
 
 
 
 
NUTRIGENOMIC STUDY OF LIPID METABOLISM IN 

ATLANTIC SALMON (SALMO SALAR L.) 
 

- THE EFFECTS OF DIETARY PLANT OIL INCLUSIONS 

 

Ann-Elise Olderbakk Jordal 

 
 
 

 

Dissertation for the degree philosophiae doctor (PhD)  

at the University of Bergen 

 

 

April 2006 





 i 

 

 

 

“Every experiment proves something. If it doesn’t prove what you 

wanted it to prove, it proves something else” 

 
Prof. Anon  
 
 
 
 
 
 
 
 
 

 

                       
 



 ii 

 

Preface  

The present work was conducted at NIFES during the years 2001 to 2005, and was financially 

supported by RAFOA (“Researching Alternatives to Fish Oils in Aquaculture”, Q5RS-2000-30058 

funded by EU, The Fifth Framework Programme). I would like thank Professor Øyvind Lie, the 

director at the Institute during this period, for being a co-supervisor at the end and for his 

encouragements during my stay at NIFES.  

First of all I would like to thank my supervisors, Dr. Bente Torstensen and Dr. Ivar Hordvik, 

but also Dr. Gro Ingunn Hemre. This thesis could not have been finished without their support. 

Professor Øyvind Lie initiated the research project, and Dr. Bente Torstensen interest in molecular 

biology made me come here to explore the field of lipid nutrition research. A great thank to Dr. Ivar 

Hordvik which greatly contributed to the development of the molecular biology methods applied in 

this study. I would also thank Dr. Pål Olsvik, Kai Kristoffer Lie, Dr. Monica Sanden and Dr. Ernst 

Morten Hevrøy for “all those molecular discussions”. A special thanks to Pål Olsvik for evaluating 

those reference genes and also for being a great guy! One can always come by your office.  

The researchers and institute IMB, NRC, Halifax, Canada need a special thanks for their 

contribution. I had a fantastic stay with you, and I would very much like to thank Dr. Sue Douglas, 

Dr. Stephen Tsoi, Susanne Penny, Dr. Dominic Nanton and Dr. Santosh Lall for their help and 

hospitality during my stay at NRC. 

Dr. Dominic Nanton and Dr. Ingunn Stubhaug, thank you for all those valuable discussions 

within the field of lipid nutrition. Eva Mykkeltvedt, thank you for all your contributing hours of 

methodological development, without you, this could not have been done!  

I am grateful for PhD students and colleagues at NIFES for good companionship. A special 

thanks to Mari, Heidi and Arne as well as my room mates Anita and Monica. All you friends, and 

family, thank you for putting up with me during those frustrated days! Bjarte: thank you for being; a 

good husband, friend, father and a “molecular discussion” partner. Thank you to all of my friends who 

have helped me in getting out of the office and letting me forget the thesis. Siri, bless your memory! 

Signild and Therese, thank you for being a great inspiration at all times. All those not mentioned are 

thanked even more, you are all valuable! Special thanks go to Ingrid and Odd Arne, for all the help 

with Nikolai. You are great! 

Nikolai, my son, now it is your time! 

 

Bergen, 2006 

Ann-Elise Olderbakk Jordal  



 iii

Abbrevations  
ACAT = acetyl CoA acetyltranferase 
ACD = acyl-CoA dehydrogenase  
ACS = acyl-CoA synthetase 
AOX = acyl-CoA oxidase 
CM = chylomicron 
COX = cyclooxygenase  
CPT I and II = carnitine palmitoyltransferase I and II 
ECH = enoyl-CoA hydratase  
FABP = fatty acid binding protein 
FAS = fatty acid synthetase  
HDL = high density lipoprotein;  
HNF-1/4 = hepatic nuclear factor-1/4  
HSL = hormone sensitive lipase 
ILBP = intracellular lipid binding protein  
LCAT = Lecithin cholesterol acyltransferase  
LCFA = long chained fatty acids (Gene Ontology Browser- carbon chain length: C12-C18) (in this 
thesis especially 18:1n-9, 18:3n-3, 18:2n-6 and 16:0) 
LDL = low density lipoprotein 
LPL = lipoprotein lipase  
LXR = liver X receptor  
NF-κβ = nuclear factor kappa-β  
PC/E/I = phosphatidyl choline/ethanolamine/inositole  
Protein kinase C = PKC 
PLC = phospholipase C 
PPAR = peroxisome proliferator activated receptor 
PPRE = peroxisome proliferator response element 
Q-PCR = quantitative RT- PCR  
RXR = retinoid X receptor  
SAM = Significance Analysis of Microarrays 
SCD = ∆9 fatty acid desaturase 
SREBP = sterol regulatory element binding protein  
TAG = triacylglycerol 
VLCFA = very long chain fatty acids; all acids with 20 carbons or more (in this thesis especially 
20:5n-3 (EPA), 22:6n-3 (DHA), and 20:4n-6 (ARA)) 
VLDL = very low density lipoprotein.  
6PF-2-K/Fru-2,6-P(2)ase = 6 phosphofructo 2 kinase/fructose 2,6 biphosphatase  
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Abstract  

The two dietary trials conducted in the present study (Papers I-III) used dietary rapeseed oil fed in a 

regression design and a full plant oil blend replacement for fish oil, respectively. The metabolic 

response of Atlantic salmon was examined in relation to gene expression (Paper I-III), lipid storage 

(Paper II and III) and fatty acid oxidation (Paper II). Furthermore, intracellular fatty acid uptake and 

transport (Paper II) and lipoprotein metabolism (Paper III) was studied. In order to examine gene 

expression of lipid metabolic genes thorough technical validation and quality control of microarray 

studies (Paper I) and evaluation of reference genes for Q-PCR were prioritised (Paper IV).  

Dietary rapeseed oil induced ∆5 fatty acid desaturase mRNA expression (Paper I), and 

lipogenic enzyme activities were partially increased for Atlantic salmon fed high dietary inclusion of 

plant oils (Paper III). Dietary long term partial rapeseed oil inclusion resulted in reduced expression of 

several mitochondrial transport proteins, transcription factors, co-activators and signal transducers 

(Paper I). The expression of these proteins is known to be indirectly influenced by dietary fatty acids 

mediated through changes in membranes phospholipids compositions.  

Partial dietary rapeseed oil inclusion had no impact on FABP3 or FABP10 gene expression in 

Atlantic salmon liver or muscle tissues (Paper II). Nonetheless, a tendency for decreased FABP3 

protein expression with decreasing inclusion of dietary rapeseed oil was observed. Overall, liver and 

muscle tissues of Atlantic salmon seem to express several FABPs, possibly linked to different 

metabolic functions. Relative FABP3 mRNA levels dominated in both red and white muscle tissues. 

Red muscle appeared to express higher levels of FABP3 than white muscle and heart. Liver FABP10 

mRNA appeared to be expressed at high levels compared to liver FABP3. Modest changes in liver 

and muscle FABPs mRNA levels between different life stages were observed.  

Liver TAG stores, plasma lipid and LDL levels were significantly affected by dietary plant oil 

replacement in Atlantic salmon during a long term feeding experiment (Paper III). Current results 

indicate that high dietary plant oil inclusion increase liver TAG stores and decrease plasma lipid 

levels possibly through decreased VLDL synthesis. The expression of liver PPAR� increased prior to 

seawater transfer followed by a decrease, and then another increase towards the final sampling (22 

months) which was correlated with increased liver TAG stores.  

 mRNA expression of Atlantic salmon apolipoproteins seem to be regulated by dietary fatty 

acids (Paper I). Yet complex post translational mechanisms for lipoprotein assembly are believed to 

occur in Atlantic salmon as in mammals (Paper I and III). 

  Through thorough evaluation of potential systemic and technical variation (Paper I and IV), 

the experimental design chosen enabled us to measure dietary and lifecycle gene expression variations 

in a system showing extrinsic and intrinsic variability (Paper I- III).  
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1. Introduction 

 

The long standing interest of fish lipids is due mainly to the fact that fish lipids are rich in n-3 very 

long chained fatty acids (VLCFA) which have particularly important roles in fish and human nutrition  

(Tocher, 2003). 

 

At present, 30 % of globally available fish oils, a variable resource, is used for breeding of cultivated 

fish species (Waagbo et al, 2001). Waagbo and co-workers (2001) estimated, based on available fish 

oil resources and fish oil consumption in aquaculture, a lack of fish oils for feed production by 2005. 

Consequently, sustainable alternatives must be found, that do not compromise fish health and product 

quality. This implies that the choice of dietary oils should meet the fatty acid requirements in 

salmonids, in order to prevent negative effects on fish health. The requirements for salmonids are 1% 

of the total dietary energy for both n-3 and n-6 fatty acids (NRC, 1993; Sargent et al., 1995). In order 

to maintain high product quality and optimise the beneficial health effects for human consumption, the 

alternative diet should maintain a relatively high level of n-3 VLCFAs for storage in Atlantic salmon 

flesh. As these VLCFAs have been shown to have beneficial effects on cardiac diseases, levels of 

triacylglycerol (TAG) in plasma, blood pressure and inflammatory responses (Kris-Etherton et al., 

2003).  

The strongest candidates to fish oil for dietary inclusion in Atlantic salmon diets are plant oils. 

In general, plant oils do not contain VLCFA, but high levels of long chained fatty acids (LCFAs) 

especially of 18 carbons length. Plant oils also tend to have higher levels of n-6 LCFAs compared to 

marine oils. Marine oils are known for their high levels of polyunsaturated VLCFAs of the n-3 and n-6 

family such as 20:5n-3 and 22:6n-3 and 20:4n-6, as well as monounsaturated VLCFAs, such as 20:1n-

11 and 22:1n-11.  

 

In general, Atlantic salmon primarily use proteins and lipids as energy sources with 10-20 % of the 

energy produced originating from lipids (Van den Thillart, 1986). The major fate of lipids in fish is for 

the storage, and provision of metabolic energy provided through β-oxidation of fatty acids (Frøyland 

et al., 2000; Sargent et al., 1989; Stubhaug et al, 2005a). Furthermore, cellular metabolic responses are 

believed to be highly dependent on selective uptake and transport of fatty acids, and it is important to 

study whether these mechanisms are affected by dietary oil replacements. Finally, dietary 

polyunsaturated VLCFAs of the n-3 and n-6 family, present in fish oil diets, will also be distributed to 

virtually every cell in the body with effects on membrane composition and function, eicosanoid 

synthesis, cell signalling and regulation of gene expression (Jump, 2002a). Consequently, the lack of 

dietary VLCFAs may mediate effects on these processes in fish fed the 100% plant oil diets. In general 
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different cells respond differently to changes in dietary VLCFA composition as determined by their 

cell-specific lipid metabolism and expression of fatty acid-regulated transcription factors  

 

The recent generation of Atlantic salmon genomic data has helped to increase our knowledge of this 

species biology, and makes nutrigenomic surveys possible. Nutrigenomic studies in aquaculture are a 

new and growing field of science. These studies will enable us to understand how different dietary 

fatty acids or their metabolites mediate regulation of gene expression through direct or indirect 

mechanisms. When examining the potential effects through different life stages one may possibly 

understand more on how different important lipid metabolic regulators and transport proteins mediate 

specific metabolic responses to alternative dietary lipids.  
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2. Aims of the study  

 

• to screen how dietary fatty acids influence the expression of genes involved in the liver lipid 

metabolism of Atlantic salmon (Papers I, II and III) 

 

• to measure the effects of dietary fatty acid composition, and life stage variations on the 

expression of fatty acid transport proteins FABP3 and FABP10 in metabolic active tissues of 

Atlantic salmon (Paper II)  

 

• to measure the effects of dietary fatty acid composition and life stage variations on PPARγ in 

liver of Atlantic salmon (Paper III)  

 

• to study the transport of lipids and lipoprotein metabolism when fed different dietary fatty 

acids (Paper III)  

 

• to evaluate recently established methods used for nutrigenomic studies in Atlantic salmon 

(Papers I and IV: small scale microarray and reference genes for use in Q-PCR)  
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3. Background  

3.1 Lipid metabolism in Atlantic salmon 

  

Lipid homeostasis can be defined as the balance between lipid uptake, transport, storage, biosynthesis, 

metabolism and catabolism (Tocher, 2003).   

3.1.1 Extracellular transport of dietary lipids  
 

The transport of lipids and other lipid soluble components from the intestine to peripheral tissues is 

predominantly mediated by lipoproteins (Figure 1). Chylomicrons (CM) and very-low density 

lipoproteins (VLDL) are synthesised in the intestines and transport re-esterified TAG, polar lipid, 

cholesterol and sterol esters to various tissues (Babin and Vernier, 1989). CMs and VLDL may 

transport lipids from the intestine to liver, either through the hepatic vein or through the lymph system, 

as it is not established whether fish has a lymph system or not (Henderson and Tocher, 1987; Babin 

and Vernier, 1989; Press and Evensen, 1999). In order to facilitate fatty acid uptake, all lipoproteins, 

except low density lipoprotein (LDL) which is taken up by endocytosis (Gjoen and Berg, 1993), binds 

to specific receptor on the cell membrane (Schneider, 2002). Fatty acids are then hydrolysed from 

TAG and taken up by the cell through the action of lipoprotein lipase (LPL). LPL is expressed in 

numerous tissues of rainbow trout (Oncorhynchus mykiss) (Babin and Vernier, 1989). VLDL 

synthesised in liver transports endogenously synthesised TAG to extra hepatic tissues (Jonas, 2002). 

Intermediate density proteins (IDL) and LDL arise from metabolic transformation of VLDL in 

circulation. LDL is the transporter of cholesterol from liver to peripheral tissues (Babin and Vernier, 

1989). Whereas nascent high density lipoprotein (HDL), synthesised in liver and intestine, remove 

excess cholesterol from cells and transport it to liver. HDL is the most common lipoprotein in 

salmonids (Babin and Vernier, 1989; Lie et al., 1993; Torstensen et al., 2001), and contains high levels 

of the fatty acid 22:6n-3 in the phosphatidyl choline (PC) and neutral lipid fraction (Lie et al., 1993).  
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Figure 1. Schematic overview of extracellular transport of lipids.  

The figure was modified from (Schneider, 2002). See text for further explanations. 

 
The fatty acid composition of dietary lipid influence the fatty acid composition of PC, the major 

phospholipids, and the neutral lipid fraction in VLDL, LDL and HDL (Lie et al., 1993). Neutral lipids 

were clearly more influenced by diet than PC. Overall, VLDL, LDL, and HDL fatty acid compositions 

have been shown to be decreasingly affected by dietary fatty acid composition (Torstensen et al., 

2000; Torstensen et al., 2001). As also seen when Atlantic salmon were fed dietary rapeseed oil, HDL 

was high in 22:6n-3 irrespective of diet, whereas VLDL was highly influenced by dietary fatty acid 

composition (Torstensen et al., 2004).  

Rainbow trout VLDL are mainly composed by apolipoprotein (apo) B, but also contain apo A-

II, and apo Cs (Babin and Vernier, 1989). LDL contains apo B, whereas the main apolipoprotein in 

HDL is apo A-I, followed by A-II. LPL is activated in the presence of HDL, suggesting that Apo C-II, 

the activating co-factor of LPL, is present in HDL as in VLDL. Atlantic salmon liver and muscle 

express apo A-I precursor (Powell et al., 1991) and its expression was suggested in small intestine 

(Zannis et al., 1983). The presence of apo A-I in HDL activates lechitin cholesterol acyltransferase 

(LCAT), an enzyme involved in cholesterol metabolism (Fielding et al., 1972). 

 

.  
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3.1.2 Organ specific responses to dietary fatty acids  
 

The major fate of dietary fatty acids in fish is for the storage, and provision of metabolic energy in the 

form of ATP provided through β-oxidation of fatty acids (Frøyland et al., 2000; Sargent et al., 1989; 

Stubhaug et al., 2005a). Red muscle has the highest capacity for total β-oxidation, followed by liver 

and white muscle (Frøyland et al., 1998; Frøyland et al., 2000; Stubhaug et al., 2005a). Red muscle 

store more lipids within myoseptas (adipocytes) than white muscle (Zhou et al., 1995). Recently, 

intracellular lipid droplets were visualized, using light microscopy, in close association with 

mitochondria within both Atlantic salmon muscle tissues (Nanton et al., 2005). Lipid levels in these 

tissues were not significantly different between fish fed fish oil and plant oil diets.  

Lipid droplets were observed in the intestine and liver of rainbow trout (Caballero et al., 2002) 

and Atlantic salmon (Ruyter et al., 2006). Lipid droplet formation in liver of salmonids was indicated 

as being higher when given dietary plant oil instead of fish oil. Nevertheless, the liver has a higher 

polar lipid /neutral lipid ratio compared to white and red muscle in rainbow trout (Weber et al., 2003) 

and Atlantic salmon (Torstensen et al., 2004). 

 

In general, fatty acid specificity in uptake and intracellular transport as well as elongation and 

desaturation (Bell et al., 2001; Bell et al., 2002) and β-oxidation (Frøyland et al., 2000; Torstensen et 

al., 2000) is believed to affect the fatty acid composition of membranes and deposit lipids within cells.  

N-3 VLCFAs, either supplied through diet, or endogenously synthesised, are then likely to 

affect intracellular non-esterifed fatty acids or their CoA thioester levels, which in turn affects 

transcription and signal transduction factors that will have impact on several regulatory mechanisms 

(Jump, 2002a).  

3.1.3 Liver lipogenesis and VLDL assembly  
 

Liver is quantitatively the principal site of lipogenesis, the biosynthetic reactions for the formation of 

new endogenous lipid (Tocher, 2003). The pathway of lipogenesis is similar to those in other 

vertebrates (Sargent et al., 1989). The ultimate carbon source for biosynthesis of new lipids is acetyl-

CoA formed in mitochondria. The key pathway in lipogenesis is catalysed by cytocolic fatty acid 

synthethase (FAS). This enzyme complex, responsible for producing fatty acids de novo, was first 

purified from the liver of plaice (Pleuronectes platessa) (Wilson and Williamson, 1970). All four 

cytosolic dehydrogenases which generate NADPH for fatty acid biosynthesis has been shown to be 

active in livers of rainbow trout (Baldwin and Reed, 1976) coho salmon (Oncorhynchus kisutch) (Lin 

et al., 1977a and b) and Atlantic salmon (Arnesen et al., 1993; Sanden et al., 2003; Torstensen et al., 

2004).  
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Atlantic salmon fed diets containing 100% rapeseed oil show significantly decreased glucose-

6-phosphate dehydrogenase (G6PDH) and increased NADH- isocitrate dehydrogenase (ICDH) 

activity compared with fish fed fish oil (Torstensen et al., 2004). In rainbow trout, low levels of 18:3n-

3 exerted a stimulatory effect on all the lipogenic enzymes assayed with the exception of FAS, and 

increased amounts of the same LCFA showed some inhibition of lipogenic activities (Alvarez et al., 

2000). 20:5n-3 and 22:6n-3 showed a similar effect, although the former strongly inhibited FAS 

activity while the latter showed greater potential to inhibit acyl-CoA carboxylase (ACC) and G6PDH.  

 

Fish are capable of modifying both dietary fatty acids and the fatty acid products of exogenous 

synthesis by desaturation and elongation (Sargent et al., 1989). Desaturation of fatty acids in fish takes 

place in the endoplasmatic reticulum of cells of certain tissues and is catalysed by multicomponent 

systems comprising NAD(P)H cytochrome b5 reductase, cytochrome b5 and terminal fatty acid 

desaturase enzymes (Brenner, 1974). The essential LCFAs, 18:2n-6 and 18:3n-3 can be desaturated, 

by ∆5 and ∆6 fatty acid desaturase, and elongated by elongase, to form physiologically essential 20 

and 22-C VLCFAs, 20:4n-6, 20:5n-3 and 22:6n-3 (Figure 2). Atlantic salmon fed diets containing 

plant oils show significantly increased desaturation and elongation activity compared with fish fed fish 

oil (Bell, 1997; Tocher et al., 1997; Tocher et al., 2000; Bell et al., 2001; Tocher et al., 2001; Bell et 

al., 2002; Zheng et al., 2005a). Recently, the clones of Atlantic salmon ∆6 fatty acid desaturase (Zheng 

et al., 2005b), ∆5 fatty acid desaturase and elongase (Hastings et al., 2004) were functionally 

characterised. Lower amounts of desaturation and elongation products in primary hepatocytes from 

Atlantic salmon fed 75% plant oil instead of fish oil may indicate lower ∆9 fatty acid desaturase 

(SCD) activity (Stubhaug et al., 2005b). 

 

 

Figure 2. Desaturation and elongation pathways for fatty acids. The figure was modified from (Sprecher, 1992). See text 
for further explanations. 22:5n-6 and 22:6n-3 is made from shortening of 24:5n-6 and 24:6n-3 respectively through 
peroxisomal β-oxidation.  

  

In total, liver lipid biosynthesis which leads to VLDL assembly, include de novo fatty acid synthesis, 

elongation and desaturation, as well as TAG, phospholipids and cholesterol ester synthesis (Shorten 
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and Upreti, 2005). TAG synthesis is said to be the rate limiting step in lipoprotein biosynthesis 

(Bostrom et al. 1988). Most dietary fatty acids enter the TAG storage pool before emerging as VLDL 

in hepatocytes of mammals (Gibbons et al., 2000). In vitro studies have shown that primary 

hepatocytes from Atlantic salmon incubated with 20:5n-3 accumulated significantly more cellular 

lipid than cells treated with 18:1 n-9 and 22:6n-3 (Vegusdal et al., 2005). Further, in vivo studies 

reports a significantly higher accumulation of lipid in the liver of Atlantic salmon fed 100% sunflower 

oil compared with 100% fish oil diets (Ruyter et al., 2006) as also seen for red drum (Tucker et al., 

1997) and rainbow trout (Caballero et al., 2002). 

3.1.4 Phospholipids and membrane function 
 
Apart from being components in VLDL, phospholipids are components of cell membranes (Shorten 

and Upreti, 2005). Where they function in regulation of uptake of molecules, impart rigidy in the 

membrane as well as they play a role in cell recognition and signalling. Overall, the properties of 

phospholipids are greatly affected by their fatty acid composition. PC account for approximately 50% 

of the phospholipids synthesised in hepatocytes (Stubhaug et al., 2005b). PC is the main component in 

liver cellular membranes, and is dominated by the fatty acids 16:0, 20:5n-3 and 22:6n-3 in fish (Bell 

and Dick, 1991). Phosphatidyl inositols (PI) are rich in 20:4n-6 and 20:5n-3 in fish and mammals 

(Irvine, 1982; Bell and Dick, 1990), and are thus believed to be involved in eicosanoid metabolism in 

fish (Bell et al., 1986; Bell et al., 1994). The synthesis of prostaglandins by cyclooxygenase (COX) is 

well characterised (Smith and DeWitt, 1996). In rainbow trout mRNA from both the constitutively 

expressed, COX-1, and inducible form, COX-2, has been cloned (Zou et al. 1999). 

Plant oil diets have been shown to affect membrane composition in kidney in rainbow trout 

(Hvattum et al., 2000) and in the liver and intestine of Atlantic salmon (Ruyter et al., 2006). In the 

latter study, the percentages of 20:5n-3 and 22:6n-3 were considerably lower, while the percentages of 

20: 4n-6 and 20:4n-3 was higher in fish fed plant oil compared with fish oil diets.  

3.1.5 Fatty acid catabolism  
 
Fatty acid catabolism or β-oxidation is a cellular process believed to be fuelled mainly by extracellular 

fatty acids (Gibbons et al., 2000). The β-oxidation of fatty acids occur in mitochondria and 

peroxisomes (Mannaerts et al., 1979; Foerster et al., 1981; Reddy and Mannaerts, 1994) and the 

reactions are believed to be the same for fish as for mammals (Henderson, 1996) (Figure 3). The rate 

limiting step for peroxisomal β-oxidation is thought to be acyl-CoA oxidase (AOX) (Inestrosa et al., 

1979), an enzyme with high activity in Atlantic salmon (Frøyland et al., 1998). The key point in 

regulation of mitochondrial β-oxidation is thought to be the inhibition of carnitine 

palmitoyltransferase- I (CPT-I) by malonyl-CoA, the product of the rate limiting enzyme in 

lipogenesis, ACC, both in mammals and Atlantic salmon (McGarry et al., 1978; McGarry and Foster, 
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1979; McGarry and Foster, 1980; Frøyland et al., 1998). CPT-I, localised at the outer mitochondrial 

membrane, catalyse acyl-CoA to acyl-carnitine transfer (Murthy and Pande, 1987) before the acyl 

carnitine complex cross the inner mitochondrial membrane via the carnitine: acetylcarnitine 

translocase (Pande, 1975). Finally, in the mitochondrial matrix, CPT-II, located at the inner 

mitochondrial membrane, catalyses the transfer of acyl residues from carnitine to CoA to form acyl-

CoA thioesters which then enter the β-oxidation spiral (Murthy and Pande, 1987). Atlantic salmon 

CPT-II activity dominated in red muscle, whereas in the liver and white muscle CPT-I and CPT-II 

activities were similar (Frøyland et al., 1998). Furthermore, liver but not white muscle CPT-I and 

CPT-II activities were affected by dietary treatments with rapeseed oil in juvenile brown trout (Salmo 

trutta) (Turchini et al., 2003). A partial cDNA sequence for CPT-I was cloned and its messenger RNA 

(mRNA) expression in liver, white and red skeletal muscles, heart, intestine, kidney and adipose tissue 

of trout has been characterised (Gutieres et al., 2003). 

 

Figure 3. Schematic overview of the ββββ-oxidation reactions, which occur within mitochondria and peroxisomes.  

Acetyl –CoA synthethase (ASC) catalyse the first step, where acyl-CoA is attached to the saturated fatty acids. In 
mitochondria acyl-CoA dehydrogenase (ACD) ensures production of 2-trans enoyl-CoA whereas the process is catalysed by 
AOX in peroxisomes. In mitochondria, 2-trans enoyl-CoA hydratase (ECH) catalyses the formation of L-3 hydroxyacyl-
CoA, whereas trifunctional enzyme (TFE) perform the same catalytically step in peroxisomes. Peroxisomal TFE also catalyse 
the formation of 3-ketoacyl-CoA. 3-hydroxyacyl-CoA dehydrogenase (HAD) catalysed the same reaction in mitochondria. 
Finally, thiolase catalyses the formation of chain shortened acyl-CoA and acetyl-CoA in peroxisomes and mitochondria. In 
general, oxidation of unsaturated fatty acids includes several enzymes which participate in removal or moval of double 
bonds.  
 

Peroxisomal ββββ-oxidation  

SSaattuurraatteedd  ffaattttyy  aacciiddss    

AACCSS  

AAccyyll--CCooAA    

AC
O 
22--ttrraannss--eennooyyll  CCooAA    

LL--33--hhyyddrrooxxyyaaccyyll--CCooAA  

TFE  

FFAADDHH22  

FFAADD  HH22OO22  

CATALASE 
HH22OO22  

OO22  

CChhaaiinn  sshhoorrtteenneedd  aaccyyll--CCooAA  
++  aacceettyyll  CCooAA    

TFE  

Mitochondrial ββββ-oxidation  

SSaattuurraatteedd  ffaattttyy  aacciiddss    

AACCSS  

AAccyyll--CCooAA    

LL--33--hhyyddrrooxxyyaaccyyll--CCooAA  

22--ttrraannss--eennooyyll  CCooAA    

AACCDD  

ECH 

HAD 

CChhaaiinn  sshhoorrtteenneedd    
aaccyyll--CCooAA,,  aacceettyyll  CCooAA  
++pprrooppiioonnyyll  CCooAA  

CCooAASSHH  

CCooAASSHH  

HH22OO  

NNAADD  
NNAADDHH  ++  HH++  

FFAADD  
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3.2 Uptake and intracellular transport of fatty acids 

3.2.1 Models for cellular fatty acid uptake  
 
Whether the nature of cellular fatty acid uptake is active or passive is still debated (Berk and Stump, 

1999; Hajri and Abumrad, 2002). When fatty acids are transported over cellular membranes through 

passive transport, they may be protonated at the extracellular side which permit the fatty acid to 

integrate in to the phospholipid bilayer and flip flop across the cell membrane (Hamilton and Kamp, 

1999). The hypothesis that fatty acids traversed the membrane by facilitated transport was recently 

tested for rainbow trout, with results suggesting that the uptake of LCFA were protein mediated, at 

least in white and red muscle (Richards et al., 2004).  

There are several models for protein mediated cellular fatty acid uptake and transport in 

mammals (Figure 4) (Koonen et al., 2005). Fatty acid binding proteins (FABPs) are believed to 

enhance uptake of fatty acids in to cells by increasing their concentration gradient, in order to 

minimise unbound fatty acids in the cells (Schaap et al., 2002). Intracellular mammalian FABP3 and 

FABP4 1 types are membrane active, meaning that they exchange fatty acids with membranes via 

collisional transfer (Storch et al., 2002). FABP1 however exchanges fatty acids by diffusional transfer, 

and do not interact with membrane (Thumser and Storch, 2000) (Figure 4, arrow 1). The interaction of 

fatty acid translocase/CD36 (FAT/CD36) and plasma membrane fatty acid binding protein (FABPpm) 

in protein-mediated LCFA transport accelerates the dissociation of LCFA from albumin (Figure 4, 

arrow 2), and then delivers fatty acids to the intracellular FABPs. FAT/CD36 have also been proposed 

to interact with fatty acid transport protein (FATP) in mediating LCFA transport (Stahl et al., 2001) 

(Figure 4, arrow 3), and to mediate mitochondrial acyl-CoA uptake (Campbell et al., 2004). FATP 

may also transfer LCFA directly across the plasma membrane (Figure 4, arrow 4). The first identified 

FATP family member, FATP1 (Schaffer and Lodish, 1994) exhibited intrinsic acyl-CoA synthetase 

activity (ACS) with a broad specificity for both LCFA and VLCFA (Coe et al., 1999b; Herrmann et 

al., 2001; Hatch et al., 2002; Hall et al., 2003). The FATP produced acyl-CoA is then transported 

intracellulary with acyl-CoA-binding protein (ACBP). ACBP have been shown to transport fatty acid-

CoAs to the nucleus (Helledie et al., 2002; Petrescu et al., 2003) and are suggested as a transport 

protein for TAG synthesis (Kannan et al., 2003).  

Recent knockout studies in mice (Mus musculus) gave no gross phenotypical changes when 

deleting particular FABP genes (Haunerland and Spener, 2004) or FATP or FAT/CD36 genes 

                                                 
1 The various FABPs will be referred to only by their gene name as introduced by Hertzel and Bernlohr 

(2000) to avoid confusion based on the initial terminology which named FABPs after the tissue where they were 
first were found. FABP3 is used for heart and muscle FABPs, FABP4 for adipocyte FABP, and FABP1 and 10 
for liver FABPs in mammals and fish respectively.  
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(Koonen et al., 2005) indicating that several of these proteins may participate in mediating fatty acid 

uptake and transport within cells.  

 

Figure 4. A schematic overview over current models for cellular fatty acid uptake and transport. 

The figure was modified from (Koonen et al., 2005). The numbers 1–4 illustrate the proposed routes of long chained fatty 
acid (LCFA) uptake. See text for further explanations. The letter A indicates results from knock-out and in vitro studies for 
the FABP1 form, whereas the letter B and C indicate functional implications from knock out studies for FABP3 and FABP4, 
respectively.  

 

3.2.2 Fatty acid binding proteins  
 
Functionally, FABPs are believed to be involved in lipid transport and metabolism (Veerkamp and 

Maatman, 1995; Veerkamp et al., 1991; Spener et al., 1989; Ockner et al., 1972). The control of tissue 

specific expression of FABPs is poorly understood, but it often reflects the tissues lipid metabolising 

capacity (Haunerland and Spener, 2004). Structurally, FABPs encode ~15 kDa proteins of the 

common tertiary fold forming a β-barrel (Hertzel and Bernlohr, 2000). The β-barrel is formed by two 

orthogonal five stranded β-sheets, and create an internal water filled cavity with ~50% polar amino 

acids, for the internalisation of hydrophobic ligands as fatty acids. All FABPs bind LCFAs and 

VLCFAs, but differences in ligand selectivity, binding affinity and binding mechanism exist (Hanhoff 

et al., 2002) rooted in subtle structural differences between the four subfamilies of intracellular lipid 

binding proteins (iLBPs) (Table 1).  
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3.2.2.1 Fatty acid binding proteins of subfamily I 
 
FABP1 and FABP10 are believed to be paralogue genes (Di Pietro et al., 1997; Di Pietro et al., 1999). 

FABP1 and FABP10 originated by ancient gene duplication, before the fish tetrapod divergence, 

approximately 694 million years ago. Functionally, FABP1 was suggested, through in vitro studies, as 

a signalling molecule conveying messages to the nucleus, thus being the co-activator of peroxisome 

proliferator activated receptor (PPAR) (Wolfrum et al., 2001) (Figure 4). Knock out studies in mice 

indicate that FABP1 is involved in β-oxidation, which results in less TAG storage (Newberry et al., 

2003; Erol et al., 2004). Recently, a physiological role for FABP1 in influencing liver bile acid 

metabolic phenotype was suggested through knock out studies in mice (Martin et al., 2005).  

Tissue specific expression of FABP10 mRNA has been determined for zebrafish (Brachydanio 

rerio) (Denovan-Wright et al., 2000) and Tsaiya duck (Anas platyrhynchos) (Ko et al., 2004). FABP10 

expression was shown in skeletal muscle (Ko et al., 2004) and liver (Denovan-Wright et al., 2000; Ko 

et al., 2004). Higher liver FABP10 gene expression was observed in egg-laying Tsaiya ducks than in 

the prelaying ducks indicating a possible in vivo function in fatty acid uptake for liver lipid 

metabolism. No specific function has been suggested for fish FABP10 so far. However, chicken 

(Gallus gallus) FABP10, which bind the same ligands and exhibit similar relative affinity for fatty 

acids as catfish FABP10 (Beringhelli et al., 2001), was suggested as a bile acid binding protein based 

on crystal structures and amino acid alignments (Nichesola et al., 2004; Nolan et al., 2005).  

 

The binding cavity of FABP1 allows binding of two fatty acid molecules in opposite orientation 

(Thompson et al., 1997). As for FABP1, in vitro binding studies using isolated and characterised 

FABP10 from argentine toad (Bufo arenarum) (Di Pietro et al., 2001; Di Pietro et al., 2003) and 

lungfish (Lepidosiren paradoxus) (Di Pietro and Santome, 2001) has confirmed a broad binding 

specificity (Table 2). Lungfish FABP10 binds two molecules in the same orientation, whereas catfish 

(Rhamdia sapo) FABP10 only binds one fatty acid (Di Pietro et al., 1997). Lungfish FABP10 

preferentially binds large ligands, but has higher affinity for mono and polyunsaturated fatty acids than 

saturated fatty acids. FABP1 preferably binds monounsaturated and n-3 fatty acids (Hanhoff et al., 

2002). High FABP10 binding affinity for bile salts and 18:1n-9 is seen for lungfish (Di Pietro and 

Santome, 2001) and catfish (Di Pietro et al., 1997). The fabp1 gene harbours a fully functional 

peroxisome proliferator response element (PPRE) (Schachtrup et al., 2004), whereas no PPRE has 

been detected in fabp10 genes thus far.  
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3.2.2.2 Fatty acid binding proteins of subfamily IV 
 
Through knock out studies in mice FABP3 have been implicated in the fatty acid metabolism of heart 

and skeletal muscle and connected to reduced rates for fatty acid oxidation in skeletal muscle (Binas et 

al., 1999). This has lead to the theory that FABP3 deliver LCFA from sarcolemma through the 

cytoplasm to the outer mitochondrial membrane, which is the site for ACS (Hertzel and Bernlohr, 

2000). ACS then converts LCFA to acyl CoA making it available for either TAG synthesis or 

mitochondrial β-oxidation (Koonen et al., 2005).  

 FABP4 knock out mice exhibit increased fat mass, decreased lipolysis, increased muscle 

glucose oxidation and attenuated insulin resistance (Hertzel et al., 2005). The observed reduction in 

lipolysis has been connected to the ability FABP4 has to activate hormone sensitive lipase (HSL) 

(Figure 4) (Shen et al., 1999). Thus the lack of FABP4 leads to a down regulation of lipid export from 

adipocytes (Coe et al., 1999a). HSL have also been suggested to provide fatty acids for oxidation in 

muscle (Jeukendrup et al., 1998).  

Both FABP3 and FABP4 were both found in the heart and muscle tissues of Antarctic teleosts 

and associated with the duplicate functions these tissues have for utilising and storing lipids (Vayda et 

al., 1998). FABP3 proteins have been identified in heart of rainbow trout (Ando et al., 1998), and in 

liver, gills and gonads in mummichog (Fundulus heteroclitus) (Bain, 2002). FABP3 liver specific 

expression have also been observed in elephant fish (Callorhynchus callorhynchus) (Cordoba et al., 

1998), shark (Halaetunus bivius) (Medzihradszky et al., 1992) and lamprey (Entosphenus japonicus) 

(Baba et al., 1999). Tissue specific gene expression studies identified FABP3 expression in the 

ovaries, liver, heart, muscle and brain of zebrafish (Liu et al., 2003a). Functionally, FABP3 in elephant 

fish liver is believed to participate in metabolising fat (Cordoba et al., 1998), whereas zebrafish 

FABP3 has been implicated in the process of liver lipogenesis (Liu et al., 2003a). FABP4 like proteins 

were identified in liver of elephant fish (Cordoba et al., 1998) and shark (Medzihradszky et al., 1992) 

and were believed to function in storage of lipids as an energy source.  

 

Preferential binding for n-6 fatty acids was observed for FABP3 (Hanhoff et al., 2002) and FABP3 

also binds 18:1n-9 and 16:0 with a higher affinity than both FABP1 and FABP4 proteins (Zimmerman 

et al., 2001). In vitro binding essays conducted on FABP3s in Antarctic icefish (Chaenoceptalus 

aceratus) and striped bass (Morone saxatilis) detected no significant differences in binding capacity 

(Londraville and Sidell, 1995; Londraville and Sidell, 1996) (Table 2). However, cold acclimation of 

striped bass caused an increase in the FABP3 concentration of aerobic skeletal muscle, perhaps to 

increase fatty acid flux through β-oxidation (Londraville and Sidell, 1996). 

  

The fatty acids, 18:0, 18:1n-9, 18:2n-6 18:3n-3 and 20:4n-5 and 16:0 gave a 2-3 fold increase, of in 

vitro FABP3 mRNA expression in cardiac muscle cells compared with control (van der Lee et al., 
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2000; Chang et al., 2001). However, the fabp3 gene harbours a non-functional PPRE (Schachtrup et 

al., 2004). The 5’ upstream sequence of the zebrafish fabp3 gene has a hepatic nuclear factor-1 (HNF-

1) response element, but no PPRE (Liu et al., 2003a). HNF-1 null mice exhibited enlarged fatty livers 

and alterations in the expression of genes involved in fatty acid synthesis and peroxisomal, but not 

mitochondrial β-oxidation and fatty acid transport, mediated by FABP1 (Akiyama et al., 2000). 



16
 

 

 T
ab

le
 2

. C
ha

ra
ct

er
is

at
io

n 
of

 in
 v

itr
o 

bi
nd

in
g 

af
fin

ity
 o

f F
A

B
P3

 a
nd

 F
A

B
P1

0 
in

 lo
w

er
 v

er
te

br
at

es
.  

Sp
ec

ie
s  

G
en

e 
 

T
is

su
e 

sp
ec

ifi
c 

ex
pr

es
si

on
  

 

H
ig

h 
af

fin
ity

 fo
r 

 
L

ow
 a

ff
in

ity
 fo

r 
 

R
ef

er
en

ce
 to

 p
ub

lic
at

io
n 

 

A
nt

ar
ct

ic
 

ic
ef

is
h 

fa
bp

3 
H

ea
rt

 
W

hi
te

 
m

us
cl

e 
re

d 
m

us
cl

e 
sp

le
en

, 
ki

dn
ey

 
br

ai
n 

N
o 

di
ff

er
en

ce
 in

 K
d 
de

te
ct

ed
 fo

r 1
6:

0,
 1

6:
1n

-7
, 1

8:
1n

-9
,  

no
r 2

2:
6n

-3
 

(V
ay

da
 e

t a
l.,

 1
99

8)
 

(L
on

dr
av

ill
e 

an
d 

Si
de

ll,
 1

99
5)

 

St
ri

pe
d 

ba
ss

 
fa

bp
3 

 
M

us
cl

e 
N

o 
si

gn
if

ic
an

t d
if

fe
re

nc
es

 in
 b

in
di

ng
 a

ff
in

ity
 b

et
w

ee
n 

16
:0

,1
6:

1n
7,

 
18

:1
n-

9,
 2

2:
6 

n-
3,

 2
0:

5n
-3

 a
nd

 1
8:

0 
(L

on
dr

av
ill

e 
an

d 
Si

de
ll,

 1
99

6)
 

L
un

gf
is

h 
fa

bp
10

 
L

iv
er

  
Fa

tty
 a

cy
l-

C
oA

s 
L

ys
op

ho
sp

ho
lip

id
s 

re
tio

no
id

s,
 b

ili
ru

bi
n 

bi
le

 s
al

ts
,  

18
:2

n-
6,

 1
8:

3n
-3

, 1
6:

1n
-7

,  
18

:1
n-

9 
20

:4
n-

6 
 

16
:0

 
18

:0
  

20
:0

  
Pr

os
ta

gl
an

di
ns

 
Pa

lm
ito

yl
-c

ar
ni

tin
e 

Pe
ro

xi
so

m
e 

pr
ol

if
er

at
or

s 

(D
i P

ie
tr

o 
an

d 
Sa

nt
om

e,
 2

00
1)

 

Sh
ar

k 
 

fa
bp

10
 

L
iv

er
  

18
:2

n-
6 

 
R

et
in

oi
c 

ac
id

s 
 

L
ys

op
ho

sp
ha

tid
yl

ch
ol

in
e 

16
:0

  
18

:1
n-

9 
 

20
:4

n-
6 

 

(C
or

do
ba

 e
t a

l.,
 1

99
9)

 

C
at

fi
sh

  
fa

bp
10

 
L

iv
er

  
16

:0
 

18
:0

 a
nd

 1
8:

1n
-9

 
16

:1
n-

7 
18

:2
n-

6 
18

:3
n-

3 
20

:0
 

20
:4

n-
6 

 
20

:5
n-

3 
 

(D
i P

ie
tr

o 
et

 a
l.,

 1
99

6;
 D

i P
ie

tr
o 

et
 a

l.,
 

19
97

) 

T
oa

d 
 

fa
bp

10
 

N
ot

 li
st

ed
 

16
:1

n-
7.

 1
8:

1n
-9

 1
8:

2n
-6

, 
18

:3
n-

3,
 

20
:4

n-
6 

 
Fa

tty
 a

cy
l C

oA
s 

 
L

ys
op

ho
sp

ho
lip

id
s 

R
et

io
no

id
s 

B
ile

 s
al

ts
  

 

16
:0

 
18

:0
 

20
:0

 
Pr

os
ta

gl
an

di
ns

 
Pa

lm
ito

yl
-c

ar
ni

tin
e 

(D
i P

ie
tr

o 
et

 a
l.,

 2
00

3)
 

C
hi

ck
en

  
fa

bp
10

 
L

iv
er

  
D

ec
re

as
in

g 
af

fi
ni

ty
 fo

r 1
6:

0,
 1

8:
1n

-9
 a

nd
 re

tin
oi

c 
ac

id
 

(B
er

in
gh

el
li 

et
 a

l.,
 2

00
1)

 



18 

 

3.3   Nutrigenomics 

3.3.1 General overview 
 

Nutrigenomics can be defined as the study on how nutrients, in this case fatty acids or their 

metabolites, can act directly or indirectly, through signal transduction pathways, on transcription 

factors and thereby affecting the transcription of genes, also known as gene expression (Muller and 

Kersten, 2003; Jump, 2002b) (Figure 5). Nutrigenomics is believed to promote increased 

understanding of how nutrition influences metabolic pathways and homeostatic control (Muller and 

Kersten, 2003).  

NEFA FAT [NEFA] [FA-CoA]

PL

SL

Rafts
SrcK

MapK
PKC Gs

[NEFA]

Oxidized 
lipids

PPAR
(αααα ββββ γγγγ1/ γγγγ2)

NF-κκκκB HNF-4ααααRXRαααα

LXR αααα, ββββ mRNASREBP-1c

PSREBP-1c
Insulin IR

COX
LOX
CYP

Desaturation
Elongation 
Lipid biogenesis
&&&&
ββββ-oxidation 

OxySt

 
Figure 5. Schematic overview of the multiple mechanisms involved in the fatty acid regulation of transcription factor 
activity and abundance. The figure was modified from (Jump, 2002a). Solid arrows represent activation, dashed lines 
represent inhibition. Non-esterified fatty acids (NEFA) or their co-esters (FA-CoA) are believed to affect gene expression 
directly, or be metabolised according to their destined intracellular fate. Different dietary fatty acids may also mediate 
transcriptional regulation through changes in membrane composition, which alters signal transduction pathways and 
eicosanoid synthesis. See text for further explanations. 
 

Fish oil diets, with their high degree of VLCFAs, have been shown to induce fatty acid oxidation and 

glukoneogenesis, while suppressing fatty acid synthesis through the action of transcription factors in 

mammals (Berger et al., 2002; Jump, 2002b). It has recently become evident that VLCFAs exerts 

many effects on gene transcription which are not mediated by a single subfamily of orphan nuclear 

receptors –PPARs. VLCFAs can affect expression of many different genes through the action of 
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transcriptional factors as hepatic nuclear factor -4α (HNF-4α), nuclear factor κB (NFκB), retinoid X 

receptor α (RXRα), sterol regulatory element binding protein-1c (SREBP-1c) and liver X receptors 

(LXRα and LXRβ) (Jump, 2002b). In a recent review Jump and co-workers (2005) argues against the 

role of LXR α as a target for VLCFA control of gene transcription.  

Furthermore, dietary VLCFAs can alter membrane phospholipid composition and impact 

eicosanoid synthesis and signal transduction pathways. Dietary n-6 VLCFA stimulates, whereas n-3 

VLCFA inhibit eicosanoid synthesis and signalling, and NF-kB activation (Jump, 2002a). Dietary n-3 

fatty acids increase the amount of 20:5n-3, 22:5n-3 and 22:6n-3 in lipid rafts, which are membrane 

micro domains that contribute to signal transduction (Ikonen, 2001). These lipid rafts contain G-

proteins and members of the SRC kinase family which participate in mediating signal down streaming 

signalling events that result in transcriptional activitation (Jump, 2002a). G-proteins acts through 

cAMP signalling and the SRC kinase family through calcium signalling, ERK activation and other 

downstream signalling events (Jump, 2004; Stulnig et al., 1998; Webb et al., 2000; Liang et al., 2001; 

Stulnig et al., 2001). It was suggested that the physical properties of the membrane bilayer affect the 

activity of protein kinase C (PKC), and that increased PC unsaturation increases PKC activity (Slater 

et al., 1994). In general, phospholipase C (PLC) hydrolyses phosphatidylinositiol-4-5-bisphospate to 

produce 1,4,5- inositol triphosphate and diacylglycerol, both substrates for PKC (Gomez-Fernandez et 

al., 2004). PKC has been shown to control PPARα expression in rat (Rattus norvegicus) (Yaacob et 

al., 2001) and human (Blanquart et al., 2004) in vitro hepatocyte assays. 

3.3.2 Transcriptional activation  
 
The general model for activation of orphan nuclear receptors, PPARs and LXR, is that they form 

heterodimers with RXR, and bind to specific nucleotide sequences (response elements) in the 

promoter regions of a large number of genes (Table 3). PPREs in gene promoters, direct repeats of the 

hexanucleotide sequence AGGTCA, are also referred to as DR-1 response elements (Cherkaoui-Malki 

et al., 2001). The nuclear receptor undergoes conformation changes after ligand binding, which results 

in co-repressor removal. Transcriptional activation is then enabled through recruitment of co-

activators and histone acetylation (Pegorier et al., 2004). Yet, recent studies have shown that PPAR 

activities also results in gene repression through trans-repression of among others NFκB response 

elements in genes which do not harbour a PPRE (Tan et al., 2005).  

 

HNF-4α or PPARα, which can compete for binding to direct repeat (DR)-1 elements is believed to 

mediate the effect polyunsaturated fatty acids has on liver glukoneogenesis (Berger et al., 2002). 

Homeodimerised HNF-4α is also known regulate apolipoprotein synthesis (Jump, 2004).  
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The most studied nuclear orphan receptors PPARs appear to be activated by different fatty acids and 

eicosanoids as well as hypolipidemic agents that control the transcription of lipid metabolism genes 

(Dreyer et al., 1993; Keller et al., 1993; Yu et al., 1995; Forman et al., 1996; Schoonjans et al., 1996b; 

Kliewer et al., 1997; Krey et al., 1997; Desvergne and Wahli, 1999). There are three PPAR subtypes 

(α, β, and γ) which all exhibit tissue specificity (Braissant et al., 1996; Lemberger et al., 1996; 

Desvergne and Wahli, 1999). All PPARs binds to polyunsaturated fatty acids with micromolar 

affinity, whereas PPARα binds to a wide range of saturated fatty acids (Xu et al., 1999a), which may 

suggest a role in the regulation of lipid metabolism of saturated fatty acids (Kliewer et al., 1997 ; 

Gottlicher et al., 1992; Gottlicher et al., 1993; Xu et al, 1999a). PPARα and PPARγ play critical roles 

in the catabolism and storage of fatty acids, whereas PPARβ, also referred to as δ, has been implicated 

in cholesterol transport (Oliver et al., 2001; Vosper et al., 2001) and muscle lipid β-oxidation (Dressel 

et al., 2003; Luquet et al., 2003). PPARα is also reported to regulate genes involved in fatty acids 

transport, glucose metabolism, and ketogenesis as well as ∆5 and ∆6 and ∆9 desaturation (Jump, 

2002b) (Table 2). PPARγ2 knock out mice studies (Gavrilova et al., 2003; Wolf, 2004) and in vitro 

studies (Schadinger et al., 2005) suggest that PPARγ2 regulates triglyceride homeostasis. Liver 

PPARγ induced LPL and fatty acid transporters as well as inhibited NF-κb function and thus 

expression of cyclooxygenase- 2 (COX-2) (Hwang, 2000). PPARγ has also been implicated in 

mitochondrial biogenesis in mice (Mootha et al., 2003), and in mediating enzymatic response to 

fibrates in Atlantic salmon (Ruyter et al., 1997). 

  PPARs have recently been described in several fish species, including zebrafish (Ibabe et al., 

2002; Ibabe et al., 2005a; Ibabe et al., 2005b), gray mullet (Mugil cephalus) (Ibabe et al., 2004), sea 

bass (Dicentrarchus labrax) (Boukouvala et al., 2004), plaice and sea bream (Sparus aurata) (Leaver 

et al., 2005). The tissue expression profile of PPARs in sea bass is similar to that observed for 

mammals, where PPARγ predominate in adipocytes, PPARα are mainly expressed in liver and PPARβ 

appears to be ubiquitously expressed (Boukouvala et al., 2004). In plaice and seabram PPARγ are 

expressed at levels comparable to PPARβ in several tissues and exhibit a wider expression profile than 

in other vertebrates (Leaver et al., 2005). Marine PPARs have also been shown to heterodimerise with 

RXR on DR-I response elements, in both mammalian and piscine genes (Boukouvala et al., 2004; 

Leaver et al., 2005). 18:1n-9 was identified as the most effective fatty acid activator of sea bream and 

plaice PPARα (Leaver et al., 2005), whereas sea bass PPARα and β were significantly induced by 

18:2n-6 and 18:3n-3 (Boukouvala et al., 2004). Thus, marine PPARα and β were suggested to share 

similar functions as their mammalian counterpart, namely β-oxidation. All marine PPARγs were 

poorly activated by fatty acids (Boukouvala et al., 2004; Leaver et al., 2005), and VLCFAs induced 

transcription in sea bream only (Leaver et al., 2005). Hence, PPARγ show a different fatty activation 

profile compared with mammals, which are activated by monounsaturated fatty acids (Kliewer et al., 

1997). The observed activitation profile may result from observed sequence differences in the ligand 
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binding domain (LBD). To summarise, marine PPARγs were suggested to exhibit different functions, 

from PPARγs in mammals (Leaver et al., 2005). 

Through the action of PPRE in the gene promoters of CPT- I and II, enoyl-CoA hydratase 

(ECH), catalase and AOX (Zhang et al., 1992; Mascaro et al., 1999; Kassam et al., 2000; Berger et al., 

2002; Girnun et al., 2002; Tachibana et al., 2005), VLCFAs are believed to indirectly induce fatty acid 

oxidation when supplemented in diet of mammals. Increased expression of the genes listed above, 

with the exception of catalase, was observed in liver of rats fed a fish oil diet compared with a palm oil 

diet using Northern blot analysis (Ide et al., 2000). Increased expression of liver CPT-II and ECH, but 

not CPT-I was observed when mice were fed fish oil diet enriched with 22:6n-3 and 20:5n-3 induced 

expression compared to a diet lacking VLCFA was observed using microarray analysis (Berger et al., 

2002) (Table 3).  

 

SREBP-1c, a basic helix loop-helix leucine zipper family transcription factor (Osborne, 2000) binds 

sterol regulatory elements (SRE) in promoters and induce genes involved in fatty acid synthesis, 

(Table 3) including ACC, fatty acid synthases and SCD (Mater et al., 1999). It was also demonstrated 

that mouse ∆5 and ∆6 fatty acid desaturases are subject to dual regulation of gene expression by 

PPARα and SREBP-1c (Matsuzaka et al., 2002). Based on the identification of SREBP-1c as a key 

regulator of ∆6 fatty acid desaturase, liver SREBP-1 c was suggested to regulate phospholipid 

synthesis rather than TAG synthesis (Nakamura and Nara, 2002). This was argued on the basis that 

VLCFAs are the main substrates for phospholipid synthesis, not the latter.  

In general, fatty acid regulation of SREBP-1c may not involve direct fatty acid binding 

(Figure 5) but rather control the nuclear abundance of SREBP-1c, as it has been shown that long 

chained n-3 and n-6 fatty (20:5n-3 and 22:6n-3) acids suppress the cellular level of mRNASREBP-1c in 

rat liver as well as the cellular level of precursor and nuclear forms (Kim et al., 1999; Mater et al., 

1999; Xu et al., 1999b; Yahagi et al., 1999). SREBP-1c is also required for the insulin mediated 

induction of liver fatty acid synthesis and triglyceride homeostasis (Foretz et al., 1999; Azzout-

Marniche et al., 2000; Osborne, 2000; Schultz et al., 2000; Vaulont et al., 2000). 
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4. Methodological considerations  
 

The two methods used for measuring gene expression, microarray (Paper I) and Q-PCR (Papers I-IV) 

were carefully evaluated according to experimental and methodological standards available at the time 

of the current studies. These methods share some potential pitfalls which may contribute to technical 

and systemic variation. Firstly, high technical RNA quality as well as sequence information quality is 

needed to assure high reproducibility and reliability of the obtained data. Furthermore, good 

experimental setups are needed to ensure control over technical variation, especially for microarray 

analysis (Paper I). It is also essential to control intra and inter plate variability in Q-PCR (Papers II and 

III). The experimental design chosen should also minimise the systemic variation, by ensuring valid 

reference and normalisation strategies. For microarray analysis it is also important to ensure optimal 

quality analysis. For both methods high statistical power for the statistical analysis must be assured. Q-

PCR analyses were done on individual tissue samples from Atlantic salmon fed different diets (Papers 

I-III). For microarray analysis pooling of samples has been recommended to ensure high statistical 

power when references are made on a group level (Peng et al., 2003) (Paper I). The number of pooled 

samples was according to the central limit theorem to ensure normal distribution, low SD, and thus 

minimising genetic variation (Zar, 1999).  

 

In microarray screening, the use of MIAME standards ensured recommended documentation of 

experimental details and results (Paper I). High reproducibility and repeatability were ensured by the 

use of high quality RNA and recommended RNA quantity (Garosi et al., 2005). Flour flips were used 

to control for systemic variance, which may be introduced through different labelling intensities and 

scanning properties of the fluorofores (Churchill, 2002).RNA purification strategies were optimised to 

ensure high quality RNA for both methods measuring gene expression. RNA purity measurements 

were within limits recommended when using nuclease free water, and all quantity measurements at 

A260 were done within the linear range (Ambion, 2005). Prior to Q-PCR and microarray analysis 

(Papers I-III) gel-electrophoresis was conducted with the aim to measure total RNA integrity (results 

not shown). Recent discoveries indicate that these 28S:18S rRNA ratio measurements alone not are 

indicative of high RNA quality (Ambion, 2004). Thus suggestions are made on defining RNA quality 

as the sum of RNA integrity and purity. Finally, for our experimental setup, validation of RNA quality 

was also accomplished through assessment of reference gene expression stability (Perez-Novo et al., 

2005) (Papers II and III, see Appendix, Table 1).  

 

EST sequenced cDNA used for microarray construction and thus analysis, only provides information 

from a unique stretch of cDNA within a coding region of the gene. The initial information on the 

cDNA identity was based on BLAST searches (http://cbr-
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rbc.nrc.cnrc.gc.ca/reith/salmon/salmon.html). It should be noted that identification of these gene 

sequences depends on the number of sequences available for BLAST searches. Consequently, their 

identities have recently been verified by the use of several online sources 

(http://www.ncbi.nlm.nih.gov/BLAST/ and http://www.salmongenome.no/cgi-bin/sgp.cgi).  

 

In Q-PCR, high quality information on the nucleotide sequence used for primer and probe design may 

ensure analytical precision. Thus, we decided to further examine genes which were fully cloned, ∆5 

fatty acid desaturase, FABP3 and PPARγ, or assessed through fully sequenced ESTs, namely FABP4 

and 10. Primers and probes were designed based on exon-exon boundaries, to assure specificity to 

mRNA and minimise genomic DNA contamination. For more details on the primers and probes 

designed for the reference genes see Paper IV. All primer and probe assays constructed using Assay 

by Design (Applied Biosystems) functioned satisfactorily. In fact, no mispriming was present as 

verified using gel electrophoresis, which detected single PCR products of expected amplicon size 

(results not shown).  

 

Inter and intra plate assay variation was assessed for our Q-PCR production life cycle assays (Papers II 

and III), ascertaining that variation between Ct values from individual samples were within the 

realistic range, between 2 and 4% (Pfaffl, 2004). In our experimental protocol, % deviation around 

mean (n=3 per sampling for FABP assays and n=6 for PPARγ assays) between and within plates was 

less than 4 % at all samplings within all Q-PCR assays through production lifecycle (Appendix, Figure 

1-3). Furthermore, the between sampling control also varied less than 4 % for all assays. This control 

was total RNA from one fish from the second sampling, assayed using all Q-PCR assays, on plates 

from all the other samplings. This established that the life cycle changes in FABP and PPARγ relative 

gene expression were not due to technical variation (Papers II and III). Additionally, it was ensured 

that the same sample size and RNA quantity (±5%) was used in all assays. This has been described as 

a part of a good normalisation strategy (Huggett et al., 2005).  

Differences in PCR efficiency would result in the variation of Ct-values, using the threshold 

method (Bustin et al., 2005). Consequently, the same interassay dependent threshold values were set 

throughout the production lifecycle Q-PCR experiments. In order to assure optimal control over PCR 

efficiency, dilution curves for all assays were run on every second plate at each sampling. PCR 

efficiency ranged form 97-100%, with the exception of red and white muscle tissue sampled from fish 

in seawater samplings (Appendix, Table 2). Yet, this lowered efficiency did not seem to introduce 

analytical imprecision, indicated by low interassay variation in Ct values for these samplings 

(Appendix, Figure 1-3). Moreover, there seem to be a correlation between inadequate PCR efficiency 

and low A260/A230 ratios due to PCR poisoning (Paper IV). This is probably a consequence of the use 

of DNAse.  



25 

 

 

18S rRNA was earlier recognised as “the gold standard” (Ambion, 2006). However, recently criticism 

against the use of 18S rRNA has been addressed (Bustin and Nolan, 2004). In addition 18S rRNA has 

shown relatively high expression variability when evaluated for Atlantic salmon studies (Paper IV) 

(Ingerslev et al., 2006). Hence, indicating that care should be taken when using 18S rRNA as an 

endogenous control for gene expression studies. Some reservations should also be taken in to 

consideration in the quantification step. Since the high expression of 18S rRNA compared to mRNA 

may, when used in ratio models, result in the introduction of statistical bias (Hocquette and 

Brandstetter, 2002). This has lead to the use of 18S rRNA as a potential quality control in the present 

study, in order to confirm results using EF1AA as the main reference gene. Thus, when relative gene 

expression was calculated, both 18S rRNA and EF1AA were used at all times. Normally, 18S rRNA 

confirmed results using EF1AA (muscle data Paper II, and for paper III, see Appendix, Figure 4, Paper 

I, see Appendix Figure 5 and 6). 18S rRNA was used as the endogenous control when calculating 

relative liver ∆5 fatty acid desaturase mRNA expressions after 22 and 42 weeks of feeding (Paper I). 

However, relative gene expression of liver ∆5 fatty acid desaturase, when using EF1AA as the 

denominator, was also significantly increased when Atlantic salmon were fed 75% rapeseed oil 

compared to fish oil (Appendix Figure 5 and 6). There where however differences in gene expression 

patterns of liver FABPs through production life cycle, dependent on the endogenous control used 

(Paper II). 

 

The thorough technical validation of microarray data with regard to labelling and hybridisation has 

been addressed earlier (Paper I). Systemic variation was less focussed on. First of all, data pre-

processing, involving image analysis and normalisation, are required to reliably quantify the 

fluorescence intensities (Goldstein and Delorenci, 2005). In the present study a combination of fixed 

circle segmentation, and gridding and flagging of spots for image analysis were used. According to 

Goldstein and Delorenci (2005), this constitutes the best available technique at the present time. 

Furthermore, the use of primary scans to asses the basis of analysis, and secondary scans to correct the 

intensity of spots with saturation, ensured reliable intensity ranges and thus optimal scanning 

procedures (Lyng et al., 2004). Channel dependent global normalisation gave the same adjustment to 

each spot on the array without regard to individual spot features or location (Goldstein and Delorenci, 

2005). We also used quadruplicate spotting of all spots on the array including quality controls in the 

form of empty spots and housekeeping genes. A five point concentration gradient of chlorophyll 

synthethase from Arabidopsis thaliana was also spotted four times to asses binding of our internal 

control. Therefore, this enabled us to visually control our normalised results for spatial dependent 

imbalances. Furthermore, restricted coverage arrays seems problematic to normalise properly with 

other available methods, due to violations of assumptions made for the methods lowess/loess, print tip, 

and the use of control sequences and housekeeping genes. Consequently, the global strategy seems to 
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be most appropriate for these types of arrays. It should be stated that the normalisation resulted in 

channel dependent intensity plots which go through origio (results not shown).  

 

T-test based models have been recommended for statistical analysis in cDNA microarray experiments 

where replication exists for two conditions (Cui and Churchill, 2003). Methods which estimate the 

false discovery rate (FDR), as SAM, have been advised for use in nutrigenomics studies (Garosi et al., 

2005). Consequently, we tested the gene specific t-test (p<0.01) and the SAM analysis (Paper I). SAM 

analysis offers higher stability in estimating variance from each gene, and the approach for multiple 

testing by using FDR (Cui and Churchill, 2003). FDR is the proportion of false positives among the 

genes identified as being differentially expressed and is a post data measure of confidence, rather than 

a significance level. It should be noted that the number of differential expressed genes were reduced 

using SAM instead of a t-test with a 99% confidence limit.  

 

Since, there is a correlation between the PCR efficiency and the Ct-value, only software with PCR 

efficiency correction, i.e. REST (Pfaffl et al., 2002) and Q-Gene (Muller et al., 2002; Simon, 2003) 

were used. The Q-Gene method was used in Papers I-III. Results from statistical analysis examining 

whether diet induced differences in gene expression (Papers I and II) were supported by results using 

statistical randomisation with pair-wise permutations in REST (results not shown).  

 

When analysing tissue samples using relative quantification one should be aware of the fact that the 

variability of gene expression measurements may be influenced by local variation in reference gene 

expression stability, due to tissue and cell-specific factors (Bustin and Nolan, 2004). In a recent letter 

to Nature low induction levels were addressed as a source of extrinsic variability (Volfson et al., 

2005). Extrinsic variability, thus meaning effects of random fluctuations in the environment, or the 

effect of regulatory inputs that are common to multiple genes, have been shown to be a significant 

component in gene expression variability. Thus, the high standard deviation seen in the present studies 

(Papers I-III) is believed to be due to high extrinsic variability possible exacerbated by tissue specific 

factors. Gene expression measurements are also influenced by intrinsic sources of variability due to 

different physiological state, age, sex and genetic polymorphism (Lettieri, 2006). Variation between 

tanks might also explain variability in white muscle FABP3 expression relative to EF1AA after 3, 16 

and 22 months of feeding (Paper II). No tank specific effects were seen for FABP3 expression in red 

muscle or FABP10 expression in liver during the production life cycle experiments (Paper II). Liver 

FABP3 mRNA levels after sea water transfer, and PPARγ expression after 6 (both diets) and 16 

months (plant oil diet) varied due to observed variation between tanks (Paper III). Thus, extrinsic 

variability is in this fish nutrition experiments were not the only source of variability.  
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However, the present identification of a valid reference, EF1AA, for data normalisation (Paper IV) is 

believed to have assured accurate, reproducible and biologically relevant mRNA quantification (Paper 

I, see Appendix, Figure 5 and 6, and Papers II and III) (Bustin, 2004). There is a growing awareness 

regarding the fact that these snap-shot gene expression measurements of the dynamic cells, although 

analytically precise, should be used in concert with other analytical methods to validate biologically 

significance. However, it should be stated that there is reason to believe that small changes in gene 

expression for regulatory proteins and transcription factors do have biological relevance.  

 

To summarise, the experimental design used for microarray screening was chosen to ensure low 

genetic variation and high statistical power when comparisons were done at a group level (Paper I). 

The use of several quality controls and a high degree of technical replicates enabled us to evaluate 

systemic and technical variation. The strategy for labelling and scanning procedures as well as image 

analysis have been evaluated and found advisable for use in this experimental analysis. The choice of 

normalisation strategy and statistical analysis were as recommended for use in nutrigenomical surveys 

using gene focussed arrays. The data set met MIAME standards.  

The endogenous controls used for the experimental setups were thoroughly evaluated for use 

in Atlantic salmon (Paper IV). The present identification of a valid reference, EF1AA for data 

normalisation enabled us to assure accurate, reproducible and biologically relevant mRNA 

quantification (Papers I-III). The use of 18S rRNA assays to calculating relative gene expression of 

liver PPARγ and FABPs in muscle verified results using EF1AA as an endogenous control (Papers II 

and III). Minimal analytical variation, as evaluated by interplate, intraplate and intrasampling controls, 

was observed for all Q-PCR assays run on individual fish samples (Papers II and III). 
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5. General discussion 
 

5.1 Nutrigenomics in aquaculture nutrition  
 
Nutrigenomics can be defined as the use of systems biology i.e. genomics, transcriptomics, proteomics 

and metabolomics, but also bioinformatics in nutrition research (van Ommen and Stierum, 2002). For 

aquaculture nutrition research, the integration of systems biology has just started. Since the 

exploration of the genomes of several aquacultured fish species, among these Atlantic salmon, are 

quite recent compared to mammals.  

 

The present use of a gene focussed array to study lipid metabolism in Atlantic salmon should include 

the study of transcription factor pathways mediating nutrient gene interactions (Paper I). It should also 

explore the expression of regulatory proteins which mediate metabolic processes meaning transport 

proteins and known signal transducers. In order to further elucidate possible mechanisms for 

transcriptional activation, but also study selective fatty acid uptake which are believed to have impact 

on the regulation of cellular lipid metabolism. Overall, studies of metabolic end products and 

metabolic processes should be used in concert with microarrays to evaluate the biological meaning of 

these snap shot gene expression measurements. In the present study, established methods were used to 

asses’ dietary, tissue and lipoprotein fatty acid composition (Papers I-III) (Torstensen et al., 2004 and 

2005). For both dietary trials liver and lipoprotein lipid class composition were determined (Paper III) 

(Torstensen et al., 2004). Measurements of lipid catabolism in white- and red muscle and liver were 

also included in the present study (Stubhaug, 2005; Stubhaug 2005a). Further, enzymatic assays were 

used to address dietary implications on lipogenesis in Atlantic salmon (Paper III). Protein assays were 

used to asses’ translational patterns for muscle FABP3 which correlated with mRNA expression 

(Paper II).  

 

Several specific challenges characterise aquaculture nutrition research. One specific challenge is the 

use of in vitro primary cell culture studies versus in vivo experiments. Especially, as several fatty acids 

vary in a system under homeostatic control in an in vivo experimental design such as a feeding 

experiment varying the dietary oil source. The in vitro designs are often focussed on the study of the 

effect of one specific fatty acid. A second challenge when using dietary trials to examine the in vivo 

response, are ambient temperature and light. Under low induction levels, as seen in nutrigenomic in 

vivo assays, extrinsic variability, meaning the effect of random fluctuations in the environment and 

regulatory inputs on multiple genes simultaneously, is common in gene expression measurements 

(Volfson et al., 2005). In vivo gene expression measurements are also influenced by intrinsic sources 

of variability due to different physiological state, age, sex and genetic polymorphism (Lettieri, 2006). 

In addition, reference gene variability may be introduced when using tissue samples for relative gene 
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expression measurements (Tricario et al., 2002). Furthermore, as studies of nutritional effects in vivo 

are studies of a well balanced homeostasis one may find few biomarkers. In these studies one may 

expect to define a fine tuned metabolic change mediated by long term effects of dietary fatty acid 

composition (van Ommen and Stierum, 2002: Jump, 2002a). This introduces methodological and 

technological challenges in the field of systems biology as a whole. Overall, one has to conclude that 

the nutrigenomical survey used in the present study constitutes the beginning of a new field of 

aquaculture nutrition studies.  

5.2 Extracellular lipid transport  
 
Overall, liver and lipoprotein fatty acid composition in Atlantic salmon (Paper III) was highly 

influenced by dietary fatty acid composition. This is in line with previously reported results (Lie et al., 

1993; Torstensen et al., 2000; Torstensen et al., 2004). HDL had generally high levels of 22:6n-3 

irrespective of dietary fatty acid level. Thus agreeing with the high phospholipids levels compared to 

the other lipoproteins, as seen earlier (Lie et al., 1993).  

 

The quantitative impact of altered lipogenic enzyme activity on liver and plasma lipid levels is 

considered to be minor in Atlantic salmon, especially when fed high levels of dietary lipid (Arnesen et 

al., 1993). This is also in agreement with observations done in other fish species (Sargent et al., 1989). 

However, feeding Atlantic salmon a 100% plant oil replacement diet increased liver TAG stores, and 

decreased plasma lipid levels, possibly through decreased VLDL synthesis (Paper III). These results 

were consistent with the higher lipid accumulation in the liver of Atlantic salmon fed a diet containing 

100% sunflower oil, compared with a fish oil diet at 5°C (Ruyter et al., 2006). TAG lipase, which 

mobilises fatty acids from endogenous TAG for VLDL synthesis (Gibbons and Wiggins, 1995; 

Gilham et al., 2005), has been identified in liver of Antarctic ice fishes (Sidell and Hazel, 2002). 

Winter flounder TAG lipase, was printed on the array (Paper I). The cDNA, synthesised from the 

isolated Atlantic salmon mRNA, seemed not to hybridise to the spotted winter flounder cDNA. This 

may have been due to poor interspecies hybridisation efficiency as previously examined (von 

Schalburg et al., 2005). The recent published work by Ruyter and co-workers (2006) suggested 

alternative explanations for increased lipid deposition, compared to the ones given in Paper III. Low 

water temperature was suggested to reduce the activity of enzymes involved in the esterification of 

fatty acids in to both neutral and polar lipids for VLDL production (Ruyter et al., 2006). Low water 

temperature was observed at the last sampling (Paper III) and may therefore potentially result in 

increased lipid deposition in the liver. Ruyter and co-workers (2006) also suggested that the lack of 

dietary n-3 VLCFA may imply a reduction in VLDL synthesis. Especially as 22:6n-3 has been shown 

to mainly be esterified in to the polar lipids of VLDL, thus low 22:6n-3 leading to liver TAG 

accumulation in vitro (Vegusdal et al., 2005). Vegusdal (2005) also suggest that dietary FO reduces 
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TAG secretion from Atlantic salmon hepatocytes and that 20:5n-3 mediates this effect. 20:5n-3 has 

also been shown to inhibit secretion of TAG when studied in cultured rat hepatocytes (Nossen et al, 

1986). Frøyland and co-workers (1997) reported decreased plasma TAG induced by 20:5n-3 whereas 

22:6n-3 had no effects on plasma TAG levels in rats. Both in the study by Ruyter (2006) and in the 

present study (Paper III) low dietary levels of dietary n-3 VLCFA were reported in the plant oil based 

diets. Although within recommendations for both dietary 20:5n-3 and 22:6n-3 (NRC, 1993; Sargent et 

al., 1995) these plant oil diets seem to introduce liver TAG accumulation. Common for these in vivo 

experiments are high dietary levels of 18.1n-9, as well as high dietary lipid loads. Ruyter and co-

workers (2006) reported that the higher fat accumulation seemed to be mainly caused by a selective 

accumulation of 18:2n-6 and 18:1n-9. 18:2n-6 is the most prominent dietary fatty acid in the 100% 

sunflower oil diets. It should be stated that the reported trends are somewhat contrary to what could be 

expected based on published in vitro studies in Atlantic salmon (Vegusdal et al., 2005, Stubhaug et al., 

2005b) and rat hepatocytes (Nossen et al., 1986). These studies indicate that 18:1n-9 increase secretion 

of TAG. However, in vivo feeding experiments are more balanced regarding nutrient composition and 

the system is under constant homeostatic control compared to an in vitro experiment with cultured 

hepatocytes being exposed to high concentrations of a single fatty acids. Thus, there is reason to 

believe that the dietary induced response in the in vivo system under study may be more complex than 

assumed based on in vitro studies.  

In the present experiment differences in growth rate after 22 months of feeding can not be 

excluded as a possible factor explaining increased liver TAG levels in plant oil fed compared to fish 

oil fed Atlantic salmon (Paper III). However, it was not observed any growth differences after 14 

months of feeding when increased liver TAG levels in plant oil fed compared to fish oil fed Atlantic 

salmon. Consequently, growth alone can not be the sole explanation for increased liver TAG levels in 

plant oil fed fish.  

 

Dietary regulation of liver apo-AI and c-II gene expression was observed in the present study (Paper 

I). Thus agreeing with results recently reported for Atlantic salmon (Kleveland et al., 2005) and earlier 

studies performed using rodents (Berger et al., 2002; Hatahet et al., 2003). Hence, it may suggest the 

presence of PPREs in these Atlantic salmon genes as identified for human apo A-I (Vu-Dac et al., 

1994). The presence of PPREs has also been suggested in apo C-II genes (Berger et al., 2002; Jump, 

2002b).  

The observed induction of apolipoproteins apoA-I and c-II when the fish were fed the 75% 

rapeseed oil diet compared to 100% fish oil (Paper I) appears to be correlated with an observed 

decrease in total plasma HDL protein content for Atlantic salmon fed the same diets (Torstensen et al., 

2004). Whereas the plant oil blend diet induced no differences in HDL protein content (Paper III), but 

did give significantly reduced plasma LDL levels. Thus in Atlantic salmon these apolipoproteins may 

be regulated by complex post transcriptional and translational mechanism as observed in mammals 
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(Fojo et al., 1986; Hoeg et al., 1986). Apo A-I, the predominant protein associated with HDL, undergo 

co-translational proteolytic processing. The protein also undergoes post-translational conversion of pro 

apo A-I to mature apo A-I prior to cellular secretion. Moreover, it has been suggested that linkage of 

lipids to apolipoproteins may play a critical role in apolipoprotein and lipoprotein metabolism (Hoeg 

et al., 1986). Thus, there is clearly a need for further studies to elucidate mechanisms for the regulation 

of the apolipoprotein synthesis in Atlantic salmon liver cells. 

5.3 Fatty acid uptake and intracellular transport  

 
Phylogenetic analysis of FABP sequences suggest that the mammalian FABP1s and the FABP10 

forms expressed in liver of Atlantic salmon (Papers I and II) and zebrafish (Denovan-Wright et al., 

2000) are clearly products of distinct genes. Based on distance matrices, FABP10 was suggested to 

have diverged from FABP1 by gene duplication approximately 679 million years ago (Schaap et al., 

2002). Furthermore, FABP3 co-group with the h8 forms identified in Antarctic ice fish (Vayda et al., 

1998) and the characterised FABP3 mRNA widely expressed in zebrafish (Liu et al., 2003a). With 

high node support FABP3 seems distinct from FABP4 in vertebrates. All h6-FABPs co-group with 

vertebrate FABP4s. Thus the Atlantic salmon h6-form, identified in the macrophage cDNA library 

(http://cbr-rbc.nrc.cnrc.gc.ca/reith/salmon/salmon.html) and used for microarray screening (Paper I) 

was suggested to be of the FABP4 isotype. Hence, confirming suggestions made for heart muscle 

FABP4 in Antarctic teleost (Vayda et al., 1998). Whether the predicted FABP4 from zebrafish (Figure 

6) is a duplicate genetic form of the suggested FABP4 isotype, is still unknown at the present time. 

Yet, there is no indication of expression of a similar isoform in salmonidae protein databases 

sequences (http://www.salmongenome.no/cgi-bin/sgp.cgi). Duplicate iLBP genes have been found for 

FABP7 (Liu et al., 2004a) and CRBPI and II (Liu et al., 2005) and is suggested for FABP3 in 

zebrafish (Liu et al., 2003a). Thus the presence of duplicate FABPs genes in salmonids may not be 

excluded, as actionopterygian (ray finned) fish is known to have a duplicated genome compared to all 

land vertebrates (Meyer and Schartl, 1999). 
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Figure 6. One most parsimonious tree resulting from the unweighted 
parsimony analysis of 24 FABP and the CD 36 antigen nucleotide sequences from vertebrates.  
Sequences were aligned in ClustalX with gap: gap extension cost 6:4,transitions:transversion cost 0.5. The analysis was 
based on 520 sequence positions with a minimum of missing data included. This topology was not sensitive to different 
sequence alignments (ti:tv ratio 0.5 for all alignments; gap opening: gap extension costs 15:6.66 (default), 10:4, 
10:10, 6:4, 6:6), or to the inclusion of a distantly related outgroup sequence (CD36 antigen sequence from the human 
genome). Bootstrap support values are given above (outgroup included) and below (outgroup excluded) each internal branch. 
The scale given is 20 substitutions. 
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Overall, all FABP’s used for dietary mRNA expression profiling (Papers I and II) appear to be FABP 

like, as their predicted amino acid sequence return the characteristic β-barrel structure (Figure 7). The 

predicted Atlantic salmon FABP3 protein was 133 amino acids long, had a deduced molecular weight 

of 14630.5 g/mol and a theoretical pI of 5.52 (Paper II). The reported protein sequence length and 

theoretical pI of Atlantic salmon FABP3 were identical to that found for rainbow trout (Ando et al., 

1998). The deduced molecular weight of rainbow trout FABP3 was 14531 g/mol.  The Atlantic 

salmon FABP3 showed high amino acid sequence identity to FABP3 from other species (For more 

details se Paper II). Atlantic salmon FABP10 cDNA encodes a 126 amino acid protein with a deduced 

molecular weight of 14023.2 g/mol and a theoretical pI of 8.52. Its characteristic pI and protein 

residue identity to other FABP10s clearly suggest the existence of a salmon FABP10 isoform (For 

more details se Paper II). 
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Figure 7. Ribbon diagram of FABPs. Ribbon diagrams of all FABPs were created with the use of RasMol v2.6 software 
Ribbon diagrams for Atlantic salmon FABPs were based on predicted protein sequences submissed to Swiss model.  

 
 
FABP3 (Paper II), FABP4 (Paper I) and FABP10 (Papers I and II) mRNA expression in muscle and 

liver (FABP4, liver only) were not affected by dietary fatty acids in the present study. FABP3 gene 

expression results were in co-ordance with protein expression studies for FABP3 (Paper II). Thus, 

there were no significant differences in muscle FABP3 protein or gene expression between Atlantic 

salmon fed 75% rapeseed oil and 100% fish oil. Nonetheless, protein expression studies suggested that 

muscle FABP3 were influenced by the degree of dietary rapeseed oil inclusion.  This was based on an 

observed tendency for decreased FABP3 protein expression with decreasing inclusion of dietary 

rapeseed oil. Thus, not excluding the possibly that dietary fatty acids may influence FABP3 mRNA 
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expression, as seen earlier in rat muscle cells in vitro (van der Lee et al., 2000; Chang et al., 2001). 

Especially, since it has been suggested that the control over FABP3 expression occurs predominantly 

at the level of transcription initiation (Zhang and Haunerland, 1998). Moreover, these dietary specific 

adaptations may suggest that FABP3 mediate selective fatty acid uptake and transport. However, it has 

been concluded that limited fluctuations in muscle FABP3 content is unlikely to have a major effect 

on muscle fatty acid uptake and utilization (Luiken et al., 2003). Thus, the small fluctuations seen 

could not be used to conclude that Atlantic salmon muscle FABP3 is a transport protein connected to 

β-oxidation, as suggested for mammals (Veerkamp and Vanmoerkerk, 1993; Binas et al., 1999).  

 

In a comparison of human and rainbow trout FABP3s it was argued that amino acid substitutions 

within the binding site of rainbow trout FABP3 resulted in amino acids with similar characteristics 

and size to human FABP3 (Ando et al., 1998). In addition, all side chains of these amino acids were 

argued as being located far away from the bound fatty acid molecule in rainbow trout FABP3. Hence, 

it was thought to be very unlikely that the binding site and binding behaviour of trout FABP differed 

in any way from that of the human protein. FABP3 identified in the heart muscle of rainbow trout 

confer 98% sequence identity to Atlantic salmon FABP3 (Figure 8). The characteristic β-barrel 

formed by 10 β-sheets closed off by a helix turn helix is highly conserved and there are no differences 

between salmonids within described positions in the binding cavity (positions:  34, 50, 85, 91 and 

125).  Thus, there is reason to assume similar binding specificity and behaviour for Atlantic salmon 

and human FABP3. In vitro binding studies for FABP3 have shown high binding affinity for 18:1n-9 

(Zimmerman et al., 2001) and n-6 fatty acids in mammals (Hanhoff et al., 2002). 18:1n-9 was a 

prominent fatty acid in the rapeseed oil diet, and 18:2n-6 was also present at high levels in the 

rapeseed oil diets (Paper II). Thus, these fatty acids may mediate differential protein expression of 

Atlantic salmon muscle FABP3, as a response to selective uptake mechanisms. 

  

18:1n-9, 18:2n-6 as well as 18:3n-3, also present at high levels in the rapeseed oil diets, has all been 

shown to induce expression of FABP3 mRNA in vitro in cultured rat myoblasts (Chang et al., 2001). 

Thus, there is a possibility that several fatty acids mediate differential FABP3 gene expression, in 

Atlantic salmon muscle. Assuming that models of regulation of muscle FABP3 expression on a 

transcriptional level holds for Atlantic salmon as for the insect, desert locust (Schistocerca gregaria) 

(Zhang and Haunerland., 1998).  
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                    ....|....| ....|....| ....|....| ....|....| ....|....|  
                             10         20         30         40         50             
S.salar_FABP3       MAEAFAGTWN LKDSKNFDEY MKALGVGFAT RQVGGMTKPT TIIEVAGDTV  
O.mykiss_FABP3      MAEAFAGTWN LKDSKNFDEY MKALGVGFAT RQVGGMTKPT TIIEVAGDTV  
Clustal Consensus   ********** ********** ********** ********** **********  
 
 
                    ....|....| ....|....| ....|....| ....|....| ....|....|  
                             60         70         80         90        100             
S.salar_FABP3       TLKTQSTFKN TEISFKLGEE FDETTADDRK VKSLITIDGG KMVHVQKWDG  
O.mykiss_FABP3      TLKTQSTFKN TEISFKLGAE FDETTADDRK VKSLITIDGG KMVHVQKWDG  
Clustal Consensus   ********** ******** * ********** ********** **********  
 
 
                    ....|....| ....|....| ....|....| ... 
                            110        120        130       
S.salar_FABP3       KETTLVREVS GNALERTLTL GDVVSTRSYV KAE 
O.mykiss_FABP3      KETTLVREVS GNALELTLTL GDVVSTRSYV KAE 
Clustal Consensus   ********** ***** **** ********** *** 
 

Figure 8. Clustal X alignment of the amino acids sequences of rainbow trout and Atlantic salmon FABP3s, 
identified in heart and white muscle tissue, respectively. The sequences confer 98% sequence identity as only two 
out of 133 fatty acids are different. The amino acids are not believed to be directly involved in ligand binding.  

 
Atlantic salmon FABP3 may function as a transport protein connected to liver β-oxidation, as 

suggested for elephant fish liver FABP3 (Cordoba et al., 1998). Atlantic salmon FABP3 may also 

function as a transport protein for lipogenesis, as suggested for zebrafish (Liu et al., 2003a). However, 

the function of Atlantic salmon liver FABP3 is presently unknown. The high expression of FABP3 in 

Atlantic salmon muscle, compared to the expression of muscle FABP3 in zebrafish (Liu et al., 2003a) 

could imply that these gene transcripts have distinct functions. However, no further intra tissue 

comparisons will be done as relative expression analysis was used in the present study.  

It is presently unknown whether the lack of correlations between Atlantic salmon liver β-

oxidation and FABP3 expression may be influenced by the high degree of peroxisomal β-oxidation in 

this tissue (Stubhaug, 2005). Studies have shown that FABP1 expression and peroxisomal oxidation 

was induced by 18:1n-9, in the presence of an inhibitor of CPT-I activity (Kaikaus et al., 1993). Thus, 

indicating that selective fatty acid transport to peroxisomes may occur. All together, further 

characterisation of potential response elements in Atlantic salmon liver fabp3 would reveal more 

details on its tissue specific regulation. HNF-1 response elements may be present in Atlantic salmon 

fabp3 as seen for zebrafish (Liu et al., 2003a). HNF-1 has been implied to have a role in peroxisomal, 

and not mitochondrial β-oxidation (Akiyama et al., 2000). The HNF-1α null mice constructed for this 

study also exhibited enlarged fatty livers, thus implying that HNF-1 had a function in lipogenesis. 

 

Lipid metabolism in fish has been shown to be more dependent on season than on growth and 

temperature (Kiessling et al., 1991, Pelletier et al., 1993; Nordgarden et al., 2003). Recently, total β-

oxidation capacity of liver, red and white muscle was also found to be more affected by changes in 
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energy demand, due to life stage, and less by temperature, growth rate and dietary fatty acids 

(Stubhaug, 2005). In mammals, the muscular FABP3 content is related to the fatty acid oxidation 

capacity of the tissue (Haunerland and Spener, 2004). Although modest changes in white muscle 

FABP3 mRNA levels between the different life stages were observed, higher white muscle FABP3 

mRNA expression before seawater transfer than at late seawater samplings coincided with changes in 

total β-oxidation capacity (Paper II) (Stubhaug, 2005). Red muscle FABP3 expression increased 

between the first sampling in fresh water and the first sampling in sea water followed by a decreased 

expression level at late sea water samplings. This coincided with life stage variations in red muscle 

total β-oxidation capacity (Stubhaug, 2005).  

Overall, the use of a reference gene strategy when examining tissue samples has received 

some criticism as tissue samples are known to contain numerous cell types (Bustin and Nolan, 2004; 

Tricarico et al, 2002). Teleost liver cells contain hepatocytes, endothelial cells, hepatic stellate cells, 

Kuppner cells and bile ductules cells (Akiyoshi and Inoue, 2004). Atlantic salmon is known to store 

lipid within myoseptas (adipocytes) in both red- and white muscle (Zhou et al., 1995). We reported 

variable reference gene expression stability during the production life cycle, especially for white 

muscle and liver (Appendix, Table 1). Significant variation in expression of housekeeping genes have 

been shown when using biopsies (Tricario et al., 2002). Consequently, relative mRNA expression 

measurements may be influenced by tissue complexity. Overall, the study of short-lived mRNA in 

prolonged dietary studies may need further evaluation as transcriptomes are prone to rapid turnover 

based on external and internal stimuli (Fan et al., 2002). 

 

The high expression of Atlantic salmon liver FABP10 compared to liver FABP3 (Paper II) may 

indicate an important function in metabolism of one or several ligands. FABP10 is expressed in the 

liver of catfish and lungfish (Di Pietro and Santome, 2001; Di Pietro et al., 1996). Lungfish (Di Pietro 

and Santome, 2001) and catfish (Di Pietro et al., 1997) FABP10s exhibit a broad binding specificity. 

However, both FABPs have higher affinity for bile salts than fatty acids. Thus, this may indicate a 

potential role for fish FABP10 in the metabolism of bile salts, as recently suggested for chicken 

FABP10 (Nichesola et al., 2004; Nolan et al., 2005). This function was also suggested for FABP1 in 

mice through in vivo knock out studies (Martin et al., 2005).  

 

Lungfish FABP10 and mammalian FABP1 both have higher affinities for unsaturated than saturated 

fatty acids (Di Pietro and Santome, 2001; Hanhoff et al., 2002). The relative affinity of fatty acids for 

chicken FABP10 and FABP1 are however remarkably different (Beringhelli et al., 2001). Chicken 

FABP10 binds fatty acids in a similar manner as catfish FABP10. FABP10s from lungfish and catfish 

binds 18:1n-9 with high affinity (Di Pietro et al., 1996; Di Pietro and Santome, 2001).  

It has been shown in the present study that partial dietary rapeseed oil replacement does not 

change Atlantic salmon FABP10 gene expression in vivo.  
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Recently, two different mammalian type – FABPpm s was identified in rainbow trout white and red 

muscle, together with the observation that specific inhibition of a presently unidentified FAT/CD36 

reduced palmitate uptake in to muscle cells (Richards et al., 2004). Therefore, one may suggest that 

salmonids resemble mammals in mechanisms for fatty acids uptake. In mice fed fish oils enriched in 

22:6n-3 and 20:5n-3, FAT/CD36 was up regulated in liver (Berger et al., 2002). FAT/CD36 was also 

activated by a short term high fat diet in human skeletal muscle, contrary to FABPpm (Cameron-Smith 

et al., 2003). Thus, further studies of selective fatty acid uptake in Atlantic salmon should consider the 

potential complexity in this process.  

 

4.4 Nutrigenomics  

 
Gene candidates differentially expressed by all means of Significance Analysis of Microarrays (SAM) 

analysis were VLDL receptor (recently renamed vitellogenin receptor), long chain ASC3 (M. 

glutinosa), acyl carrier protein, ∆5 fatty acid desaturase, NFκβ P105 subunit, nucleic acid binding 

factor, PKC ∆ and the cAMP dependent protein kinase, but also enolase, retinol binding protein II and 

CTP synthase (Paper I). Nevertheless, the fish oil diet appeared to repress expression of genes 

involved in lipogenesis and lipoprotein synthesis, as well as induce expression of genes involved in 

gluconeogenesis and β-oxidation, relative to the 75% rapeseed oil diet (Table 4). Thus, confirming 

microarray screening results from experiments with mice (Berger et al., 2002) and results from earlier 

studies in mammals (Jump, 2002b). It should be stated that the 75% rapeseed oil diet was selected 

because the body weight of the fish fed 100% rapeseed oil seemed notably lower than for the fish fed 

100% fish oil after 22 weeks. And since the aim of the study was to measure gene expression patterns 

caused by differences in dietary fatty acid composition and not (suspected) reduced feed intake and 

growth effects in fish fed 100% rapeseed oil diets (For more details, see Paper I).  

No physiological or biochemical measurements within the present study was performed to 

support results indicating differential gene expression for genes involved in gluconeogenesis. Yet, 

nutritional regulation of 6 phosphofructo 2 kinase/fructose 2,6 biphosphatase (6PF-2-K/Fru-2,6-

P(2)ase) mRNA expression in gilthead sea bream has been observed (Meton et al., 2000).  

 

Atlantic salmon fed diets containing plant oil show significantly increased desaturation and elongation 

activity compared with fish fed fish oil (Bell, 1997; Tocher et al., 1997; Tocher et al., 2000; Bell et al., 

2001; Tocher et al., 2001; Bell et al., 2002; Zheng et al., 2005a). As also suggested in the present study 

by higher ∆5 fatty acid desaturase expression (Paper I) and accumulation of 20:5n-3 and 22:6n-3 in 

liver independent of dietary oil source (Torstensen et al., 2004). Altogether, dietary regulation 

suggests the presence of response elements in genes of Atlantic salmon fatty acid desaturases and 
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elongase as suggested for mammals (Moon et al., 2001; Berger et al., 2002; Matsuzuka et al., 2002). 

However, no response elements have yet been identified in promoters of the characterised Atlantic 

salmon elongase and fatty acid desaturase genes (Hastings et al., 2004; Zheng et al., 2005b).  

 

Recently 22:6n-3, but also 20:5n-3, was reported to be significantly lower in the phospholipids 

fraction of livers and intestines of Atlantic salmon fed sunflower oil compared to fish oil (Ruyter et al., 

2006). This is in line with previous reported results indicating that plant oil diets negatively affect the 

levels of 22:6n-3 in membranes (Rosjo et al., 1994; Hvattum et al., 2000). No chemical analysis 

confirms differences in the fatty acid composition of membrane phospholipids in the present in vivo 

study (Paper III). However, fatty acid composition analyses of livers from Atlantic salmon fed dietary 

plant oils were significantly lower in 22:6n-3 and 20:5n-3 than fish fed fish oil diets after 22 months of 

feeding. Liver in Atlantic salmon has a high polar lipid /neutral lipid ratio (Torstensen et al., 2004). 

Thus it is reason to argue that long term feeding using dietary plant oil reduce the degree of membrane 

unsaturation, or more specific membrane phospholipids levels of  22:6n-3 and 20:5n-3. Furthermore, 

in vitro studies showed a reduced incorporation of 20:5n-3 and 22:6n-3 into phospholipids in 

hepatocytes when Atlantic salmon had been fed a blend of 75% plant oils (Stubhaug et al., 2005b). 

PKC ∆ and cAMP dependent protein kinase but also PI specific PLC gene expression was 

lower in liver of Atlantic salmon fed the 75% rapeseed oil diet (Paper I). Overall, it may be expected 

that a change in the fatty acid composition of membrane phospholipids could alter the expression of 

genes involved in signal transduction. This is argued based on studies which indicate that changes in 

the degree of membrane polyunsaturation alter the endogenous substrates for membrane associated 

phopholipases (deJonge et al., 1996). This, in turn results in altered enzymatic products, and change in 

the downstream signalling cascades, as activation of distinct protein kinase C isoenzymes. Overall, 

studies in mammals indicated that PKC activity increased with increasing degree of PC and 

phospatidyl ethanolamine (PE) unsaturation (Slater et al., 1994). The molecular species of 18:1n-9-

22:6n-3 in PE has been shown to exhibit the largest activation of PKC (Stillwell and Wassall, 2003). 

Preferential incorporation of 22:6n-3 in to PC and relatively high incorporation in to PE in primary 

hepatocytes isolated from Atlantic salmon was observed (Stubhaug et al., 2005b). These data are 

consistent with earlier in vivo studies suggesting that 22:6n-3 is incorporated in to PE and PC of 

rainbow trout liver (Chen and Claeys, 1996).  

Finally, lipid rafts have been shown to be enriched in 22:6n-3 (Jump, 2004). Thus, dietary 

long term effects may change G-protein signalling, which thereby may mediate an indirect negative 

effect on gene regulation, through the action of cAMP signalling (Jump, 2002a). In conclusion, 

changes in signal transduction pathways would be expected to change the expression of several 

nuclear receptors and transcription factors (Paper I).  
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Furthermore, PI specific PLC activity have been shown be dependent on chain length and 

degree of lipid unsaturation of membrane phospholipids (Lehto and Sharom, 2002). Long term feeding 

of a partial plant oil replacement diet (Paper I) may have induced a decrease in molecular species of 

PI, containing 20:5n-3, as shown for Atlantic salmon kidney when fed dietary soybean oil (Hvattum et 

al., 2000). This may in turn suggest a decrease in prostaglandin production, as seen earlier (Bell et al., 

1993; Tocher et al., 2003). However, as COX-2 from rainbow trout was present on the array but 

returned no results, no indications can be made in the current study. 

Finally, PKC and calcium signalling may also be involved in the process of VLDL secretion. 

Since it has been shown that hepatic VLDL secretion can be related to changes in hepatocyte levels of 

calcium and PKC (Bjornsson et al., 1998). Calcium antagonists and prostaglandins was also shown to 

inhibit VLDL associated TAG secretion in primary cultures (Nossen et al., 1987; Bjornsson et al., 

1992). Thus, signal transduction pathways may also participate in regulation of what seems to be a 

result of decreased VLDL accosiated TAG secretion in Atlantic salmon fed plant oils for 22 months 

(Paper III).  

 

Dietary fish oil induced expression of genes involved in mitochondrial β-oxidation, cpt-II and ech, in 

Atlantic salmon (Paper I). This may indicate the presence of PPREs in their promoter regions, as 

previously identified for these genes in mammals (Mascaro et al., 1999; Barrero et al., 2003). 

However, no statistical significant differences in total liver β-oxidation capacity between fish fed the 

75% rapeseed oil and 100% fish oil diet was observed in the present study (Stubhaug et al., 2005a).  

Overall, the fish oil induced expression of several mitochondrial membrane proteins, may 

indicate differential mitochondrial biogenesis in Atlantic salmon (Paper I), as seen for mice fed dietary 

20:5n-3 (Totland et al., 2000). The water temperature at the sampling selected for microarray 

screening was low (4 °C). Thus, one may expect mitochondrial biogenesis as a response to thermal 

acclimation, as shown earlier for rainbow trout muscle tissue (Guderley and St-Pierre, 2002). Further, 

an increased polyunsaturation of phospholipids in the mitochondrial membrane is regarded to be a 

direct response to cold water temperature (Guderley, 2004). This process may possibly be aggravated 

by reduced dietary VLCFA. Moreover, the integration of the many processes leading to the formation 

of functional mitochondria does involve control mechanisms at the level of gene action and interaction 

(Attardi and Schatz, 1988). Nuclear genes specify all the enzymes in the mitochondrial matrix and 

encode all the components of the protein and RNA import machinery. Hence, this may suggest dietary 

induced differential gene transcription of mitochondrial transport proteins. Finally, differential protein 

expression might also be expected to take place. Since, it previously has been shown that the affinity 

for membrane proteins correlates to chain length and degree of saturation of mitochondrial membrane 

lipids (Daum, 1985).  
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Whether the process of mitochondrial biogenesis in Atlantic salmon involves the PPARγ as 

seen in mice (Mootha et al., 2003), is presently unknown. It can neither be concluded as to whether 

concomitant differential PPARγ and catalase expression indicate that liver PPARγ is connected to 

peroxisomal β-oxidation, as suggested earlier (Ruyter et al., 1997). Earlier studies have shown that 

22:6n-3, 20:5n-3 and 20:4n-6 significantly induced expression of sea bream PPARγ in vitro (Leaver et 

al., 2005). Thus, there is a possibility that these dietary fatty acids may influence Atlantic salmon 

PPARγ expression in vivo. However, liver PPARγ was not differentially expressed in Atlantic salmon 

fed 100% plant oils compared with 100% fish oil (Paper III). This agrees with the observed lack of 

fatty acid specificity for plaice PPARγs using in vitro transactivation assays (Leaver et al., 2005). In 

general, recent studies indicate that piscine PPARα have a similar activation profile to that of 

mammals (Leaver et al., 2005). Hence, it may suggest that Atlantic salmon PPARα may be involved 

in transcriptional regulation of genes involved in liver lipid catabolism, as observed for mammals 

(Jump, 2002b).  

The expression of PPAR� in livers of Atlantic salmon increased prior to sea water transfer 

followed by a decrease, and then another increase towards the final sampling which correlated with 

increased liver TAG stores (Paper III). Further studies are needed to elucidate mechanisms behind this 

correlation. Especially since PPARγ have been implicated to have another function in fish (Leaver et 

al., 2005) than in rodents (Gavrilova et al., 2003; Wolf, 2004; Inoue et al., 2005; Schadinger et al., 

2005), thus in mediating liver TAG homeostasis.  

 

No gene markers for the lipogenic enzymes involved in the production and regeneration of NADPH, 

nor enzymes catalysing de novo fatty acid synthesis, were present on the microarray (Paper I) (Table 

4). Nonetheless, FAS, malic enzyme (ME), G6PDH and 6-phosphogluconate dehydrogenase (6PGDH) 

were assayed by their enzyme activity (Paper III). The dietary regulation of lipogenic enzymatic 

activity measured in the present study was dependent on enzyme, as seen earlier (Torstensen et al., 

2004). Except for ME, the enzyme activity was higher in livers from Atlantic salmon fed 100% plant 

oil diet compared to the 100% fish oil fed group, although not always statistically significant. The 

6PDGH response was the opposite of the response found when Atlantic salmon had been fed rapeseed 

oil for 42 weeks (Torstensen et al., 2004). Furthermore, FAS activity was actually repressed in 

Atlantic salmon fed plant oil compared with fish oil after 16 months of feeding (Paper III). This may 

be consistent with findings in rainbow trout, in which low levels of 18:3n-3 did not stimulate FAS 

enzymatic activity (Alvarez et al., 2000). High lipid dietary load appears to repress lipogenic activity 

in several fish species (Sargent et al., 1989) and as a consequence of this dietary responses may be less 

profound.  
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Table 4. Designated gene names for amplicons printed on the microarray. 
Gene names written in bold were differentially expressed using SAM analysis. 
 

Gene name 

Transport  
Apo A-I-i FABP10 
Apo C-II FABP4 
VLDL receptor  Apo A-I-ii 
 Apo B  

Mitochondrial markers  
Long chain ACS3 (M. glutinosa) Long-chain ACS1 
Translocase of outer mitochondrial membrane Translocase of outer mito membrane (tom70)  
Acyl carrier protein  Mitochondrial solute carrier protein 
Outer mitochondrial membrane translocase  Malate dehydrogenase 
ECH (M.mizolepsis) ECH (D. rerio) 
CPT-II Cytochrome oxidase III  
 NADPH-Ubiquionine Oxidoreductase 

Translocase of inner mitochondrial membrane  
 ACAT 
 Carnitine acyl transferase (H.hippoglossus) 
 ATP synthase lipid binding protein P3 

Peroxisomal markers 
Catalase  Electron transfer flavoprotein  

Desaturation and elongation 
∆∆∆∆5 fatty acid desaturase  Elongase 
SCD  

Nuclear receptors and transcription regulators  
PPARγγγγ PPAR- β1 
NFκκκκββββ P105 subunit Nuclear receptor subfamily 0.Group B 
Nucleic acid binding factor SREBP (D. rerio) 
P300/CBP associated factor (P. americanus) Transcription factor BTF3  
Nuclear receptor subfamily 0. Group B Cellular nucleic acid binding protein 
Transcription factor AP-1 (jun)  

Others  
PKC ∆∆∆∆  Cyclooxygenase 1 (O. mykiss) 
PKC (cAMPdept) Cyclooxygenase 2 (O. mykiss) 
LPL Triacylglycerol lipase (P. americanus) 
Bilesalt dependent lipase (P. americanus) Bilesalt dependent lipase (S. viviparus)  
PLC PI specific (P. americanus) PLC (P. americanus) 
Enolase  Arachidonate-5-lipoxygenase 
Retinol binding protein 2 Prostaglandin D synthase (P. americanus) 
CTP synthase  Fructose bisphosphate aldolase B (P. americanus) 
Eggshell protein  Succinyl-CoA synthetase 
6PF-2-K/Fru-2,6-P(2)ase Phosphatidylcholine-sterol-acyltransferase 
 3-hydroxy-3methylglutaryl coenzyme A reductase  
 Phosphoprotein phosphatase  
 Phosphatidylinositol 3-kinase  
 Glutathione S-transferase 
 Phosphatidylserine specific phospholipase A1 alpha 
 1-phosphatidylinositol phosphodiesterase (D. rerio) 
  
 
 
 



43 

 

 

Conclusions  

Dietary fatty acids and their influence on genes involved in Atlantic salmon liver lipid 

metabolism 

 

Partial dietary fish oil replacement using 75% rapeseed oil induced expression of liver ∆5 fatty acid 

desaturase mRNA in Atlantic salmon both after 22 and 42 weeks of feeding (Paper I). The 

introductions of high dietary levels of plant oils change the degree of membrane fatty acid 

unsaturation. This explains the observed reduction of gene expression for several mitochondrial 

transport proteins, transcription factors, co-activators and signal transducers known to be indirectly 

influenced by dietary fatty acids in salmon fed plant oil compared with fish oil diets.  

 Partial dietary rapeseed oil replacement modestly reduced Atlantic salmon liver PPAR� gene 

transcript levels compared to fish fed 100% fish oil (Paper I). Liver PPAR� expression was not 

affected by changes in dietary fatty acid composition when Atlantic salmon were fed a diet containing 

a blend of plant oils compared to fish fed 100% fish oil (Paper III).  

mRNA expression of Atlantic salmon apolipoproteins appears to be regulated by dietary fatty 

acids (Paper I). Yet, complex post translational mechanisms for lipoprotein assembly are believed to 

occur in Atlantic salmon as in mammals (Paper I and III). 

 

Dietary fatty acid composition and its effect on FABP expression, and life cycle changes in FABP 

expression  

 

Partial dietary rapeseed oil replacement had no impact on FABP3 and FABP10 gene expression 

Atlantic salmon liver, nor red or white muscle tissues (Paper II). When examining dietary effects on 

protein expression, a tendency for decreased muscle FABP3 protein expression with decreasing 

inclusion of dietary rapeseed oil was observed. Thus, there is reason to believe that LCFAs present in 

excess in the rapeseed oil diet mediate differential expression of FABP3 in Atlantic salmon red and 

white muscle tissues.  

Overall liver and muscle tissues appeared to express several FABPs possibly linked to 

different metabolic functions. Relative FABP3 mRNA levels dominated in both red and white muscle 

tissues. Red muscle appeared to express higher levels of FABP3 than white muscle and heart.  

Liver FABP10 mRNA appeared to be expressed at high levels compared to liver FABP3. 

FABP10 expression seems to be modestly affected by life cycle changes, although mean relative 

FABP10 expression at the first sampling was higher than mean relative expression at all subsequent 

samplings. Red muscle FABP3 expression increased between the first sampling (October) in fresh 

water and the first sampling in sea water (June) followed by a decreased expression level at late sea 
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water samplings (August and January). Modest changes in liver and white muscle FABP3 mRNA 

levels between different life stages were observed.  

 

Dietary fatty acids and their effect on transport of lipids and lipoprotein metabolism and PPAR� 

expression at different life stages  

 

The fatty acid composition of liver and plasma lipoproteins reflected the dietary fatty acid 

composition. HDL had generally high levels of 22:6n-3 irrespective of dietary fatty acid level (Paper 

III). Further, liver TAG stores, plasma lipid and LDL levels was significantly affected by dietary fatty 

acid composition in Atlantic salmon during the long term feeding experiment. High dietary plant oil 

inclusion increased hepatic TAG stores and decreases plasma lipid levels, possibly through decreased 

VLDL synthesis. Plasma HDL levels were not affected by dietary plant oil replacement. 

The expression of liver PPAR� increased prior to seawater transfer followed by a decrease, 

and then another increase towards the final sampling (22 months). The last increase was correlated 

with increased liver TAG stores. Overall, this may indicate that PPAR� has a role in liver lipid 

metabolism.  

 

Evaluation of recently established methods in nutrigenomics  

  

The experimental design used for microarray screening was chosen to ensure low genetic variation and 

high statistical power when comparisons were done at a group level (Paper I). The use of several 

quality controls and a high degree of technical replicates enabled us to evaluate systemic and technical 

variation. The strategy for labelling and scanning procedures as well as image analysis have been 

evaluated and found advisable for use in this experimental analysis. The choice of normalisation 

strategy and statistical analysis were as recommended for use in nutrigenomical surveys using gene 

focussed arrays. The data set met MIAME standards.  

The endogenous controls used for the experimental setups were thoroughly evaluated for use 

in Atlantic salmon (Paper IV). The present identification of a valid reference, EF1AA for data 

normalisation enabled us to assure accurate, reproducible and biologically relevant mRNA 

quantification (Papers I-III). The use of 18S rRNA assays to calculating relative gene expression of 

PPARγ and FABPs in muscle verified results using EF1AA as an endogenous control (Papers II and 

III). Minimal analytical variation, as evaluated by interplate, intraplate and intrasampling controls, was 

observed for all Q-PCR assays run on individual fish samples (Papers II and III). 
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Further Perspectives  

 
Some of the areas that still need further investigation are presented below. 

1. In vitro studies, both in liver and in other tissues, gives us the opportunity to investigate 

specific mechanisms in a more refined manner than studies performed in the whole animal. 

Fatty acids are known to activate transcriptional factors, which when studied in a simplified 

system could increase the basic knowledge on their activation profiles. It is also important to 

combine techniques both at the molecular and biochemical level to asses whether metabolic 

processes infer on gene expression patterns and vice versa. 

2. The further full characterisation of several Atlantic salmon lipid metabolic genes, especially 

those involved in oxidation, lipid biogenesis and fatty acid transport and uptake may be 

needed. This approach may also be used to identify gene transcript variants, and modes of 

alternative splicing. But also to reveal presence of response elements in promoter regions to be 

able to say more about their regulation. The cDNA clones obtained, may further be used as 

internal controls for absolute quantification studies, applied together with updated methods for 

RNA quality and quantity determination. 

3. Several intracellular fatty acids transport proteins in Atlantic salmon should be studied to 

reveal whether these proteins have fatty acid specificities, and to further elucidate their 

potential function. The FABP4 clone, identified through the present study, may be of special 

interest as its study may reveal details related to lipid storage. Further, details of ligand 

binding affinity for those FABPs examined here may be studied using in vitro replacement 

essays.  

4. To further investigate VLDL assembly in Atlantic salmon, as this information may be used to 

elucidate the optimal dietary strategy when using plant oils. Furthermore, studies should be 

designed to investigate mechanisms for the regulation of apolipoprotein synthesis in Atlantic 

salmon liver cells. 

5. Furthermore, the use of intervention based microarray screening may provide results on the 

dietary effect on fish health and lipid metabolism. Also, as there is no direct correlation 

between protein and mRNA expression in an organism, there is a clear need for further 

knowledge on a proteome level. This may clearly establish further knowledge on mechanisms 

regulating lipid metabolism in Atlantic salmon.  

6. Together with cell culture studies, the use of mutant knock out fish models may become an 

invaluable tool. In combination with gene silencing in cell-cultures, the use of knock out fish 

will greatly contribute to the generation of detailed molecular pathways showing how 

nutrients regulate gene and protein expression. 
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Figure 1 Assay variation during lifecycle for the liver FABP experiment. Through lifecycle the Ct value of endogenous 
control used for all analysis, EF1AA, varied 4 % in distribution about mean value. Inter and intra plate variation was between 
0.5 and 3 % for all assays.  
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Figure 2 Assay variation during lifecycle for the liver PPARγγγγ experiment. Through lifecycle the Ct value of endogenous 
control used for all analysis, EF1AA, varied 4 % about mean value. Specifically, the distribution about mean value for EF1AA 

was 2% for the first four samplings, and 4% for the last. * denotes that variation in distribution about mean value, where 
higher than for PPARγ. No intra plate controls were applicable for this experimental setup. Ct values exhibited an inter plate 
specific variance about mean value between 0.5 and 4% at all life stages for all assays.  
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Muscle assays
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Figure 3. Assay variations during lifecycle for the muscle FABPs experiments. The measured percentage variation about 
mean value was between 0.5-4 % per sampling for the two endogenous controls. Through lifecycle the Ct value of 
endogenous control used for all analysis, EF1AA, varied 3 % in white muscle, and 2 % in red muscle. * denotes that variation 
in distribution about mean value, where higher than for FABP, however only 2% .For all essays, inter- and intra- plate assay 
variation were less than 4 %.  
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Figure 4. PPARγγγγ expression at different life stages.  
Mean normalised expression of PPARγ fed dietary fish oil or plant oil at different life stages, when using 18S rRNA as an 
endogenous control.  
 
 
 
 
 
 
 



66 

 

Mean Plot  
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Figure 5; Relative expression of liver � 5 fatty acid desaturase after 22 weeks of feeding, normalised to 

EF1AA.Results from Q-PCR analysis, using liver �5 fatty acid desaturase (gi:18958527) specific primers and probe, on 
individual liver samples from 75% rapeseed oil and control (100 % fish oil) after 22 weeks of feeding. ∆5 fatty acid 
desaturase gene expression were normalised using EF1AA in Q gene relative normalisation software, and were presented as 
mean±SE.MWU and K- S test were used as statistical tests (n=5 and n=6). ∆5 fatty acid desaturase mRNA expression 
increased significantly in liver of Atlantic salmon fed 75 % rapeseed oil (MWU; (p=0,006170); K-S test (p<.01)), as the  
average relative expression were 2.4 times higher than in control.  
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Figure 6; Relative expression of liver � 5 fatty acid desaturase after 42 weeks of feeding, normalised to 
EF1AA.Results from Q-PCR analysis, using liver �5 fatty acid desaturase (gi:18958527) specific primers and probe, on 
individual liver samples from 75% rapeseed oil and control (100 % fish oil) after 42 weeks of feeding. ∆5 fatty acid 
desaturase gene expression were normalised using EF1AA in Q gene relative normalisation software, and were presented as 
mean±SE.MWU and K- S test were used as statistical tests (n=5). ∆5 fatty acid desaturase mRNA expression increased 
significantly in liver of Atlantic salmon fed 75 % rapeseed oil (MWU; (p=0,016310); K-S test (p<.05)), as the average 
relative expression were 1.8 times higher than in control.  
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Table 1. Evaluation of the reference gene expression stability during FABP3 studies (Paper II). The M-value listed was 
obtained using GeNorm and is indicative of the reference gene expression stability.  
Sampling Reference gene 
 18S rRNA EF1AA 
 Liver  Red 

muscle  
White 
muscle  

Liver  Red 
muscle 

White 
muscle 

 M-value 
3 0.35   0.6   
6 0.40 0.35 0.5 0.35 0.45 0.7 
9 0.30 0.45 0.4 0.35 0.40 0.45 
14 0.40 0.40 0.45 0.50 0.40 0.4 
16 0.40 0.40 1.0 0.45 0.45 0.75 
22 1.0 0.40 0.50 0.80 0.25 0.4 
All samplings 0.75 0.50 0.95 0.70 0.55 0.85 
 
 
Table 2. RT-PCR efficiency as measured by the slope of dilution curves for all gene specific assays analysed in Papers 
II and III. The absolute value for the slope and its corresponding approximate efficiency in percent is given for all gene 
specific assays in liver and muscle of Atlantic salmon.  
Month of 
feeding  

Tissue 

 Liver Red muscle White muscle 
 PPARγ EF1AA FABP3 FABP10 EF1AA FABP3 EF1AA FABP3 EF1AA 

Slope/ approx efficiency 
3 3.37/99 3.38/97 3.34/99 3.32/100 3.33/99     
6 3.35/99 3.34/99 3.41/97 3.32/100 3.34/99 3.32/100 3.33/99 3.32/100 3.32/100 
9 3.39/97 3.37/99 3.33/99 3.34/99 3.34/99 3.33/99 3.36/99 3.52/>95 3.39/97 
14 3.34/99 3.34/99 3.38/97 3.39/97 3.39/97 3.43/<95 3.43/<95 3.34/99 3.45/>95 
16 3.35/99 3.35/99 3.34/99 3.32/100 3.32/100 3.46/>95 3.46/>95 3.58/>95 3.58/>95 
22 3.38/97 3.34/99 3.37/99 3.39/97 3.38/97 3.34/99 3.35/99 3.58/>95 3.56/>95 
 


