
University of Bergen
Department of Mathematics

Lagrangian dynamics for
solid multi-body systems
with the Moving Frame

formalism

Author: Supervisors:

Nicolai Mikal Sætran Antonella Zanna Munthe-Kaas

Thomas J. Impelluso

November, 2018

ii

Contents

1 Preliminaries - Kinematics and matrix groups 1

1.1 Lie Matrix Groups . 2

1.1.1 Lie matrix groups . 2

1.2 SO(3) . 5

1.2.1 The Lie algebra of SO(3) 5

1.2.2 Exponential Function 6

1.2.3 Adjoint Operator . 6

1.2.4 Kinematics in the Moving Frame Method - Rotations 7

1.2.5 Rewriting the adjoint 9

1.3 Euclidean motion - SE(3) . 11

1.3.1 Lie algebra . 11

1.3.2 Exponential function 11

1.3.3 Kinematics with SE(3) 12

1.4 Kinematics of the n-body pendulum 14

1.5 The S3 of unit Quaternions 17

1.5.1 Definitions . 17

1.5.2 Rotations . 18

1.5.3 The group of unit quaternions S3 19

1.5.4 Quaternions as real matrices 19

2 Rigid body dynamics 23

2.1 Lagrangian mechanics . 23

2.1.1 Variation on SE(3) . 25

2.2 Euler-Lagrange equations - Multibody system 28

2.2.1 Deriving the equations of motion 31

2.2.2 Euler-Lagrange equations for coordinate-free N-body
pendulum . 32

2.3 B - Matrix . 34

2.3.1 Translative velocity terms 35

iii

iv CONTENTS

2.3.2 Rotational terms . 37
2.3.3 Final assembly . 37

2.4 Ḃ matrix . 39
2.4.1 Constructing Ḃ: Translation terms 40
2.4.2 Angular terms . 42
2.4.3 Final Assembly . 43

2.5 Final form of the equations 44

3 Numerical Simulations 45
3.1 Rewriting the equations . 46

3.1.1 Solution to linear system 49
3.1.2 Choice of ODE integration scheme 52

3.2 Analysis of numerical solutions 55
3.2.1 Comparison to classical model 55
3.2.2 Double Pendulum Comparison 60
3.2.3 Conservation of unit length and energy 63
3.2.4 Tolerance of solution to Runge-Kutta steps 65
3.2.5 Computation time for N-body pendulum 68

3.3 Applications . 70
3.3.1 Heavy symmetrical top 70
3.3.2 4-body pendulum with torsional springs 72
3.3.3 16-body pendulum . 74
3.3.4 The 64-body pendulum 79

3.4 Remarks on simulations . 81

4 Conclusion 83

A Appendix 85
A.1 Rewriting the operator . 86
A.2 Kinematics for the double pendulum 86

A.2.1 B and Ḃ -matrices with paramterizing coordinates . . 86
A.2.2 Coordinate-free equations for the 2-body pendulum . 88

CONTENTS v

Abstract

Classical mechanics is the study of the motion of particles, solid bodies or
of systems of bodies, and the effects of forces and moments on them. The
dynamical behavior may either be studied by the application of Newtonian
mechanics, Lagrangian mechanics or Hamiltonian Mechanics. Either ap-
proach produces mathematical equations describing the time evolution of
the multi-body system. The resulting equations of motion for many bodies
are typically non-linear and of large scale.

The Lagrangian approach is more abstract than the Newtonian approach
in the sense that it employs more advanced theory from mathematics, and
has therefore traditionally mostly been a topic studied in mathematics,
physics or on master level engineering. The Moving Frame Method by H.
Murakami et. Impelluso [MI19]. is a formalism which makes advanced re-
sults from classical mechanics and group theory available to bachelor level
engineers. The method allows engineers without deep understanding of these
fields to describe the dynamic behavior of systems that would otherwise be
too complex to approach. The method is therefore a framework on which
engineers may rely without having a background in group theory or calculus
of variations.

In this thesis the focus will be on further generalizing the multi-body
Moving Frame Method. We will restrict ourselves to multi-body systems
with generalized coordinates which are all free rotations. These systems
may all be idealized as N -body three-dimensional pendulums (These are
sometimes named open kinematic chains). We seek to tackle in particular
three challenges associated with the derivation and simulation of multi-body
systems:

Coordinate-free description Most treatments of the dynamics (includ-
ing the moving frame method) of solid bodies undergoing rotation employ
Euler-angles to describe the rotational kinematics. The resulting equations
of motion are typically long expressions of cosine and sine terms. For com-
plex systems, these expressions would typically be generated by a symbolic
manipulator. However, beyond three or four joints, these expressions grow
so large and unwieldy that even a powerful personal computer would have
problems computing the solution. Another issue with the application of lo-
cal coordinates is the presence of singularities in the equations of motion
when studying three-degree-of-freedom rotations. These singularities origi-
nate from gimbal lock and produce significant difficulties. Inspired by the
approach taken by Leok et.al. [TLM17], we seek to eliminate the gimal lock

vi CONTENTS

by directly applying the representation space of the rotation groups in the
formulation of the equations of motion under the Moving Frame Formalism.
But where Leok et.al. limits the use of SO(3) and SE(3) to dynamics of
single bodies, this thesis will apply these groups to multi-body systems.

Algorithmic generation of the equations of motion The large ex-
pressions in the equations of motion are due to the complicated kinematic
expression that arises from long sequences of rotation matrices with sines and
cosines in the entries. Instead of generating these expressions beforehand,
we will derive expression for generating the matrix-terms of the equations
of motion algorithmically during evaluation of the ODE-functions.

Quaternion representation The direct application of SO(3) as a rep-
resentation space unfortunately causes some difficulties in practical com-
putations. The R3×3 rotation matrices take up more memory than strictly
necessary, and correcting errors caused by rounding orthogonality is a costly
venture. Therefore we have chosen to employ the more compact quaternion
representation of orientations during computations. Quaternions are well
known for the fact that monitoring and correcting errors on the quaternions
is much simpler in comparison to the full representation for the rotation-
matrices, and thus provide a attractive alternative representation. We will
apply the unit quaternions to the equations of motion for a multi body sys-
tem.

The structure of the thesis is as follows.

In Chapter 1 the relevant properties of SO(3), SE(3) and the unit
quaternions S3 from group theory are presented. Kinematics under the
Moving Frame formalism is presented, and the kinematic relations for the
N -body pendulum is derived.

In Chapter 2 the main ideas of Lagrangian mechanics and Calculus of
Variation is presented along with group theory results regarding variation
of the SE(3) group. Then finally the Euler-Lagrange equations are derived
with the Moving Frame formalism. The resulting Euler-Lagrange equations
are written in terms of the B and Ḃ matrices. The main contribution of
this thesis is the derivation of the general expressions for these matrices, for
long n-body three-dimensional pendulums.

In Chapter 3 the equations of motion are rewritten in preparation for

CONTENTS vii

numerical simulation, and suitable numerical schemes are suggested. A num-
ber of simulations are performed on a single body system, a 2-body system
and and a 4-body system. Errors in the computed equations are analyzed to
determine the accuracy and stability of the numerical solution. Finally to-
ward the end a number of forced systems are presented. These are intended
to demonstrate the ease with which external forces may be applied to the
system.

Acknowledgements

I would like to thank Antonella Zanna Munthe-Kaas and Thomas J. Impel-
luso for valuable advice and help during the work on this thesis.

viii CONTENTS

Notation

Abbreviation:

MFM: Moving Frame Method

GL1, GL2, GL3: Gauss-Legendre methods of order 1, 2 and 3

Groups:

SO(3), SE(3), S3 Sprecial orthogonal group, Special euclidean group and group of unit quaternions

so(3), se(3), TIS3 Lie algebra of SO(3), SE(3) and the unit quaternions

ω̂,Ω, ξ Elements of ∈ so(3), se(3), TIS3 respectively.

Other notational conventions:

x Time-dependent position vectors in R3

s Fixed position vectors in R3

v Translational velocity vectors in R3

y Vector valued dependent ODE function variable.

ix

x CONTENTS

MFM notation:

q Essential generalized coordinates

q̇ Essential generalized velocity vector

ω Essential generalized velocity vector for 3D rotations

δq Virtual essential generalized displacement

η Virtual essential generalized displacement for 3D rotations

X System generalized coordinates

Ẋ System generalized velocity

δX Virtual system generalized velocity

R(j) Absolute rotation matrix

R(j/i) Relative rotation matrix

e(j) Rotating frame

E(j) Absolute frame connection matrix

E(j/i) Relative frame connection matrix

e(j) Rotating and translating frame

Chapter 1

Preliminaries - Kinematics
and matrix groups

Kinematics is concerned with the study of motion and its evolution in time
without a consideration for the effects of forces and potentials. This thesis
will deal with the motion of rigid bodies. As deformable bodies will not be
considered, the term body will mean rigid body.

multi-body systems simultaneously undergo rotation and translation.
The object of choice for representing the rotation of such systems are the
rotation matrices. These matrices form the classical matrix group SO(3),
and in this section a short summary is given of the results from group theory
that will used during the derivation of the system kinematics and equations
of motion. Also used in the derivations is the group of euclidean motion
SE(3) which provides a description of systems simultaneously undergoing
rotation and translation, and some results on this group will be summarized.

The Moving Frame Method - shortened MFM - is a formalism which
applies the concept of the moving frame developed by Elie Cartan and a
notation proposed by Thèodore Frenkel. The method places local frames of
reference to the body in question, and study the motion as linear transfor-
mations of the moving frames. A summary of kinematics under the Moving
Frame formalism will be given, in order to introduce the notation used by
the method.

A summary of the the group of unit quaternions will be given, with par-
ticular focus on its real-matrix representations. The group of unit quater-
nions are useful as they are homeomorphic to SO(3), and thus provides a
alternative for the representation of rotations.

1

2CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

1.1 Lie Matrix Groups

The classical groups SO(3) and SE(3) are subsets of the general linear group
GL(n). Matrix group theory provides many important results necessary for
developing the ordinary differential equations for solid body systems, and
in this section some results regarding the classical rotation groups will be
summarized. The summary will be restricted to the results required for the
development of the dynamics.

1.1.1 Lie matrix groups

A group is a set G and a operation ◦. Given two arbitrary elements of the
group:

g1, g2, I ∈ G

They must satisfy the group axioms:

Closure g1 ◦ g2 ∈ G

Unity g ◦ I = I ◦ g = g

Inverse g ◦ g−1 = g−1 ◦ g = I

Lie matrix groups are groups of linear transformations that satisfies the
group axioms. The group operation ◦ will be the matrix product throughout
this thesis.

Lie Algebra The tangent space at the identity is the Lie algebra of the
group denoted g. The Lie algebra may be defined as the tangent vectors of
smooth paths through the identity. Let g(t) ∈ G with g(0) = I be smooth
paths in G, then g is ġ(0). The Lie algebra is a linear space closed under
the Lie bracket. Let ζ1, ζ2 ∈ g, then [ζ1, ζ2] ∈ g.

The exponential function The tangent space and the group is associ-
ated through the exponential function which maps the tangent space onto
the group e• : g → G. Given a Lie Algebra element ξ. For matrix groups
the exponential function e : g→ GL(R, n) defined as.

eζ =

∞∑
k=0

ζk

k!
, eζ ∈ G, ζ ∈ g

1.1. LIE MATRIX GROUPS 3

Adjoint The adjoint is a linear transformation that maps tangents from
one tangent space on the group to another. Let g ∈ G and σ(t) = I + ζt+
O(t2) be a smooth curve on G. The right adjoint representation si defined
as:

Adrg(ζ) = d
dt g
−1σ(t) ∈ g

∣∣∣
t=0

= g−1ζg

There is also the right-adjoint we also have the left adjoint Adlg(ξ) = gξg−1.
Only the right adjoint will be used. So for simplicity of notation, Adg(•)
will always be the right adjoint throughout the thesis.

In the context of matrix groups, the adjoint can be interpreted as a
operator. It is linear in the argument and respects the commutator.

Adg1 ◦Adg2 = Adg1g2

Adg(ξ1 + ξ2) = Adg(ξ1) +Adg(ξ2)

Adg([ξ1, ξ2]) =
[
Adg(ξ1), Adg(ξ2)

]
Because of the linearity of the adjoint, it can be expressed as a matrix vector
product. The linear relation for a arbitrary invertible matrix A ∈ Rn×n and
a matrix X ∈ Rn×n is:

AdAX = A−1XA = C

Where the vectorized representation of the matrix C can be computed by
the matrix vector product.

vec(C) = (AT ⊗A−1)vec(X)

(see [HJ85, Chapter 4, p. 254])

The derivative of the Adjoint The little adjoint is the derivative of the
adjoint operator at the identity.

For ζ, ν ∈ g and a curve σ(t) = I + νt+O(t2) ∈ G the right-adjoint is.

adrν(ζ) = d
dtAdσ(t)ζ|t=0

= [ζ, ν]

Or written as an operator:

adrν(•) = [•, ν]

Alternatively the left adjoint is the operator adlν(•) = [ν, •]. In the thesis,
only the right adjoint will be used, so therefore adν(•) will always denote
the right adjoint.

4CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

There is an important identity relating the adjoint operator to the ex-
ponential of the little adjoint. See [IMKNZ00, p. 237].

Adetζν = etad(ζ)ν

=
∞∑
k=1

tk

k!
adkζν (1.1)

1.2. SO(3) 5

1.2 SO(3)

The special orthogonal group SO(3) is the set of isometric linear transfor-
mations of R3 with determinant 1.

Definition 1.2.1 (SO(3)). The group of orthogonal matrices with determi-
nant 1.

SO(3) =
{
R ∈ R3×3 : RTR = RRT = I, det(R) = +1

}
For each group element

R−1 = R>, R ∈ SO(3)

More intuitively, SO(3) is the group of rotation matrices in the three-
dimensional euclidean space.

1.2.1 The Lie algebra of SO(3)

The Lie algebra of SO(3) are the skew symmetric matrices.

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3) (1.2)

Where the hat notation denote the skew-symmetry of the matrix. The
tangent at R is:

Ṙ = Rω̂ (1.3)

is the tangent at R.

The elements of the Lie algebra can be identified with a three-term an-
gular velocity vector. The associated angular velocity vector is.

ω =

ω1

ω2

ω3

This vector can be interpreted as a angular velocity θ̇ = |ω| about the unit
vector n = ω

|ω| .

6CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

1.2.2 Exponential Function

The exponential function on SO(3) et̂ω : so(3)→ SO(3) is:

eω̂ =
∞∑
k=0

tk

k!
ω̂k

Example 1.2.1 (Fundamental rotation matrices). The exponential func-
tion applied to the one-parameter unit generators for SO(3) gives the one-
parameter subgroups of SO(3). A rotation is generated by a angular velocity
about the first axis by the exponential function as follows:

e(θê1) =

1 0 0

0 cos(θ(t)) − sin(θ(t))

0 sin(θ(t)) cos(θ(t))

 = R1

Which is the rotation matrix, rotating R3 about e1.

1.2.3 Adjoint Operator

The adjoint operator for the SO(3) group, maps elements from the Lie al-
gebra onto itself:

AdRω̂ = R>ω̂R R ∈ SO(3), ω̂ ∈ so(t) (1.4)

As mentioned in 1.1 the adjoint operator is linear, and can be rewritten as
a matrix-vector product

AdRω̂ = C, vec(C) =
(
R> ⊗R>

)
vec(ω̂)

As the adjoint maps so(3) onto itself AdR : so(3)→ so(3), there must exist
a matrix N ∈ R3×3 such that.

Cω = vec(N̂ω)

And therefore an expression for the Adjoint is:

AdR(ω̂) = N̂ω

1.2. SO(3) 7

The matrix N has a very simple connection to R. In fact they are related
by N = R>. We may see this by applying the identity 1.1. Now the right-
adjoint operator can be rewritten (See Appendix).

Ad
eξ̂t
ω̂ = eadtξ̂ ω̂, ξ̂ ∈ so(3)

=

∧

e−ξ̂tω̂

=

∧

R>(t)ω

Yielding a simple and useful expression for the adjoint requiring no inter-
mediate computations.

AdR(ω̂) = R̂>(t)ω̂ (1.5)

1.2.4 Kinematics in the Moving Frame Method - Rotations

The Moving Frame Method in [MI19] applies a specialized notation for de-
noting frames of reference. A short summary will be given in this section:
Given two orthogonal frames of reference, one chosen as a fixed inertial
frame and one as a body-attached moving frame rotated away from the in-
ertial by the SO(3) rotation matrix R(j). The inertial frame is defined as
the standard basis with unit vectors (e1, e2, e3). Written with a shorthand
notation we denote the inertial frame eI . The moving frame is a orthogonal
basis denoted e(1). And the relation between the two frames is:

e(1) = eIR(1) (1.6)

The addition of multiple frames follows the same definition. A second frame

e(2) is expressed relative to the first by the relative rotation matrix:

e(2) = e(1)R(2/1)

And a j’th frame e(j) is expressed in the parent frame e(j/j − 1) by the relative
rotation matrix:

e(j) = e(j−1)R(j/j − 1)

Vectors and points are then specified by frame, and can be transformed
between frames with 1.6.

e(j)r(t) = e(j−1)R(j/j − 1)x, x ∈ R3

8CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

Figure 1.1: Inertial frame eI and moving frame e(1)

Moving vectors in the opposite direction is performed by a transformation
with the inverse SO(3), which is simply the transposed matrix.

eI = e(j)R(j)> (1.7)

Ths for a vector we may

r(t) = eIx(I)(t) = eIR(j)R(j)>x(t) = e(j)R(j)>x(t)

Velocity The instantaneous time-rate of change of orientation for the
moving frame is the time derivative of the rotation matrix relating the two
frames.

ė(1) = eIṘ(1)

1.2. SO(3) 9

Inserting 1.6 we recognize from 1.3 that the angular velocity of the moving
frame, expressed in the frame itself is an element of the Lie algebra.

ė(1) = e(1)ω̂(1)

With this notation, the velocity of a point in the moving frame is interpreted
as:

d

dt
x(1) =

d

dt

(
e(1)x(t)

)
= e(1)(t)ω̂(1)x(t) + e(1)(t)ẋ(t) (1.8)

The angular velocity of a second frame, expressed relative to the first frame
is the sum of the relative angular velocity and the angular velocity of the
parent frame transformed into the local frame.

d
dte

(2)(t) = e(2)

(
R(2/1)>ω̂(1)R(2/1) + ω̂(2/1)

)
= e(2)

(
AdR(2/1)(ω̂(1)) + ω̂(2/1)

)
In general for k’th frame:

d

dt
e(k)x(t) = eI

d

dt
R(k)(t)x(t) + e(k)ẋ(t)

Under this formalism, the Lie algebra has a more intuitive interpretation as
the angular velocity of the moving frame expressed in the local frame itself.

1.2.5 Rewriting the adjoint

When deriving the rotational velocity we encounter:

d

dt
R(k)(t)

For application later in the thesis we wish to rewrite the expression for the
derivative of the k’th rotation matrix. This sum can be rewritten as follows:

d
dtR

(k)(t) =
(

d
dtR

(1)
)
R(k/1) + · · ·+R(j−1)

(
d
dtR

(j/j − 1)
)
R(k/j − 1) + · · ·

· · ·+R(k−1)
(

d
dtR

(k/k − 1)
)

= R(1)ω̂(1)R(k/1) + · · ·+R(j)ω̂(j/j − 1)R(k/j − 1) + · · ·
· · ·+R(k)ω̂(k/k − 1)

= R(k)

(
R(k/1)>ω̂(1)R(k/1) + · · ·+R(k/j)>ω̂(j/j − 1)R(k/j) + · · ·

· · ·+ ω̂(k/k − 1)

)

10CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

We recognize the adjoint operator 1.4 in the expression. Applying this, we
see that the absolute velocity of frame k is the sum of the relative velocities
of the preceding relative frames in the tangent space of R(k).

d
dtR(t) =R(k)

(
AdR(k/1)(ω̂(1)) + · · ·+AdR(k/j)(ω̂(j/j − 1)) + · · ·+ ω̂(k/k − 1)

)
=R(k)

 k∑
j=1

AdR(k/j)

(
ω̂(j/j − 1)

) (1.9)

This sum of expressions can be rewritten to matrix-vector form by applying
eq.(1.5) that was previously obtained. Thus the derivative is rewritten as:

d
dtR

(k) = R(k)

 k∑
j=1

AdR(k/j)

(
ω̂(j/j − 1)

)

= R(k)

 k∑
j=1

∧

R(k/j)>ω(j/j − 1)

 (1.10)

Note on notation

The SO(3) group will be used to represent configurations of solid
bodies in three dimensions. The conventions in this thesis will largely
follow that of the moving frame method by Murakami et.al. [MI19]
The orientation of frame j relative to the inertial frame is denoted
R(j). A configuration expressed relative to another moving frame is
expressed by relative rotation matrices. The rotation matrix between
frames k and j will be expressed as R(k/j). In the instances where
sums are used, the following convention is applied: R(k/0) = R(k)

and R(n/n) = I. Relative angular velocities between frames k and j
will be denoted ω̂(k/j). In instances where using sums, the following
convention is applied: ω̂(k/0) = ω̂(k) and ω̂(j/j) = 0.

1.3. EUCLIDEAN MOTION - SE(3) 11

1.3 Euclidean motion - SE(3)

Multi-body systems undergo both translation and rotation, which are repre-
sented as rigid transformations and may be named Euclidean motion. The
SE(3) group is described by the pair (R, x) and represent a combined rota-
tion and translation.

SE(3) =
{

(R, x) ∈ R3×3 × R3 : R ∈ SO(3)
}

The group composition is the semi-direct product of SO(3) and R3,
which can be represented as a linear transformation with matrix represen-
tation:

E =

[
R x

0 1

]
, E ∈ SE(3)

This matrix can be interpreted as representations of SE(3). The Moving
Frame formalism makes use of both representations of SE(3).

With the matrix representation, SE(3) is a group with the matrix prod-
uct as group composition. The identity of the group is the identity matrix
I ∈ R3 and the group inverse is:

E−1 =

[
RT −RTx
0 1

]

1.3.1 Lie algebra

The Lie algebra of SE(3) is defined as:

se(3) =

[
ω̂ v

0 0

]
∈ R3×3 : ω̂, v ∈ R3

The tangent space of SE(3) is given by

Ė = EΩ

And can be understood as the angular and translational velocity of the
object undergoing euclidean motion.

1.3.2 Exponential function

The exponential function e : se(3)→ SE(3) is defined as:

eΩt =
∞∑
j=0

tk

k!
Ωk

12CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

1.3.3 Kinematics with SE(3)

The SE(3) group may be taken to represent orientation and position for
moving frames. For a rotating and translating frame in euclidean space as
displayed in 1.2 We take

Figure 1.2: Inertial and rotating/translating frame

(e(j),0)

to represent the inertial frame. Shorthand notation for the frame is

eI = (e(j),0)

To describe the kinematics of the moving frame, the position and orientation
of the moving frame is represented by the euclidean group SE(3) and is
denoted

e(1) =
(
R(1), x(1)

)
And the relation between the frame and the inertial is expressed by the
linear transformation form of the SE(3) group.

e(1) = eIE(1), E(1) ∈ SE(3)

Thus we may understand SE(3) as a frame, rotated and translated from the
inertial frame.

Given a second frame expressed relative to the first, the absolute expres-
sion for the second frame is:

e(2) = e(1)E(2/1)

1.3. EUCLIDEAN MOTION - SE(3) 13

Velocity With the inertial frame taken to be stationary, the velocity of
the first frame is a element of the Lie algebra:

ė
(1)

= e(1)Ω(1)

The velocity of the second frame is the sum of the relative velocity and the
tangent of the parent frame transformed into the tangent space of the second
frame.

ė
(2)

= e(2)(E(2/1)−1
Ω(1)E(2/1) + Ω(2/1))

And the time-rate of change for arbitrary frame k is:

e(k) = e(k)Ω(k),

where again the tangent of the relative frame k, is the sum of the tangent
of the previous parent frame transformed by the adjoint transformation to
the local frame and the relative velocity.

Ω(k) = E(k/k − 1)−1
Ω(k/k − 1)E(k/k − 1) + Ω(k/k − 1)

14CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

1.4 Kinematics of the n-body pendulum

In this section, the kinematic of the multi-body system idealized as a n-body
pendulum will be derived. The derivation will be done in terms of SE(3)
matrices under the Moving Frame formalism.

The systems under consideration are solid bodies interconnected at three-
dimensional joints with the first link fixed to the origin. These systems can
be thought to form a N-body three-dimensional pendulum. To express the
motion of the bodies in the system, local coordinate frames represented by
relative SE(3) matrices are assigned to the center of mass of the bodies, and
aligned with the principle axes of the moment of inertia tensor. Thus the
rotation and translation of each body in the system is expressed as a element
of the special euclidean group, and the angular and translational velocity are
elements of its tangent space. A illustration with a length of 4 is displayed
in 1.3, where the three arrows around the center of mass signifies that the
body is free to rotate about every axis. The following notation convention is

Figure 1.3: 4-body three-dimensional pendulum

established: Fixed distances between joints and centers of mass are denoted
si,j while the time-dependent position is expressed x(t). The first of the
subscript on si,j refers to link number counting from origo, while the second
indicates whether the vector describes distance from joint to center of mass
or distance from center of mass (CM) to next joint, counting from origo and
outward along the chain. This convention is displayed in 1.4.

1.4. KINEMATICS OF THE N-BODY PENDULUM 15

Figure 1.4: Labeling convention for distances between joints and centers of
mass (CM)

Kinematics The first frame is the product of a rotation and a translation.

e(1) = eIE(1)

= eI

[
R(1) 0

0 1

][
I s1,1

0 1

]

= eI

[
R(1) R(1)s1,1

0 1

]
Thus, orientation and position of the first body is.

e(1) = eI(R(1), R(1)s1,1) (1.11)

The the relative reference between arbitrary bodies j+ 1 and j are com-
posed from the product of 3 SE(3) matrices and denoted as follows:

E(j/j − 1) =

[
I sj−1,2

0 1

][
R(j/j − 1) 0

0 1

][
I sj,1
0 1

]

=

[
R(j/j − 1) sj−1,2 +R(j/j − 1)sj,1

0 1

]

16CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

The absolute reference frame is then:

e(j) = e(j−1)E(j/j − 1)

=

[
R(j) xj−1(t) +R(j−1)(sj−1,2 +R(j/j − 1)sj,1)

0 1

]

Thus the orientation and position of frame j is given by:

e(j) = (R(j), xj−1(t) +R(j−1)(sj,2 +R(j/j − 1)sj,1)) (1.12)

The velocity and acceleration are easily computed from the definitions.
However, these expressions will not be required in the derivation of the
Euler-Lagrange equations, and are therefore left out.

1.5. THE S3 OF UNIT QUATERNIONS 17

1.5 The S3 of unit Quaternions

The unit quaternions is the three-sphere S3 in R4 under quaternion multipli-
cation. The group of unit quaternions is well known for being homomorphic
to SO(3), and thus can serve as an alternative description of rotation. A
summary of quaternion algebra and their application to rotations is given,
followed by a summary of the group properties and finally the real-matrix
representation of quaternions.

1.5.1 Definitions

Quaternions extends complex numbers to four dimensional complex num-
bers. The set of all quaternions is denoted H, and are the four-tuple in R4

with the quaternion-product as product operation. Let q ∈ H.

q = q0h + q1i + q2j + q3k

Or written as a vector

q =

q0

q1

q2

q3

 ∈ H,

with a shorthand notation:

q =

[
q0

qv

]
Addition for quaternions have the same properties as vectors, while mul-

tiplication of two quaternions q ? p, q, p ∈ H is defined according to the
following rules for multiplication of the basic elements:

h ? h = h = 1,h ? i = i,h ? j = j,h ? k = k

i ? i = j ? j = k ? k = −1

i ? j = k = −j ? i, j ? k = i = −k ? j,k ? i = j = −i ? k

With the shorthand notation defined above, the quaternion product can
be written:

p ? q =

[
p0q0 − p>v qv

p0qv + q0pv + p̂vqv

]

18CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

The complex conjugate is defined:

q† =

[
q0

−qv

]

With which the norm is defined as:

|q| =
√
q ? q† =

√
q2

0 + q2
1 + q2

2 + q2
3

The inverse is defined with the quaternion conjugate as.

q−1 =
q†

||q||

Note on notation

In mechanics, the main interest is directed towards the quaternions of
unit length (|u| = 1). The letter q is widely used to denote generalized
coordinates in classical mechanics. Therefore the letter u will be used
to denote the unit quaternions.

1.5.2 Rotations

Given the point coordinate x ∈ Rn, we define quaternion:

v =

[
0

x

]
(1.13)

The unit quaternion defined as:

u =

[
cos 1

2θ

sin 1
2θn

]

where n is a unit-vector n ∈ R3.
The conjugation:

φu(v) = p ? v ? p† (1.14)

rotates the complex part of v (x), in the plane orthogonal to n.
The antipodal pair u and −u induces the a rotation with 1.14 of the

imaginary component of the quaternion v. Thus the unit quaternions rep-
resent rotations i R3.

1.5. THE S3 OF UNIT QUATERNIONS 19

1.5.3 The group of unit quaternions S3

The unit quaternions form a group [Sti08].

The set of all quaternions of unit length,

S3 =
{

(u0, uv) ∈ R× R3 : u2
0 + ||uv||2 = 1

}
, u ∈ H

is a group with the quaternion product as group operation. Given u, v ∈ S3,
they satisfy:

Closure u ? v ∈ S3

Identity u ? I = I ? u = u, I =

[
1

0

]

Inverse u ? u−1 = u−1 ? u = I, u−1 = u†

||u|| = u†

The group S3 is thus a group of rotations, where the pair of quaternions
±u rotates a pure complex quaternion through the conjugation 1.14

The Lie algebra of the unit quaternions are the pure imaginary quater-
nions.

TIS3 =
{
ξ = S3 : ξ0 = 0, ξ

v
= R3

}
The elements of Lie algebra can be written:

ξ = u† ? u̇ (1.15)

1.5.4 Quaternions as real matrices

Computations with quaternions may be represented as operations with real
matrices. The derivation in the following section is largely taken from of
[Lac07, Chapter 13]. First we observe that the product u ? v is a linear
transformation and can therefore be rewritten as a matrix-vector product
Q(u)v, where

Q(u) =

u0 −u1 −u2 −u3

u1 u0 −u3 u2

u2 u3 u0 −u1

u3 −u2 u1 u0

 , Q(u) ∈ R4 (1.16)

20CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

Or by defining

u =

[
u0

uv

]
, uv =

u1

u2

u3

The matrix form of the quaternion product can be written more compactly:

u ? v = Q(u)v

=

 u0 −uTv

uv u0I + ûv

 v0

vv

In the same manner, the product v ? u can be written as a linear trans-

formation in p.

u ? v = P (v)u

=

 v0 −vTv
vv v0I − v̂v

 (1.17)

The product of a complex conjugate quaternion is simply:

u† ? v = Q(u†)v = Q>(u)v

u ? v† = P (v†)u = P>(v)u

Real matrix representation of quaternion rotations

With these definitions the conjugation map 1.14 is rewritten as a matrix
vector product

φv(u) = Q(v)P>(v)u

=

 1 0T

0 R(v)

u (1.18)

where
R(u) = I3 + 2u0ûv + 2û2

v (1.19)

The map R(u) is a 2-to-1 homomorphism from S3 to SO(3), R(q) : S3 →
SO(3) mapping the antipodal quaternion pairs {±u} to a single element on
SO(3).

1.5. THE S3 OF UNIT QUATERNIONS 21

Example 1.5.1 (Fundamental rotations). Define the rotation quaternion
about the ei unit vector.

q =

[
cos(θ/2)

sin(θ/2)ei

]
Applying R(u) to it and working out the terms returns the elementary ro-
tation matrices about the ei axes.

Angular velocity

We proceed with deriving a expression for the time-derivative of the rotation
map in terms of the unit-quaternion Lie algebra. Renaming the rotation map
Q(u)P>(u) = A(u) we take the time derivative.

Ȧ(q) = Q̇P T +QṖ T

and rewrite the expression

Ȧ(q) = P T Q̇+QṖ T

= P TQQT Q̇+QP TPṖ T

= QP T︸ ︷︷ ︸
A

QT Q̇+ P TQ︸ ︷︷ ︸
A

PṖ T

= A
(
QT Q̇+ PṖ T

)

Where from the first to the second lines, the matrices are interchanged. This
is because the matrices Q and P commute [Lac07, Chapter 13, p. 227]

Next we notice that the matrix expression can with 1.18 and 1.17 be
rewritten as:

QT Q̇ = Q(u† ? u̇)

PṖ T = P T (u† ? u̇)

Using this together with the definition of the tangent 1.15 ξ = u† ? u̇ we can
rewrite:

Ȧ(u) = A(u)(Q(ξ) + P T (ξ))

It is easily seen that:

Ȧ = A

 0 0

0 2ξ̂v

22CHAPTER 1. PRELIMINARIES - KINEMATICS ANDMATRIX GROUPS

Extracting the lower left block matrices.

Ṙ = R(u)(2ξ̂v) = R(u)ω̂ (1.20)

From which we obtain the relation between TS3 and so(3):

ω = 2ξv, ω ∈ so(3), ξ ∈ TS3. (1.21)

The angular velocity expressed as the vector representation ofso(3) are two
times the length of the vector expressed inTS3.

Chapter 2

Rigid body dynamics

In context of classical mechanics, dynamics is the study of the effects of
forces and potentials on a single or multiple solid bodies. Once a kinematic
description of a system has been formulated, Newtonian- or Lagrangian me-
chanics provides the relation between forces and their effect on the system.

The kinematics of a multi-body system is determined by the constraints
that it must obey. Within Lagrangian mechanics, these constraints may be
imposed in two ways. The first is with a extra set of equations, which are
then included with Lagrangian multipliers. The other approach, applied in
this thesis, is the inclusion of the constraints by the introduction of gen-
eralized coordinates, which characterize the possible motion of the system.
With a suitable choice of generalized coordinates, constraint forces can be
ignored as we only study the effects of forces which agree with the chosen
coordinates.

The kinematic description in terms of rotation matrices was written in
anticipation of the Lagrangian formulation. For the multi-body pendulum,
each body is constrained to rotate about the joints. With rotation matrices
chosen as the configuration space, the constraint forces are eliminated from
the equations.

2.1 Lagrangian mechanics

In Lagrangian mechanics, the equations of motion are derived with Hamil-
ton’s principle. This principle describes the motion of a mechanical system,
for which all forces can be derived from scalar potentials. Among all possible
paths taken by the system, the correct one must obey Hamilton’s principle,
which states that the path taken by the system as the one for which the “ac-

23

24 CHAPTER 2. RIGID BODY DYNAMICS

tion” of the system is stationary. Here the main ideas of Classical mechanics
from [Gol00] and [TLM17] are presented.

Theorem 2.1.1 (Hamilton’s Principle). The trajectory of the mechanical
system from time t0 to time T are extremals of the action integral defined
by:

J =

∫ T

t0

L(t, q, q̇)dt

The lagrangian is defined where L = K − U .

The trajectories are minima incurring the “least action”.

Given some differentiable curves qi(t) describing the motion of the sys-
tem, we consider a family of curves:

qεi (t)

Where ε is some small parameter. The curves qεi (t) are defined such that the
satisfy the boundary conditions, meaning qεi (t0) = q(t0) and qεi (T) = q(T).

The infinitesimal variation of the curves are:

δq = ∂
∂ε q

ε
∣∣∣
ε=0

δq̇ = ∂
∂ε q̇

ε
∣∣∣
ε=0

The action integral for the family of curves are thus:

J ε =

∫ T

t0

L(t, qε, q̇ε)dt

Among the family of varied paths, the one the system takes is the one for
which the action integral is stationary. That is the curve for which the
infinitesimal variation of the action integral is zero:∫ T

t0

L(t, qε, q̇ε)dt

From this expression, the Euler-Lagrange equations may be derived.

Hamilton’s principle is too restricted to be applied to many real world
problems including friction or external forces. These forces may be included
by a simple modification to Hamilton’s principle - the Lagrange-d’Alemberts
principle.

2.1. LAGRANGIAN MECHANICS 25

Theorem 2.1.2 (Lagrange-d’Alembert’s principle). The motion of the sys-
tem from time t0 to time T is such that

δ

∫ T

t0

L(q, q̇)dt = −
∫ T

t0

δWdt

holds for infinitesimal variations consistent with the constraints.

The theorem states that a infinitesimal variation δq(t) of the action in-
tegral equals the negative of the work done by external forces δW , for a
infinitesimal variation of the configuration.

The addition of the term −
∫ T
t0
δWdt allows us to include external forces.

Gravity interpreted as a applied force rather than as a result of a gravity
potential, and may also be included the term on the right hand side. Thus
we have a new definition of the Lagrangian:

L(t, q, q̇) = K

Before proceeding with deriving the equations of motion from the vari-
ational principle, the variation of the generalized coordinates expressed in
SE(3) will be derived, and the variation of SO(3) will be obtain as a byprod-
uct.

2.1.1 Variation on SE(3)

In this section, the variation of SE(3) is derived. The derivation is largely
taken from [TLM17, p. 316] and [MI19]. Before proceeding with the varia-
tion of SE(3), the family of varied curves on SO(3) and Rn is defined.

Variation on SO(3) A The family of varied paths on SO(3) is defined
with the exponential map as:

Rε = R(t)eεη̂(t), R ∈ SO(3), η̂(t) ∈ so(3)

Where η̂ : [t0, T]→ so(3) is a arbitrary curve that vanishes at the end points
η̂(t0) = η̂(T).

The infinitesimal variation of the group element follows immediately by
application of the definition:

δRε = ∂
∂εReεη̂(t)

∣∣∣
ε=0

= Rη̂ (2.1)

26 CHAPTER 2. RIGID BODY DYNAMICS

Variation on Rn A The family of varied paths on Rn is defined as:

xε(t) = x(t) + εχ(t), x(t), χ(t) ∈ Rn

Where χ(t) : [t0, T] → Rn is a arbitrary curve that vanishes at the end
points χ(t0) = χ(T).

The infinitesimal variation of the group element follows immediately by
application of the definition:

δχε(t) = ∂
∂εx(t) + εχ(t)

∣∣∣
ε=0

= χ(t) (2.2)

Variation of SE(3) The collection of varied curves on SE(3) is defined
by

Eε(t) = E(t)eεΓ

Where Γ denotes a arbitrary curve Γ : [t0, T]→ se(3) of the form:

Γ =

[
η̂ χ

0 0

]

where η̂ : [t0, T]→ so(3) and χ : [t0, T]→ R3 vanish at t0 and T .
The infinitesimal variation of SE(3) is:

δE = ∂
∂εE

ε
∣∣∣
ε=0

= EΓ (2.3)

Variation of the group tangent Differentiating eq.(2.3)

d

dt
δE = ĖΓ + E

d

dt
Γ = E

(
ΩΓ + d

dtΓ
)

And taking the variation of the kinematic equation Ė = EΩ:

δ
d

dt
E = δEΩ + EδΩ = E (ΓΩ + δΩ)

By equating the two and reworking the terms we obtain:

δΩ = d
dtΓ + ΩΓ− ΓΩ

= d
dtΓ + [Ω,Γ]

Collecting and expanding the matrices:

2.1. LAGRANGIAN MECHANICS 27

δΩ =

[
d
dt η̂ + [ω̂, η̂] d

dt δx+ ω̂δx− η̂v
0 0

]
The upper left is the variation of SO(3). The upper right block can be
further processed. The following result is from [MI19]:

Expanding and collecting terms:

δv = d
dt δx+ ω̂δx− ηv

δ
(
R>ẋ

)
= d

dt

(
R>δx

)
+ ω̂R>δx− η̂RT v

R·| δR>ẋ+R>δẋ = d
dtR

>δx+R> d
dt δx+R>ṘR>δx−R>δRR>v

δẋ = d
dt δx+ d

dt

(
RR>

)
δx− δ

(
RR>

)
v

δẋ = d
dt δx

Collecting the results, the final variation of the group tangent is:

[
d
dt ω̂(t) δv(t)

0 0

]
=

[
d
dt η̂(t) +

[
ω̂(t), η̂(t)

]
d
dt δx(t)

0 0

]
=

[
d
dt η̂(t) + ω̂(t)η d

dt δx(t)

0 0

]
(2.4)

Thus the variation in the trajectory of a body undergoing simultaneous
rotation and translation is:

δω̂(t) = d
dt η̂(t) + ω̂(t)η (2.5)

δv(t) = d
dt δx(t) (2.6)

With the infinitesimal variation for SE(3) and se(3) derived, we may proceed
with developing the Euler-Lagrange equations.

28 CHAPTER 2. RIGID BODY DYNAMICS

2.2 Euler-Lagrange equations - Multibody system

In this section the Euler-Lagrange equations of motion for the multibody
system will be developed from d’Alembert’s principle. The derivation is
largely identical to the one outlined in [MI19], with the coordinate-free for-
mulation proposed in [TLM17]. The presentation is more in depth as the
formalism applied by Murakami utilizes some special notation.

First we need some definitions.

Definition 2.2.1 (The essential generalized coordinates). The essential gen-
eralized coordinates the concatenated configuration variables:

[q] =

q(1)

...

q(j)

...

q(n)

(2.7)

The essential generalized velocity and virtual essential displacement are
the of the velocities and variations of the generalized coordinates assembled
in a vector.

Definition 2.2.2 (The essential generalized velocity and virtual essential
displacement).

� The essential generalized velocity vector 3.2 is the concatenation of
the velocity of the generalized coordinates.

� The virtual essential displacement vector 3.3 is the concatenation of
the variation of the generalized coordinates.

q̇ =

q̇(1)

...

q̇(j)

...

q̇(n)

(2.8) δq =

δq(1)

...

δq(j)

...

δq(n)

(2.9)

2.2. EULER-LAGRANGE EQUATIONS - MULTIBODY SYSTEM 29

The translational and angular velocity in euclidean coordinates are as-
sembled in vector as well.

Definition 2.2.3 (The system generalized velocity and virtual generalized
displacement).

� The system generalized velocity vector Ẋ ∈ R6n is the concatenation
of the translational velocity in the inertial frame ẋ(t) and angular
velocity in the local frame ω(i/i− 1) of the bodies in the system.

� The virtual generalized displacement vector δX ∈ R6n is the concate-
nation of the variation in the trajectory in the inertial frame ẋ(t) and
variation of rotation in the local frame ω(i/i− 1) of the bodies in the
system.

Ẋ =

v(1)

ω(1)

...

ω(j)

v(j)

...

ω(n)

v(n)

(2.10) δX =

δx(1)

η(1)

...

δx(j)

η(j)

...

δx(n)

η(n)

(2.11)

A central part to Murakamis solution to the Euler-Lagrange equations,
is that the system generalized velocity and virtual generalized displacement
are linearly related to the essential generalized velocity and essential virtual
displacement respectively. So it is possible to write:

δX = Bδq (2.12)

Ẋ = Bq̇ (2.13)

Variation of system generalized velocity The variation of the system
generalized velocity ??

(δω̂(t), δv(t)) = (
d

dt
η̂(t) + ω̂(t)η,

d

dt
δx(t))

30 CHAPTER 2. RIGID BODY DYNAMICS

for the system can be rewritten as a block matrix-vector product

δẊ =
d

dt
δX +DδX, (2.14)

where

D =

0
3×3

ω̂(1)

. . .

0
3×3

ω̂(n)

(2.15)

The external forces are assembled in the force vector.

Definition 2.2.4 (Force vector). The force vector is defined as external
forces and moments including gravity concatenated in a vector:

F =

f (1)

M (1)

...

f (n)

M (n)

(2.16)

where forces are applied in the inertial frame, while moments are applied in
the local frame.

Virtual work The work performed by the external forces and moments
2.16 through a infinitesimal displacement consistent with the constraints can
be expressed together with the definition of the virtual generalized displace-
ment as follows. In engineering terms, this is the “virtual work”.

δW (t) = {δX(t)}>F (2.17)

Kinetic energy With the definition of the system generalized velocity,
the kinetic energy of the system is easily expressed by the quadratic form:

K(t) =
1

2
Ẋ>MẊ (2.18)

2.2. EULER-LAGRANGE EQUATIONS - MULTIBODY SYSTEM 31

Where M is the symmetric positive definite block-matrix:

M =

m1I3

J1

. . .

mnI3

Jn

, (2.19)

where Jn are the moment of inertia tensors around the centers of mass of
the bodies.

2.2.1 Deriving the equations of motion

Now we have the necessary definitions to proceed with deriving the equa-
tions of motion. Stating d’Alembert-Lagrange principle and inserting the
variation in kinetic energy and the virtual work.

δ

∫ T

t0

L(q, q̇)dt = −
∫ T

t0

δWdt∫ T

t0

δKdt = −
∫ T

t0

δWdt

Remembering the symmetry of the mass-matrix M, the variation of the
kinetic energy is:

δK(t) = δẊ>MẊ∫ T

t0

δẊ>MẊ + {δX(t)}>Fdt = 0

For the variation of the system generalized velocity 2.14 is inserted.∫ T

t0

{ d

dt
δX +DδX}>MẊ + {δX(t)}>Fdt = 0

Then performing the integration by parts and enforcing the border-conditions
on the variation yields:∫ T

t0

{δX}>
(
− d

dt

(
MẊ

)
−DMẊ + F

)
dt = 0

The δX terms are now rewritten. We insert 2.12 and2.13 and reorder:

32 CHAPTER 2. RIGID BODY DYNAMICS

−
∫ T

t0

{δq}>B>
(

d
dt (MBq̇) +DMBq̇ − F

)
dt = 0

−
∫ T

t0

{δq}>B>
(
MBq̈ + (MḂ +DMB)q̇ − F

)
= 0

Yields the Euler-Lagrange equations:

B>
(
MBq̈ +

(
MḂ +DMB

)
q̇

)
= B>F

Which is restated:
M∗(t)q̈ +N∗(t)q̇ = F ∗

M∗(t) = B>MB

N∗(t) = B(t)>(MḂ(t) +D(t)MB(t))

F ∗(t) = B(t)>F (t)

(2.20)

2.2.2 Euler-Lagrange equations for coordinate-free N-body
pendulum

Whereas Murakami et. al. determines the equations in terms of Euler
angles, we will follow a different approach inspired by Leok et. al. Instead
of Euler angles we will derive equations in terms of the direct representation
of SO(3). The bodies in the n-body pendulum are restricted to rotate about
the joints, thus by taking the rotation matrices as the orientation relative
to the parenting frame, the essential generalized coordinates for the n-body
pendulum are.

q(t) =

R(1)(t)
...

R(k/k − 1)(t)
...

R(n/n− 1)(t)

The essential generalized velocities 3.2 and the essential virtual general-

ized displacements 3.3 for the N-body pendulum are:

2.2. EULER-LAGRANGE EQUATIONS - MULTIBODY SYSTEM 33

q̇ =

ω(1)(t)
...

ω(k/k − 1)(t)
...

ω(n/n− 1)(t)

, ∈ R(3n) (2.21)

δq =

η(1)(t)
...

η(k/k − 1)(t)
...

η(n/n− 1)(t)

, ∈ R(3n)

(2.22)

where ω̂(i/i− 1)(t) ∈ so(3), η̂(i/i− 1) ∈ so(3) i = 1, . . . , n.
A insufficiency of the notation of the moving frame formalism is the

choice of q̇ denoting the essential generalized velocities. When the config-
uration is represented by multiple rotation matrices, the q̇ notation would
imply the velocity is represented by the derivative of the rotation-matrix,
but this is not the case. As we will see in the next section, the most con-
venient representation of the essential generalized velocities for Lie group
representations is at the group identity (Lie Algebra).

To emphasize that we for the N-body pendulum are expressing the essen-
tial generalized virtual velocity and the essential virtual generalized displace-
ment in the Lie algebra of SO(3), the notation for the generalized velocities
will be changed to:

q̇ ⇒ ω

δq ⇒ η

This makes sense for systems with all generalized coordinates expressed in
SO(3) rotation-matrices. Thus Ω and H without superscripts or hyphen-
ation are the essential generalized velocities and virtual essential displace-
ments of the system with this new notation, the system is rewritten as:

M∗(t)ω̇ +N∗(t)ω = F ∗

M∗(t) = B>(t)MB(t)

N∗(t) = B(t)>(MḂ(t) +D(t)MB(t))

F ∗(t) = B(t)>F (t)

(2.23)

Where, B(t) and Ḃ(t) are dependent on the generalized coordinates. This
system evolves on n copies of the group of rotation matrices (SO(3))n.

34 CHAPTER 2. RIGID BODY DYNAMICS

2.3 B - Matrix

In this section, the B-matrix in the following relation will be developed:

δX(t) = B(t)η

Ẋ(t) = B(t)ω

The entries of the B-matrix will be determined by reworking the the
right-hand side of kinematic equations for the n-body pendulum that were
derived in 1.4. Supressing the time-dependency, the system generalized co-
ordinates are:

x1(t)

R(1)

...

xn(t)

R(n/n− 1)

=

R(1)(t)s1,1

R(1)

...

xn−1(t) +R(n−1)(t)sn−1,2 +R(n)(t)sn,1
R(n/n− 1)

The basis of multibody dynamics formulation in the MFM is the fact

that the relation between variation and velocity in euclidean space and the
configuration manifold exists, and are equivalent. This is intuitively clear
considering that both variation and time-differentiation involve taking the

derivative of the equations expressing the configuration. ∂
∂εx(t+ ε)

∣∣∣
ε=0

and

d
dtx(t) ammounts to taking the derivative of the time-dependent terms. This
common relation is what will become the B-matrix. In the following section,
the B-matrix will be developed for a both cases. First the translation terms
x(t) will be handled, then the angular terms ω, before the expressions are
assembled to form the B-matrix.

Supressing the notation for the time-dependency. From 1.2 we had ob-
tained eq.(1.10).

d

dt
R(k) = R(k)

 k∑
j=1

∧

R(k/j)>ω(j/j − 1)

Likewise, it is easily seen that the variation of the same expression is:

δR(k) = R(k)

 k∑
j=1

∧

R(k/j)>η(j/j − 1)

 (2.24)

2.3. B - MATRIX 35

2.3.1 Translative velocity terms

From the section 1.4 we had position and orientation of a joint in the multi-
body system expressed by eq.(1.12): The first term is simple:

δx(t) = Rη̂si

= −Rŝiη
d
dtx(t) = Rω̂si

= −Rŝiω

The position for the k’th body is:

d

dt
xk(t) =

d

dt
xk−1 +

d

dt

(
R(k−1)sk−1,2 +R(k)sk,1

)
(2.25)

Looking closer to the term d
dtR

(k)sk,1, we apply eq.(1.10) and rework the
expression.

d
dtR

(k)sk,i = R(k)

 n∑
j=1

∧

R(k/j)>ω(j/j − 1)

 s(k)

= −R(k)ŝ(k)

 k∑
j=1

R(k/j)>ω(j/j − 1)

With this result, eq.(2.25) can be rewritten:

d
dtxk(t) = d

dtxk−1(t)−R(k−1)ŝ(k−1,2)

k−1∑
j=1

R(k − 1/j)>ω(j/j − 1)

−R(k)ŝ(k,1)

 k∑
j=1

R(k/j)>ω(j/j − 1)

 (2.26)

Which is the expression we were looking for.

To clarify the construction of the B-matrix a new notation will be estab-
lished. Given the k first relative rotation matrices R(k/1), . . . , R(k/k − 1) of the
n-body pendulum, the rotation matrices are concatenated in a block column

36 CHAPTER 2. RIGID BODY DYNAMICS

matrix:

Rk =

R(k/1)

...

R(k/j − 1)

...

I

0
...

0

, ∈ R3×3n (2.27)

Using the definitions, eq.(2.25) can be reformulated. The first body is the
simplest:

d
dtx1(t) = −R(1)ŝiω

(1)

= Btransl
1 ω, Btransl

1 = −R(1)ŝi

Where B1,t is the linear relation between translation and generalized co-
ordinates. The first index denotes the body, and the second denotes that
it relates generalized coordinates to translation. With body-1 defined, the
second body is.

d
dtx

(2) =(Btransl
1 + (−R(1)ŝ

(1)
1,iR

>
(1))

+ (−R(2)ŝ
(2)
2,iR

>
2))ω

=Btransl
2 ω

The k’th body.

d
dtxk(t) =(Btransl

k−1 +
(
−R(k−1)ŝ

(k−1)
k−1,iR

>
k−1

)
+
(
−R(k)ŝ

(k)
k,iR

>
k

)
)ω (2.28)

=Btransl
k ω (2.29)

Which neatly encapsulates the relation between time derivative in configu-
ration to time-derivative in euclidean space of the k’th body for a pendulum
constraint.

Similarily for a variation in xk(t) we apply eq.(2.24) and rework the
terms and obtain the expression:

δxk(t) = Btransl
k η

2.3. B - MATRIX 37

2.3.2 Rotational terms

Derivation is a simpler. Formulating the relation between the absolute an-
gular velocity in terms of relative angular velocity skew matrices is straight-
forward with the already established notation.

ω̂(k) =
k∑
j=1

∧

R(k/j)>ω(j/j − 1)

The vector representation is then simply:

ω(k) =

k∑
j=1

R(k/j)>ω(j/j − 1)

Unlike the translation terms the angular terms are expressed in the local
frames.

Thus we have the common relation:

ω(k) = R>k ω = Brot
k ω

η(k) = R>k η = Brot
k η

Where Brot
k = R>k is the relation between velocity in generalized coordinates

and local angular velocity. The first index denotes the body and the sec-
ond denotes that it relates absolute generalized velocity and a variation of
rotation in the inertial frame to essential generalized velocities and virtual
essential displacements.

2.3.3 Final assembly

With the translational- and angular-velocity terms for the bodies expressed
as a expression which is linear in the generalized coordinates, the B-matrix
is ready to be assembled for the n-body pendulum. With the translational-
and angular- velocity for the first body:

d
dtx

(1)(t) = −R(1)ŝ1,1ω

ω(1) = R>(1)ω

and for the k’th body

d
dtx

(k)(t) = d
dtxj−1 −R(k−1)ŝk−1,2R>k−1ω −R(k)ŝk,1R>k ω

ω(k)(t) = R>k ω

38 CHAPTER 2. RIGID BODY DYNAMICS

By assembling these terms into a vector and a block matrix, we can write:

d
dtx

(1)(t)

ω(1)(t)
...

d
dtx

(k)(t)

ω(k)(t)
...

d
dtx

(n)(t)

ω(n)(t)

=

−R(1)ŝ1,1

R>(1)
...

Btransl
k−1 −R(k−1)ŝk−1,2R>k−1 −R(k)ŝk,1R>k

R>(k)
...

Btransl
n−1 −R(n−1)ŝn−1,2R>n−1 −R(n)ŝn,1R>n

R>(n)

ω (2.30)

Which is the relation we were looking for.

Ẋ = Bω, whereB(R(1), R(2/1), . . . , R(n/n− 1))

where

B =

Btransl
1

Brot
1
...

Btransl
k

Brot
k
...

Btransl
n

Brot
n

The matrix can be generated iteratively, starting from the first body. Doing
the same process for the variation δX results in:

δX(t) = Bη, whereB(R(1), R(2/1), . . . , R(n/n− 1))

2.4. Ḃ MATRIX 39

2.4 Ḃ matrix

In the Euler-Lagrange equations eq.(2.23), the second term on the left hand
side involves the time derivative of the B-matrix. This Ḃ-matrix will be
closer examined in this section.

For applications formulated where the B-matrix is expressed symboli-
cally, the most straightforward method to determine Ḃ is to take the deriva-
tive of the entries in the B-matrix. But in the case of the coordinate-free
representation, we do not have such a explicit expression. In this section we
instead seek to determine a iterative algorithm for the Ḃ in a similar vein
to the previous section.

Sadly, attempting to differentiate the expressions for the block entries
composing the B-matrix from the previous section directly yields poor re-
sults. For large systems, the entries of the B-matrix consists of a products
of a large number of rotation matrices. Thus the differentiating operation
would produce a n-term sum in each block-entry of the Ḃ-matrix for a n-
body system. When extending the number of bodies in the multi-body
system this would cause a cubic growth in computation cost. Therefore
to obtain a better expression for we recall that the B-matrix was derived
by rewriting expressions consisting of the adjoint operator applied to the
essential generalized velocities.

AdRn/j

(
ξ̂
)

= R(n/j)>ξ̂R(n/j) ξ̂ ∈ so(3)

To find the Ḃ matrix, we seek to find a representation of the time derivative
of the adjoint operator, d

dtAdRnj(ξ̂), and rewriting the resulting expressions.
The derivative of the adjoint terms can be formulated as follows:

Theorem 2.4.1 (The derivative of the adjoint term). In the context of the
thesis, the derivative of the adjoint operator of SO(3) is:

d
dτ AdR(n/j)(t+τ)ξ̂

∣∣∣
τ=0

= −
∧

ω̂(n/j)R(n/j)ξ̂ (2.31)

Proof. Consider the curve R(t+ τ) ∈ SO(3):

R(t+ τ) = R(t) + Ṙ(t)τ + · · ·
= R(I + ω̂τ + · · ·)

R>(t+ τ) =
(
I − ω̂τ +O(t2)

)
R>

40 CHAPTER 2. RIGID BODY DYNAMICS

The adjoint operator may be rewritten as follows:

AdR(n/j)(t+τ)(ξ̂) =
(
e− ω̂(n/j)τ +O(τ2)

)
R(n/j)>ξ̂R(n/j)

(
e+ ω̂(n/j)τ +O(τ2)

)
= R(n/j)>ξ̂R(n/j) − ω̂(n/j)τR(n/j)>ξ̂R(n/j)

+R(n/j)>ξ̂R(n/j)ω̂(n/j)τ +O(τ2)

= AdR(n/j)

(
ξ̂
)
−
[
ω̂(n/j), AdR(n/j)(ξ̂)

]
τ +O(τ2)

Then taking the derivative at τ = 0:

d
dτ AdR(n/j)(t+τ)ξ̂

∣∣∣
τ=0

= −
[
ω̂(n/j), AdR(n/j)

(
ξ̂
)]

The adjoint term within the commutator may be rewritten using eq.(1.5).

−
[
ω̂(n/j), AdR(n/j)

(
ξ̂
)]

= −

ω̂(n/j),

∧

R(n/j)>ξ

and finally applying [ξ̂1, ξ̂2] =

̂̂
ξ1ξ2 we arrive at the final expression of the

term.

d
dτ AdR(n/j)(t+τ)

(
ξ̂
)∣∣∣∣
τ=0

= −
∧

ω̂(n/j)R(n/j)ξ̂

Thus, the differentiation of the adjoint operation is reduced to the eval-
uation of a single skewed product rather than a sum of term, which is a
significant reduction in computation effort.

2.4.1 Constructing Ḃ: Translation terms

For the rows translation terms of we had:

2.4. Ḃ MATRIX 41

d
dtx

(k)(t) = d
dtx

(k−1)(t)−R(k−1)

k−1∑
j=1

AdR(k − 1/j)(ω̂(i/i− 1))sk−1,1

−R(k)

 k∑
j=1

AdR(k/j)(ω̂(i/i− 1))sk,1

Taking the derivative of one term and using eq.(2.31) we obtain:

d
dtR

(n)AdR(n/j)

(
ω̂(j/j − 1)

)
= Ṙ(n)AdR(n/j)

(
ω̂(j/j − 1)

)
+R(n) d

dtAdR(n/j)

(
ω̂(j/j − 1)

)

= R(n)

ω̂(n)

∧

R(n/j)>ω(j/j − 1) −
∧

ω̂(n/j)R(n/j)>ω(j/j − 1)

 (2.32)

Then we can reformulate the terms in the velocity expression:

d
dtR

(k)AdR(n/j)(ω̂(j/j − 1))sj,i =

−R(k)
(
ω̂(k)ŝk,i − ŝk,iω̂(k/j)

)
R(k/j)>ω(j/j − 1) (2.33)

Now we may finally turn to the expression for the translation row. We
had that the translational velocity of body k in terms of the [B]-matrix and
essential generalized velocities were:

ẋ(k)(t) = Btransl
k ω

= Btransl
k−1 ω −R(k−1)

k−1∑
j=1

AdR(k − 1/j)(ω̂(i/i− 1))sk−1,2

−R(k)

 k∑
j=1

AdR(k/j)(ω̂(j/j − 1))sk,1

42 CHAPTER 2. RIGID BODY DYNAMICS

Taking the derivative of the adjoints, and inserting eq.(2.33).

Ḃtransl
k ω = (d

dtB
transl
k)ω

−R(k−1)
k−1∑
j=1

((
ω̂(k−1)ŝk−1,2 − ŝk−1,2ω̂

(k − 1/j)
)
R(k − 1/j)>ω(j/j − 1)

)

−R(k)
k∑
j=1

((
ω̂(k)ŝk,1 − ŝk,1ω̂(k/j)

)
R(k/j)>ω(j/j − 1)

)

This expression for the translational rows of the Ḃ matrix has no compact
expression like for the rows of the B-matrix. So we will have to settle for
a expression of the 3 × 3 block entries of the Ḃ-matrix. Given the[Ḃ]lk−1,j

term, we may write the following:

Ḃtransl
k,j =Ḃtransl

k−1,j −R(k−1)
(
ω̂(k−1)ŝk−1,2 − ŝk−1,2ω̂

(k − 1/j)
)
R(k − 1/j)>

−R(k)
(
ω̂(k)ŝk,1 − ŝk,1ω̂(k/j)

)
R(k/j)> (2.34)

This are the block entries for the joints of the solid n-body pendulum.

2.4.2 Angular terms

The rows relating absolute to relative rotation on the B-matrix simply the
adjoint AdR(k)(ξ̂).

d
dτ R

(k)(t+ τ)
∣∣∣
τ=0

=

k∑
j=1

AdR(k/j)(t)ξ̂

Applying eq.(2.31) yields:

d
dτ

k∑
j=1

AdR(k/j)(τ)(ω̂
j/j − 1)

=
k∑
j=1

−
∧

ω̂(k/j)R(k/j)ω(j/j − 1)

2.4. Ḃ MATRIX 43

This is again the skew symmetric form for which the vector representation
is:

k∑
j=1

−ω̂(k/j)R(k/j)ω(j/j − 1)

This has a compact matrix representation:

Ḃrot
k = [−ω̂(k/1)R(k/1)>, · · · ,−ω̂(j/1)R(j/1)>, 0, · · · , 0]

2.4.3 Final Assembly

Unlike the B-matrix, the Ḃ matrix does not have a expression for the entire
rows associated with the k’th body. So we settle for a expression for the j’th
block-collumn for the k’th body.

Ḃtransl
k,j

Ḃrot
k,j

 =

Ḃ(k−1,j),l + . . .

−R(k−1)
(
ω̂(k−1)ŝk−1,2 − ŝk−1,2ω̂

(k − 1/j)
)
R(k − 1/j)> + · · ·

· · · −R(k)
(
ω̂(k)ŝk,1 − ŝk,1ω̂(k/j)

)
R(k/j)>

−ω̂(j/1)R(j/1)>

(2.35)

The full Ḃ is composed by the block-expressions. The matrix is a func-
tion of the essential generalized coordinates and velocities.

44 CHAPTER 2. RIGID BODY DYNAMICS

2.5 Final form of the equations

With the B- and Ḃ-matrices obtained, all the components of equations 2.23
are defined and a solution to the equations may be computed.

Contrary to the initial worry that the expression for the Ḃ-matrix would
entail large sums, it can be constructed by much smaller computations. This
has great practical implications since extending the multibody system with
more links increases the cost quadratically and not cubically as initially
feared.

In most treatments on the subject of multibody dynamics in classical
mechanics, the expressions for the differential equations are developed ex-
plicitly. Then the explicit equations are coded in a appropriate code lan-
guage and passed to a ODE-solver. Aside from the problems associated
with the singularities in the resulting equations, this approach encounter
some difficulties when the system grows large. The resulting equations are
long expressions of sines and cosines, which grow very big for systems longer
than 4 bodies. This effectively puts a cap on the length of the systems that
can be simulated. In the thesis [Ryk18] it was shown that the cap lies at
about 6 links for a implementation with the MatLab symbolic manipulator.
At this point, the expressions were so large that they took 15GB of RAM,
filling the working memory of the computer and crashing the program.

Due to the challenges associated with exploding expression, a algorith-
mic approach to the generation of the B-matrices is proposed based on
the expressions 2.30 and 2.35. The arguments of the algorithm is the gen-
eralized coordinates R(j/j − 1), j = 1, . . . , n and the generalized velocities
ω(j/j − 1), j = 1, . . . , n. The limitations of this approach is the speed at
which the processor is able to generate the matrices. Memory-limitations
will only be a problem for extremely large systems. With such a scheme
being defined and the M and D constructed according to the definition, the
computation of the system may be integrated with a integration scheme.

Chapter 3

Numerical Simulations

From the previous section we had the equations of motion for the N-body
pendulum expressed by the system of equations 2.23 in terms of the direct
representation of SO(3):

M∗(R(j/j − 1)(t))ω̇ +N∗(R(j/j − 1)(t), ω(j/j − 1)(t))ω = F ∗, j = 1, . . . n

The goal of this section is to compute numerical solutions to the Euler-
Lagrange equations. To be able to compute a solution, the equations must be
rewritten to a form to which we can apply standard ODE-solvers. Scientific
computation packages are available that can be applied to directly to systems
such as the above (for example in matlab). However, we want methods that
preserve some particular system quantities. Therefore we will restate the
equations on standard form as a first-order system of differential equations.
When the equations are on standard form, we may apply solvers which
conserve the quantities in question.

ẏ = f(t, y)

Computing the dynamics of system with direct representation of the
(SO(3))n group poses som practical challenges when attempting numer-
ical experiments. Rounding errors introduced during numerical simula-
tion will at some point break the orthogonality of the matrices, and re-
orthogonalizing the matrices is computationally costly. The matrices them-
selves are R3×3 and allocating 9 numbers for every coordinate is memory
consuming. Furthermore, storing the orientation in as a full 9-element ma-
trix is unnecessary as SO(3) has dimension 3 and can be represented by a
minimum of 3 parameters. We wish to avoid the euler-coordinates due to
the singularities in the resulting equations of motion, and instead turn to

45

46 CHAPTER 3. NUMERICAL SIMULATIONS

the unit-quaternions. By utilizing the homomorphism between SO(3) and
S3, we the equations of motion will be rewritten in terms of the direct repre-
sentation of the unit quaternions. The unit quaternions are a more compact
representation of rotations, and has the additional advantage of requiring
only a simple normalization to correct for errors. The application of the
unit quaternions to describe the kinematics of rigid bodies are not new (see
[CR99]), the novelty lies in the application of quaternions to multi-body
systems under the MFM formalism.

To solve for ω̇ the M∗ matrix must be inverted, and a appropriate nu-
merical scheme will be selected to perform this inversion. To compute a
solution to the equations which is as accurate as possible, we will select a
ODE-solver which preserves the properties of the system.

A number of simulations for systems of various size are computed in
order to assess the accuracy of the computed solutions. The coordinate-free
system is compared to a one- and two- body classical pendulum implemented
with parametrizing angles. Then the conservation of system quantities is
computed.

Toward the end of the chapter some models described by the coordinate-
model are simulated. A heavy symmetric top with one point, and some
N-body pendulums with external springs and dampers are computed.

3.1 Rewriting the equations

To solve for ω from 2.20, M∗ is inverted, and we obtain the expression.

ω̇ = M∗−1(−N∗ω + F ∗) (3.1)

These equations are in terms of the direct representation of SO(3). To
rewrite the equations we insert the homomorphisms R(q) : S3 → SO(3)
1.19, and ξ : TIS3 → so(3) 1.5.4 into the equations of motion and obtain
a new set of equations in terms of quaternions. Identifying the angular
velocity vector with the the complex part of the quaternion-tangent we can
write:

ξ(i/i− 1) =

[
0

1
2ω

(i/i− 1)

]
∈ H

Then the essential generalized coordinates and the essential generalized ve-
locities in terms of quaternions are

3.1. REWRITING THE EQUATIONS 47

q =

u(1)

...

u(n/n− 1)

 (3.2) ξ =

ξ(1)

...

ξ(n/n− 1)

 (3.3)

The angular velocities in TIS3 are pure complex quaternions. Thus by
keeping only the complex part, we may write

ξv =

ξ

(1)
v

...

ξ
(n/n− 1)
v

With these definitions eq.(3.1) may be rewritten in terms of unit-quaternions.

ξ̇v = 2 ·M∗(R(i/i− 1))
−1

(−N∗(R(i/i− 1), ω̂(i/i− 1))ω + F ∗) (3.4)

where the homomorphisms

� R(j/j − 1) = R(u(j/j − 1)) = I3 + 2u
(j/j − 1)
0 û

(j/j − 1)
v + 2

(
û

(j/j − 1)
v

)2

� ω̂(j/j − 1) = 2ξ
(j/j − 1)
v

for j = 1, . . . , n are plugged into the equations.

To simplify the notation we define the following:

M∗(t) =
1

2
M∗(R(u(j/j − 1)(t))), j = 1, . . . , n

N ∗(t) =
1

2
N∗(R(u(j/j − 1)(t)),

1

2
ξ̂(j/j − 1)
v) j = 1, . . . , n

which simplifies eq.(3.4) to

ξ̇v =M∗(t)−1(−N ∗(t)ξv + F ∗) (3.5)

These equations evolve on the Lie Algebra of S3. But in order to integrate
the system, we need accompanying information about the location on the the
group as well. The equations 1.15 u̇(i/i− 1) = u(i/i− 1) ? ξ(i/i− 1) provides the

48 CHAPTER 3. NUMERICAL SIMULATIONS

required information. They must be written as a matrix-vector expression.
We use the notation:

Q =

Q(u(1))

Q(u(2/1))
. . .

Q(u(n/n− 1))

which is a diagonal block-matrix with blocks of size 4× 4, with the matrix
representation 1.18 of the quaternion product on the diagonal. The time-
derivative of the essential generalized coordinates represented as quaternions
can then be written:

u̇(1)

...

u̇(n/n− 1)

 = Q

ξ(1)

...

ξ(n/n− 1)

 (3.6)

The system is written as a vector-valued ODE by defining the 7 · n term
vector composed of the concatenated essential generalized coordinates and
velocities. (The real part of the velocity quaternion is left out as it is always
zero).

y =

u(1)

...

u(n/n− 1)

ξ
(1)
v

...

ξ
(n/n− 1)
v

Concatenating eq.(3.6) with eq.(3.5) yields the vector valued ODE:[

q̇

ξ̇v

]
=

[
Qξ

M∗(t)−1(−N ∗(t)ξv + F ∗)

]
(3.7)

Thus we have the system expressed as a vector valued first-order differ-
ential equation.

ẏ = f(t, y),

This new system made up of the equation 3.4 together with u̇ = u ? ξ forms
a system evolving on (S3, TIS3).

Next we discuss the inversion of the M∗ matrix.

3.1. REWRITING THE EQUATIONS 49

3.1.1 Solution to linear system

When evaluating 3.7 the equations eq.(3.4) must be solved. For a n-body
system modeled with the direct representation of SO(3), the M∗ matrix will
be of size 3n×3n. As the terms of eq.(3.4) are generated during execution, we
may evaluate M∗, N∗ and F ∗ on each timestep tj , and view the equations
as a linear system of equations.

Ax = y, A ∈ Rm×m, x, y ∈ Rm

which is then solved numerically for ξ̇v at time tj .

A first notion would be to apply Gauss elimination to the system. Un-
fortunately this algorithm can be unstable for problems with poor condition
numbers, even with partial pivoting. Normally one would make an assess-
ment of the condition of the problem before accepting a solution from a
numerical solver. But during computation of the ODE with short time-
steps, a Runge-Kutta solution scheme will call the ODE-function thousands
of times, making the assessment on each and every call infeasible. But we
are in luck, because such considerations are in fact not required at all!

By taking a closer look at M∗ = B>MB, reveals a very useful property.

Theorem 3.1.1 (Positive definiteness of M∗). The matrix

M∗ = B>MB

is positive definite.

Proof. The mass matrix M 2.19 is positive definite by definition. The blocks
on the diagonal of the form M2j−1,2j−1 = mjI are all diagonal matrices and
thus symmetric positive definite. The blocks M2j,2j = Jj are the moment of
inertia tensors which are always symmetric positive definite.

It is easily seen by inspection that the columns of the B-matrix are
always linearly independent. The block-identity matrices located in a step
wise manner in the B-matrix which do not align horizontally with the one
another, as can be seen on the “spy” plot for the B-matrix for the system
of length 4 displayed in 3.1.

So with ∀y 6= 0

y>B>MBy = x>Mx > 0

as x 6= 0 due to the linear independence of the columns of B. Since M is
symmetric, M∗ = B>MB will be as well. This proves that M∗ is positive
definite.

50 CHAPTER 3. NUMERICAL SIMULATIONS

0 2 4 6 8 10

Column indices

0

5

10

15

20

Ro
w

in
di

ce
s

Figure 3.1: Spy plot of the B-matrix

The M∗ matrix is small and dense in addition to being symmetric positive
definite. The best algorithm for solving such systems of linear equations is
the Cholesky decomposition which decompose symmetric positive definite
matrices A to the form.

A = T>T

where T is a upper triangular matrix. [Tre97].
Applying the factorization we obtain M∗ = T>T followed by a forward

and a backward substitution procedure to the system, we can write:[
q̇

ξ̇v

]
=

[
Qξ

T−1T>
−1

(−N ∗ξv + F ∗)

]
Solution of a linear system by Cholesky decomposition is a backward

stable algorithm in the sense that it minimizes rounding errors.This makes
it preferable over the Gauss factorization which is categorized as “practically
stable” [Tre97, p. 166]. The backward stable nature of the solution of the
system by Cholesky factorization makes the solution to the sub-problem 3.4
as stable as it can possibly be on a computer with rounding errors.

Another advantage of the Cholesky decomposition is that the arithmeti-
cal cost is half of that required for Gauss elimination. This is a minor boost
to computation time, although most of the computation effort is spent on
constructing the B and Ḃ matrices.

However it should be noted that the error potential when using Gauss
in this case is practically non-existent. Gauss elimination is very accurate

3.1. REWRITING THE EQUATIONS 51

when applied to positive-definite systems. Normally partial pivoting is ap-
plied to ensure stability, which adds to the arithmetic cost. But partial
pivoting is not required for symmetric positive systems, and therefore the
relatively cheap Gauss elimination on pure form is well suited for this prob-
lem. Nevertheless, it can never beat the Cholesky factorization, which will
be the method applied throughout the numerical simulations.

52 CHAPTER 3. NUMERICAL SIMULATIONS

3.1.2 Choice of ODE integration scheme

The system of first order nonlinear ODE’s 3.7 can readily be solved by a
standard ODE integration scheme. To choose a scheme that is well suited
to solving the multi-body system, the solution space must be taken into
consideration.

The solution evolves on the unit-sphere S3 of quaternions of unit length.
For the solution of the integration scheme to be accurate, it must preserve
the unit-length of the quaternions with each step of the algorithm. This
may at first seem like a problem which would require the application of a
geometric integrator, but this is in fact not required. We observe that the
length of a quaternion

|u(t)| =
√
u† ? u

is a quadratic quantity. To conserve this property of the solution 2.1 from
[HLW05, Chapter 4, p. 101] provides precisely what we need.

Theorem 3.1.2 (Quadratic conservation law). Gauss-Legendre methods
conserve quadratic polynomials.

Thus we can conclude that all Gauss-Legendre methods integrates dif-
ferential equations on the S3 manifold exactly, which makes them a prime
candidate for solving the system. Consider the ν step implicit Runge-Kutta
scheme:

kj = yn + h

ν∑
i=1

aj,if(tn + cih,ki), j = 1, 2, . . . , ν

yn+1 = ynh

ν∑
i=1

bjf(tn + cjh,kj)

From [Ise09, Chapter 3] we have the methods three Gauss-Legendre meth-
ods: The implicit midpoint rule (IMR), 2-step Gauss-Legendre (GL2) and
3-step Gauss-Legendre (GL3). The parameters of the schemes are displayed
in the Butcher tableaux below.

1
2

1
2

1

(IMR)

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

(GL2)

3.1. REWRITING THE EQUATIONS 53

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

(GL3)

Higher order methods are available, but the implementation costs ex-
ceeds the rewards in accuracy. While the three-step scheme has the highest
order, the two-step Gauss-Legendre scheme is a better compromise between
computational cost and accuracy and is therefore the preferred method for
the rest of this thesis.

Runge-Kutta steps

The implicit schemes has a drawback in that the intermediate steps are
a solution of a nonlinear system of equations. Solving the system requires
additional computation which can be expensive in some cases. In this thesis,
the nonlinear system is solved by a simple functional-iteration [Ise09, p. 123].
Given the steps of the method expressed as the nonlinear system:

ξj = yn + h
ν∑
i=1

aj,if(tn + ci, ξi)

This is a nonlinear system of the standard form:

β = hg(β) + α

This can be solved by a functional iteration scheme. Provided a initial guess,
we have the iterative algorithm.

β[i+1] = hg(β[i]) + α

The initial guess is provided by a explicit Runge-Kutta scheme, with time-
nodes coinciding with those of the implicit scheme. The iteration is repeated
until the difference between two iterations falls below a specified tolerance
|β[i+1] − β[i]|∞ < tol.

A issue with the functional iteration approach is the rate of convergence.
For stiff problems, the step-length h must be severely restricted in order to
accurately solve for the steps. And thus, the functional iteration approach is

54 CHAPTER 3. NUMERICAL SIMULATIONS

not a option for stiff ODE’s as any advantage of the Implicit method is offset
by the computation cost. But as will be seen in the following section, the
functional-iteration is able to converge to the steps of the scheme in only
a few iterations for systems without high accelerations. And the simple
implementation makes it appealing.

Accuracy and Stability considerations

The implicit Gauss-Legendre methods conserve quadratic quantities pro-
vided that the steps of the method are solved exactly. And thus the ac-
curacy of the scheme hinges on our ability to solve the non-linear system
for the steps. For practical computations we must expect some errors from
rounding errors. If the error grows too large, and the solution starts to me-
ander away from unit length in the coordinates, a option is to periodically
project the solution back onto the group of unit-quaternions. As mentioned
before, a advantage of utilizing quaternions is the fact that this process sim-
ply involves normalizing the quaternion-coordinate. The projection process
on the SO(3) group on the other hand involves the more costly process of
orthogonolizing the matrix coordinate.

3.2. ANALYSIS OF NUMERICAL SOLUTIONS 55

3.2 Analysis of numerical solutions

In this section the numerical solution to the coordinate free model is ana-
lyzed. To verify that the coordinate-free formulation that has been derived
in the previous chapter models the behavior of a three-dimensional pendu-
lum, we compare the simulations to those for the classical models for solid
pendulums. A single and a double solid pendulum is modeled as a planar
pendulum with parametrizing angles and simulated with standard explicit
scheme to a strict error tolerance. The simulations are then compared to a
coordinate-free formulation for the same system. The coordinate-free mod-
els must produce a solution identical to the traditional models, provided
that the coordinate-free model is displaced the same angle about the same
axis as the classical model, and that there are no external forces other than
gravity.

Another measure on the validity of the solution is the conservation of en-
ergy and unit-length. The solution to a conservative system should conserve
the energy exactly as well as the unit-length of the quaternion coordinates.
These quantities will be examined for a single body system and a four-body
system.

The numerical solution of the models will in the beginning be computed
with the three-step Gauss-Legendre scheme (GL3) to the a high accuracy to
investigate the model, and the conservation of associated properties. Then
finally we will examine methods of lower order with more reasonable com-
putation costs, while maintaining accuracy to a acceptable degree.

3.2.1 Comparison to classical model

The simulation of a coordinate-free model of the solid three-dimensional
pendulum is computed. The solution is then compared to the well known
equations for a classical physical pendulum parametrized by one angle. The
behavior of the classical pendulum is well known, and will be a reference
solution to the coordinate-free model.

A pendulum shaped as a long narrow rod is fixed at point O located
at one end and free to rotate. With center of mass located at l

2 . The
parameters of the pendulum body is: The center of mass is located at the
volumetric center of the rod. The moment of inertia is taken to be that of
a rectangular prism.

56 CHAPTER 3. NUMERICAL SIMULATIONS

(a) Classical parametrized planar
pendulum

(b) Coordinate-free three-
dimensional pendulum

Figure 3.2: Single solid pendulum

Model 1: Classical solid pendulum

The rotation of the single solid pendulum is parametrized by the angle θ(t)
about the e1 axis. (see fig.(3.2a)). The restoring torque on the pendulum
is:

M = −mg l
2

sin(θ)

The moment of inertia is J = 1
3ml

2. Newton’s second law for rotating rigid

bodies provides the equations of motion Jθ̈ = M . Inserting the restoring
torque we obtain the classical model for the three-dimensional solid pendu-
lum.

Jθ̈ = −3g

l
sin θ

In order to integrate the system numerically, the system is rewritten to a
first-order form:

ẏ1 = f1(t, y1), y1 =

[
θ(t)

θ̇(t)

]

3.2. ANALYSIS OF NUMERICAL SOLUTIONS 57

System Parameters

Length l 2m

Width & Breadth 0.2m

Mass m 50kg

Table 3.1: Parameters for single three-dimensional pendulum

where

f1(y1) =

[
θ̇

−mg l2 sin θ

]
(3.8)

Model 2: The coordinate-free MFM equations

The coordinate free equations describes the solid three-dimensional pendu-
lum fixed at one end, and free to rotate about all three axes (see fig.(3.2b)).

The mass and length of the pendulum is the same as the 1-dimensional
system of equations. Provided that the three-dimensional pendulum starts
from a initial configuration rotated the same angle θ as the 1-dimensional
system about e1 and both oscillates under the effect of gravity, the dynam-
ical behavior of the two models must be identical.
The equations are assembled from the B, Ḃ, D and M matrices. For the
single three-dimensional joint these are trivial to formulate:

B =

[
−R(1)ŝ1,1

I

]
Ḃ =

[
−R(1)ω̂(1)ŝ1,1

0

]
The mass matrix is according to the definition:

M =

[
mI 0

0 J

]
,

where J is the inertia tensor for a prism.
Lastly, the D-matrix is according to the definition 2.15:

D =

[
0 0

0 ω̂

]
Thus we have the system 3.7

ẏ2 = f2(t, y2), y2 =

u(1)(t)

ξ
(1)
v (t)

58 CHAPTER 3. NUMERICAL SIMULATIONS

for the coordinate free model of the single three-dimensional pendulum.

Comparison of numerical simulations

The numerical simulation for 3.8 are computed with the solve ivp ODE
solver from the python scientific package scipy.integrate package with a
global and relative error tolerance rtol = 1e − 13 and atol = 1e − 13. The
chosen explicit scheme used by solve ivp solver is the RK45 scheme. This
solution is then regarded as a exact solution. Then3.7 is simulated with the
GL3 scheme. The initial conditions for the two systems are:

y1(t0) =

[
θ(t0)

θ̇(t0)

]
, where

{
θ(t0) = θ0

θ̇(t0) = 0
(3.9)

y2(t0) =

u(1)

ξ
(1)
v

 , where

u

(1)
0 (t0) = cos

(
θ0
2

)
u

(1)
v (t0) = sin

(
θ0
2

)
e1

ξ
(1)
v (t0) = 0

(3.10)

Where the initial angle of displacement is: θ0 = 0.1. The system eq.(3.7) is
integrated with the 3-step Gauss-Legendre scheme GL3.

Step-length To obtain a reference solution from the classical model, we
determine the step-length necessary to obtain a solution with a global error
below a required tolerance. By computing

y1(t) = yexact(t) + Chp

y2(t) = yexact(t) + C

(
h

2

)p
then subtracting x2(tN) from x1(tN) and solving for C, sufficient step-length
is obtained by requiring that hp < 1

C etol. Choosing step lengths h = 0.02 and
integrating over T = [0, 1] with the 6’th order 3-step Gauss-Legendre method
and requiring a tolerance of 10−14 gives the step length: h = 0.04. The
step-length h = 0.01 is not too computationally demanding, while providing
sufficient accuracy.

GL3 - Step Tolerance The non-linear solver applied to solve the steps
of the GL3 scheme is set to iterate to a tolerance of tol = 1e− 16 to obtain
a accurate solution of the steps of the implicit scheme as possible.

3.2. ANALYSIS OF NUMERICAL SOLUTIONS 59

Simulation Solving on the time interval T = [0, 10] by discretizing tn =
t0 = 0 < t1 < · · · < tN = T with time-step h = 0.01, the numerical

solutions y1(tn) =

[
θ(tn)

θ̇(tn)

]
and y2(tn) =

[
u(tn), ξv(tn)

]
n

on the discrete grid

are obtained. The solution to the coordinate free system must be mapped
to Euler angles before the solutions can be compared. By inverting u0 in
the definition: [

u0

uv

]
=

[
cos(θ/2)

sin(θ/2)n

]

we obtain the solution solution to the coordinate-free model in Euler angles:

θ2(tn) = 2 arccos(u0(tn)) (3.11)

The solutions of the coordinate-free and the classical models are compared
by subtracting

e = θ1(t)− θ2(t).

The obtained error is displayed in fig.(3.3). The discrepancy at the end of

0 2 4 6 8 10
t

4

2

0

2

4

Er
ro

r

1e 13

Figure 3.3: Difference in θ between reference solution and coordinate free
solution solved with GL3 and h=0.01 for the single three-dimensional pen-
dulum

the simulation is of the order of 1.92e−13. The error at the end of simulation
is at the same order as the absolute and relative tolerance of the explicit
solver.

60 CHAPTER 3. NUMERICAL SIMULATIONS

3.2.2 Double Pendulum Comparison

We verify the coordinate-free equations modelling the behavior of a multi-
body system, by comparing them to the model constructed with the stan-
dard approach of the MFM, which applies generalized coordinates and sym-
bolic expressions. Like in the previous section, the two models are solved
numerically, the coordinate-free solution is converted to euler-angles and the
two solutions are compared.

System-description The double pendulum is constructed from two rods
idealized as two long rectangular prisms the first connected to a joint at
origo, and the second connected at one end to a joint at the lower end of
the first joint. The Local reference frames are located at the centers of mass
which are taken to be the centers of the volumetric shape of the rectangular
prisms, and the e3 axis of the frame is aligned along the longest side of
the bodies. The systems are illustrated in fig.(3.4b) and fig.(3.4a). The

(a) Planar double pendulum (b) Coordinate-free model

Figure 3.4: Double three-dimensional pendulum

numerical values of the parameters for each body in the system are those
given in 3.1. The moments of inertia are those for a rectangular prism.

3.2. ANALYSIS OF NUMERICAL SOLUTIONS 61

The classical planar pendulum with parametrizing angles is derived with
the moving frame method (MFM). Symbolic expressions for the B- and Ḃ-
matrices are obtained by rewriting the kinematic equations for the transla-
tional and rotational velocities. The resulting equations are ODE’s in the
parametrizing angles and their time-derivatives.

ẏ1 = f2(t, y2), y1 =

θ1(t)

θ2(t)

θ̇1(t)

θ̇2(t)

The explicit derivation may be found in the appendix A.2.1.

The second coordinate-free model is as before 3.7 with length 2. The
explicit expressions for the B and Ḃ matrices are shown in the appendix
A.2.2. The matrices M and D are formulated according to the definitions
eq.(2.19) and 2.15. The resulting equations are ODE’s in the essential gener-
alized coordinates and velocities with the unit quaternions as representation
space.

ẏ2 = f2(t, y2), y2 =

u(1)(t)

u(2/1)(t)

ξ
(1)
v (t)

ξ
(2/1)
v (t)

Comparison of numerical simulations

The initial conditions for the two systems are:

y1(t0) =

θ1(t0)

θ2(t0)

θ̇1(t0)

θ̇2(t0)

 , where

θ1(t0) = θ0

θ2(t0) = 0

θ̇1(t0) = 0

θ̇2(t0) = 0

(3.12)

y2(t0) =

u(1)(t0)

u(2/1)(t0)

ξ
(1)
v (t0)

ξ
(2/1)
v (t0)

 , where

u1(t0) =

 cos
(
θ0
2

)
sin
(
θ0
2

)
e1

u2(t0) = I

ξ1(t0) = 0

ξ2(t0) = 0

(3.13)

62 CHAPTER 3. NUMERICAL SIMULATIONS

Where the initial angle of displacement is: θ0 = 0.1. The numerical simula-
tion for the model with parametrizing angles are computed with scipy.integrate.solve ivp

with the RK45 scheme with error tolerance rtol = 1e−13 and atol = 1e−13.
The system 3.7 is integrated with the 3-step Gauss-Legendre scheme GL3 on
t = [0, 10]. The Converting the coordinate free solution with 3.11 and com-
paring it to the solution of the traditional model yields the results displayed
in fig.(3.5). The solution of the two models remain close (error less than

0 2 4 6 8 10
t

3

2

1

0

1

2

3

Er
ro

r

1e 13

(a) Body 1

0 2 4 6 8 10
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Er
ro

r

1e 12

(b) Body 2

Figure 3.5: Difference in θ between reference solution and coordinate free
solution solved with GL3 and h=0.01

1e − 12) throughout the simulation. The double pendulum is the smallest
system which is also chaotic, meaning two initial values close to each other
can produce widely different solutions. We see however little of this phe-
nomenon, which can be attributed to the fact that the angular displacement
in the initial condition was small.

3.2. ANALYSIS OF NUMERICAL SOLUTIONS 63

3.2.3 Conservation of unit length and energy

A indication on how well the integration scheme is able to accurately solve
the system is its ability to maintain invariants of the system. In this sec-
tion we will investigate the conservation of quaternion unit length and to-
tal energy of the system. The solutions are computed with the three-step
Gauss-Legendre method to the strictest possible tolerance. When we are
assured that the properties of the system are conserved, we discuss lowering
the order of the method and loosening the tolerance on the solution of the
Runge-Kutta steps.

Unit length To evaluate the ability of the scheme 2.20 to maintain unit
length of the generalized coordinates, the length of the quaternion coordinate
is computed at each discrete time node. Then computing the error as follows

el = |q(tn)| − 1

System energy The system 3.7 for a friction-less pendulum is conserva-
tive. The error in energy is:

E = E0 −
1

2
q̇>M∗q̇ +mge>3 xcm (3.14)

The relative energy conservation error is computed as:

e =
E(t)− E0

E0
(3.15)

Conservation for single spherical pendulum

The conservation of energy and unit length is computed for the solution of
the coordinate free model of the single pendulum from the previous section,
and the results are displayed in fig.(3.6).

The deviation in unit-length remains steady at about 1e−15 which is at
about machine accuracy. The conservation of unit length is very good, and
there is hardly any need for re-normalizing the quaternion coordinates.

The computed deviation from the initial energy-sum remains at the level
of 10−11. While the accuracy is not as good as the conservation of unit
length, this accuracy is still very good. The order of the method is 6, and
we can expect a error of 1e−7 for a step-length of h = 0.01, thus the energy
is conserved to the same order as the method.

64 CHAPTER 3. NUMERICAL SIMULATIONS

0 2 4 6 8 10
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

|q
|

1e 15

(a) Deviation from unit length

0 2 4 6 8 10
t

2.0

1.5

1.0

0.5

0.0

E(
t)

E 0
E 0

1e 12

(b) Relative energy conservation error

Figure 3.6: Property conservation for the Single spherical pendulum simu-
lated with GL3

Conservation for 4-body spherical pendulum

To study the behavior of a multi-link spherical solid pendulum a system of
length 4 is analyzed. Like before, local frames of reference are assigned to

Figure 3.7: 4-body solid spherical pendulum

each body in the system, located at the center of mass and aligned with the
principal axes of the moment of inertia.

With the moving frame - method, extending the system with a arbitrary
number of additional joints is trivial. The B- and Ḃ-matrices are constructed
iteratively from the general expression for their block-entries from 2.3 and
2.4. Then constructing the mass matrix according to eq.(2.19) and D-matrix

3.2. ANALYSIS OF NUMERICAL SOLUTIONS 65

according to eq.(2.15), and all the components are in place to formulate
eq.(2.20).

To investigate numerical properties of the multi-body three-dimensional
pendulum of length 4. The resulting B- and Ḃ are 24× 12 matrices.

The resulting first-order system of differential equations eq.(3.7) is a 28-
term vector ODE-system.

y(tn) =

u(1)(tn)
...

u(4/3)(tn)

ξv(tn)
...

ξv(tn)

n

The initial conditions for the simulation is:

u(1)(t0) =

[
cos
(
θ0/2
)

sin
(
θ0/2
)
· e1

]
u(2)(t0) = u(3)(t0) = u(4)(t0) = I

ξ(1)
v (t0) = ξ(2/1)

v (t0) = ξ(3/2)
v (t0) = ξ(4/3)

v (t0) = 0

where θ0 = 0.1
The system eq.(3.7) is integrated on the discrete time steps t0 = 0 < t1 <

· · · < tN = T of the time span t = [0, 10] and with a time step h = 0.01.
The numerical integration scheme is the three-step Gauss-Legendre scheme
GL3. The computed numerical solution y(tn) is obtained.

Conservation of unit length and energy

Again, we investigate how well the scheme maintains the invariants of the
system. The energy and unit-length-conservation is computed in the same
manner as the previous section on the single pendulum. The unit lengths of
the quaternions are on the order of εmach throughout the time-span. The en-
ergy conservation error remains at the order of εmach throughout the times-
pan. Results are displayed in fig.(3.8).

3.2.4 Tolerance of solution to Runge-Kutta steps

In the previous sections, the solutions were computed with the three-step
Gauss-Legendre methods. The tolerance of the non-linear solver used to

66 CHAPTER 3. NUMERICAL SIMULATIONS

0

2

4

1e 15 Link 1 1e 15 Link 2

0.0 2.5 5.0 7.5 10.0
0

2

4

1e 15 Link 3

0.0 2.5 5.0 7.5 10.0

1e 15 Link 4

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

q

 1

(a) Conservation of unit length - 4 body
pendulum

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

E(
t)

E 0
E 0

1e 14

(b) Energy Conservation -

Figure 3.8: Property conservation, 4 body pendulum simulated by GL3
scheme with strict step-tolerance

solve for the steps of the implicit method was set to 1e-15. This is excessive
since the order of the solution scheme is 6, thus it makes sense to solve the
steps of the method to a tolerance which corresponds to the order of the
method itself. In addition, the computation of the steps of the three-step
Gauss-Legendre method is costly which leads us to consider the GL2 scheme.

The proper tolerance on the non-linear solver implemented to determine
the intermediate steps of the Gauss-Legendre is obtained by comparing ex-
periments on the the four-body three-dimensional pendulum from section
3.2.3. The system is solved with explicit RK45 solver computed with a
absolute- and relative- tolerance of 10−13. The system is solved with the
implicit scheme GL2 with a tolerance tol = 1e − 9 on the solution of the
intermediate steps: Simulating the system we see that the explicit and
implicit solver has the following error in unit length at T = 10: The GL2

Error in quaternion unit-length at time T and function evaluations

Link 1 Link 2 Link 3 Link 4 Relative Function

energy error evaluations

RK45 5.55e-15 2.47e-14 2.24e-14 2.50e-14 7.22e-14 15794

GL2 2.22e-15 5.55e-16 3.00e-15 1.66e-15 3.00e-13 11334

Table 3.2: Error in quaternion coordinate unit-length at end of integration

method with the intermediate steps of the scheme computed to a tolerance
tol = 1e − 9 computes the solution to accuracy comparable to the explicit
scheme set to the strictest tolerance.

3.2. ANALYSIS OF NUMERICAL SOLUTIONS 67

0.0

0.5

1.0
1e 14 Link 1 1e 14 Link 2

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0
1e 14 Link 3

0.0 2.5 5.0 7.5 10.0

1e 14 Link 4

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

q

 1

(a) Deviation from unit length

0 2 4 6 8 10
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E(
t)

E 0
E 0

1e 13

(b) Energy Conservation

Figure 3.9: Property conservation, 4 body pendulum simulated by GL2
scheme with looser step-tolerance

0

1

2

3
1e 14 Link 1 1e 14 Link 2

0.0 2.5 5.0 7.5 10.0
0

1

2

3
1e 14 Link 3

0.0 2.5 5.0 7.5 10.0

1e 14 Link 4

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

q

 1

(a) Deviation from unit length

0 2 4 6 8 10
t

0

1

2

3

4

5

6

7

8

E(
t)

E 0
E 0

1e 14

(b) Energy conservation

Figure 3.10: Property conservation, 4 body pendulum simulated by RK45
scheme with strict absolute and relative error-tolerance

The advantage of the Gauss-Legendre method comes to light when ob-
serving the number of calls to the ODE-function. The explicit scheme calls
the function a total number of 15794 times, while the two-step implicit
Gauss-Legendre function calls the function a total number of 11334 times.
Thus even when the implicit method must solve a non-linear system for
each step of integration, it is still able to compute the system to a accuracy
rivaling the explicit method at a significantly lower number of iterations.

We also observe that stepping down to a 2-step Gauss-Legendre method,
and reducing the tolerance of the solution of the steps does not have a severe
impact to the accuracy of the solution. In fact, while the error in conserved
energy is at the order of 10−13 observed the plot fig.(3.9), the error at the

68 CHAPTER 3. NUMERICAL SIMULATIONS

end of simulation is at the order of 10−15, a error one may consider exact.
Thus we may safely use this lower order method provided a exceptional
accuracy is not required.

3.2.5 Computation time for N-body pendulum

We here investigate the computation time for systems of increasing number
of bodies in the n-body pendulum-model solved with the three-step Runge-
Kutta method. The links of the N-body pendulum individually have the
parameters 3.1. The pendulum starts from rest with the first body displace
0.1rad about the x-axis. The system is integrated on t = [0, 10] with a
time step h = 0.01. The maximum RAM allocated by the python-process
solving the equations was 90MB. The average computation times of 7 runs
are displayed in 3.3.

Timings

Number of links in system Computation time

4 719ms± 4.31ms

8 2.27sec± 15.8ms

16 10.7sec± 122ms

32 45.6sec± 1.55s

48 1min43s± 1.94s

64 3min24s± 5.52s

Table 3.3: Computation times for incresing system length computed with
the GL3 scheme

Plotting the time and links reveals more regarding the increases in com-
putation time. The loglog plot of system of time and system length is linear
with a slope ≈ 2. This shows that the computation time increases quadrati-
cally for a increase in system length, thereby verifying the observation in 2.5
that the expressions composing the B- and Ḃ-matrix grows quadratically.
In addition this also indicates that the computation time is dominated by
the generation of the B- and Ḃ-matrices.

The maximum amount of RAM allocated to the python process during
execution of the solver was 90MB. In practical terms, the computation time
is more constraining than the memory requirements.

3.2. ANALYSIS OF NUMERICAL SOLUTIONS 69

101

Links

100

101

102

Ti
m

es

Figure 3.11: Loglog plot of system length and computation time for systems
of increasing length

70 CHAPTER 3. NUMERICAL SIMULATIONS

3.3 Applications

In this section we will look at some application of the coordinate-free for-
mulation of the Euler-Lagrange equations. First we simulate a solution of
the heavy top.

A strength of the MFM method is the ease with which external forces
may be included into the model. A number of models with spring-damper
systems and torsional spring-dampers applied to them are simulated. With
these simulations we seek to demonstrate the versatility and robustness of
the method in combination with solution schemes.

For these models, visual animations have been rendered to better give
a better impression of the systems under consideration. The videos are
uploaded to youtube, and the links to the animations are given at the end
of each section.

3.3.1 Heavy symmetrical top

Figure 3.12: Symmetric heavy top

We will now simulate a solution to a heavy symmetrical top, with one
point fixed. The top is idealized as a rod with a flat disc mounted at the
top. The radius and length of the disc and rod are:

The center of mass is the average of the two composed bodies. The den-
sity of the rod and the disc is 1000kg/m3. The moment of inertia is moments

3.3. APPLICATIONS 71

System Parameters

disc rod

radius 0.4m 0.05m

h 0.05m 0.4m

Table 3.4: Parameters for the solid top

of inertia of the two bodies, translated with the parallel axis theorem.

Simulation The generalized coordinates of the top is u ∈ S3, and the
resulting system 3.7 is a 7-term vector-valued ODE.

The initial conditions are:

y(t0) =

[
u(t0)

ξv(t0)

]
where

u(t0) =

[
cos(θ(t0)

2)

sin(θ(t0)
2)e1

]
ξv(t0) = θ̇(t0)e3

θ(t0) = π
6

θ̇(t0) = 10.

where the initial angle θ(t0) is a angular displacement of the figure axis away
from the vertical position, and θ̇(t0) is the initial angular velocity of the top
about its local axis.

The system eq.(3.7) is integrated on the discrete time steps t0 = 0 <
t1 < · · · < tN = T with the time range [0, 10] and time step h = 0.01.
The numerical integration scheme is the three-step Gauss-Legendre scheme
GL3. The computed numerical solution y(tn) is obtained. A animation of
the solution is displayed in.

Animation of heavy symmetric top

https://youtu.be/cOL68IbniPE

For the symmetric top, the validity can be verified by inspecting the
momentum conservation of the system. A well known fact regarding the
behavior of the heavy top is conservation of momentum about the figure-
axis. A accurate computation of the system must conserve the angular
momentum. The conservation of this property can be observed by projecting
the momentum onto the figure axis (third axis).

e = H3(t)−H3(t0) = e
(1)
3

>
Jω(t)− e(1)

3

>
Jω(t0)

The numerical computation reveals that the momentum is conserved exactly.

https://youtu.be/cOL68IbniPE

72 CHAPTER 3. NUMERICAL SIMULATIONS

3.3.2 4-body pendulum with torsional springs

An interesting modification to the model is the introduction of torsional
springs at the joints which resist bending. Considering a 4-body chain as
displayed in 3.13 where the parameters are given in 3.1. On the joint between
body j and body j+1, we have three torsional springs attached. The springs
are attached at the joints of the 4-body pendulum such that the neutral
configuration of the system is the vertical orientation of all the links. The
resisting moments are illustrated in 3.13 with the round arrows located at
the joints. The orientation of body j + 1 can be converted to euler angles

Figure 3.13: 4-body pendulum with torsional springs

(θ(t), φ(t), ψ(t)) about the local axes of the frame (j). The orientation
is converted to euler-angles by computing the rotation matrix generated by
the 3-2-1 sequence of Euler angles

R(j/j − 1) = Rz(t)Ry(t)Rx(t)

=

cos(θ) cos(φ)

cos(θ) sin(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)

Solving the entries in the first collumn and last row, yields the expressions
for the euler angles in terms of the rotation matrix (4 terms in the upper

3.3. APPLICATIONS 73

right are not used and left out).

θ(t) = arcsin(−R(j/j − 1)
3,1)

φ(t) = arctan(
R

(j/j − 1)
3,3

R
(j/j − 1)
3,2

)

ψ(t) = arctan(
R

(j/j − 1)
2,1

R
(j/j − 1)
1,1

)

If we interpret the Euler angles as rotational displacement away from the
neutral position of the body, the moment applied to body j is:

e(j)M = −e(j−1)k

θφ
ψ

And the moment applied to j + 1

e(j+1)M = e(j+1)R(j/j − 1)>k

θφ
ψ

The moments are introduced into the force vector M in 2.16. The spring
coefficients are given in 3.5

Spring coefficients

k1 4000kg·m
s2

k2 3000kg·m
s2

k3 2000kg·m
s2

k4 1000kg·m
s2

Table 3.5: Coefficients for torsional springs about the local e1 and e2 axes

Simulation Initially the bodies are rotated a angle θ0 about the first axis,
followed by a rotation about the second axis. The orientations are computed
by the quaternion product:

u(1)(t0) = u(2/1)(t0) = q
3/2)(t0) = q

4/3)(t0) =

[
cos(θ02)

sin(θ02)e1

]
?

[
cos(θ02)

sin(θ02)e2

]

74 CHAPTER 3. NUMERICAL SIMULATIONS

The system starts from rest.

ξ(1)
v (t0) = ξ(2/1)

v (t0) = ξ(3/2)
v (t0) = ξ(4/3)

v (t0) = 0

The system eq.(3.7) is integrated on the discrete time steps t0 = 0 <
t1 < · · · < tN = T with the time range [0, 15] and time step h = 0.01.
The numerical integration scheme is the three-step Gauss-Legendre scheme
GL2. The computed numerical solution y(tn) is obtained. The conservation
of quaternion-unit length is displayed in fig.(3.14). We observe that dispite

0

1

2

1e 13 Link 1 1e 13 Link 2

0 5 10 15
0

1

2

1e 13 Link 3

0 5 10 15

1e 13 Link 4

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

q

 1

Figure 3.14: Conservation of quaternion-unit lengths

large displacements, the scheme is able to conserve unit-length without the
need for normalization.

Animation of the system solution is displayed in the video in the following
link.

Animation of 4-body pendulum with torsional springs

https://youtu.be/EA6zu04TB7I

3.3.3 16-body pendulum

As an example of a significantly longer system. We define a 16-body system.
The first link is hinged to origo, and every subsequent body is hinged at the
end of the previous link. The hinges are all spherical, allowing the links to
rotate in any direction. The parameters of the bodies are those given in
3.1. The dynamic system 3.7 is a 122-term vector ODE system generating
a solution on (S3)16 and TIS3.

https://youtu.be/EA6zu04TB7I

3.3. APPLICATIONS 75

Figure 3.15: 16-body pendulum

Energy-/Length- conservation

To assess the accuracy, we investigate the conservation of length of quaternion-
coordinates e = |q(tn)|−1 and energy according to 3.14 and 3.15. The initial
condition for the first coordinate q1(t0) is expressed by 1.13 with θ0 = π

8 and
the remaining coordinates without any displacement. The results from inte-
gration with the GL2 method are displayed in 3.16a and 3.16b. Unit length

0

1

2

1e 15 Link 4 1e 15 Link 8

0.0 2.5 5.0 7.5 10.0
0

1

2

1e 15 Link 12

0.0 2.5 5.0 7.5 10.0

1e 15 Link 16

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

q

 1

(a) Conservation of unit length for quater-
nion coordinates on link 4, 8, 12 and 16

0 2 4 6 8 10
t

0

1

2

3

4

E(
t)

E 0
E 0

1e 14

(b) Energy conservation

Figure 3.16: Conservation of energy and quaternion-unit length for the 16-
body pendulum solved with GL2 scheme with a step length h=0.01

and energy is conserved even for this long system.

76 CHAPTER 3. NUMERICAL SIMULATIONS

With external forces

Several types of external forces may be applied to the model. This spring-
damper is added to the system. The spring-damper with neutral length lN
is attached at the end of the last body in the system at one end and in the
inertial frame at the other. This is illustrated in fig.(3.17). The attachment

P

Figure 3.17: Spring loaded/damped system

point on the last body of the 16-body pendulum is.

(eI , xp(t)) = eIE(16)(t)

[
I sp
0 1

]
and the attachment point in the inertial frame is

(eI , xcp) = eI

[
I xcp
0 1

]
The vector from the connection points in the inertial frame is then:

xs(t) = xIp(t)− x(I)
cp

from which we compute the spring stretching/compression:

s = lN −
∣∣xs(t)∣∣

and direction of the spring

n(t) =
xs(t)∣∣xs(t)∣∣

3.3. APPLICATIONS 77

Thus the spring-forces in the inertial frame is:

f I
s

= eIk · s · n(t)

The moment applied to the body is:

Ms(t) = sp × f (16)
s

(t), f (16)
s

(t) = R(16)>f I
s
(t)

where the index denotes that the vectors are expressed in the local frames.

Damper

The velocity of the moving point on the 16’th body where the spring/damper
is connected is

eIĖ(16) = eIE(16)Ω(16)

[
I xp
0 0

]

The velocity in the direction of the damper is

vd(t) = n(t) · vp(t)

And the damper force defined as proportional with the velocity with which
the damper is extended is then.

f I
d

= c · vd(t)

Moments is computed in the same manner as the spring force.

M = sp × f (16)
d

, f (16)
d

(t) = R(4)>f I
d

Assembling the two, the force vector is:

F =

eI − g
0
...

eI(−g + f
d
(t) + f

s
(t))

e(16)(Md(t) +M s(t))

78 CHAPTER 3. NUMERICAL SIMULATIONS

Torsional damper

A issue with a large multi-body system is the chaotic nature of the differen-
tial equations modeling the system. After a short time-span, high frequency
oscillations arise. This causes severe issues for the non-linear solver solv-
ing the steps of the implicit scheme, which is unable to converge for severe
oscillations. To mitigate this problem, dampers on the joints between bod-
ies is introduced. The dampers apply a moment to the pair of bodies are
computed as:

M
(j)
d = −cω(j/j − 1)

and

M
(j−1)
d = cR(j/j − 1)M

(j)
d

Other Parameters Some more parameters regarding the system.

Spring coefficient, k 800kg/s2

Damper coefficient, c 50kg/s

Joint-damper coefficient 70kg ·m2/s

Table 3.6: Torsional spring & damper parameters

The moments of inertia is idealized as a rectangular prism with length
2m and sides 1/4m.

Simulation The resulting first-order equations eq.(3.7) is a 112-term vec-
tor ODE-system in terms of the vector:

y(tn) =

u1)(tn)
...

u(16/15)(tn)

ξ
(1)
v (tn)

...

ξ
(16/15)
v (tn)

n

3.3. APPLICATIONS 79

The quaternions and angular velocities in the initial initial conditions y(t0)
are:

u(1)(t0) =

[
cos
(
θ0/2
)

sin
(
θ0/2
)
· e1

]
u(2/1)(t0) = · · · = u(16/15)(t0) = I

ξ(1)(t0) = · · · = ξ(16/15)(t0) = 0

The system eq.(3.7) is integrated on the discrete time steps t0 = 0 < t1 <
· · · < tN = T with the time range [0, 10] and time step h = 0.01. The
numerical integration scheme is the three-step Gauss-Legendre scheme GL3.
The computed numerical solution y(tn) is obtained. A animation of the
solution is displayed in the following link:

Animation of 16-body spring loaded pendulum

https://youtu.be/a_ibo_unOog

The length conservation of link 4, 8, 12 and 16 are displayed in fig.(3.18).
We see that the unit-length of the quaternion solution is well maintained.

0

1

2

3
1e 13 Link 4 1e 13 Link 8

0.0 2.5 5.0 7.5 10.0
0

1

2

3
1e 13 Link 12

0.0 2.5 5.0 7.5 10.0

1e 13 Link 16

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

q

 1

Figure 3.18: Conservation of quaternion length for 16-body system

3.3.4 The 64-body pendulum

As an example of a significantly longer system. We define a 64-body system.
The first link is hinged to origo, and every subsequent body is hinged at the

https://youtu.be/a_ibo_unOog

80 CHAPTER 3. NUMERICAL SIMULATIONS

Figure 3.19: 64-body pendulum

end of the previous link and free to rotate in any direction. The parameters
of the bodies are those given in 3.1. The dynamic system 3.7 is a 672-term
vector ODE system generating a solution on (S)16. The pendulum is coiled
in the x/y-plane and drops down upon release. To suppress wild oscillations,
torsional dampers are attached at the joints. Parameters of the bodies in the
system are given in 3.1, the moments of inertia is the one for a rectangular
cuboid and the joint-damper coefficients are 70kg/s.

Animation of 64-body pendulum falling from rest

https://youtu.be/efhnb3jQkas

https://youtu.be/efhnb3jQkas

3.4. REMARKS ON SIMULATIONS 81

3.4 Remarks on simulations

In this chapter we have shown a method of rewriting the system of equations
to standard form for ODE’s by utilizing the positive definiteness of the M∗

matrix. It has been shown that the implicit Gauss-Legendre Runge-Kutta
schemes are solve the system accurately for a computation cost which is lower
than for explicit Runge-Kutta schemes. In particular, the two-step Gauss-
Legendre scheme has been demonstrated to provide a suitable compromise
between accuracy and computation cost.

Computation cost We have shown that the computation increases quadrat-
ically for a increase in system length. The RAM required to evaluate the
ODE function was negligible, thus verifying that the generation of the B-
and Ḃ-matrices numerically upon evaluation from the expressions derived
in chapter 2 is far more efficient than deriving the numerical expressions for
the matrices on beforehand.

82 CHAPTER 3. NUMERICAL SIMULATIONS

Chapter 4

Conclusion

In this thesis we have derived a coordinate-free formulation of the Euler-
Lagrange equations within the formalism of the Moving-Frame method. The
fusion of the coordinate-free approach by Leok et.al. [TLM17] and the Mov-
ing Frame Method by Murakami et.al [MI19] has been shown to produce the
equations of motion for multibody systems which are stable, cheap and which
can be applied to n-body solid spherical pendulums of arbitrary length.

Expressions for generating the B- and Ḃ-matrices have been derived. It
has been shown that these expressions are efficient for computing the ma-
trices numerically when required from the evaluation of the ODE function;
both in terms of computation and memory cost. The proposed method
has also turned out to be easily scalable to larger multibody systems. In
implementation terms, an advantageous feature of this method is that the
characteristics of the systems are entirely contained within the B and Ḃ-
matrices. When a scheme for computing the B-matrix is established, a
standard framework for computing the equations can then be employed to
solve the equations. By experiment it has been shown that computations of
system is feasible at least up to length n = 64. Longer systems are tractable
although computation time increases significantly.

The implicit Gauss-Legendre Runge-Kutta schemes have been shown to
be accurate and efficient for computing numerical solutions to the coordinate-
free differential equations. The implementation of the methods is fairly ac-
curate even when the implicit iterations (solved by fixed point iteration) are
solved with a fairly low tolerance. This is much better than an explicit RK-
scheme which needs to be computed with much stricter error-tolerance in
order to obtain the same level of accuracy. It has also been shown that the
inversion of the M∗-matrix , due to its symmetric positive definiteness, is

83

84 CHAPTER 4. CONCLUSION

very stable. This property also rewards us with savings in computation time
in comparison to other schemes and effectively eliminates worries regarding
the inversion process.

The application of the group of unit quaternions as generalized coordi-
nates was shown to be a good choice for generalized coordinates of rotating
bodies described by Lagrangian mechanics. They are cheap in terms of
storage, and the simulation of the resulting equations of motion by the im-
plicit Gauss-Legendre schemes maintains automatically the solution within
the group of unit quaternions, a property that does not hold for explicit
RK-schemes.

In this thesis we considered only free spherical rotations. In many appli-
cations, rotations may be restricted to one or two axes, or the body restricted
to translate along a line or on a plane. We believe it is possible to describe
the generating expressions for the corresponding constrained B and Ḃ ma-
trices, however, this was outside the scope of this thesis and is a topic for
further work.

Possible further work A possible future development is to derive meth-
ods for constraining the system. With the application of Lagrangian mul-
tipliers, the motion of the system may be further constrained, opening the
way to many additional applications in engineering.

Another possible avenue of study is to recast the problem as the Hamil-
tonian, and study the application of symplectic methods to the system. By
applying the Legendre transform to the Lagrangian and working out the
terms we arrive at the Hamiltonian:

H =
1

2
B>M∗−1B

Even though this has a nice compact form, it is difficult to analyze and
even more difficult to compute. In particular Hamilton’s equations involve
the partial derivative of the Hamiltonian with respect to the generalized
coordinates. As M∗ is dependent on the generalized coordinates, the par-
tial derivative of its inverse needs to be evaluated which is not a simple
undertaking.

Appendix A

Appendix

85

86 APPENDIX A. APPENDIX

A.1 Rewriting the operator

The right adjoint operator may be rewritten as follows:

Adexp(ω̂t)ξ̂ =

∧

R>(t)ξ

The new expression for the adjoint is obtained with the identity:

Adexp(ω̂t)ξ̂ = exp(adtω̂)ξ̂

The new form of the adjoint is obtained by rewriting the exponential of the
little adjoint. We have R = eω̂t.

Adexp(ω̂t)ξ̂ = exp(adtω̂)ξ̂

= ξ̂ + [ξ̂, ω̂]t+
1

2!
[[ξ̂, ω̂], ω̂]t2 +

1

3!
[[[ξ̂, ω̂], ω̂], ω̂]t3 +O(t4)

= ξ̂ +
̂̂
ξωt+

1

2!
[
̂̂
ξω, ω̂]t2 +

1

3!
[[
̂̂
ξω, ω̂], ω̂]t3 +O(t4)

= ξ̂ − ̂̂ωξt+
1

2!
[−̂̂ωξ, ω̂]t2 +

1

3!
[[−̂̂ωξ, ω̂], ω̂]t3 +O(t4)

= ξ̂ − ̂̂ωξt+
1

2!
̂̂ω2ξt2 − 1

3!
̂̂ω3ξt3 +O(t4)

= ê−ω̂tξ

= R̂>(t)ξ

A.2 Kinematics for the double pendulum

A.2.1 B and Ḃ -matrices with paramterizing coordinates

The symbolic expression for the B-matrix is most easily tackled head-on by
explicitly developing the expressions for the translation velocities in the in-
ertial frame ẋ1, ẋ2 and the angular velocities in the local frame ω1, ω2 using
the fundamental rotation matrices with symbolic trigonometric expressions
in the entries.

ẋ1(t) = R(1)ω̂(1)s1,1

ẋ2(t) = d
dtx1(t) +R(1)ω̂(1)s1,2 +R(2)ω̂(2)s2,1

A.2. KINEMATICS FOR THE DOUBLE PENDULUM 87

The matrices are the fundamental rotation matrices about the x-axis; R(1)(t) =
eê1θ(t), R(2/1) = eê1θ2(t) and the angular velocities are the Lie algebra accom-
panying these rotation matrices ω̂(1) = eêθ̇1(t), ω̂(2/1) = ê1θ2(t). By writing
out the expressions explicitly we obtain:

ẋ1(t) =

 0

−1
2 l sin

(
θ1(t)

)
d
dtθ1(t)

1
2 l cos

(
θ1(t)

)
d
dtθ1(t)

ω(1)(t) =

d
dt θ1(t)

0

0

ẋ2(t) =

0

−1
2 l sin

(
θ1(t) + θ2(t)

)
d
dtθ2(t) +

(
−1

2 l sin
(
θ1(t) + θ2(t)

)
− l sin

(
θ1(t)

))
d
dtθ1(t)

1
2 l cos

(
θ1(t) + θ2(t)

)
d
dtθ2(t) +

(
1
2 l cos

(
θ1(t) + θ2(t)

)
+ l cos

(
θ1(t)

))
d
dtθ1(t)

ω(2) =

d
dtθ1(t) + d

dtθ2(t)

0

0

Then by manually reordering the terms as a matrix vector expression in the
euler angles θ̇1, θ̇2, the expressions are assembled into the B-matrix, and we
obtain:

B =

0 0

− l sin (θ1(t))
2 0

l cos (θ1(t))
2 0

1 0

0 0

0 0

0 0

− l sin (θ1(t)+θ2(t))
2 − l sin

(
θ1(t)

)
− l sin (θ1(t)+θ2(t))

2
l cos (θ1(t)+θ2(t))

2 + l cos
(
θ1(t)

) l cos (θ1(t)+θ2(t))
2

1 1

0 0

0 0

88 APPENDIX A. APPENDIX

With the B-matrix formulated symbolically, the Ḃ-matrix is obtained by
simply taking the derivative of the B-matrix entry by entry. The M-matrix
2.19 and D-matrix 2.15 are formulated according to the definitions.

With all components of the system 2.20 defined we solve the system
by introducing the angular velocity variables αi = αi, and rewriting the
equations we obtain:

θ̇1

θ̇2

α1

α2

 =

 α1

α2

M∗−1 (−N∗q̇ + F ∗)

Where the inverse of the M∗ matrix may be solved with the formula for
the inverse of a 2 × 2 matrix. When solving the equations in terms of
parametrizing coordinates, we need not be concerned for the conservation of
any properties concerning the coordinates themselves, as was necessary for
the quaternion coordinates. A explicit method such as the RK45 scheme is
suitable for this problem.

A.2.2 Coordinate-free equations for the 2-body pendulum

B and Ḃ matrices are for the coordinate-free model are composed by the
expressions eq.(2.30) and eq.(2.35). For the 2-body pendulum, these are as
follows:

B =

−R(1)ŝ1,1 0

I 0

B
(1)
1 −R(1)ŝ1,2R

(1)> −R(2)ŝ2,1R
(2/1)> −R(2)ŝ2,1

R(2/1)> I

Ḃ =

−R(1)ω̂(1)ŝ1,1 0

0 0

Ḃ
(1)
21 −R(1)ω̂(1)ŝ1,2 −R(2)

(
ω̂(2)ŝ2,1 − ŝ2,1ω̂

(2/1)
)
R(2/1)> −R(2)ω̂(2)ŝ2,1

−ω̂(2/1)R(2/1)> 0

Bibliography

[Axl15] Sheldon Axler. Linear algebra done right. Springer, 2015.

[CR99] Evangelos A. Coutsias and Louis Romero. The quaternions with
an application to rigid body dynamics. 1999.

[Gol00] Herbert Goldstein. Classical Mechanics. Addison Wesley, 2000.

[HJ85] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cam-
bridge University Press, 1985.

[HLW05] Ernst Hairar, Christian Lubich, and Gerhard Wanner. Geomet-
ric Numerical Integration. Springer, 2005.

[IMKNZ00] Arieh Iserles, Hans Z. Munthe-Kaas, Syvert P. Nørsett, and
Antonella Zanna. Lie-group methods. Acta Numerica, pages
216–365, 2000.

[Ise09] Arieh Iserles. First Course in the Numerical Analysis of Dif-
ferential Equations. Cambridge University Press, 2009.

[Lac07] Claude Lacoursière. Ghosts and Machines: Regularized Varia-
tional Methods for Interactive Simulations of Multibodies with
Dry Frictional Contacts. PhD thesis, Umeaa University, June
2007.

[MI19] Hidenori Murakami and Thomas J. Impelluso. Moving Frame
Method in Dynamics - A Geometrical Approach. Pearson Pub-
lishing, 2019.

[MLS94] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Math-
ematical Introduction to Robotic Manipulation. 1994.

[Ryk18] Thorstein Rykkje. Lie groups and the principle of virtual work
applied to systems of linked rigid bodies, June 2018.

89

90 BIBLIOGRAPHY

[Sti08] John Stillwell. Naive Lie Theory. Springer, 2008.

[Str15] Steven H. Strogatz. Nonlinear Dynamics and Chaos. Westview
press, 2015.

[TLM17] Lee Taeyoung, Melvin Leok, and N. Harris McClamroch. Global
Formulations of Lagrangian and Hamiltonian Dynamics on
Manifolds. springer, 2017.

[Tre97] Nicholas Trefethen. Numerical Linear Algebra. SIAM, 1997.

	Preliminaries - Kinematics and matrix groups
	Lie Matrix Groups
	Lie matrix groups

	SO(3)
	The Lie algebra of SO(3)
	Exponential Function
	Adjoint Operator
	Kinematics in the Moving Frame Method - Rotations
	Rewriting the adjoint

	Euclidean motion - SE(3)
	Lie algebra
	Exponential function
	Kinematics with SE(3)

	Kinematics of the n-body pendulum
	The S3 of unit Quaternions
	Definitions
	Rotations
	The group of unit quaternions S3
	Quaternions as real matrices

	Rigid body dynamics
	Lagrangian mechanics
	Variation on SE(3)

	Euler-Lagrange equations - Multibody system
	Deriving the equations of motion
	Euler-Lagrange equations for coordinate-free N-body pendulum

	B - Matrix
	Translative velocity terms
	Rotational terms
	Final assembly

	 matrix
	Constructing : Translation terms
	Angular terms
	Final Assembly

	Final form of the equations

	Numerical Simulations
	Rewriting the equations
	Solution to linear system
	Choice of ODE integration scheme

	Analysis of numerical solutions
	Comparison to classical model
	Double Pendulum Comparison
	Conservation of unit length and energy
	Tolerance of solution to Runge-Kutta steps
	Computation time for N-body pendulum

	Applications
	Heavy symmetrical top
	4-body pendulum with torsional springs
	16-body pendulum
	The 64-body pendulum

	Remarks on simulations

	Conclusion
	Appendix
	Rewriting the operator
	Kinematics for the double pendulum
	B and -matrices with paramterizing coordinates
	Coordinate-free equations for the 2-body pendulum

