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Association of a Low-Frequency Variant in HNF1A
With Type 2 Diabetes in a Latino Population
The SIGMA Type 2 Diabetes Consortium

IMPORTANCE Latino populations have one of the highest prevalences of type 2 diabetes
worldwide.

OBJECTIVES To investigate the association between rare protein-coding genetic variants and
prevalence of type 2 diabetes in a large Latino population and to explore potential molecular
and physiological mechanisms for the observed relationships.

DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing was performed on DNA
samples from 3756 Mexican and US Latino individuals (1794 with type 2 diabetes and 1962
without diabetes) recruited from 1993 to 2013. One variant was further tested for allele
frequency and association with type 2 diabetes in large multiethnic data sets of 14 276
participants and characterized in experimental assays.

MAIN OUTCOME AND MEASURES Prevalence of type 2 diabetes. Secondary outcomes
included age of onset, body mass index, and effect on protein function.

RESULTS A single rare missense variant (c.1522G>A [p.E508K]) was associated with type 2
diabetes prevalence (odds ratio [OR], 5.48; 95% CI, 2.83-10.61; P = 4.4 × 10−7) in hepatocyte
nuclear factor 1-α (HNF1A), the gene responsible for maturity onset diabetes of the young
type 3 (MODY3). This variant was observed in 0.36% of participants without type 2 diabetes
and 2.1% of participants with it. In multiethnic replication data sets, the p.E508K variant was
seen only in Latino patients (n = 1443 with type 2 diabetes and 1673 without it) and was
associated with type 2 diabetes (OR, 4.16; 95% CI, 1.75-9.92; P = .0013). In experimental
assays, HNF-1A protein encoding the p.E508K mutant demonstrated reduced transactivation
activity of its target promoter compared with a wild-type protein. In our data, carriers and
noncarriers of the p.E508K mutation with type 2 diabetes had no significant differences in
compared clinical characteristics, including age at onset. The mean (SD) age for carriers was
45.3 years (11.2) vs 47.5 years (11.5) for noncarriers (P = .49) and the mean (SD) BMI for
carriers was 28.2 (5.5) vs 29.3 (5.3) for noncarriers (P = .19).

CONCLUSIONS AND RELEVANCE Using whole-exome sequencing, we identified a single
low-frequency variant in the MODY3-causing gene HNF1A that is associated with type 2
diabetes in Latino populations and may affect protein function. This finding may have
implications for screening and therapeutic modification in this population, but additional
studies are required.

JAMA. 2014;311(22):2305-2314. doi:10.1001/jama.2014.6511

Supplemental content at
jama.com

The Authors and other
collaborators of the SIGMA Type 2
Diabetes Consortium are listed at
the end of this article.

Corresponding Author: Jose C.
Florez, MD, PhD, Center for Human
Genetic Research, Diabetes Unit,
Department of Medicine,
Massachusetts General Hospital,
Boston, MA 02114
(jcflorez@partners.org).

Research

Original Investigation

2305

Copyright 2014 American Medical Association. All rights reserved.

Downloaded From:  by a Norwegian Institute of Public Health User  on 01/14/2019



Copyright 2014 American Medical Association. All rights reserved.

T he estimated prevalence of type 2 diabetes in Mexican
adults was 14.4% in 2006,1 making it one of the leading
causes of death in Mexico.2 Based on statistics from 1999-

2002, the standardized prevalence of diagnosed diabetes was
10% in Mexican Americans and 5.2% in whites.3 Although en-
vironmental factors such as lifestyle and diet likely explain the
majority of this health disparity, it was recently found that ge-
netic variants in the gene SLC16A11 (NCBI NC_000017.11) were
associated with higher rates of type 2 diabetes in Latinos.4

Latinos, defined as persons who trace their origin to Central and
South America, and other Spanish cultures, fall on a con-
tinuum of Native American and European genetic ancestry.4

Identifying genetic factors associated with type 2 diabetes in
Latino populations could increase understanding of its patho-
physiology, improve risk prediction, and focus treatment choice
based on knowledge of the underlying biology of the disease.

Type 2 diabetes is typically diagnosed after age 40 years,
is caused by the combined action of genetic susceptibility and
environmental factors, is associated with obesity, and is poly-
genic. Genome-wide association studies for typical type 2 dia-
betes forms have identified more than 70 distinct genetic loci
carrying common variants that are associated with modest dif-
ferences in prevalence of the disease.5-7 Because these com-
mon variants explain a small fraction of the estimated herita-
bility, it is hypothesized that low-frequency or rare variants of
strong effects, not captured by genome-wide association stud-
ies but amenable to sequencing approaches, contribute in a
meaningful proportion to the genetic architecture of the dis-

ease. To date, low-frequency variants with near-complete pen-
etrance have not been found in whole-exome sequencing stud-
ies of type 2 diabetes,8,9 although a recent whole-genome
sequencing study found rare variants associated with type 2
diabetes prevalence in an Icelandic population.10

To explore the association of rare protein-coding genetic
variants with type 2 diabetes in the Latino population, we per-
formed whole-exome sequencing (which captures both com-
mon and rare genetic variants in the protein-coding regions of
genes) on case-control studies composed of individuals of
Mexican or another Latino ancestry, with replication in a sepa-
rate multiethnic data set.

Methods
Study Design and Patients
ThisstudywasperformedaspartoftheSlimInitiativeinGenomic
Medicine for the Americas (SIGMA) Type 2 Diabetes Consortium,
whose goal is to characterize the genetic basis of type 2 diabetes
in Mexican and Latin American populations drawn from 4
studies4,11-13 (Table 1, details of these studies are provided in the
Supplement). All participants had either Mexican or other Latino
ancestrybasedonself-reportandverificationusingprincipalcom-
ponent analysis of genotype data. Replication studies included
individualsfromamultiethnicstudy(Type2DiabetesGeneticEx-
plorationbyNext-GenerationSequencinginMulti-EthnicSamples
[T2D-GENES] and Genetics of T2D [GoT2D]) and an ongoing col-

Table 1. Characteristics of Cohorts Comprising the SIGMA Type 2 Diabetes Whole-Exome Sequence Project

Source
Sample
Location Study Design

No. of
Participants

No (%) of
Men

Mean (SD)

Age, y
Age of

Onset, y BMI

Fasting
Glucose,
mg/dL

Proportion
With Native

American
Ancestry

UNAM/INCMNSZ
Diabetes Study,4 2014

Mexico City,
Mexico

Prospective
cohort

Controls 539 206 (38.2) 55.0 (9.4) 28.4 (3.8) 86.4 (7.2) 0.75 (0.10)

Type 2 diabetes 533 216 (40.5) 55.3 (12.5) 43.8 (11.2) 28.5 (4.4) 0.78 (0.11)

Diabetes in Mexico
Study,4 2014

Mexico City,
Mexico

Prospective
cohort

Controls 459 119 (25.9) 52.4 (7.7) 28.0 (4.6) 90.1 (7.2) 0.67 (0.18)

Type 2 diabetes 509 168 (33.0) 55.5 (11.1) 47.2 (10.6) 29.0 (5.4) 0.79 (0.12)

Mexico City Diabetes
Study,11,12 2005 and
2011

Mexico City,
Mexico

Prospective
cohort

Controls 526 204 (38.8) 62.3 (7.5) 29.4 (4.8) 90.1 (9.0) 0.69 (0.14)

Type 2 diabetes 270 110 (40.7) 64.0 (7.5) 55.0 (9.7) 29.9 (5.5) 0.67 (0.15)

Multiethnic Cohort,1

2000
Los
Angeles,
California

Prospective
cohort

Controls 438 212 (48.5) 59.3 (7.2) 26.9 (4.3) 0.53 (0.09)

Type 2 diabetes 482 227 (47.0) 58.7 (7.2) NA 29.8 (5.7) NA 0.58 (0.08)

Overall SIGMA

Controls 1962 742 (37.8) 57.3 (8.9) 28.3 (4.5) 88.2 (9.0) 0.67 (0.15)

Type 2 diabetes 1794 719 (40.1) 57.6 (10.6) 47.5 (11.5) 29.1 (5.2) 0.71 (0.15)

Abbreviations: BMI, body mass index, calculated as weight in kilograms divided
by height in meters squared; NA, not available; UNAM/INCMNSZ, Instituto
Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad
Nacional Autónoma de México.

SI conversion factor: To convert fasting glucose from mg/dL to mmol/L, multiply
by 0.0555.
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lection of Mexican participants from 18 indigenous groups for ge-
netic studies (Diabetes in Mexico Study 2[DMS2]) (eTable 1, de-
tails of these studies are provided in Supplement). Diagnosis of
type 2 diabetes followed the American Diabetes Association cri-
teria. Each participant provided written informed consent for ge-
neticinvestigation.Allcontributingstudieswereapprovedbytheir
respective local ethics committees.

Genetic Studies
Sample Selection and Whole-Exome Sequencing
In total, 3862 samples were selected for whole-exome sequenc-
ing from a larger data set of 8214 samples previously genotyped
with the OMNI 2.5 array (Illumina).4 To increase representation
of genetic variation not queried in studies of European popu-
lations, selection criteria for whole-exome sequencing was based
on the proportion of Native American ancestry estimated from
principal component analysis of genotype data (eMethods sec-
tion and eFigures 1 and 2 in the Supplement). Whole-exome se-
quencing was performed on blood DNA from these samples
using Sure-Select Human All Exon v2.0 (Illumina), 44-Mb–baited
target. Raw reads were mapped with the Burrows-Wheeler
Aligner, reprocessed with Picard to recalibrate base quality scores
and perform local realignment around known indels. Genetic
variants were called with the Genome Analysis Toolkit Unified
Genotyper module14 and were filtered to remove likely artifacts
usingseveralquality-controlmetricssuchasmeancoverage,con-
cordance of nonreference genotypes with array data, and miss-
ing rate as specified in the eMethods section in the Supplement.
Independent replication was sought in whole-exome sequence
data from the T2D-GENES and GoT2D projects, which together
sequenced 13 098 individuals from 5 ethnic groups (Europeans,
East Asians, African Americans, South Asians, and Latinos).

Statistical Analyses
We used the liability threshold model, which models partici-
pants as having an unobserved continuous phenotype called
liability.15 We computed the residual value of the liability after
accounting for the part that can be predicted by each partici-
pant's age and body mass index (BMI) using LTSOFT software
(http://www.hsph.harvard.edu/alkes-price/software).16 Signifi-
cance was evaluated with the residual liabilities as outcome
using an expedited mixed linear model,17 which adjusts for sex,
ancestry (eFigure 3 in the Supplement), and relatedness via a
variance-component matrix with 2-sided tests. Odds ratios (ORs)
were estimated using logistic regression models on type 2 dia-
betes status adjusting for age, BMI, and ancestry as specified in
the eMethods section in the Supplement. The experiment-
wide statistical significance threshold was set to P < 5 × 10−8 to
adjust for the number of variants evaluated. In addition to single-
variant testing, the sequence kernel association test18 and col-
lapsing tests19 were used to test the possibility of genes and
groups of genes associated to disease susceptibility via aggre-
gation of rare variants.

Results of all functional experiments are expressed as
means (SDs), and experiments were performed on at least 3 in-
dependent occasions unless otherwise specified. Statistical
analyses were performed using the 2-tailed t test, and P <.05
was considered significant for these functional studies.

Functional Studies
Plasmids, Cell Culture, and Transfections
Details of functional studies are specified in the eMethods
section in the Supplement. The human liver hepatocyte
nuclear factor 1α (HNF1A) complementary DNA in expres-
sion vector pcDNA3.1/HisC (NCBI Entrez Gene BC104910.1)
was used for all cell studies.20 Firefly luciferase reporter vec-
tors (pGL3) included promoter sequences for the rat albumin
(pGL3-RA), human HNF4A (NCBI Entrez Gene 3172) P2
(pGL3-HNF4AP2), and mouse Glut2 (pGL3-GLUT2) genes.
Renilla luciferase reporter construct pRL-SV40 (GenBank
AF025845.2) was used as an internal control. The HNF-1A
mutants were made using the QuikChange Site-Directed XL
Mutagenesis Kit (Stratagene). HeLa cells and MIN6 β-cells
were grown as previously described,20,21 and transfected
according to manufacturers’ recommendations using the
Metafectene Pro (Biontex-USA) or Lipofectamine 2000 (Life
Technologies), respectively.

Transactivation and Protein Expression Analyses
Transcriptionalactivitywasmeasured24hoursaftertransfection
using the Dual-Luciferase Reporter Assay System (Promega
Biotech)onaChameleonluminometer(Hidex).TomeasureHNF-
1A protein levels, transfected HeLa cells were lysed in passive ly-
sis buffer (Promega Biotech) and proteins were analyzed (from
2.5 μg of total protein) by SDS-PAGE and immunoblotting using
an HNF-1A-tag (anti-Xpress antibody, Life Technologies).

DNA Binding Studies
The HNF-1A protein was produced in a coupled in vitro tran-
scription/translation System (TnT-T7, Promega Biotech). The
level of binding of HNF-1A proteins to a radiolabeled rat albu-
min oligonucleotide was investigated by electrophoretic mo-
bility shift assays as previously described.22

Immunofluorescence
Analysis of nuclear vs cytosol localization of HNF-1A proteins
was performed in 500 cells using an HNF-1A-tag (anti-Xpress
antibody) and Alexa Fluor 488 (Life Technologies) essentially
as reported previously.20

Results
Study Participants
Demographic and clinical characteristics of the 3756 partici-
pants in the discovery cohort are shown in Table 1. Only 2% of
type 2 diabetes cases had onset before 25 years, and 81% of
them were overweight or obese (BMI >25, calculated as weight
in kilograms divided by height in meters squared).

Genetic Studies
Exome-wide Search for Low-Frequency Variants Associated
With Type 2 Diabetes
Our hybrid selection libraries covered 76% of sequenced tar-
gets at 20x depth of coverage with a mean of 67.17x. The con-
cordance of nonreference genotypes between the sequence
data and the array data was 0.995. After quality control of se-
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quence data, 1 190 196 variants were observed in the whole-
exome sequencing data of 3756 samples (1794 type 2 diabetes
cases and 1962 controls; eTable 2 in the Supplement). Of these,
264 995 variants were observed in at least 2 of our samples but
absent in the 1000 Genomes Project23 and the Exome Sequenc-
ing Project24 (eTable 3 in the Supplement).

In our single-variant association analyses, a cluster of linked
common missense variants in SLC16A11 were consistently as-
sociated with type 2 diabetes prevalence (P = 2.08 × 10−10) as had
been previously reported in genome-wide association studies by
the SIGMA T2D Consortium and others (eFigure 4A and eTable
4 in the Supplement).4,25

Among variants with minor allele frequency of less than
5%, a single missense variant departed from the null distribu-
tion (eFigure 4B in the Supplement). This variant encoded an

NCBI NP_000536.5:p.E508K (p.E508K) substitution (NCBI
NC_000012.12:c.1522G>A; chr12:121437091_G>A) in exon 8 of
HNF1A, the gene responsible for the maturity onset diabetes
of the young type 3 (MODY3) subtype of MODY3 (Mendelian
Inheritance in Man No. 142410). The p.E508K variant was ob-
served in 37 type 2 diabetes cases (1 in homozygous form) and
in 7 participants without diabetes (OR, 5.48; 95% CI, 2.83-
10.61; P = 4.4 × 10−7; Figure 1 and Figure 2 and eFigure 5 in the
Supplement).

In our replication effort, the p.E508K variant was found
in the T2D-GENES Latino group26,27 but entirely absent in all
other populations, showing a nominally significant associa-
tion with increased prevalence for type 2 diabetes (7 affected
carriers and 1 nonaffected carrier; OR, 5.61; 95% CI, 1.34-
23.49; P = .0013). After de novo genotyping 1178 additional

Figure 1. Discovery and Replication of the HNF1A p.E508K Variant

1 10010 31.6
Odds Ratio (95% CI)

3.16

P Value
Source
Initial scan

Odds Ratio
(95% CI)

No. of Participants

Type 2
Diabetes Controls

Participants With p.E508K Variant

Frequency, %

Type 2
Diabetes Controls

No.

Type 2
Diabetes Controls

.0005MCDS11,12 16.04 (3.38-76.20)270 526 2.59 0.197 1

.0327MEC13 6.08 (1.16-31.87)482 438 1.45 0.237 1

.0702DMS4 6.00 (0.86-41.75)509 459 2.16 0.2211 1

.0063533 539 2.25 0.7412 4UIDS4 3.26 (1.40-7.60)
4.40 x 10–7SIGMA mega-analysis 5.48 (2.83-10.61)

.0013Replication summary 4.16 (1.75-9.92)

Replication studies
.0183T2D-GENES Latinos26,27 5.61 (1.34-23.49)1016 922 0.59 0.116 1
.0246DMS2 articlea 3.50 (1.17-10.44)427 751 2.11 0.539 4

2.39 x 10–9Overall summary 4.96 (2.93-8.38)

Forest plot showing odds ratio estimates and 95% confidence intervals at
p.E508K (squared boxes) from the 4 SIGMA studies, the SIGMA pooled
mega-analysis, the replication studies, and the overall meta-analysis. Odds
ratios for the meta-analyses are represented with a diamond. SIGMA
mega-analysis represents the combined results from the 4 SIGMA studies. DMS
indicates Diabetes in Mexico Study; MCDS, Mexico City Diabetes Study; MEC,

Multiethnic Cohort; UIDS, Universidad Nacional Autónoma de México/Instituto
Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Diabetes Study;
T2D-GENES, Type 2 Diabetes Genetic Exploration by Next-Generation
Sequencing in Multi-Ethnic Samples.
a Represents data from the current article.

Figure 2. The HNF-1A Protein With a Heat Map of Diabetes-Associated Mutations

Pseudo POU Homeo Transactivation 

DNA binding 

Dimerization Domains

Diabetes-associated 
mutations

1   Amino acids 32   100   199   287  631

p.E508K p.I27L p.P112L p.R229Q p.Q466X p.P447L

p.M490T

p.P379fsdelCT 

High (>60%) Low (<25%)Medium (45%-55%)

Frequency of reported mutated amino acid residues associated
with maturity onset diabetes of the young type 3 (MODY3)

The dimerization, DNA binding, and transactivation domains of the HNF-1A
protein49-51 are highlighted. The position of the p.E508K mutation is shown as
well as a common variant (p.I27L), MODY3 mutations studied (p.P112L,
p.R229Q, p.P379fsdelCT, p.P447L, p.Q466X), and a rare variant associated with
type 2 diabetes (p.M490T). The overlaid heat map illustrates how many of the
amino acid residues of each HNF-1A domain have been reported to be mutated

and hence due to the monogenic diabetes form MODY3. Domain areas in red
have a higher concentration of reported mutations than areas in orange and
green. Pseudo POU indicates protein domain that includes short sequence
motifs similar to regions in the POU family of transcriptional activators; Homeo,
protein homeodomain that binds DNA in a sequence-specific manner.
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Mexican self-identified indigenous individuals (DMS2, fur-
ther details are provided in the Supplement), we observed 9
affected carriers and 4 nonaffected carriers (OR, 3.50; 95% CI,
1.17-10.44; P = .0183). Combined, the 2 replication studies iden-
tified 15 affected carriers and 5 nonaffected controls (OR, 4.16;
95% CI, 1.75-9.92; P = .0013). Combining all available data
yielded 52 affected carriers and 12 nonaffected controls (OR,
4.96; 95% CI, 2.93-8.38; an experiment-wide P = 2.39 × 10−9 ;
Figure 1).

We found no evidence for p.E508K in the 1092 samples of
the 1000 Genomes Project,23 the 6503 samples in the Exome
Sequencing Project24 or in 11 160 non-Latino samples in the
T2D-GENES and GoT2D data sets. Analysis of local ancestry in
our data indicates that all p.E508K carriers in our studies carry
at least 1 segment of inferred Native American ancestry (eTable
5 in the Supplement).

In group tests that included combinations of rare (MAF
<1%) nonsynonymous, loss-of-function variants, or both in up
to 15 469 genes (eTables 6 and 7 in the Supplement), we found
no significant associations after removing the effect of the
HNF1A p.E508K variant. The aggregated effect of these po-
tentially functional variants in 2 gene-sets of 13 MODY genes
and 70 previously implicated type 2 diabetes genes were simi-
larly negative after removing the effect of the HNF1A p.E508K
variant (eTables 8 and 9 in the Supplement).

Functional Studies
Mutations in HNF1A that cause MODY diabetes alter protein
function through reduced transactivation, decreased bind-
ing to DNA, or disrupted nuclear localization.20 Because
p.E508K is located in the HNF-1A transactivation domain, we
investigated its effect on transactivation using a reporter con-
struct assay in HeLa cells. Protein carrying p.E508K was com-
pared with a wild-type HNF-1A variant as well as 4 other HNF-1A
variants in the DNA-binding or transactivation domains:
p.M490T, which has been observed in 1 patient with type 2
diabetes,28 and 3 mutations (p.P447L, p.P379fsdelCT, and
p.R229Q) previously identified in patients with MODY3.29 The
p.E508K mutant demonstrated lower transcriptional activity
on the HNF-1A-responsive rat albumin promoter than wild-
type HNF-1A (P < .0001) or p.M490T. However, the 3 MODY3
mutants showed greater reductions in transactivation
(Figure 3). Similar reductions in p.E508K transcriptional acti-
vation were found in MIN6 cells (eFigure 6A in the Supple-
ment), and using 2 different reporter constructs (GLUT2 and
HNF4A promoters; eFigure 6B in the Supplement). The
p.E508K mutant protein bound to an HNF-1A binding site-
containing oligonucleotide with equal affinity to the wild-
type protein (Figure 4 and eFigure 6C in the Supplement),
whereas 2 MODY3-associated mutants with mutations in the
DNA-binding domain, p.P112L and p.R229Q, demonstrated im-
paired DNA binding (Figure 4).20

Compared with wild-type HNF-1A, the p.E508K mutant
demonstrated slightly impaired nuclear targeting, with an in-
creased proportion of cells displaying both cytosolic and
nuclear staining. The shift in nuclear localization was less than
that observed using the cytosol-retained HNF-1A mutant
p.Q466X (Figure 5 and eFigure 6D in the Supplement). Expres-

sion of the p.E508K protein was 47.5% lower than that of wild-
type HNF-1A (P = 1.03×10−5; eFigure 6E in the Supplement).

Clinical Characteristics of p.E508K Carriers
When comparing p.E508K carriers with noncarriers among the
3756 participants in our study, we did not observe statisti-
cally significant differences in the mean (SD) age of diabetes
onset: 45.3 (11.2) years vs 47.5 (11.5) years, P = .49; BMI, 28.2;
(5.5) vs 29.3 (5.3), P = .19; waist circumference in men, 92.9 (7.0)
cm vs 99.3 (11.0) cm, P = .14 or women, 98.0 (13.9) cm vs 99.7
(13.9) cm, P = .64; or in fasting glucose levels, 176.5 (84.6) mg/dL
vs 165.7 (75.6) mg/dL, P = .43 (To convert fasting glucose from
mg/dL to mmol/L, multiply by 0.0555; Table 2 and Figure 6).

Discussion
We performed whole-exome sequencing in 3756 individuals
of Mexican and Mexican American ancestry and performed an
exome-wide search for low-frequency and rare variants asso-
ciated with type 2 diabetes. The only rare variant with a sig-
nificant association with type 2 diabetes prevalence was the
p.E508K variant in HNF1A, the gene responsible for MODY3.
The effect size of the variant (OR, 4.96; 95% CI, 2.93-8.38) was
the largest observed to date for any diabetes variant with a fre-
quency more than 1 in 1000. This association was replicated
in 2 independent cohorts of Latinos and Mexicans with an OR
of similar magnitude. We also demonstrated, using tran-
siently transfected cell models, reduced levels of transactiva-
tion activity for p.E508K compared with wild-type HNF-1A. As
shown in binding assays, this reduction in activity was not

Figure 3. Transcriptional Activation of HNF-1A p.E508K as Measured by
the Expression of the Firefly Luciferase Reporter Gene
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driven by differences in DNA-binding affinity but may be at-
tributable to reduced protein expression and altered nuclear
localization of the mutant protein.

MODY is a monogenic cause of diabetes, which usually
manifests at earlier ages (<25 years) and presents in nonobese
patients.30 Each MODY family carries a rare coding mutation
in 1 of 13 genes that has an autosomal dominant pattern of
transmission.30 Mutations in the known MODY genes are
thought to explain between 0.18% and 1.8% of all type 2 dia-
betes cases.31-34

The p.E508K variant has been reported in 2 published
articles,35,36 both reporting on individuals with MODY. In 1 case,
a family member had early onset diabetes (age 17 years), and
carried both HNF1A p.E508K and a mutation in HNF4A,
p.R80Q. The father from whom p.E508K was inherited was di-
agnosed with type 2 diabetes at age 57 years.35,36 The finding

of these variants in patients with MODY suggested that they
might be high-penetrance alleles. Our study in large popula-
tions without ascertainment bias for early-onset showed that
p.E508K was associated with a 5-fold increase in prevalence,
but incomplete penetrance. Moreover, in our study, carriers
of p.E508K did not show early-onset of type 2 diabetes, were
indistinguishable from the wider type 2 diabetes population
in adiposity or glycemia, and thus did not fulfill classical MODY3
diagnostic criteria (Table 2, Figure 6). These data are consis-
tent with the possibility that p.E508K is a weaker allele than
some other MODY3 mutations and that ascertainment bias may
have led to overestimation of the effects of this and other MODY
mutations, as suggested previously.28

A private mutation (G319S) in HNF1A has been found in
Oji-Cree populations associated with early-onset type 2
diabetes.37 Also, a very rare frameshift deletion in HNF1A,

Figure 4. DNA Binding of HNF-1A p.E508K to the Rat Albumin Promoter as Studied by Electrophoretic Mobility
Shift Assay
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to antibody binding, relative to
protein-DNA complex alone) for the
DNA-protein complexes, confirming
the identity of HNF-1A within the
complexes. B, A competition assay
was performed by adding increasing
amounts (0x, 10x, 50x, or 100x) of
radiolabeled DNA fragment,
confirming the identity of the
radiolabeled probe.

Figure 5. Intracellular Localization of HNF-1A p.E508K in Transiently Transfected HeLa cells and MIN6 β cells

Wild-type HNF-1A

HeLa cells

MIN6 β cells

p.Q466X mutation (control)p.E508K mutation

Cells were transfected for 48 hours
and Xpress-epitope-tagged HNF-1A
proteins detected with anti-Xpress
antibody and Alexa488 (green). DNA
staining (DAPI) is shown in blue. A
previously reported HNF-1A mutant,
p.Q466X, with impaired nuclear
localization was included as a control.
For the purpose of clarity, the nuclei
have been marked with a solid white
line. To illustrate cytosolic
accumulation, the cell membrane has
been marked with a dotted white line
for mutants p.E508K and p.Q466X.
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290fsdelC, was recently associated with MODY and type 2 dia-
betes in the Icelandic population.10,38

Our study surveyed variants across the majority of protein-
coding exons in a sizable population, providing the highest-
resolution scan to date of the contribution of protein-coding
genetic variation to type 2 diabetes. Our study had 80% power
to detect variants with the OR and carrier frequency of p.E508K
(5-fold and 1% in the population). For variants of higher fre-
quency, our power was sufficient to detect a smaller effect (80%
power for variants with frequency >2% and OR>3.3). We per-
formed both single-variant analysis and burden tests that com-
bined rare variants in each gene. Only 1 rare coding variant and

1 gene showed significant association with type 2 diabetes
prevalence. These data suggest that low-frequency variants in
coding regions explain only a small fraction of the heritability
of type 2 diabetes.

Our study has limitations. Current exome-capture meth-
ods are imperfect. Additional low-frequency variants associ-
ated with type 2 diabetes might have been missed due to in-
complete coverage of all human exons, and, by design, this
technology does not detect variants in the noncoding major-
ity of the genome. Although a 2% frequency of p.E508K among
type 2 diabetes cases could translate into more than 100 000
carriers in Mexico alone, this number is still far from explain-

Table 2. Phenotypic Characteristics of 3756 Participants From the SIGMA Studies According to Type 2 Diabetes Status and p.E508K Carrier Status

Mean (SD) P Value
Carriers vs NoncarriersType 2 Diabetes Controls

p.E508K
(n = 37)

p.E508
(n = 1757)

p.E508K
(n = 7)

p.E508
(n = 1955)

Type 2
Diabetes Controls

Age, y 55.9 (9.6) 57.6 (10.7) 54.3 (9.2) 57.3 (8.9) .34 .34

Age at onset, y 45.3 (11.2) 47.5 (11.5) .49

Men 11 707 3 739

Women 26 1050 4 1216

Fasting glucose, mg/dL 176.5 (84.6) 165.7 (75.6) 86.4 (9.0) 88.2 (9.0) .43 .37

BMI 28.2 (5.5) 29.3 (5.3) 27.1 (3.5) 28.3 (4.5) .19 .55

Waist, cm

Men 92.9 (7.0) 99.3 (11.1) 90.5 (19.8) 97.6 (9.7) .14 .64

Women 98.0 (13.9) 99.7 (13.9) 95.5 (7.8) 94.9 (13.3) .64 .88

Waist to hip ratio, cm

Men 0.96 (0.05) 0.97 (0.07) 0.96 (NA)a 0.97 (0.10) .54 .88

Women 0.93 (0.07) 0.92 (0.08) 0.91 (0.05) 0.90 (0.09) .90 .85

Abbreviations: BMI, body mass index, calculated as weight in kilograms divided
by height in meters squared; NA, not applicable.

SI conversion factor: To convert fasting glucose from mg/dL to mmol/L, multiply
by 0.0555.

a Only 1 participant with this measurement.

Figure 6. Phenotypic Distribution of p.E508K Carriers
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The scatterplot shows the age of
onset and the body mass index (BMI)
for each p.E508K carrier (filled circle)
with type 2 diabetes in the discovery
studies with data on age of onset and
BMI available (n = 29). The vertical
and horizontal lines represent
classical thresholds for the clinical
diagnosis of MODY3 (age of onset
<25 years and BMI<25). Histograms
showing distributions of BMI and age
of diabetes onset 1274 SIGMA
discovery cohort participants
(p.E508K carriers and noncarriers
with Type 2 diabetes) are shown on
the left and below the scatterplot. In
the box-and-whisker plots, the
central horizontal line indicates
median, with box extremes indicating
the first and third quartiles. The
whiskers indicate maximum and
minimum values after removal of
outliers (unfilled circles).
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ing the expected overall genetic contribution to type 2 diabe-
tes. Although our study represents the largest published
exome-based survey of type 2 diabetes to date, larger sample
sizes will be needed to perform an adequately powered sur-
vey of variants at frequencies lower than 1%.39,40

The current study and a recent publication reporting an
association of common variants in SLC16A11 with type 2 dia-
betes in Latinos4 demonstrate the value of studying diverse
populations. The HNF1A p.E508K variant has not been re-
ported in other whole-exome sequencing or candidate gene
association studies for type 2 diabetes of European9,10,41 and
Asian42-45 ancestry. We surveyed a total of 25 663 exomes in
this study, both from our own study and collaborating con-
sortia. The p.E508K variant was identified only in individuals
from Mexico or in Latinos from the southern United States, in-
dicating that this variant is only found at appreciable fre-
quency in a tightly restricted subset of human populations. Fur-
ther studies will be required to characterize the fine-scale
geographic distribution of p.E508K and its association with
type 2 diabetes prevalence in other Latino populations. Our re-
sults emphasize that systematic discovery of the genetic de-
terminants of complex disease, especially for rare variants, will
require surveys across a wide range of human populations.

The association of the p.E508K variant with type 2 diabetes
prevalence in the Latino population has potential clinical impli-
cations. Approximately 4 in a thousand people in Latino popu-
lations carry p.E508K, and these individuals have a 5-fold in-
crease in prevalence for type 2 diabetes (2.1% in cases, 0.35% in
controls). Second, it is known that patients with MODY3 are sen-
sitive to sulfonylureas,46 experiencing improved metabolic con-

trol on sulfonylurea therapy compared with insulin,47 in addi-
tion to improved quality of life due to reduced injections and
capillary glucose measurements. Also, these patients have a
5-fold higher response to the sulfonylurea gliclazide than to met-
formin, which is the first-line drug of choice for the treatment
of type 2 diabetes.48 If this was shown to be the case for carriers
of p.E508K, it could motivate choice of sulfonylurea therapy for
the estimated 2% of all Latino patients with type 2 diabetes who
carry this variant. Because this response may be dependent on
additional genetic or environmental factors, further studies are
needed to determine whether metformin or a sulfonylurea
should be the first line of treatment in these patients.

Conclusions
Using whole-exome sequencing, we identified a single low-
frequency missense variant (p.E508K) in HNF1A, the gene re-
sponsible for a monogenic, early-onset form of diabetes
(MODY3), that was associated with type 2 diabetes preva-
lence in general populations of Latinos. This rare variant was
associated with a 5-fold increase in the prevalence of type 2
diabetes, but it was not associated with an early-onset form
of diabetes, and, in our data, affected carriers were clinically
indistinguishable from the wider type 2 diabetes population.
In vitro, p.E508K negatively affected transcriptional activa-
tion, protein expression, and nuclear localization. Further re-
search is warranted to evaluate the clinical relevance of these
findings, including the benefits of selective population screen-
ing and the choice of genotype-guided therapeutic regimens.
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