
University of Bergen

Department of Informatics

Algorithms

Arrangement Problems
Parameterized by

Neighbourhood Diversity

Student:
Olav Røthe Bakken

Supervisor:
Professor Daniel Lokshtanov

co-Supervisor:
Professor Fedor Fomin

Master Thesis

November 2018

Acknowledgement

I would like to thank Daniel Lokshtanov for giving me such an interesting
set of problems to think about and Fedor Fomin for giving me a helping

hand in the final stretch. I would also like to thanks my parents for all the
support, and my fellow Master students for the wonderful atmosphere in the

study hall.

Contents

1 Introduction 3
1.1 Previous work . 3

2 Preliminaries 6
2.1 Definitions . 6
2.2 NP . 7
2.3 Fixed Parameter Tractability 9
2.4 Integer Linear Programs . 10
2.5 Integer Quadratic Programs 11
2.6 Arrangement Problems . 11
2.7 Parametrization by vertex cover number 12

3 Neighbourhood class 13
3.1 Neighbourhood Decomposition 14
3.2 Polynomial hash . 15
3.3 Neighbourhood decomposition in O(log |V | · |V |2) 15
3.4 Vertex Cover . 17

4 Bandwidth 19
4.1 Integer Linear Program Formulation 20
4.2 Example . 21

5 Imbalance 23
5.1 Integer Quadratic Programming Formulation 25
5.2 Example . 28

6 Distortion 29
6.1 Integer Linear Program formulation 30
6.2 Example . 34

7 Cutwidth 35
7.1 Faster XP algorithm using dynamic programming 36

8 Optimal linear arrangement 38
8.1 OLA is in XP . 38

9 Conclusion and Open Problems 40

10 Appendix 45

2

1 Introduction

We will be investigating the fixed parameter tractability of various arrange-
ment problems parameterized by neighbourhood class, which can be con-
sidered as a measure of the number of qualitatively different vertices in a
graph. Arrangement problems tasks us with finding an optimal arrange-
ment, i.e ordering of the vertices in a graph with respect to some measure
of the quality of the arrangement. The spesific arrangement problems I have
been investigating are called BANDWIDTH, CUTWIDTH, IMBALANCE,
DISTORTION, and Optimal Linear Arrangement, OLA. We can define these
problems as minimizing the following functions, with respect to an ordering
π : V → {1, 2, ..., n}

BANDWIDTH fbw = max
uv∈E

|π(u)− π(v)|

CUTWIDTH fcw = max
1≤i≤n

∑
uv∈E
π(u)≤i
π(v)>i

1

IMBALANCE fim =

n∑
i=1

|lπ(vi)− rπ(vi)|

DISTORTION fdi = max

π(v)−1∑
i=π(u)

D(vi, vi + 1)

OLA fola =
∑
uv∈E

|π(u)− π(v)|

When a problem is fixed parameter tractable, FPT, with respect to a pa-
rameter k, formally this means there exists an algorithm solving the problem
in time bounded by f(k)·nc, where c is a constant. Intuitively this means the
problem is polynomial time solvable for all fixed values of k, and the value
of k only affects the constant term multiplier.

The main tool for investigating these problems will be integer linear pro-
gramming, ILP, and integer quadratic programming, IQP. While neither of
these problem-formulations admit polynomial-time algorithms, they are both
FPT with respect to the number of variables and the maximum coefficient
of each of these variables in the objective function and the constraints which
gives us a versatile tool whenever we can give bounded dimension reductions
to ILP or IQP.

1.1 Previous work

Arrangement and layout problems on graphs have a wide set of uses as models
for things like optimizing parallel computer networks, VLSI design, numerical
analysis, computational biology, graph theory, scheduling and archeology.

3

Some notable examples include BANDWIDTH being equivalent to finding
the optimal bandwith of a sparse graph [4] which is important both for the
storage and manipulation of sparse matrices, IMBALANCE being useful as
a starting point for many algorithms in graph drawing [19, 20, 28, 32, 31],
and CUTWIDTH being used as part of a TSP algorithm [17].

BANDWIDTH was first shown to be NP-hard in 1976 [27] using a re-
duction first from exact 3-SAT to the linear array problem and then to
BANDWIDTH. CUTWIDTH in 1977 [14]. A proof for IMBALANCE is
given in [1]. Optimal Linear Arrangement in 1974 [13]. DISTORTION is
NP-complete on bipartite, co-bipartite and split graphs [15], which of course
implies it is NP-complete for general graphs as well.

Many problems have been successfully tackled by considering parameter-
izations on the treewidth of the input graph, in particular it has been shown
that any problem on graphs expressible in the language of Monadic Second
Order logic is FPT when parameterized by the treewidth of the input graph
[6]. Some problems are not FPT with this parameterization however, in par-
ticular BANDWIDTH is NP-complete even when the input graph is a cater-
pillar with hairlength 3 [26]. For these problems it makes sense to consider
parameterizations that enforce more order on the input graph. Previously
Fellows, Lokshtanov, Misra, Rosamund and Saurabh have considered the pa-
rameterization by the vertex cover number of the input graph, vc(G), and by
using a reduction to integer linear program have shown that BANDWIDTH,
IMBALANCE, CUTWIDTH and DISTORTION is FPT when parameterized
by vc(G) [10]. Additionally Lokshtanov has shown that OPTIMAL LINEAR
ARRANGEMENT is FPT when parameterized by vc(G) using a reduction
to integer quadratic programmming with bounded dimension and maximum
coefficient [25].

The previous results on graphs of bounded neighbourhood diversity in-
cludes the original introduction of the parameter [23], where the authors show
that problems expressible in MSO1 can be solved on graphs of bounded neigh-
bourhood diversity with a double exponential dependency on the neighbour-
hood diversity. They also show that Hamiltonian Cycle, Chromatic number
and Edge Dominating set is FPT on graphs of bounded neighbourhood di-
versity. R. Ganian have shown that p-Vertex-Disjoint Paths, Graph Motif
and Precoloring Extension problems are FPT with respect to neighbourhood
diversity [12]. The proof given for p-Vertex-Disjoint Paths uses integer lin-
ear programming with bounded dimension, which we will also rely on for
BANDWIDTH and DISTORTION.

We will be considering arrangement problems parameterized by neigh-
bourhood diversity, and have been able to show that BANDWIDTH, IMBAL-
ANCE and DISTORTION is FPT when parameterized by neighbourhood

4

diversity. Additionally we have found structural results for CUTWIDTH
similar to the structural results for IMBALANCE. These results extend the
results by Lokshtanov et. al [10, 25] for arrangement problems parameterized
by vertex cover number.

5

2 Preliminaries

2.1 Definitions

Some general definitions.

Definition 1. A graph G = (V,E) is a tuple consisting of a set of points V,
and edges E ⊂ V 2.

Definition 2. The degree of a vertex v is the number of edges connected to
it, denoted d(v).

Definition 3. The neighbourhood of a vertex v is the set of vertices connected
to v, denoted N(s). |N(v)| = d(v).

Definition 4. A walk is an ordered sequence of vertices v1, v2, . . . , vk, s.t that
(vi−vi+1) ∈ E, i = {1, 2, .., k−1}. The length of a walk containing k vertices
is k − 1.

Definition 5. A path is a walk where each vertex appears at most once i.e
i 6= j ⇒ vi 6= vj

Definition 6. A cycle is a path but the first and last vertex is the same.

Definition 7. The distance between two vertices u and v, is the length of the
shortest path connecting u to v, denoted D(u, v)

Definition 8. An arrangement is a permutation V → {1, 2, .., |V |} of the
vertices of G.

Definition 9. A segment is a sequence of subsequent vertices in an arrange-
ment, from the same neighbourhood class.

A Turing machine is a theoretical construct designed to be the simplest
possible computational model which still has sufficient power to be a legit-
imate model for actual computational devices. While simpler models exist,
they do not have enough power to model real world computers convincingly.
A Turing machine consists of a tape with symbols, a read-write head posi-
tioned somwhere on the tape, and a finite state machine defining the actions
that the tape head will take. Each state in the FST defines the action that
the machine will take upon reading a particular symbol from the tape. It
will write a symbol to the tape (possibly the same symbol it read), move to
a new state (possibly the same state), and move the head either left or right.

A decision problem is the problem of determining whether a particular
string belong to a language. A language is defined as a set of strings using

6

symbols from a particular alphabet, for example Σ = {0, 1}. This can for
example be all strings with the same number of 0s and 1s, or all strings which
encode yes-instances to VERTEX COVER, where we are given a graph and
a number k and asked to decide whether there exists a vertex cover with at
most k vertices. If a decision problem can be decided by a Turing machine
in a polynomial number of steps, we say the problem belongs to P .

A polynomial time reduction is a reduction from an instance a of a de-
cision problem A to an instance b of a decision problem B, such that b is
a yes-instance if and only if a is a yes instance. The reduction must also
run in polynomial time. Such a reduction demonstrates that a polynomial
algorithm for b would imply a polynomial time algorithm for a, as we can
simply reduce a to b in polynomial time, and then solve b instead, also in
polynomial time.

2.2 NP

Definition 10. A decision-problem I is in NP if and only if there exist an
algorithm sucessfully deciding I running on a nondeterministic turing ma-
chine in polynomial time. Alternatively the decision problem can be supplied
with a proof that the answer is yes, and we can verify the proof in polynomial
time on a deterministic Turing machine.

Definition 11. A decision-problem I is NP-hard if and only if ∀J ∈ NP
there exist a polynomial-time reduction from J to I.

Definition 12. A decision problem I is NP-complete if

1. I ∈ NP

2. I is NP-hard

While many problems have efficient solutions running in a time polyno-
mially dependent on the size of the input, and are thus contained in the
complexity class P. There are also many problems which have efficient solu-
tions, given that we have a ”magical” machine which can correctly choose
between several different execution paths (This machine obviously does not
exist). These problems belong to NP. A long standing open problem in com-
puter science is whether there exists some problem which is part of NP but
not in P. Despite mountainous efforts this question remains to be decided,
and instead the focus is on so called NP-complete problems which are prob-
lems which are at least as hard as every other problem in NP. By at least
as hard we mean that there exists a polynomial-time reduction from every

7

other problem in NP, implying that a polynomial-time algorithm for any NP-
complete problem automatically gives polynomial-time algorithms for every
other problem in NP. Under the reasonable assumption that P 6= NP these
problems do not admit polynomial-time algorithms. (The first problem which
was proven to be NP-complete was the boolean satisfiability problem [5]).

Definition 13. The boolean satisfiability problem, SAT, is a collection of
literals {x1, x2, ..., xn}, together with a boolean formula φ(x1, x2, ..., xn), and
we are asked to find an assigment of the literals to true or false, such that
the boolean formula exists, or to report that no such assignment exists.

By considering reductions from SAT to other problems several hundreds
of problems have subsequently been proven to be NP-complete, suggesting
that these problems do not admit polynomial-time algorithms. Notably
the problems I am focusing on are NP-complete, that is, BANDWIDTH,
CUTWIDTH, IMBALANCE, DISTORTION and OPTIMAL LINEAR AR-
RANGEMENT. Note that while these problems are optimization problems,
we can construct decision problems out of them by simply asking for a so-
lution better than some target value. When we say these problems are
NP-complete, we mean that the decision versions fulfill the criteria to be
NP-complete.

Since it is unlikely we will be able to find fast algorithms for NP-complete
problems it makes sense to look for alternative approaches. The first natural
(and quite useful) approach is to give up on finding the optimal solutions
and instead look for good enough approximations. Here we would generally
like to achieve either constant-factor approximation, where a fast algorithm
can guarantee the solution it finds is only a constant factor away from the
optimal solution, or polynomial time approximation schemes, where we have
an algorithm where we can calibrate the accuracy of our algorithm, giving
better accuracy at the cost of a longer runtime.

Definition 14. A constant-factor approximation algorithm is an algorithm
which can find a solution no more than a constant factor away from the opti-
mal solution for that problem. This means alg(I) · a ≥ opt(I) for maximiza-
tion problems with constant factor a, and alg(I) ≤ opt(I) ·a for minimization
problems.

Definition 15. A PTAS is an algorithm scheme producing algorithms which
can find an (1 + ε)-approximation in time O(f(ε) ·nc), where c is a constant.

• BANDWIDTH has been shown to be approximable withinO((log |V |)4.5)

[8], and O(
√
|V |
b
· log |V |) [2], where b is the bandwidth of the graph.

8

It is not constant-factor approximable [30] and you cannot obtain an
absolute error guarantee of |V |1−ε for ε > 0 [22].

• CUTWIDTH is approximable within O(log |V | log log |V |) [7].

• OLA is approximable within O(log |V |) [29].

2.3 Fixed Parameter Tractability

One fruitful approach to deal with the area of NP-complete problems is pa-
rameterized complexity. In this approach we consider additional parameters
associated with a problem instance in addition to the size of the instance,
and try to build algorithms which exploit this parameterization to achieve
better runtime than we can achieve only considering problem size. The main
classes of problem we encounter in this approach is FPT and XP, fixed pa-
rameter tractable problems, and slicewise polynomial problems. If a problem
is in FPT this means we can isolate the exponential portion of the runtime to
depend only on our additional parameter, and only polynomialy depend on
problem-size. This means if we fix the value of the parameter, and only con-
sider problem instances where this parameter has the value we want, we have
in effect a polynomial algorithm. If we have an XP-algorithm on the other
hand, the degree of the polynomial dependency on the size is dependent on
the additional parameter, meaning that we still get polynomial algorithms
by fixing the parameter, but with significantly worse polynomials when k is
large, so the runtime will blow up significantly faster. As an example consider
the difference between vertex cover and independent set where a relatively
naive approach yields a 2k · n2 FPT-algorithm for vertex cover and k2 · nk
XP-algorithm for independent set parameterized by desired solution size. For
a modest graph with 100 vertices and k = 10, this translates to a 1012 times
slower algorithm for independent set.

Definition 16. A decision problem is fixed parameter tractable if there ex-
ists an algorithm that correctly decides the problem using time bounded by
f(k) ∗nc. The problem class containing all problems that are fixed parameter
tractable is called FPT.

Definition 17. A decision problem is slicewise polynomial if there exists an
algorithm that correctly decides the problem using time bound by f(k) · ng(k).
The problem class containing all problems that are slicewise polynomial is
called XP.

Generally speaking there are two types of parameterizations, parameter-
izations by proposed solution size, and structural parameterizations where

9

we impose some structure on the input. Neighbourhood diversity is a quite
restrictive structural parameterization.

2.4 Integer Linear Programs

A linear program consists of a linear objective function, which should be
maximized or minimized, and a set of linear constraints, given as equations
and inequalities, which should be satisfied.

Definition 18. An integer linear program consist of an integer vector c,
integer matrix A, and integer vector b, and the objective is to find a vector
x ∈ Zn minimizing c, while satisfying all constraints Ax ≤ b.

min
x

cTx

subject to Ax ≤ b

x ∈ Zn

While general LPs can be solved in (worst case) polynomial time using
interior point methods [21], when we restrict variables to integer values we
can solve NP-complete problems, f.ex. we can construct an ILP computing
MINIMUM VERTEX COVER.

min
∑
u∈V

xu

s.t ∀(u, v) ∈ E xu + xv ≥ 1

x ∈ {0, 1}
ILP is therefore NP-complete and we can not expect a polynomial algo-

rithm to solve it.
Lenstra showed that p-variable Integer Linear Programming Feasability

is solvable with running time doubly exponential in the number of variables
[24], a result wich was later improved by Kannan [18], and Frank and Tardos
[11]. Fellows et. al extends this result to the optimization version [10] and
gives the following theorem.

Theorem 1 ([10]). p-Opt-ILP can be solved using O(p2.5p+o(p) ·L · log(MN))
arithmetic operations and space polynomial in L. Here, L is the number of
bits in the input, N is the maximum of the absolute values any variable can
take, and M is an upper bound on the absolute value of the minimum taken
by the objective function.

10

One technical detail. While ILP here is defined using the form aTi x ≤ bi,
we will be using constraints some constraints of the form aTi x ≥ bi and aTj x =
bj. These constraint can be expressed in standard notation as −aTi x ≤ −bi
and aTj x ≤ bj ∧ aTj x ≥ bj respectively. The same is true for IQPs.

2.5 Integer Quadratic Programs

Definition 19. An integer quadratic program is an integer matrix A, sym-
metric integer matrix Q, and integer vector b, and the objective is to minimize
xTQx while satisfying the constraints Ax ≤ b.

min
x

xQxT

subject to Ax ≤ b

x ∈ Zn

We will also be making use of integer quadratic programs, where we allow
quadratic terms in the objective function. Lokshtanov has shown that IQP
is fixed parameter tractable parameterized by n + α where n is the number
of variables, and α is the maximum coefficient in A and Q [25]. The general
approach he uses is to show that we can either find an optimal solution in a
distance bounded by n+α from an arbitrary (not necessarily integer) feasible
solution, or we can branch in a manner which reduces the dimension of the
set of feasable solutions by one, and find an optimal solution in one of the
branches. The brancing number and branching depth are bounded by n+α,
implying that the number of nodes in the branching tree is bounded by n+α.
He gives the following theorem.

Theorem 2 ([25]). There exists an algorithm that given an instance of IN-
TEGER QUADRATIC PROGRAMMING, runs in time f(n, α)LO(1), and
outputs a vector x ∈ Zn. If the input IQP has a feasible solution then x is
feasible, and if the input IQP is not unbounded, then x is an optimal solution.

2.6 Arrangement Problems

Definition 20. An arrangement is a bijective mapping π : V → {1, 2, ..., n}
mapping each vertex in a graph with n vertices to a unique number in the
range 1 to n. Intuitively we can consider this an ordering of the vertices.

In the arrangement problems we will be looking at we are tasked with
arranging the vertices of a graph in a linear order, so as to minimize a particu-
lar objective function. A simple example of a problem which can formulated

11

as an arrangement problem, is the problem of finding a topological order-
ing. Recall that in a topological ordering we have as input a directed graph
G = (V,E) and we wish to find an ordering π : V → {1, 2, ..., n} of the
vertices of the graph such that uv ∈ E ⇒ π(u) < π(v). This is an example
of a polynomial time solvable arrangement problem.

2.7 Parametrization by vertex cover number

Previously Lokshtanov et.al. has showns that the arrangement problems
BANDWIDTH, CUTWIDTH, IMBALANCE and DISTORTION parame-
terized by vertex cover number is FPT using reductions to ILP [10], and that
OLA is FPT using a reduction to IQP [25]. A natural question is to consider
how this parameterization relates to the parameterization by neighbourhood
diversity. Graphs with bounded neighbourhood class can have unbounded
vertex cover number, so we can not reduce from problems parameterized by
neighbourhood diversity to graphs parameterized by vertex cover number,
however the reverse reduction is valid, as a graph with a vertex cover of size
k, has neighbourhood diversity at most 2k + k.

12

3 Neighbourhood class

Intuitively, neighbourhood diversity counts the number of qualitatively dif-
ferent vertices in a graph. We say that two or more vertices have the same
neighbourhood class if their neighbourhoods are equal. When this is the case
the vertices are twins of each other and completely interchangeable. The to-
tal number of neighbourhood classes will be referred to as the neighbourhood
diversity of the graph.

Definition 21. We will say that 2 vertices u and v have a neighboorhood
relation u ∼ v when the following holds: N(u) \ {v} = N(v) \ {u}.

Lemma 1. The neighbourhood relation is an equivalence relation.

Proof. For a relation to be an equivalence relation it needs to be reflexive,
symmetric and transitive

• N(u) \ {u} = N(u) \ {u} clearly holds and the relation is reflexive

• N(u) \ {v} = N(v) \ {u} ⇒ N(v) \ {u} = N(u) \ {v} is also obviously
true so the relation is symmetric

• consider three vertices u,v,w st. we have u ∼ v and v ∼ w. First
observe that this means that either we have all edges uv, vw and uw,
or we have none (otherwise either (u,v) or (v,w) cannot have the same
neighbourhood class.We have

N(v) \ {u} = N(u) \ {v}

N(w) \ {v} = N(v) \ {w}

. This implies

N(u) \ {u, v, w} = N(v) \ {u, v, w}

N(v) \ {u, v, w} = N(w) \ {u, v, w}

N(u) \ {u, v, w} = N(u) \ {u, v, w}

. Because we either have all edges uv, vw, uw or none this is equivalent
to

N(u) \ {w} = N(w) \ {u}

and the relation is transitive

13

Corollary 1. Note that the transitive property implies that the vertices in
a neighbourhood class are either all connected to each other, or there are no
internal edges. This gives two types of classes, which will be referred to as
clique classes and independent set classes respectively.

Definition 22. If u and v have a neighbourhood relation we will say that
they are part of the same neighbourhood class, which I will denote by C(u).
We will denote the set of all neighbourhood classes by C st. ∀uC(u) ∈ C,
Neighbourhood diversity = |C|.

3.1 Neighbourhood Decomposition

Definition 23. A neighbourhood decomposition H = ND(G) is a weighted
graph obtained from G by merging the vertices in each neighbourhood class
into a single vertex v, with weight w(v) = |C(v)|, and adding selfloops to all
the vertices that represent clique-classes.

Since we can check wether any two vertices is contained in the same
neighbourhood class in |V | time, we can relatively easily compute the neigh-
bourhood diversity of a graph in polynomial time [23]. In fact the trivial
algorithm runs in time O(|V |3). In addition it will also be useful to construct
a decomposition of the graph. This is necessary if we wish to implement al-
gorithms using neighbourhood diversity. The neighbourhood decomposition
works fairly intuitively. We will make a new vertex-weighted graph represent-
ing the original graph, where we will have one vertex for each neighbourhood,
weighted by the number of vertices in each neighbourhood, and each pair of
vertices will have an edge between them if the vertices from their respec-
tive neighbourhood classes has edges between them. Vertices that represent
clique neighbourhoods will have a selfloop. Note that there may be multiple
decompositions of the graph into disjoint cliques and independent sets (con-
sider splitting the vertices of a neighbourhood class into two classes), but the
neighbourhood decomposition will be the minimum (and minimal) of these.

Theorem 3 ([23]). We can compute the neighbourhood diversity of a graph
in polynomial time.

Proof. First observe that in order to check wether or not any two vertices are
in the same neighbourhood class, we can simply compare their adjacency lists
in time |V |. The total time to check all pairs of vertices is then |V |2 · |V | =
|V |3.

I will now give an improved algorithm for computing the neighbourhood
decomposition, running in time O(|V |2 · log |V |), by the means of polynomial
hashing to speed up comparisons.

14

3.2 Polynomial hash

A hash function is a function which maps a large input-space to a (signifi-
cantly smaller) output-space, and is can significantly speed up comparisons
since we can compare hashes instead of the original object. In the case that
the hash is smaller than some fixed number we can perform constant time
comparisons, with the tradeoff that there is a (hopefully small) probablity
of incorrectly identifying a match. A useful way to hash strings is called
polynomial hashes and have a number of interesting properties.

Definition 24. A polynomial hash is a function h: String→ Integer, where x
is a number called the hash-multiplier and m is an integer called the modulus.

h(s) =

len(s)−1∑
i=0

s[i] ∗ xi modulus m

Once we have computed the hash for a string once we can compute the
hash for an altered version of the string quickly for a number of different
alterations, for our purpose the important one is that we can replace a char-
acter anywhere in the string. Assuming we know h(s1bs2) we can compute
h(s1as2).

h(s1as2) = h(s1bs2) + a ∗ x|s2| − b ∗ x|s2| mod m

There are a number of other tricks we can do with with polynomial hashes
to speed up comparisons, such as sliding a substring along a longer host
string, or fast substring-hashing, allowing us to compute hashes for arbitrary
substrings in time O(log |s|) for each hash, but for our purpose the given
trick will suffice.

Note that while comparing hashes of a particular size will generally take
time proportional to the number of bits in the hash, for the purpose of
comparing objects constant-size hashes will usually suffice, f.ex 64-bit hashes.
These can be compared in constant time.

3.3 Neighbourhood decomposition in O(log |V | · |V |2)
By using polynomial hashing to speed up comparisons the previous algorithm
can be improved to O(log |V | · |V |2. This algorithm will have 3 steps:

1. Compute a hash for the neighbourhood of each vertex

2. Compute the neighbourhood decomposition

3. Check that neighbourhood decomposition is valid

15

Step 3 is necessary because we are using hashes, which means we have a
small probability of hash collisions in every comparison, therefore we need
to check that our algorithm has computed the neighbourhood decomposition
correctly, otherwise we need to try again with a different hash-multiplier and
modulus.

For this algorithm we will use the following polynomial hash-function:

h(X ⊂ V) =
∑
vi∈X

xi modulus m

By computing the monomials first and then appying the definition we can
compute all the hashes we need in time O(logm · |V |+ |E|).

Once we have computed all the hashes and monomials we need we will
apply the previous algorithm to compute neighbourhood decomposition but
instead of comparing vertices edge by edge we will compare hashes. Our list
of hashes refers to N(u) instead of N(u) \ v so if v is adjacent to u we will
need to remove its contribution to h(N(u)). Because we have precomputed
the contributions from each vertex, this can be done in time O(logm).

h(N(u) \ vi) = h(N(u))− xi modulus m

Repeat for N(v) → N(v) \ u. We can then compare the hashes in time
O(logm) and if they match, we will assume that u and v have the same
neighbourhood class. In total we use time O(logm · |V |2).

In the last step we will check the neighbourhood decomposition we have
computed. Note that hash-comparisons can only produce false positives, not
false negatives, so if our neighbourhood decomposition is incorrect, one of the
neighbourhood classes will contain an incorrectly placed vertex. We can now
use the slower linear compare, since we only need to compare all vertices
in a class against a single representative, giving us a total of only O(|V |)
comparisons. In total this takes time O(|V |2).

The probability that step 2 will succesfully compute the neighbourhood
decomposition is dependent on the total number of different values the hash
can have. The hash can have m different values, so the probablity of a hash
collision is 1

m
for each comparison. If we assume independent probablity

(reasonable, and does not affect outcome much) the probability that we have
no hash-collisions will be (1− 1

m
)|V |

2
. If we pick m = a · |V |2 we have

p(no collisions) = (1− 1

a ∗ |V |2
)|V |

2 ≈ (
1

e
)
1
a

We can for example pick a = 100 which will have a collision-probability of
approximately 1%. (Since most of the graphs it makes sense to compute

16

neighbourhood diversity for will be quite small, this will most of the time fit
into an unsigned int (232), giving effectively constant time comparisons).

Theorem 4. By picking a hash modulus m = a · |V |2, we can compute
the neighbourhood diversity of a graph in time |V |2 · log(a · |V |) with error

probability (1
e
)
1
a . We can also compute the neighbourhood decomposition in

the same runtime.

Note that we can get rid of the possibility of failure by validating every
match using a linear scan. While this will make some of the comparisons
slower, note that it only does this when we have a significant chance of finding
an actual match, and we never need to find more than |V | − 1 matches. The
runtime will be O(logm · |V |2) for true matches, O(logm · (1− 1

m
) · |V |2) for

true non-matches and O(logm · 1
m
· |V |3) for false matches. In the end this

will achieve the same asymptotic running time.

3.4 Vertex Cover

Definition 25. A vertex cover of a graph G = (V,E) is a subset S ⊂ V such
that for every edge (u, v) ∈ E we have either u ∈ S or v ∈ S. The vertex
cover with minimum cardinality is called the minimum vertex cover.

As a simple warmup consider MINIMUM VERTEX COVER parameter-
ized by neighbourhood diversity. Observe that for neighbourhood classes
that form independent sets, we should either include all the vertices in the
cover or none, and for neighbourhood classes that form cliques, we should
include either all the vertices or all of the vertices except one. By branching
in this manner on each neighbourhood class we obtain a running time of
2k · nO(1) (citation).

Theorem 5. MINIMUM VERTEX COVER parameterized by neighbourhood
diversity can be computed in time 2k · nO(1).

Proof. The central observation is that we only have a small number of rea-
sonable choices for how many vertices of each type to include, namely, from
each class, all of them or none of them, if the class is an independent set, or,
all of them or all except one if the class is a clique. To see this, observe that
for each edge (except for any self-loops) in the decomposition, either the left
or right vertex-class must be fully in the vertex cover in order to cover all of
the edges, this means a partially covered class must have only fully covered
neighbours, but this means none of the vertices are necessary to cover any of
the edges, and we can freely remove the vertices in this class from the vertex

17

cover, except in the case where the class is a clique, but then it contains all
vertices except one anyway (which one is left out is arbitrary).

Therefore, the following algorithm will compute the MINIMUM VERTEX
COVER parameterized by neighbourhood class. Check all combinations of
including/excluding vertices from each class, and output the smallest valid
solution.

The same general approach will work in many other cases, by including
0, 1, |Cv| − 1 or |Cv| vertices from each class. This method yields 4k · nO(1)

algorithms for a number of other problems such as:

• MINIMUM DOMINATING SET

• MAXIMUM INDEPENDENT SET

• MINIMUM FEEDBACK VERTEX SET (here we keep all, 2, 1 or 0
vertices from each class)

For arrangement problems the idea will be to attempt to show that there
exists an optimal solution where the vertices from each class is placed in a
limited number of distinct bags, so that if we can guess the order of bags, we
can use an ILP or IQP to figure out how many vertices go in each bag. To
that end the following definitions will be useful.

Definition 26. A maximal contiguous section of vertices from an arrange-
ment, such that all vertices are from the same neighbourhood class is called
a zone.

Definition 27. The total number of zones of an arrangement is called the
zonal dimension of the arrangement. The zonal dimension of a neighbourhood
class Ci, is the number of zones the vertices of Ci appear in.

18

4 Bandwidth

Definition 28. Let π be a permution of the vertices of a graph G. Then the
bandwidth of the graph G = (V,E) and permutation π is defined as follows.

BW (G, π) = max
uv∈E
|π(u)− π(v)| (1)

The bandwidth of the graph is defined as the minimum over all permuta-
tions

BW (G) = min
π
BW (G, π)

We let Ci denote the set of vertices from class i, and Lπ and Rπ denote
the set of we get by taking the leftmost and rightmost vertex, with respect
to π, in each class.

Lπ = {u ∈ V (G)| v ∈ C(u), π(u) <= π(v)}

Rπ = {u ∈ V (G)| v ∈ C(u), π(u) >= π(v)}
.

We can observe that in order to compute the bandwidth of π we only
need to compare the positions of vertices from Lπ ∪Rπ.

Lemma 2.

min
π

max
uv∈E
|π(u)− π(v)| = min

π
max

uv∈Lπ∪Rπ
|π(u)− π(v)|

Proof. Suppose that this is not the case and u, v is a vertex-pair with maxi-
mum separation with respect to π, but at least one of u or v not in Lπ ∪Rπ.
Assume (without loss of generality) that u /∈ Lπ ∪ Rπ. This implies that
there are vertices a, b ∈ Lπ ∪ Rπ such that C(u) = C(a) = C(b) and
π(a) < π(u) < π(b) which implies that either |π(a) − π(v)| > |π(u) − π(v)|
or |π(b)− π(v)| > |π(u)− π(v)|. This contradicts u, v being the vertex-pair
of maximum distance.

Lemma 3. There exists an optimal arrangement π such that BW (G, π) =
BW (G), where the vertices between two subsequent vertices from Lπ∪Rπ are
ordered by neighbourhood class.

Proof. Suppose ω is an optimal solution, and the above is not satisfied. Then
we can find two vertices from V \Lπ∪Rπ, which are adjacent in ω, but occur
in incorrect order, and swap them. Because this does not change the order of
any vertices in Lπ∪Rπ this will not change the optimality of the arrangement.
By exhaustively applying this procedure, we will obtain an arrangement with
the desired property.

19

Since the vertices that are not the leftmost or rightmost in each neigh-
boorhood class can be freely rearranged between vertices which are, we can
obtain the optimal solution by guessing the order of the 2k vertices which
are rightmost and leftmost in each class, and using an integer linear pro-
gram to calculate how many vertices from each neighboorhood class appear
in each segment between two adjacent elements from Lπ ∪ Rπ. We will de-
note the ordering of the vertices in Lπ ∪Rπ by πN , and the position of vertex
u ∈ Lπ ∪ Rπ is πN(u). By E(Lπ ∪ Rπ) we mean the edges connecting ver-
tices from Lπ ∪ Rπ. I will refer to the leftmost and rightmost vertex from
each class as delimiter vertices, note that any other vertices from a class can
only be placed between its respective delimiters. The positions between two
subsequent vertices from Lπ ∪Rπ will be referred to as bags.

4.1 Integer Linear Program Formulation

We are now ready to construct an ILP computing the minimum bandwidth,
given an ordering of the vertices from Lπ∪Rπ. We will have at most (2·k−1)·k
variables xi,j indicating the number of vertices from neighboorhood class i
that will be placed in the bag between vertex u and v from Lπ ∪ Rπ, where
j = πN(u) and vertex j+1 = πN(v). Note that vertices from class Ci can only
be placed between the delimiters of that class, so if li and ri are the leftmost
and rightmost vertices from Ci we have j < πN(li) ∨ j ≥ πN(ri) ⇒ xi,j = 0.
These variables should be ommited. We will also have a variable c, denoting
the maximum separation between two vertices. Clearly the minimum feasible
value for c is the bandwidth so our objective function will simply be

minimize c

The first constraint will ensure that no pair of connected vertices are further
apart then the bandwidth. For each (u, v) in E(Lπ ∪ Rπ) where πN(u) <
πN(v) we have.

πN(v)− πN(u) +
k∑
i=1

πN (v)−1∑
j=πN (u)

xij − c ≤ 0

We also need to make sure that the variables corresponding to a neighbour-
hood class sum up to the number of vertices in that class (-2 for the delimiter
vertices).

2∗k−1∑
j=1

xij = |Ci| − 2

20

And of course all the variables must be non-negative and integral. Putting
it all together we get the following ILP

minimize c

such that

(u, v) ∈ E(L ∪R) : πN(v)− πN(u) +
k∑
i=1

πN (v)−1∑
j=πN (u)

xij ≤ c πN(u) ≤ πN(v)

Ci ∈ C :
2∗k−1∑
j=1

xij = |Ci| − 2

xi,j ≥ 0

xi,j ∈ Z
(2)

Theorem 6. BANDWIDTH parameterized by neighbourhood diversity k can
be computed in time f(k) · |V |O(1).

Proof. For each permutation of the delimiter vertices, we will construct an
ILP computing the optimal bandwidth consistent with that ordering. The
ILP constructed when we try a permutation consistent with the actual op-
timal arrangement will return the bandwidth of G. There are (2k)!

2k
permu-

tations of Lπ ∪ Rπ, and each ILP will run in time k2.5k+o(k) · LO(1) giving a
combined runtime of f(k) · |V |O(1).

4.2 Example

As an example consider the complete bipartite graph with b1 vertices in the
first bipartition and b2 vertices in the second. This graph has neighbourhood
diversity = 2, and if we assume that the optimal order of the delimiters is
[p1-left, p2-left, p1-right, p2-right], we will obtain the following ILP (note
that this order is not actually optimal, it is merely given as an example).

21

min c

such that

1 + x1,1 ≤ c

3 + x1,1 + x1,2 + x2,2 + x2,3 ≤ c

1 + x1,2 + x2,2 ≤ c

1 + x2,3 ≤ c

x1,1 + x1,2 = b1 − 2

x2,2 + x2,3 = b2 − 2

xi,j ≥ 0

xi,j ∈ Z

(3)

22

5 Imbalance

Definition 29. Let lπ(u) denote the number of edges from (u, v) s.t. π(u) >
π(v) and let rπ(u) denote the number of edges s.t. π(u) < π(v) i.e edges to
earlier and later vertices respectively.

Definition 30. Let π be a permutation of the vertices a graph G. Then the
imbalance of the permution is defined as

fim(π) =
n∑
i=1

|lπ(vi)− rπ(vi)|

The imbalance of the graph is defined as the minimum over all permuta-
tions

IM(G) = min
π
fim(π)

In the Imbalance problem we are asked to find an arrangement minimiz-
ing IM(π), i.e, compute IM(G). We will show that there exists an optimal
arrangement with respect to fim, where each neighbourhood class has been
separated into at most two contigous zones. First we will define the pull
function

pπ(v) = lπ(vi)− rπ(vi)

Notice that pπ(vi) is nondecreasing when evaluated for increasing values
of i over the same Neighbourhood class.

Lemma 4.
∀u, v ∈ C(u) π(u) < π(v)⇒ p(u) ≤ p(v)

Proof. Since u and v comes from the same Neighbourhood class, they have
the same incoming edges, the only difference between u and v will be in which
direction the various edges pull. We will partition the set of edges into three
sets for each vertex, the edges attached to vertices coming before both u and
v in the partition ul and vl, the edges coming after both u and v, ur and vr,
and the edges attached to vertices between u and v, uc and vc. Since u and
v are from the same neighbourhood class we have:

ul = vl

uc = vc

ur = vr

23

If u and v belong to an independent set class we have:

p(u) = lπ(u)− rπ(u) = ul − uc − ur

p(v) = lπ(v)− rπ(v) = vl + vc − vr
p(u) = ul − uc − ur ≤ ul + uc − ur = vl + vc − vr = p(v)

p(u) ≤ p(v)

And if u and v belong to a clique class:

p(u) = lπ(u)− rπ(u)− 1 = ul − uc − ur − 1

p(v) = lπ(v)− rπ(v) + 1 = vl + vc − vr + 1

p(u) = ul − uc − ur − 1 ≤ ul + uc − ur + 1 = p(v)

p(u) ≤ p(v)

In order to rearrange the vertices we will also make use of the fact that we
can swap a vertex u with its right neighbour without increasing fim provided
that p(u) ≤ 0 after we make the swap, and similarly we can swap with our
left neighbour if p(u) ≥ 0 after the swap.

Lemma 5. Suppose the arrangement ω can be obtained from σ by swapping
a vertex u with its right neighbour v. Then we have

pω(u) ≤ 0⇒ fim(ω) ≤ fim(σ)

Proof. If u and v are not connected this is obviously true, so assume that
(u, v) ∈ E. This implies that

pσ(u) = pω(u)− 2

Since we have pω(u) ≤ 0, we have |pω(u)| = |pσ(u)| − 2. We also have
|pω(v)| ≤ |pσ(v)|+2 since that imbalance of vertex v can increase by at most
2. For the remaining vertices in the graph we get pω(w) = pσ(w). The total
imbalance after the swap becomes

fim(ω) =
∑
u∈V

|pω(u)| ≤
∑
u∈V

|pσ(u)|+ 2− 2 = fim(σ)

.

24

By using the two vertices in each class which have p(u) closest to 0 as
guards against moving vertices too far we can safely swap all vertices to the
left of the guards to the right, and all vertices to the right of the guards to
the left, eventually grouping all the vertices in a class together with their
guards. By starting from an arbitrary optimal arrangement, and applying
this procedure to each class, we can obtain an optimal arrangement where
every class is split into at most two contiguous segments. Furthermore we
can do so in a way where p(u) does not flip sign in the middle of a segment
(the two segments of a class may be right next to each other). This is not
crucial, however it will be easier to formulate a reasonable IQP when we can
make this assumption.

Lemma 6. There exists an optimal arrangement where each Neighbourhood
class is partitioned into at most two contiguous segments CiL and CiR such
that u ∈ CiL ⇒ p(u) ≤ 0 and v ∈ CiR ⇒ p(v) ≥ 0.

Proof. We will begin by considering an arbitrary optimal arrangement which
we will transform into an arrangement having the properties we want. We
will do this class by class. First let li be the last vertex from some class Ci
where p(li) ≤ 0 and ri be the first where p(ri) ≥ 0, notice that l might be
equal to ri and only one of li or ri has to exist.

By lemma 4 all vertices u ∈ C(li) to the left of li has p(u) ≤ 0, and if not
adjacent to li, it will continue to have p(u) ≤ 0 if we swap u with its right
neighbour. Therefore, by lemma 5 we can freely swap all the vertices from
C(li) to the left of li with their right neighbour successively until all vertices
in C(li) to the left of li are arranged next to one another immediately to the
left of li. Similarly we can move all vertices to the right of ri, so that they
end up immediately to the right of ri.

By applying this procedure to each neighbourhood class C ∈ C we will
obtain a solution where every class is split into at most 2 contiguous segments,
but we still have some work to do to make sure the sign of p(u) does not
change inside any of the segments. To fix this observe that if p(u) flips
somewhere inside a segment, this means we can group the class even tighter,
into a single segment. We can now simple decide where one segment ends
and the next begins in order to have all our desired properties.

5.1 Integer Quadratic Programming Formulation

With these structural results in place we are ready to formulate an FPT
algorithm for IMBALANCE parameterized by neighbourhood diversity. For
each possible ordering of the segments we will construct an IQP computing
the minimum imbalance given the ordering. The IQP will have 2k variables

25

x1,L . . . xk,L and x1,R . . . xk,R denoting the number of vertices in each of the
segments. πN(xi,j) denotes the ordering of the segments associated with each
variable.

First, we will construct the ojective function, this will be the sum over
all segments of [size of segment · average imbalance], for the left and
right segment of each class this looks like ∑

(u,i)∈E
πN (xu,s)>πN (xi,L)

xu,s −
∑

(u,i)∈E
πN (xu,t)<πN (xi,L)

xu,t

 · xi,L
 ∑

(u,i)∈E
πN (xu,s)<πN (xi,R)

xu,s −
∑

(u,i)∈E
πN (xu,t)>πN (xi,R)

xu,t

 · xi,R
Observe here that any internal edges in segment xi,L or xi,R will increase the
imbalance of one vertex and decrease the imbalance of another, and so we
can treat clique classes the same as independent set classes. The complete
objective function becomes

obj =
k∑
i=1




∑
(u,i)∈E

πN (xu,s)>πN (xi,L)

xu,s −
∑

(u,i)∈E
πN (xu,t)<πN (xi,L)

xu,t

 · xi,L +


∑

(u,i)∈E
πN (xu,s)<πN (xi,R)

xu,s −
∑

(u,i)∈E
πN (xu,t)>πN (xi,R)

xu,t

 · xi,R


For this objective function to be correct we also need to make sure that the
sign of the pull function is correct for all the vertices in a segment. This
needs to be handled slightly differently for clique classes and independent set
classes. For independent set classes the pull for each vertex in the segment
is equal to the average pull for the class so we can use the same expressions
we have already computed∑

(u,i)∈E
πN (xu,s)>πN (xi,L)

xu,s −
∑

(u,i)∈E
πN (xu,t)<πN (xi,L)

xu,t ≥ 0

∑
(u,i)∈E

πN (xu,s)<πN (xi,R)

xu,s −
∑

(u,i)∈E
πN (xu,t)>πN (xi,R)

xu,t ≥ 0

When we have a clique set class we need to account for the internal edges in

26

the segment as well∑
(u,i)∈E

πN (xu,s)>πN (xi,L)

xu,s −
∑

(u,i)∈E
πN (xu,t)<πN (xi,L)

xu,t − xi,L + 1 ≥ 0

∑
(u,i)∈E

πN (xu,s)<πN (xi,R)

xu,s −
∑

(u,i)∈E
πN (xu,t)>πN (xi,R)

xu,t − xi,R + 1 ≥ 0

Adding the obvious constraint that variables should be nonnegative, and that
xi,L + xi,R = |Ci| gives us the following complete IQP.

minimize obj

such that

for clicques
∑

(u,i)∈E
πN (xu,s)>πN (xi,L)

xu,s −
∑

(u,i)∈E
πN (xu,t)<πN (xi,L)

xu,t − xi,L + 1 ≥ 0

∑
(u,i)∈E

πN (xu,s)<πN (xi,R)

xu,s −
∑

(u,i)∈E
πN (xu,t)>πN (xi,R)

xu,t − xi,R + 1 ≥ 0

for independent sets
∑

(u,i)∈E
πN (xu,s)>πN (xi,L)

xu,s −
∑

(u,i)∈E
πN (xu,t)<πN (xi,L)

xu,t ≥ 0

∑
(u,i)∈E

πN (xu,s)<πN (xi,R)

xu,s −
∑

(u,i)∈E
πN (xu,t)>πN (xi,R)

xu,t ≥ 0

xi,L + xi,R = |Ci|
xi,j ≥ 0

xi,j ∈ Z

(4)

Note that this can be preprocessed to get rid of either xi,L or xi,R, halving
the number of distinct variables.

Theorem 7. IMBALANCE parameterized by neighbourhood class k can be
computed in time f(k) · |V |O(1)

Proof. In order to compute the imbalance of G we try each permutation of
the 2k segments of G. For each permutation we will construct an IQP finding
the optimal arrangement agreeing with this permutation. When we pick the
correct permutation, this IQP will return the imbalance of G. We make (2k)!

2k

guesses and construct an IQP with bounded dimension and max coefficient.
From theorem 2 we can evaluate the IQPs in time f(k) · |V |(O(1). Total
runtime is bounded by f(k) · |V |O(1).

27

5.2 Example

As an example consider again the complete bipartite graph with b1 vertices
in one partition and b2 vertices in the other, and assume we have guessed to
optimal order of segments to be [1,2,1,2]. We then get the following IQP.

minimize x1L · (x2L + x2R) + x2L · (x1R − x1L) + x1R · (x2L − x2R) + x2R · (x1L + x1R)

such that x2L + x2R ≥ 0

x1L + x1R ≥ 0

x2L − x2R ≥ 0

x1R − x1L ≥ 0

x1L + x1R = |Ci|
x2L + x2R = |Ci|
xi,s ≥ 0

xi,s ∈ Z

28

6 Distortion

Definition 31. A mapping f : V → R has contraction cf and expansion ef
if for every pair of vertices u, v ∈ V , the following holds: |f(u) − f(v)|· ≥
D(u, v) and |f(u)− f(v)| ≥ ef ·D(u, v)

In the (linear) DISTORTION problem we want to find a mapping from
the vertices to the real line so that the contraction cf ≥ 1, and the expansion
ef is minimized. As has been observed by several authors before [9, 16], this
is equivalent to finding an arrangement π : V → {1, 2, ..., n} which minimizes
the following function:

fdi(π) = max
(l,r)∈E

π(r)−1∑
i=π(l)

D(vi, vi+1)

If L ∪R is the set of leftmost and rightmost vertices within each neighbour-
hood class, this is equivalent to

fdi(π) = max
(l,r)∈E(L∪R)

π(r)−1∑
i=π(l)

D(vi, vi+1)

In order to find an FPT-algorithm for this problem we will use the fol-
lowing intuition.

1. When computing the distortion for a particular arrangement we are
only interested in the vertices which are the furthest apart within each
pair of neighbourhood classes, similar to BANDWIDTH.

2. The order of vertices between delimiter vertices can be locally opti-
mized, that is, if we change the order of vertices between adjacent
delimiters a and b, this will not change the optimal ordering between
adjacent delimiters c and d.

Together these observations gives the following strategy. First we will
guess the order of the delimiter vertices, and then we will use an ILP to fill
in the remaining vertices. Unlike in BANDWIDTH the order of vertices in
each bag does matter, so we will have to be a little bit more clever. Instead
of considering the vertices we add to each bag, we will instead consider the
ordered and adjacent pairs we add (I will abuse notation and refer to these
ordered pairs as edges, but they need not be edges in the original graph).
Because the total length of all the edges we add to a bag is simply the sum of

29

the lengths of each edge, the order of edges does not matter, and we simply
need to check that a particular (multi)-set of edges can actually be traversed.
Here we can rely on a famous theorem by Euler, stating that a (multi)-graph
has a walk traversing each edge exactly once and starting and ending in the
same vertex, if and only if the degree of each vertex is an even number, and
the graph is connected. When the graph is directed it has a walk traversing
each edge exactly once if and only if the in-degree is equal to the out-degree
for all vertices and the graph is connected. Connectivity will be enforced by
guessing which edges we will use to traverse each bag, and correct degree
for each vertex will be enforced by linear equations. Note that since we are
interested in s−t walks, not cycles, the first and last vertex will have differing
in-/out-degree unless Cs = Ct.

Lemma 7. The order of vertices within a ’bag’ can be rearranged so long as
the rearranged order corresponds to the same edges.

Proof. Suppose we have an 2 different arrangements, π and ω, of the vertices
in a ’bag’ which corresponds to the same edge-(multi-)set. Assume that the
left and and right delimiters of the ’bag’ is l and r respectively. Let vπ(i)

be the vertex at position i with respect to π, and let vω(i) be the vertex at
position i with respect to ω. El denotes the edge-(multi)set associated with
the bag after the delimiter at position l. Then we have

r−1∑
i=l

D(vπ(i), vπ(i+1)) =
∑

(u,v)∈El

D(u, v) =
r−1∑
i=l

d(vω(i), vω(i+1))

Because all orderings of the edges have the same length, we only care
about how many of each type of edge we include between each pair of sub-
sequent vertices from L ∪R, henceforth referred to as a bag.

6.1 Integer Linear Program formulation

We are now ready to formulate an ILP computing the minimum distortion
given that we have guessed the order of the delimiter vertices, as well as
which edges to include in each bag. We will also guess the first and last edge
in some of the bags since these edges might go to and from delimiter vertices
which we can only put at the beginning and/or end of the bag. These edges
will be included only once. We will have (2k− 1) · k2 variables xi,j,l denoting
the number of instances of edge (i, j) in bag l. Variables that must have
value 0 can be omitted. This includes xi,j,l when bag l is not positioned

30

between the delimiters for Ci and Cj, except in the case where the left or
right delimiter of a bag is excluded from the bag, in which case we guess
which edge to start and/or end on. It will also include xi,j,l if we did not
choose to include edges of type (i, j) in bag l. We will also have a variable
c, denoting the maximum separation of any connected vertices from L ∪ R.
Clearly the distortion DI(G) = min c is a suitable objective function.

For every connected pair of vertices u and v from L ∪ R we need a con-
straint enforcing that their separation is less than the maximum separation.
This simply amounts to adding up the lengths of all edges between them

πN (v)−1∑
l=πN (u)

k∑
i=1

k∑
j=1

D(i, j) · xi,j,l − c ≤ 0

Next we need constraints ensuring that the edges in each bag can be tra-
versed, i.e. we have an euler-path from the start vertex s to the end vertex t.
To check this we need to check that the in-degree is equal to the out-degree
for every class, except for the Cs and Ct, which need one extra out-neighbour
and one extra in-neighbour, respectively, unless Cs = Ct. Connectivity will
be enforced by the guessing step. For each neighbourhood class u that is
different from Cs and Ct we get.

k∑
i=1

xi,u,l −
k∑
j=1

xu,j,k = 0

For s and t we get
k∑
i=1

xi,t,l −
k∑
j=1

xt,j,k = 1

k∑
i=1

xi,s,l −
k∑
j=1

xs,j,k = −1

If Cs = Ct
k∑
i=1

xi,s,l −
k∑
j=1

xs,j,k = 0

We also need to make sure we use exactly the right amount of vertices from
each bag. Note here that apart from the first and last vertex of the arrange-
ment, every vertex is counted twice, once when going to it, and once when
going from it. The classes containing the first and last vertex s and t, will

31

be one short from every edge counting twice if the classes are different, or 2
short if they are the same. So if Cs 6= Ct we have

2k∑
l=1

k∑
i=1

(xi,u,l + xu,i,l) = 2 · |Cu|

2k∑
l=1

k∑
i=1

(xi,t,l + xt,i,l) = 2 · |Ct| − 1

2k∑
l=1

k∑
i=1

(xi,s,l + xs,i,l) = 2 · |Cs| − 1

If Ct = Cs we have

2k∑
l=1

k∑
i=1

(xi,u,l + xu,i,l) = 2 · |Cu|

2k∑
l=1

k∑
i=1

(xi,s,l + xs,i,l) = 2 · |Ct| − 2

All the edges we have guessed to be included in each bag should be included
at least once

xi,j,l ≥ 1 if included

xi,j,l = 0 if not included

Finally, if the right or left delimiter of a bag cannot be included in the bag
we need to enforce exactly one ocurrence of the first and/or last edge we
guessed respectively

xs,j,l = 1 when we guess the first edge in bag l is (s,j)

xi,t,l = 1 when we guess the last edge in bag l is (i,t)

Putting it all together gives us the following ILP

32

minimize c

such that

(u, v) ∈ E(L ∪R)

πN (v)−1∑
l=πN (u)

k∑
i=1

k∑
j=1

D(i, j) · xi,j,l − c ≤ 0

To enforce Euler path:

For each bag l and class u
k∑
i=1

xi,u,l −
k∑
j=1

xu,j,k = 0

If C(s) 6= C(t):
k∑
i=1

xi,s,l −
k∑
j=1

xs,j,k = −1

k∑
i=1

xi,t,l −
k∑
j=1

xt,j,k = 1

If C(s) = C(t):
k∑
i=1

xi,s,l −
k∑
j=1

xs,j,k = 0

Number of edges matches size of class

for each class C(u):

2k∑
l=1

k∑
i=1

(
xi,u,l + xu,i,l

)
= 2 · |Cu|

subtract 1 for class of first and last vertex

2k∑
l=1

k∑
i=1

(
xi,u,l + xu,i,l

)
= 2 · |Cu| − 1

subtract 2 if class is both first and last
2k∑
l=1

k∑
i=1

(
xi,u,l + xu,i,l

)
= 2 · |Cu| − 2

edges included xi,j,l ≥ 1

edges included once xi,j,l = 1

xi,j,l ∈ Z

(5)

Theorem 8. DISTORTION parameterized by neighbourhood diversity can
be solved in time f(k) · |V |O(1) and polynomial space.

Proof. In order to compute the distortion of G, we will try each guess of

• The order of delimiters, (2k)!
22k

guesses

• Edges used in each bag, 22k3 guesses

• First and last edge in each bag, k2k guesses

For each of these guesses we will construct the an ILP computing the
minimum distortion consistent with that guess. For the correct guess this will
return the distortion of the graph. The total number of guesses is bounded
by a function of k, and the total number of variables for each ILP is at most
2k3, giving a combined runtime of f(k) · |V |O(1).

33

6.2 Example

We will continue to use the complete bipartite graph example, where one
partition has b1 vertices and the other has b2 vertices. We will guess that the
order of delimiters is [1,2,1,2], and that we use edges (1, 1) for the first gap,
(1, 2) and (2, 1) for the second, and (2, 2) for the last. The last edge in bag
1 has to be (1, 2) and the first edge in bag 3 has to be (1, 2). We obtain the
following ILP:

minimize c

such that

paths shorter than c: 2x1,1,1 + x1,2,1 − c ≤ 0

x1,2,2 + x2,1,2 − c ≤ 0

x1,2,3 + 2x2,2,3 − c ≤ 0

2x1,1,1 + x1,2,1 + x1,2,2 + x2,1,2 + x1,2,3 + 2x2,2,3 − c ≤ 0

paths are euler paths

class 1 bag 1 x1,1,1 − x1,1,1 − x1,2,1 = −1

class 2 bag 1 x1,2,1 = 1

class 1 bag 2 x2,1,2 − x1,2,2 = 1

class 2 bag 2 x1,2,2 − x2,1,2 = −1

class 1 bag 3 x1,2,3 = 1

class 2 bag 3 x2,2,3 − x2,2,3 − x1,2,3 = −1

classes filled x1,1,1 + x1,2,2 + x2,1,2 = 2 · b1 − 1

x1,2,2 + x2,1,2 + x2,2,2 = 2 · b2 − 1

edges used xi,j,l ≥ 1

x1,2,1 = 1

x1,2,3 = 1

xi,j,l ∈ Z

34

7 Cutwidth

Definition 32. Let π be a permutation of the vertices in a graph G. Then,
the Cutwidth of the permutation is

fcw(π) =
n

max
i=1

∑
uv∈E
π(u)<i
π(v)≥i

1

The cutwidth of the graph is

CW(G) = min
π
fcw(π)

Most of the structural results that are valid for IMBALANCE also hold
for CUTWIDTH, and so we can obtain the same simply structure for optimal
arrangements. Unfortunately the approach breaks down when you attempt
to express the problem as an integer program. Whereas the formulation of
IMBALANCE yields an IQP, the same approach to CUTWIDTH results in
a set of quadratic inequalities and we cannot rely on theorems about IQPs.
We can however establish the following partial results, which implies a simple
bruteforce XP-algorithm.

Lemma 8. Suppose the arrangement ω can be obtained from σ by swapping
a vertex u with its right neighbour v. Then we have

pω(u) ≤ 0⇒ fcw(ω) ≤ fcw(σ)

Proof. Let lu, ru, lv, rv be the the number of left and right neighbours of u and
v respectively (not counting an edge between u and v. Let us first consider
the case when u and v are not connected. Note that when swapping two
vertices we only change the cut between them. Before we swap this has
value ru + lv + a, where a is the number of edges going over both u and v.
After the swap the cut has value lu + rv + a. However the cut immediately
to the right of both vertices has value ru + rv + a ≥ lu + rv + a, and the
middle cut after the swap cannot be the maximum cut in the arrangement.
Since no other cut has changed, this implies the maximum cut cannot have
increased, and the swap is safe. If u and v are connected the middle cut
goes from ru + lv + a + 1 → lu + rv + a + 1. Since pω(u) ≤ 0 after the
swap, we have pω(u) ≤ −2 before the swap, and lu ≤ ru − 2. Again we get
ru + rv + a ≥ lu + rv + a+ 2 ≥ lu + rv + a+ 1 and the cut between u and v
cannot be the maximum cut after the swap.

35

By using the same strategy which we used for IMBALANCE, we can
group the vertices from each neighbourhood class into at most two zones for
each class.

Lemma 9. There exist an optimal arrangement of G where each class is
separated into at most 2 zones.

For the sake of completeness, I have included the integer program en-
coding CUTWIDTH in the appendix, note however that it uses quadratic
constraints, and cannot be computed using IQP solvers.

By brute-force checking all orderings of the segments and all 2-partitions
of each neighbourhood class we can find the optimal CUTWIDTH in time
(2k)!nk · P (n).

Corollary 2. We can find an optimal arrangement in time O(f(k) · ng(k)).

7.1 Faster XP algorithm using dynamic programming

While the bruteforce algorithm does the job in terms of showing that CUTWIDTH
is in XP, it is not a particularly elegant algorithm, and we can do better. By
using dynamic programming to check partitions in a more sensible way, we
can get rid of the need to order segments, giving us a more practical algorithm
with runtime O(nk · n2). To achieve this I will demonstrate an O(2n) algo-
rithm solving CUTWIDTH in the general case [3], which reduces to O(nk+2)
when parameterized by neighbourhood diversity.

In order to achieve this, observe that if I guess the first s vertices in the
arrangement, the remaining |V | − s vertices can be arranged independently
of the ordering of the first s vertices. This suggests the following strategy for
computing the ccutwidth. First guess the first vertex in the arrangement,
and for each guess, call an auxillary function recursively, which will find the
optimal arrangement of the remaining vertices. The cutwidth of a subsetX ⊂
V , CWaux(X) will either be the minimal cutwidth of X − u, CWaux(X − u),
or it will be the value of the last cut, which ever is greater. This gives the
following recursively defined function, where CWaux(∅) = 0.

CWaux(X) = min
x∈X

max(CWaux(X − x),
∑
uv∈E
u∈X
v/∈X

1)

Note that CWaux(G) = CW (G). By utilizing memoization we only need
to compute the value of CWaux(X) once for each subset X ⊂ V . Each
subproblem can be computed in time O(n2), and we have 2n subproblems,
giving a total runtime of O(2n · n2).

36

When G has neighbourhood diversity k, the number of subsets can be
reduced to nk, giving a total runtime of O(nk+2) instead.

Theorem 9. CUTWIDTH parameterized by neighbourhood diversity can be
computed in time O(nk+2).

37

8 Optimal linear arrangement

Definition 33. In the Optimal Linear Arrangement problem we are asked
to find the arrangement minimizing the total stretch of all edges.

OLA(G) = min
π

∑
uv∈E

|π(u)− π(v)|

Unfortunately I have been unable to find structural results which enable
me to prove that OLA is FPT. I have been able to show it is in XP us-
ing dynamic programming, as well as some reasons to believe that integer
programming is unlikely to be a successfull approach for solving this problem.

8.1 OLA is in XP

To show that OLA parameterized by neighbourhood diversity is in XP we will
go through the route of a DP-algorithm for OLA not parameterized running
in time O(2n) [3], which reduces to a O(nk) when parameterized, similar
to the algorithm for CUTWIDTH. The central idea is that if we can guess
which subset comes first in an arrangement, we can independently order the
first and second halves of the arrangement. Using the following alternative
computation of OLA(G) lends itself to a useful axillary function.

OLA(G) = min
π

|V |∑
i=1

∑
uv∈E
π(u)<i
π(v)≥i

1

If we only consider the part of the edges that is counted ”above” a particular
subset we obtain the following auxillary function.

Definition 34. For a graph G = (V,E) and a subset X ⊂ V

OLAaux(X) = min
π|π(x∈X)≤|X|

|X|∑
i=1

∑
uv∈E
π(u)<i
π(v)≥i

1

Note that OLAaux(V) = OLA(G).

As was the case with CUTWIDTH, we can compute OLAaux(X) recur-
sively by first finding the optimal vertex v ∈ X to place first, and then adding

38

the contribution from the edges leaving X.

OLAaux(X) = min
x∈X

OLAaux(X − x) +
∑
uv∈E
x∈X
v/∈X

1

The base case is whenX = ∅ and clearly we have OLAaux(∅) = 0. Computing
OLAaux for all subsets of V takes time O(2n · n2).

Lemma 10. OLA can be computed in time O(2n · n2).

When we solve OLA parameterized by neighbourhood diversity we can
move from sets to multisets. Since there are at most n vertices in each
neighbourhood class, we have at most nk multisets to consider, which auto-
matically improves the previous result to O(nk+2).

Theorem 10. We can compute OLA parameterized by neighbourhood diver-
sity in time O(nk+2).

39

9 Conclusion and Open Problems

We have been able to show that BANDWIDTH, IMBALANCE, and DIS-
TORTION parameterized by neighbourhood diversity is fixed parameter
tractable using reductions to ILP and IQP with bounded dimension and
bounded coefficients. We also show that OPTIMAL LINEAR ARRANGE-
MENT and CUTWIDTH is slicewise polynomial when parameterized by
neighbourhood diversity.

CUTWIDTH can be reduced to a very simple structure where each neigh-
bourhood class is separated into at most 2 zones, making it very likely that
CUTWIDTH is in fact FPT. One possible approach might be to give a deeper
analysis of the integer program formulation of CUTWIDTH parameterized
by neighbourhood diversity. Regardless it remains to be determined wether
CUTWIDTH parameterized by neighbourhood diversity is FPT

Discussing the hardness of OLA I want to consider two points. First,
we can prove that OLA parameterized by neighbourhood diversity has un-
bounded zonal dimension, which does not in and of itself imply that OLA
cannot be solved using ILP or IQP, after all DISTORTION works by letting
variables represent edges instead of vertices. However it does show that a
structure similar to the one used for OLA parameterized by vertex cover
[25] is not possible. More notable is the fact that an integer program ap-
pears to require a cubic objective function in order to encode OLA. This
would certainly be a requirement if we had bounded zonal dimension, and
it should also be the case for edge-like encodings similar to what we did for
DISTORTION.

Theorem 11. The minimal zonal dimension of an optimal arrangement is
unbounded with respect to k

Proof. Consider the complete bipartite graph with exactly n vertices in each
partition. This graph has neighbourhood diversity 2, yet zonal dimension
dependent on n. To see that this graph has unbounded zonal dimension we
will consider the optimal arrangement 2 vertices at a time. First observe that
the first 2 vertices must be from different partitions, otherwise we could move
the first occurance of the second class closer to the beginning, obtaining a
strictly better arrangement in the process. However, when the first two ver-
tices are in different partitions, the contributions from their edges to the rest
of the arrangement is completely symmetrical and we can ignore them from
the remainder of the consideration. This leaves us with finding an optimal
arrangement for a bipartite graph with n− 1 vertices in each partition.

40

When all the vertices have been placed in this manner observe that we
change class at least n times and so we have zonal dimension at least n+ 1.
Since n is not dependent on k the statement is proven.

For the second reason assume that there could be a simplification of
OLA parameterized by neighbourhood diversity which yields a structure with
bounded zonal dimension z. This could be encoded by an integer program
with at most O(z) variables. By necessity some variables needs to refer to sev-
eral vertices from the same class, and the total length of all edges associated
with a pair of variables will be something like [variable1] · [variable2] ·
[distance between variables], each of these contributions are linear so
the combination will be cubic. In my opinion this strongly suggests that an
integer program for solving OLA parameterized by neighbourhood class will
be cubic, and that you cannot rely on previous results about ILPs or IQPs.

Nevertheless, it remains to be determined whether OLA parameterized
by neighbourhood diversity is FPT.

41

References

[1] Therese Biedl, Timothy Chan, Yashar Ganjali, Mohammad Taghi Haji-
aghayi, and David R Wood. Balanced vertex-orderings of graphs. Dis-
crete Applied Mathematics, 148(1):27–48, 2005.

[2] Avrim Blum, Goran Konjevod, R Ravi, and Santosh Vempala. Semi-
definite relaxations for minimum bandwidth and other vertex-ordering
problems. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 100–105. ACM, 1998.

[3] Hans L Bodlaender, Fedor V Fomin, Arie MCA Koster, Dieter Kratsch,
and Dimitrios M Thilikos. A note on exact algorithms for vertex ordering
problems on graphs. Theory of Computing Systems, 50(3):420–432, 2012.

[4] Phyllis Z Chinn, Jarmila Chvátalová, Alexander K Dewdney, and Nor-
man E Gibbs. The bandwidth problem for graphs and matricesa survey.
Journal of Graph Theory, 6(3):223–254, 1982.

[5] Stephen A Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of comput-
ing, pages 151–158. ACM, 1971.

[6] Bruno Courcelle. The monadic second-order logic of graphs. i. recog-
nizable sets of finite graphs. Information and computation, 85(1):12–75,
1990.

[7] Guy Even, Joseph Seffi Naor, Satish Rao, and Baruch Schieber. Divide-
and-conquer approximation algorithms via spreading metrics. Journal
of the ACM (JACM), 47(4):585–616, 2000.

[8] Uriel Feige and Robert Krauthgamer. Improved performance guarantees
for bandwidth minimization heuristics. 1998.

[9] Michael Fellows, Fedor Fomin, Daniel Lokshtanov, Elena Losievskaja,
Frances A Rosamond, and Saket Saurabh. Parameterized low-
distortion embeddings-graph metrics into lines and trees. arXiv preprint
arXiv:0804.3028, 2008.

[10] Michael R Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A
Rosamond, and Saket Saurabh. Graph layout problems parameterized
by vertex cover. In International Symposium on Algorithms and Com-
putation, pages 294–305. Springer, 2008.

42

[11] András Frank and Éva Tardos. An application of simultaneous diophan-
tine approximation in combinatorial optimization. Combinatorica, 7(1):
49–65, 1987.

[12] Robert Ganian. Using neighborhood diversity to solve hard problems.
arXiv preprint arXiv:1201.3091, 2012.

[13] Michael R Garey, David S Johnson, and Larry Stockmeyer. Some sim-
plified np-complete problems. In Proceedings of the sixth annual ACM
symposium on Theory of computing, pages 47–63. ACM, 1974.

[14] Fanica Gavril. Some np-complete problems on graphs. In Proc. Conf.
on Inform. Sci. and Systems, 1977, pages 91–95, 1977.

[15] Pinar Heggernes and Daniel Meister. Hardness and approximation of
minimum distortion embeddings. Inf. Process. Lett., 110(8-9):312–316,
2010.

[16] Pinar Heggernes, Daniel Meister, and Andrzej Proskurowski. Minimum
distortion embeddings into a path of bipartite permutation and thresh-
old graphs. In Scandinavian Workshop on Algorithm Theory, pages
331–342. Springer, 2008.

[17] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. The traveling
salesman problem. Handbooks in operations research and management
science, 7:225–330, 1995.

[18] Ravi Kannan. Minkowski’s convex body theorem and integer program-
ming. Mathematics of operations research, 12(3):415–440, 1987.

[19] Goos Kant. Drawing planar graphs using the canonical ordering. Algo-
rithmica, 16(1):4–32, 1996.

[20] Goos Kant and Xin He. Regular edge labeling of 4-connected plane
graphs and its applications in graph drawing problems. Theoretical
Computer Science, 172(1-2):175–193, 1997.

[21] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. In Proceedings of the sixteenth annual ACM symposium on
Theory of computing, pages 302–311. ACM, 1984.

[22] Marek Karpinski, Juergen Wirtgen, et al. On approximation hardness
of the bandwidth problem. In Electronic Colloquium on Computational
Complexity (ECCC), volume 4. Citeseer, 1997.

43

[23] Michael Lampis. Algorithmic meta-theorems for restrictions of
treewidth. Algorithmica, 64(1):19–37, 2012.

[24] Hendrik W Lenstra Jr. Integer programming with a fixed number of
variables. Mathematics of operations research, 8(4):538–548, 1983.

[25] Daniel Lokshtanov. Parameterized integer quadratic programming:
Variables and coefficients. arXiv preprint arXiv:1511.00310, 2015.

[26] Burkhard Monien. The bandwidth minimization problem for caterpillars
with hair length 3 is np-complete. SIAM Journal on Algebraic Discrete
Methods, 7(4):505–512, 1986.

[27] Ch H Papadimitriou. The np-completeness of the bandwidth minimiza-
tion problem. Computing, 16(3):263–270, 1976.

[28] Achilleas Papakostas and Ioannis G Tollis. Algorithms for area-efficient
orthogonal drawings. Computational Geometry, 9(1-2):83–110, 1998.

[29] Satish Rao and Andréa W Richa. New approximation techniques for
some ordering problems. In SODA, volume 98, pages 211–219, 1998.

[30] Walter Unger. The complexity of the approximation of the bandwidth
problem. In Foundations of Computer Science, 1998. Proceedings. 39th
Annual Symposium on, pages 82–91. IEEE, 1998.

[31] David R Wood. Minimising the number of bends and volume in three-
dimensional orthogonal graph drawings with a diagonal vertex layout.
2000.

[32] David R Wood. Optimal three-dimensional orthogonal graph drawing
in the general position model. Theoretical Computer Science, 299(1-3):
151–178, 2003.

44

10 Appendix

I will here give an integer program computing the cutwidth, given that we
have guessed the order of segments CiL and CiR. The construction is similar
to the construction for imbalance, but we will now have an additional variable
c denoting the maximum allowed cut. The objective function is

minimize c

Because we are constructing a solution where p(u) does not change signs
inside segments, the maximum cut will always appear between segments. For
each cut between segments i and i+ 1 we get constraints∑

uv∈E(L∪R)
π(xu,s)≤i
π(xv,t)>i

xu,s · xv,t − c ≤ 0

The remaining constraints are the same as for imbalance. The full integer
program becomes

minimize obj

such that

for each cut between segment i and i+ 1
∑

uv∈E(L∪R)
π(xu,s)≤i
π(xv,t)>i

xu,s · xv,t − c ≤ 0

for clicques
∑

(u,i)∈E
πN (xu,s)>πN (xi,L)

xu,s −
∑

(u,i)∈E
πN (xu,t)<πN (xi,L)

xu,t − xi,L + 1 ≥ 0

∑
(u,i)∈E

πN (xu,s)<πN (xi,R)

xu,s −
∑

(u,i)∈E
πN (xu,t)>πN (xi,R)

xu,t − xi,R + 1 ≥ 0

for independent sets
∑

(u,i)∈E
πN (xu,s)>πN (xi,L)

xu,s −
∑

(u,i)∈E
πN (xu,t)<πN (xi,L)

xu,t ≥ 0

∑
(u,i)∈E

πN (xu,s)<πN (xi,R)

xu,s −
∑

(u,i)∈E
πN (xu,t)>πN (xi,R)

xu,t ≥ 0

xi,L + xi,R = |Ci|
xi,j ≥ 0

xi,j ∈ Z
(6)

45

