝜅H �𝐴()
ℕ �𝑿ℳ , 𝒬 � (IV.18)

= 𝜅 �H �𝐴()
ℕ , 𝑿() �𝑿ℳ , 𝒬 � − H �𝑿() �𝐴()

ℕ , 𝑿ℳ , 𝒬 � �

= 𝜅 �H �𝑿() �𝑿ℳ , 𝒬 � + H �𝐴()
ℕ �𝑿ℳ , 𝑿(), 𝒬 � − 0 � (IV.19)

= 𝜅 �H �𝑿() �𝑿ℳ �+H �𝐴()
ℕ �𝑿ℳ , 𝑿(), 𝒬 � �, (IV.20)

where (IV.15) and (IV.17) follow from (IV.14), (IV.16) is because of (IV.13), (IV.18) is
due to Shearer’s Lemma, (IV.19) is from the fact that the𝑚 -th file 𝑿() is deter-
mined by the responses 𝐴()

ℕ and the queries 𝒬, and finally, (IV.20) follows from
the independence between the queries and the files. Therefore, we can conclude
that

H �𝐴()
ℕ �𝑿ℳ , 𝒬 � ≥ 𝜅

𝜈 H �𝑿() �𝑿ℳ � + 𝜅
𝜈 H �𝐴()

ℕ �𝑿ℳ , 𝑿(), 𝒬 �

= 𝑘
𝑛 H �𝑿() �𝑿ℳ � + 𝑘

𝑛 H �𝐴()
ℕ �𝑿ℳ , 𝑿(), 𝒬 �, (IV.21)

where we have used Definition 4 to obtain (IV.21).
Since there are in total 𝑓 files, we can recursively use (IV.21) 𝑓 − 1 times to

obtain

H �𝐴()
ℕ �𝑿(), 𝒬 � ≥ �𝑘

𝑛
� H �𝑿() �𝑿ℕ � + �𝑘

𝑛
� H �𝐴()

ℕ �𝑿ℕ , 𝒬 �

= �𝑘
𝑛

� H �𝑿() �𝑿ℕ � (IV.22)

= �𝑘
𝑛

� L, (IV.23)

174 P IV

where (IV.22) follows from (IV.12). (IV.23) holds since H �𝑿() � 𝑿ℕ � =
H 𝑿() = L.

Now,

L = H 𝑿()

= H �𝑿() �𝒬 � − H �𝑿() �𝐴()
ℕ , 𝒬 � (IV.24)

= I �𝑿() ;𝐴()
ℕ �𝒬 �

= H �𝐴()
ℕ �𝒬 � − H �𝐴()

ℕ �𝑿(), 𝒬 �

≤ H �𝐴()
ℕ �𝒬 � − �𝑘

𝑛
� L, (IV.25)

where (IV.24) follows since any file is independent of the queries 𝒬, and knowing
the responses 𝐴()

ℕ and the queries 𝒬, one can determine 𝑿(). Inequality (IV.25)
holds because of (IV.23).

Finally, the converse proof is completed by showing that

R = L

∑ H �𝐴() �

≤ L

H �𝐴()
ℕ � (IV.26)

≤ L

H �𝐴()
ℕ �𝒬 � (IV.27)

≤ 1
1+∑ � � = C

[,], (IV.28)

where (IV.26) holds because of the chain rule of entropy, (IV.27) is due to the fact
that conditioning reduces entropy, and we apply (IV.25) to obtain (IV.28).

B Proof of Theorem 5

The theorem is proved by showing that some downloaded symbols in Protocol 1
from [9] are not really necessary both from the recovery and the privacy perspec-
tive. The resulting protocol is named Protocol A, and the proof is based on the
fact that for a PIR achievable rate matrix 𝜦 , (𝒞) of a code 𝒞, to recover a file of
size 𝛽×𝑘, exactly 𝜈𝑘 code coordinates of the 𝜈 information sets {𝜒(𝝀)} ∈ℕ are re-
quired to be exploited in Protocol 1. In order to illustrate the achievability proof,
we have to review the steps and proof of Protocol 1 in [9, Sec. IV and App. B],
and we refer the reader to [9] for the details. In particular, Protocol 1 in [9] is
constructed from two matrices as defined below.

B Proof of Theorem 5 175

Definition 5. For a given 𝜈 × 𝑛 PIR achievable rate matrix 𝜦 , (𝒞) = (𝜆 ,), we
define the PIR interference matrices 𝑨 × = (𝑎 ,) and 𝑩()× = (𝑏 ,) for the
code 𝒞 with

𝑎 , ≜ 𝑢 if 𝜆 , = 1, ∀𝑙 ∈ ℕ , 𝑖 ∈ ℕ , 𝑢 ∈ ℕ ,
𝑏 , ≜ 𝑢 if 𝜆 , = 0, ∀𝑙 ∈ ℕ , 𝑖 ∈ ℕ , 𝑢 ∈ ℕ .

Note that in Definition 5, for each 𝑙 ∈ ℕ , distinct values of 𝑢 ∈ ℕ should be
assigned for all 𝑖. Thus, the assignment is not unique in the sense that the order
of the entries of each column of 𝑨 and 𝑩 can be permuted. Further, by 𝒮(𝑎|𝑨 ×)
we denote the set of column coordinates of matrix 𝑨 × = (𝑎 ,) in which at least
one of its entries is equal to 𝑎, i.e.,

𝒮(𝑎|𝑨 ×) ≜ {𝑙 ∈ ℕ ∶ ∃ 𝑎 , = 𝑎, 𝑖 ∈ ℕ }.
Thus, Definition 5 leads to the following claim.

Claim 2 ([9, Claim 1]). 𝒮(𝑎|𝑨 ×) contains an information set of code 𝒞, ∀𝑎 ∈ ℕ .
Moreover, for an arbitrary entry 𝑏 , of 𝑩()× , 𝒮(𝑏 , |𝑨 ×) = 𝒮(𝑎|𝑨 ×) ⊆ ℕ ⧵
{𝑙} if 𝑏 , = 𝑎.

From Definition 5 we see that there are in total 𝜅𝑛 entries in 𝑨 and each entry
𝑎 , is related to a coordinate within 𝜒(𝝀), 𝑖 ∈ ℕ , 𝑙 ∈ ℕ . In Protocol 1 the
user downloads the needed symbols in a total of 𝜅 repetitions and in the 𝑖-th
repetition, 𝑖 ∈ ℕ , the user downloads the required symbols in a total of 𝑓 rounds.
Two types of symbols are downloaded by the user, desired symbols, which are
directly related to the requested file (say 𝑿()), and undesired symbols, which are
not related to the requested file, but are exploited to decode the requested file
from the desired symbols.

Consider a fixed 𝑖 ∈ ℕ and denote by D(𝑎 ,) the total download cost of Pro-
tocol 1 resulting from a particular entry 𝑎 , , 𝑙 ∈ ℕ . First, we focus on the un-
desired symbols downloaded in Step 2 of Protocol 1. In each repetition the user
downloads

𝜅
�
ℓ

� �U(ℓ) − 1 −U(ℓ − 1) + 1 �
𝜅 = �𝑓 − 1

ℓ
�𝜅 (ℓ)(𝜈 − 𝜅)ℓ

undesired symbols resulting from a particular 𝑎 , in the ℓ-th round, ℓ ∈ ℕ ,
where U(ℓ) ≜ ∑ℓ 𝜅 ()(𝜈 − 𝜅) . Hence, for the undesired symbols asso-
ciated with 𝑎 , , in total

𝜅 �𝑓 − 1
ℓ

�𝜅 (ℓ)(𝜈 − 𝜅)ℓ = �𝑓 − 1
ℓ

�𝜅 ℓ(𝜈 − 𝜅)ℓ (IV.29)

symbols are downloaded in every ℓ-th round of all 𝜅 repetitions.
Secondly, for a particular entry 𝑎 , in the 𝑖-th repetition, the user downloads

𝜅 desired symbols from the 𝑙-th node in round ℓ = 1, and

W(ℓ) − 1 −W(ℓ − 1) + 1 = �𝑓 − 1
ℓ

�𝜅 (ℓ)(𝜈 − 𝜅)ℓ (IV.30)

176 P IV

extra desired symbols in the (ℓ + 1)-th round, ℓ ∈ ℕ , where W(ℓ) is defined
as

W(ℓ) ≜ 𝜅 +
ℓ

�𝑓 − 1
ℎ

�𝜅 ()(𝜈 − 𝜅) .

In summary, using (IV.29) and (IV.30), the download cost associated to entry
𝑎 , is obtained as

D(𝑎 ,) =
ℓ

�𝑓 − 1
ℓ

�𝜅 ℓ(𝜈 − 𝜅)ℓ +
ℓ

�𝑓 − 1
ℓ

�𝜅 (ℓ)(𝜈 − 𝜅)ℓ

= 𝜈 − 𝜅
𝜈 − 𝜅 .

In the part of Step 2 of Protocol 1 that exploits side information, we only re-
quire 𝜈 information sets induced by the matrix 𝑨 to reconstruct code symbols
induced by 𝑩. Moreover, from [9, App. B], after Step 2 of Protocol 1, 𝛽 = 𝜈 rows
of code symbols of length 𝑛 have been downloaded, and again the information
sets induced by the matrix 𝑨 are enough to recover all length-𝑘 stripes of the
requested file. In other words, 𝜅𝑛 − 𝜈𝑘 entries of 𝑨 are redundant for the recon-
struction of all 𝛽 = 𝜈 stripes of the requested file. Thus, the improved PIR rate
becomes

𝛽𝑘
D

= 𝜈 𝑘
download cost of Protocol 1− (𝜅𝑛 − 𝜈𝑘)D(𝑎 ,)

= 𝜈 𝑘
�𝜈 − 𝜅 � − �𝜈 − 𝜅 �

= 𝜈 𝑘
�𝜈 − 𝜅 � =

�1 − 𝜅
𝜈

� 1 − �𝜅
𝜈

� .

Finally, we would like to emphasize that by removing the redundant down-
loaded sums of code symbols in Protocol 1, it can be shown that within each stor-
age node in each round ℓ ∈ ℕ of all repetitions, file symmetry still remains. This
follows from a similar argumentation as in the privacy part of the proof of Proto-
col 1 in [9, App. B]. In the following, we briefly explain that in each round ℓ ∈ ℕ
of all repetitions, for each particular entry 𝑎 , and for every combination of files
ℳ ⊆ ℕ with |ℳ| = ℓ, the user requests the same number of every possible
combination of files in D(𝑎 ,).

• In the first round (ℓ = 1) of all 𝜅 repetitions, it follows from (IV.29) that,
for each𝑚 ∈ ℕ ∶ , the number of downloaded undesired symbols resulting
from a particular entry 𝑎 , is 𝜅 , the same as the number of downloaded
desired symbols resulting from 𝑎 , .

C Proof of Theorem 6 177

• In the (ℓ + 1)-th round of all 𝜅 repetitions, ℓ ∈ ℕ , arbitrarily choose a
combination of filesℳ ⊆ ℕ ∶ , where |ℳ| = ℓ. For a particular entry 𝑎 , , it
follows from (IV.30) that the total number of downloaded desired symbols
for files pertaining to {1} ∪ ℳ is equal to 𝜅 (ℓ)(𝜈 − 𝜅)ℓ. On the other
hand, for the undesired symbols resulting from a particular 𝑎 , , it follows
from (IV.29) that in the (ℓ+1)-th round the user downloads 𝜅 (ℓ)(𝜈−𝜅)ℓ
linear sums for a combination of files ℳ ⊆ ℕ ∶ , |ℳ| = ℓ + 1. Thus, in
rounds ℕ ⧵ {1}, an equal number of linear sums for all combinations of
filesℳ ⊆ ℕ are downloaded.

• In the 𝑓-th round, only desired symbols are downloaded. Since each desired
symbol is a linear combination of code symbols from all 𝑓 files, an equal
number of linear sums is again downloaded from each file.

In summary, in response to each particular 𝑎 , , the user downloads the same
number of linear sums for every possible combination of files. As illustrated
above, this is inherent from Protocol 1, and hence the privacy condition of (IV.1)
is still satisfied.

C Proof of Theorem 6

The result follows by treating Protocol 1 and Protocol 2 from [9] as subprotocols
for each punctured MDS-PIR capacity-achieving subcode 𝒞𝑮 , 𝑝 ∈ ℕ . If Proto-
col 1 is used as a subprotocol, then we obtain the file-dependent Protocol B and
the PIR rate in (IV.10), while if Protocol 2 is used as a subprotocol, then we obtain
the file-independent Protocol B and the PIR rate in (IV.11).

For the asymmetric Protocol B, we require 𝛽 = LCM(𝛽 ,… , 𝛽) stripes, where
𝛽 , 𝑝 ∈ ℕ , is the smallest number of stripes of either Protocol 1 or Protocol 2
for a DSS that uses only the punctured MDS-PIR capacity-achieving subcode 𝒞𝑮
to store 𝑓 files (see Theorem 2). Note that for Protocol 1 the index preparation2

should be made for all 𝛽 stripes. Since ∑ 𝑘 = 𝑘 and ∑ 𝑛 = 𝑛, to privately
retrieve the entire requested file consisting of 𝑘 symbols in each stripe, we have
to privately recover all 𝑃 substripes of all 𝛽 stripes, where the 𝑝-th substripe is of
length 𝑘 , by processing the subprotocol (either Protocol 1 or Protocol 2) for every
punctured subcode 𝒞𝑮 . In particular, for each punctured subcode 𝒞𝑮 we repeat
the subprotocol𝛽/𝛽 times to recover all the length-𝑘 requested substripes. This
can be done since both Protocol 1 and Protocol 2 recover 𝛽 stripes of length 𝑘 ,
while repeating it𝛽/𝛽 times enables the recovery of𝛽 length-𝑘 substripes. Note
that privacy is ensured since the storage nodes of each punctured subcode are
disjoint and within the nodes associated with each punctured subcode 𝒞𝑮 the
subprotocol (Protocol 1 or Protocol 2) yields privacy against each server [9].

Denote by D the total download cost for each node for the punctured sub-
code 𝒞𝑮 using the subprotocol, 𝑝 ∈ ℕ . The PIR rates of the file-dependent and

2This terminology was introduced in Step 1 of Protocol 1 from [9], i.e., the indices of the rows for each
file are interleaved randomly and independently of each other.

178 P IV

file-independent Protocol B are given by

𝛽𝑘
D

= 𝛽𝑘

∑ 𝑛 D

(IV.31)

= 1
𝑘
𝑛 D

𝛽

=
⎧
⎪
⎨
⎪
⎩

∑ 𝑘 �C[,] � if Protocol 1 is used as subprotocol,

∑ 𝑘 �C[,] � if Protocol 2 is used as subprotocol,
� (IV.32)

where (IV.31) holds since within each punctured subcode, the subprotocol is re-
quired to be repeated times and (IV.32) follows from (IV.5).

References

[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information
retrieval,” in Proc. 36th IEEE Symp. Found. Comp. Sci., Milwaukee, WI, USA,
Oct. 23–25, 1995, pp. 41–50.

[2] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of download
ensures perfectly private information retrieval,” in Proc. IEEE Int. Symp. Inf.
Theory, Honolulu, HI, USA, Jun. 29 – Jul. 4, 2014, pp. 856–860.

[3] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval for
coded storage,” in Proc. IEEE Int. Symp. Inf. Theory, Hong Kong, China, Jun.
14–19, 2015, pp. 2842–2846.

[4] R. Tajeddine and S. El Rouayheb, “Private information retrieval from MDS
coded data in distributed storage systems,” in Proc. IEEE Int. Symp. Inf. The-
ory, Barcelona, Spain, Jul. 10–15, 2016, pp. 1411–1415.

[5] H. Sun and S. A. Jafar, “The capacity of private information retrieval,” IEEE
Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[6] ——, “The capacity of robust private information retrieval with colluding
databases,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2361–2370, Apr. 2018.

[7] K. Banawan and S. Ulukus, “The capacity of private information retrieval
from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1945–1956,
Mar. 2018.

[8] S. Kumar, E. Rosnes, and A. Graell i Amat, “Private information retrieval in
distributed storage systems using an arbitrary linear code,” in Proc. IEEE Int.
Symp. Inf. Theory, Aachen, Germany, Jun. 25–30, 2017, pp. 1421–1425.

REFERENCES 179

[9] S. Kumar, H.-Y. Lin, E. Rosnes, and A. Graell i Amat, “Achieving
maximum distance separable private information retrieval capacity with
linear codes,” Dec. 2017, arXiv:1712.03898v3 [cs.IT]. [Online]. Available:
https://arxiv.org/abs/1712.03898

[10] H.-Y. Lin, S. Kumar, E. Rosnes, and A. Graell i Amat, “An MDS-PIR capacity-
achieving protocol for distributed storage using non-MDS linear codes,” in
Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, Jun. 17–22, 2018, pp. 966–
970.

[11] H. Sun and S. A. Jafar, “Private information retrieval from MDS coded data
with colluding servers: Settling a conjecture by Freij-Hollanti et al.” in Proc.
IEEE Int. Symp. Inf. Theory, Aachen, Germany, Jun. 25–30, 2017, pp. 1893–
1897.

[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
Amsterdam, The Netherlands: North-Holland, 1977.

[13] J. Xu and Z. Zhang, “On sub-packetization of capacity-achieving PIR
schemes for MDS coded databases,” Dec. 2017, arXiv:1712.02466v2 [cs.IT].
[Online]. Available: http://arxiv.org/abs/1712.02466

[14] J. Radhakrishnan, “Entropy and counting,” in Computational mathematics,
modelling and algorithms, J. C. Misra, Ed. Narosa Publishing House, 2003,
pp. 146–168.

180 P IV

P V

Private Informa on Retrieval From a Cellular Network With
Caching at the Edge

Siddhartha Kumar, Alexandre Graell i Amat, Eirik Rosnes, and Linda Senigagliesi

Submitted to IEEE Transactions on Communications, August 2018.

The layout has been revised.

1 Introduction 183

Abstract

We consider the problem of downloading content from a cel-
lular network where content is cached at the wireless edge
while achieving privacy. In particular, we consider private in-
formation retrieval (PIR) of content from a library of files, i.e.,
the user wishes to download a file and does not want the net-
work to learn any information about which file she is inter-
ested in. To reduce the backhaul usage, content is cached at
the wireless edge in a number of small-cell base station (SBS)
using maximum distance separable codes. We propose a PIR
scheme for this scenario that achieves privacy against a num-
ber of spy SBSs that (possibly) collaborate. The proposed PIR
scheme is an extension of a recently introduced scheme by
Kumar et al. to the case of multiple code rates, suitable for
the scenario where files have different popularities. We then
derive the backhaul rate and optimize the content placement
to minimize it. We prove that uniform content placement is
optimal, i.e., all files that are cached should be stored using
the same code rate. This is in contrast to the case where no
PIR is required. Furthermore, we show numerically that pop-
ular content placement is optimal for some scenarios.

1 Introduc on

Bringing content closer to the end user inwireless networks, the so-called caching
at thewireless edge, has emerged as a promising technique to reduce the backhaul
usage. The literature on wireless caching is vast. Information-theoretic aspects of
caching were studied in [1, 2]. To leverage the potential gains of caching, several
papers proposed to cache files in densely deployed small-cell base stations (SBSs)
with large storage capacity, see, e.g., [3–7]. In [5], content is cached in SBSs using
maximum distance separable (MDS) codes to reduce the download delay. This
scenario was further studied in [7], where the authors optimized the MDS-coded
caching to minimize the backhaul rate. Caching content directly in the mobile
devices and exploiting device-to-device communication has been considered in,
e.g., [8–12].

Recently, private information retrieval (PIR) has attracted a significant interest
in the research community [13–23]. In PIR, a userwould like to retrieve data froma
distributed storage system (DSS) in the presence of spy nodes, without revealing
any information about the piece of data she is interested in to the spy nodes.
PIR was first studied by Chor et al. [24] for the case where a binary database is
replicated among 𝑛 servers (nodes) and the aim is to privately retrieve a single
bit from the database in the presence of a single spy node (referred to as the
noncolluding case), while minimizing the total communication cost. In the last
few years, spurred by the rise of DSSs, research on PIR has been focusing on the
more general case where data is stored using a storage code.

The PIR capacity, i.e., the maximum achievable PIR rate, was studied in [18,

184 P V

19, 21–23]. In [19, 23], the PIR capacity was derived for the scenario where data
is stored in a DSS using a repetition code. In [22], for the noncolluding case,
the authors derived the PIR capacity for the scenario where data is stored using
an (single) MDS code, referred to as the MDS-PIR capacity. For the case where
several spy nodes collaborate with each other, referred to as the colluding case,
the MDS-PIR capacity is in general still unknown, except for some special cases
[18] (and for repetition codes [23]). PIR protocols for DSSs have been proposed in
[14, 16, 17, 20, 21]. In [16], a PIR protocol for MDS-coded DSSs was proposed and
shown to achieve the MDS-PIR capacity for the case of noncolluding nodes when
the number of files stored in the DSS goes to infinity. PIR protocols for the case
where data is stored using non-MDS codes were proposed in [17, 20, 21].

In this paper, we consider PIR of content from a cellular network. In particular,
we consider the private retrieval of content from a library of files that have dif-
ferent popularities. We consider a similar scenario as in [7] where, to reduce the
backhaul usage, content is cached in SBSs using MDS codes. We propose a PIR
scheme for this scenario that achieves privacy against a number of spy SBSs that
possibly collude. The proposed PIR scheme is an extension of Protocol 3 in [21] to
the case of multiple code rates, suitable for the scenario where files have different
popularities. We also propose an MDS-coded content placement slightly differ-
ent than the one in [7] but that is more adapted to the PIR case. We show that, for
the conventional content retrieval scenario with no privacy, the proposed content
placement is equivalent to the one in [7], in the sense that it yields the same aver-
age backhaul rate. We then derive the backhaul rate for the PIR case as a function
of the content placement. We prove that uniform content placement, i.e., all files
that are cached are encoded with the same code rate, is optimal. This is a some-
what surprising result, in contrast to the case where no PIR is considered, where
optimal content placement is far from uniform [7]. We further consider the min-
imization of a weighted sum of the backhaul rate and the communication rate
from the SBSs, relevant for the case where limiting the communication from the
SBSs is also important. We finally report numerical results for both the scenario
where SBSs are placed regularly in a grid and for a Poisson point process (PPP)
deployment model where SBSs are distributed over the plane according to a PPP.
We show numerically that popular content placement is optimal for some system
parameters. To the best of our knowledge, PIR for the wireless caching scenario
has not been considered before.

Notation: We use lower case bold letters to denote vectors, upper case bold
letters to denote matrices, and calligraphic upper case letters to denote sets. For
example, 𝒙, 𝑿, and𝒳 denote a vector, a matrix, and a set, respectively. We denote
a submatrix of 𝑿 that is restricted in columns by the set ℐ by 𝑿|ℐ. 𝒞 will denote
a linear code over the finite field GF(𝑞). The multiplicative subgroup of GF(𝑞)
(not containing the zero element) is denoted by GF(𝑞)×. We use the customary
code parameters (𝑛, 𝑘) to denote a code 𝒞 of blocklength 𝑛 and dimension 𝑘. A
generator matrix for 𝒞 will be denoted by 𝑮𝒞 and a parity-check matrix by 𝑯𝒞.
A set of coordinates of 𝒞, ℐ ⊆ {1,… , 𝑛}, of size 𝑘 is said to be an information set
if and only if 𝑮𝒞|ℐ is invertible. The Hadamard product of two linear subspaces
𝒞 and 𝒞 , denoted by 𝒞 ∘ 𝒞 , is the space generated by the Hadamard products
𝒄 ∘ 𝒄 ≜ (𝑐 𝑐 , … , 𝑐 𝑐) for all pairs 𝒄 ∈ 𝒞, 𝒄 ∈ 𝒞 . The inner product of two

2 SystemModel 185

vectors 𝒙 and 𝒙 is denoted by ⟨𝒙, 𝒙 ⟩, while 𝑤H (𝒙) denotes the Hamming weight
of 𝒙. (⋅) represents the transpose of its argument, while H(⋅) represents the
entropy function. With some abuse of language, we sometimes interchangeably
refer to binary vectors as erasure patterns under the implicit assumption that the
ones represent erasures. An erasure pattern (or binary vector) 𝒙 is said to be
correctable by a code 𝒞 if matrix 𝑯𝒞| (𝒙) has rank |𝜒(𝒙)|.

2 SystemModel

We consider a cellular network where a macro-cell is served by a macro base sta-
tion (MBS). Mobile users wish to download files from a library of 𝐹 files that is
always available at the MBS through a backhaul link. We assume all files of equal
size.1 In particular, each file consists of 𝛽𝐿 bits and is represented by a 𝛽 × 𝐿
matrix 𝑿(),

𝑿() =
�̃�()
⋮
�̃�()

where upperindex 𝑖 = 1,… , 𝐹 is the file index. Therefore, each file can be seen
as divided into 𝛽 stripes �̃�(), … , �̃�() of 𝐿 bits each. The file library has popularity
distribution 𝒑 = (𝑝 ,… , 𝑝), where file 𝑿() is requested with probability 𝑝 . We
also assume that𝑁SBS SBSs are deployed to serve requests and offload traffic from
theMBSwhenever possible. To this purpose, each SBS has a cache size equivalent
to𝑀 files. The considered scenario is depicted in Fig. V.1.

2.1 Content Placement

File 𝑿() is partitioned into 𝛽𝑘 packets of size 𝐿/𝑘 bits and encoded before being
cached in the SBSs. In particular, each packet is mapped onto a symbol of the
field GF(𝑞), with 𝛿 ≥ . For simplicity, we assume that is integer

and set 𝛿 = . Thus, stripe �̃�() can be equivalently represented by a stripe

𝒙(), 𝑎 = 1,… , 𝛽, of symbols over GF(𝑞). Each stripe 𝒙() is then encoded using
an (𝑁SBS, 𝑘) MDS code 𝒞 over GF(𝑞) into a codeword 𝒄() = (𝑐(), , … , 𝑐(), SBS

),
where code symbols 𝑐(), , 𝑗 = 1,… ,𝑁SBS, are over GF(𝑞). For later use, we define
𝑘min ≜ min{𝑘 }, 𝑘max ≜ max{𝑘 }, and 𝛿max ≜

min
.

The encoded file can be represented by a 𝛽 × 𝑁SBS matrix 𝑪() = (𝑐(),). Code
symbols 𝑐(), are then stored in the 𝑗-th SBS (the ordering is unimportant). Thus,
for each file 𝑿(), each SBS caches one coded symbol of each stripe of the file, i.e.,
a fraction 𝜇 = 1/𝑘 of the 𝑖-th file. As 𝑘 ∈ {1,… ,𝑁SBS − 1},

𝜇 ∈ ℳ ≜ {0, 1/(𝑁SBS − 1),… , 1/2, 1},
1Assuming files of equal size is without loss of generality, since content can always be divided into

chunks of equal size.

186 P V

files

MBS

File library

User B

User A
SBS

Figure V.1: A wireless network for content delivery consisting of an MBS and five SBSs.
Users download files from a library of 𝐹 files. The MBS has access to the library through
a backhaul link. Some files are also cached at SBSs using a (5, 3) MDS code. User A
retrieves a cached file from the three SBSs within range. User B retrieves a fraction 2/3
of a cached file from the two SBSs within range and the remaining fraction from the
MBS.

where 𝜇 = 0 implies that file 𝑿() is not cached. Note that, to achieve privacy,
𝑘 < 𝑁SBS, i.e., files need to be cached with redundancy. As a result, 𝜇 = 1/𝑁SBS

is not allowed. This is in contrast to the case of no PIR, where 𝑘 = 𝑁SBS (and
hence 𝜇 = 1/𝑁SBS) is possible.

Since each SBS can cache the equivalent of𝑀 files, the 𝜇 ’s must satisfy

𝜇 ≤ 𝑀.

We define the vector 𝝁 = (𝜇 ,… , 𝜇) and refer to it as the content placement.
Also, we denote by 𝒞𝝁MDS the caching scheme that uses MDS codes {𝒞 } according
to the content placement 𝝁. For later use, we define 𝜇min ≜ min{𝜇 |𝜇 ≠ 0} and
𝜇max ≜ max{𝜇 }.

We remark that the content placement above is slightly different than the con-
tent placement proposed in [7]. In particular, we assume fixed code length (equal
to the number of SBSs, 𝑁SBS) and variable 𝑘 , such that, for each file cached, each
SBS caches a single symbol from each stripe of the file. In [7], the content place-
ment is done by first dividing each file into 𝑘 symbols and encoding them using
an (�̃� , 𝑘)MDS code, where �̃� = 𝑘 + (𝑁SBS − 1)𝑚 , 𝑚 ≤ 𝑘. Then, 𝑚 (different)
symbols of the 𝑖-th file are stored in each SBS and the MBS stores 𝑘 − 𝑚 sym-
bols.2 Our formulation is perhaps a bit simpler and more natural from a coding
perspective. Furthermore, we will show in Section 4 that the proposed content
placement is equivalent to the one in [7], in the sense that it yields the same av-
erage backhaul rate.

2This is because the model in [7] assumes that one SBS is always accessible to the user. If this is not
the case, the MBS must store all symbols of the file. Here, we consider the case where the MBS must
store all symbols because it is a bit more general.

3 Private Information Retrieval Protocol 187

2.2 File Request

Mobile devices request files according to the popularity distribution𝒑 = (𝑝 ,… , 𝑝).
Without loss of generality, we assume 𝑝 ≥ 𝑝 ≥ … ≥ 𝑝 . The user request is
initially served by the SBSs within communication range. We denote by 𝛾 the
probability that the user is served by 𝑏 SBSs and define 𝜸 = (𝛾 ,… , 𝛾

SBS
). If the

user is not able to completely retrieve 𝑿() from the SBSs, the additional required
symbols are fetched from theMBS. Using the terminology in [7], the average frac-
tion of files that are downloaded from theMBS is referred to as the backhaul rate,
denoted by R, and defined as

R ≜ average no. of bits downloaded from the MBS
𝛽𝐿 .

Note that for the case of no caching R = 1.
As in [7], we assume that the communication is error free.

2.3 Private Informa on Retrieval and Problem Formula on

We assume that some of the SBSs are spy nodes that (potentially) collaborate
with each other. On the other hand, we assume that the MBS can be trusted.
The users wish to retrieve files from the cellular network, but do not want the
spy nodes to learn any information about which file is requested by the user. The
goal is to retrieve data from the network privately while minimizing the use of the
backhaul link, i.e., while minimizing R. Thus, the goal is to optimize the content
placement 𝝁 to minimize R.

3 Private Informa on Retrieval Protocol

In this section, we present a PIR protocol for the caching scenario. The PIR pro-
tocol proposed here is an extension of Protocol 3 in [21] to the case of multiple
code rates.3

Assume without loss of generality that the user wants to download file 𝑿().
To retrieve the file, the user generates 𝑛 ≤ 𝑁SBS query matrices, 𝑸(), 𝑙 = 1,… , 𝑛,
where 𝑸(), … , 𝑸() are the queries sent to the 𝑏 SBSs within visibility and the
remaining 𝑛 − 𝑏 queries 𝑸(), … , 𝑸() are sent to the MBS. Note that 𝑛 is a pa-
rameter that needs to be optimized. Each query matrix is of size 𝑑 × 𝛽𝐹 symbols
(from GF(𝑞)) and has the following structure,

𝑸() = ⎛
⎜

⎝

𝒒()
𝒒()
⋮
𝒒()

⎞
⎟

⎠

= ⎛
⎜

⎝

𝑞(), 𝑞(), ⋯ 𝑞(),
𝑞(), 𝑞(), ⋯ 𝑞(),
⋮ ⋮ ⋯ ⋮

𝑞(), 𝑞(), ⋯ 𝑞(),

⎞
⎟

⎠

.

3Protocol 3 in [21] is based on and improves the protocol in [20], in the sense that it achieves higher
PIR rates.

3 Private Information Retrieval Protocol 189

ular, the protocol is designed such that the subresponses 𝑟(), 𝑙 = 1,… , 𝑛, corre-
sponding to the 𝑛 subqueries 𝒒(), … , 𝒒() recover Γ unique code symbols of the
file 𝑿().

The queries are constructed as follows. The user chooses 𝛽𝐹 codewords �̄�() =
(𝑐(), , … , 𝑐(),) ∈ �̄�, 𝑚 = 1,… , 𝛽, 𝑖 = 1,… , 𝐹, independently and uniformly at
random. Then, the user constructs 𝑛 vectors,

�̊� = (�̊�(), … , �̊�()), 𝑙 = 1,… , 𝑛, (V.3)

where �̊�() collects the 𝑙-th coordinates of the 𝛽 codewords �̄�(), 𝑚 = 1,… , 𝛽, i.e.,
�̊�() = (�̄�(), , … , �̄�(),).

Assume that the user wants to retrieve file 𝑿(). Then, subquery 𝒒() is con-
structed as

𝒒() = �̊� + 𝜹(), (V.4)

where

𝜹() =
𝝎 () () if 𝑙 ∈ 𝒥 ,
𝝎 otherwise,

� (V.5)

for some set 𝒥 that will be defined below. Vector 𝝎 , 𝑡 = 1,… , 𝛽𝐹, denotes the
𝑡-th (𝛽𝐹)-dimensional unit vector, i.e., the length-𝛽𝐹 vector with a one in the 𝑡-
th coordinate and zeroes in all other coordinates, and𝝎 the all-zero vector. The
meaning of index 𝑠() will become apparent later.

According to (V.4), each subquery vector is the sum of two vectors, �̊� and 𝜹().
The purpose of �̊� is tomake the subquery appear random and thus ensure privacy
(i.e., Condition (V.2a)). On the other hand, the vectors 𝜹() are deterministic
vectors which must be properly constructed such that the user is able to retrieve
the requested file from the response vectors (i.e., Condition (V.2b)). Similar to
Protocol 3 in [21], the vectors 𝜹() are constructed from a 𝑑 × 𝑛 binary matrix �̂�
where each row represents a weight-Γ erasure pattern that is correctable by �̃� and
where the weights of its columns are determined from 𝛽 information sets ℐ ,
𝑚 = 1,… , 𝛽, of 𝒞max.

The construction of �̂� is addressed below. We define the set ℱ as the index
set of information sets ℐ that contain the 𝑙-th coordinate of 𝒞max, i.e., ℱ = {𝑚 ∶
𝑙 ∈ ℐ }. To allow the user to recover the requested file from the response vectors,
�̂� is constructed such that it satisfies the following conditions.
C1. The user should be able to recover Γ unique code symbols of the requested

file 𝑿() from the responses to each set of 𝑛 subqueries 𝒒(), 𝑙 = 1,… , 𝑛. This
is to say that each row of �̂� should have exactly Γ ones. We denote by 𝒥 the
support of the 𝑗-th row of �̂�.

C2. The user should be able to recover Γ𝑑 ≥ 𝛽𝑘 unique code symbols of the
requested file𝑿(), at least 𝑘 symbols fromeach stripe. Thismeans that each
row �̂� = (�̂� , , … , �̂� ,), 𝑗 = 1,… , 𝑑, of �̂� should correspond to an erasure
pattern that is correctable by �̃�.

190 P V

C3. Let 𝒕 , 𝑙 = 1,… , 𝑛, be the 𝑙-th column vector of �̂�. The protocol should
be able to recover 𝑤H (𝒕) unique code symbols from the 𝑙-th response vec-
tor, which means that it is required that 𝑤H (𝒕) = |ℱ |. We call the vector
(𝑤H (𝒕) , … ,𝑤H (𝒕)) the column weight profile of �̂�.

Finally, from �̂� we construct the vectors 𝜹() in (V.5). In particular, index 𝑠()

in (V.5) is such that 𝑠() ∈ ℱ and 𝑠() ≠ 𝑠() for 𝑗 ≠ 𝑗 , 𝑗, 𝑗 = 1,… , 𝑑.

3.2 Response Vectors

The 𝑗-th subresponse corresponding to subquery 𝒒(), 𝑗 = 1,… , 𝑑, is (see (V.1))

𝑟() = ⟨𝒒(), (𝑐()
, , … , 𝑐()

,)⟩.

The user collects the 𝑛 subresponses 𝑟(), 𝑙 = 1,…𝑛, in the vector 𝝆 ,

𝝆 = ⎛
⎜

⎝

𝑟()

𝑟()

⋮
𝑟()

⎞
⎟

⎠

= ⎛
⎜

⎝

�̄�()
, 𝑐()

,
�̄�()

, 𝑐()
,

⋮
�̄�()

, 𝑐()
,

⎞
⎟

⎠
∈ 𝒙∈(()) ∶ �

�𝑯𝒞 ∘ �̄�𝒙 𝟎

+ ⎛
⎜

⎝

�̄�()
, 𝑐()

,
�̄�()

, 𝑐()
,

⋮
�̄�()

, 𝑐()
,

⎞
⎟

⎠
∈ 𝒙∈(()) ∶ �

�𝑯𝒞 ∘ �̄�𝒙 𝟎

+⋯

+ ⎛
⎜

⎝

�̄�()
, 𝑐()

,
�̄�()

, 𝑐()
,

⋮
�̄�()

, 𝑐()
,

⎞
⎟

⎠
∈ 𝒙∈(()) ∶ �

�𝑯𝒞max∘ �̄�𝒙 𝟎

+⎛
⎜

⎝

𝑜()

𝑜()

⋮
𝑜()

⎞
⎟

⎠

, (V.6)

where symbol 𝑜() represents the code symbol from file 𝑿() downloaded in the 𝑗-
th subresponse from the 𝑙-th response vector. Due to the structure of the queries
obtained from �̂�, the user retrieves Γ code symbols from the set of 𝑛 subresponses
to the 𝑗-th subqueries. Consider a retrieval code �̃� of the form

�̃� = 𝒞 ∘ �̄� ()= � 𝒞 � ∘ �̄�, (V.7)

where 𝒞 + 𝒞 denotes the sum of subspaces 𝒞 and 𝒞 , resulting in the set con-
sisting of all elements 𝒄+𝒄 for any 𝒄 ∈ 𝒞 and 𝒄 ∈ 𝒞 , and where (𝑎) follows due
to the fact that the Hadamard product is distributive over addition.

3 Private Information Retrieval Protocol 191

The symbols requested by the user are then obtained solving the system of
linear equations defined by

𝑯�̃�𝝆 = 𝑯�̃�⎛⎜

⎝

𝑜()

𝑜()

⋮
𝑜()

⎞
⎟

⎠

.

3.3 Privacy

For the retrieval, we require �̃� to be a valid code, i.e., it must have a code rate
strictly less than 1. For a given number of colluding SBSs 𝑇, the combination of
conditions on �̄� and �̃� restricts the choice for the underlying storage codes {𝒞 }.
In the following theorem, we present a family of MDS codes, namely generalized
Reed-Solomon (GRS) codes, that work with the protocol. A GRS code 𝒞 over
GF(𝑞) of length 𝑛 and dimension 𝑘 is a weighted polynomial evaluation code of
degree 𝑘 defined by some weighting vector 𝒗 = (𝑣 ,… , 𝑣) ∈ (GF(𝑞)×) and
evaluation vector 𝜿 = (𝜅 ,… , 𝜅) ∈ (GF(𝑞)×) satisfying 𝜅 ≠ 𝜅 for all 𝑖 ≠ 𝑗 [25,
Ch. 5]. In the sequel, we refer to (𝑛, 𝑘, 𝒗, 𝜿) as the parameters of a GRS code 𝒞.

Lemma 1. Given an (𝑛, 𝑘max, 𝒗, 𝜿) GRS code 𝒞max, for all 𝑘 < 𝑘max, there exists an
(𝑛, 𝑘, 𝒗, 𝜿) GRS code that is a subcode of 𝒞max.

Proof. The canonical generator matrix for an (𝑛, 𝑘max, 𝒗, 𝜿)GRS code 𝒞max is given
by

⎛

⎝

1 1 … 1
𝜅 𝜅 … 𝜅
⋮ ⋮ … ⋮

𝜅 max 𝜅 max … 𝜅 max

⎞

⎠

𝑣 0 … 0
0 𝑣 … 0
⋮ ⋮ … ⋮
0 0 … 𝑣

. (V.8)

Clearly, taking the first 𝑘 rows of the leftmost matrix of (V.8) and multiplying
it with the rightmost diagonal matrix generates an (𝑛, 𝑘) subcode of 𝒞max which
by itself is an (𝑛, 𝑘, 𝒗, 𝜿) GRS code with the same weighting vector 𝒗. Thus, GRS
codes are naturally nested, and the result follows.

Theorem 1. Let 𝒞𝝁MDS be a caching scheme with GRS codes {𝒞 } of parameters
(𝑁SBS, 𝑘 , 𝒗, (𝜅 , … , 𝜅

SBS
)) and let 𝒞 be the (𝑛, 𝑘) code obtained by puncturing 𝒞 .

Also, let �̄� be an (𝑛, 𝑇, �̄�, (𝜅 , … , 𝜅))GRS code. Then, for 𝛽 = Γ = 𝑛−(𝑘max+𝑇−1)
and 𝑑 = 𝑘max, the protocol achieves PIR against 𝑇 colluding SBSs.

Proof. The proof is given in the appendix.

Note that the retrieval code �̄� depends on the 𝑛 SBSs within visibility that are
contacted by the user through its evaluation vector. Finally, we remark that, with
some slight modifications, the proposed protocol can be adapted to work with
non-MDS codes.

192 P V

3.4 Example

As an example, consider the case of 𝐹 = 2 files, 𝑿() and 𝑿(), both of size 𝛽𝐿
bits. The first file 𝑿() is stored in the SBSs according to Fig. V.2 using an (𝑁SBS =
6, 𝑘 = 1) binary repetition code 𝒞 . Similarly, the second file𝑿() is stored (again
according to Fig. V.2) using an (𝑁SBS = 6, 𝑘 = 5) binary single parity-check
code 𝒞 . Assume 𝑛 = 𝑁SBS = 6 (i.e., no puncturing) and that none of the SBSs
collude, i.e., 𝑇 = 1. Furthermore, we assume that the user wants to retrieve
𝑿() and is able to contact 𝑏 = 𝑛 = 6 SBS (i.e., we consider the extreme case
where the user is not contacting theMBS). According to Theorem 1, we can choose
𝛽 = Γ = 𝑛 − (𝑘max + 𝑇 − 1) = 6 − (5 + 1 − 1) = 1 and 𝑑 = 𝑘max = 5. Finally, we
choose �̄� as an (𝑛 = 6, 𝑇 = 1) binary repetition code.

According to (V.7), the retrieval code �̃� = (𝒞 + 𝒞) ∘ �̄� = 𝒞 + 𝒞 = 𝒞 and
can be generated by

𝑮�̃� = 𝑮𝒞 = ⎛
⎜

⎝

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

⎞
⎟

⎠

.

Moreover, let

�̂� = ⎛
⎜

⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟

⎠

and ℐ = {1, 2, 3, 4, 5},

where ℐ is an information set of 𝒞max = 𝒞 (the submatrix 𝑮𝒞ℐ has rank 𝑘 = 5).
Note that �̂� satisfies all three conditions C1–C3 and has column weight profile
(1, 1, 1, 1, 1, 0) = (|ℱ |, … , |ℱ |).

Query Construction. The user generates 𝛽𝐹 = 2 codewords �̄�() and �̄�() in-
dependently and uniformly at random from �̄�. Without loss of generality, let
�̄�() = �̄�() = (1,… , 1). Next, the 𝑛 = 6 subqueries 𝑞(), 𝑙 = 1,… , 6, are con-
structed according to (V.4), (V.5) as

𝒒() = �̊� + (1, 0) if 𝑙 = 1,
�̊� + (0, 0) otherwise,

�

where �̊� is defined in (V.3).

File Retrieval. Consider the 𝑛 = 6 subresponses 𝑟(), 𝑙 = 1,… , 6. Then, accord-

3 Private Information Retrieval Protocol 193

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

∑ 𝑥()
,

SBS 1 SBS 2 SBS 3 SBS 4 SBS 5 SBS 6

Figure V.2: Wireless caching scenario in which there are 𝑁SBS = 6 SBSs. The SBSs store
𝐹 = 2 files, 𝑿() = (𝑥()

,) ∈ GF(2) × and 𝑿() = (𝑥()
, , 𝑥()

, , 𝑥()
, , 𝑥()

, , 𝑥()
,) ∈ GF(2) × ,

of 𝛽𝐿 = 5 bits each. The first file 𝑿() is encoded using an (𝑁SBS = 6, 𝑘 = 1) binary
repetition code 𝒞 , while the second file 𝑿() is encoded using an (𝑁SBS = 6, 𝑘 = 5)
binary single parity-check code 𝒞 .

ing to (V.6),

𝝆 =
⎛
⎜
⎜
⎜

⎝

𝑟()

𝑟()

𝑟()

𝑟()

𝑟()

𝑟()

⎞
⎟
⎟
⎟

⎠

= ⎛
⎜

⎝

�̄�()
, 𝑐()

,
�̄�()

, 𝑐()
,

⋮
�̄�()

, 𝑐()
,

⎞
⎟

⎠
∈ 𝒙∈(()) ∶ �

�𝑯𝒞 ∘ �̄�𝒙 𝟎

+ ⎛
⎜

⎝

�̄�()
, 𝑐()

,
�̄�()

, 𝑐()
,

⋮
�̄�()

, 𝑐()
,

⎞
⎟

⎠
∈ 𝒙∈(()) ∶ �

�𝑯𝒞 ∘ �̄�𝒙 𝟎

+⎛
⎜

⎝

𝑜()

𝑜()

⋮
𝑜()

⎞
⎟

⎠

=
⎛
⎜
⎜
⎜

⎝

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

⎞
⎟
⎟
⎟

⎠

+
⎛
⎜
⎜
⎜

⎝

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

𝑥()
,

∑ 𝑥()
,

⎞
⎟
⎟
⎟

⎠

+
⎛
⎜
⎜

⎝

𝑥()
,
0
0
0
0
0

⎞
⎟
⎟

⎠

,

and the code symbol 𝑥()
, of the file 𝑿() is recovered from

𝑯�̃�𝝆 = 1 1 1 1 1 1
⎛
⎜
⎜

⎝

𝑥()
,
0
0
0
0
0

⎞
⎟
⎟

⎠

= 𝑥()
, .

Note that in order to retain privacy across the two files of the library, we need to
send 𝑑 = 𝑘max = 5 subqueries to each SBS, thus generating 5 subresponses from
each SBS (even if the first file can be recovered from the 𝑛 = 6 subresponses 𝑟(),
𝑙 = 1,… , 6).

194 P V

4 Backhaul Rate Analysis: No PIR Case

In this section, we derive the backhaul rate for the proposed caching scheme
for the case of no PIR, i.e., the conventional caching scenario where PIR is not
required.

Proposition 6. The average backhaul rate for the caching scheme 𝒞𝝁MDS in Sec-
tion 2 for the case of no PIR is

RnoPIR = 𝑝 ⌈𝜇 ⌉
SBS

𝛾 max (0, 1/𝜇 − 𝑏) 𝜇 + 𝑝 ⌊1 − 𝜇 ⌋. (V.9)

Proof. To download file𝑿(), if the user is in communication range of a number of
SBSs, 𝑏, larger than or equal to 1/𝜇 , the user can retrieve the file from the SBSs
and there is no contribution to the backhaul rate. Otherwise, if 𝑏 < 1/𝜇 , the
user retrieves a fraction 𝐿/𝑘 = 𝐿𝜇 of the file from each of the 𝑏 SBSs, i.e., a total
of 𝑏𝛽𝐿𝜇 bits, and downloads the remaining (1/𝜇 − 𝑏)𝛽𝐿𝜇 bits from the MBS.
Averaging over 𝜸 and 𝒑 (for the files cached) and normalizing by the file size 𝛽𝐿,
the contribution to the backhaul rate of the retrieval of files that are cached in
the SBSs is

𝑝 ⌈𝜇 ⌉
SBS

𝛾 max (0, 1/𝜇 − 𝑏) 𝜇 . (V.10)

On the other hand, the files that are not cached are retrieved completely from
the MBS, and their contribution to the backhaul rate is

𝑝 ⌊1 − 𝜇 ⌋. (V.11)

Combining (V.10) and (V.11) completes the proof.

We denote by R∗noPIR the maximum PIR rate resulting from the optimization of
the content placement. R∗noPIR can be obtained solving the following optimization
problem,

R
∗
noPIR = min

∈ℳ
𝑝 ⌈𝜇 ⌉

SBS

𝛾 max �0, 1/𝜇 − 𝑏 �𝜇 + 𝑝 ⌊1 − 𝜇 ⌋

s.t. 𝜇 ≤ 𝑀,

whereℳ =ℳ∪{1/𝑁SBS}, as 𝜇 = 1/𝑁SBS is a valid value for the case where PIR
is not required.

In the following lemma, we show that the proposed content placement is
equivalent to the one in [7], in the sense that it yields the same average back-
haul rate.

5 Backhaul Rate Analysis: PIR Case 195

Lemma2. The average backhaul rate given by (V.9) for the caching scheme𝒞𝝁MDS in
Section 2 is equal to the one given by the caching scheme in [7], i.e., the two content
placements are equivalent.

Proof. We can rewrite (V.9) using simple math as

RnoPIR = 𝑝 ⌈𝜇 ⌉
SBS

𝛾 max �0, 1/𝜇 − 𝑏 �𝜇 + 𝑝 ⌊1 − 𝜇 ⌋

= 𝑝 ⌈𝜇 ⌉
SBS

𝛾 max �0, 1 − 𝑏𝜇 � + 𝑝 ⌊1 − 𝜇 ⌋

= 𝑝 ⌈𝜇 ⌉
SBS

𝛾 �1 −min �1, 𝑏𝜇 � � + 𝑝 ⌊1 − 𝜇 ⌋

()= 𝑝 (⌈𝜇 ⌉ + ⌊1 − 𝜇 ⌋)
SBS

𝛾 �1 −min �1, 𝑏𝜇 � �

= 𝑝
SBS

𝛾 �1 −min �1, 𝑏𝜇 � �,

which is the expression in [7, eq. (1)]. (𝑎) follows from the fact that we can write
𝑝 ⌊1−𝜇 ⌋ as 𝑝 ⌊1−𝜇 ⌋∑ SBS 𝛾 �1−min �1, 𝑏𝜇 � �. For 0 < 𝜇 ≤ 1 both expressions
are zero, while for 𝜇 = 0 both expressions boil down to 𝑝 as 𝑝 ⌊1−𝜇 ⌋∑ SBS 𝛾 �1−
min �1, 𝑏𝜇 � � = 𝑝 ∑ SBS 𝛾 and ∑ SBS 𝛾 = 1.

For popular content placement, i.e., the case where the 𝑀 most popular files
are cached in all SBSs (this corresponds to caching the𝑀most popular files using
an (𝑁SBS, 1) repetition code, i.e., 𝜇 = 1 for 𝑖 ≤ 𝑀 and 𝜇 = 0 for 𝑖 > 𝑀), the
backhaul rate is given by

R
pop
noPIR = 𝛾 𝑝 + 𝑝 . (V.12)

5 Backhaul Rate Analysis: PIR Case

In this section, we derive the backhaul rate for the case of PIR (i.e., when the
user wishes to download content privately) and we prove that uniform content
placement (under the PIR protocol in Section 3 with GRS codes) is optimal. The
average backhaul rate is given in the following proposition.

Proposition 7. The average backhaul rate for the caching scheme𝒞𝝁MDS in Section 2

196 P V

(with GRS codes) for the PIR case is

RPIR =
𝜇max

𝜇 (𝑛 − 𝑇 + 1) − 1 𝑝 ⌈𝜇 ⌉ 𝛾 (𝑛 − 𝑏) + 𝑝 ⌊1 − 𝜇 ⌋. (V.13)

Proof. To download file 𝑿(), the user generates 𝑛 query matrices. If the user is in
communication range of 𝑏 SBSs, it receives 𝑏 responses (one from each SBS). The
responses to the remaining 𝑛−𝑏 query matrices need to be downloaded from the
MBS. Since each response consists of 𝑑 subresponses of size 𝐿𝜇max bits, the user
downloads (𝑛−𝑏)𝑑𝐿𝜇max bits from the MBS. Averaging over 𝜸 and 𝒑 (for the files
cached) and normalizing by the file size 𝛽𝐿, the contribution to the backhaul rate
of the retrieval of files that are cached in the SBSs is

1
𝛽 𝑝 ⌈𝜇 ⌉ 𝛾 (𝑛 − 𝑏)𝑑𝜇max. (V.14)

Now, using the fact that 𝛽 = Γ= 𝑛−(𝑘max+𝑇−1) = min()
min

and 𝑑 = 𝑘max =
1/𝜇min (see Theorem 1), we can rewrite (V.14) as

𝜇max

𝜇 (𝑛 − 𝑇 + 1) − 1 𝑝 ⌈𝜇 ⌉ 𝛾 (𝑛 − 𝑏). (V.15)

On the other hand, the files that are not cached are retrieved completely from
the MBS, and their contribution to the backhaul rate is (as for the no PIR case)

𝑝 ⌊1 − 𝜇 ⌋. (V.16)

Combining (V.15) and (V.16) completes the proof.

5.1 Op mal Content Placement

Let R∗PIR be the maximum PIR rate resulting from the optimization of the content
placement. R∗PIR can be obtained solving the following optimization problem,

R
∗
PIR = min∈ℳ

∈𝒜

𝜇max

𝜇 (𝑛 − 𝑇 + 1) − 1 𝑝 ⌈𝜇 ⌉ 𝛾 (𝑛 − 𝑏) + 𝑝 ⌊1 − 𝜇 ⌋ (V.17)

s.t. 𝜇 ≤ 𝑀 and 𝑘min ∣ 𝑘 ,

where𝒜 = {1/𝜇min+𝑇,… ,𝑁SBS} and the minimum value that 𝑛 can take on, i.e.,
1/𝜇min + 𝑇, comes from the fact that 𝜇 (𝑛 − 𝑇 + 1) − 1 has to be positive.

5 Backhaul Rate Analysis: PIR Case 197

Lemma 3. Uniform content allocation, i.e., 𝜇 = 𝜇 for all files that are cached, is
optimal. Furthermore, the optimal number of files to cache is the maximum possi-
ble, i.e., 𝜇 = 𝜇 for 𝑖 ≤ min(𝑀/𝜇, 𝐹).
Proof. We first prove the first part of the lemma. We need to show that either the
optimal solution to the optimization problem in (V.17) is the all-zero vector 𝝁 =
(𝜇 ,… , 𝜇) = (0,… , 0), or there exists a nonzero optimal solution 𝝁 = (𝜇 ,… , 𝜇)
for which 𝜇max = 𝜇min. Consider the second case, and let 𝝁 denote any nonzero
feasible solution to (V.17), i.e., a nonzero solution that satisfies the cache size
constraint. Furthermore, let𝝁 = (𝜇 ,… , 𝜇) denote the length-𝐹 vector obtained
from 𝝁 as 𝜇 = 𝜇min for 𝜇 ≠ 0 and 𝜇 = 0 otherwise. Clearly, 𝝁 satisfies the cache
size constraint as well. Note that 𝜇max = 𝜇min = 𝜇min. Thus,

𝜇max

𝜇min(𝑛 − 𝑇 + 1) − 1 = 𝜇min

𝜇min(𝑛 − 𝑇 + 1) − 1 ≤ 𝜇max

𝜇min(𝑛 − 𝑇 + 1) − 1.

Furthermore, since both the double summation in the first term of the objective
function in (V.17) and the second term in (V.17) only depend on the support of 𝝁,
it follows that the value of the objective function for 𝝁 is smaller than or equal to
the value of the objective function for 𝝁. Thus, for any nonzero feasible solution
𝝁 there exists another at least as good nonzero feasible solution 𝝁 for which all
nonzero entries are the same (i.e., 𝜇min = 𝜇max = 𝜇), and the result follows by
applying the above procedure to a (nonzero) optimal solution to (V.17).

We now prove the second part of the lemma. Caching a file helps in reducing
the backhaul rate if

𝜇
𝜇(𝑛 − 𝑇 + 1) − 1 𝛾 (𝑛 − 𝑏) < 1, (V.18)

for some 𝑛 ∈ 𝒜 and 𝜇 ∈ ℳ. This is independent of the file index 𝑖. Thus, if the
optimal solution is to cache at least one file (𝝁 ≠ 𝟎), (V.18) is met for some 𝑛 ∈ 𝒜
and caching other files (as many files as permitted up to the cache size constraint,
with decreasing order of popularity) is optimal as it further reduces the backhaul
rate.

Following Lemma 3, the optimization problem in (V.17) can be rewritten as

R
∗
PIR = min∈ℳ

∈𝒜

𝜇
𝜇(𝑛 − 𝑇 + 1) − 1

(/ ,)

𝑝 𝛾 (𝑛 − 𝑏) +
/

𝑝 . (V.19)

5.2 Popular Content Placement

For popular content placement, the backhaul rate is given by

R
pop
PIR = min

∈𝒜

1
𝑛 − 𝑇 𝑝 𝛾 (𝑛 − 𝑏) + 𝑝 . (V.20)

Note that the optimization over 𝑛 is still required.

198 P V

6 Weighted Communica on Rate

So far, we have considered only the backhaul rate. However, it might also be
desirable to limit the communication rate fromSBSs to the user. We thus consider
the weighted communication rate, CPIR, defined as5

CPIR = RPIR + 𝜃DPIR,

where DPIR is the average communication rate (normalized by the file size 𝛽𝐿)
from the SBSs, and 𝜃 is a weighting parameter. We consider 𝜃 ≤ 1, stemming
from the fact that the bottleneck is the backhaul. Note that minimizing the av-
erage backhaul rate corresponds to 𝜃 = 0.

Proposition 8. The average communication rate from the SBSs for the caching
scheme 𝒞𝝁MDS in Section 2 (with GRS codes) for the PIR case is

DPIR =
𝜇max

𝜇 (𝑛 − 𝑇 + 1) − 1 �̃� 𝑏, (V.21)

where �̃� = 𝛾 for 𝑏 < 𝑛 and �̃� = ∑ SBS 𝛾 .

Proof. To ensure privacy, the user needs to download data from the SBSs within
visibility regardless whether the requested file is cached or not. This is in contrast
to the case of no PIR. Note that, if the user queries the SBSs only in the case the
requested file is cached, then the spy SBSs would infer that the user is interested
in one of the files cached, thus gaining some information about the file requested.
In other words, the user sends dummy queries and downloads data that is useless
for the retrieval of the file but is necessary to achieve privacy. The user receives
𝑏 responses from the 𝑏 SBSs within communication range, each of size 𝑑𝐿𝜇max

bits. Let �̃� denote the probability to receive responses from 𝑏 SBSs. For 𝑏 < 𝑛,
�̃� is equal to the probability that 𝑏 SBSs are within communication range, i.e.,
�̃� = 𝛾 . On the other hand, the probability to receive responses from 𝑛 SBSs,
�̃� , is the probability that at least 𝑛 SBSs are within communication range, i.e.,
�̃� = ∑ SBS 𝛾 . Averaging over �̃� and 𝒑 (for all files, cached and not cached) and
normalizing by the file size 𝛽𝐿, the contribution to the communication rate of
the retrieval of a file from the SBSs is

1
𝛽 𝑝 �̃� 𝑏𝑑𝜇max. (V.22)

Now, using the fact that 𝛽 = Γ= 𝑛−(𝑘max+𝑇−1) = min()
min

and 𝑑 = 𝑘max =
1/𝜇min (see Theorem 1), we can rewrite (V.22) as (V.21).

5For the case of no PIR, a linear scalarization of the MBS and SBS download delays was considered in
[5]. The communication rate is directly related to the download delay.

7 Numerical Results 199

The corresponding optimization problem is

C
∗
PIR = min∈ℳ

∈𝒜
RPIR + 𝜃DPIR (V.23)

s.t. 𝜇 ≤ 𝑀 and 𝑘min ∣ 𝑘 ,

where RPIR is given in (V.13).

Lemma 4. Uniform content allocation, i.e., 𝜇 = 𝜇 for all files that are cached, is
optimal. Furthermore, the optimal number of files to cache is the maximum possi-
ble, i.e., 𝜇 = 𝜇 for 𝑖 ≤ min(𝑀/𝜇, 𝐹).

Proof. The proof of Lemma 3 applies to both terms in (V.23) and the result follows.

Following Lemma 4, the optimization problem in (V.23) can be rewritten as

C
∗
PIR = min∈ℳ

∈𝒜

𝜇
𝜇(𝑛 − 𝑇 + 1) − 1

(/ ,)

𝑝 𝛾 (𝑛 − 𝑏)

+
/

𝑝 + 𝜃 𝜇
𝜇(𝑛 − 𝑇 + 1) − 1 �̃� 𝑏. (V.24)

7 Numerical Results

For the numerical results in this section, we assume that the files popularity dis-
tribution 𝒑 follows the Zipf law [26], i.e., the popularity of file 𝑿() is

𝑝 = 1/𝑖
∑ℓ 1/ℓ

,

where 𝛼 ∈ [0.5, 1.5] is the skewness factor [7] and by definition 𝑝 ≥ 𝑝 ≥ … ≥ 𝑝 .
In Figs. V.3 and V.4, we consider a network topology where SBSs are deployed over
a macro-cell of radius𝐷meters according to a regular grid with distance 𝑑meters
between them [5, 7]. Each SBS has a communication radius of 𝑟meters. Letℛ be
the area where a user can be served by 𝑏 SBSs. Then, assuming that the users are
uniformly distributed over the macro-cell area with density 𝜙 users per square
meter, the probability that a user is in communication range of 𝑏 SBSs can be
calculated as in [7]

𝛾 = 𝜙ℛ
𝜙∑ max ℛ

,

where the areasℛ can be easily obtained by simple geometrical evaluations, and
𝑁max is the maximum number of SBSs within communication range of a user.

200 P V

0 20 40 60 80 100 120 140 160 180 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑇 = 1

𝑇 = 2

𝑇 = 0

𝑇 = 3

𝑀

ba
ck

ha
ul

ra
te

R
∗
PIR

R
pop
PIR

R
∗
noPIR

Figure V.3: Backhaul rate as a function of the cache size constraint 𝑀 for a system with
𝐹 = 200 files, 𝑁SBS = 316, and 𝛼 = 0.7.

For the results in Figs. V.3 and V.4, the system parameters (taken from
[7]) are 𝐷 = 500 meters, which results in 𝑁SBS = 316 over the macro-cell
area, 𝐹 = 200 files, 𝛼 = 0.7, and 𝑟 = 60 meters. This results in 𝜸 =
(0, 0, 0.1736, 0.5113, 0.3151, 0, … , 0), i.e., the maximum number of SBSs in vis-
ibility of a user is 𝑁max = 4.

In Fig. V.3, we plot the optimized backhaul rateR∗PIR (red, solid lines) according
to (V.19) as a function of the cache size constraint 𝑀 for the noncolluding case
(𝑇 = 1) and 𝑇 = 2 and 𝑇 = 3 colluding SBSs. The curves in Fig. V.3 should be
interpreted as the minimum backhaul rate that is necessary in order to achieve
privacy against 𝑇 spy SBSs out of the 𝑛 SBSs that are contacted by the user. For
the particular system parameters considered, the optimal value of 𝑛 is 3 for 𝑇 = 1
and 𝑇 = 2, and all values of 𝑀, i.e., the scheme yields privacy against 𝑇 spy SBSs
out of the 𝑛 = 3 SBSs contacted. For 𝑇 = 3 the optimal value of 𝑛 is 4 for all
values of 𝑀, and thus the scheme yields privacy against 3 spy SBSs out of 𝑛 = 4
SBSs. We also plot the optimized backhaul rate R

∗
noPIR for the case of no PIR.6

As can be seen in the figure, caching helps in significantly reducing the backhaul
rate for 𝑇 = 1 and 𝑇 = 2. For 𝑇 = 3 caching also helps in reducing the backhaul
rate, but the reduction is smaller. Also, as expected, compared to the case of no
PIR (R∗noPIR, black, solid line) achieving privacy requires a higher backhaul rate.
The required backhaul rate increases with the number of colluding SBSs 𝑇.

For 𝑀 ≥ 100 and no PIR, the backhaul rate is zero, as all files can be down-
loaded from the SBSs. Indeed, for 𝑀 = 100, we can select 𝑘 = 2 ∀𝑖 and cache
one coded symbol from each stripe of each file in each SBS (thus satisfying the
constraint ∑ 𝜇 ≤ 𝑀 as ∑ 𝜇 = ∑ 1/𝑘 = ∑ 0.5 = 100). Since for no
PIR to retrieve each stripe of a file it is enough to download 2 symbols from each

6The curve R∗noPIR in the figure is identical to that in [7, Fig. 4]. As proved in Lemma 2, while the pro-
posed content placement is different from the one in [7], they are equivalent in terms of average backhaul
rate.

7 Numerical Results 201

0 20 40 60 80 100 120 140 160 180 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝜃 = 0

𝜃 = 0.1

𝜃 = 0.2

𝜃 = 0.3

𝜃 = 0.4

𝜃 = 0.5

𝜃 = 0.6

𝑀

w
ei
gh

te
d
co
m
m
un

ic
at
io
n
ra
te

C
∗
PIR, 𝑇 = 1

Figure V.4: Optimized weighted communication rate as a function of the cache size
constraint 𝑀 for a system with 𝑇 = 1 spy SBS, 𝐹 = 200 files, 𝑁SBS = 316, 𝛼 = 0.7, and
several values of 𝜃.

stripe of the file (due to the MDS property) and according to 𝜸 at least 2 SBSs
are within range, for 𝑀 = 100 (and hence for 𝑀 > 100 as well) the user can al-
ways retrieve the file from the SBSs and the backhaul rate is zero. For the case of
PIR and 𝑇 = 1, on the other hand, the required backhaul rate is positive unless
all complete files can be cached in all SBSs, i.e., 𝑀 = 𝐹. For 𝑇 = 2 and 𝑇 = 3,
even for𝑀 = 𝐹 the backhaul rate is not zero. This is because in this case the user
needs to receive 𝑛 = 3 and 𝑛 = 4 responses 𝒓(), 𝑙 = 1,… , 𝑛, respectively (from
the SBSs or the MBS). However, for the considered system parameters the prob-
ability that the user has 𝑏 ≥ 3 SBSs within range is not one, thus the user always
needs to download data from the MBS to recover the file and the backhaul rate is
positive.

For comparison purposes, in the figure we also plot the backhaul rate for the
case of popular content placement Rpop

PIR in (V.20) (blue, dashed lines). In this
case, the optimal value of 𝑛 is 2, 3, and 4 for 𝑇 = 1, 𝑇 = 2, and 𝑇 = 3, respec-
tively. We remark that the curve R

pop
PIR for 𝑇 = 1 overlaps with the curve R

pop
noPIR.

This is due to the fact that for 𝑇 = 1, 𝑛 = 2, and 𝛾 = 𝛾 = 0, Rpop
PIR in (V.20)

boils down to ∑ 𝑝 , which is Rpop
noPIR in (V.12). However, for the general case,

i.e., other 𝜸, Rpop
PIR and R

pop
noPIR may differ. As already shown in [7], for no PIR the

optimized content placement yields significantly lower backhaul rate than popu-
lar content placement. For the PIR case and 𝑇 = 1, up to𝑀 = 118 the optimized
content placement also yields some performance gains with respect to popular
content placement, albeit not as significant as for the case of no PIR. Interest-
ingly, as shown in the figure, for 𝑀 ≥ 119, PIR popular content placement is
optimal. Furthermore, as shown in the figure, for 𝑇 = 2 and 𝑇 = 3 popular con-
tent placement is optimal for all𝑀.

In Fig. V.4, we plot the optimized weighted communication rate C∗
PIR in (V.24)

for the noncolluding case (𝑇 = 1) as a function of the cache size constraint𝑀 and
several values of 𝜃. For the considered system parameters, caching is still useful

202 P V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
⋅10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 (4, 1)
(3, 1)

(2, 1)

(3, 2)

(4, 3)

(5, 4)

SBSs density 𝜆 (𝑚−2)

ba
ck

ha
ul

ra
te

𝑀 = 10
𝑀 = 20
𝑀 = 40
𝑀 = 50

Figure V.5: Backhaul rate as a function of the density of SBSs 𝜆 and several values𝑀 for
the scenario where SBSs are distributed according to a PPP and 𝑇 = 1. 𝐹 = 200 files
and 𝛼 = 0.7. Solid lines correspond to optimal content placement (R∗PIR in (V.19)) and
dashed lines to popular content placement (Rpop

PIR in (V.20)).

for small values of 𝜃 if the cache size is big enough. For example, for 𝜃 = 0.5
caching helps in reducing the weighted communication rate with respect to no
caching for 𝑀 ≥ 87. For 𝜃 ≥ 0.7, caching does not bring any reduction of the
weighted communication rate.

In Figs. V.5 and V.6, we plot the backhaul rate for a PPP deployment model
where SBSs are distributed over the plane according to a PPP and a user at an
arbitrary location in the plane can connect to all SBSs that are within radius 𝑟u.
Let 𝜆 be the density of SBSs per square meter. For this scenario, the probability
that a user is in communication range of 𝑏 SBSs is given by [27]

𝛾 = e 𝜓
𝑏! ,

where 𝜓 = 𝜆𝜋𝑟u . In Fig. V.5, we plot the optimized backhaul rate (R∗PIR in (V.19),
solid lines) as a function of the density 𝜆 for𝐹 = 200files, 𝛼 = 0.7, 𝑟u = 60meters,
different cache size constraint𝑀, and a single spy SBS, i.e., 𝑇 = 1. For small den-
sities, caching does not help in reducing the backhaul rate. However, as expected,
the required backhaul rate diminishes by increasing the density of SBSs. For com-
parison purposes, we also plot the backhaul rate for popular content placement
(Rpop

PIR in (V.20), dashed lines). Interestingly, popular content placement is opti-
mal up to a given density of SBSs, after which optimizing the content placement
brings a significant reduction of the required backhaul rate. Similar results are
observed for 𝑇 = 2 and 𝑇 = 4 colluding SBSs in Fig. V.6 with the same system pa-
rameters as in Fig. V.5. In Figs. V.5 and V.6, for each𝑀 the optimal value of 𝑛 and
𝜇 depends on the density of SBSs. Typically, a pair (𝑛, 𝜇) is optimal for a range of
densities. In the figures, we give the optimal values of 𝑛 and 𝑘 for𝑀 = 50 (in par-
ticular we give the pair (𝑛, 𝑘), with 𝑘 = 1/𝜈, which is also the code parameters of

8 Conclusion 203

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
⋅10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑇 = 2
𝑇 = 4

(6, 1)
(5, 1)
(4, 1)

(3, 1)

(4, 2)

(5, 3)

(6, 4)

(9, 1)
(8, 1)
(7, 1)

(6, 1)

(5, 1)

(7, 2)

(6, 2)

(8, 3)

(7, 3)

SBSs density 𝜆 (𝑚−2)

ba
ck

ha
ul

ra
te

𝑀 = 10
𝑀 = 20
𝑀 = 40
𝑀 = 50

Figure V.6: Backhaul rate as a function of the density of SBSs 𝜆 and several values of 𝑀
for the scenario where SBSs are distributed according to a PPP and 𝑇 = 2 and 𝑇 = 4.
𝐹 = 200 files and 𝛼 = 0.7. Solid lines correspond to optimal content placement (R∗PIR
in (V.19)) and dashed lines to popular content placement (Rpop

PIR in (V.20)).

the punctured code 𝒞). For convenience, in the figures we only give the param-
eters for the densities where the optimal pair (𝑛, 𝑘) changes. The values should
be read as follows: In Fig. V.5, walking the curve from top-left to bottom-right,
no caching is optimal for densities up to 𝜆 = 8 ⋅ 10 . For 𝜆 = 9 ⋅ 10 , (4, 1) is
optimal. Then, (3, 1) is optimal for densities 𝜆 = 10 to 𝜆 = 1.2 ⋅ 10 . From
𝜆 = 1.3 ⋅ 10 to 𝜆 = 3.2 ⋅ 10 the optimal value is (2, 1), and so on (the curves
are plotted with steps of 10).

8 Conclusion

We proposed a private information retrieval scheme that allows to download files
of different popularities from a cellular network, where to reduce the backhaul us-
age content is cached at the wireless edge in SBSs, while achieving privacy against
a number of spy SBSs. We derived the backhaul rate for this scheme and formu-
lated the content placement optimization. We showed that, as for the no PIR
case, up to a number of spy SBSs caching helps in reducing the backhaul rate.
Interestingly, contrary to the no PIR case, uniform content placement is opti-
mal. Furthermore, popular content placement is optimal for some scenarios.
Although uniform content placement is optimal, the proposed PIR scheme for
multiple code rates may be useful in other scenarios, e.g., for distributed storage
where data is stored using codes of different rates.

204 P V

A Proof of Theorem 1

To prove that the protocol achieves PIR against 𝑇 colluding SBSs, we need to prove
that both the privacy condition in (V.2a) and the recovery condition in (V.2b) are
satisfied. We first prove that the recovery condition in (V.2b) is satisfied.

According to Lemma 1, GRS codes with a fixed weighting vector 𝒗 and evalu-
ation vector 𝜿 are naturally nested. Furthermore, puncturing a GRS code results
in another GRS code, since GRS codes are weighted evaluation codes [25, Ch. 5].
Thus, 𝒞 ⊆ 𝒞max for all 𝑖, and it follows from (V.7) that

�̃� = 𝒞 ∘ �̄� = 𝒞max ∘ �̄�.

Furthermore, it can easily be shown that theHadamard product of twoGRS codes
with the same evaluation vector (𝜅 , … , 𝜅) is also a GRS code with dimension
equal to the sum of the dimensions minus 1. Thus, �̃� is a GRS code of dimension
𝑘max+𝑇−1. As �̃� is an (𝑛, 𝑘max+𝑇−1)MDS code (GRS codes are MDS codes), it
can correct arbitrary erasure patterns of up to Γ = 𝑛−(𝑘max+𝑇−1) erasures. This
implies that one can construct a valid 𝑘max × 𝑛 (𝑑 = 𝑘max) matrix �̂� (satisfying
conditions C1–C3) from 𝛽 = Γ information sets {ℐ } of 𝒞max as shown below.

Let 𝒥 = {𝑗, … , (𝑗 + Γ − 1) mod 𝑛}, 𝑗 = 1,… , 𝑘max. Construct �̂� in such a way
that 𝒥 is the support of the 𝑗-th row of �̂�. Hence, C1 is satisfied. Furthermore,
since �̃� is an (𝑛, 𝑘max + 𝑇 − 1)MDS code and Γ = 𝑛 − (𝑘max + 𝑇 − 1), all rows of
�̂� are correctable by �̃�, and thus C2 is satisfied. Finally, run Algorithm 1, which
constructs 𝛽 = Γ information sets {ℐ } of 𝒞max (and the corresponding sets {ℱ})
such that C3 is satisfied. Note that since 𝒞max is an MDS code, all coordinate
sets of size 𝑘max are information sets of 𝒞max, and hence Algorithm 1 will always
succeed in constructing a valid set of information sets of 𝒞max (the inequalities in
Lines 6 and 7 together with the fact that the overall weight of �̂� is Γ𝑘max ensure
that 𝛽 = Γ valid information sets for 𝒞max are constructed). In particular, the
while-loop in Line 6 will always terminate.

From the constructed matrix �̂�, the user is able to recover Γ𝑑 ≥ 𝛽𝑘 unique
code symbols of the requested file 𝑿(), at least 𝑘 symbols from each stripe. Fur-
thermore, a set of 𝑘 recovered code symbols from each stripe corresponds to an
information set of 𝒞 (any subset of size 𝑘 of any information set of size 𝑘max

of 𝒞max is an information set of 𝒞), and the requested file 𝑿() can be recovered.
This can be seen following a similar argument as in the proof of [21, Th. 6], and it
follows that the recovery condition in (V.2b) is satisfied.

Secondly, we consider the privacy condition in (V.2a). A reasoning similar
to the proof of [21, Lem. 6] shows that it is satisfied, and we refer the interested
reader to this proof for further details. The fundamental reason is that addition of
a deterministic vector in (V.5) does not change the joint probability distribution of
{𝑸(), 𝑙 ∈ 𝒯} for any set 𝒯 size 𝑇, and the proof follows the same lines as the proof
of [20, Th. 8]. However, note that there is a subtle difference in the sense that
independent instances of the protocol may query different sets of SBSs. However,
since the set of SBSs that are queried is independent of the requested file and

REFERENCES 205

Algorithm 1: Construction of {ℐ } for Theorem 1
Input: �̂�, 𝛽, 𝑛, 𝑘max

Output: {ℐ }, {ℱ }
1 for𝑚 ∈ {1,… , 𝛽} do
2 ℐ ← ∅
3 end
4 for 𝑙 ∈ {1, … , 𝑛} do
5 ℱ ← ∅,𝑚 ← 1
6 while |ℱ | ≤ 𝑤H (𝒕) do
7 if |ℐ] < 𝑘max then
8 ℱ ← ℱ ∪ {𝑚}
9 ℐ ← ℐ ∪ {𝑙}
10 end
11 𝑚 ← 𝑚 + 1
12 end
13 end

depends only on which SBSs that are within communication range, this fact does
not leak any additional information on which file is requested by the user.

References

[1] U. Niesen, D. Shah, and G. W. Wornell, “Caching in wireless networks,” IEEE
Trans. Inf. Theory, vol. 58, no. 10, pp. 6524–6540, Oct. 2012.

[2] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[3] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and
J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp.
1065–1082, Jun. 2014.

[4] D. Liu, B. Chen, C. Yang, and A. F.Molisch, “Caching at the wireless edge: De-
sign aspects, challenges, and future directions,” IEEE Commun. Mag., vol. 54,
no. 9, pp. 22–28, Sep. 2016.

[5] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire,
“Femtocaching: Wireless content delivery through distributed caching
helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–8413, Dec. 2013.

[6] E. Bastug, M. Bennis, andM. Debbah, “Living on the edge: The role of proac-
tive caching in 5G wireless networks,” IEEE Commun. Mag., vol. 52, no. 8, pp.
82–89, Aug. 2014.

[7] V. Bioglio, F. Gabry, and I. Land, “Optimizing MDS codes for caching at the
edge,” in Proc. Global Commun. Conf. (GLOBECOM), San Diego, CA, Dec.
2015.

206 P V

[8] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in wireless
D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp. 849–869, Feb. 2016.

[9] N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Dimakis, “Base-
station assisted device-to-device communications for high-throughput wire-
less video networks,” IEEE Trans. Wireless Commun., vol. 13, no. 7, pp. 3665–
3676, Jul. 2014.

[10] J. Pedersen, A. Graell i Amat, I. Andriyanova, and F. Brännström, “Distributed
storage in mobile wireless networks with device-to-device communication,”
IEEE Trans. Commun., vol. 64, no. 11, pp. 4862–4878, Nov. 2016.

[11] A. Piemontese and A. Graell i Amat, “MDS-coded distributed storage for low
delay wireless content delivery,” in Proc. 2016 9th Int. Symp. Turbo Codes &
Iterative Inform. Process. (ISTC), Brest, France, 2016, pp. 320–324.

[12] J. Pedersen, A. Graell i Amat, I. Andriyanova, and F. Brännström,
“Optimizing MDS coded caching in wireless networks with device-to-device
communication,” Jan. 2017, arXiv:1701.06289v2 [cs.IT]. [Online]. Available:
https://arxiv.org/abs/1701.06289

[13] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their
applications,” in Proc. 36th Annual ACM Symp. Theory Comput. (STOC),
Chicago, IL, Jun. 2004, pp. 262–271.

[14] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of download
ensures perfectly private information retrieval,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Honolulu, HI, Jun./Jul. 2014, pp. 856–860.

[15] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval for
coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Hong Kong, China,
Jun. 2015, pp. 2842–2846.

[16] R. Tajeddine and S. El Rouayheb, “Private information retrieval from MDS
coded data in distributed storage systems,” in Proc. IEEE Int. Symp. Inf. The-
ory (ISIT), Barcelona, Spain, Jul. 2016, pp. 1411–1415.

[17] S. Kumar, E. Rosnes, and A. Graell i Amat, “Private information retrieval in
distributed storage systems using an arbitrary linear code,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017, pp. 1421–1425.

[18] H. Sun and S. A. Jafar, “Private information retrieval from MDS coded data
with colluding servers: Settling a conjecture by Freij-Hollanti et al.” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017, pp. 1893–1897.

[19] ——, “The capacity of private information retrieval,” IEEE Trans. Inf. Theory,
vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[20] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private infor-
mation retrieval from coded databases with colluding servers,” SIAM J. Appl.
Algebra Geom., vol. 1, no. 1, pp. 647–664, Nov. 2017.

REFERENCES 207

[21] S. Kumar, H.-Y. Lin, E. Rosnes, and A. Graell i Amat, “Achieving
maximum distance separable private information retrieval capacity with
linear codes,” 2017, arXiv:1712.03898v3 [cs.IT]. [Online]. Available: https:
//arxiv.org/abs/1712.03898

[22] K. Banawan and S. Ulukus, “The capacity of private information retrieval
from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1945–1956,
Mar. 2018.

[23] H. Sun and S. A. Jafar, “The capacity of robust private information retrieval
with colluding databases,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2361–
2370, Apr. 2018.

[24] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information
retrieval,” in Proc. 36th IEEE Symp. Found. Comp. Sci. (FOCS), Milwaukee,
WI, Oct. 1995, pp. 41–50.

[25] W. C. Huffman and V. Pless, Eds., Fundamentals of Error-Correcting Codes.
Cambridge, UK: Cambridge University Press, 2010.

[26] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in Proc. IEEE Joint Conf.
Comput. Commun. Soc. (INFOCOM), New York, NY, Mar. 1999, pp. 126–134.

[27] B. Serbetci and J. Goseling, “On optimal geographical caching in hetero-
geneous cellular networks,” in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), San Francisco, CA, Mar. 2017.

208 P V

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 978-82-308-3651-4

	145902_Siddhartha_Kumar_Elektronisk
	145902_Siddhartha_Kumar_innmat
	145902_Siddhartha_KumarElektronsk_bakside

