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Abstract 

Background: Endometrial carcinoma is the fourth most common cancer in European 

women, and incidence is increasing. No major improvements in treatment or survival 

have been achieved over the last decades, and an individualized treatment approach 

may improve the likelihood of a beneficial outcome for endometrial carcinoma 

patients. Identifying robust biomarkers that can improve risk-stratification and help 

select patients likely to benefit from specific treatments is vital. There is also a need 

for representative preclinical models in order to discover and validate new targeted 

therapies. 

 

Aim: To investigate potential new biomarkers in endometrial carcinoma, and to 

develop robust and reliable preclinical models to improve translational research. 

 

Material and methods: Endometrial carcinoma cell lines or patient derived primary 

tumor cells were implanted in the uterus of female mice to generate orthotopic 

endometrial carcinoma mouse models. We then applied several advanced imaging 

techniques to monitor development of disease in these models, including optical 

molecular imaging (OMI), magnetic resonance imaging (MRI) and positron emission 

tomography/computed tomography (PET/CT).  

Patients treated for endometrial carcinoma have been prospectively entered in a 

biobank of gynaecological malignancies and clinicopathological data, imaging data 

and biological samples have been collected. Tissue samples were evaluated by 

immunohistochemistry and microarray in order to explore expression of 

asparaginase-like protein 1 (ASRGL1) in endometrial carcinoma, relating the level of 

ASRGL1 to survival as well as imaging- and clinicopathological parameters.  
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Results: Bioluminescent imaging (BLI), MRI, and PET/CT using fluorine-18-

fluorodeoxyglucose (18F-FDG) or fluorine-18-fluorothymidine (18F-FLT) as tracer 

were all found to be feasible methods for monitoring of disease in orthotopic mouse 

models of endometrial carcinoma. With the exception of BLI, these imaging 

modalities were also demonstrated to visualize uterine tumors in patient derived 

xenografts (PDX) (Paper I). 

 

Epithelial adherence molecule (EpCAM) was found to be highly expressed in both 

endometrial carcinoma cell lines and in hysterectomy specimens from patients 

diagnosed with endometrial carcinoma. Near infrared fluorescence (NIRF) imaging 

using an Alexa 680 fluorophore (AF680)-conjugated anti-EpCAM antibody and BLI 

generated comparable images of uterine tumors in cell line based orthotopic 

endometrial carcinoma mouse models. EpCAM-AF680 NIRF was however superior 

to BLI in early delineation of metastatic disease. EpCAM-AF680 NIRF imaging was 

found to visualize uterine tumors in multiple orthotopic PDX models, with better 

contrast and earlier detection of tumors compared to 18F-FDG PET/CT imaging. 

Additionally, in vivo EpCAM-AF680 NIRF imaging accurately depicted a non-

significant therapeutic response following treatment with paclitaxel or trastuzumab in 

an orthotopic PDX model of endometrial carcinoma. (Paper II). 

 

Low ASRGL1 protein expression in endometrial carcinoma hysterectomy samples 

was validated as a strong prognostic biomarker with independent survival impact, 

both in the whole patient cohort and in patients diagnosed with endometrioid 

endometrial carcinoma. Low ASRGL1 mRNA level was found to be significantly 

associated with poor outcome. ASRGL1 expression was mainly intact in the 

precursor lesion complex atypical hyperplasia (CAH), while the majority of 

metastatic lesions had lost ASRGL1 expression (Paper III).   

 

Similar expression of ASRGL1 in corresponding curettage and hysterectomy samples 

were observed in 85% of patients where ASRGL1 status in post-operative specimens 

was known. Low expression of ASRGL1 in curettage was found to independently 
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predict poor outcome in the whole patient cohort, as well as in patients with 

presumed low risk curettage histology. Significant associations between low 

ASRGL1 expression and preoperatively assessed features of aggressive disease were 

observed, including high-risk curettage histology, hormone receptor loss in curettage, 

and large tumor size on MRI. Low ASRGL1 expression in curettage was also found 

to be an independent predictor of lymph node metastases (Paper IV). 

 

Conclusions: We have successfully generated orthotopical mouse models of 

endometrial carcinoma, including PDXs with different histological backgrounds, and 

demonstrated that tumor development and response to treatment can be monitored by 

multiple advanced small animal imaging techniques. Low expression of ASRGL1 in 

hysterectomy samples has been validated as an independent prognostic biomarker in 

endometrial carcinoma, and we suggest ASRGL1 expression in curettage as a 

promising pre-operative biomarker with a potential to improve risk-stratification and 

surgical planning. 
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1. Introduction 

1.1 Endometrial carcinoma 

The uterus is the major component of the female reproductive system, and consists of 

three distinct layers; an outer layer of peritoneum (serosa), a thick muscular layer 

(myometrium), and an inner mucosal lining (endometrium) including glands and 

stromal cells. Endometrial carcinomas originate from epithelial cells in the 

endometrium, and may potentially invade the surrounding myometrium and 

metastasize to local and distant sites (1). Despite the high number of patients 

diagnosed with endometrial carcinoma worldwide, there has been less research 

focusing on this malignancy compared to several other cancers (i.e. breast cancer). 

The mechanisms of endometrial carcinoma establishment and progression are yet not 

fully understood, and increasing this knowledge would be beneficial. Another 

problem is that current disease classification systems are suboptimal, thus making 

risk-stratification and planning of treatment difficult. Additionally, there is a dire 

need of better treatment strategies for patients with advanced and recurrent disease. 

More high-quality research is thus needed to help solve these issues and to improve 

the treatment of endometrial carcinoma in the future.    

 

1.1.1 Epidemiology 

Incidence 

Endometrial carcinoma has the 6th highest cancer incidence in women worldwide, and 

is the 4th most common female cancer in Europe after breast, colorectal, and lung 

cancer (2). Endometrial carcinoma is not as common in less developed countries, 

indicating that environmental factors contribute to disease development. In Norway, 

774 new cases of endometrial carcinoma were recorded in 2016 (3). An increasing 

incidence of endometrial carcinoma has been observed over the last decades (Figure 

1), and can be explained by several factors, including higher life-expectancy and an 

increasing rate of obesity. It is estimated that 1 in 40 women will develop endometrial 
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carcinoma during their lifetime, and prognostic models suggest that between 1016-

1257 new cases of endometrial carcinoma will be diagnosed annually in Norway in 

2025 (4).  

 

Figure 1. Age standardized incidence rates of endometrial carcinoma in Norway per 

100 000 person-years by 5-year period, 1957-2016 (3). 

 

Mortality 

Worldwide it is estimated that endometrial carcinoma accounts for approximately 

76 000 deaths each year (5). Although being a common type of cancer, prognosis is 

usually good and mortality rates are low. In 2015 there were 67 deaths due to 

endometrial carcinoma in Norway. Survival is highly dependent on disease stage, and 

the 5-year relative survival for endometrial carcinoma is 95.7% for patients with 

localized disease, 61% with regional disease, and 38.1% for distant metastatic 

disease. Overall, there has been a slight improvement in survival over the last decades 

(Figure 2) (3).  
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Figure 2. Five-year relative survival from endometrial carcinoma in Norway 

stratified by disease stage, 1977-2016 (3). 

 

1.1.2 Clinical aspects  

Risk factors 

Most cases of endometrial carcinoma occur spontaneously. Several factors are 

reported to associate with increased risk of developing endometrial carcinoma, 

including nulliparity, early menarche and conditions causing metabolic disturbances 

such as polycystic ovary syndrome and diabetes mellitus (1, 6, 7). For endometrioid 

endometrial carcinoma, which is the most common subtype, unopposed estrogen 

exposure is a crucial risk factor (8). Exposure to estrogen stimulates cell proliferation, 

and may cause endometrial hyperplasia, cellular atypia, and development of 

endometrial carcinoma (9). Obesity is an important risk factor, most likely due to 

enzymatic production of estrogen in adipose tissue (9, 10). The degree of overweight 

is also of significance, as an increasing body mass index leads to higher risk of 

developing endometrial carcinoma (10). The growing rate of obesity amongst women 

is believed to be the cause of more than half the endometrial carcinoma cases 

worldwide, and is expected to contribute to an increasing incidence of endometrial 

carcinoma in the future (11). In contrast, multiparity, short pre-menopausal delivery-
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free period, and long term use of oral contraceptives are factors considered to reduce 

the risk of developing endometrial carcinoma (1, 6, 7). 

 

Some hereditary disorders are associated with higher risk of developing endometrial 

carcinoma, and are believed to account for approximately 5% of cases (6, 12, 13). 

Lynch syndrome is the most common hereditary genetic predisposition, characterized 

by germline mutations in deoxyribonucleic acid (DNA) mismatch repair (MMR) 

genes which lead to increased risk of developing several cancers - including 

endometrial carcinoma and colorectal cancer. The lifetime risk of endometrial 

carcinoma in women with Lynch syndrome is 40-60% (12). Other rare hereditary 

conditions associated with higher risk for endometrial carcinoma includes Cowden 

syndrome, where patients have germline mutations in the tumor supressor gene 

Phosphatase and Tensin homolog (PTEN) (13). 

 

Clinical symptoms 

Most women are diagnosed with endometrial carcinoma after menopause, and the 

classical presenting symptom is abnormal uterine bleeding (10). Patients with 

advanced disease may also experience abdominal distention, pelvic or abdominal 

pain, or changes in bowel and/or bladder function (6). As unexpected vaginal 

bleeding urges most women to visit their doctor, the majority of patients are 

diagnosed at an early stage. Only 5-10% of patients presenting with abnormal vaginal 

bleeding actually have endometrial carcinoma, although the chance is higher with 

increasing age and presence of risk factors (10). Currently there is no evidence 

supporting screening for endometrial carcinoma in the general population, and 

screening is not believed to reduce mortality rates (10, 14).  

 

Preoperative histology 

When suspecting endometrial carcinoma, histologic evaluation of the endometrium is 

performed as part of diagnosis and pre-operative risk-stratification. Several 

procedures can be performed to obtain specimens for histological assessment, 
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including pipelle, curettage, and endometrial biopsies. An endometrial curettage is 

performed by inserting an instrument through the cervical canal and into the uterine 

cavity to scrape off the endometrium. Positive findings in pre-operative curettage are 

reported to accurately diagnose endometrial carcinoma, but a negative curettage may 

not be sufficient to rule out malignant disease (15).  If cancer is diagnosed in 

curettage specimen, determination of histological type and grade is important for risk-

evaluation and surgical planning.  

 

Histological assessment of pre-operative and hysterectomy samples is reported to be 

divergent in 10 – 33% of cases (16-22), indicating that this pre-operative evaluation is 

suboptimal as a stand-alone parameter for risk stratification and planning of 

therapeutic approach (23). Disagreement in histological classification between pre- 

and postoperative samples can be caused by several factors, including limited 

collection of tissue during pre-operative sampling, tissue in preoperative specimens 

only representing superficial areas of tumor, high degree of tumor heterogeneity, and 

poor inter-observer agreement between pathologists (20). Failure to recognize high-

risk disease from pre-operative specimens is reported to associate with poor outcome, 

most likely because patients are scheduled for less extensive surgery (16). Likewise, 

patients with pre-operative high risk and post-operative low risk classification have 

worse survival compared to those with concordant pre- and post-operative low risk 

histology. This could be due to tumor heterogeneity, and these patients may benefit 

from adjuvant treatment (22).  

 

Preoperative imaging 

Preoperative imaging is a valuable tool in planning of surgical procedures, especially 

for identification of deep myometrial invasion, cervical stroma invasion and 

evaluation of metastatic spread. However, there is no consensus on how to best apply 

imaging in order to identify high-risk cases prior to surgery, and there is a large 

variation in clinical routines both between hospitals and countries (24, 25). MRI 

and/or vaginal/transrectal ultrasound is normally recommended for local staging, 

whereas CT and/or PET are better to assess lymph node metastases and systemic 
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spread as they allow visualization of the entire pelvis, abdomen and thorax (24). 

Further information regarding the various modalities used in clinical imaging can be 

found in section 1.5. 

 

Staging, histopathologic typing and grading 

Endometrial carcinoma is a surgically staged disease, and myometrial invasion, 

metastatic spread, and lymph node involvement are assessed during the procedure. In 

2009 the International Federation of Gynecology and Obstetrics (FIGO) Committee 

on Gynecologic Oncology published their latest review on staging criteria for 

carcinoma of the vulva, cervix, and endometrium (26). Complete surgical staging 

includes sampling of pelvic and para-aortic lymph nodes, but in most hospitals this is 

not routinely performed in all patients. Table 1 describes the different stages of 

endometrial carcinoma according to the FIGO 2009 classification system.   
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Table 1. FIGO staging system for endometrial cancer, according to 2009 criteria. 

Stage Description 
(26)

 

 I 

     IA 

     IB 

 II 

   

 III 

  IIIA 

  IIIB 

  IIIC 

   IIIC1 

   IIIC2 

IV 

    IVA 

    IVB 

 

Myometrial invasion <50% 

Myometrial invasion ≥50% 

Tumor is invading the cervical stroma, but does not extend beyond the 

uterus. 

 

Tumor is invading the serosa of the corpus uteri, and/or adnexa 

Vaginal and/or parametrial involvement 

Involvement of specific lymph nodes 

Pelvic lymph nodes affected 

Para-aortic +/- pelvic lymph nodes affected 

 

Tumor invasion of the bladder and/or the bowel mucosa 

Metastases to distant locations, including intra-abdominal metastases and/or 

inguinal lymph node affection 

 

 

Endometrial tumors are also classified according to their histological appearances 

regardless of FIGO stage. Endometrioid adenocarcinoma is the most common type (≈ 

80% of endometrial carcinomas), and is characterized by the presence of endometrial 

glands with varying degree of differentiation. Endometrioid endometrial carcinomas 

are often associated with high levels of estrogen, and patients may have a history of 

endometrial hyperplasia (1, 10). Several less common types of endometrial carcinoma 

are collectively referred to as non-endometrioid tumors, with serous adenocarcinoma 

and clear cell adenocarcinomas being the most frequent. Serous adenocarcinomas are 

often characterized by a papillary architecture with poorly differentiated nuclei, while 

clear cell adenocarcinomas are characterized by the presence of clear glycogen-filled 

cells. The growth pattern of the tumor can be tubular, papillary, tubulocystic, solid or 

a mixture of these patterns (1).  
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In addition to histological type, endometrial carcinomas are also graded based on the 

amount of solid growth in the glandular parts of the tumor. Higher histological grade 

indicates less differentiation of tumor, observed as solid nests and sheets of cells 

replacing the normal glandular appearance (1). Non-endometrioid endometrial 

carcinomas are by definition considered high grade (1). Grading of endometrioid 

tumors is performed as described below, and has prognostic relevance. The majority 

of endometrioid tumors are low grade (1-2), usually associated with a favorable 

outcome if restricted to the uterus, while grade 3 endometrioid tumors are classified 

as high-risk (27).  

 

Grade 1: Less than 5% solid growth and a well-defined glandular appearance 

Grade 2: 6 - 50% solid growth and a less preserved glandular pattern 

Grade 3: More than 50% solid growth and hardly recognizable glands  

 

A major challenge in the histopathological classification of endometrial carcinomas is 

tumor heterogeneity, where different morphologic characteristics are found within the 

same tumor. The degree of heterogeneity can vary from subtle variations in cytology 

to mixed tumors with two distinctly different histological types. Tumor heterogeneity 

may have a large clinical impact, as failure to identify small populations of cells with 

aggressive features may cause wrongful assessment of prognosis and suboptimal 

treatment. Integration of molecular biomarkers may add valuable information to the 

standard histopathological evaluation, and potentially improve risk-stratification and 

management of endometrial carcinoma (27). 
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1.1.3 Treatment 

Treatment recommendations for endometrial carcinoma differ between disease 

subgroups, and large variations in clinical practice exist between countries. In 

Norway the treatment of endometrial carcinoma has changed somewhat since the 

early 1980’s, favouring more extensive surgery and increased amount of lymph node 

sampling over the last period. Chemotherapy was implemented as adjuvant treatment 

during this time period, and the amount of patients receiving chemotherapy increased 

from 0% in 1981-1990 to 9% in 2001-2010. Conversely, the proportion of patients 

undergoing adjuvant radiotherapy was dramatically reduced from 75% to 12% during 

the same time period (28). 

Pre-operative risk-assessment of patients is performed in order to plan the surgical 

approach, and is based on clinical findings, histopathological evaluation of pipelle or 

curettage samples, and pre-operative imaging. The histological classification of low 

risk disease includes grade 1 and 2 endometrioid tumors with <50% myometrial 

invasion, while deeply infiltrating grade 1 and 2 endometrioid tumors, as well as 

grade 3 endometrioid tumors with <50% myometrial invasion, are referred to as 

intermediate risk. High risk endometrial carcinoma is defined as grade 3 

endometrioid adenocarcinomas with >50% myometrial infiltration as well as non-

endometrioid histology (8, 29, 30).  

 

Surgery 

The primary treatment for endometrial carcinoma is surgery, and the standard 

procedure is hysterectomy with bilateral salpingo-oophorectomy (14). For patients 

with intermediate or high-risk disease more radical surgery might be advised, 

including pelvic and para-aortic lymphadenectomy, removal of paracervical and 

parametrial structures and omentectomy (23, 29, 31). Standardized criteria for 

selection of patients to undergo lymphadenectomy have not been established, and the 

current practice varies greatly between countries (32). The clinical benefit of 

lymphadenectomy has also been debated, due to the side effects associated with the 
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procedure and the lack of agreement regarding the therapeutic value of lymph node 

removal.  However, intermediate- and high-risk patients are often routinely subjected 

to staging lymphadenectomy in order to improve post-operative risk-stratification (6, 

8, 23, 29, 31). Sentinel lymph node mapping is an intraoperative procedure, where the 

primary draining lymph nodes (which are most likely to harbor metastatic lesions) are 

identified and removed. This approach reduces the extent of surgery and long-term 

side effects compared to more extensive lymph node removal, and may represent a 

good alternative to full lymphadenectomy in patients where assessment of nodal 

status is required (33-35).  

 

Primary surgical treatment is curative in most cases, however 15-20% of patients 

experience disease relapse within few years (8, 36). Recurrent endometrial carcinoma 

is associated with a poor prognosis, especially in patients with distant metastatic 

disease (36). A key challenge in endometrial carcinoma is thus early identification of 

patients that are likely to suffer a relapse, in order to consider adjuvant treatment.  

 

Adjuvant therapy 

Adjuvant therapy is considered for patients with intermediate or high-risk disease to 

eliminate disseminated cancer cells or potential residual disease after primary 

surgery. Traditionally, hormonal treatment, radiation treatment and chemotherapy 

have been the available alternatives, while immunotherapy and targeted therapies 

recently have emerged as new cancer treatment strategies (37).    

 

Hormonal treatment can be applied as adjuvant treatment in endometrial carcinoma 

patients who are ineligible for chemotherapy (38). Several substances are available 

(including tamoxifen and aromatase inhibitors), but the most commonly used are 

progestins. Use of hormonal therapy as single agent or combinational therapy has not 

been found to improve survival in women with advanced or recurrent endometrial 

carcinoma (39). However; checking the hormone receptor status of patients prior to 
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applying hormonal treatment is not standard procedure in all hospitals, and this may 

partially explain the lack of survival benefits. 

 

Radiation treatment consists of local ionizing radiation applied directly at the tumor, 

and can be performed as vaginal brachytherapy or external beam radiotherapy 

(EBRT). Vaginal brachytherapy is reported to be effective in preventing local 

recurrence, and is associated with fewer side-effects than EBRT (40). No survival 

benefit has been found from treating endometrial carcinoma patients with adjuvant 

radiotherapy, although radiation is found to reduce locoregional recurrence. Radiation 

treatment is thus not recommended for low-risk endometrial carcinoma, but may be 

considered in intermediate- and high risk cases (41-44).  

 

Conventional chemotherapeutics are systemically administered drugs that target 

rapidly dividing cells by interfering with one or more phases in the cell cycle, 

potentially eliminating residual cancer cells. Unfortunately, these drugs also exert 

cytotoxic effects on cells with a natural high turnover (epithelial cells, bone marrow 

cells, etc.), causing side effects such as hair loss, diarrhea, nausea and 

immunodepression which can be damaging to elderly and co-morbid patients (37). 

Response rates of chemotherapeutic treatment in endometrial carcinoma are usually 

modest, with short progression-free intervals of 4-6 months. The effect on survival is 

also limited, with median overall survival of 7 to 12 months (38). Anthracyclines, 

platinum compounds and taxanes are amongst the most heavily used drugs in 

endometrial carcinoma, with relatively poor response rates. Better response is 

observed with use of combined chemotherapeutic drugs than single agents alone (38). 

Commonly applied first-line adjuvant chemotherapeutic regimens include paclitaxel 

and carboplatin (14, 32), however the most optimal regimen has not yet been defined 

(45).  

 

Genetic characterization of tumors has revealed several cancer-specific molecular 

pathways that potentially can be targeted through adjuvant treatment. As targeted 

therapies intervene with specific molecular mechanisms in cancer cells it is believed 
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that this approach may be more efficient than traditional drugs, while simultaneously 

reducing the damaging effect on normal tissue (38). The most common types of 

targeted therapies are small molecule inhibitors and monoclonal antibodies. Several 

of these drugs have been approved for clinical use, including bevacizumab for 

treatment of colorectal cancer and non-small cell lung cancer (46-48), temsirolimus 

for advanced renal cell carcinoma (49) and trastuzumab for human epidermal growth 

factor 2 (HER2) positive breast cancer (37). Currently there are no targeted therapies 

specifically approved for endometrial carcinoma (8, 50) but several candidates have 

been and are being explored in clinical trials, including phosphatidylinositol-4,5-

biphosphate 3-kinase (PI3K)- and mammalian target of rapamycin (mTOR) inhibitors 

(51).  

 

The ability of cells to avoid destruction by the immune system is important for 

formation of tumors, and is considered an emerging hallmark of cancer (52). Several 

clinical trials evaluating immunotherapeutic drugs in patients diagnosed with 

endometrial carcinoma are ongoing, including studies of the immune checkpoint 

inhibitor pembrolizumab (NCT02549209, NCT02630823, NCT02054806 (53)). 

Pembrolizumab was recently approved by the United States Food and Drug 

Administration for use in solid tumors with MMR deficiencies, and may thus be used 

to treat selected endometrial carcinoma patients where such aberrations have been 

confirmed (54). 
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1.1.4 Personalized medicine 

Cancer has traditionally been treated with standardized protocols for all patients with 

similar diagnosis, a “one size fits all” approach which takes little consideration of 

disease heterogeneity and individual variations. Personalized oncology aims to select 

optimal therapeutic and preventive protocols for individual patients based on their 

specific molecular and genetic sequence variants – the right treatment for the right 

patient at the right time. However, in order to incorporate these principles into clinical 

practice it is necessary to identify specific biomarkers for disease characterization and 

for tailoring targeted therapies.  

 

1.2 Cancer genetics and signaling pathways 

1.2.1 Genetic alterations 

Cancer is a genomic disease where changes in gene expression caused by molecular 

events such as mutations, gene amplifications, chromosomal rearrangements etc. may 

alter the genetic landscape of a cell. Tumor development is a dynamic, multistep 

process that is largely shaped by underlying mechanisms such as genomic instability. 

The genetic heterogeneity that follows is favourable for cancer evolution as it 

increases the chance that premalignant cells become malignant, and that some cancer 

cell clones survive the selection pressure in the microenvironment (52, 55). 

Heterogeneity exists between subclones of cells within a specific tumor (intratumor 

heterogeneity), but also between similar tumors from different patients as well as 

between different types of tumors (intertumor heterogeneity) (56). Additionally, as 

most tumors are capable of continuous evolution, the genetic landscape of metastatic 

lesions does not necessarily equal that of the primary tumor. Heterogeneity represents 

a major challenge for diagnosis, therapy and for development of new drugs, and 

longitudinal sampling and multiple sampling sites may thus be vital in order to better 
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understand the biology of tumors - including drug sensitivity and development of 

therapeutic resistance (57).  

 

Several genomic cancer platforms (including The Cancer Genome Atlas (TCGA)) 

have been established in order to reveal the genetic landscape of different tumor 

types. In addition to profiling genetic aberrations in specific cancers, efforts are made 

to compare data from different cancer types in pan-cancer projects (58). Genomic 

analyses have revealed that some genes, including Tumor protein 53 (TP53), PTEN 

and Phosphatidylinositol-4,5 biphosphate 3 kinase catalytic subunit alpha (PIK3CA), 

are commonly mutated in several tumor types, whereas others are specific for single 

cancers (59). Endometrial carcinoma has been classified into four distinct subgroups 

by the TCGA research network based on their genetic characteristics; Polymerase ε 

(POLE) ultramutated, microsatellite instability (MSI) hypermutated, copy number 

high, and copy number low (Table 2) (60). As the individual subgroups are associated 

with differences in survival and may be linked to treatment response, molecular 

subtyping should be considered in endometrial carcinoma patients. However, 

extensive genetic analyses are expensive and identification of surrogate markers (i.e 

mutS homolog 6 (MSH6) and mismatch repair endonuclease PMS2 (PMS2) for 

identification of patients with MMR deficiencies in the MSI subgroup) may facilitate 

the integration of molecular classification into clinical practice (27, 61, 62).    

 

 

 

 

 

 

 

 

 

 

 



 33 

Table 2: TCGA classification of endometrial carcinomas  

Subgroup: Selected characteristics
 (60)

: 

POLE - Very high number of mutations 

- Favorable PFS 

- Frequent mutations in PTEN, PIK3CA and KRAS 

MSI - High degree of mutations 

- Frequent MLH1 promoter methylation 

- Low number of SCNAs 

- Few mutations in TP53 

Copy number high - High number of SCNAs 

- Frequent TP53 mutations 

- Low degree of MSI 

- Poor PFS 

Copy number low - Low mutation rate 

- Microsatellite stable 

KRAS proto-oncogene (KRAS), MutL homolog 1 (MLH1), Microsatellite instability 

(MSI), Progression-free survival (PFS), Phosphatidylinositol-4,5 bisphosphate 3-

kinase catalytic subunit alpha (PIK3CA), Polymerase ε (POLE), Phosphatase and 

Tensin homolog (PTEN), Somatic copy number alterations (SCNA), Tumor protein 

p53 (TP53) 

 

1.2.2 Signaling pathways  

Cells can receive several types of stimuli through direct contact with neighbouring 

cells, from local mediators (paracrine signaling), hormones (endocrine signaling), or 

by self-stimulation (autocrine signaling). Activation of various extra- or intracellular 

receptors generates a non-linear signaling cascade that ultimately may affect several 

cellular processes, including proliferation, growth, metabolism and apoptosis (52, 

55). Highly controlled transmission of signals is essential for normal cell function and 

for cells to respond appropriately to specific stimuli. Signaling pathway aberrations 

contribute to several of the “hallmarks of cancer” including self-sufficiency in growth 



 34 

signals and insensitivity to anti-growth signals (52, 55). A variety of signaling routes 

are known to be dysregulated in cancer, including the PI3K/Protein kinase B 

(AKT)/mTOR pathway. When activated, this pathway leads to an increase in cell 

growth, protein synthesis and angiogenesis as well as inhibition of apoptosis (63). 

The tumor suppressor protein PTEN is a negative regulator of the PI3K/AKT/mTOR 

pathway. As a high number of patients with endometrial carcinoma (particularly 

endometrioid) have lost expression of PTEN, the PI3K/AKT/mTOR cascade is 

amongst the most commonly dysregulated signaling pathway in this type of cancer 

(54, 63). Other known signaling aberrations in endometrial carcinoma include 

overexpression of HER2 and dysregulation of the RAS/RAF/mitogen-activated 

protein kinase kinase (MEK) pathway (54, 63, 64). 

1.3 Biomarkers 

A biomarker is often defined as  “a characteristic that is objectively measured and 

evaluated as an indicator of normal biologic processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” (65). Using biomarkers to 

identify high-risk disease and stratify patients to specific treatments may improve 

response rates and survival for a large number of cancer victims (8). However, the 

translation process from bench to bedside is both long and cumbersome, and only a 

limited number of biomarkers have been successfully implemented into clinical 

practice (66, 67). This is also the case in endometrial carcinoma  (68).   

  

Prognostic biomarkers 

A prognostic biomarker predicts the natural course of disease, distinguishing tumors 

associated with a good outcome from those with a poor outcome irrespective of 

treatment. Although prognostic biomarkers are unable to predict the response to a 

specific therapy, they can be useful to identify high-risk patients that, in general, 

might benefit from more aggressive treatment (66, 69). Prognostic biomarkers may 

reduce overtreatment of patients with low-risk tumors who do not have added benefit 
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from extensive treatment, and also under-treatment of patients who otherwise would 

receive only standard care (66). Examples of prognostic biomarkers currently used in 

clinical diagnosis of cancer includes prostate-specific antigen (PSA) levels in serum 

of patients with prostate cancer and elevated serum CA125 level in ovarian cancer 

(70, 71). Although lagging behind other cancer types when it comes to clinical 

implementation of biomarkers, several prognostic markers have been rigorously 

investigated in endometrial carcinoma, including p53 (72), DNA ploidy (73-75), and 

the hormone receptors estrogen receptor α (ERα) (76-78) and progesterone receptor 

(PR) (78, 79). Additionally, new, potential prognostic markers such as L1 cell 

adhesion molecule (L1CAM) (80-84) are emerging.  

 

Predictive biomarkers 

Predictive biomarkers forecast the likely response to a specific therapeutic 

intervention. Such markers can be used to select which patients should receive a  

particular drug, or they can be applied in early stages of therapy to predict therapeutic 

response (69). Predictive biomarkers are implemented in several cancer types, 

including HER2 overexpression for allocation of trastuzumab in breast cancer, 

presence of the fusion gene BCR-ABL for assigning imatinib treatment in chronic 

myeloid leukaemia and KRAS mutational status for selecting patients eligible for 

epidermal growth factor receptor (EGFR) targeting drugs in colorectal cancer (70, 

85).  No biomarkers are currently clinically applied to predict the response to specific 

treatments in endometrial carcinoma, and identifying markers that can select the right 

patients and monitor their response would potentially increase the response rates of 

both new and existing drugs (86). Candidate markers include mutated PTEN for 

assignment of mTOR inhibitors and ERα/PR status for allocation of hormonal 

therapy (54). 
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Imaging biomarkers 

Imaging biomarkers can be used for non-invasive monitoring of tumors to provide 

both anatomical and functional information, and can also be used to evaluate 

treatment response (69). Several imaging parameters have been reported as potential 

preoperative biomarkers in endometrial carcinoma, including tumor size, ultrasound 

echogenicity and vascularization, functional MRI parameters (i.e. apparent diffusion 

coefficient (ADC) -value and blood flow) and metabolic PET/CT parameters such as 

metabolic tumor volume (MTV) and total lesion glycolysis (TLG) (25, 87-90). 

 

1.4 Preclinical cancer models 

Preclinical research is a wide term, including a variety of techniques and model 

systems that can be applied to study specific hypotheses prior to testing in clinical 

trials. The development of cancer models is a dynamic process, involving a series of 

steps where the model system is defined, generated and improved based on the 

outcome of initial testing (91). The most common preclinical research systems are in 

vitro and in vivo models, where specific events are studied in laboratory- or animal 

studies. Computational in silico models are also of increasing interest, and can be 

used to generate predictions and hypotheses. There are many advantages with a 

computational approach, including low costs, high accuracy, and rapid estimation of 

specific interventions on a range of different parameters. Still, these model systems 

are developed from pre-existing data which often have been generated through 

multiple experiments and under different conditions (92). Hypotheses must therefore 

be validated experimentally. 
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1.4.1 In vitro models 

In vitro experiments are typically performed in test tubes or cell cultures, and have 

been important model systems in preclinical cancer research for decades. Major 

advantages of in vitro models are that they provide a controlled system that is feasible 

for studies of molecular mechanisms, they are cheap and data can be acquired rapidly. 

However, there are several limitations. Cell cultures are often criticized for lacking 

stromal interactions, accumulating mutations, adapting to in vitro conditions, and 

failing to recapitulate the heterogeneity found in tumors in vivo (93, 94). 

Additionally, performing studies on single cell lines may lead to wrongful 

interpretation of data, as the response in individual cell lines could represent only a 

subgroup of tumors (or a subpopulation of cells within a tumor) and not the entire 

patient population. High-throughput screening of multiple cell lines may thus 

improve the comparability of results in in vitro experiments and clinical trials (94). 

Still, prior to clinical testing hypotheses generated from in vitro experiments should 

be validated in in vivo preclinical models. 

 

1.4.2 In vivo models  

Animal models are commonly used to generate hypotheses and perform initial studies 

before proceeding to testing in human patients. Compared to in vitro models, animal 

models provide a more natural environment for tumor establishment and disease 

evolvement. Cells grown in vivo are able to interact with normal tissue cells and 

components, and to undergo disease related events such as invasion, migration and 

dissemination. Additionally, many molecular and physiologic processes are similar in 

animals and humans (95). Animal models are amongst the best currently available 

systems for studies of human cancer. Still, results from preclinical experiments are 

often not reproducible in subsequent clinical trials (86, 96). It is thus important to 

establish clinically relevant animal models to explore the mechanisms of 

development, progression, invasion and metastasis of cancer in a systemic setting, 

and for preclinical studies of biomarkers and therapeutic response (97, 98). 
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1.4.3 Mouse models 

The use of laboratory mice has a long tradition in medical research. Mice are small of 

size, easy to breed and have a short life-span, which makes them easy and relatively 

cheap to house, feed and handle (95, 99). In addition there is a high degree of 

similarities between the human and mouse genome which improves their suitability 

as model animals for human disease. Many different mouse models exist; however, 

not all models are equally applicable for all types of preclinical studies. Genetically 

engineered models (GEM) can be used to study genomic mutations in a systemic 

setting, and mutations that cause tumor development can be induced in germline cells 

by embryonic engineering or be selectively expressed in specific cells and tissues (95, 

99-101). Isograft models are established by transplantation of cells or tissue between 

animals with the same genetic background, so there is no need to compromise the 

host immune system to enable tumor engraftment. Although a vast number of 

mechanisms involved in cancer establishment and progression can be studied using 

GEM and isografts, both tumor and stromal cells are of mouse origin - making them 

less optimal models for human tumor biology (99). Xenograft models are generated 

by transplantation of cells or tissue between individuals of different species, and thus 

allows for human material to grow in a murine host. Due to the human origin of 

xenografts, these models may be more representative of human cancer than GEMs 

and isografts. 

 

The most commonly used xenograft models are derived from immortalized human 

cancer cell lines. However, long time culturing of cell lines in vitro may alter their 

genetic and functional characteristics, making cell line based mouse models less 

representative of clinical disease (86). PDX models are established by implantation of 

cell suspension or small pieces of tissue from a patient biopsy, and are believed to 

mimic human clinical cancer more closely than cell line based models because 

molecular and histologic characteristics of the human tumor are better preserved (86, 

97, 102, 103). In spite of their advantages, PDX models are still not very widely used. 
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They are often time-consuming to establish (causing housing and keeping of PDX-

models to be more costly), and requires more time spent on handling and observation 

compared to several other available preclinical models (103). Not all primary cells 

form tumors in mice, and cells that engraft may harbour more aggressive features 

than the cells that do not. PDX models have been generated for a variety of cancers, 

including breast, colorectal and renal cell cancer (86). It has been demonstrated that 

drug response (including both standard chemotherapeutic and targeted treatments) in 

PDX models is similar to the response in the corresponding human donor (86, 104), 

suggesting that the use of PDX models may improve the translational value between 

preclinical studies and clinical trials. Several mouse models of endometrial carcinoma 

have been generated (97, 105-110), including PDXs (111-113). In addition to primary 

tumors, endometrial carcinoma xenografts have also been established from both 

metastatic and recurrent lesions (111). 

 

Xenograft models can be generated through implantation of tumor cells under the 

skin (subcutaneously) or in the organ of origin (orthotopically). The subcutaneous 

method is commonly applied as it is low cost, little time consuming, does not require 

surgical training, and tumor development is easy to monitor and measure (98, 102). 

Still, subcutaneous tumors are surrounded by a completely different 

microenvironment than the organ they usually would inhabit, and are not necessarily 

representative for tumors in the primary site. Tumors grown in such models will often 

lack infiltrative behavior, are less likely to metastasize, and may respond completely 

different to chemotherapy than tumors found in their original milieu (97, 98, 105, 

114). In orthotopic models cancer cells are allowed to grow and metastasize under 

conditions more similar to those of the primary tumor, making it a more clinically 

relevant model (98, 102, 105, 114).  However, generation of orthotopic models often 

requires surgical expertise, and monitoring of tumor development is more challenging 

in orthotopic compared to subcutaneous models (86, 98, 115). The latter problem can 

be overcome through use of in vivo imaging. 
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1.5 Advanced imaging modalities 

Imaging can be used for non-invasive collection of information on the anatomy and 

physiology of tumors, and is applied in the diagnosis and follow-up of multiple 

cancer types; including gynaecological cancers. Although several hospitals have 

included imaging as part of the preoperative diagnostic work-up in endometrial 

carcinoma there is little agreement on when and how to use these imaging techniques, 

and different institutions and countries have varying practices (24, 25).  Imaging of 

preclinical cancer models is also of great importance; especially as such models are 

becoming continuously more complex. The most common imaging alternatives 

available for clinical and preclinical purposes will be presented over the next sections, 

with a particular focus on imaging modalities relevant for endometrial carcinoma. 

Strengths and weaknesses of different imaging modalities are summarized in Table 3. 

 

Table 3. Strengths and limitations of selected imaging modalities 

Modality Strengths Limitations 

US (116) - Inexpensive 

- Fast 

- Doppler visualizes blood 

flow 

- Accurate measurement of 

tumor size 

- Operator variability 

- Unsuited for brain and 

bone tumors 

- Difficult to detect 

metastatic disease 

MRI (116, 117) - High spatial resolution 

- Excellent soft tissue 

contrast 

- DCE-MRI provides 

information on 

microvasculature and 

circulation 

- No radiation 

- Long acquisition time 

- High equipment costs 
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CT (116) - High contrast 

- Good anatomical 

visualization 

- Poor soft tissue contrast 

- Radiation 

PET (116-118) - High sensitivity, 

irrespective of depth 

- Functional imaging 

- Several available tracers 

- High demands to facilities 

- Radiation 

- Expensive 

- Low spatial resolution 

- Little anatomical 

information 

BLI* (116, 119, 

120) 

- Cost efficient 

- High throughput 

- High signal-to-noise ratio 

- Requires reporter genes 

- No anatomical information 

- Semi-quantitative 

NIRF* (121) - Reporter genes not 

required 

- High throughput 

- Targeted fluorophore 

probes 

- Tissue autofluorescence 

- Low signal-to-noise ratio 

- Limited penetration of 

tissue (≈ 1 cm) 

Bioluminescent imaging (BLI), Computed tomography (CT), Dynamic contrast 

enhanced (DCE), Magnetic resonance imaging (MRI), Near-infrared fluorescent 

imaging (NIFR), Positron emission tomography (PET), Ultrasound (US).*Preclinical 

imaging only. 

 

Ultrasound 

Transvaginal ultrasound is commonly used in the initial diagnosis of endometrial 

carcinoma (24, 25). In ultrasound, sound waves over 20 MHz are generated by a 

transducer and directed towards the tumor and surrounding tissue. When hitting 

borders between tissues with different acoustic impedance, sound waves are reflected 

and the echo is used to generate a grayscale image (116). There are several 

advantages with ultrasound as it is a rapid, low-cost and minimally invasive 

procedure. Challenges include interobserver variation, poor image quality in obese 
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patients due to excess amounts of fatty tissue and difficulties in evaluation of 

disseminated disease. To the best of the author’s knowledge, ultrasound has so far not 

been used to evaluate endometrial carcinoma in preclinical models.  

 

Magnetic resonance imaging 

MRI machines use superconducting magnets to generate a constant external magnetic 

field that affects the alignment of protons in the patient body. Radiofrequent pulses 

are turned on and off to interfere with the protons, and this activity results in an 

alternating electrical current that can be registered as an MR-signal. MRI is highly 

feasible for visualization of soft tissue, offering high resolution and excellent contrast 

in fat rich and water rich tissues (122). The main limitations of the MRI technique are 

that patients with metal implants or electronic medical implants (i.e. pacemakers) 

cannot be scanned due to the strong magnetic field, that scan-time is relatively long, 

and that the instrumentation is costly and requires high technical expertise (122). In 

endometrial carcinoma MRI is often considered to be the preferred pre-operative 

imaging method, and is performed to assess the depth of myometrial infiltration and 

invasion of cervical stroma (123). Standard MRI can also be used to estimate tumor 

size and to identify suspicious lymph nodes (123, 124). Paramagnetic substances (i.e. 

gadolinium) can be injected intravenously to enhance contrast (122), and is used to 

better delineate the tumor from the myometrium in endometrial carcinoma patients 

(24). Functional MRI techniques are increasingly explored, and may add valuable 

information regarding the physiological properties of a tumor. Dynamic contrast 

enhanced (DCE) MRI enables characterization of tumor microvasculature (123, 124), 

while diffusion weighted images (DWI) visualizes differences in tissue water 

diffusion as a measure of tissue cellularity which can be used to differentiate tumor 

from normal tissue (123). DCE-MRI and DWI parameters (low blood flow, low 

ADC-values, etc.) are reported to associate with features of aggressive endometrial 

carcinoma and reduced survival, and may serve as potential imaging biomarkers 

(125).  The ability of MRI to detect tumor in preclinical models has been 

demonstrated in several cancers, including non-small-cell lung cancer (126). As far as 
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the author is aware, MRI has not previously been used for tumor imaging in 

endometrial carcinoma xenograft models. 

 

Computed tomography 

CT is an imaging technique using several narrow x-ray beams, which can be 

reconstructed into a three-dimensional image of patient anatomy (127). Images are 

created based on differences in x-ray absorption, illustrating different tissues by 

various shades of grey. Advantages of CT-technology include that it is relatively 

quick to acquire images compared to other modalities, it is applicable for most body 

systems, and it provides more details in deep tissues that may be less accessible by 

e.g. transabdominal ultrasound. CT also offers high resolution in tissues with good 

contrast, such as bone and lungs. The main disadvantages are that patients are 

exposed to radiation, and that intrinsic contrast in soft tissue is limited (116). CT is 

not commonly utilized as a single imaging modality in endometrial carcinoma due to 

poor diagnostic performance for local staging. However, CT is widely used to assess 

lymph node metastases or distant spread, either alone or combined with PET imaging 

allowing for attenuation correction and anatomical correlation in both clinical and 

preclinical applications.  

 

Positron emission tomography 

PET imaging is based on intravenous injection of short-lived radionuclides linked to 

biologically active elements, and the physiological information from the PET-scan 

can be combined with the anatomical information from CT or MRI-scans to create a 

fusion image (128, 129). PET may also be a valuable tool for assessment of adjuvant 

treatment effects, as metabolic changes in tumor tissue may be evident at an earlier 

stage than alterations in tumor volume (118, 129-131). However, PET images may be 

affected by factors such as signal spilling, non-tumor activity (i.e. signal from urinary 

system or intestine) and scanner properties that potentially may lead to over-or 

underestimation of tumor size and metabolic activity (131). Additionally, PET 

imaging is expensive, exposes the patient to radiation, and poses high demands to 



 44 

facilities and staff. Several PET-tracers exist, each with specialized properties which 

make them feasible for different types of investigations. One of the most commonly 

used PET-tracers is 18F- FDG. 18F-FDG is imported into cells by glucose transporting 

molecules and phosphorylated by hexokinase, thereby trapping it inside the cell 

(118). High glucose uptake is a common feature of cancer cells, which makes 18F-

FDG a feasible tracer for both qualitative and quantitative measures. Another 

available PET-tracer is 18F- FLT. 18F- FLT enters the cell by both passive diffusion 

and active nucleoside transporters, and gets trapped intracellularly after being 

phosphorylated by thymidine kinase 1 during cell cycle S-phase (132). 18F- FLT PET 

takes advantage of the increased cell proliferation that is characteristic of many 

cancers. Several molecular parameters can be evaluated based on PET scans to 

elucidate inherent properties of the tumor. Standard uptake value (SUV) is the 

measured activity in tissue divided by injected activity per unit body weight, and 

describes the uptake of tracer in tumor. Measures of metabolic tumor burden includes 

MTV and TLG (133). In endometrial carcinoma, PET/CT imaging using 18F-FDG as 

tracer is reported to be a valuable tool both for detection of metastatic lymph nodes 

prior to surgery and for identification of recurrent disease (134). PET/CT may also be 

used in preclinical applications, and has been successfully employed in studies of 

lung cancer and melanoma models (135, 136) . However, there are no previous 

reports of PET/CT imaging of endometrial carcinoma models.  

 

Optical molecular imaging 

OMI is applicable for real-time visualization of tumor growth and metastasis, as well 

as observation of treatment effects in vivo (121, 137). The technique is non-invasive, 

does not require radiant substances, is relatively low cost and the equipment is easy to 

operate. However, there are also some disadvantages with OMI. Due to the poor 

penetration of photons in tissue there is a depth restriction which makes it less 

applicable in deep viscera. Spatial resolution is low due to the amount of light 

scattering in biological tissue (121), and the anatomy is difficult to comprehend. One 
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OMI modality commonly used for research purposes is BLI. The firefly luciferase 

enzyme catalyzes the transformation of D-luciferin to oxyluciferin in the presence of 

O2, Mg2+, and adenosine triphosphate, yielding the emission of light as well as 

byproducts such as adenosine monophosphate, CO2, and pyrophosphate (138, 139). 

BLI is a high-throughput technique that is relatively easy to conduct. As normal 

mammalian cells do not express luciferase, BLI offers a high signal-to-noise ratio and 

excellent sensitivity (120, 121). The major limitation is that cells need to be 

transfected with a luciferase expressing vector for BLI to be eligible (139), and this 

imaging technique is thus not applicable for clinical use. However, BLI has been 

demonstrated as a valuable tool for visualization of luciferase positive tumor cells in 

several cancer models, including endometrial carcinoma (97, 107, 110). 

Another OMI modality that is feasible for in vivo studies is NIRF. Fluorescent 

molecules are excited by light of specific wavelengths, and emit light with a different 

wavelength when returning to their ground state (137, 139, 140). NIRF is not visible 

to the human eye, and highly sensitive cameras or detectors are needed to register the 

emitted light. Fluorescent in vivo imaging can be challenging due to high degree of 

tissue autofluorescence and low signal-to-background ratios (121). Photons can be 

scattered or absorbed by surrounding tissue, reducing the amount of signal that is 

received by the detector. Light with wavelengths above 1100 nm will be almost 

completely absorbed by water (which is abundant in most tissue), while light with 

wavelengths in the range of 400-500 nm will be absorbed by molecules such as 

hemoglobin and melanin. By using fluorescent molecules that emit light in the near-

infrared range (700-900 nm) some of these challenges can be overcome, as infrared 

light is less absorbed and enables better tissue penetration (121, 139-141). Although 

there is currently little tradition for using optical imaging in clinical settings, image-

guided surgery using fluorescent dyes (i.e. indocyanine green) is now being explored 

and represents a promising tool for detection of sentinel lymph nodes in several 

gynecological cancers – including endometrial carcinoma (142). NIRF imaging has 

been demonstrated to visualize tumor in preclinical models of several cancers, 
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including acute myeloid leukemia (AML) and epithelial ovarian cancer (143, 144). 

NIRF imaging of endometrial cancer mouse models has not yet been reported.  
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2. Aims of the project 

2.1 Background 

Endometrial carcinoma is the most common pelvic gynaecologic malignancy, and the 

incidence is expected to increase in the future due to an ageing and more obese 

population. Prognosis is good for most patients, but for those who experience 

recurrent disease the outcome is often poor. There is a need for identification and 

validation of new biomarkers for endometrial carcinoma, both to improve risk-

stratification and to tailor treatment for individual patients. Establishment of robust 

and clinically relevant preclinical models is essential in order to increase the 

translational success rate from preclinical research to clinical trials. Implementation 

of non-invasive small animal imaging techniques is also vital, as these methods allow 

continuous monitoring of disease development and response to treatment in vivo.  

 

2.2 Overall aim 

The overall aim of this project was to explore potential biomarkers in endometrial 

carcinoma, and to develop relevant preclinical model systems that may be used for 

studies of new biomarkers and anti-cancer therapies. 

 

2.3 Specific aims 

Paper I: The aim of this study was to establish cell line based and patient derived 

orthotopic mouse models of endometrial carcinoma, and to evaluate the feasibility of 

selected small animal imaging modalities with regards to monitoring of tumor growth 

and metastatic spread. 
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Paper II: We aimed to develop an NIRF imaging protocol that can be used for 

longitudinal monitoring of tumor growth and treatment response in orthotopic 

endometrial carcinoma PDX models. 

 

Paper III: The aim of this study was to validate ASRGL1 as a postoperative 

prognostic biomarker in endometrial carcinoma, and to explore the expression of 

ASRGL1 in precursor lesions, primary tumors and metastases. 

 

Paper IV: We aimed to evaluate the ability of ASRGL1 protein expression in 

preoperative samples to identify endometrial carcinoma patients with high risk of 

aggressive disease and poor survival prior to surgery. 
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3. Material and methodological conciderations 

3.1 Patients and clinical samples 

3.1.1 Patient series 

Patients treated for endometrial carcinoma at HUS were prospectively included 

between March 2001 and October 2015. HUS is the referral hospital for Hordaland 

County, covering approximately 10% of the Norwegian population. The HUS cohort 

is regarded a population-based patient series as both incidence rates, patient- and 

disease characteristics for this region are representative compared to the entire 

population in Norway (3). In addition to the patients collected at HUS, nine other 

hospitals in Norway, Sweden and Belgium have contributed with samples and data 

from prospectively included endometrial carcinoma patients in the Molecular 

Markers in Treatment of Endometrial Cancer study (MoMaTEC, NCT0059884). All 

patients have given written informed consent prior to inclusion, and biological 

samples, clinicopathological information and follow-up data have been collected at 

the respective centres. The biobank contains tissue samples from preoperative 

curettage, hysterectomy specimens, and metastatic lesions, and tissue samples were 

snap-frozen in liquid nitrogen and/or fixed in formalin. Clinicopathological 

information including age, histological type, histological grade and follow-up data 

was retrieved from medical records. A series of patients diagnosed with CAH has 

also been collected and clinical information retrieved as for endometrial carcinoma 

patients. As surgical treatment of CAH is presumed to be curative, these patients have 

no follow-up data. An overview of biological samples and applied methods is shown 

in Figure 3. 
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Figure 3. Overview of patient samples and methods used in papers II- IV. Numbers 

in bars represent included patients for each analysis. Dark purple: curettage samples 

from patients treated at Haukeland University Hospital. Light purple: curettage 

samples from patients treated at other hospitals. Abbreviations: complex atypical 

hyperplasia (CAH), immunohistochemistry (IHC), magnetic resonance imaging 

(MRI), positron emission tomography/computed tomography (PET/CT).  

 

3.1.2 Tissue microarrays 

Formalin fixed paraffin embedded (FFPE) tissue was used to generate tissue 

microarrays (TMA). The area with the highest tumor cell content was identified on 

hematoxylin and eosin stained slides by an experienced gynecologic oncologist, and a 

custom made precision instrument (Beecher instruments, Silver Spring, MD, USA) 

was used to punch out tissue cylinders (0.6 mm) from the donor block before 

mounting in a recipient paraffin block (145). Three tissue cylinders were collected 

from CAHs, curettage specimens and primary tumors, and one tissue cylinder from 

metastatic lesions. For patients treated at other centers than HUS, only tissue from 

curettage samples was available for TMA processing.  
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3.1.3 Immunohistochemistry 

In this project we used IHC to evaluate protein expression in FFPE tissue collected 

from endometrial carcinoma patients and xenograft models. With the exception of 

ASRGL1 staining, which was performed by automated IHC using a LabVision 

Autostainer 480S (Thermo Fisher Scientific, Runcorn, UK), all immunohistochemical 

staining was performed at our facility using a standardized protocol. Tissue sections 

were dewaxed in xylene and rehydrated in graded ethanol series prior to microwave 

boiling for 15 minutes in target retrieval buffer (Tris EDTA – pH 9 or Citrate – pH 6). 

Slides were covered with peroxidase block for 8 minutes before application of 

primary antibody. Specifications for the different primary antibodies are listed in 

Table 4. For all antibodies a secondary horse radish peroxidase conjugated agent 

(anti-mouse or anti-rabbit) was added for 30 minutes and diaminobenzidine applied 

for 8 – 10 minutes before counterstaining with hematoxylin.   
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Table 4: Antibodies used for immunohistochemistry 

Target Primary antibody Buffer Dilution Incubation 

ASRGL1 HPA029725 (146, 147)   

Atlas antibodies, Sweden 

 

AMAb90907 

Atlas antibodies, Sweden 

 

Citrate 

pH 6 

 

Citrate 

pH 6 

1:375 

 

 

1:1000 

30 min 

 

 

30 min 

EpCAM D9S3P 

CST, USA 

 

Citrate 

pH 6 

1:200 60 min 

ERα HC-20* 

Santa Cruz, USA 

 

Tris EDTA 

pH 9 

1:400 60 min 

 

SP-1* 

Thermo Scientific, USA 

 

Tris EDTA 

pH 9 

1:400 

 

60 min 

M7047 (77, 148) 

Dako, Denmark 

 

Tris EDTA 

pH 9 

1:50 30 min 

PR M3569 (79) 

Dako, Denmark 

 

Tris EDTA 

pH 9 

1:150 30 min 

*Used to stain tissue samples from mice xenografted with human endometrial 

carcinoma cells.  Asparaginase-like protein 1 (ASRGL1), Cell signalling technology 

(CST), Epithelial cell adhesion molecule (EpCAM), Estrogen receptor alpha (ERα), 

Ethylenediaminetetraacetic acid (EDTA),  Progesterone receptor (PR) 

 

IHC staining of slides was assessed by standard light microscopy, evaluating the 

staining of epithelial tumor cells. For each patient a staining index (SI) was calculated 

by multiplying staining intensity (0-3) and area of positive stained tumor cells (1 = < 
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10%, 2 = 10 – 50%, 3 = > 50%). Cases were ranked based on SI for statistical 

analyses, and categorized into tertile/quartile groups according to frequency 

distribution and subgroup size. Groups with similar survival were combined. Table 5 

lists the cut-offs for IHC biomarkers included in this project.  

 

Table 5: Biomarker cut-off, immunohistochemistry 

 SI defined as loss/low 

expression 

SI defined as high 

expression 

ASRGL1 0 – 1 2 – 9 

EpCAM 0 – 4  6 – 9  

ERα 0 – 3 4 – 9 

PR 0 1 – 9 

Asparaginase-like protein 1 (ASRGL1), Epithelial cell adhesion molecule (EpCAM), 

Estrogen receptor alpha (ERα), Progesterone receptor (PR), Staining index (SI) 

 

 

3.1.4 Ribonucleic acid (RNA) microarray analysis 

Tissue samples were collected during surgery, snap-frozen in liquid nitrogen and 

stored at -80°C. Hematoxylin and eosin stained slides were used to identify areas with 

high tumor cell content (preferably > 80%, minimum 50% tumor purity). Extraction 

of RNA was performed using the RNeasy Mini Kit (Qiagen, Hilden, Germany). The 

quality of RNA extracts was assessed using a Nanodrop 1000 spectrophotometer 

(Thermo Scientific, Waltham, MA, USA) and an Agilent 2100 Bioanalyzer (Agilent, 

Santa Clara, CA, USA).  Samples were hybridized to Agilent Whole Human Genome 

Microarrays 44k according to the manufacturers’ instructions, and subsequently 

scanned by the Agilent Microarray Scanner Bundle. Log 2 transformation and 

quantile normalization of data was performed. Expression data was analysed using 

the J-Express software (Molmine, Bergen, Norway). In paper III patients were 

ranked by ASRGL1 mRNA expression and grouped in quartiles. The lowest quartile 

of patients was used as cut-off for survival analyses. 



 54 

 

3.1.5 Approvals 

This study has been approved according to Norwegian legislation, including the 

Norwegian Data Inspectorate, Norwegian Social Sciences Data Services and Western 

Regional Committee for Medical and Health Research Ethics (REK 2009/2315, REK 

2014/1907, REK 2018/594). 

 

3.2 Pre-operative imaging 

Preoperative MRI and 18F-FDG PET/CT have been routinely performed in 

endometrial carcinoma patients treated at HUS since 2009 and 2011, respectively. In 

paper IV selected MRI and 18F-FDG PET parameters were related to ASRGL1 

expression in pre-operative curettage.  

 

3.2.1 Magnetic resonance imaging 

MRI of patients was performed according to a standardized protocol, using a whole-

body 1.5-T MRI system (Siemens Avanto running Syngo v. B17, Erlangen, 

Germany) with a six-channel body coil (149, 150). The largest tumor diameter was 

identified and measured in three planes (a, b, c). Tumor volume was estimated as 

following: Tumor volume = (a x b x c)/2 (151). T1-weighted images were acquired 

before and after intravenous injection of contrast (Dotarem, Guerbet, 0.1 mmol 

gadolinium/kg bodyweight). DWI of the pelvis was performed by an axial two-

dimensional echo planar imaging sequence with b-values of 0 and 1000 s/mm2, and 

used for generation of ADC-maps. DCE-MRI was acquired with 12 axial slices and a 

temporal resolution of 2.5 s Blood flow and transfer constant from extravascular 

extracellular space to blood were calculated using the extended Tofts kinetic model 

with a standardized arterial input function (125) 
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3.2.2 PET/CT imaging 

Patients were fasting 6 hours prior to PET/CT scan. PET/CT images were acquired 

using a Biograph 40 True Point scanner (Siemens, Erlangen, Germany), covering an 

area from the meatus of the ear to the proximal thigh. 18F-FDG was injected 

intravenously 60-120 minutes before starting the CT scan. Low-dose CT (120 kV, 50 

reference mAs) was performed for attenuation correction, and static PET images were 

collected at intervals of 3 minutes per bed position. Maximum standard uptake value 

(SUVmax) was measured in the tumor, and a volume of interest (VOI) was generated 

including voxels with SUV > 2.5. The VOI was used to estimate mean standard 

uptake value (SUVmean) and MTV. TLG was calculated as following; TLG = SUVmean 

x MTV (133, 152). 

 

3.3 Cell studies 

In this PhD-project we have used endometrial carcinoma cell lines and primary tumor 

cells to explore the expression of potential biomarkers and to establish orthotopic 

mouse models (paper I and II). 

 

3.3.1 Maintainance of cell cultures 

Endometrial carcinoma cell lines were grown at 37°C in a humidified atmosphere, 

with 5% CO2. Table 6 contains an overview of growth mediums and supplements 

used to maintain cell cultures in the different studies.  
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Table 6: Medium and supplements for cell cultures 

Cell line Paper Growth medium FBS% Supplements 

AN3CA 

ATCC, 

USA 

II EMEM 

Lonza, Switzerland 

10 100 IU/ml penicillin 

100 µg/ml streptomycin 

2 mM ʟ-glutamine 

 

Hec1B 

ATCC, 

USA 

 

II EMEM 

Lonza, Switzerland 

10 100 IU/ml penicillin 

100 µg/ml streptomycin 

2 mM ʟ-glutamine 

 

Ishikawa 

Sigma-

Aldrich, 

USA 

 

I, II EMEM 

Lonza, Switzerland 

5 100 IU/ml penicillin 

100 µg/ml streptomycin 

2 mM ʟ-glutamine 

1% non-essential amino acids 

 

RL95-2 

ATCC, 

USA 

 

II DMEM  

Ham’s F-12  

(1:1) 

10 100 IU/ml penicillin 

100 µg/ml streptomycin 

2 mM ʟ-glutamine 

2.0 g/L sodium bicarbonate 

0.005 mg/ml insulin 

1% Hepes 

 

Primary 

tumor 

cells 

I, II EMEM 

Lonza, Switzerland 

10 100 IU/ml penicillin 

100 µg/ml streptomycin 

 

American type culture collection (ATCC), Dulbecco’s modified Eagle medium 

(DMEM), Eagle’s minimum essential medium (EMEM), Fetal bovine serum (FBS), 

International units (IU),  
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3.3.2 Cell transfection 

Transfection refers to the introduction of exogenous DNA into a cell. Transfection 

can be transient, or it can be stable by incorporating the new DNA into the recipient’s 

genome.  It is common for the transferred DNA-sequence to contain a selection 

marker, such as an antibiotic resistance gene, or a reporter gene (i.e. green fluorescent 

protein) to be able to distinguish successfully transfected cells from wild type cells. In 

our studies we have used Ishikawa (paper I and II) and Hec1B cells (paper II) that 

have been stably transfected with a luciferase expressing (luc+) vector (153, 154). 

Transfected cells (Hec1Bluc+ and Ishikawaluc+) were selected using 1 µg/ml puromycin 

(Sigma-Aldrich, St. Louis, MO, USA). Luciferase activity was confirmed by in vitro 

BLI using an Optix MX3 Time-Domain Optical Imager (ART Inc. Saint-Laurent, 

QC, Canada) 10 minutes after addition of 2.5 mg/ml ᴅ-luciferin (Promega, Madison, 

WI, USA).  

 

3.3.3 Flow cytometry 

Flow cytometry is a technology that allows simultaneous measurement of multiple 

physical characteristics of cells, such as size, granularity, or expression of proteins. In 

paper II the expression of four potential NIRF-imaging targets was explored in four 

endometrial carcinoma cell lines (AN3CA, Hec1B, Ishikawa and RL95-2) by flow 

cytometry. These four proteins (Activated leukocyte cell adhesion molecule 

(ALCAM), EpCAM, Insulin-like growth factor 1 receptor alpha (IGF1Rα), and 

L1CAM, Table 7) were all reported to be overexpressed or associated with poor 

prognosis in patients diagnosed with endometrial cancer (82, 84, 155-160).  Cells 

were washed twice with 1% bovine serum albumin (BSA)/phosphate buffered saline 

(PBS) before incubation with antibody for 30 minutes on ice protected from light. 

Cells were washed again, and resuspended in PBS. Samples were analyzed using an 

AccuriTM C6 (BD Biosciences, San Jose, CA, USA) flow cytometry system, and 

results were processed using CFlow Sampler Analysis 1.0 software. 
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Table 7. Specifications of antibodies used for flow cytometry in paper II. 

Target Clone Conjugate 

ALCAM 3A6 

BD Biosciences, USA 

 

PE 

EpCAM EBA-1 

BD Biosciences, USA 

PE 

 

 

IGF1Rα 1H7 

BD Biosciences, USA 

 

PE 

L1CAM 03 

Sino Biological Inc., China 

PE 

Activated leukocyte cell adhesion molecule (ALCAM), Epithelial cell adhesion 

molecule (EpCAM), Insulin-like growth factor 1 receptor alpha (IGF1Rα), L1 cell 

adhesion molecule (L1CAM), phycoerythrin (PE). 

 

3.3.4 Antibody conjugation 

For in vivo fluorescence imaging in paper II an anti-human EpCAM antibody 

(MCA1870EL, clone VU-1D9; BioRad, Hercules, CA, USA) was conjugated to 

AF680 using the SAIVI Rapid Antibodies Labeling Kit (Invitrogen, Waltham, MA, 

USA) as described by the supplier. Protein concentrations and degree of labeling was 

determined using a Nanodrop 1000 spectrophotometer (Thermo Scientific, Waltham, 

MA, USA).  

 

3.3.5 Proliferation and viability assays  

In paper II, proliferation and viability of wild type cells and cells exposed to an anti-

EpCAM antibody (MCA1870EL) was compared. Cell proliferation was assessed 
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using the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, 

Madison, USA) as described by the supplier. All experiments were performed in 

triplicates. Proliferation was assessed by measuring absorbance at 490 nm one hour 

after addition of 20 µl of substrate. Absorbance was recorded using a TECAN 

Magellan Sunrise plate reader and TECAN Magellan software version 6.3 (both 

Tecan; Männedorf, Switzerland).  Apoptosis was evaluated by flow cytometry 

following 15 minutes of Annexin V/propium iodine staining (Thermo Fisher 

Scientific, Waltham, MA, USA).  

 

3.4 Animal studies 

All animal studies have been approved by the Norwegian State Commission for 

Laboratory Animals (FOTS ID 4036 - Paper I and FOTS ID 6735 - Paper II) and 

have been conducted according to the European Convention for the Protection of 

Vertebrates Used for Scientific Purposes.  Female non-obese diabetic severe 

combined immune deficiency gamma (NOD/SCID IL2r null (NSG)) mice were used 

for all animal studies. Mice were kept under pathogen-free conditions in individually 

ventilated cages, with a maximum of 5 animals per cage. Environmental conditions 

were highly controlled, with constant temperature of 21°C, 50% relative humidity, 

and 12 hours day/night schedule. Animals had ad libitum access to food and water. In 

Paper II animals were fed a chlorophyll-free diet (2018S Teklad Global 18% Protein 

Rodent Diet, Envigo, Cambridgeshire, UK or D10001, Research Diets Inc., New 

Brunswick, NJ, USA) to reduce background signal in fluorescent images. When 

developing clinical signs of disease, manifested by 10-15% weight loss, abdominal 

distention, lethargy or ruffled fur, animals were anesthetized and sacrificed by 

cervical dislocation. Tissue samples were collected during necropsy, and fixed in 

formalin or snap-frozen in liquid nitrogen. Full sections were prepared from FFPE-

tissue and stained with hematoxylin and eosin for histological examination.  
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3.4.1 Generation of orthotopic xenograft models 

Mice were anesthetized by i.p. injection of tribromoethanol (250 mg/kg) dissolved in 

2 methyl-2 butanol and diluted in sterile water to a final concentration of 12.5 mg/ml. 

Prior to surgery 0.1 mg/kg buprenorphine was injected s.c. for analgesia. Abdominal 

fur was removed and the skin disinfected before placing the animal in dorsal 

recumbency on a heating pad. A 1 cm long incision was made in the caudal abdomen, 

and the left uterine horn exteriorized. The uterine lumen was sealed by a temporary 

ligature to prevent vaginal leakage prior to injection of tumor cells (typically 106 cells 

per mice) suspended in BD Matrigel Basement Membrane Matrix (BD Biosciences, 

San Jose, USA) as demonstrated in Figure 4. After the cell suspension polymerized, 

the ligature was removed and the uterine horn replaced. Skin and musculature were 

closed separately using absorbable sutures. Animals were rehydrated by s.c. injection 

of saline before being placed under a heating lamp and observed until full recovery. 

Buprenorphine was administered s.c. for post-operative analgesia.  
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Figure 4. Generation of orthotopic endometrial carcinoma xenograft. The left 

uterine horn was exteriorized and sealed off by a temporary ligature. A needle was 

inserted through the uterine wall, and cell suspension injected into the uterine lumen.  

 

In Paper I the human origin of uterine xenograft tumors was confirmed by IHC. 4 

µm thick full sections were made from FFPE-tissue and stained for human ERα (SP-

1). Species specificity of the antibody was validated by comparison with sections 

stained with a non-species specific ERα antibody (HC-20). IHC staining was 

performed as described in section 3.1.3 and Table 4. 

 

3.4.2 Patient derived xenografts 

Fresh tumor tissue was collected during hysterectomy of endometrial carcinoma 

patients treated at HUS, and kept on ice until further processing. Tissue samples were 

manually dissociated and filtered through a 40 µm pore filter (Fisher Scientific, 

Hampton, NH, USA). Cells were centrifuged at 900 rpm for 4 minutes, before 

resuspension in BD Matrigel Basement Membrane Matrix. Orthotopic implantation 

of cells was performed as described in the previous section. Mice (P0 generation) 

were euthanized when developing clinical signs of disease, and cell suspension 

prepared from the uterine tumor before re-implantation in a new generation of mice 
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(P1). This process was continued in each generation to maintain the PDX models. 

Information regarding the individual PDX models is found in Table 8. 

 

Table 8. Background of endometrial carcinoma PDX-models 

PDX nr 
 

Patient 

age (yrs) 

Histologic subtype/grade  

(donor tumor) 

Paper Generation (P) 

1 69 Grade 3 endometrioid 

endometrial carcinoma 

I, II P0-P2 

2 75 Serous endometrial 

carcinoma 

II P1 

3 65 Grade 1 endometrioid 

endometrial carcinoma 

II P1 

4 58 Grade 3 endometrioid 

endometrial carcinoma 

II P0 

 

 

3.4.3 In vivo treatment study 

In paper II 24 mice were orthotopically implanted with short-term cultured primary 

tumor cells (PDX 4, Table 8). After four weeks (day 28), treatment with paclitaxel 

(12 mg/kg i.p. twice weekly, n = 8 mice), trastuzumab (10 mg/kg i.p. once weekly, n 

= 8 mice) or vehicle (n = 8 mice) was initiated. In vivo tumor growth was monitored 

using EpCAM-AF680 NIRF imaging pre- (day 26) and post treatment (day 55). 18F-

FDG PET/CT imaging was performed on day 47. Animals were euthanized on day 57 

or prior to this if developing clinical signs of disease. After euthanasia, uterine tumors 

were weighed and tissue samples collected and fixed in formalin. 
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3.5 Small animal imaging 

Several small animal imaging modalities exist, and we have used BLI, NIRF, MRI 

and PET-CT to detect and monitor tumor growth in our endometrial carcinoma 

xenograft models. Figure 5 demonstrates the different imaging techniques used in this 

PhD-project. 

 

3.5.1 Optical imaging 

Bioluminescence  

BLI was performed to monitor tumor growth in mice orthotopically implanted with 

endometrial carcinoma cell lines (Ishikawaluc+ – Paper I and II or Hec1Bluc+ – Paper 

II). Images were obtained using an In-Vivo FX PRO molecular imaging system 

(Carestream Health Inc., Rochester, NY, USA, Paper I) or an Optix MX3 Small 

Animal Molecular Imager (ART Inc., Saint-Laurent, QC, Canada, Paper II). 

Independent of the type of scanner, mice were injected i.p. with ᴅ-luciferin (150 

mg/kg) 10 minutes prior to imaging. Animals were anesthetized with 3% isoflurane 

(IsoFlo vet.; Zoetis, Helsinki, Finland) for induction and 1-2 % for maintenance. BLI 

was performed weekly, and images were analyzed using Carestream MI software 

(Standard Edition, v.5.0.6.20, Carestream Health Inc., Paper I) or Optix OptiView 

software (Paper II), and total bioluminescent signal was measured after manually 

defining a region of interest (ROI) of the abdomen and thorax. Mice that failed to 

develop bioluminescent signal were excluded from the studies. Ex vivo imaging of 

organs was performed to confirm the origin of the bioluminescent signal. 

 

 

Near Infrared Fluorecent Imaging 

NIRF imaging was applied to monitor disease progression and therapeutic response 

in endometrial carcinoma mouse models in Paper II. Mice were injected 

intravenously with 50 – 75 µg EpCAM-AF680 24 hours before imaging. Fur was 
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removed immediately prior to imaging, and the bladder was manually emptied. NIRF 

imaging was performed using the Optix MX3 Time-Domain Optical Imager (ART 

Inc., Saint-Laurent, QC, Canada), ex = 670 nm, em = 700 LP, raster scan points 1.5 

mm apart. In the cell line based model ROIs containing the abdomen and thorax were 

used for measuring of fluorescent signal in in vivo images, and ROIs surrounding 

each organ in ex vivo images. For measurement of fluorescent signal in PDX models 

the image with the largest tumor area was identified for each mouse.  A ROI was 

drawn around the tumor, and subsequently applied to all individual images from the 

same mice. Imaging data was analysed using the Optix OptiView software (version 

2.02; ART Inc., Saint-Laurent, QC, Canada). A tumor-free mouse injected with a 

corresponding dose of EpCAM-AF680 was imaged as control. 

 

3.5.2 Magnetic resonance imaging 

In Paper I MRI was used to visualize uterine tumor in the cell line based orthotopic 

endometrial carcinoma mouse model (Ishikawaluc+). Images were obtained by a 7T 

horizontal-bore preclinical scanner (Pharmascan 70/16, Bruker Corporation, 

Germany), using a 40 mm mouse body quadrature volume resonator in a single-coil 

configuration. 3% sevoflurane was used for anesthesia during imaging. A T2-

weighted rapid acquisition with relaxation enhancement (RARE) sequence (Echo 

time/repetition time (TE/TR) = 36/4300 ms, 2 averages, matrix 256 x 256, field of 

view (FOV) 3.2 x 3.2, 1 mm slice thickness) was used for tumor identification and 

estimation of tumor size. T1-weighted RARE sequences (TE/TR = 9/1000 ms, 4 

averages, matrix 256 x 256, FOV 3.2 x 3.2 cm, 1 mm slice thickness) were employed 

to obtain images before and after i.v. injection of a gadolinium based contrast agent 

(Dotarem, Guerbet, USA)(0.1 mmol/kg). DWI (TE/TR = 24.6/3100 ms, 2 averages, 

matrix 128 x 128, FOV 3.2 x 3.2 cm, 1 mm slice thickness, and 3 diffusion directions 

with b-values of 100, 200, 400, 600, 800 and 1000 s/mm2) were used to generate 

ADC-maps. 
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3.5.3 PET/CT imaging 

Both cell line based- and PDX-models were monitored by PET/CT during disease 

progression and/or when developing signs of clinical disease. 18F-FLT (Paper I) or 

18F-FDG (Paper I and II) were used as tracers. Integrated PET/CT whole-body 

images were collected using a nanoScan PC PET/CT (Mediso Medical Imaging 

Systems Ltd, Budapest, Hungary), with spatial resolution 800 µm (PET) and 30 µm 

(CT). PET detectors consisted of LYSO crystals, and acquisition was performed in 

1:5 coincidence and normal count mode. With exception of the PDX treatment study 

in paper II where mice were fasted overnight before PET/CT imaging, scans were 

obtained without prior fasting. Two mice were imaged simultaneously using a dual 

mouse bed with integrated system for heating and anesthesia. Animals were 

anesthetized with 3% sevoflurane (SevoFlo vet.; Zoetis, Parsippany, NJ, USA) during 

imaging. 18F-FDG was injected i.v. when starting the PET-scan. Total acquisition 

time was 1 hour, and a static image was reconstructed from the last 30 minutes. 18F-

FLT was injected i.v. 30 minutes prior to scanning, and the duration of the scan was 

30 minutes. In both cases, helical whole-body CT scans (50 kVP tube energy, 300ms 

exposure time, 720 projections, binning 1:4) were acquired for anatomical orientation 

and attenuation correction of PET images. Reconstruction of PET images were 

performed using the Tera-Tomo 3D ordered subset expectation maximization 

algorithm, correcting for depth-of-interaction, radionuclide decay, randoms, crystal 

dead time, detector normalization and attenuation. Detector coincidence mode was 

1:3, 4 interations and 6 subsets, no filtering. CT images were reconstructed using 

RamLak filter. Automatic co-registration of PET- and CT images was performed, and 

voxel size for reconstructed images was 0.25x0.25x0.25 mm3 for CT and 0.4x0.4x0.4 

mm3 for PET. InterView Fusion software v. 2.02.055.2010 (Mediso Ldt., Budapest, 

Hungary) was used for further analyses of imaging data. SUV was calculated as: 

SUV = CPET(T)/(ID/BW), where CPET(T) equals the measured activity in tissue, ID 

the injected dose (kBq), and BW the body weight of the animal (kg) . A VOI with 

radius 1.5 mm was defined in the nuchal musculature, and SUVmean of this VOI used 

as reference tissue to identify presumed tumor tissue with SUV ratios of > 2 (18F-
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FLT, Paper I) and > 6 (18F-FDG, Paper I). In Paper II voxels with SUV values > 

2.5 were included in measurements of SUVmean and MTV. Semi-automatically VOIs 

were drawn for both primary uterine tumors and presumed metastases, and MTV and 

SUVmean calculated. TLG (18F-FDG scans) was estimated as TLG = FDG-SUVmean x 

MTV, and a similar parameter (FLT-SUVmean x MTV) based on the same equation 

was calculated for 18F-FLT –scans as a measure of total number of metabolically 

active tumor cells. 

 

 

Figure 5. In vivo small animal imaging. Optical imaging enables monitoring of 

tumor growth over time, here demonstrated by bioluminescent imaging of the same 

mouse over five consecutive weeks (A). PET/CT visualizes uterine tumors, in this 

case using 18F-FDG as tracer (B). Uterine tumor is also detectable by MRI, on both 

T2-weighted (C) and T1-weighted images before (D) and after (E) injection of 

contrast. Thin arrows point out the uterine tumor, while the thick arrow is directed at 

intrauterine fluid that has accumulated cranial to the tumor. Bladder (b), heart (h), 

kidney (k), uterine tumor (ut). Figure adapted from Haldorsen et.al (161). 
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3.6 Statistics 

Categorical variables were analysed using the Pearson χ2 test or Fisher’s exact test, 

while continuous variables were evaluated using the Mann-Whitney U test. The 

Kaplan-Meier method was used to generate disease-specific survival curves, and 

survival between groups was compared using the log-rank test (Mantel-Cox).  Date of 

primary surgery was used as entry date, and time of death due to endometrial 

carcinoma defined as endpoint. Patients who were alive on the last day of follow-up 

or died from other causes were censored. In in vivo mouse models, time of 

implantation was used as entry date, and time of sacrifice as endpoint. The prognostic 

impact of ASRGL1 on survival (corrected for other variables with known prognostic 

impact) was evaluated by the Cox proportional hazard regression model, and the 

ability of ASRGL1 to predict lymph node metastasis evaluated by binary logistic 

regression. Kappa value ( ) or intraclass correlation coefficient (ICC) was calculated 

to assess interrater reliability of immunohistochemical scoring in biomarker studies. 

ICC estimates were calculated by a single rater absolute agreement, two-way random 

effects model. Pearson correlation was used to evaluate the relationship between 

bioluminescent and fluorescent signal in vivo. One-way analysis of variance with 

Tukey post hoc testing was applied to compare tumor weights, NIRF-signal and 

MTV values between groups of mice treated with paclitaxel, trastuzumab or saline. 

Statistical analyses were performed using the software package SPSS (IBM, Armonk, 

NY, USA) version 24, and P-values < 0.05 were regarded statistically significant. 
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4. Summary of results 

Paper I: We successfully established orthotopic mouse models from both an 

endometrial carcinoma cell line (Ishikawaluc+) and cells from endometrial carcinoma 

biopsies. In the cell line model increasing bioluminescent signal was observed over 

time, along with gradual development from focal towards a more diffuse abdominal 

signal - indicating tumor growth and metastatic spread. MRI was performed in a 

mouse from the Ishikawaluc+ model, and uterine tumor was detected in both T1- and 

T2-weighted images. Tumor was observed to moderately enhance in T1-series after 

i.v. injection of contrast, and ADC-mapping revealed restricted diffusion within 

tumor tissue. PET/CT imaging of mice in the cell-line based model revealed 18F-

FDG/18F-FLT-avid tumor tissue in the uterus of 6 out of 7 mice. Increasing MTV and 

SUVmean x MTV was observed in both primary tumors and metastases. Although the 

calculated MTV and SUVmean x MTV values of the different tracers were not directly 

comparable, both 18F-FDG and 18F-FLT seemed equally able to identify tumor tissue 

and monitor disease progression. PET/CT and MRI findings in the Ishikawaluc+ 

mouse model were comparable to imaging characteristics of human endometrial 

carcinoma patients. 18F-FDG and 18F-FLT PET/CT also detected uterine tumors in 

mice orthotopically implanted with patient-derived tumor cells.  

 

Paper II: When exploring the presence of selected surface proteins (ALCAM, 

EpCAM, IGF1Rα and L1CAM) in endometrial carcinoma cell lines (AN3CA, 

Hec1B, Ishikawa and RL95-2) EpCAM was found to have the highest overall 

expression, and was particularly abundant in the Ishikawa cell line. Positive EpCAM 

protein expression was found in 98% of hysterectomy samples in a cohort of 153 

endometrial carcinoma patients, and the majority of these demonstrated strong 

positive staining (SI: 6-9). An anti-human anti-EpCAM antibody was conjugated to 

an AF680 fluorophore, and used to detect EpCAM expression both in vitro and in 

vivo. Both BLI and EpCAM-AF680 NIRF imaging enabled visualization of uterine 

tumors in orthotopic cell line-based models, however; EpCAM-AF680 NIRF imaging 



 69 

enabled earlier and more precise visualization of metastatic lesions compared to BLI.  

Signal origin was confirmed by ex vivo imaging of organs, using both BLI and 

EpCAM-AF680 NIRF imaging. EpCAM-AF680 NIRF imaging successfully detected 

uterine tumors in multiple endometrial carcinoma PDX models, including models 

with relatively low expression of EpCAM. We found EpCAM-680 NIRF to be 

superior to 18F-FDG PET/CT in monitoring of PDX tumors, providing better contrast 

and earlier detection of tumor in most cases. Mice orthotopically implanted with cells 

from a patient diagnosed with endometrioid grade 3 endometrial carcinoma were 

treated with vehicle control (n = 8), paclitaxel (n = 8) and trastuzumab (n =8).  

Animals were monitored in vivo using EpCAM-AF680 NIRF and 18F-FDG PET/CT 

imaging, without observing any effect of treatment based on mean NIRF-signal 

(F(2,21) = 1.07, p = 0.36) or MTV (F(2,14) = 0.76, p = 0.49). This was consistent 

with post mortem examinations where no significant differences in tumor weights 

were found between the three groups (F(2,21) = 0.07, p = 0.93). Presence of tumor 

cells in the uteri of mice was confirmed by histological examination.  

 

Paper III: We explored the expression of ASRGL1 in tissue samples from a large, 

prospectively collected patient cohort, and found that 1% of CAHs, 21% of primary 

endometrial tumors, and 77% of metastatic lesions have low levels of ASRGL1. 

Antibody validation was performed by staining 607 primary tumors for ASRGL1 

using two different antibodies, demonstrating significantly correlating staining 

indexes (P < 0.001) and similar prognostic value. Low expression of ASRGL1 was 

associated with characteristics of aggressive endometrial carcinoma, including high 

age, FIGO stage III-IV, high grade and non-endometrioid histology (P < 0.001 in all). 

A significant overlap between ASRGL1 mRNA and ASRGL1 protein was observed 

(P < 0.001), and low expression of both ASRGL1 mRNA and protein expression was 

associated with poor disease specific survival (P < 0.001). In multivariate analyses 

ASRGL1 had independent prognostic value, both in the total patient population 

(Hazard ratio (HR): 1.53, 95% confidence interval (CI): 1.04 – 2.26, P = 0.031) and 

in patients with endometrioid endometrial carcinoma (HR: 2.64, CI: 1.47 – 4.74, P = 

0.001). The highest proportion of metastatic lesions with low ASRGL1 expression 
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(90%) was found in patients with non-endometrioid endometrial carcinoma, 

compared to endometrioid endometrial carcinoma patients where only 63% of 

metastases had low levels of ASRGL1.  In cases with low ASRGL1 expression in 

primary tumor, ASRGL1 was most often lost in corresponding metastases. In most 

patients with multiple metastases, similar expression of ASRGL1 was found in all 

metastatic lesions from the same individual. ASRGL1 was also more frequently lost 

in metastases than the hormone receptor ERα. 

 

Paper IV: 20% (n = 227) of patients expressed low levels of ASRGL1 in 

preoperative samples. For 484 patients ASRGL1 status in hysterectomy specimen 

was known, and similar expression of ASRGL1 in curettage and corresponding 

hysterectomy sample was observed in 85% (n = 413) of cases (P < 0.001). Low 

expression of ASRGL1 was significantly associated with pre-operatively available 

parameters related to aggressive disease, such as high risk curettage histology (P < 

0.001), combined ERα/PR loss (P < 0.001) and large tumor volume on MRI (P = 

0.026). Significant associations between low ASRGL1 level and post-operatively 

assessed features related to aggressive endometrial carcinoma were also observed, 

including high FIGO stage, non-endometrioid histology, and high grade (P < 0.001 

for all). ASRGL1 was found to have independent prognostic value in a multivariate 

survival analysis adjusting for age, FIGO stage, histological type and grade (HR: 

1.63, CI: 1.11 – 2.37, P = 0.012). Within the subgroup of patients with low risk 

curettage histology low ASRGL1 expression had an independent impact on survival 

when adjusted for age and FIGO stage (HR: 2.54, CI: 1.44 – 4.47, P = 0.001). 

Patients with low expression of ASRGL1 had a higher frequency of metastatic lymph 

nodes compared to patients with high ASRGL1 expression (23% versus 10%, 

respectively, P < 0.001), and low ASRGL1 level independently predicted lymph node 

metastasis with an adjusted odds ratio (OR) of 2.07 (CI: 1.27 – 3.38, P = 0.003).  
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5. Discussion 
 

5.1 Preclinical models of endometrial carcinoma 

5.1.1 In vitro models 
 

Preclinical models based on commercially available cell lines have been a 

cornerstone in cancer research for decades, and have contributed to achieving 

valuable insights in cancer biology (115, 162, 163). A variety of laboratory methods 

are available to study different properties of cells in vitro, and cell line studies are 

useful in generation and initial testing of hypotheses. Cell line models are low cost 

compared to animal models, and results can be retrieved quickly. Although there are 

many applications where cell line studies can be useful, these models generally fail to 

reproduce the complex physiological environment of human tumors. Cell lines are 

typically cultured as monolayers on plastic surfaces, thus preventing the formation of 

three-dimensional structures. Growth mediums often contain a variety of 

supplements, and may not be representative of the physiological microenvironment in 

vivo. Overall, these artificial conditions may affect the genetic, morphologic and 

physiologic properties of the cells (162, 163). Another weakness of cell cultures is 

that they lack a normal microenvironment and are devoid of stromal cells, immune 

cells and blood vessels. Additionally, cell lines derived from normal endometrial 

tissue are seldom available as controls. Combined, these factors contribute to 

reducing the clinical relevance of cell culture models (115). 

 

One approach to improve the clinical validity of in vitro models is to establish short-

term cultures of primary tumor cells derived from patient biopsies. Primary cell 

cultures are suggested to retain genetic and molecular traits of the primary tumor, and 

thus be more representative cancer models compared to conventional cell lines. 

However, culturing of primary patient cells is challenging as these often fail to thrive 
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in vitro. Certain tumors may be more difficult to culture than others, and thus the 

distribution of subtypes available as in vitro models may not be representative of the 

prevalence of subtypes in the human population. Intratumoral heterogeneity poses 

another challenge, as the part of the tumor used for generation of primary cell culture 

may not reflect the characteristics of the entire tumor. Additionally, selection of 

clones that are more prone to adhere and grow under non-physiological conditions 

may lead to reduced cellular heterogeneity in the culture compared to the original 

sample (113). In paper IV we established short-time cultures of primary tumor cells 

to achieve sufficient cell numbers for simultaneous implantation of multiple mice. 

This represents a potential limitation of our study as in vitro propagation of cells, 

although only for a few passages, may result in phenotypic alterations. However, for 

endometrial carcinoma it has been reported that patient derived short-time cultures 

and xenografts maintain the same genomic traits as the corresponding human primary 

tumor (113). Short-time culturing of cells prior to xenografting may thus be 

justifiable, however; more research is needed to elucidate the strengths and 

weaknesses of models that have been generated using this approach. 

 

Recently, generation of organoid cultures has been presented as a novel approach to 

improve in vitro models of human cancer. Organoids are self-organizing 3D cultures 

containing both stem cells and differentiated cells that mimic the tissue of origin, and 

can be generated from patient biopsies. Human organoid cultures have been 

established from both endometrial carcinoma tissue and normal adjacent 

endometrium, and demonstrated to reproduce the molecular and histological 

phenotype of the donor tissue (164-166). Organoid cultures can be used as high-

throughput systems for developing and studying new therapies, and findings may be 

validated in a systemic setting in vivo by using organoid-derived mouse models. 

Altogether, organoids and organoid-based animal models may serve as valuable 

platforms for preclinical research (166, 167).   
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5.1.2 Orthotopic mouse models 

One of the major challenges in cancer research is that the results from preclinical 

animal studies are difficult to reproduce in human patients (86, 96), and it is reported 

that less than 8% of new drugs that were efficient in animal models make it through 

clinical trials (168). The low translational success rate is often attributed to cancer 

models that poorly simulate the human disease setting, and possible reasons include 

differences in physiology between species and failure to recapitulate the complexity 

of the cancer (168).  Development of clinically relevant mouse models is thus of the 

highest importance in order to improve the congruence between preclinical 

experiments and clinical studies. 

 

Methodological considerations – establishment of in vivo models 

In paper I and II we successfully established orthotopic mouse models from both 

endometrial carcinoma cell lines and patient primary tumors. Generation of uterine 

xenografts was performed by transmyometrial injection of cancer cells. Transvaginal 

injection of tumor cells is also possible; however, the transmyometrial approach is 

reported to have higher engraftment rates (97). Several previously reported orthotopic 

endometrial carcinoma models have been generated by implanting tumor tissue on the 

posterior surface of the uterus (105, 106, 109). Although this intraabdominal 

approach may provide a more appropriate microenvironment compared to 

subcutaneous tumors, it may not fully recapitulate the conditions of the endometrium 

in uteri. The implantation of cancer cells directly into the uterine lumen may 

contribute to a more clinically relevant disease progression, as tumor is established in 

the endometrium before progression towards myometrial infiltration, peritoneal 

dissemination, and lymphatic and hematogenous spread (97).  

In paper I and II we used NSG mice for orthotopical implantation of human tumor 

cells in order to facilitate engraftment. In addition to the severe combined 

immunodeficiency-mutation, NSG mice inhabits an interleukin 2 receptor gamma 

chain deficiency, lack functional T-cells, B-cells and natural killer cells and have 



 74 

deficient cytokine signaling (114). NSG mice are reported to have high take rates 

(towards 95-100%), and are thus highly suitable as xenograft models (169).  

However, the lack of a functional immune system unavoidably offers a tumor 

environment that differs from the human setting, and may affect cancer growth. The 

possibility to study interactions between tumor and the microenvironment is also 

limited (86, 93, 98, 102). A potential solution to these problems is development of 

personalized immune animal models, where bone marrow aspirates from a human 

patient can be injected into the mouse prior to tumor xenografting (86, 98, 170). Still, 

even though immunocompetent models would be highly valuable in preclinical 

research, establishment of such models is technically demanding and requires 

collection of several invasive biopsies from patients (170). 

 

Patient derived xenograft model 

Several PDX-models were successfully established during this PhD-project, 

representing tumors of low- and high grade endometrioid as well as non-

endometrioid histologies. The ability to generate mouse models from different types 

of primary endometrial tumors is highly beneficial, as using multiple xenograft 

models in testing of hypotheses and evaluation of drug response (similarly to clinical 

trials) may improve the translational relevance of future preclinical studies (171).   

 

One major threat to the clinical validity of PDX models is intratumor heterogeneity. 

Xenografts are established from limited amounts of tissue in tumor biopsies, and the 

heterogeneity of the primary tumor may thus not be fully comprehended in the PDX 

model. Still, comparative studies of human endometrial tumors and their 

corresponding xenografts found high degree of genomic and phenotypic preservation 

(113). Both implantation of tissue pieces (97, 111, 113, 172, 173) and cell suspension 

(paper I and II) have been demonstrated to enable endometrial carcinoma 

engraftment. Most reported endometrial carcinoma models have been established 

from tissue pieces. This approach is beneficial, as the tissue architecture of the 
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primary tumor is retained. The weakness of this method is that only small pieces of 

tumor can be implanted, potentially making the xenograft representative only to 

minor parts of the primary tumor. Although losing the three-dimensional structure, 

the advantage of using single cell suspension is that tumor can be dissociated to 

generate a heterogeneous sample that may represent a larger proportion of the 

patient’s tumor (171). However, processing of tumor biopsies may reduce the amount 

of viable tumor cells and reduce engraftment rates. Another challenge for PDX 

models is that human stroma is demonstrated to be replaced by murine stromal cells 

after xenografting. This could potentially limit the clinical value of these models - 

especially in studies of tumor/microenvironment interactions and therapies directed 

towards the stromal compartment (86, 111).  In order to address this issue co-

implantation of patient-matched stromal cells such as mesenchymal stem cells or 

cancer associated fibroblasts has been suggested (170). 

 

Although most reported PDX models of endometrial carcinoma have been generated 

by subcutaneous implantation of tumor cells or tissue, orthotopic models have also 

been described (97, 113). In paper I and II we established orthotopic xenografts 

from several endometrial carcinoma patients. When comparing our cell line based 

and patient-derived mouse models, a number of features suggest that the PDX-models 

are superior in resembling clinical endometrial carcinoma. Firstly, several of the mice 

in our PDX models have displayed vaginal bleeding towards the later stage of disease 

development. So far we have not observed the same in any of our cell line based 

models. This similarity in clinical manifestation is interesting, as vaginal bleeding is 

the most common presenting symptom of endometrial carcinoma in human patients 

(10). Secondly, while our cell line models usually develop high degree of 

intraperitoneal tumor dissemination and distant metastases, PDX tumors are more 

often confined within the uterus. The latter is more comparable to human endometrial 

carcinoma, where the majority of patients are diagnosed with low stage disease (174).  

One important goal in preclinical research is to establish relevant models for studies 

of therapeutic effect. Treatment studies conducted in PDX models are reported to 
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have highly similar drug response compared to human clinical trials (171). This is 

especially observed in one-to-one studies where the treatment responses of PDX 

models are compared to the response in the corresponding human donor tumor (86). 

Several in vivo drug treatment studies have been conducted in subcutaneous 

endometrial carcinoma PDX models. Sensitivity to the dual pan-PI3K/mTOR 

inhibitor NVP-BEZ235 and the MEK-inhibitor AZD6244 was observed in mice with 

confirmed KRAS, PTEN and PIK3CA mutations in tumor (111), while another study 

demonstrated that the antibody-drug conjugate IMGN853 had antitumor effects in a 

PDX model of serous endometrial carcinoma (173). However, subcutaneous tumors 

may display diverging response to therapy compared to primary uterine tumors due to 

differences in growth pattern and environmental factors, and orthotopic models may 

thus be more favorable for evaluation of treatment. In paper II we demonstrated an 

orthotopic PDX model that can be used for therapeutic studies. To evaluate the 

feasibility of the model, mice were treated with paclitaxel or trastuzumab. Paclitaxel 

is a cytostatic drug that stimulates microtubule polymerization and mitotic arrest 

(175) and was chosen as it is commonly applied as first-line adjuvant chemotherapy 

in treatment of endometrial carcinoma patients (14). Trastuzumab is a HER2-

targeting antibody which has been suggested as a candidate drug to treat endometrial 

carcinoma patients with HER2-positive tumors. The clinical value of this treatment 

has so far been hampered by poorly understood mechanisms of acquired resistance 

(64). However, combinational therapy where trastuzumab is added to the standard 

paclitaxel/carboplatin regimen has been suggested to improve outcome (176). In the 

current study, trastuzumab was selected based on positive HER2 immunostaining in 

the primary human tumor. Neither paclitaxel nor trastuzumab treatment demonstrated 

statistically significant inhibitory effects on tumor growth. Still, this PDX model may 

have potential value in studies of drug resistance mechanisms as well as in studies of 

other candidate drugs.  
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5.1.3 Small animal imaging  

The use of small animal imaging in cancer research has increased enormously over 

the last years, as development of non-invasive longitudinal imaging techniques has 

allowed for in vivo studies of tumor growth, metastatic spread, and evaluation of 

therapeutic response. Molecular imaging methods reflect specific tumor properties, 

including glucose metabolism (18FDG-PET), cell division (18FLT-PET) and EpCAM 

expression (EpCAM-AF680 NIRF). Evaluation of tumors using several modalities 

may thus provide valuable information on tumor biology beyond anatomical 

localization and evaluation of size (114, 116, 117). Molecular imaging is particularly 

interesting as changes in tumor metabolism may be detectable before changes in 

tumor size, which may be important for early therapeutic evaluation. 

 

Optical imaging is a commonly applied technique for preclinical imaging, and BLI is 

reported to be an efficient imaging method to detect tumor growth and metastatic 

dissemination in several cancer models (97, 113, 120, 154). In paper I and II BLI 

was applied to visualize tumor development in cell line based orthotopic endometrial 

carcinoma models. Although being highly specific and with a high signal-to-

background ratio, BLI is only applicable in models where luc+ genes have been 

introduced. This usually limits the area of use to animal models generated from 

conventional cell lines. Additionally, the process of introducing the reporter gene 

must be repeated each time new models are established. BLI has been used to follow 

tumor growth in an orthotopic PDX model generated from luciferase-transfected 

short-time cultured endometrial carcinoma cells (113). However, transfection of 

primary patient cells may potentially disturb the tumor genome and result in an 

altered cell phenotype. In order to avoid this risk we have explored reporter gene-

independent imaging alternatives to visualize tumor growth in our PDX models. In 

paper II we identified EpCAM as a candidate target protein for NIRF imaging in 

orthotopic endometrial carcinoma xenografts. EpCAM is an adhesion molecule 

located on the basolateral membrane of epithelial cells, and is reported to be highly 

expressed in several epithelial cancers (177). As EpCAM-AF680 NIRF imaging is an 
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antibody-based application, the method is easily applicable for in vivo imaging in 

multiple endometrial carcinoma models. We evaluated the performance of BLI and 

EpCAM-AF680 NIRF imaging in orthotopic cell line-based models (paper II). 

Although BLI and EpCAM-AF680 NIRF produced similar visualization of primary 

tumors in models derived from Ishikawaluc+ or Hec1Bluc+ cells, EpCAM-AF680 NIRF 

imaging enabled earlier and better delineation of distant metastases, suggesting that 

EpCAM-AF680 is highly feasible for evaluation of metastatic disease. However, it is 

worth noting that the imaging system we are using is optimized for fluorescent 

imaging, and different results may have been achieved if an imaging system more 

optimized for BLI had been applied. EpCAM-AF680 was also found to provide 

excellent visualization of uterine tumors in multiple PDX models representing 

different histologic types of endometrial carcinoma, and was found to be superior to 

18F-FDG PET/CT. Even uterine tumors in PDX models with low expression of 

EpCAM (PDX 4) were detected by EpCAM-AF680 NIRF imaging, thus highlighting 

the feasibility of this imaging modality for preclinical applications. 

 

Optical imaging is highly valuable in studies of orthotopic xenograft models. There 

are however some challenges, and we have addressed these to limit their impact 

where possible. In paper I and II we found BLI and EpCAM-AF680 NIRF imaging 

to be feasible for detection of both primary tumor and metastatic lesions. However, as 

these methods only provide two-dimensional images we were not able to accurately 

decide which organ the signal originated from in vivo. Also, distinguishing tumor 

lesions within the parenchyma from lesions in the peripheral margins of an organ was 

not possible. We thus performed ex vivo imaging and histologic evaluation of organs 

to confirm the anatomical origin of the signal. Limited penetration of signal 

combined with signal scattering and absorbance in tissue represents another 

challenge. As photons in the near-infrared spectrum have better tissue penetration 

compared to photons with wavelengths of below 500 or above 1100 nm (140), we 

chose to use AF680 to achieve high image quality. NIRF imaging of uterine tumors 

may be hampered by high background signal due to autofluorescence in the 

gastrointestinal tract and accumulation of fluorophore in urine. For the experiments in 



 79 

paper II we attempted to minimize these problems by emptying the bladder prior to 

imaging and feeding the animals a chlorophyll-free diet.  

 

PET/CT and MRI have been demonstrated to detect tumors and visualize treatment 

response in several xenograft models, including breast cancer (178), colorectal cancer 

(179) and Ewing sarcoma (180). Although the basic principles behind these 

techniques are the same for humans and animals, specialized machines for small 

animal imaging have been developed due to body size and technical requirements for 

optimal resolution (116, 117).  In paper I we demonstrated that PET/CT using 18F-

FDG and 18F-FLT as tracers can be used to visualize orthotopic endometrial 

carcinoma xenografts. These tracers were chosen as they represent different 

metabolic processes characteristic of cancer cells (increased glucose metabolism and 

proliferation, respectively). Additionally, 18F-FDG is used for preoperative imaging 

of endometrial carcinoma patients in several hospitals, and findings in preclinical 

models may thus have potential translational value.  In paper II 18F-FDG PET/CT 

imaging was performed in PDX-models originating from multiple patients with 

different histologic backgrounds, and also applied to evaluate paclitaxel and 

trastuzumab treatment in an orthotopic endometrial carcinoma PDX model. One 

major benefit with PET/CT imaging is that the data from the functional PET scan is 

merged with the anatomical information from the CT scan. This enables three-

dimensional evaluation of tumor lesions and the localization of the tumor can be 

more precisely pinpointed to a specific organ. However, 18F-FDG has a high 

background uptake in organs such as brain and kidneys, as well as increased uptake 

in inflammatory tissue, which can make oncological assessments difficult (129). 

Signal from small uterine tumors can also be camouflaged by physiological 

accumulation of tracer in nearby organs such as urinary bladder and intestine. This 

may partially explain why 18F-FDG PET/CT imaging failed to identify several of the 

small tumors in our PDX-models. Fasting animals and emptying the bladder prior to 

scanning may reduce unspecific signal, and improve the delineation of tumor against 

normal tissue. This was done prior to imaging of mice in the paclitaxel/trastuzumab 

treatment study (paper II), resulting in markedly reduced background signal 
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compared to previous experiments. MRI is also often applied in preoperative 

examinations of patients with endometrial carcinoma. In vivo MRI imaging of a 

mouse orthotopically implanted with an endometrial carcinoma cell line demonstrated 

that the uterine tumors in the xenograft model had hyperintense appearance on T2-

weighted images and restricted diffusion on ADC-maps; highly resembling the 

findings from MRI imaging in endometrial carcinoma patients (paper I). Although 

being a promising modality for imaging of endometrial PDX models, the value of 

MRI in preclinical studies remains to be confirmed through future in vivo 

experiments.  

 

5.2 Asparaginase-like protein 1 

5.2.1 Methodological considerations – biomarker studies 

Correct identification of high-risk patients and stratification of patients to appropriate 

treatment regimens is vital to improve the outcome of endometrial carcinoma. 

Biomarkers are central in these processes, and new, robust markers are needed. 

Before clinical implementation, new biomarkers should be validated in independent 

patient cohorts and their clinical utility should be assessed. Validation studies should 

include enough patients to provide sufficient statistical power, and should be 

conducted in patient groups which are representative for the whole population where 

the biomarker is intended to be used. Our patient series (HUS and MoMaTEC 

cohorts) contain a large number of patients that have been included prospectively 

over a long period of time. The comprehensive database of clinical- and follow up 

information combined with a biobank containing numerous biological samples serves 

as an excellent research platform, both to identify potential new biomarkers and to 

validate findings from other biomarker studies.  

 

In paper III and IV ASRGL1 protein expression was evaluated by IHC staining of 

TMAs. This is a high-throughput method where a large number of samples can be 

evaluated simultaneously. There are several advantages with using TMAs in research 
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settings, including reduced use of tissue, shorter analysis time and lower reagent costs 

(181). The ability to stain all samples simultaneously reduces the risk of batch effects 

and limits variations in staining technique. Selection of tissue for TMA preparation is 

performed by identifying the most representative areas with highest tumor cell 

content in FFPE sections, and may not fully comprehend the characteristics of the 

entire tumor. However, to compensate for the limited amount of tissue collected in a 

TMA core, three cores are selected from each biopsy. This makes it more likely that 

the TMA is representative of a larger part of the tumor. The TMA method has been 

validated in several studies, demonstrating high concordance between TMAs and 

corresponding full tissue sections (182-184). Still, new biomarkers identified by 

TMAs, including ASRGL1, should be validated in full sections prior to clinical 

implementation.  

 

IHC is a valuable tool for detecting molecular and functional properties in tissues, 

and may aid in stratification of tumors with an otherwise similar histology. 

Challenges when studying biomarkers include that scoring systems and cut-offs 

seldom are standardized and that separate institutions may use different protocols. 

Thorough studies must thus be performed to identify and validate the optimal staining 

conditions before new biomarkers are introduced in a clinical setting.  We have used 

a semi-quantitative scoring method to evaluate ASRGL1 protein expression (paper 

III and IV), where both the intensity and area of tumor with positive staining is 

assessed. This SI system is a well-established method in our laboratory (148), and has 

been applied for several antibodies in various tumor types (185-187). ASRGL1 

protein expression in tumor cells was scored without considering subcellular 

localization, as separate evaluation of nuclear and cytoplasmic staining has been 

reported not to be of additional value (146). Although making it more difficult to 

compare results between studies, using different scoring methods and cut-offs for 

validation could potentially also be beneficial in biomarker studies. In paper III and 

IV we have used SI: 0-1 as cut-off for low ASRGL1 expression, while others have 

defined low ASRGL1 as < 75% cells with positive staining without regarding 

intensity (146, 147). Irrespective of the different cut-offs and scoring systems we 
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were able to validate the prognostic impact of ASRGL1, supporting that ASRGL1 is 

a robust biomarker in endometrial carcinoma.  

 

Assessing the reliability of the scoring method is also important in biomarker studies 

as good reliability is important for clinical use to ensure uniform diagnosis of 

patients. Interrater reproducibility describes the variation between two or more 

observers rating the same objects, and can be evaluated in several ways (i.e. ICC). In 

paper III, an ICC of 0.95 was calculated for ASRGL1 score (CI: 0.93 – 0.96), 

indicating excellent interrater reliability (188).  

 

 

5.2.2 ASRGL1 as a preoperative prognostic biomarker 

Pre-operative evaluation of curettage histology is important for risk stratification and 

surgical planning in endometrial carcinoma. Still, the histological assessment of pre- 

and post-surgical samples is reported to be discordant in 10 – 32% of cases (16-19, 

22). Clinical implementation of molecular biomarkers may contribute to 

identification of patients with high risk disease before surgery (189, 190).  Several 

candidates including ERα, PR, p53, Ki-67, and L1CAM have so far been explored 

(78, 82, 190, 191). With a few exceptions, these markers are yet not clinically 

applied. However, an ongoing study (MoMaTEC2, NCT02543710) is evaluating the 

performance of preoperative hormone receptor status (ERα/PR) in selecting 

endometrial carcinoma patients for lymphadenectomy. As ASRGL1 was validated to 

be a strong post-operative prognostic marker (paper III) we wanted to explore if 

ASRGL1 also could serve as a potential biomarker in pre-operative samples. 

Previously, low ASRGL1 expression combined with PR loss in preoperative samples 

has been reported to be a strong predictor of FIGO stage III-IV disease in 

endometrioid endometrial carcinoma (147). This is in accordance with our study 

(paper IV) where low expression of ASRGL1 was significantly associated with 

characteristics of aggressive disease, including high FIGO stage. We also found that 

low expression of ASRGL1 in pre-operative specimens had independent prognostic 
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value, both in the whole patient population and in patients with presumed low risk 

curettage histology. Altogether, this indicates that ASRGL1 status in curettage may 

be a valuable marker to improve pre-operative risk stratification in endometrial 

carcinoma. However, as we are the first to report ASRGL1 as an independent 

biomarker in preoperative samples, these findings remain to be validated. 

 

5.2.3 Preoperative biomarkers vs sentinel lymph node dissection  

In paper IV we found that patients with low ASRGL1 expression in preoperative 

samples were more likely to have metastatic lymph nodes at time of surgery 

compared to patients with high ASRGL1 expression. This was observed both in the 

whole patient population and in patients with assumed preoperative low risk 

histology. Low ASRGL1 also independently predicted lymph node metastasis when 

adjusting for curettage histology risk, suggesting that evaluation of ASRGL1 in 

preoperative samples may add valuable clinical information.  However, the clinical 

utility of preoperative markers to guide the decision on whether or not to perform 

lymphadenectomy has been debated, and sentinel lymph node removal has been 

suggested as a better alternative. Although sentinel lymph node dissection is 

associated with less post-operative complications than full lymphadenectomy (33-

35), it would still lead to prolonged operating time and increased risk of 

complications compared to no lymph node sampling. As most patients do not have 

metastatic lymph nodes it could be debated that sentinel lymph node removal is an 

unnecessary procedure in many cases and that molecular markers could be used to 

identify patients that may benefit from sentinel lymph node exploration. By only 

performing sentinel lymph node mapping in selected patients, one could potentially 

reduce both time and costs associated with surgical treatment of endometrial 

carcinoma. At the present time, a large proportion of patients with presumed low risk 

endometrial carcinoma are treated at hospitals without the equipment that is needed 

for sentinel lymph node mapping. In such settings, preoperative biomarkers could be 

used to identify patients that may benefit from undergoing more advanced surgical 

staging and referral to secondary/tertiary hospitals.   
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5.2.4 ASRGL1 as a post-operative prognostic marker 

In paper III we found that low expression of ASRGL1 protein in hysterectomy 

specimens has independent prognostic value in endometrial carcinoma patients, thus 

validating the findings from a retrospective study where loss of ASRGL1 protein 

expression was reported to independently predict poor disease specific survival in 

endometrioid endometrial carcinoma (146). Another study evaluated a set of IHC 

markers (ASRGL1, ER, HER2, Ki-67, L1CAM, MLH1, PR, p53), and identified low 

ASRGL1 and abnormal p53 expression as the best combination within this panel to 

predict disease-free and disease-specific survival (147).  We are however the first to 

demonstrate that ASRGL1 has independent prognostic value in the whole patient 

population (paper III), not only in patients with endometrioid endometrial 

carcinoma. As there are currently no IHC biomarkers in clinical use to recommend 

adjuvant chemotherapy in endometrial carcinoma patients (192-194) and risk 

stratification is based on traditional parameters such as FIGO stage and histological 

grade (30), assessment of ASRGL1 status in hysterectomy samples could potentially 

provide clinically relevant information. Patients with grade 1-2 endometrioid 

endometrial carcinoma are considered to have low risk disease and will usually not 

receive adjuvant treatment. Some of these patients will however experience disease 

relapse. In paper III, we found that 8% of patients with grade 1-2 endometrioid 

endometrial carcinoma express low levels of ASRGL1. It would be interesting to 

explore if these patients could benefit from more extensive treatment. Conversely, 

adjuvant chemotherapy often results in damaging side-effects and reduced quality of 

life - especially in elderly and co-morbid patients. Biomarkers identifying patients 

who do not benefit from additional treatment may both improve these patients quality 

of life and reduce overall medical costs. We observed that high expression of 

ASRGL1 was associated with a favourable prognosis, and one could speculate that 

ASRGL1 may identify patients that could be spared from adjuvant chemotherapy. 

Still, the clinical utility of ASRGL1 as a prognostic biomarker remains to be 

established.  
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Evaluation of mRNA expression may be an alternative approach for assessment of 

prognosis in gene-based studies. Previously, reduced ASRGL1 gene expression has 

been reported as part of a 29 gene signature identifying a cluster of endometrial 

carcinomas with aggressive disease and poor recurrence-free survival (195, 196). 

ASRGL1 has also been identified as one of the 145 most differentially expressed 

genes between endometrioid and non-endometrioid endometrial carcinoma (197). In 

that study, ASRGL1 expression was downregulated in non-endometrioid compared to 

endometrioid cases, reflecting that low ASRGL1 is related to aggressive disease. 

Additionally, gene expression data from the TCGA study has demonstrated that 

patients with low ASRGL1 mRNA levels in their tumors have significantly worse 

overall survival compared to patients with high ASRGL1 expression levels (198). This 

supports our findings in paper III where low ASRGL1 mRNA expression is 

significantly associated with poor disease specific survival. We also find that 

ASRGL1 mRNA is significantly correlated with ASRGL1 protein expression, 

suggesting that both gene- and protein expression is lost as tumors dedifferentiate.   

 

5.2.5 ASRGL1 expression in metastatic lesions 

Metastatic disease is estimated to be the cause of up to 90% of cancer related deaths 

(199), and more research focusing on metastasizing tumors is needed. In paper III 

we observed that most patients with low ASRGL1 expression in their primary tumors 

also had low ASRGL1 expressing metastases. Heterogeneous expression of proteins 

is often observed between different metastatic lesions within the same individual, as 

reported for hormone receptors (200). Interestingly, when evaluating available 

metastatic lesions and corresponding primary tumors we found that most patients 

with multiple metastases had similar ASRGL1 expression in all lesions. We are the 

first to describe ASRGL1 expression in metastatic endometrial carcinoma. Our study 

includes sampled metastatic lesions with available corresponding primary tumors. 

The ability to evaluate ASRGL1 staining in paired primary tumors and metastases is 

a major advantage, as it may add relevant information on biomarker expression 
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during disease progression. Although based on metastases available for sampling, 

which may not be fully representative to all metastatic lesions, our findings are 

interesting and could be explored in future studies to evaluate the clinical importance 

of ASRGL1 expression in a metastatic setting.  

 

5.2.6 What is the functional role of ASRGL1 in endometrial 
cancer? 

ASRGL1 was first described as a protein that shares 77% of its genetic sequence with 

a rat sperm autoantigen (201), and it is classified as an enzyme in the N-terminal 

nucleophile hydrolase family (202). ASRGL1 is demonstrated to have both ʟ-

asparaginase and -aspartyl peptidase activity in vitro (202), but the knowledge 

concerning the functional role of ASRGL1 in normal and cancerous tissue is limited. 

Considering the above mentioned mechanisms one could speculate that loss of 

ASRGL1 function could promote cancer by leading to elevated cellular asparagine 

levels (which is reported to suppress apoptosis (203)) as well as accumulation of 

dysfunctional proteins due to reduced degradation of isoaspartyl peptides by -

aspartyl peptidases (202, 204).   

 

In some types of cancer, including breast, ovarian and cervical cancer, high levels of 

ASRGL1 in tumor compared to normal tissue are suggested to associate with poor 

prognosis and increased cell growth in vitro  (205-207). This is inconsistent with our 

findings, where low ASRGL1 protein expression is associated with aggressive 

disease and poor survival. The reason for these contrasting results is not known. 

However, we have evaluated ASRGL1 staining in precursor lesions and tumor tissue, 

and the expression of ASRGL1 in adjacent normal tissue in our patient cohort has not 

been assessed. Additionally, as the biological function of ASRGL1 in endometrial 

carcinoma has not been explored, it is likely that the observed differences in 

ASRGL1 expression between these cancers is caused by involvement of different 

molecular processes.  
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ASRGL1 is reported to display ʟ-asparaginase activity (202). ʟ-asparaginase has been 

used in the treatment of acute lymphoblastic leukemia (ALL) and Non-Hodgkin 

lymphoma for several decades. This has resulted in increased remission rates and 

survival - especially in children with ALL (208). The therapeutic potential of ʟ-

asparaginase is being explored in several solid tumors, including ovarian cancer and 

pancreatic adenocarcinoma (209-212). The rationale for treating endometrial 

carcinoma patients with ʟ-asparaginase might not be the same as for ALL, as ALL 

tumor cells are unable to synthesize asparagine and thus depend on the extracellular 

supply of asparagine (208). Still, it is tempting to speculate in a potential treatment 

effect also for endometrial carcinoma patients. By administering ʟ-asparaginase to 

patients with low ASRGL1 expression one may hypothesize that asparagine levels 

are reduced, thus minimizing its anti-apoptotic effects. ʟ-Asparaginase treatment in 

endometrial carcinoma should be further explored through both in vivo and in vitro 

preclinical studies.  
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6. Conclusions 
 

Overall, this PhD project has focused on molecular biomarkers and orthotopic mouse 

models of endometrial carcinoma. We have developed orthotopical mouse models 

and advanced imaging protocols that enables in vivo studies of tumor biology, 

biomarkers and therapeutic strategies. We have also studied the promising prognostic 

biomarker ASRGL1 in both pre-and postoperative samples. 

 

 

Paper I: Orthotopic endometrial carcinoma mouse models are successfully 

established, both from a luciferase positive cell line and from patient-derived primary 

tumor cells. The small animal imaging modalities BLI, MRI, 18F-FDG PET/CT, and 

18F-FLT PET/CT all enable detection and monitoring of tumor progression in the cell 

line based mouse model. Additionally, PET/CT imaging (using both tracers) is well 

suitable for visualization of uterine tumor in PDX-models.  

 

 

Paper II: EpCAM is highly expressed in endometrial carcinoma cell lines and 

primary tumor tissue. EpCAM-AF680 NIRF imaging enables earlier detection of 

metastatic lesions compared to BLI in cell line based models of endometrial 

carcinoma, and is superior to 18F-FDG PET/CT in visualization of uterine PDX 

tumors. EpCAM-AF680 NIRF also enables in vivo evaluation of therapeutic response 

in orthotopic endometrial carcinoma PDX models.  

 

 

Paper III: ASRGL1 validates as a strong post-operative prognostic biomarker in 

endometrial carcinoma. Loss of ASRGL1 in hysterectomy samples is associated with 

aggressive disease and has independent prognostic value both in the whole patient 

population and in the endometrioid subgroup. ASRGL1 expression in endometrial 
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carcinoma metastases is also investigated for the first time, and is found to be low in 

the majority of metastatic lesions.  

 

 

Paper IV: Low ASRGL1 expression in curettage is a promising pre-operative 

biomarker for aggressive endometrial carcinoma, and has independent prognostic 

value both in the whole population and in the subgroup of patients with assumed low 

risk curettage histology. Low expression of ASRGL1 in pre-operative samples 

independently predicts lymph node metastasis, and may potentially be used to 

recommend full surgical staging. 
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7. Future aspects 

Further improving endometrial carcinoma mouse models 

In paper I and II we successfully developed orthotopic PDX models of endometrial 

carcinoma; however, further refinement may improve the feasibility of these models 

for use in preclinical studies. A strategy using organoid cultures for xenografting is 

suggested to improve the efficiency of PDX engraftment whilst simultaneously 

reducing the time of expansion (213), and would facilitate experimental evaluation of 

both biomarkers and targeted therapies in a highly clinically relevant systemic setting. 

Future work with endometrial carcinoma PDX models should also include thorough 

characterization of morphological, histological and genomic features to determine the 

degree of genetic and phenotypic drift from the human donor tumor throughout the 

following passages in mice. 

 

The orthotopic PDX 4 model (Grade 3 endometrioid endometrial carcinoma, paper 

II) should be utilized in future studies of treatment response and drug resistance, 

preferably to explore biomarker-guided targeted therapies that may be clinically 

relevant for tumors with similar characteristics as this model. It would also be 

interesting to perform gene expression analyses of samples that were collected in the 

treatment study in paper II in order to elucidate potential mechanisms associated 

with paclitaxel and trastuzumab resistance. To improve the translational value of 

preclinical studies, validation of findings (both in the current and future experiments) 

should be performed in several different PDX models. However, establishment of 

such models is difficult, time-consuming and expensive. Collaboration with other 

institutions to assemble larger cohorts of PDX-models may provide a more robust 

platform for preclinical studies of biomarkers and therapies (171), and should be 

pursued in the future.  
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The future of preclinical imaging  

The infrastructure of preclinical small animal imaging is well developed in Bergen, 

thus allowing us to explore multimodal imaging approaches. However, this is not the 

case in many other centres. For research facilities that have to rely on only one 

imaging modality, optical imaging is an excellent alternative. In paper I and II we 

explored several small imaging modalities. However, much research is needed to 

determine which method (or combination of methods) is most optimal for imaging in 

the different endometrial carcinoma models. MRI is often applied as part of the pre-

operative diagnosis in endometrial carcinoma, and it would be interesting to evaluate 

the performance of MRI in imaging of orthotopic endometrial carcinoma PDX 

models - including monitoring of treatment. MRI has excellent soft tissue contrast, 

and in the future PET/MRI may be a better option for anatomical and functional 

visualization of endometrial carcinoma models than PET/CT. Ultrasound is another 

clinically relevant modality that is highly feasible for imaging of soft tissues (121), 

and the ability of ultrasound to detect and monitor development of uterine tumor 

should be explored in our in vivo mouse models.  

 

In paper II we developed a protocol for EpCAM-AF680 NIRF imaging of orthotopic 

endometrial carcinoma in preclinical mouse models. NIRF imaging is feasible also in 

clinical settings, such as for intraoperative mapping of sentinel lymph nodes. NIRF 

probes specifically targeting tumor cells could help visualize tumor infiltrates and 

metastatic lesions in real-time during surgery, potentially improving tumor resection 

and/or reducing the amount of healthy tissue that is removed (214). NIRF imaging 

targeting EpCAM has been demonstrated to detect orthotopic tumors in cell-line 

based models of head and neck, breast and colorectal cancer, and EpCAM has been 

suggested as a multi-tumor target for image-guided surgery (215). As endometrial 

carcinoma primarily is a surgically treated disease, it would be interesting to explore 

if EpCAM-AF680 could be used for image-guided surgery also in this large patient 

group. This could initially be tested through preclinical mouse models. Future studies 
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should also include IHC evaluation of EpCAM expression in metastatic lesions, 

preferably in a large cohort of endometrial carcinoma patients. 

 

ASRGL1  

Thorough preclinical validation of potential biomarkers is crucial before proceeding 

to clinical trials, both to improve the success rate of translation from bench to bedside 

and to spare patients from unnecessary distress. Clinical trials should be conducted to 

assess the utility of ASRGL1 in hysterectomy specimen as a prognostic biomarker 

(paper III). We are the first to describe that ASRGL1 expression in pre-operative 

curettage independently predicts lymph node metastases (paper IV), and this should 

be validated in independent patient cohorts prior to clinical testing. Additionally, it 

would be interesting to explore the functional role of ASRGL1 in normal 

endometrium and endometrial carcinoma through in vitro, and potentially also in 

vivo, studies.  
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Abstract

Background

Orthotopic endometrial cancer models provide a unique tool for studies of tumour growth

and metastatic spread. Novel preclinical imaging methods also have the potential to quan-

tify functional tumour characteristics in vivo, with potential relevance for monitoring

response to therapy.

Methods

After orthotopic injection with luc-expressing endometrial cancer cells, eleven mice devel-

oped disease detected by weekly bioluminescence imaging (BLI). In parallel the same mice

underwent positron emission tomography–computed tomography (PET-CT) and magnetic

resonance imaging (MRI) employing 18F-fluorodeoxyglocose (18F-FDG) or 18F- fluorothymi-

dine (18F-FLT) and contrast reagent, respectively. The mice were sacrificed when mori-

bund, and post-mortem examination included macroscopic and microscopic examination

for validation of growth of primary uterine tumours and metastases. PET-CT was also per-

formed on a patient derived model (PDX) generated from a patient with grade 3 endome-

trioid endometrial cancer.

Results

Increased BLI signal during tumour growth was accompanied by increasing metabolic

tumour volume (MTV) and increasing MTV x mean standard uptake value of the tumour

(SUVmean) in
18F-FDG and 18F-FLT PET-CT, and MRI conspicuously depicted the uterine

tumour. At necropsy 82% (9/11) of the mice developed metastases detected by the applied
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imaging methods. 18F-FDG PET proved to be a good imaging method for detection of

patient derived tumour tissue.

Conclusions

We demonstrate that all imaging modalities enable monitoring of tumour growth and meta-

static spread in an orthotopic mouse model of endometrial carcinoma. Both PET tracers,
18F-FDG and 18F-FLT, appear to be equally feasible for detecting tumour development and

represent, together with MRI, promising imaging tools for monitoring of patient-derived

xenograft (PDX) cancer models.

Introduction

Endometrial cancer is the most common pelvic gynaecologic malignancy in industrialized

countries, and the incidence is increasing [1]. Although about 75% of the patients are treated

with tumour confined to the uterine corpus, 15–20% recur [2]. In patients with distant metas-

tases or locally recurrent disease, the effect of the conventional systemic therapy is poor with

reported median survival ranging from 7–12 months [3]. Thus, there is an urgent need to

develop more efficient therapies for metastatic endometrial cancer.

Preclinical testing of drug efficacy has been reliant upon subcutaneously implanted tumours

originating from human cancer cell lines or tumour biopsies into immunodeficient rodents [4].

Also for endometrial cancer, subcutaneous xenograft models have long been employed to

explore effect of new treatments [5]. This model enables monitoring of tumour growth by

visual inspection and palpation to monitor tumour growth. However, the subcutaneous model

has important limitations including non-metastatic behaviour, thus lacking immediate rele-

vance for humans [6]. Orthotopic xenograft models, whereby molecularly defined cancer cell

lines or primary patient cells are surgically implanted into the organ of origin, induce disease

that more accurately reflect human metastatic patterns and response to therapeutics. Orthoto-

pic endometrial cancer models have been successfully developed [6–8]. This has provided a

valuable research platform for studies of molecular and cellular mechanisms underlying

tumour growth and metastatic spread in endometrial cancer [8–13].

A challenge in such models is still to accurately determine tumour growth and drug efficacy

longitudinally. Bioluminescence imaging (BLI) represents one such useful preclinical imaging

method for in vivomonitoring of tumour growth and metastases in endometrial cancer xeno-

graft models from human cell lines, but requires that these are transfected with luciferase gene

[8, 9, 13]. Patient derived tumour xenograft (PDX) models, which better mimic the corre-

sponding human lesion and tumour growth (i.e. molecular type, stromal tissue interaction and

three dimensional growth in relevant organ) represent a more reliable tool to predict response

to chemotherapy [4]. Although methods are available to genetically manipulate PDX models

ex vivo, such manipulation cause irreversible genetic changes distancing the models from the

parental tumours [14]. BLI is therefore not an optimal method for PDX models [15]. Thus,

additional in vivo preclinical imaging methods to identify and quantify orthotopic endometrial

cancer xenograft progression and response to therapy, needs to be better explored to fully

exploit orthotopic PDX endometrial cancer models.

Preclinical positron emission tomography-computed tomography (PET-CT) and magnetic

resonance imaging (MRI) provide both anatomical and functional information from tumour

tissue [15, 16]. These novel imaging methods have been shown to predict response to therapy
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in various xenografts models [16] such as in colorectal cancer [17] (based on 18F-FLT and
18F-FDG PET), breast cancer [18] (dynamic contrast-enhanced (DCE)-MRI and diffusion

weighted imaging (DWI)) and in Ewing sarcoma [19] (whole body MRI and DWI). Character-

istics for PET-CT or MRI findings in endometrial cancer orthotopic mouse models have not

yet been reported, hence the feasibility of these novel imaging methods in monitoring tumour

progression and metastatic spread in this setting is largely unknown.

This study presents characteristic preclinical imaging findings for in vivo BLI, PET-CT

(with 18F-FDG and 18F-FLT) and MRI during tumour progression and metastatic spread in an

orthotopic endometrial cancer model. These observed in vivo imaging findings are also related

to the ex vivo BLI findings of single organs at necropsy and to histological characteristics for

the corresponding tumour tissue.

Material and Methods

Ethics statement

For patient samples and information, all parts of the study have been approved according to

Norwegian legislation, including the Norwegian Data Inspectorate, Norwegian Social Sciences

Data Services, and the Western Regional Committee for Medical and Health Research Ethics,

(NSD15501; REK 052.01). Participants gave written informed consent. All animal studies were

approved by the Norwegian State Commission for Laboratory Animals (ID 4036) and per-

formed according to the European Convention for the Protection of Vertebrates Used for Sci-

entific Purposes.

Cell lines and Retroviral transfection

The human endometrial cancer cell line Ishikawa was obtained from Sigma-Aldrich

(St. Louise, MO, USA) and the cell authenticity was confirmed by Short Tandem Repeat (STR)

profiling (IdentiCell, Denmark). Cells were kept in Minimal Essential Medium (MEM; Lonza,

Basel, Switzerland) supplemented with 5% heat-inactivated Fetal Calf Serum (FCS; Sigma-

Aldrich, St. Louis, MO, USA), 2 mM L-glutamine (Lonza, Basel, Switzerland), 1% non-essential

amino acids (Lonza, Basel, Switzerland), penicillin 100 IU/ml and 100 μg/ml streptomycin

(Lonza, Basel, Switzerland) at 37°C in a humidified atmosphere with 5% CO2. Ishikawa cells

were stably transfected using retroviral infection as described previously [20, 21] using the

luciferase expressing construct L192, combined with the tetracycline-regulated transactivator

(tTA). Stably transfected IshikawaLuc cells were selected with 1 μg/ml puromycine (Sigma-

Aldrich, St. Louis, MO, USA) and luciferase expression was confirmed by adding 2.5 mg/ml D-

luciferin (Promega, Madison, WI, USA) before ex vivo optical imaging.

Orthotopic endometrial cancer model

NOD-scid IL2Rgammanull (NSG) mice were originally a gift from Prof. Leonard D Schultz at

The Jackson Laboratory (Maine, USA) and bred at the Vivarium, University of Bergen, Nor-

way. Female 6–8 weeks old were maintained under pathogen-free conditions with food and

water provided ad libidum. Animals were kept on a 12 hours dark/night schedule at a constant

temperature of 21°C and at 50% relative humidity. Prior to surgery animals received 0.1 mg/kg

Buprenorphine hydrochloride (Temgesic, Reckitt Benckiser, Berkshire, UK) intramuscular, for

analgesia. Mice were anaesthetised with 250 mg/kg tribromoethanol (Sigma-Aldrich, St. Louis,

MO, USA) diluted in 2 methyl-2 butanol (Sigma-Aldrich, St. Louis, MO, USA) and placed on a

heating pad in dorsal decubitus. Fur on the abdomen was clipped and skin disinfected with sur-

gical iodine and 70% ethanol. A 1cm middle line incision was made in the lower abdomen
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(skin and muscles). The left uterine horn was exteriorized and 1x106 of IshikawaLuc cells resus-

pended in 50 μl of Matrigel (BDMatrigel Basement Membrane Matrix, BD Biosciences, San

Jose, CA) were injected directly into the endometrial cavity through the myometrium. A

0.3mm insulin syringe (Omnican 50, B-Braun, Melsungen, Germany) was used for the injec-

tion. The uterine horn was put back in the original position before muscles and skin was closed

with 5–0 absorbable sutures. After the surgery the animals were placed in a warm environment

and supervised until full recovery.

Generation and maintenance of patient derived xenograft (PDX) model

A biopsy from the primary tumour of a 69 year old woman diagnosed with grade 3 endome-

trioid endometrial cancer was placed on ice until processing. Tissue was mechanically dissoci-

ated using sterile scalpels and sequentially filtered through a 40 μm pore filter (Fisher) and

centrifuged at 900rpm for 4 min. The cell pellet was resuspended in Matrigel and orthotopic

implantation in four mice was performed as described above. The mice (F1 generation) were

monitored closely for visible signs of disease development and examined using PET CT when

clinical signs of disease were presented. Mice were thereafter sacrificed, and a cell suspension

from the primary tumour was prepared and implanted in the next generation of mice (F2).

Samples for histological examination of tumour grade and type were taken in parallel. The new

generation was monitored in a similar manner until presenting clinical signs of disease, when

PET CT was performed. The mouse model is continuously rederived following the same

protocol.

Experimental set-up for multimodal imaging

Optical imaging. In total 15 mice were orthotopically injected with IshikawaLuc cells. All

mice were subjected to weekly examination by bioluminescence to follow tumour growth and

metastatic dissemination. Mice were injected intraperitoneally (i.p.) with D-luciferin (150 mg/kg)

and anaesthetised with 3% isoflurane (Isoba Vet, Schering-Plough, Brussel, Belgium) 10 minutes

before optical imaging using an In-Vivo FX PROmolecular imaging system (CarestreamHealth,

Inc., Rochester, NY, USA). Total bioluminescence values were measured using manual Region of

interest (ROI) of the whole abdomen using the CarestreamMI software (Standard Edition,

v.5.0.6.20, Carestream Health, Inc.). Three mice showed no BLI signal after four weeks, suggest-

ing no tumour development in the uterus, possibly due to vaginal leakage of cells after surgery.

One mouse died during anaesthesia for PET scan. These four mice were excluded from the exper-

iment. The 11 remaining mice were monitored weekly and euthanized when moribund as

defined by weight loss 10–15%, lethargy or ruffled fur. Ten minutes before necropsy, all mice

were injected i.p. with D-Luciferin and organs were imaged ex vivo for evaluation of disease dis-

semination using Optix MX3 Small Animal Molecular Imager (ART Inc., Saint-Laurent, QC,

Canada) supplied with Optix Optiview software. After BLI imaging, the tissue biopsies were fixed

in 4% buffered formalin and embedded in paraffin before they were processed for histological

analysis.

PET-CT. PET-CT was performed in all mice weekly from week 5/6–week 7/8 after injection

of IshikawaLuc cells. In one of the mice PET-CT was also performed 12 and 13 weeks after Ishika-

waLuc cells injection. The PET-CT scans consisted of 18F-FLT PET only (n = 2), 18F-FDG-PET

only (n = 3) or both 18F-FLT PET and 18F-FDG PET (n = 6). The last PET-CT examinations

were performed 7 days (n = 1), 11 days (n = 3), 18 days (n = 1), 35 days (n = 2) and 49 days

(n = 4) respectively before the mice were sacrificed, respectively. This approach was chosen in

order to reduce the cost of the experiments as well as to minimize stress for individual animals

also undergoing weekly BLI. For mice with slow tumour progression limited capacity of the
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PET-scanner precluded PET scanning immediately prior to sacrifice. For the PDXmodel,

the PET-CT scans consisted of 18F-FLT PET in the F1 generation and 18F-FDG-PET in the F2

generation. PET-CT scans were performed using the integrated PET-CT scanner nanoScan PC

PET/CT (Mediso Medical Imaging Systems Ltd, Budapest, Hungary) featuring spatial resolu-

tions of 800 μm and 30 μm of the respective PET- and CT detector systems. The PET field of

view (FOV) was 9.5 x 8 cm in axial and transaxial directions allowing whole-body imaging of

mice. The PET detectors consist of LYSO crystals, and acquisition was performed in 1:5 coinci-

dence and normal count mode. Mice were scanned simultaneously without prior fasting using a

dual mouse bed with integrated system for anaesthesia and heating. Animals were anaesthetised

using 3% sevoflurane (Sevoflo, Abbott, Illinois, USA) and 18F-FDG (mean dose of 7.3 +/-1.6

MBq) was injected via the tail vein 30 seconds after the start of the PET scanning. Total scan

time was 60 minutes, and the last 30 minutes was reconstructed into a static image. For 18F-FLT

PET-CTmice were anesthetised and 18F-FLT (mean dose of 7.4+/-2.3 MBq) was injected via the

tail vein 30 minutes prior to scanning. PET acquisition time was 30 minutes. For both tracers, a

whole-body CT scan (helical projections with tube energy of 50 kvP, exposure time 300 ms, 720

projections, max FOV, binning 1:4) was performed for anatomical information and attenuation

correction of PET images.

Reconstruction and post-processing of PET-CT data. The PET images were recon-

structed using the supplier’s reconstruction algorithm Tera-Tomo 3D (OSEM), with correc-

tions for depth-of-interaction (DOI), radionuclide decay, randoms, crystal dead time, detector

normalization, and attenuation correction, and with a detector coincidence mode of 1:3, 4 iter-

ations and 6 subsets, no filtering. CT images were reconstructed using RamLak filter. The PET

and CT images were co-registered automatically. Images were reconstructed with a voxel size

of 0.25×0.25×0.25 mm3 for CT, and 0.4×0.4×0.4 mm3 for PET. Data analyses were performed

using InterView Fusion version 2.02.055.2010 (Mediso Ldt., Budapest, Hungary). For each

scan a spherical volume of interest (VOI) with radius 1.5 mm were drawn manually over the

muscles in the back of the neck. Standard uptake value (SUV) was calculated using the equa-

tion: SUV = CPET(T)/(ID/BW), where CPET(T) is the measured activity in tissue, ID is injected

dose measured in kBq, and BW is mouse body weight in kg. SUVmean is the SUV mean value of

all voxels included in the VOI. SUVmean in this nuchal muscle was used as a reference tissue in

order to enable segmentation of putative tumour tissue having SUV ratios (SUVR) of>2 and

>6 for 18F-FLT and 18F-FDG, respectively. VOIs of primary uterine tumours and of likely

metastases were drawn semi-automatically in the PET images for estimation of metabolic

tumour volumes (MTV) and their corresponding SUVmean. The parameter Total Lesion Gly-

colysis (TLG) in the tumour was calculated based on the 18F-FDG PET-CT scans using the

following equation: TLG = FDG-SUVmean x MTV [22]. For the 18F-FLT PET-CT scans a simi-

lar parameter was calculated based on the same equation and named FLT-SUVmean x MTV.

MRI. MRI was performed in one mouse at week 11 after injection of IshikawaLuc cells

(3 weeks before sacrifice). The MRI scan was performed on a 7T horizontal-bore preclinical

scanner (Pharmascan 70/16, Bruker Corporation, Germany), using a 40 mm ID mouse body

quadrature volume resonator in a single-coil (TX/RX) configuration. During scanning, the

mouse was anesthetized using 3.0% sevoflurane. Respiration rate and body temperature were

monitored and kept constant at 60±20 respiratory cycles/min and 37+/-2°C, respectively. For

identification of tumour and estimation of tumour size, a T2-weighted rapid acquisition with

relaxation enhancement (RARE) sequence (TE/TR = 36/4300 ms, 2 averages, matrix 256x256,

field of view (FOV) 3.2 x 3.2 cm, slice thickness 1 mm) and pre- and a post-contrast T1-weighted

RARE sequences (TE/TR = 9/1000 ms, 4 averages, matrix 256x256, FOV 3.2 x 3.2 cm, slice thick-

ness 1 mm) were employed. The post-contrast images were collected after intravenous tail-vein

injection of Gd-based contrast agent (Dotarem, Guerbet USA, volume 30uL, dose 0.1 mmol/kg
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of body weight). In addition, apparent diffusion coefficient (ADC) maps were generated from

diffusion-weighted EPI images (DWI) (TE/TR = 24.6/3100 ms, 2 averages, matrix 128x128,

FOV 3.2 x 3.2 cm, slice thickness 1 mm and 3 diffusion directions with b-values of 100, 200, 400,

600, 800, 1000 s/mm2).

Histological examination and Immunohistochemical (IHC) analysis

Formalin-fixed tissue was processed for routine histological examination. 4 μm sections were

stained with Hematoxylin–Eosin (HE) and examined by a pathologist (NCMV) for typing and

grading of the tumours. To verify presence of human cells, IHC staining was performed on full

section to detect expression of human ERα. Briefly, sections were dewaxed with xylene, rehy-

drated in graded ethanol before microwave antigen retrieval, and stained for 60 min in room

temperature for human ERα expression using 1:400 HC-20 (Santa Cruz Biotechnology, Dallas,

TX, USA) or 1:400 Clone SP1 (Thermo Scientific, Fremont, CA, USA). Anti-rabbit secondary

antibody (Dako, Denmark) was applied for 30 minutes, followed by 8 minutes with Diamino-

benzidine (DAB+, Dako, Denmark) before counterstaining with hematoxylin. To verify the

species specific nature of the antibody, sections were compared to the non-species specific anti-

body from Santa Cruz (S1 Fig), validating that the human specific antibody only detected ERα

in cells of human origin.

Results

IshikawaLuc cells form primary endometrial cancers in mice

We developed an orthotopic mouse model that can be monitored by bioluminescence. Mice

were monitored for up to 13 weeks and sacrificed when reaching humane endpoint. Body

weight was monitored weekly (Fig 1A). A clear reduction in body weight was observed as the

BLI signal increased. At 13 weeks post injection, all mice had reached a moribund disease

condition (Fig 1B).

Fig 1. Orthotopic injection of IshikawaLuc cells results in weight loss and reduced survival.Mice injected with IshikawaLuc cells were monitored weekly
for signs of disease development. Weight loss (A) was detected as an early sign of disease. Mice developing symptoms of severe disease were sacrificed
and the overall survival is visualized in a Kaplan-Meier survival plot (B).

doi:10.1371/journal.pone.0135220.g001
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Bioluminescence monitoring of tumour growth

A bioluminescence signal restricted to the uterine area was observed the first weeks, followed

by more diffuse abdominal signal as the tumour burden was increasing and the mice developed

metastatic disease. The total BLI signal increased dramatically the last weeks before the animals

were sacrificed (Fig 2A and 2B).

Two mice showed no signs of metastatic spread but had large tumours limited to the uterus

when sacrificed. The remaining nine mice had all developed advanced disease with metastatic

spread and variable amounts of ascites. After macroscopic post-mortem examination, organs

were imaged ex vivo to detect tumour cell dissemination (Fig 2C, Table 1). A strong BLI signal

was observed in the uterus of all animals. Increased BLI signal was observed in the ovaries

(n = 4), pancreas (n = 7), kidney (n = 2), spleen (n = 3), liver (n = 6) and lung (n = 4) as well as

in connective tissue surrounding the uterus (n = 9). Nodules suspected to be metastatic lymph

nodes were also BLI positive (n = 4). No BLI signal was detected in the adrenal glands.

Histological evaluation of the model

The histology of the primary tumour and presence of metastatic spread were determined on

HE stained sections (Fig 3). Histological evaluation of the organs revealed normal histology

Fig 2. Tumour growth monitored by Bioluminescence Imaging (BLI). Tumour growth was monitored weekly by in vivo BLI and an increase in the net
bioluminescence versus time was observed (A, B). Organs were also examined by BLI post-mortem to visualize metastatic spread (C). Strong BLI signals
were detected at site of injection (left uterine horn; luh), right ovary (o), connective tissue surrounding the uterine horn (ct), pancreas (p) and metastatic node
(mn). Spot signals were detected in the liver (l), spleen (s), kidneys (k), heart (h) and lung (lu). No signal was detected in adrenal gland (a).

doi:10.1371/journal.pone.0135220.g002
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with intact endometrial glands in the right uterine horn. A solid growing primary tumour was

detected in the left uterine horn (at site of injection; Fig 3A) with characteristics of a grade

3 endometrioid endometrial cancer (Fig 3B), and areas of necrosis and myometrial invasion.

Metastases to the ovaries (Fig 3C) were mostly solid with necrotic areas, but gland formation

was also detectable in some cases. No remaining lymph node tissue was detected in metastatic

nodes (Fig 3D). Larger separately growing tumour fragments were detected in the pancreas

(Fig 3E). BLI positive kidneys and spleens had tumour cells in the outer surface of the organ,

with no invasion of the parenchyma. This was also true for three BLI positive liver biopsies

(Fig 3F). All mice with cancer cells detected in the outer lining of organs had ascites. Diffuse

small tumour nodules were found in vessels in the lungs (Fig 3G), also in two lung biopsies that

appeared negative in the BLI imaging (Table 1).

Cellular protein expression of human ERα was verified in human cells (S2 Fig). We found

heterogeneous expression of ERα in the primary tumour, also showing myometrial infiltration

(S2A Fig), consistent with reports that Ishikawa cells are ERα positive but with a tendency to

lose expression of ERα with dedifferentiation. We also clearly identified presence of metastatic

IshikawaLuc cells in pancreatic tissue (S2B Fig), in the capsule of the liver (S2C Fig) and in the

vessels in pulmonary tissue (S2D Fig).

PET-CT monitoring of tumour progression

Evident 18F-FDG/18F-FLT-avid tumour tissue in the uterus (Fig 4A and 4B and Fig 5C and 5D)

was observed in 6 out of 7 mice, which were scanned� 35 days prior to sacrifice. The remain-

ing mice (n = 4) showed no visible tumour at their last PET-CT scans, 49 days prior to sacrifice.

However, these mice did develop tumour growth and metastases at a later point with increased

BLI tumour signal after their last PET-CT scans.

In the mice having weekly PET-CT scans the last weeks before sacrifice, increasing MTV

and SUVmean x MTV was observed in both primary tumours (Fig 4A and 4C–4F) and metasta-

ses (Fig 4B and 4G–4J). The highly 18F-FDG/18F-FLT- avid tissue (Fig 4A and 4B), assumed to

represent tumours, was histologically confirmed as primary malignant uterine tumours (Fig

4K) and metastases (Fig 4L), respectively, at necropsy. Although the absolute values for

Table 1. Tumour development andmetastasis dissemination in IshikawaLucmodel. Total number of

mice with organs affected by disease, defined by positive BLI signal and presence of cancer cells in histologic

sections.

Organ affected: BLI (%) Histology (%)

Uterus 11 (100) 11 (100)

Mice with metastases 9 (82) 9 (82)

Ascites 8 (73) NA

Lymph nodes 4 (36) 4 (36)

Ovaries 4 (36) 4 (36)

Liver 7 (64) 4 (36)

Lungs 4 (36) 6 (55)

Connective tissue 9 (82) 9 (82)

Pancreas 7 (64) 7 (64)

Spleen 3 (27) 0

Kidneys 2 (18) 0

Adrenal glands 0 (0) 0 (0)

NA: Not applicable.

doi:10.1371/journal.pone.0135220.t001
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Fig 3. Histological evaluations of tumour characteristics and spread of disease.Organs were fixed in
formaldehyde, sectioned and stained with HE to confirm presence of tumour tissue and for histological
characterization of tumour. Sections from a representative mouse depict a large tumour mass in the left

Multimodal Imaging of Orthotopic Mouse Model of Endometrial Carcinoma
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calculated MTV and SUVmean x MTV of the tumours using different tracers on PET-CT were

not directly comparable, both tracers seemed equally feasible to depict tumour tissue and mon-

itoring tumour growth and metastatic spread at PET-CT (Fig 4A and 4B and Fig 5C and 5D).

MRI of tumour model

MRI conspicuously depicted the boundaries of the uterine tumour (Fig 5A). The tumour was

hyperintense on T2-weigthed images and moderately contrast-enhancing on T1-weighted

uterine horn (A) with necrotic tissue in the centre. Normal uterine morphology is seen in the right uterine horn
with endometrial glands and normal stroma and myometrium. Detail of tumour in the left uterine horn (B)
reveals solid growing tumour, resembling a grade 3 endometrioid endometrial cancer. Solid tumour masses
were also detected in ovaries (C). Inguinal lymph node, macroscopically suspected to be metastatic, was
confirmed to represent a metastasis (D), however, without visible surrounding lymphoid tissue. Solid tumour
components are depicted in the pancreas (E) with tumour tissue infiltrating surrounding fat tissue. Metastasis
is observed on the outer surface of the liver (F), and tumour tissue is also detected in blood vessels of the
lung (G), the latter indicating hematogenous spread.

doi:10.1371/journal.pone.0135220.g003

Fig 4. Tumour growth monitored by PET-CT. Tumour growth in the left uterine horn (A) and growth of abdominal metastasis (B) measured by 18F-FLT
PET-CT at 5, 6 and 7 weeks after inoculation of cells; and by 18F-FDG PET-CT 8 weeks after inoculation (A and B) in the samemouse. Estimated metabolic
tumour volume increased from 5 to 7 weeks after inoculation based on 18F-FLT PET-CT but was stable or slightly decreased from 7 to 8 weeks after
inoculation based on 18F-FLT PET-CT (week 7) and 18F-FDG PET-CT (week 8) (C/D, G/H). The estimated 18F-FLT-SUVmean x MTV steadily increased from
5 to 7 weeks after inoculation in both the primary tumour (E) and in the metastasis (I). Panel F and J show Total Lesion Glycolysis (18F-FDG-SUVmean x MTV)
for primary tumor and metastasis, respectively. Histologic examination of the uterus (K) and the pancreas (L) validated presence of malignant tissue
(asterisks) as detected with PET-CT.

doi:10.1371/journal.pone.0135220.g004
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series after i.v. contrast. Restricted diffusion within the tumour tissue was striking with hyper-

intensity on high b-value images and corresponding low ADC value on the ADC map (Fig 5A).

The PET-CT and MRI findings of the IshikawaLuc cell model are similar
to patterns detected for human endometrial cancers

The uterine tumours in the mice were highly 18F-FDG-avid (Figs 4A and 4B and 5C), thus resem-

bling the metabolic behaviour of the human endometrial cancers, which also typically exhibit

marked 18F-FDG-avidity (S3A, S3E Fig). Both in patients and in the preclinical model, the tumour

is hyperintense on T2-weighted images (Fig 5A and S3C, S3F Fig) and moderately contrast-

enhancing on T1-weighted images after intravenous contrast (Fig 5A and S3D Fig). Similarly, the

restricted diffusion observed within the tumour in the mouse model (with measured tumour

ADC value of 1.11 x 10−3mm2/s; Fig 5A) is quite similar to that in endometrial cancer tissue in

patients (S3G and S3H Fig; tumour ADC value in this patient was 0.83 x 10−3mm2/s).

Fig 5. Multimodal imaging of the samemouse by MRI, 18F-FDG PET, 18F-FLT PET and BLI.MRI three weeks presacrificed (A) depicting large uterine
tumour tissue in the left uterine horn (thin arrows) with intrauterine fluid cranial of the tumour (filled large arrow) and small amounts of free intraperitoneal fluid
cranial to the right kidney (K) (small arrows). The tumour tissue is moderately enhancing on T1-weighted series after contrast and the tumour exhibits
restricted diffusion with hyperintensity on high b-value DWI with corresponding low apparent diffusion coefficient (ADC) value (1.11 x 10−3mm2/s) on the
ADCmap (A). BLI 4 to 1 weeks presacrificed (B) shows increasing BLI signal corresponding to the tumour of the left uterine horn; the corresponding tumour
tissue was evident macroscopically and confirmed microscopically at necropsy (B). 18F-FDG PET-CT two weeks presacrificed (C) depicts a large 18F-FDG-
avid tumour in the left uterine horn (arrows) with estimated metabolic tumour volume of 33 ml. 18F-FLT PET-CT one week presacrificed (D) depicts large
18F-FLT-avid tumour in the left uterine horn (arrows) with estimated metabolic tumour volume of 44 ml. 18F-FDG/18F-FLT-avidity in a VOI in the nuchal
muscular tissue (C and D; small arrows) was used as reference tissue to define a threshold for likely tumour tissue (activity of x2 and of x6 for 18F-FLT and
18F-FDG, respectively) to be included in the estimated metabolic tumour volume. B: bladder; H: heart.

doi:10.1371/journal.pone.0135220.g005
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PET-CT represents a powerful tool for detection of tumour tissue in PDX
model of endometrial cancer

Although orthotopic models generated from established cell lines develop tumours in the

uterus, a PDX model is likely to better mimic the clinical setting relevant for disease spread and

response to therapy. This PDX model was developed from a patient primary tumour (Fig 6A)

with grade 3, endometrioid endometrial type. Histologic examination of the primary tumours

of both the F1 (Fig 6B) and the F2 (Fig 6C) generation reveal high resemblance to the donors,

and both were classified as grade 3 endometrioid, endometrial cancers by the pathologist.

PET-CT was successfully used to detect tumour growth using 18F-FLT in generation F1 (not

shown) and 18F-FDG in generation F2 (Fig 6D). Highly 18F-FDG-avid tumour tissue in the

uterine fundus and both the left and the right uterine horn was macroscopically verified to rep-

resent tumour tissue (Fig 6E).

Fig 6. 18F-FDG PET detects tumour in an orthotopic endometrial cancer PDXmodel.Mice were
implanted in the uterus with cancer cells from a patient biopsy and rederived for two generations to develop a
PDXmodel. Histological examination revealed that both the F1 (B) and the F2 (C) mice developed tumours
closely resembling the parental tumour, defined as an endometrioid grade 3 endometrial cancer (A). 18F-FDG
PET was successfully used to detect tumour growth in both generation F1 (not shown) and generation F2 (D).
Highly 18F-FDG-avid tumour tissue (large arrows) in the uterine fundus (UF) and both the left and the right
uterine horn (LU, RU respectively) depicted at PET-CT (D). Macroscopic examination revealed a large
tumour infiltrating both the uterine horns as well as the bladder (E) and corresponded well with the tissue
detected as tumour by 18F-FDG PET. B, bladder; H, heart; K, kidney; LU, left uterine horn; RU, right uterine
horn; UF, uterine fundus.

doi:10.1371/journal.pone.0135220.g006
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Discussion

One major challenge in cancer research today is to what extent the cancer models mimic the

disease in a human setting. The use of mouse models has become increasingly popular, includ-

ing both sub-cutaneous and orthotopic models, in combination with cell line based and PDX

models [23]. The ability to monitor disease development and response to therapy, is of great

importance when choosing the model system, and several non-invasive imaging models are

presently available, although not extensively explored for uterine cancer. Still, many of these

are best suited for cell line based models since they ultimately rely on genetic engineering of the

cells. The availability of PET tracers and small scale imaging equipment for PET-CT and MRI

has improved our ability to study cancer development and metastatic spread without such use

of reporter genes [24]. This study, describing the typical imaging findings based on in vivo BLI

in parallel with PET-CT and MRI findings for the first time in an orthotopic endometrial can-

cer model, demonstrates an excellent feasibility of this multimodal imaging platform to moni-

tor tumour progression and metastatic spread.

We utilized the orthotopic IshikawaLUC model of endometrial cancer to trace tumour

growth using BLI and verified the methods ability to detect tumour growth and spread by mac-

roscopic and microscopic necropsy examination of affected organs. As reported previously by

others [7, 21, 25], BLI proved to be an effective imaging method for detection of tumour

growth and metastases, especially when combined with post mortem ex vivo BLI imaging of

organs. For growth of tumour cells in the peripheral margins of an organ, the in vivo BLI

method was not able to accurately detect the exact organ specific location of the signal and ex

vivo BLI or microscopic examination was necessary. In spite of these limitations, BLI is a pow-

erful imaging tool to monitor cancer cell line growth, however with limited value for monitor-

ing tumour growth in orthotopic PDX models. We therefor explored the same mice in parallel

by PET-CT and MRI to explore the potential for these methods to detect tumour development.

PET-CT was performed using two different tracers enabling imaging of different metabolic

properties of the tumour tissue. 18F-FLT is a nucleoside analogue that is taken up in proliferat-

ing cells in the S-phase. 18F-FLT enters cells via passive diffusion and active nucleoside trans-

porters. It undergoes phosphorylation by the enzyme thymidine kinase 1 (TK1) and is trapped

intracellularly [26]. The uptake of 18F-FLT is thus related to the metabolism of the nucleosides

and is considered a marker for cell proliferation [16]. 18F-FDG is a glucose analogue that tends

to accumulate in tissue with upregulated glucose transporter expression and/or increased meta-

bolic activity [16]. Most cancers show an increased aerobic glycolysis leading to an increased

uptake of 18F-FDG. Whereas 18F-FDG-avidity is nonspecific for tumour tissue, and a charac-

teristic also of inflammatory or infectious disease, 18F-FLT-avidity is believed to almost uni-

formly indicate presence of viable tumour cells [16]. Interestingly, both tracers seemed equally

feasible of depicting and monitoring tumour growth and metastatic dissemination in this

mouse model.

The uptake of both 18F-FDG and 18F-FLT in a tumour is considered to reflect tumour viable

cell densities, and the product SUVmean x MTV, referred to as Total Lesion Glycolysis when

using 18F-FDG as tracer, is thus a measure of the total number of viable tumour cells in the

tumour [22]. Interestingly, we observed a gradual increase in SUVmean x MTV prior to sacrifice

both in the primary tumour and in the metastasis (Fig 4E/4F and 4I/4J, respectively), whereas

estimated MTV in a mouse decreased in the primary tumour and was stable in the metastasis

at the last study when 18F-FDG replaced 18F-FLT (Fig 4C/4D and 4G/4H, respectively). A plau-

sible explanation of this finding regarding estimated MTV when using different tracers may be

differences in tracer characteristics for the same tumour, as well as the applied thresholds for

the two tracers to estimate MTV. Further studies are needed to establish optimal PET imaging
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parameters and PET tracers for reliable estimation of tumour burden and progression as well

as response to therapy in this mouse model.

The ability of PET-CT to validly detect and to monitor tumour growth quantitatively is

affected by various known factors such as tumour size, surrounding background activity, spa-

tial resolution of the PET-CT scanner and reconstruction algorithms of the scanner [27]. The

recorded spatial resolution of 800 μm and 30 μm for the respective PET- and CT detector sys-

tems of the PET-CT scanner in this study, would ideally allow detection of very small lesions

down to 0.8 mm. However, we found that early detection of the very small uterine tumours

and metastases were difficult due to radiotracer uptake in neighbouring organs i.e. the bladder

and kidneys and often also the intestines. However, when a gradual increase of radiotracer

activity was depicted in the uterus and at the same extrauterine sites on consecutive images

(suggesting metastases), the evidence of tumour growth seemed obvious, and the tissue of

increased tracer uptake was confirmed to represent tumours at the corresponding sites at

necropsy.

A limitation of this study is its ineligibility to compare the estimated MTV at PET to tumour

volumes based on necropsy, which would be highly interesting. Such a comparison would

allow an analysis of the optimal threshold for discriminating the tumour from the surrounding

tissue and for estimating the corresponding correct tumour volumes. However, in order to per-

form such a comparison meaningfully, the PET-CT should be performed immediately prior to

sacrifice. Since this was not done in the present study, we plan to do so in a follow-up study in

order to further refine and validate the MTV measurements based on PET-CT.

The imaging findings presented in this study during tumour growth and metastatic spread

apply to untreated mice. Future studies will thus be needed to explore the feasibility of the

same multimodal imaging platform to evaluate treatment response during therapy. However,

the ability to visualize and quantify the tumor burden before treatment is a prerequisite in

order to succeed in the evaluation of treatment response. Thus, we propose that the presented

findings in untreated mice make the same imaging methods very promising for evaluation of

treatment response, although this remains to be demonstrated in future studies. Furthermore,

including preclinical ultrasound scanning during tumor growth and therapy may represent an

intriguing addition to the multimodal imaging platform already explored in this study. Ultra-

sound may be especially translatable to the clinic, since patients with symptoms of endometrial

cancer are often subjected to vaginal ultrasound as primary imaging examination.

Interestingly, the functional tumour characteristics based on PET-CT and MRI are very

similar to that observed in human endometrial cancer, supporting a promising translational

relevance of this imaging integrated tumour model for assessing tumour growth. The findings

in this model derived from human endometrial cancer cell lines, as well as the PDX model,

open the avenue for further exploring the value of PET-CT and MRI in monitoring tumour

growth and metastatic spread in PDX models of endometrial cancer. This may prove highly

clinically relevant since PDX models are likely to have an increased translational relevance for

drug testing with relevance for a human tumour setting.

Conclusion

We have demonstrated the feasibility of a multimodal imaging platform using BLI, 18F-FDG

PET, 18F-FLT PET, and MRI to detect and monitor tumour progression in an orthotopic endo-

metrial cancer model derived from human cell lines. The latter three imaging methods are well

suited also in patients derived tumour models in which BLI is ineligible. PET-CT is also dem-

onstrated to detect tumour tissue in a PDX model. PET-CT and MRI may thus represent
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powerful tools for monitoring tumour progression and functional changes for preclinical test-

ing of systemic therapy in orthotopic models more reliably mimicking human endometrial

cancer.

Supporting Information

S1 Fig. Identification of human specific anti-Estrogen Recetor α antibody. Immunohisto-

chemical staining was performed according to a standard protocol. Paraffin sections from

mouse uterus implanted with Ishikawa human endometrial cancer cells were stained with 1:50

anti-ERα (A; sc-543 Santa Cruz Biotechnologies) or 1:400 anti-ERα (B; SP1, Thermo) for

detection of endometrial cells expressing ERα. Both antibodies are raised in rabbit and selected

to avoid crossreaction with mouse immunoglobulins. The Santa Cruz antibody (A) was found

to detect both mouse and human ERα, while the Thermo antibody SP1(B) was human specific.

The SP1 antibody was selected to specifically detect localization and spread of implanted cells.

(PDF)

S2 Fig. Detection of metastatic spread by IHC staining for human ERα. To verify presence

of the ERα positive human IshikawaLuc cell line spread to distant organs, sections were stained

for expression of human Estrogen Receptor α. Myometrial tumour infiltration was detected in

the uterus (A) and metastases were detected in the pancreas (B), liver (C) and in the lungs (D);

for all tumour sites positive staining for human ERα confirming spread of the human tumour

cells.

(PDF)

S3 Fig. Example of human endometrial carcinoma assessed by preoperative imaging and

estrogen receptor staining in histological section. 18F-FDG PET-CT (A, E), CT (B),

T2-weighed (C, F) and contrast enhanced T1-weighed (D) MRI, diffusion weighted imaging

(b = 1000 s/mm2) (G) with corresponding apparent diffusion coefficient (ADC) map (H) and

positive immunohistochemical staining for estrogen receptor of the uterine tumour tissue (I)

from an 80-year old female with FIGO stage 2, endometrioid endometrial cancer. 18F-FDG

PET-CT shows a highly 18F-FDG-avid uterine tumour (A, E; arrows) with an estimated meta-

bolic tumour volume of 22 ml. The tumour is also conspicuously depicted at CT (B) and MRI

(C-D, F-H; arrows) exhibiting restricted diffusion on the ADC map (H) with tumour ADC

value of 0.83 x 10−3 mm2/s.

(PDF)
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Asparaginase-like protein 1 is an independent prognostic marker in

primary endometrial cancer, and is frequently lost in metastatic lesions
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H I G H L I G H T S

• ASRGL1 validates as a prognostic marker in a prospective setting.

• Low ASRGL1 protein and ASRGL1mRNA expression predicts poor outcome.

• ASRGL1 expression has independent impact on survival.

• Precursor lesions express high ASRGL1 levels.

• The majority of metastases have low ASRGL1 expression.

a b s t r a c ta r t i c l e i n f o

Article history:

Received 29 September 2017

Received in revised form 20 October 2017

Accepted 23 October 2017

Available online 31 October 2017

Objective. Loss of Asparaginase-like protein 1 (ASRGL1) has been suggested as a prognostic biomarker in

endometrial carcinoma. Our objective was to validate this in a prospectively collected, independent patient

cohort, and evaluate ASRGL1 expression in endometrial carcinoma precursor lesion and metastases.

Methods. 782 primary endometrial carcinomas, 90 precursor lesions (complex atypical hyperplasia), and 179

metastases (from 87 patients) were evaluated for ASRGL1 expression by immunohistochemistry in relation to

clinical and histopathological data. ASRGL1 mRNA level was investigated in 237 primary tumors and related to

survival and ASRGL1 protein expression.

Results. Low expression of ASRGL1 protein and ASRGL1 mRNA predicted poor disease specific survival

(P b 0.001). Inmultivariate survival analyses ASRGL1 had independent prognostic value both in the whole patient

cohort (Hazard ratio (HR): 1.53, 95% confidence interval (CI): 1.04–2.26, P = 0.031) and within the endometrioid

subgroup (HR: 2.64, CI: 1.47–4.74, P=0.001). LowASRGL1 expressionwas less frequent in patientswith low grade

endometrioid primary tumors compared to high grade endometrioid and non-endometrioid primary tumors, and

ASRGL1 was lost in the majority of metastatic lesions.

Conclusions. In a prospective setting ASRGL1 validates as a strong prognostic biomarker in endometrial

carcinoma. Loss of ASRGL1 is associated with aggressive disease and poor survival, and is demonstrated for the

first time to have independent prognostic value in the entire endometrial carcinoma patient population.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Endometrial carcinoma is a malignancy originating in the female re-

productive tract, and is the fourth most diagnosed cancer in European

women after breast, colorectal and lung cancer [1]. Primary surgical
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treatment of endometrial carcinoma is curative for most patients, but

15–20% suffers a relapse within few years [2,3]. Prognosis for recurrent

endometrial carcinoma is often poor, especially in patients with systemic

recurrence [3]. Little improvement in treatment and survival has been

achieved over the last decades, highlighting the need of targeted thera-

pies andmore individualized cancer treatment [4]. Discovering, validating

and implementingnewbiomarkers that can identify high-risk endometri-

al carcinomapatients is crucial as suchmarkers canpotentially guide phy-

sicians planning treatment for individual patients [2]. Asparaginase-like

protein 1 (ASRGL1) is an enzyme classified as a N-terminal nucleophile

(Ntn) hydrolase, exhibiting both ʟ-asparaginase and β-aspartyl peptidase

activity [5]. It was first described as a novel protein sharing 77% of its ge-

netic sequence with a sperm autoantigen found in rats [6]. The role of

ASRGL1 in cancer development and progression is not clear. For several

malignancies including mammary, ovarian, and prostate cancer high

levels of ASRGL1 in tumor have been reported [7,8]. In endometrial carci-

noma loss of the gene encoding ASRGL1 has previously been reported as

part of a 29-gene signature associated with features of aggressive disease

and poor recurrence-free survival [9,10]. Loss of ASRGL1 in primary

endometrial carcinoma has also been suggested to be an independent

biomarker for disease-specific survival in a subgroup of patients with

endometrioid endometrial carcinoma [11]. In the present study we

aimed to validate ASRGL1 as a prognostic biomarker in endometrial carci-

noma, and to evaluate the expression of ASRGL1 in clinical specimens

from a large, prospectively collected patient cohort including precursor

lesions (complex atypical hyperplasias – CAH), primary tumors, and

metastases.

2. Material and methods

2.1. Patient series

Women diagnosed with endometrial carcinoma at Haukeland Uni-

versityHospital, Norway,were prospectively included during theperiod

2001–2015. Haukeland University Hospital is a referral hospital for

Hordaland County, and the patient series is representative of the Nor-

wegian population due to similar incidence rates and patient character-

istics for this region compared to the whole of Norway [12]. Primary

tumor tissue from 782 patients was collected during hysterectomy

and prepared as formalin fixed and paraffin embedded (FFPE) tissue.

This corresponds to 76% of endometrial carcinoma patients included

in the local biobank during this time period. Cases not represented in

TMAs include inoperable patients, patients with sparse tumor material

in hysterectomy specimen, and cases with poor technical quality of

TMA tissue cylinders. Fresh frozen tissue was collected in parallel

when possible. Clinical information was retrieved frommedical records

as previously described [13], including age at primary treatment, Inter-

national Federation of Gynaecology and Obstetrics (FIGO) stage (ac-

cording to 2009 criteria), histopathological type and grade, and

follow-up data. Biopsies from precursor lesions were obtained from 90

patients diagnosed with CAH. Samples from metastatic tissue were

available for 87 patients (179 lesions in total). All parts of the study

have been approved according to Norwegian legislation, including the

Norwegian Data Inspectorate, Norwegian Social Sciences Data Services

and Western Regional Committee for Medical and Health Research

Ethics (REK 2009/2315). All participants were informed and gave writ-

ten consent prior to inclusion.

2.2. Immunohistochemistry (IHC)

FFPE tissue was used to generate tissue microarrays (TMA) as previ-

ously described [14]. The tumor area with highest tumor content was

identified on hematoxylin and eosin stained slides. Using a custom

made precision instrument (Beecher instruments, Silver Spring, MD,

USA) tissue cylinders (0.6 mm) (three tissue cylinders for primary

tumors and CAHs and one tissue cylinder for metastatic lesions) were

punched out of the donor block and mounted in a recipient paraffin

block. TMAswere stained by automated IHC using a previously published

polyclonal anti-ASRGL1antibody (HPA029725, diluted 1:375) [11], or a

monoclonal anti-ASRGL1 antibody (AMAb90907, diluted 1:1000)

(Both; Atlas Antibodies, Stockholm, Sweden). ASRGL1 staining in tumor

cells was evaluated without considering sub-cellular localization [11]. A

staining index (SI) was calculated for each patient based on all three cyl-

inders by multiplying staining intensity (range 0–3) and area of positive

stained tumor cells (1 ≤ 10%, 2=10–50%, 3 ≥ 50%) as previously reported

[15]. For statistical analyses cases were ranked by staining index, and

categorized into quartiles based on frequency distribution and size of

the subgroups. The upper three quartiles were combined based on simi-

larities in survival, and defined as “ASRGL1 high”. The lower quartile was

defined as “ASRGL1 low”, corresponding to SI: 0–2 (HPA029725) or SI:

0–1 (AMAb90907). Random TMA slides were scored by three indepen-

dent observers (TF, KS and ILT) blinded for patient characteristics and

outcome, and an intraclass correlation coefficient (ICC) was calculated

to assess interrater reliability for each of the two antibodies. The ICC of

HPA029275 score in two groups was 0.71 (95% confidence interval

(CI): 0.64–0.78, n = 126 patients), while AMAb90907 score in two

groups had an ICC of 0.95 (CI: 0.93–0.96, n = 105 patients). Staining

and scoring of estrogen receptor α (ERα) have previously been

described, defining loss of ERα as SI: 0–3 [16].

2.3. Gene expression

RNA was extracted from fresh frozen tissue using the RNeasy Mini

Kit (Qiagen, Hilden, Germany) according to the manufacturer's instruc-

tions. Samples were hybridized to Agilent Whole Human Genome Mi-

croarrays 44 k (Cat. No. G4112F) prior to scanning and normalization

as previously reported [16]. In total, RNAwas extracted from237 prima-

ry tumors. For survival analyses based on mRNA levels patients were

ranked by ASRGL1 expression and divided into quartiles. The cut-off

for low ASRGL1was defined as the lower quartile of cases.

2.4. Statistical analyses

SPSS Statistics software (version 24.0; IBM Corp., Armonk, NY, USA)

was used for statistical analyses. All statistical tests were two-sided, and

P-values ≤ 0.05 were considered statistically significant. ICC estimates

were calculated by a single rater absolute agreement, two-way random

effects model. Analyses of categorical variables were performed using

the Pearson Chi-square test or Fisher's exact test, while continuous var-

iables were evaluated using the Mann-Whitney U test. Disease-specific

survival curves were generated using the Kaplan-Meier method, and

survival between groups was compared using the log rank (Mantel-

Cox) test. Time of primary surgery was used as entry date, and time to

death due to endometrial carcinoma was defined as endpoint. Cox

proportional hazard regression model was used to evaluate the inde-

pendent prognostic impact of ASRGL1 in multivariate survival analyses.

3. Results

782 patients treated for endometrial carcinoma at Haukeland

University Hospital were prospectively included in this study. Of these

patients, 79% (n = 616) were classified as “ASRGL1 high” (Fig.1A) and

21% (n = 166) as “ASRGL1 low” (Fig.1B) when evaluating ASRGL1

expression in primary tumors by IHC. Validation of antibody was per-

formed by staining 607 primary tumors with two different antibodies

(AMAbb90907 andHPA029725). These antibodies had significantly cor-

related scoring indexes (P b 0.001) and similar prognostic value. The ICC

estimate for AMAb90907 (ICC: 0.95, CI: 0.93–0.96) indicates excellent

interrater reliability [17], and was higher than for HPA029725 (ICC:

0.71, CI: 0.64–0.68). AMAb90907 score was therefore selected for

further analyses. LowASRGL1 protein expressionwas significantly asso-

ciatedwith clinicopathological characteristics of aggressive endometrial
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carcinoma such as high age, high FIGO stage, ERα loss and non-

endometrioid histology (P b 0.001 in all) (Table 1). The proportion of

patients with low ASRGL1 expression was particularly high among car-

cinosarcomas and undifferentiated endometrial tumors (71% and 86%,

respectively), but also 8% of patients with endometrioid grade 1–2

tumors expressed low ASRGL1 levels (Table 1). In a univariate survival

analysis, low ASRGL1 level predicted poor disease-specific survival in

the whole patient population (Fig. 1C). ASRGL1 was also found to have

an independent prognostic impact on survival in amultivariate survival

analysis after adjusting for age, FIGO stage, histological type and grade

(Hazard ratio (HR): 1.53, CI: 1.04–2.26, P = 0.031) (Table 2). The

ASRGL1 gene has been reported up-regulated in several cancer forms

and mRNA expression levels might be an alternative prognostic bio-

marker in gene-based applications. A significant overlap between

ASRGL1 mRNA and protein level was observed in 237 patients with

both IHC and microarray data available (P b 0.001) (Fig. 1D), and

patients with low ASRGL1 mRNA expression had significantly worse

5 year disease specific survival (DSS) compared to patients with high

ASRGL1 mRNA expression (5 year DSS of 0.60 and 0.87, respectively,

P b 0.001, Fig. 1E).

ASRGL1 was evaluated by IHC in 90 patients with complex atypical

hyperplasia, a precursor lesion of endometrial carcinoma. ASRGL1

expression was mainly intact in this group, and 70% of patients had

strong positive staining (SI: 6–9). Only one patient (1%) demonstrated

low ASRGL1 level (Fig. 2A). The proportion of lesions with low

ASRGL1 expression increased significantly with higher grade within

the endometrioid endometrial carcinoma subgroup (P b 0.001)

(Fig. 2A). Of the non-endometrioid tumors 56% had low expression of

ASRGL1, which was significantly higher than for the endometrioid

grade 3 tumors (P = 0.012). In the subgroup of endometrioid endome-

trial carcinoma patients where less aggressive disease is presumed

[18], low expression of ASRGL1 was significantly associated with

Fig. 1. Low expression of ASRGL1 predicts poor survival. Immunohistochemical staining of ASRGL1 (AMAb90907), demonstrating “high” (A) and “low” (B) staining index. Low protein

expression of ASRGL1predicts poor disease specific survival in the whole patient population (C). ASRGL1 mRNA and protein expression is found to significantly correlate, using the

Mann-Whitney U test (D), and the quartile of patients with the lowest ASRGL1 mRNA expression have significantly poorer disease specific survival than patients with higher ASRGL1

mRNA expression (E).
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characteristics of aggressive disease (Supplementary Table S1) and poor

disease-specific survival (P b 0.001, Fig. 2B). ASRGL1 was also found to

have independent prognostic valuewithin the endometrioid endometri-

al carcinoma patients after adjusting for age and histologic grade (HR:

2.64, CI: 1.47–4.74, P = 0.001, Table 3). In the non-endometrioid sub-

group ASRGL1 did however not have an independent impact on survival

when adjusted for age and FIGO stage (HR: 1.37, CI: 0.83–2.26, P =

0.226).

ASRGL1 expression was investigated by IHC in 179 metastatic le-

sions from 87 patients with available corresponding primary tumors.

Of these 87 patients, 43% of primary tumors and 77% of metastases

expressed lowASRGL1 levels (Fig. 3A and Supplementary Fig. S1).With-

in the endometrioid subgroup, patients with grade 1 and 2

endometrioid endometrial carcinoma had fewer metastases with low

ASRGL1 level (53% and 44% of lesions, respectively) than grade 3

endometrioid endometrial carcinoma patients (80% of lesions). Overall,

patientswith endometrioid endometrial carcinomahad a lower propor-

tion of metastatic lesions with low ASRGL1 expression compared to pa-

tients with non-endometrioid endometrial carcinoma (63% and 90% of

metastases, respectively, Supplementary Fig. S1). Of 50 patients with

“ASRGL1 high” primary tumors, only 10% had some metastases with

high and some metastases with low ASRGL1 level. 46% of patients had

intact ASRGL1 expression in all metastases, while 44% of patients had

ASRGL1 loss in all metastatic lesions (Fig. 3B). 37 patients had low

ASRGL1 expression in primary tumor, and the majority of these (89%)

also had low ASRGL1 level in all metastatic lesions. 4 patients had high

ASRGL1 expression in some, but not all metastases. None of the patients

with ASRGL1 low primary tumors had high ASRGL1 expression in all

metastatic lesions (Fig. 3C). For patients with more than one available

metastatic lesion, the expression pattern of ASRGL1 was similar be-

tween the different metastases in individual patients in most cases

(Supplementary Fig. S1). Information regarding ERα status in metasta-

ses was included when known, and was available for a total of 158 le-

sions. A similar expression of ASRGL1 and ERα in metastases was

observed. 73% of metastatic lesions with high ASRGL1 levels had intact

ERα, and 72% of lesions with low ASRGL1 had low levels of ERα.

ASRGL1 was more frequently lost in metastatic lesions than ERα (77%

and 60% of lesions respectively, P = 0.001, Supplementary Fig. S1).

4. Discussion

New, robust biomarkers are needed to tailor treatment for individual

endometrial carcinoma patients. To achieve clinical implementation,

novel biomarkers should be validated in independent studies with suffi-

cient number of patients to ensure statistical power. Validation studies

should also be performed in patient groups that are representative for

the population where the biomarker potentially will be used [19]. In

the current study we validate loss of ASRGL1 expression as a prognostic

marker for poor survival in endometrial carcinoma, in a large, indepen-

dent, population-based patient cohort. This is the first study investigating

the prognostic potential of ASRGL1 expression in a prospective setting in

endometrial carcinoma, as ASRGL1 previously only has been explored in

retrospectively collected cohorts with lower number of patients [11].

In the present study ASRGL1 expression was evaluated using the

staining index, where low expression is defined as 0–1 and high

Table 1

ASRGL1 protein expression related to clinicopathological variables in 782 patients with

endometrial carcinoma.

Variable N ASRGL1 P-value (x2)

High n (%) Low n (%)

Age 782 b0.001

b66 405 341 (84) 64 (16)

≥66 377 275 (73) 102 (28)

FIGO stage 2009 782 b0.001

I–II 659 551 (84) 108 (16)

III–IV 123 65 (53) 58 (47)

Histologic type 782 b0.001

Endometrioid 635 551 (87) 84 (13)

Clear cell 29 15 (52) 14 (48)

Serous 70 38 (54) 32 (46)

Carcinosarcoma 34 10 (29) 24 (71)

Undifferentiated 14 2 (14) 12 (86)

Histologic grade 623 b0.001

Grade 1–2 511 471 (92) 40 (8)

Grade 3 112 68 (61) 44 (39)

Metastatic lymph nodes 630 b0.001

Negative 559 457 (82) 102 (18)

Positive 71 37 (52) 34 (48)

Ploidy 490 b0.001

Diploid 381 302 (79) 79 (21)

Aneuploid 109 57 (52) 52 (48)

Myometrial infiltration 779 b0.001

b50% 483 410 (85) 73 (15)

≥50% 296 205 (69) 91 (31)

ERα 741 b0.001

Positive 555 514 (93) 41 (7)

Negative 186 75 (40) 111 (60)

Abbreviations: Asparaginase-like protein 1 (ASRGL1), Estrogen receptorα (ERα), Interna-

tional Federation of Gynaecology and Obstetrics (FIGO).

Missing information on histologic grade for 12 patients, metastatic nodes for 152 patients,

ploidy for 292 patients, myometrial infiltration for 3 patients, and ERα status for 41

patients.
a Endometrioid cases only.

Table 2

Multivariable survival analyses of endometrial carcinoma patients according to the Cox’ proportional hazards regression model.

Variable na Unadj.HR 95% CI P-value Adj.HR 95% CI P-value

Age (mean = 65) b0.001 b0.001

770 1.05 1.04–1.07 1.03 1.02–1.05

FIGO stage b0.001 b0.001

I/II 648 1 1

III/IV 122 8.77 6.17–12.45 5.08 3.49–7.39

Histologic type b0.001 0.001

Endometrioid 623 1 1

Non-endometrioid 147 6.73 4.71–9.60 2.29 1.42–3.70

Histologic grade b0.001 0.050

1/2 511 1 1

3 259 6.11 4.16–8.96 1.73 1.00–2.97

ASRGL1b b0.001 0.031

High 604 1 1

Low 166 4.10 2.89–5.82 1.53 1.04–2.26

a Cases with data available for all variables included in the univariate analyses (N= 770).
b Evaluated in hysterectomy samples by IHC (high = 2–9, low = 0–1).
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expression as 2–9. An earlier study defined positive staining in N75% of

cells as cut-off for high ASRGL1 expression regardless of staining inten-

sity [11]. The fact that different scoringmethods and cut-offs for ASRGL1

demonstrate prognostic impact supports its robustness as a prognostic

marker in endometrial carcinoma.

Low ASRGL1 protein expression has been linked to aggressive

disease and poor survival in endometrial carcinoma, and is reported to

be an independent prognostic marker in endometrioid endometrial

carcinoma [11]. This is consistent with our findings, and we are the

first to demonstrate that ASRGL1 has independent prognostic value

also in the whole patient population.

No IHC biomarkers are currently clinically used to recommend adju-

vant chemotherapy in endometrial carcinomapatients [20–22], and risk

stratification is based on traditional parameters such as FIGO stage and

histological grade. Low ASRGL1 expression can potentially be used as a

biomarker aiding in the selection of patients that may benefit from ad-

juvant treatment. Patients with grade 1–2 endometrioid endometrial

carcinoma are generally assumed to have low risk disease and are not

recommended for adjuvant therapy [20]. Interestingly, 8% of the

patients in our cohort with grade 1–2 endometrioid endometrial carci-

noma have low ASRGL1 level, and it is tempting to speculate whether

these patients could benefit from more extensive treatment.

Chemotherapy is often related to adverse effects and reduced quality

of life, and biomarkers that can identify patients that may not benefit

from additional treatment could potentially improve quality of life for

those patients as well as reduce medical costs. We observed that high

expression of ASRGL1 is associated with a favorable outcome, both in

the endometrioid subgroup and in the whole patient cohort. It would

be interesting to further explore if high ASRGL1 expression could be

used to select patients that may be spared from the detrimental effects

associated with adjuvant treatment.

Loss of the hormone receptor ERα is associated with aggressive

disease and poor survival in endometrial carcinoma patients [23,24],

and ERα is currently one of the best validated prognostic molecular bio-

markers in endometrial carcinoma [25]. An estrogen response element

has been identified in the promotor of the ASRGL1 gene [8], suggesting

a link between this steroid hormone and expression of ASRGL1. A po-

tential regulatory role of estrogen on ASRGL1 expression could explain

the association between hormone receptor status and ASRGL1 levels

found in both primary tumor and metastatic lesions in our study.

ASRGL1 status inmetastases has not previously been investigated. In

the current study we describe the protein expression of ASRGL1 in 179

metastatic lesions and their corresponding primary tumors from 87

patients, also linking this to histology and ERα status. Interestingly, in

most cases where primary tumor has a low ASRGL1 level, ASRGL1

expression is also low in corresponding metastases. In most patients

with multiple metastases, similar expression of ASRGL1 is found in all

metastatic lesions from the same individual. This is in contrast to

hormone receptors, where the expression pattern of metastatic lesions

in individual patients seems to be more heterogeneous [26]. 4 patients

with ASRGL1 low primary tumors had high expression of ASRGL1 in

some but not all metastases. Possible explanations include that these le-

sions originate from cells that metastasized at an earlier time point

where primary tumor expressed ASRGL1, or that small ASRGL1 positive

regions in primary tumor were missed when collecting biopsies or

selecting areas for preparation of TMAs. It must be emphasized that

our study only includes sampled metastatic lesions with corresponding

primary tumors. Patients may have metastases that are surgically un-

available or that have not been sampled for other reasons. However,

wefind this to be interestingdescriptive observations that should be ex-

plored further in future studies.

ASRGL1 is demonstrated to degrade both ʟ-asparagine and

isoaspartyl peptides in vitro [5], but the functional role in normal and

cancerous cells is not known. Asparagine is reported to suppress

apoptosis [27], and isoaspartyl peptides generated in proteins by non-

enzymatic damage leads to misfolding, dysfunction and reduced degra-

dation [5,28]. This indicates that loss of ASRGL1 function could lead to

both elevated cellular asparagine levels and accumulation of dysfunc-

tional proteins. Investigating the cellular effects of ASRGL1 activity as

well as molecular mechanisms related to loss of ASRGL1 expression

would be interesting, and could beperformed through in vitro and even-

tually also in vivo studies. ʟ-Asparaginase has been used to treat acute

lymphoblastic leukemia and Non-Hodgkin lymphoma for several

Fig. 2.ASRGL1 protein level decreaseswith dedifferentiation, and predicts survival in EEC. The proportion of tumorswith lowASRGL1 expression is increasingwith higher gradewithin the

endometrioid endometrial carcinoma patients, and is higher in non-endometrioid patients compared to endometrioid grade 3 patients. Numbers on bars represent the number of patients

with low ASRGL1. P-values were calculated using the Fisher's exact test (A). Low protein expression of ASRGL1 is associatedwith poor survival in patients with endometrioid endometrial

carcinoma (B). Abbreviations: CAH: complex atypical hyperplasia, G: grade, NE = non-endometrioid. *Information on grade missing for 12 patients.

Table 3

Multivariable survival analyses of endometrioid endometrial carcinoma patients accord-

ing to the Cox’ proportional hazards regression model.

Variable na Unadj.HR 95% CI P-value Adj.HR 95% CI P-value

Age (mean

= 64)

b0.001 b0.001

622 1.06 1.03–1.08 1.06 1.03–1.08

Histologic

grade

b0.001 0.008

1/2 510 1 1

3 112 3.28 1.96–5.47 2.12 1.21–3.70

ASRGL1b b0.001 0.001

High 539 1 1

Low 83 3.40 1.99–5.79 2.64 1.47–4.74

a Cases with data available for all variables included in the univariate analyses (N=622).
b Evaluated in hysterectomy samples by IHC (high = 2–9, low = 0–1).
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decades, and the therapeutic potential of ʟ-asparaginase is now being

explored in several solid tumors [29–32]. As ASRGL1 is proposed to dis-

play proteolytic activity against ʟ-asparagine and loss of this enzyme is

associated with aggressive disease and poor prognosis, ʟ-asparaginase

could potentially be a candidate drug for treatment of endometrial

carcinoma.

We have validated ASRGL1 as a strong prognostic marker in endo-

metrial carcinoma in a prospective setting, and find that loss of both

mRNA and protein expression predicts poor outcome. Low ASRGL1 ex-

pression had independent prognostic value both in the endometrioid

subgroup and in the endometrial carcinoma population in general,

and its clinical utility as a prognosticmarker should be further evaluated

through clinical trials.

Supplementary data to this article can be found online at https://doi.

org/10.1016/j.ygyno.2017.10.025.
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Supplementary Table S1. ASRGL1 protein expression related to 

clinicopathological variables in 635 patients with endometrioid endometrial 

carcinoma. 

  ASRGL1  

 

Variable 

 

N 

 

High n (%) 

 

Low n (%) 

 

P-value (x2) 

Age                                          635                                                                   0.475 

< 66 363 318 (88) 45 (12)  

≥ 66 272 233 (86) 39 (14)  

FIGO stage 2009                    635                                                                  <0.001 

I-II 561 505 (90) 56 (10)  

III-IV  74        46 (62) 28 (38)   

Histologic grade                    623                                                                  <0.001 

Grade 1-2 511 471 (92)         40  (8)  

Grade 3 112   68 (61)  44 (40)  

Metastatic nodes                   506                                                                  <0.001 

Negative     466 414 (89)  52 (11)  

Positive       40  25 (63)        15 (37)  

Ploidy     381          0.007 

Diploid     322 275 (85) 47 (15)  

Aneuploid 59   42 (71) 17 (29)  

Myometrial infiltration           634                                                                  <0.001 

<50%     406 371 (91) 35  (9)  

≥50%     228 180 (79)  48 (21)  

ERα                                         602                                                                   <0.001 

Positive     503 476 (95)  27  (5)  

Negative       99   50 (51)  49 (49)  

 

Abbreviations: Asparaginase-like protein 1 (ASRGL1), Estrogen receptor α (ERα), 
International Federation of Gynaecology and Obstetrics (FIGO). 

 

Missing information on histological grade for 12 patients, metastatic nodes for 129 

patients, ploidy for 254 patients, myometrial infiltration for 1 patient, and ERα status 

for 33 patients. 

 

 



“ASRGL1 high” primary tumor “ASRGL1 high” ERα positive metastasis
“ASRGL1 low” primary tumor “ASRGL1 low” ERα negative metastasis

Grade 1 (n = 11)

Grade 2 (n = 20)

Grade 3 (n = 17)

Endometrioid EC 

Non endometrioid EC 

Serous (n = 20)

Carcinosarcoma (n = 9) Clear  cell (n = 6) Undifferentiated
       (n = 3)

*

Supplementary figure S1. ASRGL1 status in individual metastatic lesions.

Expression pattern of ASRGL1 in sampled metastatic lesions with corresponding
primary tumors from patients diagnosed with endometrial carcinoma. Rectangles
represent primary tumorsof individual patients and each line of circles one
metastasis, illustrationg the status of ASRGL1 (purple) and ERα (yellow) for that 
lesion. *Information on grade missing for one patient. Abbreviations: EC =
endometrial carcinoma, ERα = estrogen receptor α
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