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Abstract

Neural networks are an important and powerful family of models, but they have
lacked practical ways of estimating predictive uncertainty. Recently, researchers
from the Bayesian machine learning community developed a technique called Monte
Carlo (MC) dropout which provides a theoretically grounded approach to estimating
predictive uncertainty in dropout neural networks [Gal and Ghahramani, 2016]. Some
researchers have developed ad hoc approximations of these uncertainty estimates for use
in convolutional neural networks [Feinman et al., 2017; Leibig et al., 2017]. We extend
their research to a multi-class setting, and find that ad hoc approximations of predictive
uncertainty in some cases provides useful information about a model’s confidence in
its predictions. Furthermore, we develop a novel approximation of uncertainty that
in some respects performs better than those currently being used. Finally, we test
these approximations in practice and compare them to other methods suggested in the
literature. In our setting we find that the ad hoc approximations perform adequately,
but not as well as those already suggested by experts.
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Ŷ Matrix of N predictions
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L(y, ŷ) Alternative formulation of loss function

R(θ) Regularisation term, where θ denotes all model parameters

C(θ) Cost function (regularised loss)

Acronyms / Abbreviations

BCNN Bayesian convolutional neural network

BNN Bayesian neural network

CNN Convolutional neural network

GP Gaussian process

KL Kullback-Leibler



Nomenclature xvii

MC Monte Carlo

MI Mutual information

ML Maximum likelihood

MLE Maximum likelihood estimate

MLP Multi-layer perceptron, also known as a feedforward neural network

PE Predictive entropy

VR Variation ratio

i.i.d. independent and identically distributed





Chapter 1

Introduction

Interest in machine learning has exploded in recent years thanks to an ever-growing
treasure trove of available data and advances in computing hardware. This has led
to a resurgence of interest in a family of models known as neural networks, which in
turn has spawned a fast-paced field of research called deep learning. In the last few
years, specialised networks have made significant breakthroughs in areas as diverse
as computer vision, natural language processing and reinforcement learning. As a
result of their tremendous success, neural networks are quickly becoming ubiquitous in
problems where there are large amounts of data.

Although they are very powerful, neural networks can sometimes make inexplicably
bad predictions with high perceived confidence. This is a problem in applications where
human safety is a concern. In these settings, being able to express uncertainty about
the predictions is important. Uncertainty estimation has typically been associated
with a branch of statistics known as Bayesian modelling, but until recently there
haven’t been any practical ways of obtaining Bayesian uncertainty estimates from
neural networks.

This changed when recent work established a connection between dropout training in
a neural network and approximate inference in a Bayesian model known as the Gaussian
process [Gal and Ghahramani, 2016]. Interpreting dropout training as approximate
Bayesian inference allows us to obtain theoretically grounded estimates of predictive
uncertainty in dropout neural networks. In practice, this is done by leaving dropout
on at test time. An input is passed through the network many times, and each time a
slightly different network is making predictions because dropout randomly switches
off parameters. In a regression setting this allows us to obtain uncertainty estimates



2 Introduction

by calculating the empirical variance of the different outputs associated with a single
input. This method has been dubbed Monte Carlo (MC) dropout for reasons that will
become clear in chapter 4. Furthermore, MC dropout is extended beyond dropout
networks to more complex architectures such as convolutional neural networks. In this
setting the Gaussian process approximation interpretation is lost.

However, researchers have formulated ad hoc approximations of the predictive uncer-
tainty obtained in a regression setting and applied them to binary image classification
tasks [Feinman et al., 2017; Leibig et al., 2017] using so-called Bayesian convolutional
neural networks. These methods rely on computing the empirical variance of the
predicted probabilities of belonging to a certain class, and seem to work well in practice.
In applications, the idea is that uncertainty information can be used to flag predictions
in which the model has low confidence, allowing the associated images to be examined
further downstream. This is known as uncertainty-informed referral.

In this thesis we extend these ad hoc uncertainty approximations to a multi-class
image classification setting. Our goal is to explore the empirical properties of these ad
hoc methods. Furthermore, we introduce a novel approximation of uncertainty and
show that it compares favourably to existing methods in some important respects. We
also compare these ad hoc methods to other uncertainty quantifications suggested in
the literature which are better suited to classification tasks. The main contributions of
this thesis are:

• As far as we are aware, this is the first work that extends existing ad hoc
uncertainty approximations to a multi-class classification setting. To the best of
our knowledge, we are also the first to compare the empirical properties of these
ad hoc approximations to other uncertainty quantifications which are rooted in
information theory.

• As far as we are aware, we are the first to introduce the novel uncertainty
approximation σ̂model given in section 5.5. In brief, we estimate the mean of
the empirical standard deviations of the different class probabilities associated
with an input. We observe that our measure of uncertainty is sensitive to
inputs where predicted class probabilities are low. Furthermore, compared to
other ad hoc methods, our quantification of uncertainty performs better in an
uncertainty-informed referral experiment.

• Finally, an important motivation for this thesis was to provide an overview
of machine learning, neural networks, Bayesian statistics and recent research
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into practical applications of MC dropout in image classification tasks. This is
useful for other students interested in the intersection of Bayesian modelling and
convolutional neural networks. To the best of our knowledge, there does not exist
an introductory level text describing practical uncertainty estimation in Bayesian
deep learning at the time of writing.

This thesis will be split into two parts. Part 1 is an overview of the theory underlying
MC dropout. In chapter 2 we introduce the theoretical framework of learning from
data. In chapter 3 we introduce the general theory of neural networks and convolutional
neural networks. Chapter 4 gives an overview of the Bayesian approach to modelling,
and we briefly review some of the methods used to develop MC dropout. We also sketch
the main results of [Gal and Ghahramani, 2016] and its extension to convolutional
neural networks [Gal and Ghahramani, 2015]. Chapter 4 concludes with a brief review
of recent research into practical applications of MC dropout and an introduction to
the ad hoc methods we are interested in.

In Part 2 we explore the empirical properties of these ad hoc methods, with
particular focus on the work presented in [Leibig et al., 2017]. We briefly compare
this to a different ad hoc method presented in [Feinman et al., 2017], which can be
interpreted as a measure of multi-class uncertainty. We go on to introduce a novel
approximation of uncertainty and briefly review how it compares to our extensions of
existing methods. We conclude chapter 5 with a simple experiment where all three
ad hoc uncertainty approximations are put to the test and we compare them to other
uncertainty quantifications proposed by the developers of MC dropout. In chapter 6
we provide details on the data set, the implementation and training of our models and
our implementation of MC dropout.

Part 2 is followed by a summary of our results. We also point to interesting areas
of future research. All figures in this thesis have been made using Sketch1, draw.io2,
the Python3 plotting library Matplotlib and the ggplot2 package for R4. The LATEX
template we use is available at https://github.com/kks32/phd-thesis-template.

1Sketch: https://www.sketchapp.com/
2Draw.io: https://www.draw.io/
3Python: https://www.python.org/
4R: https://www.r-project.org/

https://github.com/kks32/phd-thesis-template
https://www.sketchapp.com/
https://www.draw.io/
https://www.python.org/
https://www.r-project.org/
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Background





Chapter 2

Learning From Data

Machine learning is a sub-field of mathematics, statistics and computer science con-
cerned with designing algorithms that can learn from data. It is closely related to
the field of statistical learning, and conventional wisdom will have it that these two
fields represent different approaches to modelling data. The distinction, often taught in
practically oriented courses and textbooks, is that machine learning is freed from mod-
elling constraints and assumptions; the ultimate goal is predictive accuracy. Statistical
learning, on the other hand, concerns itself with model validity, accurate estimations
and inference. Leo Breiman argues that as data evolves and becomes more complex,
so to must the statistician [Breiman et al., 2001]. By embracing both paradigms, the
statistician gains access to a more diverse set of tools. As Breiman himself writes:
“Framing the question as a choice between interpretability and accuracy is an incorrect
interpretation of what the goal of statistical analysis is. The point of a model is to get
useful information about the relation between the response and predictor variables.”

This will be the guiding principle of this chapter, and consequently we will use
terms and ideas from both fields interchangeably as we give a brief introduction to
the theoretical framework of learning from data. We primarily rely on the following
sources (and the references therein):

• Chapters 3, 5 and 7 of [Goodfellow et al., 2016] (machine learning basics, regu-
larisation and information theory).

• Chapters 2, 7, and 8 of [Hastie et al., 2001] (supervised learning, model assessment
and model averaging).
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• Chapters 2, 5 and 8 of [James et al., 2014] (bias-variance trade-off, cross-validation
and model averaging).

• Chapter 1 and 2 of [Mitchell, 1997] (basic machine learning terminology).

• Chapter 7 of [Casella and Berger, 2002] (point estimation).

• Chapter 1 of [Bishop, 2006] (information theory).

• Chapter 2 of [Pawitan, 2013] (likelihood estimation).

We follow [Goodfellow et al., 2016] closely in notation. Generally, a bold-faced
x denotes a (column) vector, X denotes a matrix with rows xT, and x denotes a
scalar. In conventional statistical notation uppercase letters denote random variables
and lowercase letters denote realisations of random variables. We will not follow this
notational convention.

2.1 Basic terminology

A useful and commonly cited definition of machine learning is provided in [Mitchell,
1997]: “A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.”

Mitchell states that a well-posed machine learning problem needs to identify the
class of tasks, the measure of performance and the source of experience. For example, we
may be interested in recognising and classifying cats and dogs (T ) based on a collection
of images of cats (E). A relevant performance measure could be the percentage of
correctly classified images (P ).

The experience E is a data set, which is a collection of inputs, assumed to be
independent and identically distributed (i.i.d.). The inputs are typically organised
in a matrix X ∈ RN×D, where the i’th row corresponds to a D-dimensional vector
of features xT

i = (xi1, ..., xiD). Each element corresponds to a feature of the input.
In statistical literature features are referred to as covariates. For example, if we are
predicting the height of an adolescent, we may use a feature vector xT

i = (xi1, xi2)
where xi1 is the height of the father and xi2 is the height of the mother.

Sometimes we know the desired output of the model. The data set X is then paired
with a vector y ∈ RN (or a matrix Y ∈ RN×K) containing the associated target values
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(response variables) for each input. This is called a training set, and the target values
and observations are assumed to share a joint distribution p(X, y). Using known target
values to make a model perform better is called supervised learning. In unsupervised
learning we are typically interested in detecting patterns or meaningful structure in
the data. A third option is semi-supervised learning, where the model is built using
both labelled and unlabelled data. In this thesis we focus on supervised learning.

There are many different tasks T to be learned, but in most cases we want to model
some unknown function or distribution. Regression and classification are among the
most common examples. In regression, the task is to model an unknown function
f : RD → R. Predicting height based on a set of features is a regression problem.
Classification tasks are concerned with assigning observations to one of K different
classes through some function f : RD → {1, ..., K}, like predicting a person’s gender
or recognising one of K objects in an image. In some cases we want f to output the
probability of belonging to a class rather than the class value itself. If this is the case,
the model is denoted p : RD → [0, 1].

Example 2.1. Linear regression. Suppose that we assume a linear relationship
between a target variable yi ∈ R and some input xi ∈ RD:

yi = f(xi) + ϵ = xT
i θ + θ0 + ϵi. (2.1)

We want to find the linear function f that captures the systematic relationship
between xi and yi. The error term ϵi is assumed to be N (0, σ2

ϵ ) and independent of xi.
It captures all deviations from the deterministic relationship between yi and f(xi). The
vector θ ∈ RD describes how each individual feature affects the response. θ0 is called
the bias or intercept, and indicates the value of yi if xi = 0. Typically we concatenate
a 1 to xi and incorporate θ0 into the parameter vector so that we can express eq. 2.1
more compactly. Since we don’t know the true θ, we must estimate it. The process of
estimation is called model fitting. The estimated parameters are denoted θ̂, and the
estimated function is denoted f̂ (using the more compact notation):

ŷi = f̂(xi) = xT
i θ̂.

⌟

Example 2.2. Logistic regression. Suppose we want to model the probability of a
binary outcome yi ∈ {0, 1}. One way to do this is to define a function that maps the
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output of xT
i θ to an interval [0, 1]. The logistic function accomplishes this:

p(yi = 1|xi, θ) = 1
1 + exp(−xT

i θ) .

⌟

Approximating a function f is in other words the same as estimating the parameters
θ. One view of machine learning is that we use the available data to search the parameter
space for a setting of θ̂ that gives us the best approximation of f . An equivalent view
is that we are searching a space of functions for the best approximation.

2.2 Performance Measures

How well a model performs with respect to a given task T is usually determined by
some quantitative performance measure P. The typical example of a performance
measure for linear regression is the mean squared error (MSE). Given a data set where
X ∈ RN×D and y ∈ RN , we can define

MSE = 1
N

N∑
i=1

(yi − xT
i θ)2.

Predictions that are far from the target value yi cause the MSE to increase. By
adjusting θ we can decrease the MSE and get a model that is consistently closer to
the target values. Generally, a function that quantifies prediction errors is referred to
as a cost, objective or loss function, depending on your choice of statistical or machine
learning literature. In this thesis we will use the term loss to denote the function
measuring the prediction error, and we will reserve the term cost for regularised loss
functions (section 2.4). The loss is a function of θ, X and y, but for notational
convenience we denote it by L(θ). Equivalently, we can denote the loss as a function
of the target values and the predictions L(y, ŷ). We will use these two notational
conventions interchangeably.

The model’s overall usefulness is determined by its ability to generalise to new data.
Let T = (X, y) denote a fixed training set of N observations and let (x∗, y∗) denote
an independent observation drawn randomly from the joint distribution of the data.
We want to minimise the prediction error of the model trained on the specific training
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set T , given by
E[L(y∗, ŷ∗)|T ], (2.2)

where ŷ∗ denotes the prediction for x∗. The expression in eq. 2.2 is also called the test
error. It is clear that the test error depends on the sampling of training data, so what
we really want is to minimise the expected test error over all possible samplings of T ,

ET [E[L(y∗, ŷ∗)|T ]] = ET [L(y∗, ŷ∗)].

This is generally not possible because we only have the information provided by
the training data at hand. Consequently, the expected test error must be estimated.
The average training error

1
N

N∑
i=1
Li(yi, ŷi)

could serve as a proxy for the expected test error, but this approach has a serious
drawback: The training error can be made arbitrarily small if we choose a sufficiently
flexible model. This is called overfitting, which will be the subject of the next section.
The standard approach is to partition the data into a training set used to fit the model
and an independent test set used to estimate the expected test error. Sometimes we
also want a validation set to help us make modelling choices before we estimate the
expected test error. This will be discussed in section 2.5.

2.2.1 Bias and Variance

In this section we will discuss how different types of errors can affect predictions. Before
we move on, it may be helpful to review the basic properties of an estimator. In the
frequentist view of statistics, a point estimate θ̂ is the best possible prediction of some
fixed but unknown quantity of interest θ, such as the parameters in example 2.1. Let
{x1, ..., xN} be a sample of i.i.d. data points. In general, a point estimator is defined
as a function of the data:

θ̂ = g(x1, ..., xN).

Since θ̂ is a function of a random sample of variables, θ̂ itself is a random variable.
In many applications we are interested in the bias and the variance of θ̂. The bias is
the distance from the expected value of θ̂ and the true value of θ:

Bias(θ̂) = E(θ̂)− θ.
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An estimator is unbiased if Bias(θ̂) = 0. The variance of an estimator is denoted
Var(θ̂) and describes how much we expect θ̂ to vary when calculated over a different
random sampling of the data.

In machine learning applications bias and variance correspond to the prediction
errors introduced by overly simple or overly complicated models, respectively. The
more complex a model is, the more likely it is to adapt to random noise in the training
data instead of the true, underlying function f . As a result, complex models may
perform very well on the training data but fail miserably on the test set, and we say
that the model has overfitted. Overfit models are prone to high variance, meaning
f̂ changes substantially if fit on a different sampling of data. It is also possible to
underfit a model. In this situation f̂ fails to capture the complexity in the data, and
performs poorly on both the training and the test set. Underfitting introduces bias.
Fig. 2.1 shows an example of under- and overfitting.

Bias and variance are collectively referred to as reducible errors. Increasing the
complexity of f̂ will tend to increase variance and decrease bias. Conversely, decreasing
capacity introduces bias but reduces variance. One of the main challenges of building a
model is controlling this so-called bias-variance trade-off. See fig. 2.1d for an example
of this. Irreducible errors are introduced by inherent uncertainty in our measurements,
and cannot be controlled. The bias-variance trade-off is related to the no free lunch
theorem [Wolpert and Macready, 1997], which states that there does not exist one
superior universal model for all tasks. The bias-variance trade-off is typically illustrated
using the following example:

Example 2.3. Bias-variance decomposition. Assume that y = f(x) + ϵ, where
E(ϵ) = 0 and Var(ϵ) = σ2

ϵ . Let E[(y∗ − f̂(x∗))2] denote the expected test error,
which is the mean squared error resulting from training a large number of models on
different samplings of data and testing them all on an independent sample (x∗, y∗). By
expanding the squared term and using the definitions of bias and variance, it can be
shown1 that the expected squared error at a new data point x∗ can expressed as

E[(y∗ − f̂(x∗))2] = σ2
ϵ + Var[f̂(x∗)] + Bias2[f̂(x∗)]

= Irreducible error + Var[f̂(x∗)] + Bias2[f̂(x∗)].
(2.3)

Eq. 2.3 shows that the expected test error can be decomposed into a sum of the
variance of the error term ϵ, the squared bias of f̂(x∗) and the variance of f̂(x∗). ⌟

1See appendix A, section A.1.
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Fig. 2.1: The plots show three different polynomial regression models of degrees da = 3,
db = 7 and dc = 14 (see chapter 5 of [Hastie et al., 2001] for details). The models have been fit
on 50 data sets, each containing 100 random samples generated from yi = sin(2xi) + ϵi, where
ϵi ∼ N (0, 0.12). Fig. 2.1a shows an example of underfitting, i.e. f̂(x) fails to capture the
complexity in the data. Fig. 2.1b shows an example of a good fit. Fig. 2.1c shows a model
that is overfit, i.e. f̂(x) changes substantially with different samples of data. Overfitting can
be diagnosed by plotting the training and test errors for the various polynomial degrees. The
characteristic U-shape of the test terror (in orange) in fig. 2.1d indicates for which polynomial
degrees the model fails to generalise. Note that the training error steadily decreases as the
f̂(x) gets more complex.

Note that the decomposition in example 2.3 does not apply in a classification
setting (see chapter 7 in [Hastie et al., 2001]). To control the bias-variance trade-off
we typically rely on techniques such as cross-validation (see section 2.5.1).
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2.3 Fitting a Model

To reiterate, the goal of model fitting is to find the parameters that best describe the
observed data. In practice we minimise the average training error with respect to the
parameters θ, which makes learning an optimisation problem:

θ̂ = arg min
θ

1
N

N∑
i=1
Li(θ).

For some performance measures, such as the MSE, the minimisation problem has a
convenient closed form solution, as illustrated in the following example:

Example 2.4. Least squares estimation. Consider a simple linear regression model
where X ∈ RN×D and y ∈ RN . The model, parameterised by θ ∈ RD, is then given by

y = Xθ.

Minimising the MSE is equivalent2 to minimising the sum of squared errors (SSE),
and the best estimates are given by

θ̂ = arg min
θ

(y −Xθ)T(y −Xθ).

Expanding the terms, taking the partial derivatives with respect to θ and solving
for zero gives us the least square estimates θ̂ ∈ RD:

θ̂ = (XTX)−1XTy.

⌟

2.3.1 Maximum Likelihood Estimation

The MSE is a natural choice when dealing with models that assume additive errors, such
as in example 2.1 and 2.3. In classification tasks we typically model the conditional
probability of belonging to a given class, denoted p(y|X, θ). Estimating θ often
amounts to finding the parameters that make p(y|X, θ) as close as possible to the true
but unknown data-generating distribution p(y|X). One way to accomplish this is by

2The optimal parameter values aren’t affected by scaling.
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maximum likelihood estimation (MLE). We follow [Goodfellow et al., 2016] closely in
this section.

The maximum likelihood (ML) estimator of θ is given by:

θ̂ML = arg max
θ

p(y|X, θ)

= arg max
θ

N∏
i=1

p(yi|xi, θ)

= arg max
θ

L(θ).

(2.4)

The function L(θ) is called the likelihood. It expresses a measure of relative
preference for various parameter values. The ML estimates thus provide the parameter
values that maximises the probability of observing the sampled data. Noting that the
log-transformation of eq. 2.4 is maximised by the same value3 of θ yields

θ̂ML = arg max
θ

log p(y|X, θ)

= arg max
θ

N∑
i=1

log p(yi|xi, θ)

= arg max
θ

l(θ).

The logarithm transforms the product into a sum, which in many cases simplifies
mathematical analysis. The function l(θ) is called the log-likelihood. Maximising the
log-likelihood is equivalent to minimising the negative log-likelihood, so that

θ̂ML = arg min
θ
−

N∑
i=1

log p(yi|xi, θ). (2.5)

The estimator θ̂ML has several desirable properties. Under certain conditions, θ̂ML

is a consistent estimator. This means that θ̂ML converges to the true value of the
parameter as the number of training observations approaches infinity. Consequently,
MLE is a useful approach when lots of data is available.

We can obtain an optimisation objective from eq. 2.5 by observing that the
ML estimates are invariant to scaling. This means that we can express θ̂ML as an
expectation over the empirical distribution of the observed data. Reframing the MLE

3The logarithm is a monotonically increasing function.
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as a loss function results in the negative log-likelihood loss or cross-entropy loss (see
section 2.6)

L(θ) = arg min
θ
−E

[
log p(y|X, θ)

]
= arg min

θ
− 1

N

N∑
i=1

log p(yi|xi, θ),
(2.6)

which is very common in many machine learning applications. In the following example
we show a simple case where θ̂ML can be derived analytically:

Example 2.5. Maximum likelihood estimation. Consider the same setup as in
example 2.4. Let yi|xi, θ ∼ N (xT

i θ, σ2
ϵ ). The conditional distribution has the functional

form

p(yi|xi, θ) = 1√
2πσϵ

exp
− 1

2σ2
ϵ

(yi − xT
i θ)2

.

The MLE is given by

θ̂ML = arg min
θ
− 1

N

N∑
i=1

log p(yi|xi, θ)

= arg min
θ

(
1
2 log(2πσ2

ϵ ) + 1
2Nσ2

ϵ

N∑
i=1

(yi − xT
i θ)2

)
.

It follows that maximum likelihood estimates θ̂ML can be obtained by minimising
the SSE term, as in example 2.4, resulting in the same optimal parameters for this
particular example. ⌟

2.3.2 Gradient Descent

In most machine learning problems a closed form solution does not exist, and we must
resort to iterative methods. One of the most widely used is gradient descent. Recall
that the gradient of L(θ) with respect to θ ∈ RD is the vector of partial derivatives

∇θL(θ) =
(

∂

∂θ1
L(θ), ...,

∂

∂θD

L(θ)
)T

.

The gradient points in the direction where the loss function increases the most.
This means that the negative gradient −∇θL(θ) points in the direction where the
loss decreases most rapidly. The idea behind gradient descent is to start with a set of
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Fig. 2.2: The plot shows an example of gradient descent in linear regression with one
parameter θ1 ∈ R. The data is generated from the model yi = 0.5xi + ϵi, where i = 1, ..., 20
and ϵi ∼ N (0, 0.052). The left hand plot shows the model at each iteration of gradient
descent, starting with the blue line and ending at the yellow line. The plot to the right shows
the corresponding value of the MSE at each iteration. The best line (in yellow) on the left
corresponds to the lowest MSE on the right. Code for generating the plots can be found at
https://scipython.com/blog/visualizing-the-gradient-descent-method/.

randomly initialised parameters θ and iteratively adjust them by taking small steps in
the direction where L(θ) decreases the most:

θt ← θt−1 − η∇θL(θt−1).

This is repeated until convergence, which typically depends on some predetermined
stopping criteria. The symbol η is called the learning rate. It determines the step size
in the direction of the negative gradient and must be controlled carefully. If η is too
large, gradient descent may overshoot the minimum and θ could fail to converge. On
the other hand, if η is too small, convergence may take too long. Parameters like η

that control the behaviour of learning algorithms are called hyperparameters. There
are several techniques for determining the best hyperparameters. One way is to use
cross-validation, described in 2.5.1.

As stated in section 2.2, the average training error is typically a sum of losses
associated with individual observations, and the gradient over the training data is then
given by

∇θL(θ) = 1
N

N∑
i=1
∇θLi(θ). (2.7)
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Calculating the gradient update requires summing over the entire training set,
which becomes computationally expensive when N is large. However, if we leverage
the fact that the gradient in eq. 2.7 is in fact an expectation, then we can estimate
∇θL(θ) by randomly sampling a subset of m examples from the original training data:

g = 1
m

m∑
i=1
∇θLi(θ).

Estimating the gradient based on a subset of training examples is called mini-batch
stochastic gradient descent (SGD). The SGD update rule is given by the following
algorithm:

Algorithm 1: Stochastic gradient descent
Require: Learning rate η

Require: Initial values for θ

while stopping criterion not met do
Randomly sample mini-batch of m input-output pairs {xi, yi}m

i=1

Compute gradient estimate: g = 1
m

∑m
i=1∇θLi(θt−1)

Update parameters: θt ← θt−1 − ηg

end

One nice property of SGD is that it may in fact converge before the entire training
set has been processed, provided that the training set is large enough. Figure 2.2
shows an example of gradient descent applied for four iterations to a linear regression
problem.

2.4 Reducing the Generalisation Error

The risk of overfitting dramatically increases as models get very complex, which can
often happen in practical applications. In machine learning and statistics, regularisation
commonly refers to strategies meant to prevent generalisation errors as a result of
overfitting. In the following we will introduce two such strategies which will be relevant
for later discussions: L2-regularisation and bagging. The interested reader is referred
to [Goodfellow et al., 2016] and [Hastie et al., 2001] for an excellent overview of other
methods for reducing generalisation error.
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2.4.1 Weight decay

One way to deal with an overly complex model is to constrain the parameter estimates,
resulting in a less expressive model (see fig. 2.3). In practice this can done by adding
a L2 norm penalty term ∥θ∥2 to the loss function. This is often referred to as ridge
regression (in statistics) or weight decay (in machine learning) and results in the cost
function

C(θ) = L(θ) + λ ∥θ∥2 (2.8)

where λ is a non-negative hyperparameter that controls the relative impact of the
penalty term ∥θ∥2 on C(θ).

Example 2.6 (Ridge regression). Consider the same setup as in example 2.1, but
this time with an added penalty term λ ∥θ∥2. The ridge estimate is given by

θ̂ridge = arg min
θ

(
(y −Xθ)T(y −Xθ) + λθTθ

)
.

Following the same steps as in example 2.1 results in

θ̂ridge = (XTX + λI)−1XTy.

⌟

Larger values of λ shrink the parameters towards zero when minimising C(θ) with
respect to θ. Applying regularisation controls overfitting by limiting the model’s ability
to adapt to random noise in the data. The appropriate value of λ can be found using
cross-validation (see section 2.5.1).

2.4.2 Bagging

Another way to reduce the generalisation error is to average, or ensemble, the predictions
of many different models. One such approach is called bagging (short for bootstrap
aggregation). The idea is to construct B training sets, {(xb

1, yb
1), . . . , (xb

N , yb
N)}B

b=1 by
sampling with replacement from our original training data {(x1, y1), . . . , (xN , yN)}.
Each training set is used to train a separate model f̂b(x). Finally, all B models are
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Fig. 2.3: As the regularisation strength λ increases, the penalty on the weights get more
severe, causing them to shrink. Regularisation is useful when we want to limit the model’s
ability to adapt to random noise in the data.

averaged to get the bagged estimate, given by

f̂bag(x) = 1
B

B∑
b=1

f̂b(x).

The variance of the bagged estimate will at worst be as bad as any of the individual
models in the ensemble, but potentially much lower. To see this, consider the following
example (taken from p. 249 in [Goodfellow et al., 2016]):

Example 2.7. Bagging. Suppose we have k regression models, and that each model
makes an error ϵi ∼ N (0, Σ) on each test observation, where Σ denotes the covariance
matrix of the error terms. Suppose Σii = v and Σij = c. The average prediction error
of all k models is given by

ϵ = 1
k

∑
i

ϵi,
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and the variance of ϵ is

Var[ϵ] = E[ϵ2] + E[ϵ]2

= E
[(1

k

∑
i

ϵi

)2]

= 1
k2E

[∑
i

(
ϵ2

i +
∑
i ̸=j

ϵiϵj

)]

= 1
k

v + k − 1
k

c.

If the errors are perfectly correlated, i.e. c = v, Var[ϵ] = v and model averaging does
nothing. If the errors are independent, i.e. c = 0, Var[ϵ] = 1

k
v is inversely proportional

to the number of models in the ensemble. ⌟

In a classification setting the bagged estimate may be expressed as a vector where
each element denotes the proportion of models that assigned the input to class k.
The function f̂bag(x) can be used to select the class with the largest proportion of
“votes” and classify it accordingly. Alternatively, we can average all the estimated class
probabilities to obtain a vector of mean probabilities. We then base our prediction
on whichever class is associated with the largest mean prediction, rather than use a
voting scheme. See chapter 8.7 in [Hastie et al., 2001] for details.

2.5 Model Validation

In section 2.3.2 we briefly mentioned that hyperparameters control the behaviour of
machine learning algorithms. The degree of a polynomial in ordinary regression is an
example of a hyperparameter. The degree controls the capacity of the fitted model,
and as we saw in fig. 2.1 it can be fit arbitrarily well by choosing a high enough degree.

We have also stated the importance of holding out a test set so that we can estimate
how well our model performs on unseen data. It is important that the test set is not
used to make choices about the learning algorithm, such as hyperparameter values. To
preserve the independence of the test set, we hold out an additional set of observations
from the training set. This is called a validation set. The validation set approach (see
fig. 2.4) lets us estimate the training error as a function of our hyperparameter values,
and we can adjust them accordingly.
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Fig. 2.4: We partition the available data into training, validation and test sets. We start at
step (1) with the full data set. In step (2) we divide the data into a training set and a test
set. The test set is ignored until it is time to evaluate the model. In step (3) we partition
the training data into a training set and a validation set. The validation set is used for
hyperparameter tuning and model assessment.
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Fig. 2.5: K-fold cross-validation. The data is randomly split into k = 5 folds. In each
iteration the model is trained on four folds (in green) and an estimate of the test error is
calculated on the left-out fold (in yellow). The errors (bottom row) are averaged to obtain
the final test error estimate.

2.5.1 Cross-validation

Sometimes we have a small amount of data at our disposal, which means that parti-
tioning the data into training and validation sets can be problematic. An alternative
procedure is to randomly partition the data into k groups, called folds, of approximately
equal size. The model is fit on k− 1 folds and the left out fold is treated as a validation
set. The procedure is repeated k times, resulting in k estimates of the test error,
denoted CV1, ..., CVk. The k-fold cross-validation estimate of the test error is given by

CV(k) = 1
k

k∑
i=1

CVi.
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Prediction
Positive Negative Total

Ground truth Positive TP FN TP + FN
Negative FP TN FP + TN

Total TP + FP FN + TN N

Table 2.1: Each cell in the confusion matrix gives the absolute counts of instances classified
by the model (column) and arranges them by their true label (row). Moving clockwise from
the top left, we have true positives (TP), false negatives (FN), true negatives (TN) and false
positives (FP). The accuracy is given by (TP + TN)/N .

Figure 2.5 shows the case where k = 5. Note that cross-validation techniques can be
used for both regression and classification problems. In addition to model assessment,
k-fold cross-validation is typically used to select appropriate values of hyperparameters.
The cross-validation error is calculated for each value of one or more hyperparameters.
The best hyperparameters are the ones associated with the lowest cross-validation
error. Searching for the optimal value of a hyperparameter is also known as tuning.

2.5.2 Confusion matrix

Another useful tool for model assessment in classification problems is the confusion
matrix. Generally, a confusion matrix is a frequency table that displays which kinds of
errors a model is making. In the binary case where y ∈ {0, 1} there are four possible
outcomes:

• True positive (TP) ⇒ ŷ = 1, y = 1.

• True negative (TN) ⇒ ŷ = 0, y = 0.

• False positive (FP) ⇒ ŷ = 1, y = 0 (type I error).

• False negative (FN) ⇒ ŷ = 0, y = 1 (type II error).

The confusion matrix gives a quick overview of how the model performs on the
test data. In a general classification setting where y ∈ {1, ..., K} the accuracy of the
classifier is given by the sum of the diagonals over the total amount of predictions
made. The confusion matrix is the basis for a range of different performance measures,
such as the area under the receiving operator characteristic curve (ROC AUC). For
details, see [Hanley and McNeil, 1982].
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2.6 Basics of Information Theory

Information theory [Shannon, 1948] is the study of how to quantify the amount of
information present in a signal transmitted over a noisy channel. Ideas from information
theory are used in a machine learning context to characterise probability distributions,
or to describe similarities between different probability distributions. In this section
we follow [Goodfellow et al., 2016] closely.

A fundamental quantity in information theory is self-information, defined as

I(x) = − log p(x).

Informally, self-information conveys the intuition that an unlikely event contains
more information than a very likely event. Entropy is the expected value of the
self-information, and can be viewed as a measure of the uncertainty associated with an
observation:

H[p(x)] = −E[log p(x)].

A closely related quantity is the Kullback-Leibler (KL) divergence. If we have two
distinct probability distributions p and q over the same random variable x, then the
KL divergence is given by

KL[p(x)||q(x)] = Ep(x)

[
log p(x)

q(x)

]
= Ep(x)[log p(x)]− Ep(x)[log q(x)].

(2.9)

In machine learning applications, the KL divergence is often used as a measure of
similarity between distributions. It can be shown that KL[p(x)||q(x)] ≥ 0. See section
1.6.1 of [Bishop, 2006] for a proof of this. Minimising the KL divergence is therefore the
same as maximising Ep(x)[log q(x)], which is known as the cross-entropy in information
theoretic terms. The cross-entropy loss shows up in many machine learning software
libraries, and as stated in section 2.3.1 minimising the cross-entropy corresponds to
minimising the negative log-likelihood.
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Finally, the mutual information is a measure of dependence between two random
variables x and y drawn from a joint probability distribution p(x, y). It is defined as

MI[p(x), p(y)] = H[p(x)]−H[p(x)|p(y)]
= H[p(y)]−H[p(y)|p(x)],

where the second term on the right-hand side is the conditional entropy (see e.g.
[Bishop, 2006] for details). The mutual information can be interpreted as the amount
of information gained about one variable by knowing the value of another variable.





Chapter 3

Deep Learning

Neural networks are a family of models with a long and rich history (see chapter 1.2 in
[Goodfellow et al., 2016] for an overview). They have periodically fallen in and out of
favour with researchers, but thanks to advances in computing hardware the popularity
of so-called deep neural networks has exploded. This has resulted in a relatively new
field of machine learning research called deep learning, which will be the focus of this
chapter.

In section 3.1 we start by introducing the basic idea of a neural network with
the help of a simple example. In sections 3.2 and 3.3 we introduce the fundamentals
of a deep neural network. Section 3.4 gives an overview of the optimisation and
backpropagation algorithms used to fit neural networks. In sections 3.5 and 3.6 we
introduce some strategies to prevent overfitting. Of particular importance is the
stochastic regularisation technique known as dropout training, which we will revisit in
chapter 4 in the context of so-called Bayesian neural networks. Finally, in section 3.7
we introduce a specialised neural network that is typically used for computer vision
problems, called a convolutional neural network. We primarily rely on the following
sources and the references therein:

• Chapters 6, 7, 8 and 9 in [Goodfellow et al., 2016] (optimisation, neural networks,
convolutional neural networks, activation functions, gradient descent, dropout,
regularisation).

• Chapters 38 and 39 in [MacKay, 2002] (single-neuron classifiers, neural networks).

• Chapter 12 in [Gonzalez and Woods, 2017] (backpropagation, convolutional
neural networks).
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Fig. 3.1: A common graphical depiction of a single-neuron classifier. The arrows represent
the weights of the network and the circles, also called neurons, represent the inputs to the
next layer. The figure is a graphical representation of the model y = σ(w1x1 + w2x2 + b).

Most books that deal with neural networks drop the generic parameter notation
θ and instead denote the weights by w. We follow this convention for most of this
chapter, with the exception of section 3.4.1 where we revert to the parameter notation
θ for brevity.

3.1 A Very Small Neural Network

We will introduce the concept of a neural network through the simplest possible case:
The single-neuron classifier. Many statistical models can be viewed as single-neuron
classifiers, and it is a useful representation when introducing the basic terminology of
neural networks. In this and the next section we follow [MacKay, 2002] and [Gonzalez
and Woods, 2017] closely.

Example 3.1 (Single-neuron classifier.). The single-neuron classifier consists of a
D-dimensional input vector xT = (x1, ..., xD), where each element is associated with a
corresponding weight from the parameter vector wT = (w1, ..., wD). As mentioned in
section 2.1, in most cases we also have an additional parameter w0 associated with an
input x0 := 1 which is called the bias1. Most machine learning books denote the bias
term in neural networks by b and keep it separate from the parameter vector w. This
is the convention we will follow.

1Not to be confused with the definition of bias introduced in chapter 2.
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The single-neuron classifier is commonly called a feedforward model. This means
that information flows from the input via some intermediate neuron to the output (see
figure 3.1 for an example where D = 2). The intermediate neuron computes a weighted
sum, referred to as the net input:

z = xTw + b.

The output of this neuron is generally not seen, and is therefore referred to as
a hidden neuron. The output is fed forward to the final neuron y, which applies a
non-linear function σ(z) to the input. For this example we will use the logistic function:

σ(z) = 1
1 + exp(−z) .

The full, single-neuron classifier is then given by the composition of the weighted
sum and the non-linear function σ(·):

y = σ(xTw + b)

= 1
1 + exp(−(xTw + b)) .

This may look familiar to the reader: It is the logistic regression model from
example 2.2. ⌟

3.2 Multi-Layer Perceptrons

In the previous section we introduced neurons and the non-linear transformation σ(·).
In neural network terminology, these are collectively referred to as components of the
model’s architecture. The remarkable success of neural networks in recent years is a
result of increasingly complicated architectures and novel non-linear functions. The
most basic neural network is the multi-layer perceptron2 (MLP). The MLP is typically
composed of input neurons, hidden neurons and output neurons which are grouped
together and arranged in grid-like structures called layers. Each hidden layer is a

2The term perceptron refers to the non-linear step function in the original development of the
single-neuron classifier [Rosenblatt, 1958].
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function of the preceding layer, and the term hidden refers to the fact that we do not
directly observe the output of these layers3.

Hidden layers consist of neurons that first compute a weighted sum of all the
neurons in the previous layer, referred to as the net input. The net input is fed through
a scalar-valued, differentiable, non-linear function called the activation function4. The
activations indicate how “excited” the hidden neurons are by the input, which is
a neuroscientifically inspired way of saying that the neurons have detected some
meaningful pattern in the input. The activations are subsequently weighted and either
(a) fed to the next hidden layer where the same steps are repeated, or (b) fed to the
output layer where a final activation function is applied and predictions are made.

Since every neuron in a layer is a function of all neurons in the previous layer, MLPs
are often referred to as fully connected neural networks. An MLP is fully specified
by its weights, biases and activation functions, and can be viewed as a composition
of non-linear functions. Figure 3.2 shows a fully connected two-layer5 neural network
with one hidden layer.

In the following we will give a mathematical description of a neural network. For
simplicity we assume a single input vector x ∈ RD. It is straightforward to extend
the following to multi-dimensional arrays, also known as tensors. See chapter 12 in
[Gonzalez and Woods, 2017] for details.

Let l = 2, ..., L denote the layers in a neural network. Let aj(l) denote the activation
of neuron j in layer l. If l = 1, the activation is simply the input

aj(1) = xj, (3.1)

where j = 1, ..., D (i.e. the dimensionality of x). Let the net input to neuron i in
layer l be denoted by

zi(l) =
nl−1∑
j=1

wij(l)aj(l − 1) + bj(l), i = 1, ..., nl, (3.2)

3Strictly speaking, we do not observe the output of the input layer either, but it is not considered
a hidden layer.

4The single-neuron classifier in section 3.1 applies an identity transformation in the hidden neuron
and a logistic activation function in the output neuron. Alternatively, we could apply the logistic
activation in the hidden neuron and the identity transformation in the output neuron. Both yield the
same result.

5The literature is somewhat inconsistent on this point, but generally the input layer is not counted
when specifying the number of layers in a network.
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Fig. 3.2: A two-layer neural network.

where nl denotes the number of neurons in layer l. The weight wij(l) describes the
connection between the j’th neuron in layer l − 1 and the i’th neuron in layer l. The
ordering of the parameter subscripts may seem counterintuitive, but are defined that
way in order to avoid matrix transposition in the equations that describe how an input
is fed forward through the network (eq. 3.5).

The activation of the neuron i in layer l is given by

ai(l) = σ(zi(l)), i = 1, ..., nl, (3.3)

where σ(·) denotes the activation function. Typically, the same activation function will
be used throughout the network, except in the final output layer. The output of i’th
neuron in the final layer of the network is given by

ai(L) = σ(zi(L)). (3.4)

We will denote the output by ŷi = ai(L). In matrix form, equations 3.1−3.4 are
given by

a(1) = x,

z(l) = W (l)a(l − 1) + b(l), l = 2, ..., L,
(3.5)
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where z(l) is a nl × 1 column vector of net inputs to layer l. The nl × nl−1 weight
matrix W (l) is given by

W (l) =


w11(l) w12(l) ... w1nl−1(l)
w21(l) w22(l) ... w2nl−1(l)

... ... ... ...
wnl1(l) wnl2(l) ... wnlnl−1(l)

 .

The nl−1× 1 column vector a(l− 1) containing the activations of layer l− 1 is given
by

a(l − 1) =


σ(z1(l − 1))
σ(z2(l − 1))

...
σ(znl−1(l − 1))

 ,

where the non-linear transformation σ(·) is applied elementwise to the net input z(l−1).

Equations 3.1−3.4 and their equivalent matrix formulations in eq. 3.5 are collectively
referred to as forward propagation or a forward pass. The following algorithm shows
the forward pass of a single training example where ŷ is the output of the network:

Algorithm 2: Forward pass
Require: Network depth, L

Require: W (l), l = 2, ..., L

Require: b(l), l = 2, ..., L

Require: Activation function σ(·)
Require: Input x

a(1) = x

for l = 2, ..., L do
z(l) = W (l)a(l − 1) + b(l)
a(l) = σ(z(l))

end
ŷ = a(L)

A two-layered MLP can approximate any function f arbitrarily well provided
there are enough neurons in the hidden layers. This result is known as the universal
approximation theorem [Cybenko, 1989; Hornik et al., 1989] and holds for a wide range
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of activation functions. The universal approximation theorem guarantees that there
exists an MLP that can represent a given function f , but it does not guarantee that
we will be able to learn f . Furthermore, the size of the network required to learn f

may be infeasibly large. Empirically, using deeper models (i.e. more hidden layers)
can reduce the number of neurons in each hidden layer that are required to learn f . In
recent years the most successful networks have grown deeper and deeper, particularly
in the field of image recognition (see for example [He et al., 2016] and [Huang et al.,
2017]).

3.3 Activation functions

The flexibility of neural networks stems from the non-linearities introduced by the
activation functions6. As stated in the previous section, the activation function is a
differentiable function which indicates how a neuron responds to the input. Differentia-
bility is an important property because deep learning models are trained using gradient
descent (see section 2.3.2). In the following we present some of the most common
activation functions. For ease of exposition we will assume scalar-valued inputs (with
the exception of the softmax activation).

Sigmoid activations

A sigmoid function is a bounded, differentiable real function that is defined for all real
inputs and has a non-zero derivative everywhere [Han and Moraga, 1995]. It maps any
real input into a bounded interval, such as [0, 1] in the case of the logistic activation
function and [−1, 1] in the case of the hyperbolic tangent activation function.

Sigmoid functions tend to saturate across most of their domain, which leads to
the so-called vanishing gradient problem. For example, as the input to the logistic
activation function becomes arbitrarily large (negative or positive), the output will
saturate at 0 or 1, causing the derivative to be practically 0 (see e.g. fig. 3.3b). This
makes gradient-based learning difficult, and consequently sigmoid activation functions
are discouraged in hidden layers (for details, see [Glorot and Bengio, 2010]).

6Many textbooks take the basis function view when explaining neural networks. A basis function
ϕ(x) is a fixed, non-linear function of the input, which allows us to estimate non-linear functions
using linear models of the form y = ϕ(x)Tw. By allowing the basis functions to be adaptive rather
than fixed, we can view a neural network as a composition of parameterised basis functions where the
parameters are learned during training. See e.g. chapter 5 in [Bishop, 2006] for details.
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Fig. 3.3: Fig. 3.3a shows how the sigmoid activation functions compare to each other and
to the ReLU. Given input z = wx + b, figures 3.3b−3.3d show how the individual activation
functions change with respect to w (assuming b = 0).

The logistic function is typically used in settings where we want to model the
outcome of a binary variable y ∈ {0, 1} by assigning the input to 0 or 1 based on some
predetermined threshold. It is given by

σ(z) = 1
1 + exp(−z) .

If a sigmoid activation must be used internally in a network, then the hyperbolic
tangent given by

σ(z) = 1− exp(−2z)
1 + exp(−2z)

is generally preferred because it behaves better in optimisation. The reader is referred
to [LeCun et al., 1998] for details.



3.4 Training Deep Neural Networks 35

Rectified Linear Unit

The rectified linear unit (ReLU) [Nair and Hinton, 2010], or variants of it, is considered
the default activation function for hidden layers in modern deep learning models
[Goodfellow et al., 2016]. The ReLU is given by

σ(z) = max (0, z).

It is a piecewise linear function, which makes optimisation with gradient-based
learning efficient. It does not saturate for positive values, and consequently it alleviates
the vanishing gradient problem. However, zero-valued ReLU-outputs will erradicate
the gradient, which inhibits learning. Variants such as the leaky ReLU [Maas et al.,
2013] deal with this problem. Also note that the ReLU is not differentiable at z = 0.
In practice this is not a problem, as it is extremely unlikely that the we reach a point
in training where the loss is exactly 0.

Softmax

The softmax activation function is most commonly found in the output layer of
a network whenever we want to model a probability distribution over K different
outcomes, typically in a classification setting. The softmax takes a vector z ∈ RK as
input, and outputs a vector where the k’th element is interpreted as the probability of
belonging to class k, given by

σk(z) = exp(zk)∑K
j=1 exp(zj)

, k = 1, ..., K.

Furthermore, the elements of the softmax are subject to the constraints σk(z) ≥ 0
and ∑K

k=1 σk(z) = 1. The softmax is a generalisation of the logistic function to a
situation with multiple outcomes. In practical applications, the predicted class k is
given by arg maxk σk(z).

3.4 Training Deep Neural Networks

In section 2.3.2 we introduced stochastic gradient descent (often referred to as “vanilla”
SGD in deep learning), an optimisation algorithm that samples a mini-batch of m
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examples and calculates an unbiased estimate of the gradient of the loss function. SGD
is the most common optimisation algorithm in deep learning. However, when applied to
complicated non-convex loss functions such as the cross-entropy loss (eq. 2.6), “vanilla”
SGD tends to perform sub-optimally. As a consequence, several variants of SGD have
been introduced. In this section we will briefly introduce the momentum algorithm.
The reader is referred to [Ruder, 2016] for an excellent summary of other variants. We
temporarily revert to the parameter notation θ introduced in chapter 2 for brevity.

3.4.1 Gradient Descent in Deep Learning

One of the most widely used variants of SGD is the momentum algorithm [Qian, 1999],
named after the momentum term v that accumulates past gradients in order to speed
up the learning process. The momentum is an exponentially weighted moving average
of the gradient, given by

vt ← αvt−1 + ηg,

g = 1
m

m∑
i=1
∇θLi(θt−1).

The hyperparameter α ∈ (0, 1) determines how fast the accumulated gradients decay
and η denotes the learning rate as before. This gives the update rule

θt ← θt−1 − vt.

Informally, the momentum term increases when the gradients align, resulting in
faster convergence. SGD with momentum is summarised in the following algorithm:

Algorithm 3: Stochastic gradient descent with momentum
Require: Learning rate η, momentum parameter α

Require: Initial values for θ, initial velocity v

while stopping criterion not met do
Randomly sample mini-batch of m input-output pairs {xi, yi}m

i=1

Compute gradient estimate: g = 1
m

∑m
i=1∇θLi(θt−1)

Update momentum: vt ← αvt−1 + ηg

Update parameters: θt ← θt−1 − vt

end
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One of the challenges when using gradient descent is setting the appropriate learning
rate η. Typically the deep learning practitioner uses a combination of experience and
brute-force methods like grid-search combined with cross-validation to find the best
learning rates. See chapter 11 in [Goodfellow et al., 2016] for details. Alternatively,
more automated approaches such as Bayesian optimisation [Snoek et al., 2012] can be
used.

It is also common to decay the learning rate during training according to some
predetermined schedule. The idea is that a high initial setting of η will move the
parameters towards rough but reasonable estimates relatively quickly. Gradually
decreasing η will then trigger a more refined search for the best parameter values. This
is known as learning rate annealing. Recently, cyclical learning rate annealing [Smith,
2015, 2017] has gained popularity. As is implied by the name, the learning rate is
reset at a given or random interval, causing the gradient to potentially “jump” out of
unproductive areas of the loss surface. Furthermore, there are variants of SGD which
adaptively change the learning rate for each individual weight. The most widely used
are RMSProp, AdaDelta and Adam (see [Ruder, 2016] or chapter 8 in [Goodfellow
et al., 2016] for an overview).

It is also important to be aware of different parameter initialisation strategies.
Since the weights of the network typically start out as random values, researchers have
developed different schemes for determining the best initial values of the parameters.
Some widely used initialisation strategies are based on [Glorot and Bengio, 2010]
and [He et al., 2015]. Furthermore, networks can be initialised with weights that are
pre-trained on a different data set. For example, in image classification tasks many
networks are initialised using weights that are pre-trained on the ImageNet database
[Deng et al., 2009], then fine-tuned for the task at hand.

3.4.2 Backpropagation: Estimating the Gradient of the Loss

The backpropagation algorithm [Rumelhart et al., 1986], often referred to as backprop,
is the bread and butter of neural network training. In algorithm 2 we described how
information flows forward through a network, ultimately resulting in a prediction ŷ. We
then calculate a measure of prediction error represented by a regularised cost function
C. Backprop allows information from the cost function to flow backwards through the
network, yielding gradients on the net inputs to each layer. This step is interpreted
as an indication of how each layer should adjust its output in order to reduce the
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prediction error. From these gradients we can obtain the gradients on the weights and
biases for use in a parameter update. This highlights an important aspect of backprop:
It only estimates the gradients of the network parameters. An optimisation algorithm,
such as those outlined in the previous section, performs the actual parameter updates.

Backprop is essentially a highly efficient implementation of the chain rule of calculus.
The chain rule offers a way of computing the derivative of a function which is composed
of two or more functions. As an example, let g : Rm → Rn and f : Rn → R. Suppose
y = g(x) and z = f(y) = f(g(x)). Then the chain rule states that

∂z

∂xi

=
∑

j

∂z

∂yj

∂yj

∂xi

.

In matrix-vector notation, the gradient of z with respect to x can be expressed as

∇xz =
(

∂y

∂x

)T

∇yz,

where ∂y/∂x is the n×m Jacobian matrix of g.

For simplicity we omit the regularisation term and develop the backprop equations
for a single training example (x, y). In practice backprop uses a mini-batch of m

inputs. It is fairly straightforward to extend the following equations from vectors to
tensors. The reader is referred to chapter 12 in [Gonzalez and Woods, 2017] or chapters
6.5.2 and 6.5.6 in [Goodfellow et al., 2016] for details. We follow [Gonzalez and Woods,
2017] closely in notation.

As stated earlier, the aim of backprop is to estimate the gradients of the weights
of the network so that we can adjust them accordingly in an effort to reduce the
prediction error. The weights of the network are contained in the net inputs to each
neuron (eq. 3.5), and consequently we would like to express how the cost function C

changes with respect to the net input of each neuron. In other words, we want to find
δj(l) = ∂C/∂zj(l), where zj(l) is the net input to neuron j in layer l. Intuitively, this
can be thought of as a measure of error which indicates how sensitive our cost function
is to the parameters in layer l. Starting at the final layer L, we can define

δj(L) = ∂C

∂zj(L) . (3.6)
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By applying the chain rule, we can express eq. 3.6 in terms of the j’th activation aj(L)
of layer L:

δj(L) = ∂C

∂aj(L)
∂aj(L)
∂zj(L) = ∂C

∂aj(L)σ′(zj(L)). (3.7)

Recall that aj(L) = σ(zj(L)), so ∂aj(L)/∂zj(L) = σ′(zj(L)). The relationship between
the net input of any neuron and its activation is the same for all layers (with the
exception of the input layer l = 1), hence we can define

δj(l) = ∂C

∂zj(l)
(3.8)

for l = L − 1, L − 2, ..., 2. If we can express δj(l) in terms of δj(l + 1), then we can
start with δj(L) and work our way backwards to obtain δj(L− 1), δj(L− 1), ..., δj(2).
Noting that the error in neuron j of layer l will influence all neurons in the subsequent
layer l + 1, we apply the chain rule to obtain

δj(l) =
∑

i

∂C

∂zi(l + 1)
∂zi(l + 1)

∂aj(l)
∂aj(l)
∂zj(l)

=
∑

i

δi(l + 1)∂zi(l + 1)
∂aj(l)

σ′(zj(l)),
(3.9)

where i sums over the number of neurons in layer l + 1. Now, recall that zi(l) =∑nl−1
j=1 wij(l)aj(l − 1) + bj(l) (eq. 3.2). Therefore

∂zi(l + 1)
∂aj(l)

= wij(l + 1).

Substituting this into eq. 3.9 and rearranging the terms gives

δj(l) =
∑

i

wij(l + 1)δi(l + 1)σ′(zj(l)), L = L− 1, ..., 2. (3.10)

So far we have established a framework for expressing how the output error changes
with respect to the net input to every neuron in the network. Eqs. 3.6−3.10 are thus
intermediary steps towards obtaining final expressions for ∂C/∂wij(l) and ∂C/∂bi(l)
in terms of δi(l). We apply the chain rule again, obtaining

∂C

∂wij(l)
= ∂C

∂zi(l)
∂zi(l)

∂wij(l)
= δi(l)aj(l − 1).

(3.11)
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The second equality follows from

∂zi(l)
∂wij(l)

= aj(l − 1).

Similarly,

∂C

∂bi(l)
= ∂C

∂zi(l)
∂zi(l)
∂bi(l)

= δi(l),
(3.12)

where we have used
∂zi(l)
∂bi(l)

= 1.

Eqs. 3.11 and 3.12 provide the rate of change of the cost function with respect to every
parameter in the network. The above equations can be formulated conveniently in
matrix notation:

δ(L) =


δ1(L)
δ2(L)

...
δnL

(L)

 =



∂C

∂a1(L)σ′(z1(L))
∂C

∂a2(L)σ′(z2(L))
...

∂C

∂anL
(L)σ′(znL

(L))


= ∇a(L)C ⊙ σ′(z(L)).

Here ⊙ denotes the elementwise product, also known as the Hadamard product. Eq.
3.10 can also be expressed in matrix notation, resulting in

δ(l) =


δ1(l)
δ2(l)

...
δnl

(l)

 =



∑
i wi1(l + 1)δi(l + 1)σ′(z1(l))∑
i wi2(l + 1)δi(l + 1)σ′(z2(l))

...∑
i winl

(l + 1)δi(l + 1)σ′(znl
(l))


= W T(l + 1)δ(l + 1)⊙ σ′(z(l)),

where W T(l + 1) is a nl × nl+1 matrix and δ(l + 1) is an nl+1 × 1 vector. Finally, eqs.
3.11 and 3.12 can be expressed as

∇W (l)C = δ(l)aT(l − 1) (3.13)

∇b(l)C = δ(l). (3.14)
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Algorithm 4 summarises training on a single example (x, y) using backpropagation.
In the update step, R(θ) is shorthand notation for the regularisation term where θ

contains all the network parameters.

Algorithm 4: Training a deep neural network
Require: Network depth, L

Require: W (l), b(l), l = 2, ..., L, activations σ(·)
Require: Input x, target output y

Require: SGD hyperparameters
while stopping criterion not met do

Compute forward pass as described in algorithm 2.
Calculate regularised cost and initial error term:
C = L(y, ŷ) + R(θ)
δ(L) = ∇a(L)C ⊙ σ′(z(L))
Backpropagate output error:
for l = L− 1, L− 2, ..., 2 do

δ(l) = W T(l + 1)δ(l + 1)⊙ σ′(z(l))
end
Update parameters:
for l = 2, ..., L do
∇W (l)C = δ(l)aT(l − 1) +∇W (l)R(θ)
∇b(l)C = δ(l) +∇b(l)R(θ)
W (l)←W (l)− η∇W (l)C

b(l)← b(l)− η∇b(l)C

end
end

As mentioned at the start of this section, practical implementations of backprop
apply the algorithm to a mini-batch of m inputs. The loss function is then a measure
of the average prediction error of the m inputs and we would use a stochastic gradient
descent method for optimisation (as outlined in the previous section). In practice the
while-condition of algorithm 4 depends on the number of epochs. An epoch is the
number of iterations over all training examples. An iteration is a completed forward
and backward pass of one mini-batch. For example, if we have N = 10.000 training
examples and we define the mini-batch size m = 100, each epoch contains k = 100
iterations (i.e. updates to the network parameters).
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(a) Standard neural network. (b) Dropout neural network.

Fig. 3.4: In a dropout neural network neurons are switched off with probability 1− pl−1,
essentially isolating them from the rest of the network (fig. 3.4b).

3.5 Preventing Overfitting: Dropout

Overfitting is a major challenge when training neural networks, due to their high
flexibility and large amount of parameters. One way to reduce the risk of overfitting is
by averaging many models (see section 2.4.2). Dropout [Hinton et al., 2012; Srivastava
et al., 2014] is a widely used stochastic regularisation technique that approximates
model averaging, and has proven to be very effective. Dropout randomly removes
non-output neurons along with all incoming and outgoing connections during training
(see fig. 3.4). This is motivated by the observation that hidden neurons tend to
co-adapt, which means that they learn to correct each others mistakes. The intuition
behind dropout is that if the presence of neighbouring neurons is unreliable, then
co-adaptation is prevented and each neuron is forced to learn how to detect meaningful
features on its own.

In a dropout neural network the activations are multiplied elementwise with a
random vector consisting of zeroes and ones, effectively turning some neurons off and
keeping others active. Let r(l − 1) ∈ Rnl−1 denote a random vector of independent
Bernoulli variables where p(rj(l − 1) = 1) = pl−1 for j = 1, . . . , nl−1. Forward
propagation through the l’th layer of a dropout neural network is given by

rj(l − 1) ∼ Bernoulli(pl−1),
adrop(l − 1) = a(l − 1)⊙ r(l − 1),
z(l) = W (l)adrop(l − 1) + b(l),
a(l) = σ(z(l)).

(3.15)
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Dropout is done independently for each neuron and each training example. As
described in [Srivastava et al., 2014], dropout can be viewed as sub-sampling one of 2n

possible “thinned” networks from the parent network consisting of n neurons, where
there is extensive weight-sharing between the sub-networks. Since the weights are
shared by every conceivable sub-network, the vast majority that go unsampled will still
arrive at reasonable parameter values without being explicitly trained. Consequently,
it is possible to approximate an average of all 2n sub-networks by scaling the weights
by their associated dropout rates and turning off dropout at prediction time. This is
called the weight scaling inference rule. It is applied so that the expected output at
prediction time matches the expected output during training. Furthermore, Srivastava
suggests that weight scaling is a reasonable approximation of Monte Carlo estimation
(see section 4.3). As we shall see in chapter 4, recent research in fact casts dropout
neural networks as Bayesian neural networks by leaving dropout on at test time and
averaging the predictions. Another view of dropout is that we are regularising the
weights by adding noise to the hidden neurons, which may help the optimisation process
explore otherwise inaccessible parts of the parameter space.

Finally, it is interesting to note that dropout training is not restricted to neural
networks. For example, in [Rashmi and Gilad-Bachrach, 2015] dropout is used to
increase the performance of an ensemble of boosted regression trees. For details on
boosting and regression trees, refer to e.g. chapters 8 and 9 in [Hastie et al., 2001].

3.6 Preventing Overfitting: Other Methods

In section 2.4 we introduced weight decay, which is a parameter norm penalty that
we add to the loss function in order to reduce model complexity. Weight decay is
frequently applied in a neural network setting, but there are also other important
methods which we will outline in the following.

3.6.1 Early Stopping

During training, the training and validation set errors will typically decrease given an
appropriate model. However, for sufficiently complex models, it is common to observe
that the validation error at some point starts to increase even though the training error
continues to decrease. This is a sign of overfitting. Obviously, we would like to retrieve
the weights from before the validation error started to increase. This is what early
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stopping allows us to do. Typical implementations of early stopping save the model
parameters every time they improve (as measured by the validation error), and the
learning algorithm continues until some predefined stopping criteria is met. Usually
this is when the parameters have stopped improving beyond a specified threshold. The
weights associated with the best validation loss are then retrieved and used in the final
model.

3.6.2 Data Augmentation

Finally, one of the best ways to prevent generalisation error is to train on more data. If
more data is not available, we can artificially create some by transforming the limited
data set we already have. Data augmentation is not easily applicable to every task, but
a very typical application can be found in image classification. For example, given an
input image x and an associated label k, we essentially add a “new” example of class k

to the training data by randomly transforming x through shifting, scaling, rotation or
flipping (or other transformations that make sense for our particular data set). Data
augmentation can be thought of as synthesising new data and thereby increasing the
size of the training set. This helps reduce the generalisation error.

3.7 Convolutional Neural Networks

There exists a wide array of specialised neural networks. One of the most well known
is the convolutional neural network (CNN) [LeCun et al., 1990], which has been
hugely successful in computer vision problems such as object recognition, detection
and segmentation. A CNN makes clever use of spatial relationships in the grid-like
topology of image data (which can be thought of as multidimensional array of pixels)
to automatically learn how to detect the distinguishing features of an image.

In an MLP, the activation of every neuron of layer l − 1 is fed as input to every
neuron of layer l. This results in massive weight matrices for high-dimensional data
such as images. CNNs rely on the insight that if an image feature (such as an edge or
a corner) is useful in one spatial region of the input, it is probably useful in another.
In practice, the spatial information contained in a neighbourhood of pixels is obtained
through the convolution of the input and a small, learnable weight matrix called a
kernel or filter. The result of the convolution is a feature map of neurons, where the
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activation of each neuron indicates the presence of the feature that a kernel has learned
to detect.

Consequently, the neurons in an activation layer (feature map) share the same
parameters, drastically reducing the number of weights for high-dimensional inputs
such as images. The power of CNNs comes from the fact that the convolution operation
also operates along the depth of the network. This enables the a CNN to form rich,
high-level abstractions of low-level features in earlier layers by convolving a hierarchy
of feature maps. Thus, the network is able to identify complex shapes, such as a dog
or a cat, through complicated interactions between simple shapes, such as edges and
blobs.

In the following we will take a closer look at the different components of a con-
ventional CNN under the assumption that we are applying it to image data. We will
start by introducing the convolution operation, before moving on to kernels, feature
maps and pooling functions. Finally we will put all these pieces together to form the
classic LeNet architecture developed in [LeCun et al., 1990]. In this section we follow
[Gonzalez and Woods, 2017] and [Goodfellow et al., 2016] closely.

3.7.1 Convolution

Since we are working with discretised data in the form of grids of pixels, we will focus
on the discrete convolution and rely on (and extend) the notation provided in [Gonzalez
and Woods, 2017]. The convolution of a two-dimensional input ai,j around the point
(i, j) is given by

zi,j =
∑
m

∑
n

wm,nai−m,j−n

= w ∗ ai,j,

where ∗ denotes the convolution operation and m× n are the dimensions of the kernel.
However, most machine learning libraries actually implement the cross-correlation7,
given by

zi,j =
∑
m

∑
n

wm,nai+m,j+n

= w ∗ ai,j.

7The terms cross-correlation and convolution are used interchangeably in the literature [Goodfellow
et al., 2016]. We will follow this convention.
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Feature map (2x2)

Input (4x4)

Kernel (3x3)

(a) Sliding filter view of convolution. The kernel (in green) is shifted over the input (in blue)
and at each position the overlapping cells are multiplied and summed. Each cell in the feature
map (in orange) is the result of a convolution of a corresponding spatial neighbourhood,
called the receptive field (see fig 3.5b).

Input (4x4)
Kernel (3x3)

Feature map (2x2)

(b) Simple example of convolution arithmetic. We have excluded the bias term for simplicity.

Fig. 3.5: Convolution operation in neural networks.

This is often visualised as sliding a filter over an input, multiplying the overlapping
cells elementwise and summing the result. Note that we start the indices from 0 in
this notation. As before, we add a bias term and perform a non-linear transformation
of zi,j to obtain ai,j for the subsequent layer. Figure 3.5 shows a simplified visual
representation of the convolution operation. To keep track of layers we introduce the
layer index l as before:

zi,j(l) =
∑
m

∑
n

wm,n(l)ai+m,j+n(l − 1) + b(l)

= w(l) ∗ ai,j(l − 1) + b(l),
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where
ai,j(l − 1) = σ(zi,j(l − 1)).

As stated earlier, the input and outputs of convolutions are usually tensors in
practical applications. This means we need additional indices to keep track of the
weight connecting a neuron in the input channel g to the neuron of the output channel
k:

zk,i,j(l) =
∑

g

∑
m

∑
n

wk,g,m,n(l)ag,i+m,j+n(l − 1) + bk(l)

= wk(l) ∗ ai,j(l − 1) + bk(l).
(3.16)

Eq. 3.16 concisely describes the local connectivity to a given region of the input
(called the receptive field, given by m and n) and the full connectivity along the depth
dimension (given by g). Note that the kernel wk(l) will always have the same depth
dimension as the input. In practice there are several hyperparameters associated with
the filters which also need to be taken into account.

3.7.2 Filter Hyperparameters

The output volume of a convolution is controlled by four hyperparameters8: the number
of filters (K), the filter size9 (F ), the stride (S) and the amount of zero-padding (P ).

We have already mentioned the receptive field, which correspond to the spatial
dimensions of the filter. The number of filters will then correspond to the depth of
the output volume. The stride determines how we shift the filter over the image, and
S will then dictate how many pixels we skip when computing the net inputs to the
feature map. Sometimes we may want to pad the input volume with zeroes in order
to manipulate the dimensionality of the output volume. This is called zero-padding.
Zero-padding decouples the filter size and the output volume size, allowing us to control
one independently of the other. There are three main types of zero-padding:

• valid (the output size shrinks at each layer, i.e. downsampling),

• same (the output size is the same as the input size),

• full (the output size is larger than the input, i.e. upsampling).
8The notation we follow is provided in [Karpathy, 2016].
9The filter is typically square, which is why we denote the size F by a single value.
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The reader is referred to chapter 9.5 in [Goodfellow et al., 2016] for details. Suppose
we have an input with dimensions Win ×Hin ×Din, where W denotes the width, H

denotes the height and D denotes the depth. Then the dimensions of the output
volume Wout ×Hout ×Dout are given by

Wout = Win − F + 2P

S
+ 1,

Hout = Hin − F + 2P

S
+ 1,

Dout = K.

See [Dumoulin and Visin, 2016] for an exhaustive overview of the arithmetics of
convolutional layers. Note that we are not free to set the hyperparameters arbitrarily.
The combinations of values must be constrained to produce integer-valued dimensions.
Most deep learning libraries will warn the user of invalid hyperparameter choices.

Example 3.2. Volume of output after convolution. Assume the input is a colour
image of size (32× 32× 3). Convolving the image with K = 12 filters of size F = 5
where the stride S = 1 and zero-padding P = 0 will result in a output volume of
(27 × 27 × 12). Assuming that our kernels are trained to detect some meaningful
features, we can think of the output volume as twelve 2-D feature maps. Each feature
map consists of 729 neurons, arranged in a (27× 27) grid indicating the presence of a
feature learned by it’s corresponding filter. ⌟

3.7.3 Pooling

A typical convolutional layer will first apply the convolution operation to an input
followed by a non-linear activation function, resulting in a volume of K 2-D feature
maps. The final step of a convolutional layer is the pooling operation. Pooling layers
operate on each feature map separately by replacing multiple values in non-overlapping
spatial neighbourhoods with a single value, thus reducing the resolution. This brings
down the number of network parameters and helps to control overfitting. Furthermore,
pooling provides some robustness to translations in the input, which is useful if the
primary goal is to detect a feature rather than pinpointing its exact position.

Typically, the max-pooling function is used. A window of size F is shifted over the
image with a stride S (much like a filter during convolution), returning the maximum
activation in the overlapping region of the feature map and the pooling window. The
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Input (4x4)

Output (2x2)Max-pool
F = 2
S = 2

Fig. 3.6: Max-pooling downsamples a feature map by reducing non-overlapping spatial
neighbourhood to the maximum activation in that neighbourhood. The illustration above
shows an example of a pooling window of size F = 2 with stride S = 2.

output dimensions of the pooling layer are controlled by two hyperparameters: the
window size F and the stride S. Typically F = 2 and S = 2. See fig. 3.6 for a simple
example. An example of an alternative to max-pooling is global average pooling [Lin
et al., 2013].

Some researchers argue that the pooling operation throws away an unnecessarily
large amount of useful information, and suggest downsampling by convolution with
larger strides instead [Springenberg et al., 2014].

3.7.4 LeNet: A Simple Convolutional Neural Network

In summary, the main building block of a CNN is the convolutional layer. First, the
convolution operation computes a weighted sum of inputs which are passed through a
non-linear activation function. This results in a 2-D feature map of activations which
are pooled to produce a lower resolution feature map.

One of the earliest and most famous CNNs is the LeNet family of models [LeCun
et al., 1990], developed by Yann LeCun and colleagues to identify handwritten digits.
We will examine the LeNet architecture in detail for two reasons: (1) It is simple to
understand and conveys the idea behind CNNs without the complex architectural
quirks of contemporary networks, and (2) we will be using a variant of LeNet in the
empirical analysis in chapter 5.

Fig. 3.7 shows the general architecture of a LeNet model applied to a colour image
input. Two convolutional layers are stacked on top of each other. The number of
feature maps depends on the number of filters F specified in each layer. The final
volume of feature maps is unrolled into a long feature vector which is fed into a fully
connected network, which we introduced in section 3.2. The output layer typically
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Convolution and
activation

Convolutional layer Convolutional layer

Filter

Pooling window

Convolution and
activation

Pooling Pooling
Vectorisation

Fully connected layer

Feature mapsInput image (RGB)
Vectorised 

feature maps

Feature mapsPooled 
feature maps

Pooled 
feature maps

Output

Input layer

Fig. 3.7: An example of the LeNet architecture. The input is followed by two convolutional
layers. The output of the last convolutional layer is unrolled into a vector of activations and
fed into a fully connected network. Finally the neuron with the largest activation in the
output layer will correspond to the network’s prediction. The figure above is an adaptation
of the illustration on p. 965 in [Gonzalez and Woods, 2017].

applies a softmax activation function (see section 3.3), and the output neuron with
the largest activation determines the class prediction. In fig. 3.7 the input layer is an
example from the CIFAR-10 data set [Krizhevsky and Hinton, 2009], which consists of
60.000 images belonging to 10 different classes (see chapter 6 for details).



Chapter 4

Modelling Uncertainty

In the frequentist approach to statistics, the true, unobservable value of some parameter
vector w is assumed fixed and unknown and the estimate ŵ is based on a random
sample of data points. This means that the values of ŵ will vary from sample to
sample, making ŵ itself a random variable. Uncertainty about the point estimate of
w is reflected in the variance of ŵ. The variance indicates how much ŵ is expected to
change with respect to a different sampling of data.

Bayesian statistics takes another approach: Statements about w are made in
terms of probability distributions that are conditioned on observed data, denoted by
p(w|X, y). Uncertainty about w is thus expressed in terms of probability, which is
why the Bayesian framework is often referred to as probabilistic modelling. In this
chapter we will explore probabilistic modelling and how it can be applied to deep
learning.

In section 4.1 we give a brief introduction to the basics of Bayesian statistics. In
section 4.2 we focus on approximate Bayesian inference (4.2.1) and Gaussian process
models (4.2.2), which will be relevant for later discussions. In section 4.3 we briefly
review Monte Carlo estimation. In section 4.4 we introduce Bayesian neural networks
and summarise recent research into dropout training as an approximation to Bayesian
inference.

In this chapter we primarily rely on the following sources and the references therein:

• Chapters 1 and 21 in [Gelman et al., 2013] (Bayesian inference and Gaussian
processes).

• Chapter 2 in [Rasmussen and Williams, 2005] (Gaussian processes for regression).
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• Chapter 15 in [Murphy, 2012] (Gaussian processes).

• Chapters 3, 5 and 17 in [Goodfellow et al., 2016] (probability, Bayesian linear
regression, variational inference).

• Chapters 2 and 3 in [Gal, 2016] (Bayesian inference, Bayesian deep learning,
variational inference).

• Chapter 6 in [Bishop, 2006] (Gaussian processes).

4.1 A Brief Introduction to Bayesian Statistics

Bayes’ rule states that the conditional probability of an event A given event B can be
expressed by

p(A|B) = p(A)p(B|A)
p(B) .

More formally, let S be the union of k mutually exclusive events A1, A2, ..., Ak.
Then, if B ∈ S and p(Aj) > 0 and p(B) > 0, Bayes’ theorem states that

p(Aj|B) = p(Aj)p(B|Aj)∑k
i=1 p(Ai)p(B|Ai)

,

where the sum is replaced by an integral in the continuous case. Bayes’ theorem
can also be applied to parameter estimation. Information or assumptions about w

are incorporated into a prior distribution over w, denoted p(w). Strong priors are
more informative, meaning p(w) is more concentrated around some values of w. On
the other hand, having no particular beliefs about the parameters should result in a
more uniform, or uninformative, prior. After observing (X, y), we update the prior to
reflect which values of w are most likely. This is called the posterior distribution of w,
and is given by

p(w|X, y) = p(w)p(y|X, w)
p(y|X) . (4.1)

Here p(y|X, w) is the model, represented by the likelihood function (see section 2.3.1).
The normalising constant p(y|X) is called the marginal likelihood. Some textbooks
refer to this as the model evidence. The marginal likelihood is obtained by integrating
out w:

p(y|X) =
∫

p(y|X, w)p(w) dw.
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Note the slight abuse of notation in eq. 4.1: We use p(·) to denote the distributions
of the posterior, prior, likelihood and marginal likelihood, but this does not mean that
they share the same distribution.

Let x∗ denote a new observation with unknown target value y∗. The Bayesian
approach makes inferences based on the full distribution of y∗. This is called the
posterior predictive distribution, given by

p(y∗|x∗, X, y) =
∫

p(y∗|x∗, w)p(w|X, y) dw. (4.2)

Eq. 4.2 can be viewed as an ensemble of models with different settings of w,
weighted by p(w|X, y). Thus the most likely parameter values will contribute the
most to the probability of y∗ taking on a particular value. Making statements about
parameter values and predictions in terms of probability highlights one of the key
features of the Bayesian approach: It gives an intuitive and principled way of expressing
uncertainty.

4.2 Bayesian modelling

To see how Bayes’ theorem can be applied in a machine learning context, consider the
following example:

Example 4.1 (Bayesian linear regression). As before, assume X ∈ RN×D and
y ∈ RN . Let yi|xi, w ∼ N (xT

i w, σ2
ϵ ) and suppose we place a Gaussian prior over the

weights, such that w ∼ N (0, τ 2I). Assume that σ2
ϵ and τ 2 are known. By applying

Bayes’ theorem we can figure out which setting of w best describes the observed data:

p(w|X, y) = p(w)p(y|X, w)
p(y|X)

∝ p(w)p(y|X, w)

= p(w)
N∏

i=1
p(yi|xi, w).
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The symbol ∝ means that the expression on the left-hand side is proportional to the
expression on the right-hand side. Computing the log-likelihood gives

log p(w|X, y) ∝ log p(w) +
N∑

i=1
log p(yi|xi, w)

= logN (0, τ 2I) +
N∑

i=1
logN (xT

i w, σ2
ϵ )

∝ −wTw

2τ 2 −
(y −Xw)T(y −Xw)

2σ2
ϵ

= − 1
2σ2

ϵ

(y −Xw)T(y −Xw) + σ2
ϵ

τ 2 wTw

.

We recognise the parenthesised terms as the regularised cost of the ridge estimate (see
example 2.6) with λ = σ2

ϵ /τ 2. In other words, minimising the negative log-likelihood
is equivalent to ridge regression where the regularisation strength λ depends on the
variance of yi and the precision1 of w. The regularising effect of the prior distribution
is considered one of the core features of Bayesian inference. The resulting estimates of
w are called the maximum a posteriori (MAP) estimates. ⌟

In the above example we ignored the marginal likelihood p(y|X) because the
MAP estimate of w is unaffected by it. In this sense we are still providing a point
estimate of w. A fully Bayesian treatment requires that we integrate over the posterior
distribution of w, which requires that we evaluate p(y|X). Unfortunately, in many
practical applications p(y|X) is intractable, making p(w|X, y) impossible to evaluate
analytically. In such cases approximations must be made.

4.2.1 Variational Inference

We can approximate p(w|X, y) using variational inference. The main idea is that
we can define a probability distribution qϕ(w) that is easy to evaluate, and use
qϕ(w) to approximate p(w|X, y). qϕ(w) is parameterised by ϕ, which are called
the variational parameters. Finding the distribution qϕ(w) that best approximates
p(w|X, y) amounts to finding the best setting of variational parameters, turning the
marginalisation problem in eq. 4.2 into an optimisation problem.

1Model precision is a term that is frequently used in Bayesian inference when referring to the
inverse of the variance of a normal distribution.
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Specifically, let Q denote all possible approximating distributions qϕ(w). The best
approximating density q∗

ϕ(w) ∈ Q is the one that minimises the KL divergence:

q∗
ϕ(w) = arg min

ϕ
KL[qϕ(w)∥p(w|X, y)],

where

KL[qϕ(w)∥p(w|X, y)] =
∫

qϕ(w) log qϕ(w)
p(w|X, y) dw. (4.3)

As mentioned in section 2.6, the KL divergence is a measure of similarity between
distributions. By substituting eq. 4.1 into eq. 4.3, it can be shown2 that

KL[qϕ(w)∥p(w|X, y)] = KL[qϕ(w)∥p(w)]
− Eqϕ(w)[log p(y|X, w)] + log p(y|X).

(4.4)

The KL divergence still depends on the intractable marginal likelihood p(y|X).
We must therefore minimise an alternative objective. Since KL[qϕ(w)∥p(w|X, y)] ≥ 0
(see section 2.6), we can rearrange the terms in eq. 4.4 to obtain the inequality

Eqϕ(w)[log p(y|X, w)]−KL[qϕ(w)∥p(w)] ≤ log p(y|X).

The expression on the left-hand side of the inequality is called the evidence lower
bound (ELBO). Maximising the ELBO with respect to qϕ(w) is equivalent to minimising
eq. 4.4, resulting in the variational objective

CVI = Eqϕ(w)[log p(y|X, w)]−KL[qϕ(w)∥p(w)], (4.5)

such that
q∗

ϕ(w) = arg max
ϕ

CVI. (4.6)

Eq. 4.6 encourages the variational parameters ϕ to explain the data well (by
maximising the likelihood) while simultaneously ensuring that q∗

ϕ(w) is as close to the
prior p(w) as possible (by minimising the KL term), thus reflecting the balance between
the observed data and prior distribution. This allows us to define an approximate

2See section A.2 in appendix A
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posterior predictive distribution for y∗:

q(y∗|x∗) ≈
∫

p(y∗|x∗, w)q∗
ϕ(w)dw.

The reader is referred to [Blei et al., 2017] for an introduction to variational
inference.

4.2.2 Gaussian Processes

In the previous sections we inferred a distribution over model parameters by placing a
prior over the weight space. An alternative (but equivalent) view is that we are placing
a prior distribution over the space of possible functions that have generated the data
(see chapter 2.2 in [Rasmussen and Williams, 2005] for details).

The Gaussian process (GP) is a non-parametric method for performing Bayesian
inference over functions. In the GP view we place a prior distribution over the function
space, and the posterior

p(f |X, y) ∝ p(f)p(y|X, f)

reflects the functions most likely to have generated the data. The posterior predictive
distribution is then given by

p(y∗|x∗, X, f) =
∫

p(y∗|x∗, f)p(f |X, y) df.

[Rasmussen and Williams, 2005] is considered the definitive reference for GPs in
machine learning, but we follow [Murphy, 2012] closely in this section due to notational
convenience.

It is very hard to imagine a distribution over all possible functions that could have
generated the data. The GP approach defines a distribution over the function values.
Specifically, given a finite, arbitrary set of points {x1, x2, ..., xN}, the function values
f = {f(x1), f(x2), ..., f(xN)} are assumed to be jointly Gaussian. We can state this
assumption more compactly:

f(x) ∼ GP(m(x), κ(x, x′)),

where
m(x) = E[f(x)],
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κ(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))T].

The function m(x) is called the mean function and κ(x, x′) is a positive semi-definite
covariance function, called a kernel3. The kernel specifies the covariance of function
values. Intuitively, if x and x′ are similar, then the kernel should output similar values.
Thus, for any finite set of points {x1, x2, ..., xN}, the GP defines

p(f |X) ∼ N (µ, K),
µ = (m(x1), m(x2), ..., m(xN))T,

Kij = κ(xi, xj), i = 1, . . . , N, j = 1, . . . , N.

Example 4.2 (GPs for regression). The following example is taken from chapter
15 in [Murphy, 2012]. Suppose we want to estimate y = f(x) + ϵ, where ϵ ∼ N (0, σ2

ϵ ).
Given X ∈ RN×D and y ∈ RN , we want to predict f∗ for some new observations
X∗ ∈ RK×D. For simplicity we assume a mean of 0. By definition, the joint distribution
of y and f∗ is given by y

f∗

 ∼ N
0,

Ky K∗

K∗T K∗∗

,

where

Ky = κ(X, X) + σ2
ϵ I is N ×N,

K∗ = κ(X, X∗) is N ×K,

K∗∗ = κ(X∗, X∗) is K ×K.

The mean µ∗ and variance Σ∗ of the posterior predictive distribution are obtained
by applying the rules of conditioning4 for the multivariate Gaussian distribution:

p(f∗|X∗, X, y) ∼ N (µ∗, Σ∗),
µ∗ = K∗TK−1

y y,

Σ∗ = K∗∗ −K∗TK−1
y K∗.

3Not to be confused with the kernel in convolutional neural networks.
4See appendix A, section A.3.
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Fig. 4.1: An example of a Gaussian process (GP) defined by a radial basis function kernel
and a mean of zero (refer to [Rasmussen and Williams, 2005] or chapter 15 in [Murphy, 2012]
for details on different kernels and their effects on function estimation). The true function
f(x) = sin(2x) is given by the dotted blue line. The mean of the GP is given by the solid
black line. Fig. 4.1a shows three functions sampled from the prior. Figs. 4.1b−4.1d show
the predictive mean µ∗ (in black) for varying numbers of observations yi = f(xi) + ϵi, where
ϵi ∼ N (0, 0.05). The grey band shows the uncertainty associated with µ∗. We see that as
the number of observations increase, the uncertainty associated with points that are far from
the observed data decreases.

Due to the matrix inversions required to compute Σ∗, GPs often fail to scale to
very large data sets. In these cases approximations such as variational inference must
be used. Figure 4.1 shows an example of a Gaussian process. ⌟

It is possible to stack GPs in a hierarchical manner such that the input to one GP is
itself determined by another GP. These are called deep GPs [Damianou and Lawrence,
2013]. Furthermore, there exists a connection between GPs and neural networks: By
choosing appropriate priors over the network weights, an MLP with a single hidden
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layer will converge to a GP with a specific covariance function in the limit of infinitely
many hidden neurons [Neal, 1996]. GPs are also used for Bayesian optimisation [Snoek
et al., 2012], which is the process of automatically tuning hyperparameters of machine
learning algorithms.

4.3 Basics of Monte Carlo Sampling

Monte Carlo (MC) estimation is a random sampling method that allows us to compute
estimates of sums and integrals. MC estimation is particularly helpful in problems
where the desired sum or integral cannot be computed analytically. In these cases, we
view the sum or integral as an expectation under some probability distribution p(x)

E[f(x)] =
∫

p(x)f(x)dx,

which can be approximated by evaluating f on samples from p(x) and computing the
empirical average

E[f(x)] ≈ 1
N

N∑
i=1

f(xi), xi ∼ p(x). (4.7)

It can be shown that the MC estimate in eq. 4.7 is an unbiased estimator of E[f(x)]
and that the MC estimate converges to the true expectation as N gets large, provided
that the samples are i.i.d. and Var[f(xi)] <∞. The reader is referred to [Goodfellow
et al., 2016] and [Gelman et al., 2013] for details. MC estimates allow us to obtain
uncertainty estimates by computing the empirical variance of f(xi) and dividing by
the number of samples.

4.4 Bayesian Deep Learning

The neural networks introduced in chapter 3 are limited by their inability to provide
principled uncertainty estimates associated with their predictions. However, it is
possible to view neural networks in a probabilistic framework by placing a prior
distribution over the network parameters. The result is a so-called Bayesian neural
network (BNN) [MacKay, 1992; Neal, 1996], from which we can obtain theoretically
grounded quantifications of uncertainty. Unfortunately, many BNNs have turned out
to be impractical to work with due to their inability to scale to large data sets. Refer
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to section 2.2 in [Gal, 2016] for a historical overview of BNNs. In recent work, Gal
and colleagues try to alleviate this impracticality by suggesting a novel approach to
Bayesian inference in neural networks [Gal and Ghahramani, 2016].

4.4.1 Dropout as Variational Inference

The full derivation of this result is very technical and well beyond the scope of this
thesis, but we will briefly sketch the general idea in this section. We follow the notation
in [Gal and Ghahramani, 2016]. Note that in this notation the layers are indexed by
i and the layer numbering starts at i = 1 as opposed to i = 2. For a complete and
detailed exposition of the derivation, the reader is referred to [Gal, 2016].

The regularised cost function (eq. 2.8) of a dropout neural network (eq. 3.15) is
given by

Cdropout = 1
N

N∑
i=1
L(yi, ŷi) + λ

L∑
i=1

(∥Wi∥2 + ∥bi∥2). (4.8)

Starting in a regression setting, Gal and colleagues show that minimising Cdropout is
equivalent to performing variational inference between an approximating distribution
qM (ω) and the posterior predictive distribution of a deep GP. Here ω = {Wi}L

i=1

denotes the collection of weight matrices associated with the covariance function at
different layers of the deep GP, and the subscript M denotes the variational parameters.

After a series of reparameterisations and factorisations, the posterior predictive
distribution is integrated over the covariance parameters ω. The approximating
distribution qMi

(Wi) of the covariance parameters in the i’th layer of the deep GP is
defined by

Wi = Mi × diag
(
ri

)
,

ri = [rij]Ki−1
j=1 ,

rij ∼ Bernoulli(pi),
i = 1, ..., L, j = 1, ..., Ki−1.

(4.9)

The authors call eq. 4.9 a Bernoulli approximating variational distribution. By
evaluating the ELBO (eq. 4.5) the authors are able to retrieve a scaled version of
the cost function in eq. 4.8. Gal concludes that approximating a deep GP with a
Bernoulli approximating variational distribution results in the same optimal parameters
as dropout training.
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Gal goes on to argue that sampling Wi from qMi
(Wi) is identical to performing

dropout in layer i of a neural network. Suppose we now construct a BNN, and
approximate the posterior predictive distribution using a Bernoulli approximating
variational distribution over the network parameters. Then, Gal argues, the optimal
parameters of the BNN will be the same as those in a dropout network with the same
structure. According to Gal, this means that a dropout network can be viewed as
approximate inference in a BNN, thus granting access to the principled uncertainty
estimates associated with Bayesian modelling.

In practice, sampling from the posterior of a BNN is equivalent to leaving dropout
on when making predictions. The input x∗ is propagated through the network T times.
Each t ∈ T is called a stochastic forward pass, and each t results in a new sampling of
weights (due to dropout). The MC estimate (eq. 4.7) of the prediction y∗ is given by

E(y∗) ≈ 1
T

T∑
t=1

ŷ(x∗, ω̂t), ω̂t ∼ qM (ω), (4.10)

where ω̂t is shorthand notation for the collection of sampled weights from the Bernoulli
approximating variational distribution, denoted by qM (ω). The model output for the
t’th stochastic forward pass is denoted ŷ(x∗, ω̂t). The authors refer to the aggregated
estimate in 4.10 as MC dropout.

By establishing a connection to GPs, the authors are also able to derive the
predictive uncertainty associated with the MC dropout estimate, given by

Var(y∗) ≈ τ−1I + 1
T

T∑
t=1

ŷ(x∗, ω̂t)Tŷ(x∗, ω̂t)

−
( 1

T

T∑
t=1

ŷ(x∗, ω̂t)
)T( 1

T

T∑
t=1

ŷ(x∗, ω̂t)
)

,

(4.11)

where τ is a precision term.

These results are applicable to both regression and classification settings. For
classification, we can use the softmax function (see section 3.3) to output a vector of
class probabilities

p(ŷ|x∗, ω̂t) = (p(ŷ = 1|x∗, ω̂t), . . . , p(ŷ = K|x∗, ω̂t)),
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where the dimensionality K corresponds to the number of classes. The k’th element
corresponds to the probability that the input belongs to class k, given the weights
sampled in the t’th stochastic forward pass.

The MC dropout estimate of the vector of softmax probabilities is denoted

µ̂ = (µ̂1, . . . , µ̂K)

=
 1

T

T∑
t=1

p(ŷ = 1|x∗, ω̂t), . . . ,
1
T

T∑
t=1

p(ŷ = K|x∗, ω̂t)


= 1
T

T∑
t=1

p(ŷ|x∗, ω̂t).

Finally, the predicted class corresponds to the largest element in µ̂, such that

µ̂pred = max
µ̂k

µ̂, k = 1, . . . , K.

In classification tasks the predictive uncertainty given by eq. 4.11 does not hold.
Gal argues that other methods are necessary, suggesting predictive entropy (PE),
mutual information (MI) and variation-ratios (VR) as alternatives (see section 3.3.1
in [Gal, 2016] for details). PE and MI are rooted in information theory (see section
2.6). Assuming a softmax output, the PE measures the uncertainty associated with
the vector of class probabilities, and can be approximated by

PE(µ̂) = −
∑

k

µk log µk. (4.12)

As stated in section 2.6, the MI is a measure of information gain. In this context, the
MI measures the information gained about the model parameters if we were to receive
a label y for some input x∗. In a classification setting the MI can be approximated by

MI(µ̂) = PE(µ̂) + 1
T

∑
t

∑
k

p(ŷ = k|x∗, ω̂t) log p(ŷ = k|x∗, ω̂t). (4.13)
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The VR measures the spread of the distribution around the mode, and can be
approximated by

VR(µ̂) = 1− fx∗

T
,

fx∗ =
∑

t

1(ŷt = k∗),

k∗ = arg max
k=1,...,K

∑
t

1(ŷt = k),

(4.14)

where ŷt denotes the predicted class label for the t’th stochastic forward pass.

4.4.2 Bayesian Convolutional Neural Networks

The results in the previous section can be applied to CNNs also. However, many CNNs
typically apply dropout only in the last, fully connected layer of the network. This is
because dropping the weights in the convolutional kernels has in many cases been shown
to negatively impact the predictive performance of a standard dropout CNN [Gal and
Ghahramani, 2015]. In Gal’s initial development of approximate inference in Bayesian
deep learning, the convolutional kernels are viewed as deterministic transformations,
and predictions and uncertainty estimates can still be obtained following the results of
section 4.4.1.

By casting dropout training as Bernoulli approximate variational inference for
Bayesian NNs directly [Gal and Ghahramani, 2015], the authors develop a framework
for approximate inference over the convolutional kernels in a CNN. This is accomplished
by adding a dropout layer after every convolutional layer. As before, dropout remains
on during prediction and the results are averaged to give an MC dropout estimate.
These so-called fully Bayesian CNNs (BCNNs) are shown empirically to outperform
standard dropout CNNs in terms of predictive accuracy [Gal and Ghahramani, 2015].
However, this extension comes at a cost: The GP interpretation is now lost, and Gal
does not discuss how to obtain uncertainty estimates from BCNNs.

4.4.3 Practical Applications of MC Dropout

Several researchers in the field of computer vision have extrapolated on the results in
section 4.4.1 to obtain uncertainty estimates in image classification tasks [Feinman et al.,
2017; Leibig et al., 2017]. These researchers use BCNNs and ad hoc approximations of
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Fig. 4.2: The above plot shows a practical example of MC dropout, taken from chapter 5.
The leftmost plot shows the image with the corresponding ground truth label. The middle
plot shows the softmax output of the predicted class for each stochastic forward pass. The
MC dropout estimate is given by the solid red line. The rightmost plot shows a kernel density
estimate (KDE) of the distribution of the approximated uncertainty associated with the MC
dropout estimate.

the predictive uncertainty given by eq. 4.11 with successful results, even though Gal
warns that the GP interpretation is lost for BCNNs and that eq. 4.11 is inappropriate
in a classification setting. We will briefly summarise this research.

In a recently published paper, Leibig and colleagues use a BCNN to capture
uncertainty estimates associated with classifying diabetic retinopathy5 in fundus6

images [Leibig et al., 2017]. The researchers show that automatic disease detection
can be improved by making uncertainty-informed referrals to human experts, thus
obtaining state-of-the-art results. The key idea is that this human-machine interaction
will lead to better diagnostic accuracy than either could produce individually.

The problem of disease detection is reduced to a binary classification task, where
Leibig et. al. use a softmax activation to output the probabilities of the two classes
(0: Healthy, 1: Diseased). Instead of predicting the class associated with the largest
element of µ̂, the authors define

µ̂diseased = 1
T

T∑
t=1

p(ŷ = 1|x∗, ω̂t),

5Diabetic retinopathy is an eye disease resulting from complications following diabetes which can
lead to blindness.

6The fundus is the interior surface of the eye opposite to the lens which includes, among other
things, the retina.
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and classify a patient as healthy if µdiseased < 0.5. The authors use the empirical
standard deviation as a proxy for predictive uncertainty7:

σ̂pred =

√√√√ 1
T

T∑
t=1

[
p(ŷ = 1|x∗, ω̂t)− µ̂diseased

]2
.

Leibig et. al. argue that the width of the empirical distribution of T samples of
p(ŷ = 1|x, ω̂t) should indicate the network’s confidence in its prediction.

In another recent paper, Feinman and colleagues explore how ad hoc uncertainty
estimates obtained from BCNNs can be used to detect adversarial examples in image
classification problems [Feinman et al., 2017]. An adversarial example is an image
where the pixel values are perturbed in a way that is imperceptible to humans, but
causes great confusion in a neural network. To this end Feinman et. al. develop the
following approximation of predictive uncertainty:

σ̂2 = 1
K

K∑
k=1

σ̂2
k,

where K is the number of classes and

σ̂2
k = 1

T

T∑
t=1

[p(ŷ = k|x∗, ω̂t)− µ̂k]2, k = 1, ..., K.

In other words, σ̂2 returns a single, scalar-valued measure of uncertainty for each
observation by averaging the mean squared prediction error of each class. The authors
found that their ad hoc uncertainty estimate can be used to detect adversarial examples.

Recent work by Smith and Gal suggests a connection between σ̂2 and the MI of the
predictions [Smith and Gal, 2018]. In brief, the authors show that σ̂2 is identical (up

7As of 10.10.18, the published version of [Leibig et al., 2017] (available at https://www.nature.
com/articles/s41598-017-17876-z) states that the empirical standard deviation is given by
σ̂pred = 1

T −1

√∑T
t=1
[
p(ŷ = 1|x∗, ω̂t)− µ̂diseased

]2. We assume that this is a typographical error,
since the 1

T −1 term should be included under the square root. A review of the associated GitHub
repository (https://github.com/chleibig/disease-detection) also seems to indicate that their
definition is a misprint. Furthermore, it is not clear from the code that the authors actually use
the unbiased estimator of the empirical standard deviation. As far as we can tell, the authors
use the NumPy implementation (see the documentation at https://docs.scipy.org/doc/numpy/
reference/generated/numpy.std.html for details) of the empirical standard deviation, such that

σ̂pred =
√

1
T

∑T
t=1
[
p(ŷ = 1|x∗, ω̂t)− µ̂diseased

]2.

https://www.nature.com/articles/s41598-017-17876-z
https://www.nature.com/articles/s41598-017-17876-z
https://github.com/chleibig/disease-detection
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
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to a multiplicative constant) to the leading term of a Taylor expansion of the MI (refer
to [Smith and Gal, 2018] for details on the derivation), thus offering an explanation to
why σ̂2 seems to work reasonably well in practice. The empirical properties of these ad
hoc uncertainty approximations is the focus of part 2.



Part II

Experiments





Chapter 5

Approximated Predictive
Uncertainty in a Multi-Class
Setting

In part 1 we reviewed the basic theory and ideas that form the basis for uncertainty
estimation in dropout neural networks. To reiterate, Gal and Ghahramani establish a
connection between dropout neural networks and a well-known Bayesian model called
the Gaussian process (GP). They show that dropout training can be viewed as Bernoulli
approximate variational inference over the weights of a Bayesian neural network (BNN)
[Gal and Ghahramani, 2016], which allows researchers to obtain principled uncertainty
estimates from dropout networks by leaving dropout on at prediction time. The
predictive uncertainty is given by

Var(y∗) ≈ τ−1I + 1
T

T∑
t=1

ŷ(x∗, ω̂t)Tŷ(x∗, ω̂t)

−
( 1

T

T∑
t=1

ŷ(x∗, ω̂t)
)T( 1

T

T∑
t=1

ŷ(x∗, ω̂t)
)

.

(5.1)

The authors extend this idea to Bayesian convolutional neural networks (BCNNs) [Gal
and Ghahramani, 2015], stating that the GP interpretation is lost but observing that
MC dropout estimates tend to increase accuracy. Furthermore, predictive uncertainty
estimates for BCNNs are not discussed, and it is made clear that eq. 5.1 is inappropriate
for use in a classification setting. However, as is often the case among many practitioners
in the field of deep learning, theory plays second fiddle to what works well in practice.
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Despite the apparent lack of theoretically grounded uncertainty estimates for BCNNs,
several researchers [Feinman et al., 2017; Leibig et al., 2017] have developed ad hoc
approximations of eq. 5.1 for use in image classification problems, which seem to work
well in practical applications.

In this chapter we continue in the experimental tradition of the deep learning
community by exploring the empirical properties of these ad hoc uncertainty estimates.
As far as we are aware, there has not been much work directed towards determining
the viability of ad hoc uncertainty approximation in multi-class classification problems.
The first and main focus of this chapter will therefore be the extension of σ̂pred [Leibig
et al., 2017] to the multi-class image classification problem CIFAR-10 (see chapter 6 for
details on the data set). We start by examining the distributions of σ̂pred for correctly
and incorrectly classified images. Next we establish a connection between the results
of the confusion matrix and class-specific uncertainty estimates. We follow this with a
brief exploration of the relationship between approximated predictive uncertainty and
MC dropout estimates. Next, we explore how σ̂pred responds to feature degradation by
adding random noise to the images. Finally, we test the effect of varying dropout rates
on approximated uncertainty and predictive accuracy.

Uncertainty estimation in deep neural networks is an extremely active and fast-
moving field of study. While working on the problem stated above, we became aware
of Feinman and colleagues’ work (section 4.4.3) on detecting adversarial image inputs
using σ̂2 [Feinman et al., 2017]. Feinman’s approximation is developed for a multi-class
setting, so we will present a brief analysis of the empirical properties of σ̂2 and how they
compare to σ̂pred, although this exploration will not be as extensive as our examination
of σ̂pred.

Finally, we introduce σ̂model, a novel predictive uncertainty approximation that is
based on calculating the mean of the standard deviations of each element in µ̂. We
briefly explore σ̂model and show that it compares favourably to both σ̂pred and σ̂2 in some
important respects. At the end of this chapter we put all three approximated predictive
uncertainties to the test in a simple uncertainty-informed referral experiment, again
finding that our approximation σ̂model outperforms both σ̂pred and σ̂2. Furthermore, we
estimate values for some established uncertainty measures for classification suggested
by Gal (see end of section 4.4.1) and see how they compare to σ̂model, σ̂pred and σ̂2.

We will explore the different approximations of predictive uncertainty using the
model lenet-allMC, which is a variant of the LeNet architecture [LeCun et al., 1998]
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described in section 3.7.4. See chapter 6 for implementation details. The choice of the
LeNet is mainly motivated by the following:

• LeNet is the same model used to introduce the idea of MC dropout for classification
[Gal and Ghahramani, 2016]. Moreover, LeNet is typically used as a baseline or
proof-of-concept model in the literature.

• Compared to state-of-the art architectures1, LeNet is simple to implement and
trains quickly. This facilitates fast prototyping and efficient experimentation.

• Recent research [Guo et al., 2017] suggests that the softmax output of simple
models such as LeNet can be interpreted as model confidence (see section 5.3.3).
This gives us an additional perspective when analysing approximated predictive
uncertainty.

We start section 5.1 by restating and introducing the notation needed for analysis.
In section 5.2 we highlight the differences in predictive accuracy between standard
dropout CNNs and BCNNs. From section 5.3 and onwards we will explore the empirical
properties of the different approximations of predictive uncertainty.

5.1 Notation

Since we are in a multi-class setting we use the softmax activation to output a vector
of K class probabilities. As stated earlier, the vector of softmax probabilities obtained
after the t’th stochastic forward pass is denoted p(ŷ|x∗, ω̂t), where ω̂t denotes the
sampled parameters resulting from dropout.

The CIFAR-10 data set consists of K = 10 classes. Conventionally, the classes are
indexed from 0 to 9. Thus, the vector of MC dropout estimates is given by

µ̂ = (µ̂0, µ̂1, . . . , µ̂9),

µ̂k = 1
T

T∑
t=1

p(ŷ = k|x∗, ω̂t), k ∈ {0, . . . , 9}.

1See for example Deep Residual Networks [He et al., 2016] and Densely Connected Convolutional
Networks [Huang et al., 2017]
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Let the predicted class k correspond to the largest element of µ̂, given by

µ̂pred = max
µ̂k

µ̂.

and let the runner-up prediction be given by

µ̂run = max
µ̂j

µ̂, µ̂j ̸= µ̂pred,

i.e. µ̂run is the second largest element in µ̂.

In our analysis we are often interested in the softmax probabilities of the correctly
and incorrectly classified images. Let the superscripts 0 and 1 correspond to the
statistics associated with incorrect and correct classifications, respectively. For example,
µ̂0

pred and µ̂0
run denote the prediction and runner-up for an incorrectly classified image.

The definitions of σ̂pred and σ̂2 were given in chapter 4.4.3, but we will restate them
here and at the start of the relevant sections. We will also define σ̂model here, and
restate it in the relevant section.

σ̂pred =

√√√√ 1
T

T∑
t=1

[p(ŷ = k|x∗, ω̂t)− µ̂pred]2.

σ̂2 = 1
K

K∑
k=1

σ̂2
k, σ̂2

k = 1
T

T∑
t=1

[p(ŷ = k|x∗, ω̂t)− µ̂k]2, k = 1, ..., K.

σ̂model = 1
K

K∑
k=1

√√√√ 1
T

T∑
t=1

[p(ŷ = k|x∗, ω̂t)− µ̂k]2.

We set T = 100 following [Gal and Ghahramani, 2015]. A superscript of 0 or 1
corresponds to the approximated uncertainty associated with an incorrect or correct
classification, respectively.

For most of the analysis we will be interested in the aggregated values of the
predictions, runner-up values and approximated uncertainty. A statistic enveloped by
avg(·) denotes the mean value of that statistic. For example, avg(µ̂1

pred) denotes the
average value of µ̂pred for correctly classified images. Similarly, avg(σ̂0

pred) denotes the
average approximated predictive uncertainty for incorrectly classified images.
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Model Accuracy MC Accuracy
lenet-all 34.86 % –
lenet 78.64 % –
lenet-allMC – 83.63 %

Table 5.1: The Accuracy column indicates the percentage of correct predictions using
standard dropout implementations of LeNet at test time. The column MC Accuracy shows
the overall accuracy of our BCNN implementation of LeNet. The deterministic implementation
lenet-all with dropout after every convolution is the worst performing model. Note that
MC dropout increases accuracy by almost 5 % compared to the deterministic baseline model
lenet.

5.2 Comparing Accuracy

The purpose of this analysis is not to achieve state-of-the-art classification results2.
However, it is interesting to see how MC dropout boosts predictive accuracy (see
section 4.4.2). We show this by comparing the test time accuracy on N = 10.000
images using the following models (see chapter 6 for details on implementation and
training):

• lenet: Deterministic baseline model, with dropout (p = 0.5)3 only in fully
connected layer.

• lenet-all: Deterministic variant of baseline model, with dropout (p = 0.5) after
every convolutional layer.

• lenet-allMC: BCNN with dropout (p = 0.5) after every convolutional layer.

The results are summarised in table 5.1. The baseline model lenet achieves an
accuracy of 78.64 % at test time. In comparison, lenet-allMC significantly boosts
the predictive performance. By averaging T = 100 stochastic forward passes for each
image in the test set, the model achieves an overall accuracy of 83.63 %, reducing the
error rate from 21.36 % to 16.37 %. lenet-all is by far the worst performing model,
with an accuracy of 34.86 %. This is to be expected, as standard dropout CNNs fail
to generalise when every convolutional layer is followed by a dropout layer [Gal and
Ghahramani, 2015]. This problem is clearly alleviated by MC dropout.

2As of 10.10.2018, the current state-of-the-art techniques report an error rate of 1.48 % on CIFAR-10.
See [Cubuk et al., 2018] for details.

3The dropout rate p = 0.5 is based on the original implementation in [Gal and Ghahramani, 2016],
see chapter 6 for details.
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Label n avg(µ̂pred) avg(µ̂run) avg(σ̂pred) Median σ̂pred IQR
0: Incorrect 1637 0.5388 0.2544 0.2082 0.2075 0.0663
1: Correct 8363 0.8407 0.0967 0.1128 0.1043 0.1661

Table 5.2: Average predictions, runner-up predictions and uncertainty for the correctly and
incorrectly classified images. In addition, the median uncertainty and interquartile range
(IQR) are provided. Note that on average σ̂pred is higher for incorrect classifications.

5.3 Leibig’s Predictive Uncertainty

In [Leibig et al., 2017] the approximated predictive uncertainty is given by the empirical
standard deviation of the positive class. Extending this to a multi-class setting gives
the uncertainty estimate

σ̂pred =

√√√√ 1
T

T∑
t=1

[p(ŷ = k|x∗, ω̂t)− µ̂pred]2,

i.e. the standard deviation of the softmax values associated with the predicted class k.

Table 5.2 shows the summary statistics for lenet-allMC on our test set. The most
important quantities are summarised in the following:

• The average approximated uncertainty of mislabelled images is greater than for
the correctly labelled images (avg(σ̂0

pred) = 0.2082 versus avg(σ̂1
pred) = 0.1128).

• On average, incorrectly classified images output lower predictive means than
correctly classified images (avg(µ̂0

pred) = 0.5388 versus avg(µ̂1
pred) = 0.8407).

• The average runner-up prediction for incorrectly classified images is higher than it
is for correctly classified images (avg(µ̂0

run) = 0.2544 versus avg(µ̂1
run) = 0.0967).

We see that incorrectly classified images tend to be associated with larger uncertainty
on average. Furthermore, the summary statistics indicate that softmax outputs of
the predicted and runner-up classes seem to be closer to each other when the model
misclassifies. This seems reasonable, as one would expect uncertainty to increase in the
situation where there are one or more candidate classes for µ̂pred, which would result
in more probability being assigned to the runner-up class.

The confusion matrix in fig. 5.1 provides details on how the model performs.
lenet-allMC is most successful when classifying images of automobiles, where 926
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Fig. 5.1: Our model is good at labelling pictures of automobiles, where 926 images are
classified correctly. The most frequently mislabelled class is cat, with only 670 correct
predictions.

images are predicted correctly. The most frequently mislabelled class is cat (670
correct predictions). In images of cats the most frequent incorrect label is dog (162).
For dogs the most frequent incorrect label is cat (156). In general it seems that the
misclassifications belong to the same domain as the correct label (i.e. one vehicle type
is mistaken for another and one species of animal is misclassified as another). This
suggests that our model is unable to learn distinguishing features which adequately
separate similar classes. However, one should be cautious about reading too much into
the specifics of misclassifications, as the results may very well be an artefact of the
model, the data set or both. For example, it is conceivable that birds are misclassified
as planes due to the presence of large patches of blue sky in the image. The four most
certain and uncertain images for each class are displayed4 in fig. 5.2 (certain/correct),
5.3 (uncertain/correct), 5.4 (certain/incorrect) and 5.5 (uncertain/incorrect).

4We use a kernel density estimate (KDE) with a Gaussian kernel to give an idea of the distribution
of σ̂pred in figs. 5.2−5.5. Note that some of the boundary cut-offs are quite abrupt at 0 and 1. There
exists an entire literature devoted to boundary correction in KDEs (see e.g. [Silverman, 2018]), which
is beyond the scope of our use. We mainly use KDEs for illustrative purposes.
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Fig. 5.2: Correctly classified images associated with low uncertainty. The leftmost
plot shows the image with the corresponding ground truth label. The middle plot shows
the softmax output of the predicted class for each of the T = 100 stochastic forward passes.
µ̂pred is given by the solid red line, µ̂run is given by the dashed brown line. The title of the
middle plot gives both the predicted class and the runner-up class. The rightmost plot shows
a kernel density estimate (KDE) of the distribution of µ̂pred, with a rug indicating the spread
of the softmax predictions. Note that there is practically complete agreement between the
softmax outputs of every stochastic forward pass.
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Fig. 5.3: Correctly classified images associated with high uncertainty. Here the
softmax outputs exhibit high variance. Interestingly, the KDE plots indicate a bimodality in
the distributions of µ̂pred. This suggests that the model has at least two candidates for µ̂pred,
but ended up predicting the correct class.
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Fig. 5.4: Incorrectly classified images associated with low uncertainty. The softmax
outputs exhibit low variance, even though the prediction is incorrect. This plot is interesting,
because it highlights the fact that some images are genuinely hard to classify, even for humans.
For instance, the most confident incorrect prediction is an image of a cat. We believe that
most humans would in fact agree with the model’s incorrect, but ultimately reasonable, guess
that this is an image of a frog. Furthermore, it is interesting to note that the runner-up
prediction is the true label in 3 out of 4 images.
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Fig. 5.5: Incorrectly classified images associated with high uncertainty. The
softmax outputs exhibit high variance. Again, the KDE plots indicate a bimodality in the
distribution of µ̂pred, suggesting that the model had at least two candidates for µ̂pred. This
time the MC dropout estimate chose the incorrect label. Again, the runner-up prediction is
the true label in 3 out of 4 images.
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Fig. 5.6: Distribution of σ̂pred. Fig. 5.6a shows the total distribution of σ̂pred for all
N = 10.000 images. Figs. 5.6b and 5.6c show the distributions of σ̂0

pred (in red) and σ̂1
pred

(in blue). Fig. 5.6d shows the density plots of σ̂0
pred and σ̂1

pred. The plots indicate that
σ̂pred is a meaningful approximation of predictive uncertainty. However, there is substantial
overlap between correctly and incorrectly classified images, which could pose problems for
uncertainty-informed referrals.

5.3.1 Distribution of Predictive Uncertainty Estimates

If σ̂pred is a useful approximation of predictive uncertainty, then we would expect
the distributions of σ̂0

pred and σ̂1
pred to reflect this somehow. Fig. 5.6 gives several

perspectives on the empirical distribution of σ̂pred for all N = 10.000 test images.

In fig. 5.6a we see that the total distribution of σ̂pred is clearly bimodal, peaking
around σ̂pred ≈ 0 and σ̂pred ≈ 0.2. Figs. 5.6b and 5.6c give us an idea of how the correctly
and incorrectly classified images contribute to predictive uncertainty, respectively. Fig.
5.6b shows a clear distinction between the two classification categories. Note the
presence of outliers in both categories. The outliers present among the incorrectly
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classified images which are close to σ̂0
pred = 0 indicate observations for which the model

outputs low uncertainty estimates while simultaneously misclassifying (fig. 5.4).

Fig. 5.6c gives a clearer picture of how the different classification categories
contribute to the total distribution of σ̂pred. We see that the incorrect predictions are
centred around a higher uncertainty, whereas far more of the correctly predicted classes
are concentrated around a low uncertainty value. The incorrect classifications greatly
contribute to the bimodality in fig. 5.6a, but it is clear that the distribution of σ̂1

pred

is itself bimodal. The density histogram with overlaid kernel density estimates in fig.
5.6d gives us further insight into how the two distributions compare to each other. The
dashed lines indicate the mean values of σ̂0

pred and σ̂1
pred.

From fig. 5.6 it seems clear that the distributions of σ̂0
pred and σ̂1

pred are meaningfully
different from one another, at least for this particular choice of model and data set. This
indicates that σ̂pred contains some valueable information about the model’s confidence
in its predictions. However, there is a substantial amount of overlap between the two
distributions, which could cause problems in an uncertainty-based referral setting (see
section 5.7).

5.3.2 Class-Specific Predictive Uncertainty

As mentioned in chapter 2.5.2, the confusion matrix is a widely applied performance
measure and is often used to provide details on how standard dropout networks fail
at test time. Thus, if σ̂pred captures predictive uncertainty, then we would expect
the class-specific distributions of σ̂pred to somehow echo the confusion matrix in fig.
5.1. Let σ̂k denote the class-specific uncertainty, where k ∈ {airplane, ..., truck} is the
corresponding class label.

The relationship between uncertainty and predictive accuracy is reflected in table
5.3 and in the distributions of σ̂k in fig. 5.7a. Both indicate that the model has less
confidence in the classes which it performs relatively poorly on. As noted in section 5.2,
the model clearly mistakes some cats for dogs and some dogs for cats. This confusion
seems to be reflected in the respective distributions of σ̂cat and σ̂dog. It is interesting
to note that, on average, the highest uncertainty is associated with images of birds,
not cats. Clearly there is some feature which contributes more uncertainty to the bird
class than to the cat class, which is where we would hope to see the largest average
uncertainty values (since images of cats are most frequently misclassified). The boxplots
in fig. 5.7b provide a different perspective on the spread of σ̂k for each class label k.
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k n avg(σ̂k)
cat 670 0.1514
bird 742 0.1540
dog 752 0.1280
deer 830 0.1366
airplane 841 0.1288
horse 880 0.1074
frog 898 0.0936
ship 902 0.0859
truck 922 0.0838
automobile 926 0.0825

Table 5.3: Number of correct predictions n by class k, and their associated mean uncertainty
avg(σ̂k) sorted by n. The bold-faced rows correspond to the minimum and maximum
uncertainty. Note that the class with the least correct predictions (cat) is among the
most uncertain, while the class with the most correct predictions (automobile) is the least
uncertain. Also note how increasing uncertainty tends to coincide with lower number of
correct predictions.

In summary, the class-specific approximations of uncertainty are consistent with
the confusion matrix in fig. 5.1: Even though there is not a one-to-one correspondence
between σ̂k and the number of correct classifications n, on average higher uncertainty
does seem to be associated with classes that tend to be mislabelled. Again, this
indicates that σ̂pred captures some useful measure of uncertainty at test time.



5.3 Leibig’s Predictive Uncertainty 83

dog frog horse ship truck

airplane automobile bird cat deer

0.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.4

0

5

10

15

20

25

0

5

10

15

20

25

uncertainty

de
ns

ity

Distributions of approximated uncertainty by class

(a) Each panel represents the distribution of σ̂pred for a particular class, indicated by the
panel title. The dotted black lines indicate the mean uncertainty of the entire test set. The
dashed lines correspond to class-specific mean uncertainty. Note the distributions of the most
uncertain classes, indicating that the classes which tend to be mislabelled most frequently
are also those where the distribution σ̂k tends to be centred around larger values.
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(b) The red box indicates the uncertainty distribution of incorrectly classified images. The
blue box corresponds to correctly classified images.

Fig. 5.7: Distributions of class-specific uncertainty (Leibig).
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5.3.3 Predictive Uncertainty and the Predictive Mean

In his PhD thesis, Gal points out that the softmax outputs of neural networks are
often mistakenly interpreted as a model’s confidence in its predictions [Gal, 2016].
However, recent work by Guo et. al. suggests that simpler models such as LeNet are
well-calibrated, meaning that the probability of the predicted class closely matches
the expected accuracy of the network [Guo et al., 2017]. Consequently, the softmax
probability of the predicted class in a well-calibrated model can be interpreted as
confidence.

Following the results in [Guo et al., 2017], we would naively expect lower values
of µ̂pred to be associated with higher uncertainty (this observation is not necessarily
restricted to the multi-class setting). Fig. 5.8 shows the relationship between σ̂pred and
µ̂pred. The plot indicates a concave shape, which contradicts our initial assumption.
This is interesting, because if µ̂pred is to be interpreted as model confidence, then it is
obvious from fig. 5.8 that predictions based on relatively low softmax values can be
associated with low uncertainty estimates. This highlights a drawback of using σ̂pred

for uncertainty-informed referrals: The model can be quite certain (in terms of σ̂pred)
that it is uncertain (in terms of µ̂pred).

Furthermore, σ̂pred seems to peak around µ̂pred ≈ 0.5. By colour-coding the
observations based on the value of the runner-up prediction µ̂run (as shown in fig. 5.9)
it becomes clear that the largest values of µ̂run cluster around µ̂pred ≈ 0.5. This is not
surprising, simply because when µ̂pred = 0.5 we have a maximum of left-over probability
available to be assigned to µ̂run. Interestingly, the points for which both µ̂pred and
µ̂run have large softmax values are spread across a wide range of σ̂pred, suggesting two
scenarios: (1) there is a tight race between two candidate classes, with little variation
in the softmax probabilities or (2) there is a continuous back-and-forth between two
candidate classes, resulting in greater variation in the softmax probabilities.
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(a) In the above we have plotted σ̂pred against µ̂pred for all N = 10.000 test observations.
The blue line is a smoothed approximation to aid interpretability. Observe the concave shape,
which highlights a potential drawback of using σ̂pred for uncertainty-informed referrals: The
model can be quite certain (in terms of σ̂pred) that it is uncertain (in terms of µ̂pred).
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(b) Above we have done the same as in fig. 5.8a, but in addition we have partitioned the
observations by classification status.

Fig. 5.8: σ̂pred vs. softmax prediction.
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(a) The observations are colour-coded by the values of µ̂run. A blue point corresponds to an
observation with a low value of µ̂run. A red point corresponds to an observation with a high
value of µ̂run. Additionally, we have plotted the average mean and uncertainty for correctly
(black dot) and incorrectly (black triangle) classified observations. The points for which both
µ̂pred and µ̂run have large softmax values are spread across a wide range of σ̂pred, suggesting
two scenarios: (1) there is a tight race between two candidate classes, with little variation in
the predictions or (2) there is a back-and-forth between two candidate classes resulting in
more predictive variance.
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(b) We follow the same procedure as in fig. 5.9a, and additionally partition the observations
by classification status and overlay the respective plots with a 2D kernel density estimate,
which gives an idea of the joint distribution of µ̂pred and σ̂pred.

Fig. 5.9: σ̂pred vs. softmax prediction and runner-up probabilities.
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5.3.4 Predictive Uncertainty in Noisy Images

Another way to examine if σ̂pred captures useful uncertainty information is to add
random noise to the images (see 6.2.1 for details). The idea is that a meaningful
uncertainty estimate should increase as the images lose their distinguishing features
due to noise corruption. In the following ϕ2 denotes the variance of the added Gaussian
noise.

Initially, we expect the classification accuracy of the model to stabilise at around
10 % as the amount of added noise increases. This is due to the fact that the most noisy
images are essentially stripped of any meaningful features learned by the network. The
model should consequently achieve an accuracy that corresponds to a random guess in a
situation with 10 classes. Fig. 5.10b shows that this is indeed the case. We see a rapid
decrease in accuracy as noise is added, and we see the that the classification accuracy
stabilises at 10 % as expected. Note that the most rapid decrease in accuracy happens for
relatively low values of ϕ2, and stabilises as ϕ2 approaches 0.5. For illustrative purposes
we therefore examine the cases where ϕ2 ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.25, 0.5} as
shown in fig. 5.10a.

Adding noise clearly has an immediate effect on estimated uncertainty for the entire
data set, as shown in fig. 5.11a. Grouping the data by classification status reveals
that noise corruption has the strongest effect on the estimated uncertainty of correctly
classified images, as shown in table 5.4, and in fig. 5.11b. The predictive uncertainty
increases as ϕ2 increases for either classification status, but avg(σ̂1

pred) increases much
more than avg(σ̂0

pred). Here σ̂pred is clearly demonstrating a desirable property: As
the predictions approach random guessing, the model becomes increasingly uncertain
about the predictions it gets right. This is also reflected in fig. 5.12, where we see that
the distributions of σ̂0

pred and σ̂1
pred approach each other as ϕ2 approaches 0.5.
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(a) The distinguishing features of an image are gradually lost as the amount of additive noise
ϕ2 increases.
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(b) The accuracy approaches 10 % as ϕ2 increases. This is due to the fact that the most
noisy images are essentially stripped of any meaningful features learned by the network.
Consequently, the predictions for the most noisy images are essentially random guesses.

Fig. 5.10: We can distort an image by adding Gaussian noise N (0, ϕ2), as shown in fig
5.10a. The effect of the added noise on classification accuracy is shown in fig. 5.10b.
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(a) Adding noise clearly has an effect on σ̂pred. The median σ̂pred increases as ϕ2 increases.
Additionally, the distribution of σ̂pred gets more concentrated around the median.
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(b) The distribution of σ̂pred for incorrect classifications is shown in red. The median increases
slightly and the spread decreases somewhat. The correctly classified cases are shown in blue.
Here, the median clearly increases and there is a significant reduction in the spread of the
distribution.

Fig. 5.11: Boxplots of uncertainty vs. added noise.
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Fig. 5.12: The distributions of σ̂1
pred (shown in blue) and σ̂0

pred (shown in red) converge as
the amount of added noise increases. The dotted lines indicate the average values of the
respective distributions.
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Fig. 5.13: The figures show the effect of adjusting the dropout rate at test time on model
accuracy (5.13a) and predictive uncertainty (5.13b). The dotted red line in fig. 5.13a is the
baseline accuracy of lenet. The blue curve is the accuracy of lenet-allMC. In fig. 5.13b, the
dotted blue line represents the average predictive uncertainty of all observations. The orange
line indicates the average predictive uncertainty for the incorrectly classified observations,
whereas the green line corresponds to correctly classified observations.

.

5.3.5 The Effect of Varying Dropout Rates

Finally, let us return to our original experimental setting where there is no additive noise
in the images. In this section we are interested in investigating the effect that varying
the dropout rate p at test time has on model accuracy and predictive uncertainty.
Specifically, we have tested p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Recall the observation made in section 5.2, where we saw that lenet-all performed
very poorly at test time. This is equivalent to p = 0. Furthermore, as p → 1
almost every node in the network is switched off, which should degrade performance.
Consequently, we expect model accuracy to be low when p is very small or very large.
What to expect of the predictive uncertainty is more unclear. However, it seems
reasonable to assume that σ̂pred will increase with p. When a very large fraction of the
network is inactive at test time, we would expect a larger degree of variation in the
predictions.

Fig. 5.13 shows the effect of p on model accuracy and predictive uncertainty. As
expected, fig. 5.13a indicates that model accuracy is low for low values of p. However,
when p ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, model accuracy surpasses that of our baseline
model lenet. Somewhat surprisingly, accuracy remains high for relatively large values
of p. Fig. 5.13b shows how the predictive uncertainty is affected by p. We see that



5.4 Feinman’s Predictive Uncertainty 93

avg(σ̂pred) increases with p, and that avg(σ̂0
pred) and avg(σ̂1

pred) approach each other as
p increases.

Fig. 5.13 suggests that we can find an optimal combination of dropout rate p and
average predictive uncertainty, where accuracy is high and the separation between
avg(σ̂0

pred) and avg(σ̂1
pred) is at a maximum. This would be an interesting problem to

explore in future research.

5.4 Feinman’s Predictive Uncertainty

In the previous section we examined σ̂pred, which essentially captures the standard
deviation of T = 100 softmax probabilities associated with the predicted class k.
Feinman and colleagues present an alternative approximation of predictive uncertainty
[Feinman et al., 2017], given by

σ̂2 = 1
K

K∑
k=1

σ̂2
k,

where K is the number of classes and

σ̂2
k = 1

T

T∑
t=1

[p(ŷ = k|x∗, ω̂t)− µ̂k]2, k = 1, ..., K.

This approach has one obvious difference compared to our variation of Leibig’s
approach: σ̂2 takes into account the uncertainty associated with every class in the
predictive mean vector µ̂. In the following we will briefly compare and contrast σ̂2 and
σ̂pred.

The summary statistics and distribution plots for σ̂2 are given in table 5.5 and fig.
5.14, respectively. There are two things that are immediately apparent: (1) The values

Table 5.5: Summary statistics for σ̂2 for the correctly and incorrectly classified images.
Again, there appears to be a difference in the uncertainty associated with the mislabelled
classes, compared to those that have been correctly classified. Note that the values of n,
avg(µ̂pred) and avg(µ̂run) are the same as before. They are included for completeness.

Label n avg(µ̂pred) avg(µ̂run) avg(σ̂2) Median σ̂2 IQR
0: Incorrect 1637 0.5388 0.2544 0.01032 0.00980 0.00612
1: Correct 8363 0.8407 0.0967 0.00412 0.00192 0.00690
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Fig. 5.14: Distribution of σ̂2. The plots indicate that σ̂2, like Leibig’s σ̂pred, captures some
meaningful estimate of the predictive uncertainty. Similarly to σ̂pred, there is substantial
overlap between the distributions of σ̂2 for correctly and incorrectly classified images, which
could pose problems for uncertainty-informed referrals.
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k n avg(σ̂k)
cat 670 0.00593
bird 742 0.00606
dog 752 0.00439
deer 830 0.00487
airplane 841 0.00495
horse 880 0.00384
ship 898 0.00303
frog 902 0.00311
truck 922 0.00302
automobile 926 0.00301

Table 5.6: Number of correct predictions n in each class and their associated average
uncertainty, sorted by n. Like σ̂pred, Feinman’s σ̂2 appears to echo the confusion matrix in
fig. 5.1

of σ̂2 are much smaller in magnitude than the corresponding values for σ̂pred and (2) σ̂2

has a larger number of outliers as compared to σ̂pred. Regarding (1), this could simply
be due to the scaling associated with the taking the square root in the case of σ̂pred.

We recognise some of the same patterns as in σ̂pred, namely a slight bimodality
in the distribution of σ̂2. Even though there is a large amount of overlap, it is clear
that the distributions of σ̂2 differ depending on classification, where σ̂2 associated with
incorrect predictions is centred at a larger value. Again, this variant of approximated
uncertainty seems to be ascribing a larger amount of uncertainty on average to the
incorrectly classified predictions, which is useful.

Upon examining the values of σ̂2 associated with the different classes (table 5.6),
we see that some are plagued by a number of large outlying values (figs. 5.15a and
5.15b). Interestingly, the classes which are least uncertain in terms of σ̂2 seem to have
the largest outlying values, skewing the distributions of σ̂2 somewhat for the correctly
classified images. This could indicate a problematic feature of σ̂2; namely that the
correct predictions seem to be associated with relatively large uncertainty values. Large
outlying values could pose a challenge in situations where we would refer images to
a human expert based on average values of σ̂2 (see section 5.7). On the other hand,
the class-specific values of σ̂2 reflect the confusion matrix in fig. 5.1, which indicates
that σ̂2 is sensitive to when the model fails. Note that σ̂2, like σ̂pred, is most uncertain
about classifying birds on average.
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Finally, figs. 5.16 and 5.17 show σ̂2 plotted against µ̂pred. The values of σ̂2 do not
seem to dip downwards to the same degree as σ̂pred when µ̂pred gets smaller. Instead,
σ̂2 tends to stay more or less within the same range of values before decreasing as µ̂pred

gets large. As stated earlier, this could be due to the scaling associated with σ̂pred.
Colour-coding the data by the value of µ̂run gives us by and large the same pattern as
for σ̂pred, namely that the largest values of µ̂run tend to cluster around µ̂pred and that
these pairs are spread over a relatively wide range of values for σ̂2.
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(a) Interestingly, the classes which are least uncertain in terms of σ̂2 seem to have the largest
outlying values, skewing the distributions of σ̂2 somewhat for correctly classified images.
Large outlying values could pose a challenge in situations where we would refer images to a
human expert.
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(b) The red box indicates the uncertainty distribution of incorrectly classified images. The
blue box corresponds to correctly classified images.

Fig. 5.15: Distributions of class-specific uncertainty (Feinman).
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(a) σ̂2 does not exhibit the same pronounced concave shape as σ̂pred, but this could simply
be due to the scaling that follows from taking the square root in σ̂pred.
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(b) The observations partitioned by classification status.

Fig. 5.16: σ̂2 vs. softmax prediction.
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(a) Like σ̂pred, large pairs of µ̂pred and µ̂run are spread over a wide range of σ̂2.
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(b) The observations have been partitioned by classification status and overlayed with a 2D
kernel density estimate. The KDE gives an idea of the joint distribution of µ̂pred and σ̂pred.

Fig. 5.17: Uncertainty (Feinman) vs. softmax prediction and runner-up probabilities.
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5.5 A New Approximation of Predictive Uncertainty

In the previous section we briefly explored the empirical properties of σ̂2 as defined in
[Feinman et al., 2017]. In this section we present a novel approximation of predictive
uncertainty, and briefly explore how it compares to σ̂pred and σ̂2. First, let the model
uncertainty be defined as

σ̂model = 1
K

K∑
k=1

√√√√ 1
T

T∑
t=1

[p(ŷ = k|x∗, ω̂t)− µ̂k]2.

The definition of σ̂model is motivated by a curiosity about what would happen if one
were to combine, in a sense, σ̂pred and σ̂2. Our approximated uncertainty differs from
σ̂pred in that we take into account the uncertainty associated with every class in the
predictive mean µ̂. Furthermore, our approximation differs from σ̂2 in that we take
the mean of the standard deviations of the class probabilities, instead of the variance.

Table 5.7: Summary statistics for σ̂model for correctly and incorrectly classified images. On
average σ̂model, like σ̂pred and σ̂2, is higher for mislabelled images.

Label n avg(µ̂pred) avg(µ̂run) avg(σ̂model) Median σ̂model IQR
0: Incorrect 1637 0.5388 0.2544 0.0618 0.0620 0.0224
1: Correct 8363 0.8407 0.0967 0.0289 0.0238 0.0435

Table 5.8: Note that the most uncertain class (cat) is also the most frequently misclassified,
as opposed to both σ̂pred and σ̂2 which associated the highest average uncertainty to images
of birds.

k n avg(σ̂k)
cat 670 0.0430
bird 742 0.0407
dog 752 0.0325
deer 830 0.0354
airplane 841 0.0335
horse 880 0.0271
frog 898 0.0233
ship 902 0.0208
truck 922 0.0205
automobile 926 0.0198
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Fig. 5.18: Distribution of σ̂model. Like σ̂pred, there is a clear difference between the
distributions of σ̂model for correctly (blue) and incorrectly (red) labelled images. There is
quite a large amount of overlap in the distributions, but compared to σ̂pred there is a less
pronounced bimodality, perhaps suggesting less contribution to high uncertainty values from
correctly classified images. Also, σ̂model is not affected by outliers to the same degree as σ̂2.

The summary statistics for σ̂model are given in table 5.7 and the distribution is
shown in fig. 5.18. It is clear the the distribution of σ̂model bears a striking resemblance
to that of σ̂pred, suggesting that the two different approximations capture some of
the same inherent uncertainty in the predictions. However, the bimodality of correct
predictions (see fig. 5.18c) seems less pronounced for σ̂model, perhaps suggesting less
contribution to high uncertainty values from the correctly classified images.

Fig. 5.19 shows the class-specific model uncertainty. Again, it seems that σ̂model

captures some of the same class-specific confusion as σ̂pred. However, σ̂model is less
pronounced for the most uncertain classes, perhaps implying that σ̂pred is more sensitive
to the variation in predictions when lenet-allMC performs poorly. On the other hand,
σ̂model assigns the highest average uncertainty to the most frequently mislabelled class
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(cat), unlike σ̂2 and σ̂pred. There are outliers present for the correctly predicted classes,
but to a lesser extent than σ̂2 (continued on page 105).
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(a) In the most uncertain cases σ̂model, like σ̂pred, is centred around larger values. σ̂model
assigns the highest average uncertainty to cat images, which is the most frequently mislabelled
class.
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(b) The red box indicates the uncertainty distribution of incorrectly classified images. The
blue box corresponds to correctly classified images.

Fig. 5.19: Distributions of class-specific uncertainty (Murray).
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(a) The largest values of σ̂model seem to be associated with the lowest values of µ̂pred, which
distinguishes this uncertainty approximation from both σ̂pred and σ̂2.
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(b) Above we have partitioned the observations by classification status.

Fig. 5.20: σ̂model vs. softmax prediction.
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(a) Many large pairs of (µ̂pred, µ̂run) appear to cluster in a small valley associated where
σ̂model ≈ 0.05, which is slightly below the average for incorrect predictions.
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(b) The observations are partitioned by classification status and overlayed with a 2D kernel
density estimate.

Fig. 5.21: σ̂model vs. softmax prediction and runner up probabilities.
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Fig. 5.20 indicates that σ̂model tends to increase as µ̂pred decreases. This is more in
line with how we would want a reasonable uncertainty estimate to behave, and differs
clearly from the parabolic shape of σ̂pred in fig. 5.8 and the flatter shape of σ̂2 in fig.
5.20. In this sense, σ̂model provides some information that σ̂pred and σ̂2 do not: The
largest values of σ̂model seem to be associated with the lowest values of µ̂pred. From fig.
5.21 it is apparent that large values of µ̂run tends to cluster around µ̂pred, which was
also the case for σ̂pred. Observations where (µ̂pred, µ̂run) ≈ (0.5, 0.5) gave a wide range
of values for σ̂pred and σ̂2. In the case of σ̂model, many large pairs of (µ̂pred, µ̂run) appear
to cluster in a small valley associated where σ̂model ≈ 0.05, which is slightly below the
average for incorrect predictions.

5.6 Comparison with Other Uncertainty Measures

Recall from section 4.4.1 that Gal suggests using the predictive entropy (PE, eq.
4.12), the mutual information (MI, eq. 4.13) or the variation-ratio (VR, eq. 4.14)
as appropriate approximations of uncertainty in a classification setting. We have
estimated these quantities and compared them to σ̂pred, σ̂2 and σ̂model in fig. 5.22. We
would like to draw particular attention to the apparent similarity between σ̂model and
the MI. As stated in section 4.4.3, a recent paper by Smith and Gal establishes a
connection between the MI and σ̂2 [Smith and Gal, 2018], but from a cursory visual
inspection it appears that the MI more closely resembles σ̂model than σ̂2. Perhaps this
could indicate that σ̂model captures some of the same uncertainty as the MI. A more
detailed study comparing the uncertainty measures represented by VI, PE and MI and
ad hoc approximations such as σ̂pred, σ̂2 and σ̂model would be an interesting avenue for
further research.
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5.7 Uncertainty-informed Referral Experiments

In a practical setting, uncertainty estimates could provide useful information when
deciding whether or not to refer an image to a human expert. To this end, researchers
have suggested different referral schemes based on thresholding the approximated
uncertainty at a predetermined value and flagging inputs that exceed this threshold
[Feinman et al., 2017; Leibig et al., 2017]. The flagged observations can then be
examined downstream with the aim of increasing the overall performance of the
network.

In this chapter we will set some simple thresholds using summary statistics of
σ̂pred, σ̂model and σ̂2 in order to explore the practical use of the different uncertainty
quantifications. We will also do the same for the VR, PE and MI and compare the
results.

5.7.1 Referral criteria

A simple approach to threshold selection is to set the threshold equal to the aver-
age uncertainty of the incorrect classifications, and refer any images exceeding this
value. Alternatively, we could refer images that exceed the median uncertainty of the
incorrectly classified images. In the following we will try both approaches.

The thresholds given in table 5.9 are calculated on a subset of n = 9000 randomly
selected images from the test data. The thresholds will then be used with their
corresponding uncertainty approximation to make uncertainty-informed referrals for
the remaining n = 1000 images. This is done to ensure that the summary statistics
are independent of the uncertainty values of the images we may want to refer.

Table 5.9: Thresholds, based on mean and median of n = 9000 randomly selected images.

Mean Median
σ̂pred 0.20806 0.20727
σ̂model 0.06185 0.06211
σ̂2 0.01031 0.00980
VR 0.32388 0.34000
MI 0.09535 0.08982
PE 0.50349 0.50628
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Data referred Incorrect Correct Successful referrals
VR 16.60% 90 76 54.22%
PE 18.40% 93 91 50.54%
σ̂model 18.90% 90 99 47.62%
MI 17.40% 81 93 46.55%
σ̂2 19.10% 83 108 43.46%
σ̂pred 23.50% 89 146 37.87%

Table 5.10: Referral results when using mean threshold on a randomly selected subset
of n = 1000 images. σ̂model is the best performing ad hoc approximation of predictive
uncertainty, but both the variation-ratio (VR) and predictive entropy (PE) perform better.

Data referred Incorrect Correct Successful referrals
VR 15.10% 80 71 52.98%
PE 17.80% 88 90 49.43%
σ̂model 18.50% 88 97 47.57%
MI 20.70% 93 114 44.92%
σ̂2 20.80% 90 118 43.27%
σ̂pred 24.00% 93 146 38.75%

Table 5.11: Referral results when using median threshold on a randomly selected subset of
n = 1000 images. Again, σ̂model outperforms both σ̂pred and σ̂2, but both the VR and PE
are better for referring images.

5.7.2 Results

The baseline accuracy of the sample is 82%. Tables 5.10 and 5.11 show the results of
setting the threshold to the mean and median values of our uncertainty approximations,
respectively. Each table summarises the number of incorrectly and correctly classified
cases when the thresholds given in table 5.9 are exceeded. Furthermore, we calculate
the percentage of referred data (out of n = 1000) and the percentage of these referrals
that are successful. A success is the case where an incorrectly classified image is
referred.

First we will consider the results for σ̂pred, σ̂2 and σ̂model. The difference between the
mean and the median thresholds appears to be marginal. Using these simple summary
statistics, σ̂pred, σ̂2 and σ̂model are able to detect close to half of the incorrectly classified
images. Our ad hoc approximations refer between 18.5 % and 24 % of the test images,
and differ significantly in the amount of correctly classified images referred. Both σ̂2

and σ̂pred refer a larger proportion of correctly labelled images than incorrectly labelled
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images. As noted in section 5.3.1, the distribution of σ̂pred for correctly classified is
distinctly bimodal, suggesting that there exists a group of correctly classified images
which contribute high uncertainty values. This peak coincides with the average
uncertainty value of the incorrectly labelled images, and could explain why σ̂pred refers
the largest amount of correctly classified images of the three estimators. As for σ̂2, in
section 5.4 we noted the presence of large outlying values for correctly classified images.
This offers a possible explanation for the amount of correctly labelled referrals when
using σ̂2. σ̂model appears to reduce the number of correctly classified images, which
could be due to the fact that larger values of σ̂model tend to be associated with lower
values of µ̂pred as mentioned in section 5.5.

It is immediately clear that of the three, σ̂model is the most effective. In the real
world, a practical threshold and corresponding uncertainty estimate should ideally
refer a manageable amount of images, where as many as possible of these should be
incorrect classifications. As a referral tool, σ̂model ticks both boxes for this model and
data set, referring the least amount of images while simultaneously having the largest
proportion of successful referrals. Note that this result applies to our particular choice
of model and data set, and further research is required to verify if this is a general
tendency. However, assuming a human expert could correctly identify the incorrectly
classified images referred using σ̂model, then the error rate could be halved.

On the other hand, none of the ad hoc approximations perform as well as the VR
and PE, which Gal suggests for use in a classification setting. This is particularly
interesting, because it implies that researchers are developing uncertainty approxi-
mations that actually perform worse than established methods already outlined for
use in classification by the developers of MC dropout. An interesting avenue for
further research would be a more detailed comparison of the performance of ad hoc
approximations and VI/PE/MI.





Chapter 6

Experimental Setup

In this chapter we will give a brief overview over the programming languages and
dependencies used for model building and analysis in chapter 5. Furthermore we will
provide details on the data set (including preprocessing steps), our implementations of
LeNet (including training setup) and MC dropout. Finally, we will give some examples
of the resulting data from MC dropout.

6.1 Software

We have implemented LeNet using the programming language Python 3.6 (https:
//www.python.org/) and the deep learning library Keras using the TensorFlow
[Abadi et al., 2016] backend. Keras is a high-level API that emphasises user-friendliness
and modularity, allowing for fast prototyping and experimentation. TensorFlow is a
machine learning library developed by Google. We have used the scientific computing
package NumPy in our implementation of MC dropout and the data analysis package
pandas for data preparation. We have used Matplotlib for plotting. The analysis in
chapter 5 is mostly done using the statistical programming language R (https://www.
r-project.org/). In R we relied heavily on the tidyverse collection of packages for
data science [Wickham, 2014]. In particular, we made extensive use of dplyr for data
wrangling and ggplot2 for graphics.

https://www.python.org/
https://www.python.org/
https://www.r-project.org/
https://www.r-project.org/
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6.2 CIFAR-10

Our models were trained on the CIFAR-10 tiny image data set [Krizhevsky and Hinton,
2009]. CIFAR-10 consists of 60.000 labelled 32x32 colour images, each belonging to
one of 10 mutually exclusive classes. The classes represented in the data are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck. The data was split into
a training set of 50.000 images and a test set of 10.000 images. The 50.000 training
images were further split into a final training and validation set.

6.2.1 Preprocessing

All images were normalised by subtracting the mean and dividing by the stan-
dard deviation of the pixel values. Data augmentation was performed using the
ImageDataGenerator class in Keras. Specifically, we let the images be randomly
shifted by up to 10% in the horisontal or vertical directions. In section 5.3.4 we added
random noise to the images using the image processing library scikit-image. We used
the function random_noise() to produce seven versions of our test set where each
iteration had an increasing amount of additive Gaussian noise. Concretely, we made a
new test set for each value ϕ2 ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.25, 0.5}, where ϕ2 denotes
the variance of the Gaussian distribution.

6.3 Models and training

We follow the implementation1 of LeNet as described in [Gal and Ghahramani, 2015],
with the same settings of hyperparameters (momentum α = 0.9, weight decay with
λ = 0.0005 and dropout p = 0.5) and nonlinear activations (ReLU). There are several
different approaches to implementing MC dropout. We have chosen to define the
custom layer DropoutMC() to preserve the user-friendliness and modularity of Keras.
DropoutMC() simply applies dropout to whatever input is received during both training
and test time.

1 from keras.models import Sequential
2 from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Lambda

1Available at https://github.com/yaringal/DropoutUncertaintyCaffeModels/tree/master/
cifar10_uncertainty. Note that Gal’s implementation uses the Caffe deep learning framework.

https://github.com/yaringal/DropoutUncertaintyCaffeModels/tree/master/cifar10_uncertainty
https://github.com/yaringal/DropoutUncertaintyCaffeModels/tree/master/cifar10_uncertainty
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3 from keras.optimizers import SGD
4 import keras.backend as K
5

6 def Dropout_MC(p):
7 layer = Lambda(lambda x: K.dropout(x, p),
8 output_shape=lambda shape: shape)
9 return(layer)

10

11 def lenet_allMC(input_shape, nb_classes, p=0.5):
12 """Bayesian implementation of LeNet using MC dropout.
13

14 Parameters
15 ----------
16 input_shape : tuple
17 Tuple containing image dimension (width, height, depth).
18 nb_classes : int
19 Number of classes.
20 p : float
21 Dropout rate (default p=0.5).
22

23 Example
24 -------
25 >>> img_dims = (32, 32, 3)
26 >>> model = lenet_allMC(input_shape=img_dims, nb_classes=10, p=0.5)
27 """
28 model=Sequential([
29 Conv2D(input_shape=input_shape, filters=192, kernel_size=(5,5)),
30 Dropout_MC(p),
31 MaxPooling2D(strides=2),
32

33 Conv2D(192, kernel_size=(5,5)),
34 Dropout_MC(p),
35 MaxPooling2D(strides=2),
36

37 Flatten(),
38 Dense(1000, activation="relu"),
39 Dropout_MC(p),
40 Dense(nb_classes, activation="softmax")
41 ])
42 model.compile(SGD(momentum=0.9, decay=0.0005),
43 loss="categorical_crossentropy",
44 metrics=["accuracy"])
45 return model
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We have also implemented lenet() and lenet_all(), two deterministic variants
of LeNet, to highlight the differences in test time performance (see section 5.2). They
are defined in the following:

1 from keras.models import Sequential
2 from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense
3 from keras.optimizers import SGD
4

5 def lenet(input_shape, nb_classes, p=0.5):
6 """Standard dropout LeNet. See docstring of lenet_allMC."""
7 model=Sequential([
8 Conv2D(input_shape=input_shape, filters=192, kernel_size=(5,5)),
9 MaxPooling2D(strides=2),

10

11 Conv2D(192, kernel_size=(5,5)),
12 MaxPooling2D(strides=2),
13

14 Flatten(),
15 Dense(1000, activation="relu"),
16 Dropout(p),
17 Dense(nb_classes, activation="softmax")
18 ])
19 model.compile(SGD(momentum=0.9, decay=0.0005),
20 loss="categorical_crossentropy",
21 metrics=["accuracy"])
22 return model
23

24 def lenet_all(input_shape, nb_classes, p=0.5):
25 """Standard dropout variant of LeNet, but with dropout applied
26 after every convolution. See docstring of lenet_allMC."""
27 model=Sequential([
28 Conv2D(input_shape=input_shape, filters=192, kernel_size=(5,5)),
29 Dropout(p),
30 MaxPooling2D(strides=2),
31

32 Conv2D(192, kernel_size=(5,5)),
33 Dropout(p),
34 MaxPooling2D(strides=2),
35

36 Flatten(),
37 Dense(1000, activation="relu"),
38 Dropout(p),
39 Dense(nb_classes, activation="softmax")
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40 ])
41 model.compile(SGD(momentum=0.9, decay=0.0005),
42 loss="categorical_crossentropy",
43 metrics=["accuracy"])
44 return model

lenet_allMC() and lenet() were trained for 100 epochs using a batch size of 128.
This gave results comparable to the those in [Gal and Ghahramani, 2015]. The weights
corresponding to the best validation scores were saved for both models, and are the
weights used at test time. Furthermore, the weights obtained from lenet_allMC()
were used in lenet_all(), since the two are identical at training time. During training
we employed the same learning rate schedule as defined in [Gal and Ghahramani, 2015]:

1 from keras.callbacks import LearningRateScheduler
2

3 init_lr = 0.01 # Initial learning rate
4 gamma = 0.0001
5 p = 0.75
6

7 def schedule(epoch):
8 """Function determining the learning rate annealing schedule."""
9 return init_lr * (1 + gamma * epoch) ** (-p)

10

11 lr_schedule = LearningRateScheduler(schedule)

6.4 Inference

To perform MC dropout we have defined the function inference() which outputs a
Python dictionary containing

• the unnormalised image (for plotting),

• a (T ×K) matrix of softmax predictions,

• a (1×K) vector of predictive means,

• the predicted class,
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• the true class,

• our three approximations of predictive uncertainty,

• an indicator variable which is 1 if the true class equals the predicted class and 0
otherwise.

We applied inference() to all images in the test set and pickled the results using
Python’s pickle module. The function is defined in the following:

1 import numpy as np
2

3 def batch(img, T):
4 ''' Creates mini-batch of T identical images for use in inference.'''
5 img_batch = np.array([img for t in range(T)])
6 return(img_batch)
7

8 def inference(model, X, y, T=100, normalise=False):
9 '''Function that performs Bayesian inference by applying MC dropout

10 with T stochastic forward passes on given input.
11

12 Parameters
13 ----------
14 model : object
15 A Keras model.
16 X : array-like
17 Test data to be classified.
18 y : array-like
19 Labels associated with test data.
20 T : int
21 Number of stochastic forward passes (default T=100).
22 normalise : boolean
23 Set to True if the input is to be normalised (default normalise=False)
24

25

26 Example
27 -------
28 >>> img_dims = (32, 32, 3)
29 >>> model = lenet_allMC(input_shape=img_dims, nb_classes=10, p=0.5)
30 >>> results = inference(model, X_test, y_test, normalise=True)
31 '''
32 # Get images, labels
33 imgs, labels = X, y.argmax(axis=1)
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34

35 if normalise:
36 # Preprocess input
37 imgs = imgs.astype("float32")
38 imgs -= np.mean(X)
39 imgs /= np.std(X, axis=0)
40

41 # Empty dictionary to store all output
42 output = {}
43

44 # Iterator index to keep track of images in dictionary
45 k=0
46

47 # Gathering MC samples
48 for (img, label, x) in list(zip(imgs, labels, X)):
49

50 # Get image batch
51 img_batch = batch(img, T)
52

53 # T x K matrix of softmax predictions
54 results = model.predict(img_batch, batch_size=T)
55

56 # Gathering results
57 probs = results
58 probs_mean = np.mean(probs, axis=0) # Vector of pred. means
59 pred_std = np.std(probs, axis=0) # Vector of std. dev.
60 mean_std = pred_std.mean() # Our uncertainty
61 mean_var = np.var(probs, axis=0).mean() # Feinman uncertainty
62 prediction = probs_mean.argmax() # Prediction
63 uncertainty = pred_std[prediction] # Leibig uncertainty
64 correct = 1 if prediction == label else 0
65

66 output[k] = {
67 "img": x,
68 "softmax_dist": probs,
69 "probs": probs_mean,
70 "prediction": prediction,
71 "truth": label,
72 "leibig_uncertainty": uncertainty,
73 "murray_uncertainty": mean_std,
74 "feinman_uncertainty": mean_var,
75 "correct": correct
76 }
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77

78 k+=1
79

80 return output

6.5 Data Analysis in R

The resulting data obtained from inference() was converted to a pandas dataframe,
where simple feature engineering (such as retrieving µ̂pred and µ̂run) was performed.
Finally, we exported the data a CSV-file for further analysis using R. Other quantities,
such as the predictive entropy (PE), variation-ratio (VR) and mutual information2

(MI), were calculated on softmax_dist retrieved from the pickled data and joined
with the data set when needed. Table 6.1 shows an example of five randomly sampled
rows from the data (excluding the PE, VR and MI):

ID Prediction Truth Correct Runner-up µ̂pred µ̂run σ̂model σ̂pred σ̂2

3372 2 2 1 5 0.7677 0.1734 0.0522 0.2336 0.0097
9648 3 3 1 5 0.4231 0.3122 0.0834 0.2076 0.0149
7212 3 3 1 5 0.6669 0.2257 0.0484 0.1791 0.0060
1705 5 3 0 3 0.4374 0.3503 0.0727 0.2407 0.0124
5208 8 8 1 2 0.7936 0.0670 0.0530 0.1898 0.0062

Table 6.1: The above table shows five randomly sampled data points from the results on
our test set (N = 10.000). The ID column keeps track of the specific image. Prediction and
Truth indicate the predicted label and the ground truth label of a given image. If they are
the same, then Correct will be equal to 1, and 0 otherwise. The Runner-up column indicates
which class has the second-highest softmax probability in the final predictive mean vector.
Finally, the last five columns summarise the statistics of interest.

2The formulas used to calculate the PE, VR and MI are given in section 4.4.1.



Chapter 7

Conclusion

7.1 Summary

In this thesis we have explored a relatively recent approach to estimating predictive
uncertainty in dropout neural networks. In part 1 we gave an overview of the neces-
sary background theory. In chapter 2 we highlight some important terms and ideas
from machine learning. In chapter 3 we introduced neural networks in general and
convolutional neural networks specifically. In chapter 4 we presented some important
methods from Bayesian statistics which are the building blocks for MC dropout, the
method that allows us to obtain uncertainty estimates from dropout neural networks.
We also saw that MC dropout has been extended to Bayesian convolutional neural
networks (BCNNs), which appears to boost accuracy at the cost of losing the Gaussian
process approximation interpretation. Finally we reviewed practical applications of
MC dropout, focusing on ad hoc uncertainty approximations in BCNNs.

In part 2 we examined the ad hoc approximations of predictive uncertainty used in
recent research, with particular focus on extending the work in [Leibig et al., 2017]
to a multi-class setting. We extended σ̂pred presented by Leibig and colleagues from a
binary setting to a multi-class setting using the CIFAR-10 dataset of labelled images,
and investigated how σ̂pred relates to the predictions of a simple convolutional neural
network. Despite being somewhat ad hoc, σ̂pred seems to capture a meaningful measure
of uncertainty at test time. σ̂pred appears to reflect class-specific uncertainties in a
way that mirrors the confusion matrix, but we also see that a model can output low
values for both σ̂pred and µ̂pred. Ideally we would want σ̂pred to be large when µ̂pred is
small, for this model and data set that does not seem to be the case. Furthermore, we
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saw that σ̂pred increased in response to additive noise, which is what we would expect
from a useful quantification of uncertainty. Finally we investigated what effect varying
the dropout rate p at test time has on model accuracy and approximated uncertainty.
We saw that model accuracy was quite high for relatively large values of p, and σ̂pred

increased as p increased.

While exploring σ̂pred we became aware of the work in [Feinman et al., 2017], which
can be interpreted as a quantification of uncertainty in a multi-class setting. We briefly
explored σ̂2, which takes into account the variance in the predictions of every class
in µ̂. We saw that σ̂2 displays many of the same characteristics as σ̂pred, but with
more outlying observations and a less pronounced paraboloid shape (possibly due to
scaling) compared to µ̂pred. Again, σ̂2 reflects the confusion matrix of lenet-allMC at
test time, indicating that some sort of a meaningful uncertainty estimate is provided.
However, the presence of outlying values of σ̂2 among the correctly classified labels
could indicate a shortcoming of this particular uncertainty approximation.

In section 5.5 we introduced a novel variation of approximated predictive uncertainty,
denoted by σ̂model, which averages the standard deviations of the predictions in the
predictive mean vector of class probabilities. We saw that this measure bears a stronger
resemblance to σ̂pred, but differs favourably in that it appears to increase as µ̂pred

decreases.

Next, we briefly examined how the ad hoc approximations compare to other measures
of uncertainty which were recommended in [Gal, 2016] for use in classification. Recent
research [Smith and Gal, 2018] shows that σ̂2 can be viewed as the first term in a
Taylor expansion of the mutual information (MI). However, upon visual inspection,
we saw that σ̂model and the mutual information score appear much more similar. This
could perhaps suggest that these to quantities capture some of the same uncertainty.

In section 5.7 we tested uncertainty-based referrals using thresholds based on the
average and median uncertainty of a subsample of data, where σ̂model outperformed both
σ̂pred and σ̂2. However, the Gal’s suggestions to quantifying uncertainty in classification
tasks, here represented by the variation-ratio (VR) and the predictive entropy (PE),
outperform all the ad hoc approximations in our simple referral experiment, perhaps
suggesting that these should be used instead.
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7.2 Future Work

There are several interesting avenues for further research:

• Are ad hoc approximations of predictive uncertainty necessary? Can conventional
measures of uncertainty, such as the VR, PE and MI, be used instead? Can we
identify any settings where ad hoc approximations give better results?

• How do we find useful uncertainty thresholds? It is conceivable that simple
summary statistics such as the mean and median of incorrectly labelled images
fail to capture subtle differences in predictive uncertainty. Could we get better
referrals by taking other statistics, such as µ̂pred, into account?

• How do the different ad hoc approximations of uncertainty respond to more
advanced models and data sets?

• What causes σ̂model to behave differently with respect to µ̂pred, as compared to
σ̂pred and σ̂2? What, if any, is the connection between σ̂model and the MI score?

• Could we develop an optimal MC dropout rate, such that the accuracy of the
model is as high as possible while maintaining a maximum separation between
predictive uncertainty for correctly and incorrectly classified images (as outlined
in section 5.3.5)? In other words, could a “dropout-finder” be developed?
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Appendix A

Derivations

A.1 Bias-variance decomposition

We derive the bias-variance decomposition in example 2.3 by expanding the terms

E[(y∗ − f̂(x∗))2] = E[y∗2 − 2y∗f̂(x∗) + f̂(x∗)2]
= E[y∗2]− 2E[y∗f̂(x∗)] + E[f̂(x∗)2]
= E[(f(x∗) + ϵ)2]− 2E[(f(x∗) + ϵ)f̂(x∗)] + E[f̂(x∗)2]
= f(x∗)2 + σ2

ϵ − 2f(x∗)E[f̂(x∗)] + E[f̂(x∗)2]
= f(x∗)2 + σ2

ϵ − 2f(x∗)E[f̂(x∗)] + E[f̂(x∗)2]
+ E[f̂(x∗)]2 − E[f̂(x∗)]2

= σ2
ϵ + (E[f̂(x∗)]− f(x∗))2 + E[f̂(x∗)2]− E[f̂(x∗)]2

= σ2
ϵ + Bias2[f̂(x∗)] + Var[f̂(x∗)],

where we have used E(ϵ) = 0, Var(ϵ) = σ2
ϵ and

Var[f̂(x∗)] = E[f̂(x∗)2]− (E[f̂(x∗)])2,

Bias[f̂(x∗)] = E[f̂(x∗)]− f(x∗).
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A.2 Kullback-Leibler divergence

To retreive the terms of the evidence lower bound (ELBO) as described in eq. 4.4,
observe that the KL divergence can be rewritten as

KL(qϕ(w)∥p(w|X, y)) =
∫

qϕ(w) log qϕ(w)
p(w)p(y|X,w)

p(y|X)

dw

=
∫

qϕ(w) log qϕ(w)dw −
∫

qϕ(w) log p(w)p(y|X, w)
p(y|X) dw

=
∫

qϕ(w) log qϕ(w)
p(w) dw −

∫
qϕ(w) log p(y|X, w)dw

+
∫

qϕ(w) log p(y|X)dw

= KL(qϕ(w))∥p(w))− Eqϕ(w)[log p(y|X, w)] + log p(y|X),

where we have used

log
(

a

b

)
= log a− log b,

log (ab) = log a + log b,

Eqϕ(w)[log p(y|X)] = log p(y|X),

in last two equalities.

A.3 Multivariate Normal Distribution

In example 4.2 we used properties of the conditional distribution of a multivariate
Gaussian. We follow the notation provided in section 4.3 of [Murphy, 2012]. A vector
x ∈ RD follows a multivariate normal distribution if

f(x; µ, Σ) = 1
(2π)D/2|Σ|1/2 exp

− 1
2(x− µ)TΣ−1(x− µ)

, (A.1)

where µ = E(x) ∈ RD is the mean vector, Σ is the D ×D covariance matrix and
|Σ| is the determinant of Σ. In this case, we write x ∼ N (µ, Σ).
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Let x1 and x2 be sub-vectors of x. Then

x =
x1

x2

 ∼ N
µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22

, (A.2)

where Σij = Cov(xi, xj). The marginals are given by xi ∼ N (µi, Σii) for i = 1, 2.
The conditional distribution of x2 given x1 is

x2|x1 ∼ N (µ∗, Σ∗), (A.3)

where

µ∗ = µ2 + Σ21Σ−1
11 (x1 − µ1), (A.4)

Σ∗ = Σ22 −Σ21Σ−1
11 Σ12. (A.5)

For a complete proof of this, refer to section 4.3.4 of [Murphy, 2012].
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