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Abstract

This thesis investigates the importance and significance of thermally excited 630.0 nm

emissions in the cusp and polar ionosphere. Thermal excitation by heated ambient elec-

trons in the cusp and polar ionosphere is a rarely studied source of 630.0 nm emissions

in this region, and is therefore, not well represented in literature. On the other hand,

direct impact excitation by precipitating electrons and dissociative recombination have

been extensively studied and they are believed to be the main sources of 630.0 nm emis-

sions. This thesis utilizes ground-based incoherent scatter radar and optical measure-

ments from Svalbard to study the thermally excited emissions. The thermal excitation

component of the 630.0 nm emission is derived from EISCAT Svalbard Radar mea-

surements. The thermal excitation component is then studied through both case and

statistical studies presented in three scientific papers.

The first part of this thesis investigates the contribution of the thermal component

to the total observed 630.0 nm emission, and for the first time the thermal excitation

component is separated from the observed total 630.0 nm emission intensity. The con-

tribution is quantified and characteristics investigated. The second part of the thesis

statistically investigates the occurrence of thermally excited emissions specifically fo-

cussing on the strong (intensity > 1 kR) thermal component. The magnetic local time

distribution, emission intensity levels, ionosphere, solar wind and interplanetary mag-

netic field conditions, seasonal and solar cycle variations of the strong thermal excita-

tion component are investigated.

The main conclusions of this thesis are:

→ Thermal excitation can be important in the cusp and polar ionosphere, particularly

on the dayside. It should therefore, be taken into account when studying dayside

630.0 nm emissions and electron thermal balance in this region.

→ The strong thermal excitation component maximizes around magnetic noon, with
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Chapter 1

Introduction

The Earth continuously interacts with the Sun via solar radiation and solar wind-

magnetosphere coupling. The solar radiation spectrum includes X-ray, extreme ul-

traviolet, ultraviolet, visible and infrared radiation. The visible part, can easily be no-

ticeable to us through the lovely sunshine in our day-to-day life. The important part

for this study, however, is the extreme ultraviolet (EUV) and the ultraviolet (UV) ra-

diation. The Sun-Earth interaction via solar wind-magnetosphere coupling manifests

itself as northern (southern) lights usually visible at high latitudes in places like Nor-

way. The northern (or southern) lights are optical emissions, which prove that part of

the energetic charged particles streaming from the Sun, as solar wind, has been cap-

tured by the Earth’s magnetic field, and precipitated into the upper atmosphere in polar

regions. The northern lights, also known as aurora, are the focus of this thesis. An im-

age of the sky above Svalbard from an All-Sky camera is shown in Figure 1.1. The

figure shows a display of northern lights with red and green emissions.

To a large extent, the Earth is protected by the magnetic field that surrounds it, also

called the geomagnetic field. However, under certain configurations the geomagnetic

field and the Sun’s magnetic field merge via a process called magnetic reconnection.

This coupling provides charged particles in the solar wind access to the Earth’s upper

atmosphere. As the energetic particles precipitate into the polar atmosphere, they lose

their energy either through heating of ionospheric electrons, or ionizing the neutral con-

stituents in the atmosphere, or through direct impact excitation of neutral constituents

giving off auroral emissions. Optical auroral emissions arising from the latter process

have been studied extensively for more than a century [e.g., Egeland and Burke, 2013,

and references therein]. However, optical emissions can also arise from the heated am-

bient electrons that were energized by the precipitating electrons. Heating in the right

altitude depends on sufficiently soft (hundreds of eV) and sufficiently many precipitat-
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Chapter 2

Background and theory for the study

2.1 The Earth’s ionosphere

The Earth’s upper atmosphere (∼>100 km) is dominated by neutral constituents. The

heavier molecular constituents dominate at low altitude, below ∼200 km, while the

lighter atomic constituents dominate at higher altitude. The Sun is the main source of

energy for the Earth, and this energy is manifested in different ways in the Earth’s upper

atmosphere. One of the main consequences of the Sun’s effect in the upper atmosphere

is the presence of a partially ionized region called the ionosphere. The composition of

the daytime upper atmosphere is shown in Figure 2.1.

The ionosphere is produced when the neutral constituents are ionized to produce

electron-ion pairs. There are two sources of ionization in the ionosphere: photoioni-

sation by absorption by the neutral atmosphere of solar EUV and UV radiation, and

impact ionisation of the neutral atmosphere by energetic particles resulting from the

Sun-Earth interaction via solar wind-magnetosphere coupling.

2.1.1 Sources of the ionisation

Photoionisation by solar EUV radiation

When EUV and UV radiation from the sun is absorbed by the neutral particles in the

atmosphere, an electron may be extracted, thereby producing a free electron and an

ion. The production of electron-ion pairs via absorption of a photon or radiation is

known as photoionisation. The photoionisation rate from this process is dependant on

the intensity of the incident radiation, the solar zenith angle, the neutral particle number

density (which absorbs the radiation), the altitude, the photoionisation efficiency and

the radiation absorption cross-section. The production rate by this process has been

7
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2.1 The Earth’s ionosphere 9

∞

z

Earth surface

Sun

Figure 2.2: Illustration of the solar flux/radiation intensity I∞ incident at an altitude z with the
solar zenith angle χν .

the Earth’s magnetic field traces to the locations where dynamic magnetospheric pro-

cesses associated with the interaction with the solar wind occur. At these latitudes, the

ionisation by the energetic particle precipitation via solar wind-magnetosphere cou-

pling, becomes an important ionization source. However, even with reduced solar UV

radiation, when the solar zenith angle is greater than 90◦, measurements of plasma

parameters in the polar ionosphere have suggested that solar EUV radiation is still

the dominant source of ionization due to transport from lower latitudes [e.g., Vontrat-

Reberac et al., 2001].

Solar Wind-magnetosphere coupling

Energetic, charged particles continuously stream from the Sun at high speeds, as plasma

attached to the interplanetary magnetic field (IMF). Part of this solar wind energy is

precipitated into the Earth’s upper atmosphere via magnetic reconnection at the dayside

magnetopause and in the magnetotail on the nightside [Dungey, 1961] as illustrated in

Figures 2.3 and 2.4. The dayside here refers to the part of the Earth that faces the

Sun, while nightside refers to the part of the Earth facing away from the Sun. For

southward IMF orientation, magnetic reconnection opens the closed geomagnetic field
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Chapter 3

Ground-based measurements and

models

In this chapter, we describe the techniques and instruments used for the ionosphere

measurements and optical observations in this thesis. They include ground-based

meridian scanning photometer and the EISCAT Svalbard radar. In addition, the atomic

oxygen density is a key requirement for the thermal excitation to occur. We have no

measurements for the neutral atmosphere, so we used models to generate this density

as described in this chapter. In all three papers, other data like solar wind, IMF, sunspot

number, and solar F10.7 flux, were also used for interpretation of our results. For a

description of these, the reader is referred to Papers I-III.

3.1 Ground-based measurements

3.1.1 Meridian Scanning Photometer (MSP)

The meridian scanning photometer (MSP) is an optical instrument which can record

optical emission intensities along the magnetic meridian, at different desired wave-

lengths. The MSP at the Kjell Henriksen Observatory (KHO) on Svalbard is designed

to measure optical emission intensities at five wavelengths; 630.0 nm, 427.8 nm, 557.7

nm, 486.1 nm, and 844.6 nm. The key wavelength used in this thesis, is the 630.0 nm.

The instrument is made up of a mirror, which rotates, scanning the sky from north

to south along the magnetic meridian, hence the instrument’s name ’meridian scanning

photometer’. Each unit recording of a wavelength is referred to as a channel. Each

channel consists of a photomultiplier tube, with a narrow bandpass filter for the desired

wavelength, which is mounted onto a tilting frame. This unit is referred to as the tilting

frame photometer, and is placed in front of the rotating mirror. A simplified illustration
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36 Ground-based measurements and models

radar>> D  

Figure 3.5: An illustration of the incoherent scattering technique used by the ESR. When
the radar transmits a radio wave of wavelength λradar, which is much greater than the Debye
length, λD, a weak incoherent scattering from the electron cloud that is surrounding an ion, is
received back. The ion drifts with the cloud, which is measured by the radar as the line-of-site
ion velocity.

deland et al. [2004, 2008].

Figure 3.6: Typical power spectra for the ion line showing it’s dependence on the electron
temperature/ion temperature ratio Te/Ti (left), and the effect of the plasma drift Vd (right).
Figure from Grydeland et al. [2008].

The received radar signal also contains thermal noise from electronics and the sur-

roundings, as well as clutter which is radar echoes from ’unwanted targets’ (e.g., moun-

tains, space debris) [e.g., Turunen et al., 2000]. The signal-to-noise ratio (SNR) is the

ratio of the instantaneous target signal power to the mean noise power. In the ESR
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Chapter 4

Results and discussion

This thesis investigates the importance and significance of thermally excited 630.0 nm

emissions in the cusp and polar ionosphere. The main part of this work has been pre-

sented in three scientific papers, Papers I-III, which are included in the appendix. In this

chapter, we first give a summary of each of the three papers separately and afterwards,

discuss the papers as a whole.

4.1 Summary of papers

4.1.1 Paper 1: On the contribution of thermal excitation to the total

630.0 nm emissions in the northern cusp ionosphere

The first part of this investigation is to quantify the contribution and potential impor-

tance of thermal excitation in the cusp and polar ionosphere. Wickwar and Kofman

[1984] calculated the thermal component in the cusp, when high electron temperatures

prevailed, but did not have optical observations. At the same latitudes, Carlson et al.

[2013] compared emission rates derived from two ESR scanning experiments, with

coincident all-sky images, using boundary tracking. They emphasised the need for

analysis with smaller error bars adequate to go beyond boundary tracking and enable

more quantitative aeronomy applications. In Paper I, we use the ESR measurements

from the fixed field-aligned beam, which have the smallest statistical error bars com-

pared to earlier work [e.g., Carlson et al., 2013; Wickwar and Kofman, 1984]. Two

days were selected for investigation, on the basis of existence of high electron temper-

atures (>3000 K) as suggested in literature for thermal excitation to become important

[e.g., Kozyra et al., 1990; Lockwood et al., 1993], and availability of coincident optical

data from the MSP at KHO.

For both cases, the electron temperature exceeding 3000 K was found near magnetic
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Chapter 5

Conclusion and future prospects

5.1 Conclusion

This thesis has investigated the importance of thermal excitation in the cusp and polar

ionosphere. Ground-based incoherent scatter radar and optical measurements from

Svalbard have been utilised in this study. The ESR measurements have been used

to derive the thermal excitation component. The thermal excitation component has

then been studied. Through both case and statistical studies, the thermal excitation

component has been studied with the aim of answering the two open question which

were stated in Chapter 1. The thesis key findings about the two questions, have been

discussed in Section 4.3. Below, we summarize the main conclusions of this work.

→ Thermal excitation can be important in the cusp and polar ionosphere, particu-

larly on the dayside. We therefore strongly recommend that any studies involving

dayside 630.0 nm emissions and electron thermal balance in this region should

take into account thermal excitation .

→ The strong thermal excitation component maximizes around magnetic noon, with

an occurrence rate of ∼10%.

→ When the strong thermal component is present, it can contribute >50% of the

total 630.0 nm emission intensity.

→ The thermally excited emissions have a relatively high peak emission altitude of

∼350 km, and could be responsible for the 630.0 nm emission at such altitudes

and above.

→ Thermal excitation is most likely to give rise to 630.0 nm emission intensities of

order of kRs when the electron gas temperature exceeds ∼2500 K for electron

densities ∼(1-8)×1011 m−3.
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Te ×
(8537 + Te)

(34191 + Te)3
× e(

−22756

Te
) (cm3/s) (3)

is given by Mantas and Carlson [1991] based on O(1D) electron impact excitation cross
section by Lan et al. [1972] for deriving O(1D) excitation rates by thermal electron
impact. Te is the electron temperature in Kelvins, Ne the electron density in cm−3,
and No the atomic oxygen density in cm−3. All the parameters are functions of altitude
h in kilometres.

The output of the model as well as the inputs are categorised in seasons of the
year and solar maximum and minimum. Further analyses are done to investigate the
seasonal and solar cycle variations and dependences.

3 Observations and Results

Throughout this paper, ”strong thermal emission” refers to all calculated ther-
mally excited emission intensities exceeding 1 kR. A detailed rationale for this cate-
gorisation is given by Kwagala et al. [2018]. Any use of terms like thermal component
or thermally excited emissions, will be referring to the strong thermal component.

3.1 Solar cycle variations

Figure 1 gives an overview of data distribution for solar maximum (red) and
solar minimum (blue). Although there is more data for solar minimum (1c) than
solar maximum (1a), the data is evenly distributed at all MLTs. The strong thermal
component is normalised to percentage for comparison. The occurrence rate of the
strong thermal component is highest at solar maximum (b). The peak occurrence
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