
  

at the University of Bergen

Thesis for the degree of philosophiae doctor (PhD)





Scientific environment

The work of this thesis, both research and writing, was done in the algorithms
group at the Department of Informatics at the University of Bergen.

Moreover, the project was done entirely under the supervision of Professor
Daniel Lokshtanov, and the project was funded by the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement no. 306992 and the Bergen Research Foundation under the
Beating Hardness by Preprocessing grant.

i



ii



Acknowledgments

First and foremost, I would like to thank my supervisor Professor Daniel Lokshtanov
for valuable insight and ideas leading to the work presented in this thesis. I gained
immensely by his advice, on both academic and non-academic aspects. I’ll surely
miss his guidance and company in immediate future.

Next I would like to thank Professor Saket Saurabh, the man behind the scene,
watching, protecting. Even my position was funded from his ERC grant. I have
learnt from him how to do research and this is certainly going to help me in my
future endeavors.

I would like to thank Syed Meesum, my friend and brother since my IIT days.
It was his suggestion to apply to Bergen for PhD in algorithms. He has remained
with me through thick and thin and I’m blessed to have a friend like him. I would
like to thank my co-authors Amer Mouawad, Fahad Panolan and Edward Eiben
for their support and commitment.

Finally, I’m blessed to have a wonderful family without whose continuous
support, this work wouldn’t have seen the light of the day.

iii



iv



Abstract

When a problem has been shown to be NP-complete, often one has to be content
with either exponential-time algorithms or resort to approximation algorithms
that sacrifice the optimality of the solution, or with ad hoc heuristics, which often
remain unreliable. In multivariate algorithms, one tries to capture any hidden
structure in the input via a set of parameters. For example, for a single parameter
encoded by a number k, one tries to find an algorithm whose running time is
of the form f(k) · nO(1). Such an algorithm is called an FPT algorithm. The
interesting property of an FPT algorithm is that if k is a fixed constant, or even
grows slowly enough with the input size, the algorithm takes polynomial-time
asymptotically, regardless of whether the problem is NP-complete or not. In a
few decades, it has been shown that a vast number of NP-complete problems
admit such algorithms. For example, consider the NP-complete problem called
the Vertex Cover problem in which, given a graph on n vertices, the task is to
find a set (called vertex cover) of vertices of smallest cardinality whose removal
makes the graph edgeless. With the size k of the solution as the parameter, the
Vertex Cover problem can be solved in O(1.2738k + k · n) time [CKX10]. So,
if k is very small compared to n, the Vertex Cover problem can be solved in
time linear in the size of the input! Similarly, consider the undirected Feedback

Vertex Set problem in which, given an undirected graph, the task is to find a
set (called feedback vertex set) of vertices of smallest cardinality whose removal
makes the graph acyclic. With the size k of the solution as the parameter, this
problem can be solved in O(3.592knO(1)) time [KP14] and the directed version
can be solved in time O(4kkO(1)k!nm) [CLL+08]. Although different problems
come with their own structure and specialized techniques are needed to solve
them, there are some generic upper bounding techniques for the running time of
FPT algorithms, namely branching, iterative compression and kernelization which
we will encounter many times in the thesis.

Furthermore, there are techniques that can be used to classify problems as those
that probably do not admit FPT algorithms and to lower bound the dependence
of the running time on the parameter. These techniques can only be used to show
conditional results, because unconditional superpolynomial running time lower
bounds for problems in NP would resolve P vs NP problem. The assumption
typically used for ruling out FPT algorithms is that FPT �= W[1], while the
assumption used for lower bounding dependencies on k is called the Exponential-
time hypothesis(ETH).

v



vi

In this thesis, we make a contribution towards multivariate analysis of a class
of problems known as Hitting Set problems. In a Hitting Set problem, the
input consists of a universe U and a family of sets H and the task is to find a
set H ⊆ U such that H contains at least one element of every set in H. Some of
the most studied problems that have a natural formulation as a Hitting Set

problem are Vertex Cover, Feedback Vertex Set and Dominating Set.
In particular, this thesis focuses on the following problems:

• Feedback Vertex Set for Tournaments, where a tournament is an ori-
entation of a complete graph.

• Feedback Vertex Set for Bipartite Tournaments, where a bipartite
tournament is an orientation of a complete bipartite graph.

• �-Component Order Connectivity. In this problem, the input is a graph
G with integers � and k and the task is to determine whether there exists a
set S of vertices of cardinality at most k such that in G − S (graph obtained
after deleting vertices from S) the size of components (number of vertices in a
connected set) is bounded by �. This problem happens to be a generalization
of the Vertex Cover.

• Connected Dominating Set in sparse graphs. In the Dominating

Set problem, the input is a graph G with an integer k and the task is to
determine whether there exists a set S of vertices of cardinality at most k such
that every vertex in G has at least one neighbor in S. In the Connected

Dominating Set problem, we require that the induced subgraph G[S] is
connected. In sparse graphs, we consider the problem on graphs of bounded
degeneracy and bounded expansion. These graph classes are defined in
Chapter 8.

For the first two problems, we provide a unified novel approach to obtain a
fast FPT and exact-exponential-time algorithm with running times 1.6181k · nO(1)

and 1.3821n, respectively. In the process, we obtain structural results that may
be of independent interest. The third problem is a generalization of the Vertex

Cover problem and we provide a kernel of size 2�k which matches the lower
bound size for � = 1, which is the Vertex Cover problem itself. In this work we
obtain a weighted Expansion Lemma which may be of independent interest. At the
same time, we provide first non-trivial application (after the Namhauser-Trotter
Theorem-based kernel for Vertex Cover) of Linear Programming based kernel.
Finally, in the fourth problem, we use a new framework for obtaining polynomial
kernels called Lossy Kernelization for Connected Dominating Set in graphs
of bounded degeneracy and bounded expansion. For both of these problems, under
reasonable complexity theoretic assumptions, a polynomial kernel is forbidden.



List of papers
The results of this thesis are based on the following publications:

1. Faster Exact and Parameterized algorithm for Feedback Vertex Set
in Tournaments [KL16c].
Mithilesh Kumar and Daniel Lokshtanov. In 33rd Symposium on Theoretical
Aspects of Computer Science STACS 2016, pages 49:1-49:13, 2016 .

Chapter 5 is based on this result.

2. Faster Exact and Parameterized algorithm for Feedback Vertex Set
in Bipartite Tournaments [KL16b].
Mithilesh Kumar and Daniel Lokshtanov. In 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2016, December 13-15, 2016, Chennai, India, pages 24:1-24:15, 2016 .

Chapter 6 is based on this result.

3. A 2�-Kernel for �-Component Order Connectivity [KL16a].
Mithilesh Kumar and Daniel Lokshtanov. In 11th International Symposium on
Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus,
Denmark, pages 20:1–20:14 .

Chapter 7 is based on this result.

4. Lossy Kernels for Connected Dominating Set on Sparse Graphs.
Eduard Eiben, Mithilesh Kumar, Amer E Mouawad and Fahad Panolan. Submitted
to ICALP .

Chapter 8 is based on this result.

vii



viii



Contents

I Algorithms for Hitting Set problems: An overview 1

1 Introduction 3
1.1 Coping with NP-hardness . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries and notations 9
2.1 Graph terminalogy . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 General Background . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Multivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Hitting Set 15
3.1 General Hitting Set . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 d-Hitting Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Implicit Hitting Set 25
4.1 Hereditary Graph properties . . . . . . . . . . . . . . . . . . . . . 25
4.2 Algebraic problems . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 VC-dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Dominating Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Vertex Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Feedback Vertex Set . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 Separation Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II New Results 35

5 Feedback Vertex Set in Tournaments 37
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Scattered Pivots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Main Algorithm for TFVS . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Balanced Edge Partition Theorem . . . . . . . . . . . . . . . . . . 48
5.6 d-FVC with Undirected Degree at Most One . . . . . . . . . . . . 50

ix



x CONTENTS

6 Feedback Vertex Set in Bipartite Tournament 53
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 M -Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4 Constrained BTFVS . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Component Order Connectivity 75
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Max-min Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 The Weighted Expansion Lemma . . . . . . . . . . . . . . . . . . 81
7.4 Obtaining the Linear Kernel . . . . . . . . . . . . . . . . . . . . . 84
7.5 Separation oracle for �-COC . . . . . . . . . . . . . . . . . . . . . 87

8 Connected Dominating Set 91
8.1 Beyond kernelization . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3 Biclique-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.4 Graphs of bounded expansion . . . . . . . . . . . . . . . . . . . . 103

III Concluding remarks 111

9 Conclusions and future directions 113



Part I

Algorithms for Hitting Set
problems: An overview

1





Chapter 1

Introduction

1.1 Coping with NP-hardness

In an optimization problem, one looks for an optimum among all feasible solutions.
Quite often one can generate the set of all feasible solutions in time roughly
proportional to their number and the quality of a feasible solution can be computed
in polynomial time. For such problems, one approach is to do an exhaustive search
over all feasible solutions. Frequently, such search spaces are exponential in the
size of the input, which implies an exponential-time for the exhaustive search.
In particular, for problems classified as NP-hard, it is believed that there are
no algorithms that handle all instances substantially faster than performing an
exhaustive search. We’ll describe various methods to cope with this issue of
exhaustive search. To do this, we will use Vertex Cover as a running example,
one of the most fundamental NP-hard problem. We assume basic familiarity with
graph theory. We have tried to follow the notation consistent with Diestel’s book
on Graph Theory [Die12].

The input to the Vertex Cover problem is an undirected graph G = (V, E)
with n vertices and the task is to find a smallest cardinality subset S (called
a vertex cover) of vertices V such that removing S from the graph G makes it
edgeless (i.e. G \ S is an independent set). The search space for this problem is 2V ,
i.e. the set of all subsets of V . But, when the input graph has some structure, one
can use it to guide the search. For example, when the input graph is a tree, one
can find a vertex cover of minimum size in O(n) time: repeatedly remove the set
of vertices which are leaves and pick their parents into the solution until the graph
becomes empty. Unfortunately, it is unlikely that there exists an algorithm that
runs in polynomial time on general graphs (for all possible input graphs). Most
approaches to cope with this hurdle can be grouped into two categories: Given
an instance of an NP-complete problem, (a) how fast can we solve this instance
optimally? and (b) what can any algorithm do (making the problem simpler
via some preprocessing or obtaining a solution closer to an optimal solution) in
polynomial time? Let us briefly outline some algorithms to illustrate the above
approaches for the Vertex Cover problem.

3



4 CHAPTER 1. INTRODUCTION

Exact exponential-time algorithms. It is always possible to begin with an
algorithm A1 for Vertex Cover that enumerates all subsets of vertices according
to their cardinality in nondecreasing order and returns the first subset whose
removal makes the graph edgeless. This algorithm would take 2n · nO(1) time. The
class of algorithms that solve the problem optimally and whose running times
are expressed as an exponential function of the input size only are known as
exact-exponential-time algorithms. The algorithm A1 is one such algorithm. By
relaxing the requirement of optimality or via additional structural information
about the input, one can often get algorithms with improved performance.

Parameterized algorithms. Suppose we are not satisfied with solutions of size
larger than (say) k, so if the size of the smallest one is more than k, we don’t
really care what it is, knowing that it is more than k is enough. In this setting,
we can get a better algorithm by only trying subsets of size at most k. This
reduces the running time to O(

(
n
k

)
) = O(nk) which is polynomial for fixed values

of k. But as k gets larger, the running time gets worse. We can do better by
considering another algorithm A2 that takes in addition to G, an integer k as input
and outputs a solution only if there exists a solution of size at most k. We start
with observing that if G does not contain any vertex of degree at least 2, then we
can find an optimal solution in polynomial time. If there is a vertex v of degree at
least 2, then we can divide our problem into two independent subproblems. In
the first subproblem, the input graph is obtained by assuming that v is in the
sought solution H and deleting v from the graph G and decreasing k by 1. In
the second subproblem, the input graph is obtained by assuming that v is not in
the sought solution H and deleting N [v] from G. In this case, we include N(v)
into the solution H and decreasing k by |N(v)|. In the first subproblem, the size
of the parameter decreases by 1 and in the second subproblem, the size of the
parameter decreases by at least 2 implying that A2 can take at most 1.618k · nO(1)

time. The algorithm A2 belongs to the class of fixed-parameter-tractable (FPT)
algorithms. Informally, in exact-exponential-time algorithms, the running time is
measured solely in terms of the input size n. In FPT algorithms, the running time
is expressed as f(k) · nO(1) for some computable function f that depends only on
the parameter k.

Approximation algorithms. Both algorithms A1 and A2 take exponential-
time, and are guaranteed to output an optimal solution to every input instance.
As noted earlier, if we restrict the time to be polynomial in n and k, we don’t hope
to have an algorithm for Vertex Cover that outputs an optimal solution. Still
it is desirable to get a feasible solution as close to optimal as possible. Our next
algorithm A3 outputs a feasible vertex cover, although not necessarily optimal.
It finds an inclusion maximal matching M in G in polynomial time and returns
the vertex set S incident to the edges of M as a solution. Clearly, S is a vertex
cover: G − S is edgeless. As any optimal solution must contain at least one
endpoint of each edge in M , the cardinality of S is at most 2 times the cardinality



1.1. COPING WITH NP-HARDNESS 5

of any optimal solution. An algorithm of type A3 is known as an approximation
algorithm.

Kernelization. It is natural to wonder what makes Vertex Cover a hard
problem. Phrased differently – what do computationally hard instances of Vertex

Cover look like? If an instance consists of a hard and an easy part, is it possible
to efficiently identify, solve and remove the easy part, and then leave the hard part
for the brute force search? Kernelization is the paradigm of identifying and solving
this easy part. Informally, in the context of Vertex Cover, kernelization (or
kernel) is a polynomial time algorithm, that given an instance (G, k) of Vertex

Cover outputs an equivalent instance (G′, k′). Here by equivalent instance, we
mean that G has a vertex cover of size at most k if and only if G′ has a vertex
cover of size at most k′. Moreover, the size of the graph G′ (in terms of number of
vertices or edges) and k′ is bounded by f(k) for some computable function f . Let
us consider a kernelization algorithm A4 for the Vertex Cover problem. We
start with G′ = G and k′ = k. The main idea in A4 is to decide in polynomial
time whether any vertex v must go into every optimal solution or not. To that
end, A4 applies the following two rules exhaustively: (1) If G′ has an isolated
vertex v, then remove v from G′. (2) If G′ has a vertex v of degree at least k′ + 1
and k′ ≥ 0, then remove v from G′ and decrease k′ by 1. If k′ < 0, then conclude
that G does not have any vertex cover of size at most k. As each application
of any of the above rules decreases the size of G′ by 1, A4 must terminate in
polynomial time. It is easy to see that the rule (1) corresponds to the conclusion
that v does not belong to any optimal solution and the rule (2) corresponds to
the conclusion that v must belong to every optimal solution. Let us now analyze
the size of G′: If G′ were to have a vertex cover S of size at most k′ and by the
above rules, the degree of any vertex in G′ is at most k′, the number of vertices
can be at most the total number of vertices in S and in the neighborhood of S,
i.e. k′ + k′ × k′ = k′(k′ + 1) ≤ k(k + 1). Hence, in polynomial-time using A4, it is
possible to decrease the number of vertices to O(k2) which can be significantly
smaller than n.

We have seen four of the most commonly used paradigms in theoretical computer
science to cope with NP-hardness. In this thesis, we focus on parameterized
algorithms and kernelization for a few fundamental problems and give algorithms
that significantly improve previously known algorithms. As a common starting
point, it is observed that the problems considered in this thesis can be formulated
as a special cases of the Hitting Set problem. In the Hitting Set problem,
the input is a set of elements, called universe U , and a family H of subsets of
U , and the task is to check whether there exists a subset H ⊆ U of size at
most k such that every set in H has non-empty intersection with H. Hitting

Set is a famous NP-complete problem and has been extensively studied from
the perspective of parameterized algorithms, exact algorithms, kernelization and
approximation algorithms (See Chapter 3 and Chapter 4). The known algorithms
for this problem automatically provide an algorithm for the problems considered in
this thesis. For example, the Vertex Cover problem can be seen as a Hitting



6 CHAPTER 1. INTRODUCTION

Set problem in which the universe is the vertex set of the graph and the edge
set of the graph is the family of sets. A vertex cover of the graph is a subset of
vertices that hits every edge. So we can formulate the Vertex Cover problem
as this Hitting Set problem and this automatically gives an algorithm for the
Vertex Cover problem. But, usually this generic approach does not yield the
best possible algorithm for specific problems. Better approaches are designed to
utilize more structure from the specific problem and its instances.

1.2 Organization of the thesis
In the next chapter, we provide some essential preliminaries and notations. In
Chapters 3 and 4 we provide a survey of results known for Hitting Set problems.
These results provide off-the-shelf algorithms for problems that can be formulated
as a special case of the Hitting Set problem. A special variant of Hitting

Set is the d-Hitting Set problem in which the sets in the family H are of
cardinality at most d. For example, consider graphs known as tournaments which
are orientations of complete graphs. In the Feedback Vertex Set problem, the
task is to determine whether there exists a set of vertices of size at most k such
that its removal makes the graph acyclic. In the case of tournaments, one can
formulate this problem as 3-Hitting Set and hence can immediately show that
the problem admits an O(k3)-size vertex kernel and it is fixed-parameter tractable
with a simple 3k · nO(1) time algorithm. Although it’s nice to know that the
problem is fixed-parameter tractable and has a polynomial kernel, these algorithms
are not the best one can achieve for the Feedback Vertex Set problem in
tournaments. In chapter 5, we obtain the fastest known parameterized and exact
exponential-time algorithm for this problem. Along the way, we obtain a structural
result which may be of independent interest. Similarly, when we change the input
to a bipartite tournament (a complete directed bipartite graph), the problem can
be formulated as a special case of the 4-Hitting Set problem and hence we
would get an O(k4)-size vertex kernel and a simple 4k · nO(1) time algorithm. In
chapter 6, we extend the techniques used in chapter 5 to obtain the fastest known
parameterized and exact exponential-time algorithm when the input graph is a
bipartite tournament. Another one of the most widely studied problems is the
Vertex Cover problem which we have discussed in the introduction. In chapter
7, we study a generalization of this problem known as �-Component Order

Connectivity problem in which the input is a graph G and integers k, � and the
task is to determine whether there exists a set S of vertices of size at most k such
that in G − S, the size of the connected components is bounded by �. When � = 1,
each component would be of size 1 which implies that 1-Component Order

Connectivity is equivalent to Vertex Cover problem. The �-Component

Order Connectivity can be seen as a special case of the (� + 1)-Hitting Set

problem, which immediately implies a kernel of size O(k�+1). In chapter 7, we
obtain a kernel of size at most 2�k. At the same time, we obtain a generalization
of the Expansion Lemma which is widely used in the field of kernelization. The



1.2. ORGANIZATION OF THE THESIS 7

field of kernelization does not combine very well with the field of approximation
algorithms in that an approximation algorithm for a kernelized instance does not
necessarily provide the same approximation guarantee in the original instance.
Another issue that the field of kernelization has faced in recent years is that many
important problems like Dominating Set do not admit polynomial kernel in
general. We discuss a framework of Lossy kernelization introduced by Lokshtanov
et al [LPRS16], which tries to address these issues. Connected Dominating

Set can been seen as an implicit hitting set in which the universe is the set of
vertices and the family is the set of closed neighbourhoods of vertices. The required
hitting set for the family must induce a connected set in the graph. We provide
lossy kernels for Connected Dominating Set in graphs of bounded degeneracy
and bounded expansion. In chapter 9, we provide some further direction for future
research.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries and notations

2.1 Graph terminalogy
Let N denote the set of positive integers {0, 1, 2, . . . }. For any non-zero t ∈ N,
[t] := {1, 2, . . . , t}. We denote a constant function f : X → N such that for all
x ∈ X, f(x) = c, by f = c. For any function f : X → N and a constant c ∈ N, we
define the function f + c : X → N such that for all x ∈ X, (f + c)(x) = f(x) + c.
We use the same symbol f to denote the restriction of f over a subset of it’s
domain, X. For a set {v} containing a single element, we simply write v.

In this thesis, we have tried to follow the standard graph theoretic notation
consistent with Diestel’s book on Graph Theory [Die12]. A graph is defined as
G := (V, E). We use V (G) and E(G) to denote the set of vertices and edges of
G, respectively. A vertex u ∈ V (G) is said to be incident on an edge e ∈ E(G)
if u is one of the endpoints of e. A pair of edges e, e′ ∈ E(G) are said to be
adjacent if there is a vertex u ∈ V (G) such that u is incident on both e and
e′. For any vertex u ∈ V (G), by N(u) we denote the set of neighbors of u i.e.
N(u) := {v ∈ V (G) | uv ∈ E(G)}. For any subgraph X ⊆ G, by N(X) we denote
the set of neighbors of vertices in X outside X, i.e. N(X) := (⋃

u∈X N(u)) \ X. A
pair of vertices u, v ∈ V (G) are called false twins if N(u) = N(v). An induced
subgraph on X ⊆ V (G) is denoted by G[X]. For a graph G and a vertex v, G − v
denotes the graph obtained from G by deleting v and all edges incident to v.
Similarly, for a vertex set S, G − S denotes the graph obtained from G by deleting
all vertices in S and all edges incident to them.

A path P is a graph, denoted by a sequence of vertices v1v2 . . . vt such that for
any i, j ∈ [t], vivj ∈ E(P ) if and only if |i − j| = 1. A cycle C is a graph, denoted
either by a sequence of vertices v1v2 . . . vt or by a sequence of edges e1e2 . . . et, such
that for any i, j ∈ [t] uiuj ∈ E(C) if and only if |i − j| = 1 mod t or in terms
of edges, for any i, j ∈ [t], ei is adjacent to ej if and only if |i − j| = 1 mod t.
Simply put, a cycle as a path whose endpoints are connected by an edge. The
length of a path (cycle) is the number of edges in the path(cycle). A triangle is
a cycle of length 3. In G, for any pair of vertices u, v ∈ V (G) dist(u, v) represents
the length of a shortest path between u and v. A tree is a connected graph that
does not contain any cycle. A rooted tree T is a tree with a special vertex r

9



10 CHAPTER 2. PRELIMINARIES AND NOTATIONS

called the root of T . With respect to r, for any edge uv ∈ E(T ) we say that v is
a child of u (equivalently u is parent of v) if dist(u, r) <dist(v, r). A forest is a
collection of trees. A rooted forest is a collection of rooted trees. A clique is a
graph that contains an edge between every pair of vertices.

In a directed graph D, the set of out-neighbors of a vertex v is defined as
N+(v) := {u | vu ∈ E(D)}. Similarly, the set of in-neighbors of a vertex v
is defined as N−(v) := {u | uv ∈ E(D)}. For any set of edges C (directed or
undirected) and set of vertices X, the set VC(X) represents the subset of vertices
of X which are incident on an edge in C. For a vertex v ∈ V (G), the set NC(v)
represents the set of vertices w ∈ V (G) such that there is an undirected edge
wv ∈ C.

2.2 General Background

In the thesis, we provide a brief survey of results for problems related to Hitting

Set. We mention results from the perspective of exact-exponential-time algorithms,
approximation algorithms, parameterized algorithms and kernelization. In the
introduction, we used Vertex Cover to illustrate these four methodologies. For
more detail on exact-exponential-time algorithms, we refer the reader the book of
Fomin et al [FK10]. In this thesis, we assume basic familiarity with complexity
theory, in particular with classes P, NP, coNP and NP-hard. The reader is advised
to refer to the excellent book on Complexity theory by Arora and Barak [AB09].
For approximation algorithms, the reader is referred to books like [WS11, Vaz03].
For parameterized complexity and kernelization the reader is referred to books
like [FG06, DF13, CFK+15]. In this section, we briefly describe the Unique Games
Conjecture which we mention often throughout the thesis.

Unique games conjecture

Researchers have failed to find algorithms for certain problems (in particular
belonging to the class NP-hard) that given any instance of these problems output
a solution within a specified factor. For example, we do not know of any algorithm
for Vertex Cover that given an instance of Vertex Cover outputs a vertex
cover within a factor of 2 and runs in polynomial time. Dinur and Safra [ID05]
proved that Vertex Cover can not be approximated within a factor of 1.3606
unless P = NP. Unfortunately, inapproximability proved using their method is
not tight. Subhash Khot in 2002 [Kho02] conjectured the inapproximability of a
problem known as the Unique Label Cover problem. This conjecture is known
as the Unique games conjecture (UGC). Using this assumption, researchers have
been able to prove much tighter inapproximability results. We briefly describe
this conjecture. First, we define the following problem.



2.3. MULTIVARIATE ANALYSIS 11

Input: A graph G, a set of labels L and for each edge e = (u, v) ∈ E,
a set Re ⊆ L × L consisting of a set of "permissible" values
for the pair (u, v).

Question: Does there exists an assignment of labels lu to each vertex u
in G such that at least α fraction of edges are satisfied where
an edge e = (u, v) is satisfied if (lu, lv) ∈ Re?

Label Cover

Let V al(LC) ∈ [0, 1] denote the maximum possible fraction of satisfied edges by
any labeling. Let us consider an example in which we formulate 3-Coloring

as a Label Cover problem. In the 3-Coloring problem, input is a graph G
and the task is to check whether vertices of G can be colored using at most 3
colors such that for none of the edges in G, its endpoints are assigned the same
color. As a Label Cover problem, we work with the same graph G. The labels
L are the three colors, i.e. L = {1, 2, 3}. For each edge e, the set of color pairs
is the same, i.e. Re = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. It is easy to see
that V al(LC) = 1 if and only if G is 3-colorable. Since, 3-Coloring problem is
NP-complete, Label Cover is NP-complete as well. Using classical complexity
theory, it was known that

Theorem 1. For every ε > 0 there exists an L such that it is NP-hard to distinguish
Label Cover instances, LC, with V al(LC) = 1 from those with V al(LC) ≤ ε
for instances LC with the provided label set L.

In the Unique Label Cover problem, the relation Re for each edge is a
bijection i.e. for each edge e = (u, v) and choice of label for u there is exactly one
choice of label for v that satisfies the edge e.

Conjecture 2.1 (Unique Games Conjecture [Kho02]). For any ε > 0 there exists
an L such that it is NP-hard to distinguish Unique Label Cover instances with
V al(ULC) > 1 − ε from those with V al(ULC) ≤ ε for instances ULC with the
provided label set L.

Despite continuous efforts to prove or disprove UGC, there is still no consensus
regarding its validity. UGC implies that the currently best known approximation al-
gorithms for many important computational problems have optimal approximation
ratios.

2.3 Multivariate Analysis
Multivariate analysis began as a field in 1980s with the work of Downey and
Fellows, although some isolated results in the context of integer linear program-
ming and graph minor theory where already known. Now, multivariate analysis
has matured, is taught as courses in universities and there are multiple books
available [FG06, DF13, CFK+15]. Next, we provide formal definitions and state



12 CHAPTER 2. PRELIMINARIES AND NOTATIONS

crucial results in this field. Most of the text is taken from the book Parameterized
algorithms [CFK+15][marked with �].

Fixed-Parameter Tractability

To define a parameterized problem, we require to augment the description of a
classical problem by an integer.

Definition 2.2 (�). A parameterized problem is a language L ⊆ Σ∗ × N, where
Σ is a fixed, finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the
parameter.

For example, x can be an encoding of a graph G and an integer k may monitor
some property of the graph or the sought solution like G has vertex cover of size
at most k or the size of the solution is at most k.

Definition 2.3 (�). A parameterized problem L ⊆ Σ∗×N is called fixed-parameter
tractable (FPT) if there exists an algorithm A (called a fixed-parameter algorithm),
a computable function f : N → N, and a constant c such that, given (x, k) ∈
Σ∗ × N, the algorithm A correctly decides whether (x, k) ∈ L in time bounded
by f(k) · |(x, k)|c. The complexity class containing all fixed-parameter tractable
problems is called FPT.

Given to computational tasks A and B, a reduction from A and B (on vice versa)
maintains the equivalence of solutions. In the parameterized setting, one needs to
keep track of parameters that come along A and B. Similar to polynomial-time
reductions in classical complexity theory, parameterized reductions are defined.

Definition 2.4 (Parameterized Reduction �). Let A, B ⊆ Σ∗ ×N be two parame-
terized problems. A parameterized reduction from A to B is an algorithm that,
given an instance (x, k) of A, outputs an instance (x′, y′) of B such that

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,

2. k′ ≤ g(k) for some computable function g, and

3. the running time is f(k) · |x|O(1) for some computable function f .

The class FPT is closed under parameterized reductions, i.e.

Theorem 2 (�). If there is a parameterized reduction from A to B and B is FPT,
then A is FPT as well.

Theorem 3 (�). If there are parameterized reductions from A to B and from B
to C, then there is a parameterized reduction from A to C.



2.3. MULTIVARIATE ANALYSIS 13

W-hardness
Not every problem is FPT. To characterize problems that do not seem to have algo-
rithms whose running times are of the form f(k)·nO(1), Downey and Fellows [DF99]
defined what is called W-hierarchy.

FPT ⊆ W[1] ⊆ W[2] ⊆ · · ·

Here W[1] is the analogue of NP, in the sense that problems hard for W[1] are
considered unlikely to be in FPT. Informally, W[1] is a class of problems that
reduce to Independent Set problem in a parameter-preserving way. In the
Independent Set problem, the input is a graph G and an integer k and the task
is to determine whether there exists a set S of vertices of size at least k such the
graph induced on S has no edge. The above hierarchy is conjectured to be strict
i.e. we do not expect an algorithm whose running time is of the form f(k) · nO(1)

for any problem that is hard for any class W[t] where t ≥ 1.

Input: A graph G and an integer k
Question: Does G has an independent set of size at least k?

Independent Set

Input: A graph G and an integer k
Question: Does G has a subset S ⊆ V (G) of size at most k such that

every vertex in V (G) \ S has at least one neighbor in S?

Dominating Set

Theorem 4 (�). Independent Set and Clique are W[1]-complete, while Dom-

inating Set is W[2]-complete.

Using Theorem 4, we conclude that Independent Set and Dominating Set

does not have any algorithm that runs in time f(k) · nO(1) for any function f
that depends on k only. To prove tighter lower bounds, the Exponential time
hypothesis [IP99] and the Strong Exponential time hypothesis [IPZ01] are used.

Input: A propositional formula ϕ on n Boolean variables x1, . . . , xn

in conjunctive normal form
Question: Does there exist an assignment of true/false values to the

variables so that ϕ becomes true?

CNF-SAT

In the q-SAT problem is CNF-SAT in which the number of variables in each
clause is bounded by some constant q. For q ≥ 3, let δq be the infimum of the set
of constants c for which there exists an algorithm solving q-SAT in time O∗(2cn).



14 CHAPTER 2. PRELIMINARIES AND NOTATIONS

Conjecture 2.5 (Exponential-Time Hypothesis, ETH �).
δ3 > 0

Conjecture 2.6 (Strong Exponential-Time Hypothesis, SETH �).
lim

q→∞ δq = 1

One can give a reduction from CNF-SAT to Independent Set showing that
Independent Set can not be solved in 2o(n) time and in f(k) · no(k) time unless
ETH fails.

Kernelization
We already saw an example of kernelization algorithm for Vertex Cover. In this
section, we formally define what is a kernel or a kernelization algorithm. We say
that two instances of a parameterized problem Q are equivalent if (I, k) ∈ Q if and
only if (I ′, k′) ∈ Q. Our task in kernelization is to given an instance (I, k) ∈ Q,
apply what is called data reduction rules to reduce it to an equivalent instance
(I ′, k′) ∈ Q such that it becomes easier to solve (I ′, k′).
Definition 2.7 (�). A data reduction rule for a parameterized problem Q is a
function ϕ : Σ∗ × N → Σ∗ × N that maps an instance (I, k) of Q to an equivalent
instance (I ′, k′) of Q such that ϕ is computable in time polynomial in |I| and k.
Definition 2.8 (Safeness �). A data reduction rule ϕ is called safe if it translates
an instance to an equivalent one.
Definition 2.9 (Size �). The output size of a preprocessing algorithm A is a
function sizeA : N → N ∪ {∞} defined as follows:

sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = A(I, k), I ∈ Σ∗}.

Definition 2.10 (Kernelization, kernel �). A kernelization algorithm or simply a
kernel, for a parameterized problem Q is an algorithm A that, given an instance
(I, k) of Q, works in polynomial time and returns an equivalent instance (I ′, k′)
of Q. Moreover, we require that sizeA ≤ g(k) for some computable function
g : N → N.

By above definition, if a problem Q admits a kernel, then the output instance
(I ′, k′) has size g(k). Clearly a brute-force-search for solution to (I ′, k′) would run
in time f(g(k)) implying that Q is in FPT. The following theorem formalizes this
intuition.
Theorem 5. A decidable parameterized problem Q is FPT if and only if it admits
a kernelization algorithm.

Therefore, for parameterized problems, it is typical to ask whether the problem
is FPTand if yes, ask whether there is polynomial kernel. If one is not able to find
any polynomial kernel, it could be because there does not exist any polynomial
kernel. There is a framework to prove non-existence of such kernels (see Chapter
15 in [CFK+15]).



Chapter 3

Hitting Set

In the Hitting Set problem, we are given a set U (called Universe) and a family
H of subsets of U , and are asked to find a set H ⊆ U of size at most k such that
every set in H has at least one element in H. The set H is said to hit every set
in the family H. A plethora of problems can be formulated as a Hitting Set

problem. One of the most widely studied problems in graph algorithms is the
Dominating Set problem, in which the input is a graph G with an integer k
and the task is to determine whether there is a subset H of vertices of size at
most k such that for every vertex v in the graph, either v is contained in H or H
contains a neighbor of v. In this case, the universe is V (G) and the family H is
the set of closed neighborhoods of every vertex in V (G). Then, a hitting set H of
H has the property that for every vertex v, either v belongs to the hitting set H
or H contains a neighbor of v implying that H is a dominating set in G. Another
widely studied problem is the Feedback Vertex (Edge/Arc) Set problem,
in which the input is a (directed or undirected) graph G with an integer k and the
task is to determine whether there is a subset H of vertices (or edges) of size at
most k such that G − H is an acyclic graph. In this case, the universe is the set
of vertices (or edges) and the family H is the set of all cycles in the graph given
by its set of vertices (or edges). Note that in this context, the family H is given
implicitly. We will discuss about implicit hitting sets in Chapter 4. A feedback
vertex (arc) set is a set of vertices (or edges) that hits every cycle in the graph.
Another example is the Minimum Spanning Tree problem. Given a connected
graph G = (V, E) with positive edge weights we, e ∈ E, find a spanning tree with
minimum sum of edge weights. Given a graph G = (V, E), a cut is defined by
a subset S ⊆ V of vertices, and consists of all the edges that connect elements
of S with elements of V \ S. In this case, U = E and H is the family of cuts in
the graph. The task is to compute a subset of E of minimum weight that hits
every cut in H. If a set of edges hits all cuts, it defines a connected, spanning
subgraph. Minimizing the sum of edge weights ensures that we actually get a tree
-the minimum spanning tree. In this chapter, our goal is to survey some of the
algorithms for the Hitting Set problem. Later, we’ll show how this serves as
a starting point for many problems that can be formulated as a Hitting Set

problem.

15



16 CHAPTER 3. HITTING SET

3.1 General Hitting Set
We begin by defining the decision version of the Hitting Set problem that takes
an additional input k.

Input: A family of sets H of a universe U and an integer k
Question: Is there a set H ⊆ U of size at most k such that the intersec-

tion of H with any set in H is non-empty?

Hitting Set

A set H that intersects all sets in H is called a hitting set of H. We now discuss
a problem known as Set Cover which is closely related to Hitting Set.

Relation to Set Cover. In the Set Cover problem, the input is the same as
that for the Hitting Set problem, but the task changes to determining whether
there exists a subfamily C ⊆ H of size at most k such that the union of sets
in C is equal to the universe U , i.e. every element in U is covered by C. Since
both the problems have the same input, one can construct a bipartite set-element
incidence graph G = (A, B, E) such that A contains a vertex for every element
in the universe U and B contains a vertex for every set in the family H. For any
pair of vertices a ∈ A, b ∈ B, there is an edge ab ∈ E if and only if the element
corresponding to a is contained in the set corresponding to b. A solution for
Hitting Set corresponds to a subset SA ⊆ A such that every vertex in B has
at least one neighbor in SA. Whereas a solution for the Set Cover problem
corresponds to a subset SB ⊆ B such that every vertex in A has at least one
neighbor in SB. After a moment’s reflection, one can verify that using the bipartite
set-element incidence graph, one can reduce the Hitting Set problem to the Set

Cover problem (and vice versa) with a family of sets U containing a set for each
element in U and the universe H containing an element for each set in H. Hence,
any algorithm for say, Set Cover can be seen as an algorithm for Hitting Set

with roles of |U | and |F| interchanged. For example, inapproximability of Set

Cover with better than a O(log |U |)-factor implies inapproximability of Hitting

Set with better than a O(log |F|)-factor.

NP-completeness of Hitting Set Let n = |U | and m = |H|. An optimal
hitting set H can be obtained by iterating over all subsets X of U and checking
whether X hits every set in H. Such an algorithm will take O(2n · nm) time.
But this algorithm is exponential in n and the natural question is can one get a
polynomial-time algorithm for the Hitting Set problem. Unfortunately, Hitting

Set belongs to Karp’s list of 21 NP-complete problems [Kar72]. Hence, unless
P=NP, there does not exist an algorithm that solves every Hitting Set instance
in polynomial time. Next, we briefly sketch an NP-completeness proof for the
Hitting Set problem. We reduce from the CNFSAT problem. In a Hitting

Set instance, given a subset H ⊆ U of the universe, it is immediate that one can
verify whether H is a hitting set in polynomial time. Hence, Hitting Set belongs



3.1. GENERAL HITTING SET 17

to the class NP. Note that the cardinality of the family H can be exponential
in the size of the universe U . The above verification is polynomial in |U | and
|F|. Given a formula ϕ with m clauses on n variables, we construct an instance
of Hitting Set. The universe U is a set of size 2n containing one element for
each literal x and one element for its negation ¬x. The family H is obtained by
making one set for each clause that contains elements corresponding to literals
in the clause. In addition, to force that for each variable x at least one element
corresponding to x or ¬x is picked in the hitting set, we include a set {x, ¬x} for
every variable x and set k = n which concludes the construction of the Hitting

Set instance. A hitting set of the constructed family yields an assignment to
the formula such that every literal corresponding to elements in the hitting set is
assigned value 1, otherwise assigned value 0.

Exact-exponential-time algorithms and lower bounds. Given that a poly-
nomial-time algorithm is unlikely, can we improve the exponential factor 2n in
the running time? Equivalently, are there infinitely many Hitting Set instances
that essentially require search over all subsets of U to find an optimal solution?
Informally, the Strong Exponential Time Hypothesis (SETH) states that there does
not exist any algorithm that solves every instance of CNF-SAT on n variables in
O∗((2 − ε)n) ( where ∗ notation hides polynomial factors) for any ε > 0 for every
n. Assuming SETH, there is no algorithm for the Hitting Set problem that
achieves running time O∗((2−ε)n) for any ε > 0, where n is the size of the universe
[CDL+16]. If one considers the family H as the parameter, there is an algorithm
for Set Cover whose running time has a factor 2m. Using dynamic programming,
the Set Cover problem can be solved in O(2n · nm) time where n = |U | and
m = |H| (Fomin et al [FKW04]). Next, by rephrasing the algorithm of Fomin et
al, we obtain an algorithm for the Hitting Set that runs in O(2m · nm) time.
Theorem 6. Given a Hitting Set instance (U, H), the minimum possible size
of a hitting set S ⊆ U of H can be found in time 2|H|(|U | + |H|)O(1).
Proof. Let n = |U | and m = |H|. Consider an enumeration of U = {v1, v2, . . . , vn}.
The rows of the dynamic-programming table are indexed by the subsets X ⊆ H
and the columns are indexed by the elements in U . The table entry for (X , j)
represented by T [X , j], is defined as the minimum size of a hitting set X ⊆
{v1, v2, . . . , vj} of X . In the base case, T [∅, 0] = 0 and T [X , j] = +∞ for every
non-empty subset X ⊆ H. The recurrence relation for evaluating T [X , j] is
obtained by considering whether vj is used to hit any set in X .

T [X , j] = min(T [X , j − 1], 1 + T [X ′, j − 1]) (3.1)

where X ′ = X \ {F | vj ∈ F ∈ H}. After the table has been filled, the algorithm
outputs the value T [H, n]. Since the size of the table is 2|H|+1 · |U | the above
recurrence can be solved in (|U | + |H|)O(1) time, we obtain the required running
time.

We now prove the correctness of the recurrence relation 3.1, from which the
correctness of the algorithm follows. It is easy to see that if T [X , j] is ∞ i.e. X



18 CHAPTER 3. HITTING SET

can not be hit using vertices in {v1, v2, . . . , vj}, T [X , j − 1] and T [X ′, j − 1] are
∞ as well. Let X ⊆ {v1, v2, . . . , vj} be an optimal hitting set for X . If vj /∈ X,
then X ⊆ {v1, v2, . . . , vj−1} and hits X . Hence, X is a candidate to be considered
when computing T [X , j −1] i.e. T [X , j −1] ≤ T [X , j]. In case vj ∈ X, then X \vj

hits X ′ = X \ {F | vj ∈ F}, which implies T [X ′, j − 1] ≤ T [X , j] − 1. Hence,
min(T [X , j − 1], 1 + T [X ′, j − 1]) ≤ T [X , j].

For the other direction, if both T [X , j −1] and T [X ′, j −1] are ∞, then T [X , j]
will be ∞ as well. If T [X , j − 1] is infinite and T [X ′, j − 1] is finite, then vj must
be picked to hit X . Let S ′ be an optimal hitting set of X ′ considered in the
computation of T [X ′, j − 1]. Then, S ′ ∪ {vj} is a hitting set of X and is a subset
of {v1, v2, . . . , vj}. Hence, S ′ ∪ {vj} must be considered in the computation of
T [X , j] which implies that T [X , j] ≤ min(T [X , j − 1], 1 + T [X ′, j − 1]).

Now we assume that T [X , j −1] is finite which implies that T [X ′, j −1] is finite
as well. Let S ′ be an optimal hitting set of X ′ considered in the computation of
T [X ′, j−1] and let S be an optimal hitting set of X considered in the computation of
T [X , j − 1]. Clearly, both S and S ′ ∪ {vj} will be considered for the computation
of T [X , j] as T [X , j] is the minimum size over all sets which are subsets of
{v1, v2, . . . , vj} and hit X . Hence, T [X , j] ≤ min(|S|, |S ′| + 1) =⇒ T [X , j] ≤
min(T [X , j − 1], 1 + T [X ′, j − 1]) which concludes the correctness of the recurrence
relation. Hence, the entry T [H, n] corresponds to the size of a minimum hitting
set of H.

In case of the Set Cover problem, neither do we know any better algorithm
nor is there any known reduction that refutes SETH. This has led Cygan et al to
propose the Set Cover Conjecture:

Conjecture 3.1 (Set Cover Conjecture [CDL+16]). There is no algorithm for the
Set Cover problem that runs in O∗((2 − ε)n) for any ε > 0 where n is the size
of the universe.

From the duality between the Set Cover problem and the Hitting Set

problem, under the Set Cover Conjecture, the Hitting Set problem does not
have any algorithm that runs in O∗((2 − ε)m) for any ε > 0 where m is the size of
the family H.

Fixed-parameter tractability. The intractability of the general Hitting Set

problem with unbounded subset size percolates to parameterized regime as well.
Under this assumption, the next theorem shows that Hitting Set is unlikely to
have an algorithm of the form f(k) · nO(1) where f is a computable function and k
is the size of the solution H.

Theorem 7. Hitting Set with solution size as the parameter is W[2]-complete.

Note that W[2]-completeness of the Hitting Set problem is implied indirectly
from the work of Paz and Moran [PM81] which predates the parameterized
complexity framework. The best known algorithm for Hitting Set can be
inferred from the work of Eisenbrand and Grandoni [EG04] that takes time



3.2. D-HITTING SET 19

nk+O(1/k), which is an improvement over the algorithm that tries all subsets of size
at most k and runs in time O(nk+1). W[2]-completeness of Hitting Set with
the hitting set as the parameter effectively rules out any kernel for it as well.

Approximation algorithms. If we allow only polynomial time, then one can
approximate Set Cover within a factor of O(log n) (here n is the size of the
universe) [WS11] using a greedy approach: the algorithm picks from the family of
unpicked sets, the set with largest number of uncovered elements. The approxima-
tion algorithm for Set Cover implies that Hitting Set can be approximated
within a factor of O(log m). Under different complexity theory conjectures, it
has been shown that the above greedy approximation algorithm for Set Cover

is essentially tight. Lund and Yannakakis [LY94] proved for the Set Cover

problem that for any α < 1
4 , the existence of a polynomial-time α ln n-ratio approx-

imation algorithm would imply that problems in NP has a quasipolynomial, i.e.,
nO(poly(log n)) deterministic algorithm. This result was improved to (1 − o(1)) log n
by Feige [Fei98]. A c · log n-approximation under the assumption that P�= NP was
established by Safra and Raz [RS97], where c is a constant. A similar result for
larger values of c was proved by Alon, Moshkovitz and Safra [AMS06]. Recently,
Moshkovitz has shown (1−ε) log n inapproximability of Set Cover under P �= NP
[Mos15].

Relaxing the specifications. Considering these theoretical barriers, the gen-
eral Hitting Set problem seems to be too general. Often, the hitting set
formulation of problems have a lot of structure. To understand the nature of the
intractability of the Hitting Set problem, one needs to probe it with more param-
eters that reflect some structure in the input. Later we discuss about restrictions
of Hitting Set called d-Hitting Set in which we restrict the size of each set in
the family to some constant d which is called the d-Hitting Set problem. For ex-
ample, the Vertex Cover problem can be seen as 2-Hitting Set problem with
the vertex set as the universe and the edge set as the family H. The Feedback

Vertex (arc) Set in Tournaments [DGH+10], Cluster Vertex Dele-

tion [HKMN10] and Odd Cycle Transversal in perfect graphs [CFK+15]
can be formulated as a 3-Hitting Set problem. The Feedback Vertex Set

in Bipartite Tournaments [Hsi11] and Cograph Deletion [NG10] can be
formulated as a 4-Hitting Set problem while Split Vertex Deletion [CP12]
can be formulated as a 5-Hitting Set problem.

3.2 d-Hitting Set
Even d-Hitting Set for constant d > 1 remains NP-complete. This follows
immediately from NP-completeness of the Vertex Cover problem. Next, we
outline some of the progress made for this problem in the paradigm of exact-
exponential-time algorithms, parameterized algorithms, approximation algorithms
and kernelization.



20 CHAPTER 3. HITTING SET

Exact-exponential-time algorithms. As we saw, under SETH, it is unlikely
that there exists an algorithm that solves the general Hitting Set in time
O((2 − ε)n) time for ε > 0. Using the iterative compression technique, Fomin
et al [FGK+10] showed that if (d − 1)-Hitting Set can be solved in O∗(cn)
time for 1 ≤ c ≤ 2, then d-Hitting Set can be solved in O∗((1+

√
1+4c
2 )n) time.

For example, the O(1.6268n) algorithm for 3-Hitting Set [Wah07] yields an
algorithm for 4-Hitting Set running in O∗((1+

√
1+4×1.6268

2 )n) = O(1.8704n) time.
For values of c ≥ 1.6553, they provide an alternate algorithm (again based on
iterative compression) that performs slightly better than the above algorithm. We
remark that these are not the currently fastest known exponential-time algorithms
for d-Hitting Set, for the fastest ones see [FGLS16].

Parameterized algorithms. For constant d, d-Hitting Set parameterized
by the solution size k is in FPT. A simple O∗(dk) time branching algorithm can
be obtained as follows: maintain a partial hitting set S ⊆ U and a family of sets
A ⊆ H that has not been hit so far. Pick a set F ∈ A and for each choice of an
element v ∈ F branch with the possibility that v ∈ S. If in any branch |S| > k,
then terminate that branch. If there exists a branch in which A = ∅ and |S| ≤ k,
return yes, otherwise return no. For d-Hitting Set, Niedermeier and Rossmanith
[NR03] presented an O(ck + n) time algorithm with c = d − 1 + O(d−1). In the
same work, they gave an algorithm running in O(2.270k + n) for 3-Hitting Set

which was improved by Wahlström [Wah07] to O∗(2.076k) time. Next, we show
the iterative compression based algorithm for d-Hitting Set due to Fomin et
al. [FGK+10].
Theorem 8 ([FGK+10]). Suppose there exists an algorithm to solve (d − 1)-
Hitting Set in time O(ck · nO(1)), where c ≥ 1. Then d-Hitting Set can be
solved in time O((1 + c)k · nO(1)).
Proof. The algorithm we consider is based on the iterative compression technique.
Starting with an instance of d-Hitting Set, we reduce the problem to solving
instances of (d − 1)-Hitting Set.

Let I := (U, F , k) be a d-Hitting Set instance. Consider some enumeration
of the elements in U i.e. U = {u1, u2, . . . , un}. For each i ∈ [n], let Ui =
{u1, u2, . . . , ui} and let Fi be the family of sets in F which are subsets of Ui, i.e.
Fi = {X ∈ F | X ⊆ Ui}. Note that Un = U and Fn = F . The method of iterative
compression is to use a hitting set Hi−1 of size at most k for d-Hitting Set

instance Ii−1 := (Ui−1, Fi−1, k) to obtain a hitting set of Hi size at most k for
d-Hitting Set instance Ii := (Ui, Fi, k).

In the base case assuming k ≥ 1, if {u1} ∈ F , then H1 = {u1}. Otherwise
H1 = ∅. Note that at the ith stage of the iteration, Si := Hi−1 ∪ {ui} is a hitting
set of Fi and |Hi−1| ≤ |Hi| ≤ |Si| = |Hi−1| + 1 ≤ k + 1. Next we define a
subroutine B that takes (Ui, Fi, Si, k) as input and outputs Hi or concludes that I
is a no-instance.

The subroutine B works as follows: For every partition (Z, Z̄) of Si, construct
d-Hitting Set instance I ′

i(Z) := (Ui \ Z̄, F ′
i , k − |Z|) where F ′

i := {F ∈ F |



3.2. D-HITTING SET 21

F ∩ Z = ∅}. If I ′
i(Z) is a no-instance for every partition (Z, Z̄) of Si, then output

’no’ and terminate the algorithm. Otherwise, let A be the solution for I ′
i. Output

Hi := Z ∪ A.
If the subroutine B does not terminate with ’no’, the algorithm outputs Hn as

the solution.
Correctness: Suppose Ii has a hitting set Hi of size at most k. By guessing

all the partitions of Si, the algorithm guesses Hi ∩ Si and Si \ Hi. To that end,
for every partition (Z, Z̄) of Hi−1 ∪ {ui}, we assume that Z ⊆ Hi and Z̄ ∩ Hi = ∅.
Indeed, if a set X ∈ Fi is a subset of Z̄, then such a set by the above assumption
can not be hit by Hi and hence we are dealing with a bad partition (Z, Z̄). In
this case, we discard this partition and try a different partition of Hi−1 ∪ {ui}.
If all partitions happen to be bad in this sense, then there does not exist any
set Hi of size at most k that hits Fi. Hence, we conclude that I does not have
any hitting set of size at most k and we terminate the algorithm. Assuming that
(Z, Z̄) is not a bad partition, sets in Fi that have non-empty intersection with
Z are already hit and hence can be safely removed from the family Fi. Let F ′

i

be the remaining sets in Fi. Every set in F ′
i has non-empty intersection with Z̄

and since these elements do not belong to Hi, we can safely remove them from
each set in F ′

i . This process decreases the cardinality of each set in F ′
i by at least

one. A hitting set of (Ui \ Z̄, F ′
i) of size at most k − |Z| implies that (Ui, Fi) has

a hitting set of size at most k. Hence, (Ui \ Z̄, F ′
i , k − |Z|) is a (d − 1)-Hitting

Set instance that can be solved in O(ck−|Z| · nO(1)) time. Now, we do the above
process for every partition of Hi−1 ∪ {ui}. Hence, the overall running time in given
by ∑k

i=0

(
k+1

i

)
ck−i ≤ 2 · (1 + c)k by binomial theorem.

As an immediate consequence of the above theorem is that d-Hitting Set can
be solved in (c3 + d − 3)k · nO(1) time where c3 is such that 3-Hitting Set can be
solved in ck

3 · nO(1) time. By Wahlström’s algorithm [Wah07], c3 ≤ 2.0755. Hence,
d-Hitting Set can be solved in (d − 0.9245)k · nO(1) time. For small values of d,
this algorithm is faster than the algorithm due to Niedermeier and Rossmanith.

Approximation algorithms. One can approximate d-Hitting Set within a
factor of d [Hoc82]. Under the Unique Games Conjecture, the above factor can
not be improved in polynomial time [KR08]. A hypergraph G is a generalization
of graph. Here the edge set is a family of subsets of the vertex sets while in graphs
the edge set is a family of subsets of size exactly 2 of the vertex set. In this
sense, hypergraphs provide a natural link to hitting sets. Hitting Set problem
can be formulated as Vertex Cover in a hypergraph G in which the vertex
set is the universe U and the edge set is the family H. A vertex cover H of G
is a set of vertices such that every edge is incident at at least one vertex in H
which is a hitting set for H. When d-Hitting Set is formulated as a hypergraph
vertex cover problem, then d becomes the maximum size of any edge and the
maximum degree of any vertex f is the maximum frequency of an element. In the
equivalent Set Cover instance, f becomes the maximum size of any set and d
becomes the frequency. The greedy algorithm of the Set Cover actually provides



22 CHAPTER 3. HITTING SET

log |Smax| factor approximation where Smax is the set of maximum cardinality in
the family [WS11]. Hence, we get a log f factor approximation for the Hitting

Set.

Kernelization. With respect to polynomial-time kernelization algorithms, Dell
and van Melkebeek [DvM14a] showed that for any d ≥ 2, the d-Hitting Set

problem parameterized by |U | does not have a compression with bitsize O(|U |d−ε)
unless NP ⊆ coNP/poly. Intuitively, by a compression of a parameterized prob-
lem, we mean a polynomial-time algorithm that as an input an instance of a
parameterized problem and outputs an equivalent instance of another (may be
unparameterized) problem. Furthermore, the size of output (also called the bitsize
of the compression) instance is bounded by some function of the input parameter k
alone. The difference between kernelization and compression is that a kernelization
algorithm outputs an equivalent instance of the same parameterized problem as
the input problem while compression can output an instance of a different problem.

If d is not a constant, d-Hitting Set is equivalent to the general Hitting Set

which is W[2]-hard and have no kernel of any size unless FPT = W[2]. But, when
parameterized by d and k, the Sunflower lemma yields a kernel for d-Hitting

Set with at most d!kd sets and at most d!kd · d2 elements [FG06]. Using Crown
decomposition, Abu-Khazam [AK10] improved this to a kernel with at most
(2d − 1)kd−1 + k elements. As an example of the Sunflower lemma technique for
obtaining kernels, we state a kernel for d-Hitting Set and sketch its proof (see
[CFK+15] for a complete proof). The Sunflower lemma was first proved by Erdős
and Rado (1960).

Definition 3.2 (Sunflower). A sunflower with k petals and a core Y is a collection
of sets S1, . . . , Sk such that Si ∩ Sj = Y for all i �= j: the sets Si \ Y are petals
and we require none of them to be empty.

Note that a family of pairwise disjoint sets is a sunflower (with an empty core).

Theorem 9 (Sunflower Lemma (Erdős, Rado)). Let H be a family of sets (without
duplicates) over a universe U , such that each set in H has cardinality exactly d. If
|H| > d!(k − 1)d, then H contains a sunflower with k petals and such a sunflower
can be computed in time polynomial in |H|, U and k.

Theorem 10. d-Hitting Set admits a kernel with at most d!kd sets and at most
d!kd · d2 elements.

Proof Sketch: The usual approach of using the Sunflower lemma is to show
that if the size of the family is sufficiently large, then there exists a sunflower that
would force some of the elements into the solution. For the problem at hand, if
there exists a sunflower with at least k + 1 petals, then any hitting set of size at
most k must intersect the core of the sunflower, otherwise any hitting set will be
forced to contain at least k + 1 distinct elements belonging to the k + 1 petals
(minus the core). This observation yields a simple reduction rule: if H contains a



3.2. D-HITTING SET 23

sunflower with at least k + 1 petals with core Y , then run the algorithm again
after removing from H all the sets belonging to the sunflower and including Y
as a new member in the family. At the same time update the universe to only
contain elements that belong to some set in the updated family. The parameter k
does not change. The number of sets and the size of the universe in the reduced
instance follows from the statement of the Sunflower lemma. �



24 CHAPTER 3. HITTING SET



Chapter 4

Implicit Hitting Set

In the previous chapter, we saw algorithms and results for problems that can be
formulated as an explicit Hitting Set problem. In this chapter, we study some
optimizations problems that are not usually stated as a Hitting Set problem
explicitly, but the problems can be stated as a hitting set problems implicitly.
Therefore the techniques that are useful for Hitting Set could also useful in this
setting. We start with problems with broad classification based on forbidden sets
and VC-dimension and narrow down to specific problems like Feedback Vertex

Set and Dominating Set and finally discuss about separation oracles.

4.1 Hereditary Graph properties

A graph property is a set Π of graphs and any graph in Π is said to be a Π-graph.
Connected graphs, bipartite graphs, planar graphs, triangle-free graphs, perfect
graphs etc. are the examples of graph properties. If for any graph G ∈ Π, every
induced subgraph of G is also a Π-graph, then Π is a hereditary property. Except
for connected graphs, every other graph property stated above is a hereditary
property. A property Π has a forbidden set characterization if there is a set F of
graphs such that a graph is a Π-graph if and only if it does not contain any graph
in F as an induced subgraph, and it has a finite forbidden set characterization if
F is a finite set. Every hereditary property has a forbidden set characterization.
For example, cluster (P3), cographs (P4), triangle-free (K3), co-trivially perfect
(2K2, P4), split graphs (2K2, C4, C5), deletion to chain (2K2, K3, C5), threshold
(2K2, C4, P4) etc. admit finite forbidden set characterizations. Here Pi, Ci, and Ki

is a path, cycle and complete graph on i vertices, respectively. Each property Π
naturally defines a set of graph modification problems where the input is a graph
G and the task is to modify G as little as possible to obtain a graph in Π. By
modification, we mean adding and deleting edges and vertices.

25



26 CHAPTER 4. IMPLICIT HITTING SET

Input: A graph G and positive integers i, j, k
Question: Find a set of vertices S ⊆ V (G), a set of edges E1 ⊆ E(G)

and a set of edges E2 in the complement graph of G with |S| ≤
i, |E1| ≤ j and |E2| ≤ k such that the graph G − S − E1 + E2
is a Π-graph

Π(i, j, k)-Graph modification Problem

When such subsets exist, G is called a Π(i, j, k)-graph and the set S ∪ E1 ∪ E2 is
referred to as a modifier of G.

Note that if j and k are 0, we have the Vertex Deletion problem. If i is 0,
we have Editing problem. If i and j are 0, the problems are called Completion

problems, while if i and k are 0, we have Edge Deletion problems. Note
that Completion problems and Deletion problems are related in that the
Deletion problem on G to a hereditary property (characterized by forbidden sets
{F1, F2, . . . }) is equivalent to the Completion problem on the complement Ḡ to
the hereditary property characterized by the forbidden set {F̄1, F̄2, . . . } i.e. add
edges so that (say) F̄1 is not an induced subgraph of Ḡ. Some of the well-studied
examples of Editing problems are Split Editing [HS81], Cluster Editing

[KM86] and Chordal Editing [DDLS15]. Naturally, for each Editing problem,
there are corresponding Deletion and Completion problems.

If i, j and k are considered constants that are not part of the input, then
the above problem is trivially polynomial-time solvable by the exhaustive search
method for any polynomial-time recognizable property Π. On the other hand, the
problem is NP-hard for any non-trivial hereditary property Π, if the parameter
(i, j, k) are part of the input. For many non-trivial properties, the Vertex Dele-

tion problem was shown to be NP-complete by Krishnamoorthy and Deo [KD79].
Later, these results were extended by Lewis and Yannakakis to hereditary proper-
ties [LY80a]. We call a property non-trivial if it is true for infinitely many graphs
and false for infinitely many graphs. Cai [Cai96] studied the fixed-parameter
tractability of graph modification problems.

Theorem 11 ([Cai96]). The Π(i, j, k)-graph modification problem parameterized
by i + j + k is fixed-parameter tractable for any hereditary property Π that admits
a finite forbidden set characterization.

Exact Exponential-time algorithms By adapting the original NP-hardness
construction Komusiewicz showed that under the Exponential Time Hypothesis
tight complexity results can be obtained [Kom15]. The simple try-all-subsets
algorithm for Π-Vertex Deletion is essentially tight i.e. it does not admit a
2o(n)-time algorithm where n is the number of vertices in G. If Π contains all
independent sets, then there is no 2o(n+m)-time algorithm for Π-Vertex Deletion

where m is the number of edges in the graph. If there is a fixed independent
set that is not contained in Π and containment in Π can be determined in 2O(n)

time or 2o(m) time, then Π-Vertex Deletion can be solved in 2O(
√

m) + O(n) or



4.1. HEREDITARY GRAPH PROPERTIES 27

2o(m) + O(n) time, respectively. In addition, Komusiewicz showed that Π-Vertex

Deletion can not be solved in 2o(
√

n) time if G is planar and Π is hereditary and
contains and excludes infinitely many planar graphs.

Connection to d-Hitting Set For the Vertex Deletion problem for a
hereditary property Π, one may list all the occurrences of graphs in the family F
of forbidden graphs corresponding to Π in the given graph G to obtain a family of
sets H. Then, deleting k vertices from G to get a Π-graph reduces to hitting H
by a set of size at most k. This method would be practical only when F is finite
as the sets in H are bounded in size by the size of the largest set in F (say d). In
this case the formulated problem is exactly the d-Hitting Set problem.

In case of Vertex Deletion problems for hereditary properties with finite
forbidden set characterization, one can obtain a kernel of size O(kd). For Edge

Deletion problems, polynomial kernel is unlikely in general as Guillemot et
al [GPP10] showed that Pl-free Edge Deletion (l ≥ 12) and Cl-free Edge

Deletion (l ≥ 13) problems do not admit polynomial kernels unless NP ⊆
coNP/poly. Also see [KW13, CC15]. In the case of edge deletion, deleting edges
can create new forbidden subgraphs that weren’t there before as the closure under
induced subgraph property is lost. For example, Claw-free graphs do not contain
K1,3 as an induced subgraph. In the Claw-Free Deletion problem, the task is
to delete vertices or edges to reduce the input graph to a claw-free graph. While
the vertex version has a polynomial kernel, it is open whether there exists a
polynomial kernel for the edge version of the problem.

A dual of Vertex Deletion problem Raman and Khot [KR02] addressed the
parametric dual of the node deletion problem defined below. Given any property
Π, the problem P (G, k, Π) is defined as follows.

Input: A graph G on n vertices and positive integer k ≤ n
Question: Is there a subset S ⊆ V (G) with |S| = k such that the

subgraph of G induced by S, G[S] is in Π?

P (G, k, Π)

This problem is the same as Π(n − k, 0, 0) problem (i.e. can we delete all but
k vertices of G to get a graph in property Π) and hence NP-hard. However, the
parameterized complexity of this problem does not follow from the complexity of
the problem addressed by Cai even for properties having a finite forbidden set.
This is because the NP-hard reduction reduces a general instance (G, i, j, k) of
the Π(i, j, k) problem to the instance P (G, n − k, Π). This is not a parameterized
reduction as the parameter of the reduced instance can be a function only of the
original parameter k (and not of n) in a parameterized reduction.

Raman and Khot [KR02] proved that if Π includes all trivial graphs (a graph
with no edges) but not all complete graphs, or vice versa, then the problem
P (G, k, Π) is W[1]-complete. The proof is by a parameter preserving reduction



28 CHAPTER 4. IMPLICIT HITTING SET

from the Independent Set problem. If Π includes all trivial graphs and all
complete graphs, or excludes some trivial graph and some complete graph, then
the problem is fixed parameter tractable.

4.2 Algebraic problems
Now instead of using a structural route to define F as was done in the previous
section, in this section, we take an algebraic route whose study was initiated by
Meesum et al for undirected graphs in [MMS15] and directed graphs in [MS16].
More formally, given a fixed positive integer r, we define Fr as the family of graphs
where for each G ∈ Fr, the rank of the adjacency matrix AG of G (denoted by
rank(AG)) is at most r.

Input: A graph G and positive integers k
Question: Can we delete at most k vertices from G so that rank(AG) ≤ r

r-Rank Vertex Deletion

Similarly, the edge deletion and editing variants can be defined. These problems
generalize the Vertex Cover problem and a variant of the d-Cluster Editing

problem. These problems are related to some well known problems in graph
algorithms. Observe that if rank(AG) = 0, then G is an empty graph and if
rank(AG) = 2 then G is a complete bipartite graph with some isolated vertices.
There are no graphs such that rank(AG) = 1. So for r = 0, r-Rank Vertex

Deletion is the well known Vertex Cover problem. Similarly for r = 2, a
solution to r-Rank Edge Deletion is a complement of a solution to Maximum

Edge Biclique, where the goal is to find a bi-clique (complete bipartite graph)
subgraph of the given graph with maximum number of edges.
Theorem 12 ([MMS15]). r-Rank Vertex Deletion is NP-complete.

We can formulate r-Rank Vertex Deletion as a Hitting Set problem.
Let G be a graph with adjacency matrix An×n. Let H(G) = {X ∪ Y | X, Y ⊆
V (G), |X| = |Y | = r + 1, rank(AX,Y ) = r + 1}. It is easy to verify that for any
H ⊆ V (G), the rank of the adjacency matrix of G \ H is at most r if and only if
H is a hitting set of H(G) [MMS15].
Theorem 13 ([MMS15]). r-Rank Vertex Deletion admits an FPT algorithm
running in time 2O(k log r)nO(1).
Theorem 14 ([MMS15]). r-Rank Vertex Deletion admits a kernel having
at most 2(r + 1) · (2(r + 1))!(k + 1)2r+2 vertices.

4.3 VC-dimension
Another way to put restrictions on sets in H is to consider the VC-dimension of
H. VC-dimension is a property of set families, where set families with low VC-
dimension are structured is a certain sense. To define the VC-dimension of H, let



4.4. DOMINATING SET 29

us first define restriction of a family of sets to a set. For any set A ⊆ U and a family
of subsets H of U , the restriction of H to A is define as HA = {F ∩ A | F ∈ H}.
A set A is said to be shattered by H if HA = 2A, i.e. the set of all subsets of A.
The Vapnik-Chervonenkis dimension (or VC-dimension) of H denoted by V C(H),
is the cardinality of the largest set shattered by H. If there is no such largest set,
we say that V C(H) is infinity.

It is immediate that if every set in H has cardinality at most d, then the
VC-dimension of H can be at most d. If fact, it can be shown that the VC-
dimension of a family of sets H over a universe U of cardinality n is at most log n.
Consequently computing the VC-dimension of a family of sets H is unlikely to
be NP-complete [PY96]. Downey and Fellows showed that deciding whether H
has VC-dimension at most k is W[1]-complete [DF95]. Bronnimann and Goodrich
[BG95] gave an almost optimal (O(log k) where k is the size of the optimal
solution) approximation algorithm for Hitting Set on families with bounded
VC-dimension. This was later improved by Evan et al. [ERS05] and by Agarwal
and Pan [AP14].

Unfortunately, VC-dimension can not be used to separate problems are FPT from
the problems that are W[1]-hard. There are some FPT classes that have unbounded
VC-dimension, while W[1]-hard classes with VC-dimension 3 are known. Bring-
mann et al [BKMN16] proved that Hitting Set restricted to VC-dimension 2 is
W[1]-hard. Moreover, if Hitting Set problem restricted to VC-dimension 2 can
be solved in time f(k) · |U |o(k/ log k), where f is an arbitrary function and k is the
solution size, then ETH fails.

In geometric examples of Hitting Set, the input set system is defined by the
incidences between (typically) low complexity geometric shapes, such as points,
intervals, lines, disks, rectangles, hyperplanes, etc. [VC71, BEHW89, HKL+13].
The complexity of these problems varies widely from being polynomial to W[1]-hard.
Now we state some of the known results about these problems without definition
and the reader to directed to appropriate papers for more detail. Line intervals

is polynomial-time solvable whereas Disjoint Rectangle Stabbing [HKL+13]
and Pseudoline arrangement are NP-complete and in FPT. The input set systems for
each of these problems have VC-dimension 2. Similar story plays for VC-dimension
3: Halfplane arrangement in R

2 [HL12] is polynomial-time solvable while
Collection of unit disks and squares in R

2 [GKW08] remain W[1]-hard.
Halfspace arrangement in R

3 [BKMN16] with VC-dimension 4 is W[1]-hard
whereas Hyperplane arrangement in R

d with VC-dimension d + 1 is FPT.

4.4 Dominating Set
Among standard graph problems, Dominating Set comes closest to being a
Hitting Set problem. In fact, a variant of Dominating Set called Red-Blue
Dominating Set is equivalent to Hitting Set. In the Red-Blue Dominating

Set problem, the input is a bipartite graph (R, B, E) and an integer k and the
task is to determine whether there exists a subset H ⊆ R of size at most k such



30 CHAPTER 4. IMPLICIT HITTING SET

that every vertex in B has at least one neighbor in H. H is called a red-rlue
dominating set. Given a Hitting Set instance (U, H, k), we can obtain a Red-

Blue Dominating Set instance as follows: define R := U . For each set X ∈ H,
include a vertex vX in B. For every vertex vX ∈ B, vX is adjacent to every element
in X ⊆ U . It is easy to verify that (R, B, E) has a red-blue dominating set of
size at most k if and only if H has a hitting set of size at most k. Observe that
the above transformation is invertible, i.e. given a Red-Blue Dominating Set

instance, we can construct an equivalent Hitting Set instance in which the
family of sets is the family of neighborhoods of vertices in B.

Dominating Set is NP-hard even on very restricted graph classes, e.g. planar
graphs of bounded degree [GJ79a]. Naturally, the complexity of the problems
has been extensively studied under different algorithmic frameworks, notably
approximation algorithms and parameterized complexity. Using the approxima-
tion algorithm for Hitting Set, we can obtain an O(log n) approximation for
Dominating Set. On general graphs, the problem is (1 − ε) log n hard to ap-
proximate for any ε > 0 under standard complexity theoretic assumptions [CC04].
But, Dominating Set admits a polynomial-time approximation scheme (PTAS)
for planar graphs, H-minor-free graphs, unit disk graphs and growth-bounded
graphs [IMR+98, NHK08].

In parameterized complexity, Dominating Set is a standard example of a
W[2]-complete problem. This excludes the possibility of having FPT algorithms,
thereby implying no kernels for the problem unless W[2] = FPT. Therefore,
attempts have been made to find graph classes on which the results are not so
discouraging. This line of research has lead to very fruitful and insightful discoveries
in parameterized complexity in general and in kernelization in particular.

Intuitively, Dominating Set is hard because it places very few restrictions on
the input. Whenever the set-family incidence matrix is symmetric, the problem can
be formulated as a Dominating Set instance. Special cases where Dominating

Set is FPT include biclique-free graphs [PRS09, TV12] (a family that contains
bounded genus, planar, bounded treewidth and many other natural classes), claw-free
graphs [HMvLW11], and graphs with girth at least five [RS08]. The structure that
makes these special cases of Dominating Set tractable can be described in terms
of forbidden patterns in the adjacency matrix of G. For instance, biclique-freeness
simply translates to the avoidance of all-1s submatrix of a certain size.

In the regime of kernelization, for Dominating Set, it all started with the
linear kernel on planar graphs of Alber et al. [AFN04]. Next, a polynomial kernel
on H-topological-minor free graphs was given by Alon and Gutner [AG08]. More
recent efforts have lead to linear kernels on bounded genus graphs [BFL+09], apex-
minor-free graphs [FLST10], H-minor-free graphs [FLST12], and H-topological-
minor-free graphs [FLST13]. Philip et al. [PRS12] obtained a kernel of size
O(k(d+1)2) on d-degenerate graphs, for constant d, and more generally a kernel
of size O(kmax(i2,j2)) on graphs excluding the complete bipartite graph Ki,j as a
subgraph. Drange et al. [DDF+16] provided a linear kernel for graphs of bounded
expansion and an O(k1+δ)-size kernel for nowhere-dense graphs, for every constant
δ > 0 (See Figure 4.1). On the lower bounds side, Cygan et al. [CGH13] have



4.5. VERTEX COVER 31

Figure 4.1: Kernels for various graph classes for the Dominating Set prob-
lems. Figure taken from [DDF+16]

shown that existence of an O(k(d−1)(d−3)−ε) kernel, ε > 0, for Dominating Set

on d-degenerate graphs would imply NP ⊆ coNP/poly . In Chapter 8 we study
about a variant called Connected Dominating Set problem.

4.5 Vertex Cover
Vertex Cover is one of the most studied graph problems. Vertex Cover

is precisely the 2-Hitting Set problem with U being the vertices in the graph
and H is the set of edges in the graph. The Vertex Cover problem is NP-
complete [GJ79a] and is often used as a starting point for NP-hardness reductions.
It remains NP-complete even in cubic graphs and even in planar graphs of degree
at most 3.

We already saw a 2-approximation algorithm in Chapter 1. The Vertex

Cover problem is APX-complete, i.e. there exists an ε > 0 such that a (1 + ε)-
approximation would imply that P = NP. Using PCP theorem, Dinur and
Safra [ID05] proved that Vertex Cover cannot be approximated within a factor
of 1.3606 unless P = NP. Assuming the Unique Games Conjecture, Vertex

Cover cannot be approximated within any constant factor better than 2 [KR08].
As we saw, there is a simple 2k · nO(1) algorithm for Vertex Cover. After a

series of improvements in the base of the exponent, the current best algorithm runs
in O(1.2738k + k · n) [CKX10]. Under ETH, the running time cannot be improved
to 2o(k). The kernel with 2k vertices for Vertex Cover is considered one of the
fundamental results in the field of kernelization. Dell and van Melkebeek [DvM14a]
showed that this kernel is essentially tight unless NP ⊆ coNP/poly. In particular,



32 CHAPTER 4. IMPLICIT HITTING SET

there is no algorithm that reduces all instances (G, k) of Vertex Cover to
instances with bitsize O(k2−ε).

4.6 Feedback Vertex Set
A feedback vertex set in a graph G is a vertx set S such that G − S is acyclic. For
undirected graphs this means that G − S is a forest, while for directed graphs this
implies that G − S is a directed acyclic graph (DAG). In the Feedback Vertex

Set (FVS) problem we are given as input an undirected graph G and integer
k, and asked whether there exists a feedback vertex set of size at most k. The
corresponding problem for directed graphs is called Directed Feedback Vertex

Set (DFVS). We have already described how the Feedback Vertex Set can
be seen as an implicit Hitting Set problem in the beginning of Chapter 3. Both
versions of FVS are NP-complete [GJ79b] and have been extensively studied from
the perspective of approximation algorithms [BBF99, ENSS98], parameterized
algorithms [CLL+08, CNP+11, KP14], exact exponential time algrithms [Raz07,
XN15] as well as graph theory [RRST96].

Karp’s proof of NP-hardness also implies that the problem on undirected graphs
is APX-hard. The best known approximation algorithm on undirected graphs
achieves a factor of two [BBF99]. The Vertex Cover problem is reducible to
Feedback Vertex Set problem in an approximation preserving manner [LY80a],
so that any factor c approximation algorithm for the Feedback Vertex Cover

implies a factor c approximation algorithm for Vertex Cover. This implies
that under Unique Games Conjecture, the algorithm of Bafna et al. [BBF99] is
the best possible. The best known approximation factor in polynomial time for
Directed Feedback Vertex Set is O(log n log log n) [ENSS98, Sey95] and
the problem does not admit a constant factor approximation assuming the Unique
Games Conjecture [GHM+11].

Razgon [Raz06] gave a 1.8899n-time algorithm for finding a minimum feedback
vertex set in an undirected graph, which was the first exact algorithm for the
problem that broke the trivial barrier of 2n. Later, Fomin et al. [FGPR08]
improved the result to 1.7548n · nO(1) which was further improved by Xiao and
Nagamochi [XN15] to 1.7356n · nO(1). Note that using the 3.593k · nO(1) time
parameterized algorithm, Fomin et al [FGLS16] have improved the running time
to 1.7217n. Razgon [Raz07] also broke the barrier 2n for Directed Feedback

Vertex Set by giving a 1.9977n · nO(1)-time algorithm.
The Feedback Vertex Set problem in undirected graphs is fixed-parameter-

tractable and the current best deterministic algorithm runs in 3.592k ·nO(1) [KP14]
which has followed a series of improvements [RSS06, GGH+06, DFL+05, CFL+08,
CCL10]. Cygan et al [CNP+11] obtained a randomized algorithm for Feedback

Vertex Set running in time 3k · nO(1). Similarly, it was open for a long time
whether Directed Feedback Vertex Set admits an FPT algorithm, that is
an algorithm that determines whether there exists a solution of size at most k in
time f(k)nO(1). In 2008, Chen et al. [CLL+08] gave an algorithm with running



4.7. SEPARATION ORACLES 33

time O(4kkO(1)k!nm), and it is a major open problem whether there exists an
algorithm with running time 2O(k)nO(1).

Burrage et al [BEF+06] gave a kernel on O(k11) vertices for FVS in undirected
graphs which was improved to O(k3) by Bodlaender et al [BvD10]. Currently,
the best known kernel is due to Thomasse [Tho10] with 4k2 vertices. There
is a polynomial-parameter-transformation from Vertex Cover to Feedback

Vertex Set which implies that the above kernel is essentially tight unless NP ⊆
coNP/poly. Whether a polynomial kernel for Directed Feedback Vertex

Set exists is a major open problem in the field.

4.7 Separation Oracles
Often it happens that the formulation of a combinatorial problem as a Hitting

Set problem requires an exponential number of subsets to be hit. In such a
scenario, listing the family of sets H explicitly is impractical. It has been observed
that in many cases there exist efficient procedures to verify whether a candidate
set H is a hitting set and if not, output as subset X ∈ H that is not hit. Such
procedures are called an oracle.

Formally, in an Implicit Hitting Set problem, the input is a universe U
and a polynomial-time oracle that, given a set H, either determines that H is a
hitting set or returns a subset that is not hit by H. Thus, the collection H of
subsets to be hit is not specified explicitly. The objective is to find a small hitting
set by making at most |U |O(1) queries to the oracle. A natural way to use the
oracle is: first (1) propose a candidate hitting set H, then (2) use the oracle to
check if the candidate set hits all the subsets, and if not obtain a subset X that
has not been hit, and finally (3) refine H based on X and repeat until a hitting
set is found. Some examples of Implicit Hitting Set problems are Feedback

Vertex Set in which implicitly H is the set of cycles in the input graph.

Linear Programming Separation oracles can be viewed more generally, where
an algorithm has to find a solution that satisfies a set of constraints. The set of
constraints might not be given explicitly, but rather in the form of an oracle. The
algorithm asks the oracle whether the solution is feasible, and the oracle either
replies yes or returns a constraint that is violated by the solution. A setting in
which this viewpoint is particularly fruitful, is in the context of Linear Pro-

gramming [GLS81, GLS88]. A Linear Program is an optimization problem
where the input is an n-dimensional real vector c, an m × n matrix A and a
vector b and the task is to find an n dimensional real vector x such that c · x is
maximized such that Ax ≤ b. This famously has a polynomial-time algorithm, i.e.
an algorithm that finds the best x in time polynomial in n, m and the number of
bits in all of the numbers in A, c and b. In fact, the algorithm is polynomial in
just n and the bit size (i.e logarithm) of the largest number in the matrices A, c
and b. However, how is that even possible: if the running time is say n2 and m
is n10. How can the running time of the algorithm be less than the reading the



34 CHAPTER 4. IMPLICIT HITTING SET

entire input? This is where the separation oracle comes in–the poly(n) rather than
poly(input size) result is in a model where the algorithm that solves the Linear

Program does not know the matrix A and the vector b! In fact, it only knows c,
and all it has access to is a separation oracle. This is an oracle that given an n
dimensional vector x either correctly tells us that Ax ≤ b or gives us one row that
is violated. What the Linear Program algorithm promises is that it can find
the optimum x with poly(n) calls to the separation oracle. So if the separation
oracle takes time T then the total running time becomes T · nO(1). In Chapter 7,
we’ll see an application of a Linear program and a separation oracle for a linear
programming relaxation of �-Component Order Connectivity problem.



Part II

New Results

35





Chapter 5

Feedback Vertex Set in
Tournaments

5.1 Introduction

In this chapter we consider a restriction of Directed Feedback Vertex Set (DFVS),
namely the Feedback Vertex Set in Tournaments (TFVS) problem, from
the perspective of parameterized algorithms and exact exponential time algorithms.
A tournament is a directed graph T such that every pair of vertices is connected
by an arc, and TFVS is simply DFVS when the input graph is required to
be a tournament. Even this restricted variant of DFVS has applications in
voting systems and rank aggregation [DGH+10], and is quite well-studied [CDZ00,
DGH+10, GM13, RS06].

The Feedback Vertex Set (FVS) problem remains NP-complete and APX-
hard in tournaments. Moreover, Speckenmeyer [Spe89] gave an approximation-
ratio preserving polynomial time reduction from the Vertex Cover problem
in general undirected graphs to the TFVS. Consequently, the TFVS cannot
be approximated in polynomial time within a factor better than 1.3606 unless
P=NP [ID05], and not within a factor better than 2 assuming the Unique Games
Conjecture (UGC) [KR08]. On the upper bound side, TFVS admits as easy
3-approximation algorithm: while the tournament contains a directed triangle,
place all the triangles in the FVS and remove them from the tournament. Cai,
Deng and Zang [Cai] improved the simple algorithm and gave a polynomial time
algorithm with approximation guarantee 5/2, even in the case when vertices have
non-negative weights and one seeks a solution of approximate minimum weight.
Mnich et el [MWV16] developed a better, 7/3-approximation algorithm for the
minimum weight Feedback Vertex Set problem in tournaments, narrowing
the gap to the UGC-based lower bound of 2 to 1/3.

TFVS was shown to be fixed parameter tractable by Raman and Saurabh [RS06],
who obtained an algorithm with running time O(2.42k · nO(1)). In 2006, Dom et
al. [DGH+06] (see also [DGH+10]) gave an algorithm for TFVS with running time
2knO(1). Gaspers and Mnich [GM13] provided an exact exponential time algorithm

37



38 CHAPTER 5. FEEDBACK VERTEX SET IN TOURNAMENTS

for TFVS that takes O(1.674n) time. It is worth noting that this algorithm also
lists all inclusion minimal feedback vertex sets in the input tournament. In this
chapter we describe a single algorithm whose running time is upper bounded by
O(1.618k +nO(1)) and by O(1.46n). This algorithm crucially depends on a balanced
edge partition theorem for general undirected graphs. Essentially this theorem
states that the vertices of any undirected m-edge graph G of maximum degree
d can be colored white or black in such a way that for each of the two colors,
the number of edges with both endpoints of that color is between m/4 − d/2 and
m/4+d/2. This partition theorem is of independent interest, and we believe it
will find further applications both in algorithms and in graph theory.
Overview of the algorithm. Let us refer the algorithm by A. As a preliminary
step A applies the kernel of Dom et al. [DGH+10] to ensure that the number of
vertices in the input tournament is upper bounded by O(k3). After this step, A
proceeds in three phases.

In the first phase A finds, in subexponential time, a “large enough” set M of
vertices disjoint from the solution H sought for, such that M is evenly distributed
in the topological ordering of T −H. From the set M it is possible to infer a rough
sketch of the unique topological ordering of T − H without knowing the solution
H. More concretely, every vertex v gets a tentative position in the ordering such
that if v is not deleted, then v’s position in the topological order of T − H is close
to this tentative position.

This tentative ordering can be used to identify conflicts between two vertices
u and v. Two vertices u and v are in conflict if their tentative positions are so far
apart that it fixes the order in which they have to appear in the topological sort
of T − H, but the arc between u and v goes in the opposite direction. Thus, if u
and v are in conflict then at least one of them has to be in the solution feedback
vertex set H.

The second phase of A eliminates vertices that are in conflict with more than
one other vertex. Suppose that u is in conflict with both v and w. If u is not
deleted then both v and w have to be deleted. A finds the optimal solution by
branching and recursively solving the instance where u is deleted, and the instance
where u is not deleted but both v and w are deleted. This branching step is the
bottleneck of the algorithm and gives rise to the O(1.618knO(1)) and the O(1.46n)
running time bounds.

The third and last phase of A deals with the case where every vertex has at
most one conflict. Here a divide and conquer approach based on a partitioning
theorem is applied.
Organization of the chapter. In Section 6.2 we set up definitions and notation,
and state a few useful preliminary results. Section 6.4 describes and analyzes
the first phase of the algorithm. Section 5.4 contains the second phase, as well
as the final analysis of the correctness and running time of the entire algorithm,
conditioned on the correctness and running time bound of the third and last
phase. In Section 5.5 we formally state and prove our a decomposition theorem
for undirected graphs, while the description and analysis of the third phase of the



5.2. PRELIMINARIES 39

algorithm is deferred to Section 5.6.

5.2 Preliminaries
We assume that graphs do not contain any self loops. A multigraph is a graph
that may contain more than one edge between the same pair of vertices. A graph
is mixed if it can contain both directed and undirected edges. We will be working
with mixed multigraphs; graphs that contain both directed and undirected edges,
and where two vertices may have several edges between them. A triangle in a
directed graph is a directed cycle of length 3. A topological sort of a directed
graph D is a permutation π : V (D) �→ [n] of the vertices of the graph such that
for all edges uv ∈ E(D), π(u) < π(v). Such a permutation exists for a directed
graph if and only if the directed graph is acyclic. For an acyclic tournament, the
topological sort is unique.

When working with a mixed multigraph G we use V (G) to denote the vertex set,
E(G) to denote the set of directed edges, and E(G) to denote the set of undirected
edges of G. A directed edge from u to v is denoted by uv. A supertournament
is a directed graph T such that for every pair of vertices u, v at least one (and
possibly both) edges uv and vu are edges of T . Thus, every tournament is a
supertorunament, but not vice versa.
Preliminary Results. If a tournament is acyclic then it does not contain any
triangles. It is a well-known and basic fact that the converse is also true, see
e.g. [DGH+10].

Lemma 5.1. [DGH+10] A tournament is acyclic if and only if it contains no
triangles.

Lemma 5.1 immediately gives rise to a folklore greedy 3-approximation algo-
rithm for TFVS: as long as T contains a triangle, delete all the vertices in this
triangle.

Lemma 5.2 (folklore). There is a polynomial time algorithm that given as input
a tournament T and integer k, either correctly concludes that T has no feedback
vertex set of size at most k or outputs a feedback vertex set of size at most 3k.

In fact, TFVS has a polynomial time factor 2.5-approximation, due to Cai et
al. [CDZ00]. However, the simpler algorithm from Lemma 5.2 is already suitable
to our needs.

The preliminary phase of our algorithm for TFVS is the kernel of Dom et
al. [DGH+10]. We will need some additional properties of this kernel that we state
here. Essentially, Lemma 5.3 allows us to focus on the case when the number of
vertices in the input tournament is O(k3).

Lemma 5.3. [DGH+10] There is a polynomial time algorithm that given as input
a tournament T and integer k, runs in polynomial time and outputs a tournament
T ′ and integer k′ such that |V (T ′)| ≤ |V (T )|, |V (T ′)| = O(k3), k′ ≤ k, and T ′ has



40 CHAPTER 5. FEEDBACK VERTEX SET IN TOURNAMENTS

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
Topological sort

Red vertices in M

M -blocks

Figure 5.1: Topological sort of T = v0 . . . v11, M = {v1, v5, v9} and M -blocks are
{{u0}, {u2, u3, u4}, {u6, u7, u8}, {u10, u11}}

a feedback vertex set of size at most k′ if and only if T has a feedback vertex set of
size at most k.

Definition 5.4. Let D be a directed graph. For any pair of vertices u, v ∈ V (D)
the set between(D, u, v) is defined as N+(u) ∩ N−(v) \ {u, v}.

Observe that for an acyclic tournament T , between(T, u, v) is exactly the set
of vertices coming after u and before v in the unique topological ordering of T .

Definition 5.5. Let D be a directed graph and M ⊆ V (D). Two vertices u, v ∈ M
are called M-consecutive if uv ∈ E(D) and between(D, u, v) ∩ M = ∅.

In an acyclic tournament T and vertex set M , two vertices u and v in M are
M -consecutive if no other vertex of M appears between u and v in the topological
ordering.

Definition 5.6. Let D be a directed graph and M ⊆ V (D). We define the set of
M -blocks in D. Each pair of M -consecutive vertices u and v defines the M -block
between(D, u, v). Further, each vertex u ∈ M with no in-neighbors in M defines
an M -block N−(u). Each vertex u ∈ D with no out-neighbors in M defines the
M -block N+(u). The size of an M -block is its cardinality.

In an acyclic tournament T the M -blocks form a partition of V − M , where
two vertices are in the same block if and only if no vertex of M appears between
them in the topological order of T . For example, consider an acyclic tourna-
ment T = u0u1...u11 where vertices are topologically sorted. Let M = {ui|i
mod 4 = 1}. between(T, u1, u9) = {u2, u3, u4, u5, u6, u7, u8}. u5 and u9 are M -
consecutive and {u6, u7, u8} is an M -block. The set of all M -blocks in T is
{{u0}, {u2, u3, u4}, {u6, u7, u8}, {u10, u11}}. See Figure 5.1.

5.3 Scattered Pivots
Any induced subgraph M of an acyclic tournament T is an acyclic tournament.
As the topological sort of an acyclic tournament is unique, it is useful to observe
that the topological sort of M can be obtained by deleting the vertices belonging
to T − M from the topological sort of T . Conversely, the topological sort of T
can be obtained by extending the topological sort of M .



5.3. SCATTERED PIVOTS 41

Given a tournament T and an integer k, our goal is to check if there exists a
small set H such that T − H is acyclic. By the above discussion, if a set M is
known with the promise that a feedback vertex set H for T exists which is disjoint
from M , we can correctly extend the topological sort of M to the topological sort
of most of the vertices in T . For example, let M be the set of vertices of T − H
whose position in the topological order is congruent to 0 mod log2 k. Such a set
would be disjoint from H such that, in the topological order of T − H the distance
between two consecutive vertices of M is O(log2 k). Of course there is a catch; we
defined M using the solution H, but we want to use M to find the solution H.
The next lemma shows how to find a set M with the above properties without
knowing the optimum feedback vertex set H in advance.

Lemma 5.7. Let T be a tournament with |V (T )| = O(k3) where k is an integer.
Then, there exists a family M of subsets of V (T ) with |M| = 2O( k

log k
) such that

for every feedback vertex set H of T of size at most k, there is a set M ∈ M, such
that :

1. M ∩ H = ∅, and

2. the size of any M-block in T − H is at most 2 log2 k.

Furthermore, there exists an algorithm that enumerates M in 2O( k
log k

) time and
polynomial space.

Proof. Let X be a feedback vertex set of T of size at most 3k obtained using
Lemma 5.2. Let Y := V (T ) \ X and v0v1...v|Y |−1 be the topological sort of T [Y ]
such that the edges in T [Y ] are directed from left to right. Partition Y using
�log2 k� colors such that for each i ∈ [0, ..., |Y | − 1], vi gets color i mod �log2 k�.
For each c ∈ [0, ..., �log2 k� − 1], let Yc be the set of vertices in Y which get color
c. Each M ∈ M is specified by a 4-tuple 〈c, Ĥ, R̂, X̂〉 where

• c is a color in the above coloring of Y ,

• Ĥ ⊆ Yc such that |Ĥ| ≤ k
log2 k

,

• R̂ ⊆ Y \ Yc, |R̂| ≤ |Ĥ|, and

• X̂ ⊆ X such that |X̂| ≤ 3k
log2 k

.

For each 4-tuple 〈c, Ĥ, R̂, X̂〉, let M := (Yc \ Ĥ) ∪ R̂ ∪ X̂. Hence, |M| is upper
bounded by the maximum number of such 4-tuples which is c times the product
of total number of choices sets of Ĥ, R̂ and X̂ .

|M| ≤ 2log(log2 k) × k
6k

log2 k × (3k)
3k

log2 k

= 2O( k
log k

)

Clearly, all such 4-tuples can be enumerated in polynomial space thereby providing
an enumeration of M.



42 CHAPTER 5. FEEDBACK VERTEX SET IN TOURNAMENTS

We prove the correctness of the above algorithm by showing that for every
feedback vertex set H of T of size at most k, M contains a set M which satisfies
the properties listed in the statement of the lemma. Let H be an arbitrary feedback
vertex set of T of size at most k. Corresponding to this set H, we show that there
exists an appropriate 4-tuple.

For each color j ∈ [0, ..., �log2 k� − 1], let Hj := Yj ∩ H. As |H| ≤ k, by
averaging, there is a color c such that 0 < |Hc| ≤ k

log2 k
. For this color c, let

Ĥ := Hc. Consider a set R̂ obtained as follows: for every vertex v ∈ Hc, pick the
first vertex after v (if there is any) in Y \ (Yc ∪ H) in the topological ordering of
T [Y ]. Note that T [X \ H] is acyclic. Color X \ H using �log2 k� colors as was
done for Y . Let X̂ be the set of all vertices colored 0 in this coloring. The size of
any X̂-block in T [X \ H] is �log2 k�. Clearly, |X̂| ≤ 3k

log2 k
.

The 4-tuple 〈c, Ĥ, R̂, X̂〉 described above satisfies all the properties listed in
the construction of M. Let M := (Yc \ Hc) ∪ R̂ ∪ X̂. Clearly, M ∩ H = ∅ and
M ∈ M. Since the size of any [(Yc \ Hc)

⋃
R̂]-block in Y is at most log2 k, the

size of any M -block in T − H is at most 2 log2 k which concludes the proof of the
lemma.

Set M ∈ M acts as a set of pivots around which we arrange rest of the vertices
in T − M . But, there are a few shortcomings of Lemma 6.25. The size bound
on M -blocks in T − H depends on H and as H is unknown it does not help
immediately. Even though with Lemma 6.25, for any feedback vertex set H of size
at most k we will find a set M such that the M -blocks in T − H are small, the
M -blocks of T do not have to be small, because they could contain many vertices
from H. This works in our favor as from large blocks we can easily guess the
vertices that do not belong to H and branch on their choices. The next lemma
provides us with an additional set P corresponding to M that helps us work
without the knowledge of H.

Definition 5.8. Let D be a directed graph. A vertex v ∈ V (D) is consistent with
a set M ⊆ V (D) if there are no cycles in D[M ∪ v] containing v.

Define a function I that given a directed graph D and a set M ⊆ V (D) outputs
a set of vertices inconsistent with M . Define another function L that given a
directed graph D, a set M ⊆ V (D) and an integer k outputs a set of vertices which
is the union of all large M -blocks i.e. of size at least 2 log4 k in D − I(D, M).

Lemma 5.9. Let T be a tournament with |V (T )| = O(k3) where k is an integer.
Then, there exists a family X = {(M1, P1), (M2, P2, . . . , (Ml, Pl))} of set pairs of
V (T ) with |X | = 2O( k

log k
) such that for every feedback vertex set H of T of size at

most k, there is a set (M, P ) ∈ M, such that :

1. M ∩ H = ∅,

2. P ⊆ H,

3. every vertex of V (T ) \ P is consistent with M ,



5.4. MAIN ALGORITHM FOR TFVS 43

4. the size of any M-block in T − H is at most 2 log2 k, and

5. the size of any M-block in T − P is at most 2 log4 k.

Furthermore, there exists an algorithm that enumerates X in 2O( k
log k

) time and
polynomial space.

Proof. Use the algorithm of Lemma 5.7 to compute M. For each M ∈ M compute
the sets I(T, M) and L(T, M, k). For each B ⊆ L(T, M, k) such that |B| ≤ 2k

log2 k

output a pair of sets (M, P ) = (M, I(T, M) ∪ L(T, M, k) \ B). The set X is the
collection of all such pair of sets.

We prove that the algorithm satisfies the stated properties. Consider a feedback
vertex set H of size at most k. By Lemma 5.7 there exists M ∈ M such that
M ∩ H = ∅. Let C = I(T, M) be the set of vertices that are not consistent with
M . These vertices must belong to H. Since, for every vertex v ∈ T − C, T [M ∪ v]
is an acyclic tournament, v can be placed uniquely in the topological ordering of
T [M ]. Hence, for each v ∈ T − C, there is an unique M -block containing it. Since
the size of any M -block in T − H is at most 2 log2 k, the size of each M -block
in T − C will be at most k + 2 log2 k. An M -block is called large if its size is at
least 2 log4 k. From each large M -block at least 2 log4 k − 2 log2 k vertices belong
to H. Hence, in total at most k

2 log4 k−2 log2 k
× 2 log2 k ≤ 2k

log2 k
vertices from the

union of large M -blocks do not belong to H. Since the algorithm loops over all
choices of subsets B ⊆ L(T, M, k), |B| ≤ 2k

log2 k
, X contains a pair (M, P ) satisfying

the properties listed in the lemma. Moreover, |X | is bounded by the product
of |M| and the number of subsets B. Now |L(T, M, k)| ≤ |V (T )| which implies
the number of subsets B is at most (k3)

2k
log2 k = 23 log k× 2k

log2 k = 2O( k
log k

). Hence,
|X | ≤ 2O( k

log k
) × 2O( k

log k
) = 2O( k

log k
)

Observe that the algorithm of Lemma 5.9 does not store the family X , but
enumerates all the pairs (M, P ) ∈ X . Furthermore, we can work with the M -blocks
in T − P . The algorithm for TFVS will go through all pairs in (M, P ) ∈ X and
for each such pair (M, P ) search for a feedback vertex set H of size at most k such
that (M, P ) satisfy the conclusion of Lemma 5.9 for H. In the next section we
shall see that the extra restrictions imposed on H by M and P make it easier to
find H.

5.4 Main Algorithm for TFVS
In this section we consider the following problem. We are given as input a
tournament T and an integer k, and a pair (M, P ) of vertex set in T . The
objective is to find a feedback vertex set H of T of size at most k, such that (M, P )
satisfy the conclusion of Lemma 5.9.

The pair (M, P ) naturally leads to a partition of the vertices of T − (P ∪ M)
into local subtournaments corresponding to the induced graphs on the M -blocks
in T − P . At this point the triangles in T − P can be classified into two types:



44 CHAPTER 5. FEEDBACK VERTEX SET IN TOURNAMENTS

those that are entirely within a subtournament and those whose vertices are shared
between more than one subtournament. The algorithm eliminates all the shared
triangles first. When there are no such triangles left, it is possible to solve the
problem independently on each of the subtournaments. Since the subtournaments
are small, even brute force search is fast enough.

To formalize our approach it is convenient to define an intermediate problem,
and interpret the search for a feedback vertex set H such that (M, P ) satisfies
the conclusion of Lemma 6.39 as an instance of this intermediate problem. Let d
and t be two positive integers. Consider a class of mixed multigraphs G(d, t) in
which each member is a mixed multigraph T with the vertex set V (T ) partitioned
into vertex sets V1, V2, ..., Vt such that for each i ∈ [t], |Vi| ≤ d and Ti := T [Vi] is
a supertournament and the undirected edge set is E(T ) ⊆ ⋃

i<j Vi × Vj.

Input: A mixed multigraph T ∈ G(d, t), positive integer k
Question: Does there exists a set H ⊆ V (T ) such that |H| ≤ k and

T − H is acyclic and contains no undirected edges?

d-Feedback Vertex Cover (d-FVC)

Now we show how TFVS reduces to solving d-FVC.

Lemma 5.10. There exists a polynomial time algorithm that given a TFVS
instance (T, k) and a subset M ⊆ V (T ) outputs a d-FVC instance (T , k) such that
T has a feedback vertex set H disjoint from M , P ⊆ M and |S| ≤ k if and only if
(T , k) is a yes-instance of d-FVC.

Proof. We describe an algorithm that reduces T to T on the same set of vertices
as in T − M . If T [M ] is not acyclic or there is a vertex in T inconsistent with
M , then output a trivial no-instance. Otherwise, let B := {B1, B2, ..., Bt} be the
set of M -blocks in T such that the elements in B are indexed according to the
topological order of T [M ] in which the edges in T [M ] are directed from left to right.
Let V (T ) := V (T ) \ M . The directed edge set E(T ) is E(T ) \ {e | ∀i, j ∈ [t], i �= j
and e ∈ Bj × Bi}. The undirected edge set in T is E(T ) := {undirected(e) | i, j ∈
[t], i < j and e ∈ Bj × Bi} where undirected(e) is an undirected edge between the
endpoints of e.

Now we argue about the correctness. Since T is essentially a subgraph of
T − M with some additional undirected edges, we use the same symbol to refer
to vertex or directed edge sets in both the instances. Suppose S is a feedback
vertex cover of T . Clearly S is disjoint from M . We claim that S is a feedback
vertex set of T . The triangles in T − M are of two types: ones whose endpoints lie
entirely in Bi for some i and others whose endpoints are shared among multiple
M -blocks. Clearly, S hits all the triangles within each subtournament T [Bi] in
T . Hence, all that remains to show is that S is also a hitting set for all triangles
between different subtournaments T [Bi]. For the sake of contradiction suppose
that there is a triangle uvwu in T − M − S such that not all of u, v and w belong
to the same subtournament of T . Then at least one edge ab in this triangle is



5.4. MAIN ALGORITHM FOR TFVS 45

v0 v2 v3 v4 v5 v7 v8 v9 v11 v12v1 v6 v10
M -blocks

small M -blocks

back edges

FVC instance

T0 T1 T2 T3

Figure 5.2: From TFVS to FVC

such that a ∈ Bi, b ∈ Bj and i > j. But by the construction of E(T ) there is an
undirected edge between a and b implying that at least one of a or b belongs to S,
a contradiction.

In the other direction, suppose S is a feedback vertex set of T disjoint from M .
Clearly, S hits all the triangles within each subtournament T [Bi] in T . Hence, all
that remains to show is that S is a hitting set for E(T ). Suppose not. Then there
is an undirected edge e = uv ∈ E which is not hit by S. Consider the directed edge
in T corresponding to e. Without loss of generality, we can assume that u ∈ Bi

and v ∈ Bj for some i, j ∈ [t] such that the directed edge is from u to v and i > j.
Now in T , there is a vertex w ∈ M which lies after all elements of Bj and before
all vertices of Bi and forms a triangle vwuv. Since, w /∈ S, either u ∈ S or v ∈ S,
a contradiction.

Figure 5.2 shows an example of the reduction from a TFVS instance to one of
many FVC instances. In light of Lemma 5.10 we need an efficient algorithm for
d-FVC. Next we will give an efficient algorithm for d-FVC and show how it can be
used to obtain our claimed algorithm for TFVS. Our algorithm for FVC is based on
branching on vertices that appear in at least two edges of E(T ). The case when
there are no such vertices has to be handled separately, the algorithm for this case
is deferred to Section 5.6. For now, we simply state the existence of the algorithm
for this case, and complete the argument using this algorithm as a black box.

Lemma 5.11. There exists an algorithm running in 1.5874s · 2O(d2+d log s) · nO(1)

time which finds an optimal feedback vertex cover in a mixed multigraph T ∈ G(d, t)
in which the undirected edge set E(T ) is disjoint and |E(T )| = s.

The proof of Lemma 5.11 can be found in Section 5.6. Armed with Lemma 5.11
we can give a simple and efficient algorithm for d-FVC. The algorithm is based on
branching. In the course of the branching we will sometimes conclude (or guess)
that a vertex v is not put into the solution H. The operation described below
encapsulates the effects of making a vertex undeletable.



46 CHAPTER 5. FEEDBACK VERTEX SET IN TOURNAMENTS

In a mixed multigraph D, for any vertex v, D/v is a mixed multigraph obtained
by adding a directed edge uw in D − v for every u ∈ N−(v) and w ∈ N+(v). The
next lemma shows that looking for a solution disjoint from v amounts to putting
all the undirected neighbors NE(v) of v into the solution, and finding the optimum
solution of (T − NE(v))/v.

Lemma 5.12. Let (T , k) be a d-FVC instance. If for any vertex v ∈ V (T ) such
that NE(v) = ∅, then (T , k) has a solution of size at most k not containing v if
and only if (T /v, k) is a yes-instance.

Proof. Let S be a feedback vertex cover of T of size at most k not containing v.
We show that S is a feedback vertex cover of T /v. Clearly, S hits every undirected
edge in T /v. For the sake of contradiction suppose there is a cycle of length 3
containing v in T /v not hit by S. If this cycle is in T − v, then it is hit by S.
Hence, the triangle must contain an edge not in T − v. Note that T /v is obtained
by adding a directed edge yx for every triangle xyvx in T − v thereby creating a
2-cycle between x and y. Since v /∈ S, either x ∈ S or y ∈ S, a contradiction. For
the same reason there are no cycles of length 2 in T /v − S.

Now suppose S is a feedback vertex cover of T /v. Since every cycle in T − v
is a cycle in T /v which are hit by S, we need to consider cycles in T containing v.
But, for every such cycle xyvx we have a cycle xyx of length 2 in T /v which is
hit by S, we have that T − S is acyclic.

Lemma 5.13. There exists an algorithm for d-FVC running in 1.466n ·2O(d2+d log n)

time and in 1.618k · 2O(d2+d log k) · nO(1) time.

Proof. We describe a recursive algorithm which searches for a potential solution
S of size at most k by branching. For any vertex v, let NE(v) denote the set of
vertices w such that vw ∈ E . Let s = |E|. As long as there is a vertex v such
that |NE(v)| ≥ 2 and k > 0, the algorithm branches by considering both the
possibilities: either v ∈ S or v /∈ S. In the branch in which v is picked, n and k
are decreased by 1 each and v is removed from the graph. In the other branch,
NE(v) is added to S, and k is decreased by |NE(v)|. At the same time, NE(v)
is removed from the graph. Since, NE(v) = ∅, by Lemma 5.12 (T , k) is reduced
to (T /v, k). Thus the number of vertices is decreased by |NE [v]|. The algorithm
stops branching further in a branch in which either k < 0 or k > 0 and for every
vertex v, |NE(v)| ≤ 1. In the case that k < 0, the algorithm terminates the branch
and moves on to other branches. In the other case, if |E(T )| > k, the algorithm
terminates that branch, otherwise the algorithm of Lemma 5.11 is applied. If
the size of the optimal solution of Lemma 5.11 is at most k, then the algorithm
outputs yes and terminates, otherwise the algorithm moves to another branch.
If the algorithm fails to find any solution of size at most k in every branch, it
outputs no.

Now we do the running time analysis of the algorithm. At each internal node
of the recursion tree, the algorithm spends polynomial time. At a leaf node, either
the algorithm terminates or makes a call to the algorithm of Lemma 5.11 with



5.4. MAIN ALGORITHM FOR TFVS 47

parameter s = |E(T )| which is at most k. So, we need to bound the number of
times Lemma 5.11 is called with parameter s for each value of s in [k]. Note that
for any s, the smallest value of k with which a call to the algorithm of Lemma
5.11 is made is s. Therefore, for each value of s ∈ [k], the number of calls to the
algorithm of Lemma 5.11 is bounded by the number of nodes in the recursion tree
with k = s. The recurrence relation for bounding the number of leaves in the
recursion tree of the algorithm is given by:

fs(k) ≤ fs(k − 1) + fs(k − 2)

which solves to fs(k) ≤ 1.618k−s as fs(k) ≤ 1 for k = s. Hence, the running time
of the algorithm is upper bounded by

k∑
s=1

1.618k−s × 1.5874s · 2O(d2+d log s) · nO(1) ≤

1.618k · 2O(d2+d log k) · nO(1).
We can do a similar analysis to bound the running time in terms of n. Note

that in direct correspondence with the fact that when ever k decreases by 1, n
decreases by 1 and whenever k decreases by x ≥ 2, n decreases by x + 1, we get
the following recurrence relation:

fs(n) ≤ fs(n − 1) + fs(n − 3)

implying fs(n) ≤ 1.466n−s as fs(k) ≤ 1 for n = s. If s is the size of of the graph,
then the largest value of |E| with which a call to the algorithm of Lemma 5.11 is
made, is at most s

2 . Hence, the running time of the algorithm is upper bounded
by

n∑
s=1

1.466n−s × 1.5874 s
2 · 2O(d2+d log n) · nO(1) ≤ 1.466n · 2O(d2+d log n) · nO(1).

Having shown an efficient algorithm for d-FVC, we are now in position to prove
our main theorem.

Theorem 15. There exists an algorithm for TFVS running in O(1.466n) time
and in O(1.618k + nO(1)) time.

Proof. The algorithm begins by running the kernelization algorithm of Lemma 5.3
for the given TFVS instance. In the remainder we assume that n = O(k3). Next
the algorithm proceeds to apply Lemma 5.9 to create a family of set pairs X . For
each set pair (M, P ) ∈ X it determines whether there is a feedback vertex set H
of size at most k such that H ∩ M = ∅ and P ⊆ H as follows:

First it runs the algorithm of Lemma 5.10 with input (T − P, k − |P |) and M
to reduce the problem to an equivalent d-FVC instance which is then passed to the
algorithm of Lemma 5.13 as input. The algorithm outputs yes and terminates if
the output of the algorithm of Lemma ?? is yes. If no solution of size at most k
is obtained for any set pair in X , the algorithm outputs no and terminates.

The correctness of the algorithm follows from Lemma 5.9 and Lemma 5.10.
The running time of the algorithm is upper bounded by |X | times (the running
time of the algorithm of Lemma 5.13). Since |X | = 2o(k) and the bulk of the
algorithm is run on a tournament with at most O(k3) vertices the total time used
by the algorithm is upper bounded by O(1.466n) and O(1.618k + nO(1)).



48 CHAPTER 5. FEEDBACK VERTEX SET IN TOURNAMENTS

We have now proved our main result, assuming the correctness of Lemma 5.11.
The remainder of the chapter is devoted to proving Lemma 5.11. The engine of the
algorithm of Lemma 5.11 is a new graph partitioning theorem. The next section
contains the statement and proof of this theorem, while Section 5.6 wraps up the
proof of Lemma 5.11, thereby completing the proof of Theorem 15.

5.5 Balanced Edge Partition Theorem
Given an undirected graph G, |E(G)| = m, if each vertex in V (G) is colored red
or blue uniformly at random, then in expectation there will be m

4 red edges and
m
4 blue edges, where a red edge is an edge whose both endpoints are red and a
blue edge is an edge whose both endpoints are blue. Using Chebysev inequality it
can be shown that, with high probability, the number of red or blue edges will
be within O(

√
md) of m

4 where d is the maximum degree of a vertex in the graph.
A proof of this fact is skipped in favor of a local search algorithm which runs in
polynomial time and provides a coloring with smaller deviation from the expected
value than random coloring.

Theorem 16. Given an undirected, multigraph without self-loops and isolated
vertices G of maximum degree at most d and |E(G)| = m, there exists a partition
(A, B) of V (G) such that

• m
4 − d

2 ≤ |E(G[A])| ≤ m
4 + d

2 ,

• m
4 − d

2 ≤ |E(G[B])| ≤ m
4 + d

2 , and

• m
2 − d ≤ |E(G[A, B])| ≤ m

2 + d

where E(G[A, B]) is the set of edges with one endpoint in A and other in B.
Furthermore, there is a polynomial time algorithm to obtain this partition.

Proof. The following local search algorithm is used to obtain the desired partition:
At each step, the algorithm maintains a partition (A, B) of V (G). As long as
there exists a vertex v ∈ A (or v ∈ B) such that moving it to other part decreases
the measure μ = ||E(G[A])| − m

4 | + ||E(G[B])| − m
4 |, the algorithm changes the

partition to (A \ v, B ∪ v) (or (A ∪ v, B \ v)). The algorithm terminates if no
vertex can be moved. Since μ ≤ m and in each step, it decreases by at least one,
above algorithm terminates in polynomial time.
Correctness: Let mA := |E(G[A])|, mB := |E(G[B])|, and mC := |E(G[A, B])|.
Let x := mA − m

4 and y := mB − m
4 when the algorithm terminates. Then,

μ = |x| + |y|. For any vertex v, let av denote the number of edges incident on v
whose other endpoints are in A and bv denote the number of edges incident on v
whose other endpoints are in B. Clearly, for every vertex v, av + bv ≤ d. Suppose
that a vertex v ∈ A is moved to B. The new partition is (A′, B′) = (A \ v, B ∪ v).
Then, mA′ = m

4 + x − av, mB′ = m
4 + y + bv and the measure at this partition is

μ′ = |x−av|+ |y +bv|. Define δv
A := μ′ −μ = |x−av|−|x|+ |y +bv|−|y|. Similarly,



5.5. BALANCED EDGE PARTITION THEOREM 49

if a vertex v ∈ B moves to A creating new partition (A′, B′) = (A ∪ v, B \ v),
we can define δv

B := μ′ − μ = |x + av| − |x| + |y − bv| − |y|. Note that since the
algorithm has terminated, for any vertex v ∈ V (G), δv

A ≥ 0 and δv
B ≥ 0. Then,

the claim of the theorem is that |x| ≤ d
2 and |y| ≤ d

2 . For the sake of contradiction
assume the following possible values of x and y:
x > d

2 , y > d
2 : Consider moving a vertex v ∈ A to B. Then, δv

A = |x−av|−|x|+bv.
Suppose that x < av, δv

A = av − x − x + bv = av + bv − 2x. But, for every
vertex v ∈ V , av + bv ≤ d which implies δv

A < 0, a contradiction. Hence, for
all vertices v ∈ A, x ≥ av, δv

A = x−av −x+bv = bv −av. If v ∈ A is such that
av > bv, then δv

A < 0, a contradiction. Hence, for all vertices v ∈ A, av ≤ bv.
Then, ∑

v∈A
av ≤ ∑

v∈A
bv =⇒ 2mA ≤ mC =⇒ mC ≥ m

2 + 2x > m
2 + d which

is a contradiction.

x < −d
2 , y < −d

2 : Consider moving a vertex v ∈ A to B. Then, δv
A = |y + bv| −

|y| + av. Suppose that |y| < bv, δv
A = bv − |y| − |y| + av = av + bv − 2|y|.

But, for all vertices v, av + bv ≤ d which implies that av − 2|y| + bv < 0, i.e.
δv

A < 0, a contradiction. Hence, for every vertex v ∈ A, we have that |y| ≥ bv

and therefore, δv
A = |y|− bv −|y|+av = av − bv. If v ∈ A is such that av < bv,

then δv
A < 0, a contradiction. Hence, for all vertices v ∈ A, av ≥ bv. This

implies that ∑
v∈A

av ≥ ∑
v∈A

bv =⇒ 2mA ≥ mC =⇒ mC ≤ m
2 + 2x < m

2 − d

which is a contradiction.

x > d
2 , y < −d

2 : Consider moving a vertex v ∈ A to B. Then, δv
A := μ′ − μ =

|x − av| − |x| + |y + bv| − |y| < 0 as |x − av| − |x| ≤ 0 and |y + bv| − |y| ≤ 0
and at least one of the inequalities is strict, hence a contradiction.

y > d
2 , x < −d

2 : Similar to the previous case.

x > d
2 , |y| ≤ d

2 : Consider moving a vertex v ∈ A to B. Suppose that x < av, then
δv

A = av − 2x + |y + bv| − |y| ≤ av − 2x + bv < 0, a contradiction. Hence, for
every vertex v ∈ A, x ≥ av, then δv

A = |y + bv| − |y| − av ≤ bv − av. If v ∈ A
is such that av > bv, then δv

A < 0, a contradiction. Hence, for every vertex
v ∈ A, we have that av ≤ bv. This implies that ∑

v∈A
av ≤ ∑

v∈A
bv =⇒ 2mA ≤

mC =⇒ mC ≥ m
2 + 2x > m

2 + d which is a contradiction.

y > d
2 , |x| ≤ d

2 : Similar to the previous case.

x < −d
2 , |y| ≤ d

2 : Consider moving a vertex v ∈ B to A. If |x| ≥ av, then
δv

B = av −2|x|+|y−bv|−|y| ≤ av −2|x|+bv < 0, a contradiction. So, for every
vertex v ∈ B, |x| < av and 0 ≤ δv

B = |x| − av − |x| + |y − bv| − |y| ≤ −av + bv.
Hence, for each vertex v ∈ B, av ≤ bv. This implies ∑

v∈B
av ≤ ∑

v∈B
bv =⇒

mC ≤ 2mB =⇒ mC ≤ m
2 + 2y < m

2 which is a contradiction.

y < −d
2 , |x| ≤ d

2 : Similar to the previous case.
Hence, |x| ≤ d

2 and |y| ≤ d
2 . This implies that s

2 − d ≤ mC ≤ s
2 + d. This concludes

the proof of the theorem.



50 CHAPTER 5. FEEDBACK VERTEX SET IN TOURNAMENTS

5.6 d-FVC with Undirected Degree at Most One
Now that we are equipped with Theorem 16, we are almost ready to prove
Lemma 5.11. First we show a lemma that encapsulates the use of Theorem 16
inside the algorithm of Lemma 5.11.

Lemma 5.14. There exists a polynomial time algorithm that given a mixed
multigraph T ∈ G(d, t) with disjoint undirected edge set E(T ) outputs a partition
(X, Y ) of V (T ) such that there are no directed edge with one endpoint in X and
other in Y and

• ||E(X) ∩ E| − s
4 | ≤ d

2 ,

• ||E(Y ) ∩ E| − s
4 | ≤ d

2 and

• ||E(X, Y ) ∩ E| − s
2 | ≤ d

where s = |E(T )| and E(X) is the set of undirected edges in T [X], E(Y ) is the set
of undirected edges in T [Y ] and E(X, Y ) is the set of undirected edges with one
endpoint in X and other in Y .

Proof. Construct an undirected, multigraph Z such that V (Z) = {zi|i ∈ [t]} and
E(Z) = {zizj|uv ∈ E , u ∈ Vi, v ∈ Vj}. Run the algorithm of Theorem 16 to get
the partition (A, B) of V (Z). Output X := ⋃

i,zi∈A
Vi and Y := ⋃

i,zi∈B
Vi. Since E

is disjoint and for each i ∈ [t], |Vi| ≤ d, maximum degree of a vertex in Z is at
most d. Hence, the correctness of the algorithm and the size bound in the lemma
follows from Theorem 16.

We are now ready to prove Lemma 5.11. For convenience we re-state it here.
Lemma 5.11 There exists an algorithm running in 1.5874s · 2O(d2+d log s) · nO(1)

time which finds an optimal feedback vertex cover in a mixed multigraph T ∈ G(d, t)
in which the undirected edge set E(T ) is disjoint and |E(T )| = s.

Proof. The algorithm maintains a set S which is initialized to the empty set ∅. If
the underlying undirected graph of T is disconnected, then the algorithm solves
each connected component independently and outputs S as the union of sets
returned for each component. If s ≤ d, then S is an optimal solution set obtained
by a brute force search in the instance. If s > d, the algorithm obtains a partition
(X, Y ) of V (T ) by running the algorithm of Lemma 5.14. Then, it loops over all
subsets C ⊆ E(X, Y ), calling itself recursively on T

[
V (T )\(VC(X)∪VE(X,Y )\C)(Y )]

and computes SC := VC(X)∪VE(X,Y )\C)(Y )∪S ′ where S ′ is the set returned at the
recursive call. Finally, the algorithm outputs the smallest set SC over all choices
of C ⊆ E(X, Y ).

Now to argue about the correctness of the algorithm, we use induction on
|E(T )|. In the base case |E(T )| ≤ d, S is an optimal feedback vertex cover.
As the induction hypothesis, suppose that the algorithm outputs an optimal
solution for d < |E(T )| < s. Consider |E(T )| = s. Note that for any C ⊆



5.6. D-FVC WITH UNDIRECTED DEGREE AT MOST ONE 51

E(X, Y ), SC is a d-feedback vertex cover as VC(X) ∪ VE(X,Y )\C)(Y ) is a hitting
set for E(X, Y ) and by the induction hypothesis, S ′ is an optimal solution for
T [V (T ) \ (VC(X) ∪ VE(X,Y )\C)(Y ))]. At the same time, for any C ⊆ E(X, Y ),
|VC(X) ∪ VE(X,Y )\C)(Y )| = |E(X, Y )| which is the size of the smallest hitting set
for E(X, Y ). Let So be an optimal solution and Co := E(So ∩ X, Y \ So). Then, we
claim that |SCo| = |So|. Clearly, |SCo| ≥ |So|. Now, So \ VCo(X) ∪ VE(X,Y )\Co)(Y )
is a d-feedback vertex cover for T [V (T ) \ (VCo(X) ∪ VE(X,Y )\Co)(Y ))]. Therefore,
|S ′| ≤ |So \ (VCo(X) ∪ VE(X,Y )\Co)(Y ))| = |So| − |E(X, Y )| =⇒ |SCo| ≤ |So|, thus
proving the claim.

Now we proceed to the running time analysis of the algorithm. Let h(s, d) be
the maximum number of leaves in the recursion tree of the algorithm when run on
an input with parameters s and d. Since, in each recursive call, s decreases by
at least 1, the depth of the recursion tree is at most s. In each internal node of
the recursion tree, the algorithm spends polynomial time in size of the input and
in each leaf, it spends at most 2O(d2) time as the total number of vertices in each
connected component of T is O(d2). Thus, the running time of the algorithm on
any input with parameters s and d is upper bounded by h(s, d) × 2O(d2) × nO(1).
To upper bound h(s, d), first note that h(a, d) + h(b, d) ≤ h(a + b, d) because
h(a, d) and h(b, d) represent the number of leaves of two independent subtrees.
Now for each C ⊆ E(X, Y ), in T [V (T ) \ (VC(X) ∪ VE(X,Y )\C)(Y ))], the undirected
edge set E(X, Y ) = ∅. Hence, the algorithm effectively solves T [V (T ) \ (VC(X)]
and T [V (T ) \ VE(X,Y )\C)(Y )] independently where by Lemma 5.14, the number
of undirected edges is at most s

4 + d
2 for each instance. Again by Lemma 5.14,

|E(X, Y )| ≤ s
2 + d. Hence, the number of choices for C ⊆ E(X, Y ) is at most

2 s
2 +d. As we have seen for each C, the algorithm calls itself twice on graphs with

the undirected edge set size at most s
4 + d

2 . So in total, the algorithm makes
2 s

2 +d+1 recursive calls with parameter s
4 + d

2 . Thus h(s, d) is upper bounded
by the recurrence relation h(s, d) ≤ 21+ s

2 +dh( s
4 + d

2 , d) which solves to h(s, d) =
1.5874s · 2O(d log s). Hence, the running time of the algorithm is bounded by
1.5874s · 2O(d log s) × 2O(d2) × nO(1) = 1.5874s · 2O(d2+d log s) · nO(1).

The proof of Lemma 5.11 completes the proof of our main result, an algorithm
for TFVS with running time upper bounded by O(1.466n) and by O(1.618k +nO(1)).

Proposition 5.15. [FGLS16] If there exists a parameterized algorithm for any
vertex deletion problem into a hereditary graph class with running time cknO(1),
then there exists an exact-exponential-time algorithm for the problem with running
time (2 − 1

c
)n+o(n)nO(1).

The above proposition immediately implies the following theorem.

Theorem 17. There exists an algorithm for TFVS running in 1.3820n time.



52 CHAPTER 5. FEEDBACK VERTEX SET IN TOURNAMENTS



Chapter 6

Feedback Vertex Set in Bipartite
Tournament

6.1 Introduction

In this chapter, we extend the algorithmic scheme used in the previous chapter to
that for bipartite tournaments. A bipartite tournament is a directed graph where
the vertices are partitioned into two sets A and B, there is an arc connecting every
vertex in A with every vertex in B, and there are no edges between vertices of A
and vertices of B. Tournaments arise naturally from round-robin competitions
whereas bipartite tournaments model a two-team competition in which every player
in one team plays against every player of the other team. Here arcs are drawn
from the winning to the losing player, and often one seeks to rank the players
from “best” to “worst” such that players that appear higher in the ranking beat
all lower ranked players they played against. Such an absolute ranking possible
only if there are no cycles in the tournament. The size of the smallest feedback
vertex set then becomes a measure of how far the tournament is from admitting a
consistent ranking. For this reason the structure of cycles and feedback vertex sets
in (bipartite) tournaments has been studied both from the perspective of graph
theory [BL82, Cla85, FH66] and algorithms.

For bipartite tournaments, finding a feedback vertex set reduces to hitting all
cycles of length 4. For this reason the Feedback Vertex Set problem is more
computationally tractable on bipartite tournaments than on general directed graphs.
Specifically the best known approximation algorithm for Feedback Vertex Set

on directed graphs has an approximation factor of O(log n · log log n) [ENSS98],
and the problem does not admit a constant factor approximation assuming the
Unique Games Conjecture [GHM+11]. On bipartite tournaments it is easy to
obtain a 4-approximation (see Lemma 6.2). Further, an improved approximation
algorithm with ratio 3.5 was obtained by Cai et al. [CDZ00].

Similarly, it was open for a long time whether Feedback Vertex Set on
general directed graphs admits an FPT algorithm, that is an algorithm that
determines whether there exists a solution of size at most k in time f(k)nO(1). In

53



54CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

2008, Chen et al. [CLL+08] gave an algorithm with running time O(4kkO(1)k!nm),
and it is an outstanding open problem whether there exists an algorithm with
running time 2O(k)nO(1). For bipartite tournaments, the realization that it is
necessary and sufficient to hit all cycles of length 4 yields a simple 4knO(1) time
parameterized algorithm: recursively branch on vertices of a cycle of length 4.
Truß [Tru05] gave an improved algorithm with running time 3.12knO(1), Sasatte
[Sas08] further improved the running time to 3knO(1), while Hsiao [Hsi11] gave an
algorithm with running time 2knO(1). Prior to this work, this was the fastest known
parameterized algorithm for Feedback Vertex Set on bipartite tournaments.
Our main result is an algorithm with running time O(1.6181k + nO(1)). Using
the recent black-box reduction from parameterized to exact exponential time
algorithms of Fomin et al. [FGLS16] we also obtain an exponential-time algorithm
running in O(1.3820n) time.
Organization of the chapter. In Section 6.2 we set up definitions and notation,
and state a few useful preliminary results. In Section 6.3 we define and prove
some properties of M -sequence. In Section 6.4 we define and give an algorithm
for Constrained Feedback Vertex Set problem.

6.2 Preliminaries
A square in a directed graph is a directed cycle of length 4. A topological sort of
a directed graph D is a permutation π : V (D) �→ [n] of the vertices of the graph such
that for all edges uv ∈ E(D), π(u) < π(v). Such a permutation exists for a directed
graph if and only if the directed graph is acyclic. A pair of vertices u, v are called
false twins if uv /∈ E(D), vu /∈ E(D) and N+(u) = N+(v), N−(u) = N−(v). For
an acyclic bipartite tournament, the topological sort is unique up to permutation
of false twins. If a bipartite tournament is acyclic then it does not contain any
squares. It is a well-known and basic fact that the converse is also true, see
e.g. [DGH+10].

Lemma 6.1. [DGH+10] A bipartite tournament is acyclic if and only if it contains
no squares.

Lemma 6.1 immediately gives rise to a folklore greedy 4-approximation algo-
rithm for BTFVS: as long as T contains a square, delete all the vertices in this
square.

Lemma 6.2 (folklore). There is a polynomial time algorithm that given as input
a bipartite tournament T and integer k, either correctly concludes that T has no
feedback vertex set of size at most k or outputs a feedback vertex set of size at most
4k.

In fact, BTFVS has a polynomial time factor 3.5-approximation, due to Cai et
al. [CDZ00]. However, the simpler algorithm from Lemma 6.2 is already suitable
to our needs. The preliminary phase of our algorithm for BTFVS is the kernel of
Dom et al. [DGH+10]. We will need some additional properties of this kernel that



6.3. M -SEQUENCE 55

A

B

A0 A1 A2B0 B1

Canonical Sequence

Figure 6.1: Canonical sequence of an acyclic bipartite tournament

we state here. Essentially, Lemma 6.3 allows us to focus on the case when the
number of vertices in the input bipartite tournament is O(k3).

Lemma 6.3. [DGH+10] There is a polynomial time algorithm that given as input
a bipartite tournament T and integer k, runs in polynomial time and outputs a
bipartite tournament T ′ and integer k′ such that |V (T ′)| ≤ |V (T )|, |V (T ′)| = O(k3),
k′ ≤ k, and T ′ has a feedback vertex set of size at most k′ if and only if T has a
feedback vertex set of size at most k.

For any sequence σ, let |σ| denote the length of σ. For each i = 1, 2, . . . , |σ|,
let Vi be the i-th element of σ. Let T be an n-vertex acyclic bipartite tournament.
The canonical sequence for T is the sequence σ of vertex sets that can be obtained
from T in O(n2) time as follows: For each i ≥ 1, let Vi consist of the vertices
without incoming edges in T \ ⋃i−1

j=1 Vj. See Figure 6.1.

Lemma 6.4. [Hsi11] Let T be an n-node acyclic bipartite tournament. Let σ be
the canonical sequence for T . The following statements hold.

1. V1, V2, . . . , V|σ| form a partition of V (T ).

2. For each directed edge (u, v) of T , the vertex set Vi containing u precedes the
vertex set Vj containing v in the sequence (i.e. i < j).

3. A = ⋃
i≡1 mod 2 Vi and B = ⋃

i≡0 mod 2 Vi are the partite sets of T .

Definition 6.5 (t-wise independent). A family Hn,t,q of functions from [n] to [q] is
called a t-wise independent sample space if, for every t positions 1 < i1 < i2 < · · · <
it ≤ n, and every tuple α ∈ [q]t, we have Pr(f(i1), f(i2), . . . , f(it)) = α = q−t

where the function f ∈ Hn,t,q is chosen uniformly at random.

Theorem 18. [ABI86] There exists a t-wise independent sample space Hn,t,q of
size O(nt) and it can be constructed efficiently in time linear in the output size.

6.3 M-Sequence
As in the case of tournaments, in this case as well we look for a set M of pivots
around which we arrange rest of the vertices. But unlike tournaments, it is not
clear how to extend the relative arrangement of vertices in M to vertices in T − M



56CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

in a meaningful way. For this, we need to relate the canonical sequence of an
acyclic bipartite tournament T to the canonical sequence of a subset of vertices
M ⊆ V (T ). First we extend the notion of the canonical sequence to general
bipartite tournaments relative to a set M of vertices.

Definition 6.6 (M -consistent). Let T be a directed graph and M ⊆ V (T ). T is
called M -consistent if for every vertex v ∈ V (T ) T [M ∪ {v}] is acyclic.

Definition 6.7 (M -equivalent). Given a directed graph T and a subset M ⊆
V (T ), two vertices u, v ∈ V (T ) are said to be M -equivalent if both have same
neighborhood in M i.e. if N+(u)∩M = N+(v)∩M and N−(u)∩M = N−(v)∩M .

Let T be a bipartite tournament and a subset M ⊆ V (T ) such that T [M ]
is acyclic. If (X1, X2, . . . ) is the canonical sequence of T [M ], then by the above
definition, for every set Xi, vertices in Xi are M -equivalent. The next definition
extends this notion to arbitrary vertices.

Definition 6.8 ((M, X)-equivalent). Let T be a bipartite tournament and a
subset M ⊆ V (T ) such that T [M ] is acyclic. Let (X1, X2, . . . ) be the canonical
sequence of T [M ]. For any set Xi in the canonical sequence of T [M ] and any
vertex v ∈ V (T ), v is called (M, Xi)-equivalent if v is M -equivalent to a vertex in
Xi.

Note that the above definition allows us to extend the canonical sequence
of T [M ] to the canonical sequence of T [M ∪ {v}] i.e. (X1, X2, . . . , Xi, . . . ) to
(X1, X2, . . . , Xi ∪ {v}, . . . ). But, it is not always possible to achieve this for every
vertex in T . The vertices, for which it is not possible to get such extension, are
called conflicting as defined below.

Definition 6.9 ((M, X)-conflicting). Let T be a bipartite tournament and a
subset M ⊆ V (T ) such that T [M ] is acyclic. Let (X1, X2, . . . ) be the canonical
sequence of T [M ]. For any set Xi in (X1, X2, . . . ) and for any vertex v ∈ V (T ), v
is called (M, Xi)-conflicting if

• N+(v) ∩ Xi �= ∅, N−(v) ∩ Xi �= ∅, and

• for every j < i, N+(v) ∩ Xj = ∅ and for every j > i, N−(v) ∩ Xj = ∅.

Clearly, the first condition is sufficient to imply that the canonical sequence
of T [M ] can not be extended to any canonical sequence of T [M ∪ {v}] in the
sense described above. As violation of the second condition implies that v is not
M -consistent and since M is supposed to be the pivots, v must belong to the
solution H we seek. As a direct consequence of the above definitions, we have the
following lemma.

Lemma 6.10. Let T be an M-consistent bipartite tournament for some subset
M ⊆ V (T ). Let (X1, X2, . . . , Xi, Xi+1, . . . ) be the canonical sequence of T [M ].
Let v ∈ V (T ) be a (M, Xi)-conflicting vertex. Then, the canonical sequence of
T [M ∪ {v}] is (X1, X2, . . . , X ′

i, {v}, X ′′
i , Xi+1, . . . ) where X ′

i ∪ X ′′
i = Xi such that

X ′
i, X ′′

i �= ∅.



6.3. M -SEQUENCE 57

Hence, so far we have that there are two ways we can extend the canonical
sequence of T [M ] to that of T [M ∪{v}]: in the first way, v gets placed in one of the
sets Xi and in the second way, the vertex v forms a new set {v} in the canonical
sequence by splitting a set Xi into two nonempty pieces. The next definition is
about a special type of vertices, those which will be placed either in the beginning
or at the end of the extended canonical sequence.

Definition 6.11 (M -universal). Let T be a bipartite tournament and a subset
M ⊆ V (T ) such that T [M ] is acyclic. Let (X1, X2, . . . ) be the canonical sequence
of T [M ]. A vertex v ∈ V (T ) is called M -universal if the following holds:

• v is not (M, Xi)-equivalent for any Xi,

• T [M ∪ {v}] is acyclic.

• There exists a topological sort of T [M ∪ {v}] such that v is either the first
vertex (called M−-universal) or is the last vertex (called M+-universal) in
the ordering.

Now, we have, as the next lemma states, a complete characterization of vertices
in T with respect to a set M .

Lemma 6.12. Let T be an M -consistent bipartite tournament and let (X1, X2, . . . )
be the canonical sequence of T [M ]. Then, for every vertex v ∈ V (T ), there exists
a unique index i such that v satisfies exactly one of the following properties:

• v is (M, Xi)-equivalent,

• v is (M, Xi)-conflicting,

• v is M-universal.

Proof. Since T is M -consistent, T [M ∪ {v}] is acyclic. By definition, v can not
satisfy more than one property. If v is M -universal, then, v is neither (M, Xi)-
equivalent nor (M, Xi)-conflicting for any set Xi.

If v is (M, Xi)-equivalent to some set Xi, then by definition, v is not M -
universal. In addition, for any set Xj, v is not (M, Xj)-conflicting as no vertex in
Xi is (M, Xj)-conflicting.

Suppose that v is neither (M, Xi)-equivalent for any Xi nor M -universal. We
show that v is (M, Xi)-conflicting the first set Xi that contains an out-neighbor
ui of v. Suppose that there is an index j > i such that Xj contains an in-neighbor
uj of v. Since j − i ≥ 2, there is an index i < l < j such that Xl lies in the
partite set of T different from Xi ∪ Xj. This gives us a cycle vuiulujv where
ul ∈ Xl contradicting that T [M ∪ {v}] is acyclic. If every vertex in Xi is an
out-neighbor of v, then by definition of the canonical sequence, v is (M, Xi−1)-
equivalent contradicting the above assumption. Hence, Xi contains an in-neighbor
of v, thereby proving that v is (M, Xi)-conflicting.



58CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

Now we are ready to generalize the canonical sequence which is defined only
for acyclic bipartite tournaments to M -sequence which is defined for any bipartite
tournament.

Definition 6.13 (M -sequence). Let T be an M -consistent bipartite tourna-
ment and (X ′

1, X ′
2, . . . ) be the canonical sequence of T [M ]. An M -sequence

(X1, Y1, X2, Y2, . . . , Xl, Yl) of T is a sequence of subsets V (T ) such that for every
index i, Xi is the set of all vertices in V (T ) that are (M, X ′

i)-equivalent and Yi

is the set of vertices that are (M, X ′
i)-conflicting. In addition, Y1 contains every

M−-universal vertex and Yl contains every M+-universal vertex. For every i, the
set Xi ∪ Yi is called a block, Xi is called the M -sub-block and Yi is called the
M̄ -sub-block.

Lemma 6.14. If T is an M -consistent bipartite tournament, then T has a unique
M-sequence.

Proof. The existence and the uniqueness of M -sequence follows from Lemma 6.12
and the uniqueness of the canonical sequence of T [M ].

As a consequence of Lemma 6.4 and Lemma 6.12, we get the following lemma.

Lemma 6.15. Let T := (A, B, E) be an M-consistent bipartite tournament and
(X ′

1, X ′
2, . . . ) be the canonical sequence of T [M ]. Let (X1, Y1, X2, Y2, . . . ) be the

M-sequence of T . The following statements hold:

1. X1, Y1, X2, Y2, . . . form a partition of V (T )

2. for each i, X ′
i ⊆ Xi

3. for each i, Yi ∩ M = ∅

4. for every odd i, Xi ⊆ A, Yi ⊆ B and for every even i, Xi ⊆ B, Yi ⊆ A.

Definition 6.16 (Refinement). A partition (V1, V2, . . . ) of U is said to be a
refinement of another partition (V ′

1 , V ′
2 , . . . ) if for every set Vi and V ′

j , either
Vi ⊆ V ′

j or Vi ∩ V ′
j = ∅.

Now we show that in case of an acyclic bipartite tournament, for any subset
M ⊆ V (T ), the canonical sequence is a refinement of the M -sequence.

Lemma 6.17. Let T be an acyclic bipartite tournament. Then, for any subset
M ⊆ V (T ), the canonical sequence of T is a refinement of the M-sequence of T .

Proof. Let (X ′
1, X ′

2, . . . ) be the canonical sequence of T [M ] and (X1, Y1, . . . , Xl, Yl)
be the M -sequence of T . Let (V1, V2 . . . ) be the canonical sequence of T . Since each
set Vi are Vi-equivalent in T , if any vertex in Vi belongs to Xj, then every vertex
in Vi belongs to Xj. If any vertex in Vi is (M, X ′

j)-conflicting, then every vertex
in Vi is (M, X ′

j)-conflicting. Hence, Vi ⊆ Yj. If any vertex in Vi is M -universal,
then every vertex in Vi is M -universal. Hence, Vi ⊆ Y1 or Vi ⊆ Yl. The family of
sets Vi that contain an M−-universal vertex lie in Y1 and the family of sets Vi that
contain an M+-universal vertex lie in Yl.



6.4. CONSTRAINED BTFVS 59

A

B

(a)

A

B

(b)

A

B

(c)

A

B

(d)

A

B

(e)

Figure 6.2: (a) A bipartite tournament T , (b) Red vertices belong to M , (c)
Canonical sequence of T [M ]. Red bags correspond to Xi’s, (d) M -sequence of
T [M ] obtained by inserting empty blue bags (correspond to Yi’s) in the canonical
sequence of M , (e) Every vertex in T either goes to a red bag or a blue bag (use
Lemma 6.18) which provides the M -sequence of T . For clarity, only a few edges
have been shown.

The next lemma provides us the tool so that we can construct the M -sequence
of T step-by-step from the M -sequence of T [M ]. See Figure 6.2 for an illustration.

Lemma 6.18. Let T and T ∪ {v} be two M-consistent bipartite tournaments
and let (X1, Y1, . . . ) be the M-sequence of T . Then, there exists an index i,
such that the M-sequence of T ∪ {v}, is either (X1, Y1, . . . , Xi ∪ {v}, . . . ) or
(X1, Y1, . . . , Yi ∪ {v}, . . . ).

Proof. The proof follows from Lemma 6.12.

Now we can resume our goal to link M -sequence to finding a feedback vertex
set in a given bipartite tournament T . Lemma 6.18 implies the following lemma.

Lemma 6.19. Let T be a bipartite tournament and H be a feedback vertex set
of T . Let M ⊆ T − H and P ⊆ H. Let (X1, Y2, . . . , Xl, Yl) be the M-sequence of
T − H and (X ′

1, Y ′
1 , . . . , X ′

l , Y ′
l ) be the M -sequence of T − P . Then, for each index

i, Xi ⊆ X ′
i and Yi ⊆ Y ′

i .

6.4 Constrained BTFVS
First, we note the essential steps used in the algorithm for feedback vertex set
in tournaments described in the previous chapter as our goal is to mimic that
algorithm. Throughout the description, we assume that the vertices are arranged



60CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

in any topological sort such that all edges go from left to right. In this sense,
edges that are directed from right to left in some tentative ordering of vertices are
referred to as back edges. In the first phase, the algorithm for TFVS partitions
the vertex set into small sets.

1. Shrink the input to O(k3) vertices by using a kernelization algorithm.

2. Uniqueness of the topological sort of an acyclic tournament implies that
for any subset M of vertices in T − H, the position of other vertices must
respect the topological sort of T [M ]. In fact, the topological sort of T [M ]
can be seen as the restriction of the topological sort of T − H restricted to
the vertices of M . We search for a solution H corresponding to which there
is a set M that is uniformly scattered over the unique topological sort of
T − H. Technically, this is captured by having only small number of vertices
in T − H between any two consecutive vertices of M .

3. Finding a set of vertices P ⊆ H such that M is uniformly scattered over
T − P as well. Now M -blocks in T − P contain only bounded number of
vertices from H. These blocks are referred to as subtournaments.

Structurally, the first phase can be seen as providing us with a chain of subtour-
naments. There are triangles within each subtournament and between vertices
of different subtournaments. In the second phase, the algorithm deals with the
triangles of the second type.

1. Uniqueness of the topological sort implies that every edge going backwards
(from right to left) between vertices of different subtournaments belongs to a
triangle with some M -vertex. Hence, the sought solution H must hit these
edges. This reduces to a problem called Feedback Vertex Cover.

2. Using branching, the algorithm makes backward edges disjoint.

As the only link between different subtournaments is via these disjoint edges
that H must hit, one can simply guess one endpoint of each such edge to reduce
the graph into a disjoint collection of small subtournaments, for each of which a
brute-force search suffices to get the required solution H. But cost of such guesses
would be O(2k). Instead of this, in the final phase, the algorithm uses the partition
theorem to branch in a divide and conquer fashion.

In the case of bipartite tournament, we lose the uniqueness of topological sort
to some extent and this makes the algorithm very complex. What remains unique
for an acyclic bipartite tournament is its canonical sequence. We briefly outline
the steps of the algorithm whose formal description will be provided in the rest of
the chapter.

Kernel. As before, the first step is to shrink the input to O(k4) vertices by using
a kernelization algorithm.



6.4. CONSTRAINED BTFVS 61

Figure 6.3: M -sequence of T

Scattered pivots. Fix some topological sort π of T − H. The set M is chosen
such that M is uniformly scattered over this topological sort, i.e. between any
two consecutive vertices of M , there are only small number of vertices from
T − H. We can not immediately use a topological sort of T [M ] to extend
to a topological sort of T − H as was possible in the case of tournaments.
Using the canonical sequence of T [M ], we obtain the M -sequence of T . As
a simple intermediate step, vertices forming a square with vertices in M can
be immediately deleted i.e. put in H.

Long back edges. We see M -sequence as a chain of blocks Xi ∪ Yi. There are
squares within blocks and between different blocks. But unlike tournaments,
edges going backward are not necessarily conflict edges, i.e. belong to some
square. But we will see that if a backward edge is too long (in terms of
positions of the endpoints in the M -sequence), it must belong to a square.
See Figure 6.3. All long back edges are marked as conflict edges. But the
main difficulty is in recognizing the back edges (called short back edges)
between nearby blocks which do belong to some square.

Weakly-coupled. For short back edges, we deal with adjacent blocks, one pair
at a time. Let F be the set of short back edges between blocks Xi ∪ Yi and
Xi+1 ∪Yi+1 such that F has a large matching. We observe that most of these
edges must be hit by H. Via branching we mark the edges to be hit by H
as conflict edges. In some sense, this branching makes the adjacent blocks
weakly-coupled.



62CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

Matched. In this step, the algorithm makes all marked conflict edges disjoint
via branching over vertices of conflict degree at least 2. In this sense, the
marked conflict edges form a matching. As we’ll see this branching is the
bottleneck of the algorithm.

Low block degree. The previous two steps ensure that the matching on short
back edges between any pair of blocks is small. But there can still be blocks
at which there is a large matching in the set of conflict edges (primarily due
to set of long back edges incident on the block). Observing that the vertex
cover of short back edges incident on any block is small (due to previous
branchings), we can completely guess the set of all conflict edges incident
on this block and via a clever branching, we can get rid of such blocks in
sub-exponential time. In this sense, blocks now have low degree in conflict
edges.

Regular. In this step, we branch in each block that has an excess number of
vertices from H i.e. every block in the M -sequence of T − H has a certain
fraction of vertices from M and if this is violated, we branch to fix it.

After this hairy branching phase, we are close to our goal. Now, we have a chain of
blocks, that have small number of disjoint conflict edges incident on them although
not every conflict edge has been marked (but their number is small). At this point
one would be tempted to use the partition theorem. But, the number of blocks
can be large. We would be required to completely mark all conflict edges between
these blocks. Doing this would be too expensive. Hence to decrease the number of
such guesses, we group contiguous blocks in large bags such that each bag contains
a certain minimum number of conflict edges and at the same time has a bounded
number of conflict edges incident on the bag from outside the bag. This decreases
the number of bags to some polynomial in log(k). These bags are the equivalent
of the super-tournaments in the case of the algorithm for tournament. From this
point on the algorithm proceeds as the one for the tournament.

Now we move on to the formal description of the algorithm. As is evident from
the outline above, we brach on vertices and edges many times and mark some
edges as conflict edges. Hence, it is natural that one should extend the notion of
finding feedback vertex set in a bipartite tournament to a constrained version of
the problem in which the algorithm is forced to pick certain vertices in the solution
and hit certain set of marked edges. With this strategy in mind, we define the
Constrained Feedback Vertex Set problem.

Definition 6.20 (Constrained Feedback Vertex Set(CFVS)). Let T be a bipartite
tournament with vertex subsets M, P ⊆ V (T ), edge set F ⊆ E(T ). A feedback
vertex set H of T is called (M, P, F )-constrained if M ∩ H = ∅, P ⊆ H and H is
a vertex cover for F .



6.4. CONSTRAINED BTFVS 63

Input: A bipartite tournament, vertex sets M, P ⊆ V (T ), edge set
F ⊆ E(T ) and positive integer k

Question: Does T has an (M, P, F )-constrained CFVS H of size at most
k?

Constrained Feedback Vertex Set (CFVS)

In the rest of the chapter, we assume that the size of the bipartite tournament is
at most O(k3) as a bi-product of the kernelization algorithm (Lemma 6.3). Given
a topological sort π of an acyclic bipartite tournament T = (A, B, E), we denote
πA to be the permutation of A when π is restricted to A. Similarly, πB denotes
the permutation of B when π is restricted to B. Next we extend the idea used
in Lemma 5.7. Again we want to use a set M that is uniformly scattered in
some topological sort of T − H. To that end, we define a property of a feedback
vertex set of a bipartite tournament and while solving for BTFVS, we will look for
solutions H that have this property.

Definition 6.21 (M -homogeneous). Let T be a bipartite tournament and k be
a positive integer. Let M ⊆ V (T ) be a vertex subset such that T [M ] is acyclic.
A feedback vertex set H of size at most k of T is called M -homogeneous if there
exists a topological sort π of T − H such that every subset of 10 log3 k consecutive
vertices in πA−H or πB−H contains a vertex of M .

The algorithm for CFVS is primarily based on branching and often, given
a CFVS instance, a family of CFVS instances with addition properties will be
constructed. We abstract it out in the following definition.

Definition 6.22 (γ-reduction). A γ-reduction is an algorithm that given a CFVS
instance (T, M, P, F, k) outputs in time γ a family C of size γ of CFVS instances
such that

Forward direction if (T, M, P, F, k) has an M -homogeneous (M, P, F )-solution,
then there exists an instance (T, M, Pi, Fi, k) ∈ C that has an M -homogeneous
(M, Pi, Fi) solution.

Backward direction if there exists an instance (T, M, Pi, Fi, k) ∈ C that has an
(M, Pi, Fi)-CFVS solution, then (T, M, P, F, k) has an (M, P, F )-solution.

Now, we construct a family of sets M such that if (T, k) has a solution H of
size at most k, then there is a set M ∈ M such that H is M -homogeneous, and
hence we can restrict our attention to looking for feedback vertex sets which are
M -homogeneous for some subset M .

Lemma 6.23. There exists an algorithm that given a bipartite tournament T and
a positive integer k outputs in time γ, a family M of size γ of subsets of V (T ) for
γ = 2O( k

log k
) such that for every feedback vertex set H of size at most k of T , there

exists M ∈ M such that H is M-homogeneous.



64CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

Proof. Using T and k, we construct M. Let n = |V (T )|, t = 10 log3 k, q =
log2 k. As the first step, the algorithm uses Theorem 18 to construct a family of
functions Hn,t,q from [n] to [q]. Next, the algorithm computes a family Z of t-wise
independent subsets of V (T ): For each f ∈ Hn,t,q, let Z := {vi ∈ V (T ) | f(i) = 1}.
Add Z to Z. In the next step, for every subset Z ∈ Z, compute the family of subsets
MZ := {M := Z \ Ĥ | Ĥ ⊆ Z, |Ĥ| ≤ 2k

log2 k
}. Finally, output M := ⋃

Z∈Z MZ .
To argue about the correctness of the algorithm, first, we check that the size

of M computed by the above algorithm is consistent with the claim in the lemma.
Clearly, |M| ≤ |Hn,t,q| × |MZ | = O(nt)O((k3)

2k
log2 k ) = 2O( k

log k
). We need to show

that for every feedback vertex set H of size k and for every topological sort π
of T − H, there exists a function f ∈ Hn,t,q and a set Ĥ ⊆ V (T ) such that
M := Z \ Ĥ satisfies the required properties. Fix a feedback vertex H of size k
and a topological sort π of T − H. First, we prove the following claim:

Claim 6.24. If we pick f from Hn,t,q uniformly at random, then with non-zero
probability, the following two events happen:

• for every set of 10 log3 k consecutive vertices in πA−H or πB−H , there is a
vertex in Zf

• |Zf ∩ H| ≤ 2k
log2 k

.

Proof. By t-wise independence of Hn,t,q, the probability that no vertex is picked
from t consecutive vertices in πA−H or πB−H is at most (1 − 1

q
)t. Let A1 be the

event that at least one set of t-consecutive vertices either in πA−H or in πB−H

does not contain any vertex from Z. Since there at most n sets of t-consecutive
vertices, by union bound, the probability that event A1 happens is at most
n × (1 − 1

q
)t ≤ Ck4 × (1 − 1

log2 k
)10 log3 k = Ck4 × 1

k10 ≤ 1
k5 . Let A2 be the event that

at least 2k
log2 k

vertices of H are in Z. The expected number of vertices of H that
belong to Z is k × 1

q
= k

log2 k
. Therefore, by Markov’s inequality, the probability

that the event A2 occurs is at most 1
2 . By union bound the probability that at

least one of the events A1 or A2 happen is at most 1
k5 + 1

2 . Hence, the probability
that none of A1 and A2 is at least 1−( 1

k5 + 1
2) > 0, thereby implying the claim.

Hence, the set of functions satisfying the properties in the above claim is
non-empty. Let f be such a function. Since, MZ is the collection of sets Z \ Ĥ
such that |Ĥ| ≤ 2k

log2 k
, there exists a choice Ĥ such that Ĥ = Z ∩ H. Hence,

M := Z \ Ĥ satisfies the required properties.
For the running time of the algorithm, Hn,t,q can be constructed in O(nt) time.

For each function f ∈ Hn,t,q, the set Z can be obtained in O(n) time. For each Z,
MZ can be obtained in O(k

2k
log2 k ) time. Hence, the running time of the algorithm

is O(nt) · n · O(k
2k

log2 k ) = 2O( k
log k

).

Once M has been obtained, for each choice of M ∈ M, with the assumption
that we are looking for an M -homogeneous solution H, we form a CFVS instance



6.4. CONSTRAINED BTFVS 65

(T, M, ∅, ∅). In that case, any vertex v that forms a cycle with vertices in M , must
be deleted. The following lemma formalizes this.
Lemma 6.25. There exists an algorithm that given a BTFVS instance (T, k)
outputs in time γ, a family C := {(T, M1, P1, ∅, k), (T, M2, P2, ∅, k), . . . } of size γ

of CFVS instances for γ = 2O( k
log k

) such that
• if (T, k) has a feedback vertex set H of size at most k, then C has a CFVS

instance (T, M, P, ∅, k) that has an M -homogeneous solution of size at most
k and

• if C has a (M, P, ∅)-constrained solution, then (T, k) has a feedback vertex
set of size at most k.

Proof. Given (T, k), we use the algorithm of Lemma 6.23 with T, k as input and
obtain the family of sets M. For each set M ∈ M, we add a CFVS instance
(T, M, P, ∅, k) in C where P is the set of vertices in V (T ) \ M that form a cycle
of length 4 with M . For the forward direction, if (T, k) has a solution H of
size at most k, then by Lemma 6.23, there exists a set M ∈ M such that H is
M -homogeneous. Since, P is the set of vertices that form a cycle with M and
M ∩ H = ∅, P ⊆ H. Hence, (T, M, P, ∅, k) ∈ C has an M -homogeneous solution.
The backward direction immediately follows from the construction of C.

Note that M is defined with respect to some set of topological sorts of T − H.
Next we relate these permutations with the M -sequence. In particular, we want
to relate the number of M -vertices with the size of each block in the M -sequence.
Definition 6.26 (boundary,vicinity). Let T be an acyclic bipartite tournament.
Let M be any subset of vertices and π be a topological sort of T . Let (X1, Y1, . . . )
be the M -sequence of T . For any block Xi ∪ Yi, the set of vertices in Xi before the
first M -vertex is called the left boundary of the block and the set of vertices in Xi

after the last M -vertex is called the right boundary of the block. The vicinity of
the block Xi ∪ Yi is the union of the boundaries of Xi ∪ Yi, the right boundary of
Xi−1 ∪ Yi−1, Yi and the left boundary of Xi+1 ∪ Yi+1.
Lemma 6.27. Let H be an M-homogeneous solution for a bipartite tournament
T . Then, in the M-sequence (X1, Y1, X2, Y2, . . . ) of T − H, for each i, |Xi|

|Xi∩M | ≤
20 log3 k and |Yi| ≤ 10 log3 k. Further, there exists a topological sort of T − H such
that the size of each boundary of any block is at most 10 log3 k and the size of the
vicinity of any block is at most 30 log3 k.
Proof. The lemma follows immediately after observing that the canonical sequence
of T − H is a refinement of M -sequence of T − H and any topological sort of
T − H preserves the canonical sequence of T − H.
Definition 6.28 (Back edge). Let T be an M -consistent bipartite tournament
for some M ⊆ V (T ) and (X1, Y1, X2, Y2 . . . ) be the M -sequence of T . An edge
uiuj ∈ E(T ) is called a back edge if ui ∈ Xi ∪ Yi, uj ∈ Xj ∪ Yj and i − j ≥ 1.
Furthermore, uiuj is called short back edge if i − j = 1 and it is called long back
edge if i − j ≥ 2.



66CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

Lemma 6.29. Any feedback vertex set disjoint from M must contain at least one
end point of a long back edge.
Proof. Let ujui be a long back edge and i < j and ui ∈ Xi, uj ∈ Xj. Then, there
are two vertices ul ∈ Xl and ul+1 ∈ Xl+1 in M such that i < l < l + 1 < j. This
creates the cycle uiulul+1ujui. Since ul and ul+1 are undeletable, the feedback
vertex set must contain at least one of ui and uj.

Now, consider the case when ui ∈ Yi and uj ∈ Xj. Since ui is (M, Xi)-
conflicting, there is an out neighbor u ∈ Xi of ui. Again, since j − i ≥ 2, there is
a set Xl such that i < l < j and we get a cycle uiuuluju where ul ∈ Xl. The case
when ui ∈ Yi and uj ∈ Yj is similar.

As we know that in the M -sequence of T − H, there may be back edges. Since
T − H is acyclic, these edges do not participate in any cycle. We call them simple
back edges. But, in the M -sequence of T − P , we may have back edges that form
a cycle with two vertices of M and hence at least one end-point of these edges
must belong to H. We call them conflict back edges. Hence, every back edge that
is not a simple back edge is a conflict back edge. By Lemma 6.29, every long back
edge is a conflict back edge. The M -homogeneity of H and Lemma 6.27 implies
the following lemma.
Lemma 6.30. Let H be an M-homogeneous solution for T . Then, there exists
a permutation of T − H such that the number of simple back edges between any
consecutive blocks in the M-sequence of T − H is at most 200 log6 k.

Hence, if in the M -sequence of T − P , there are more than 200 log6 k back
edges between any consecutive pair of blocks, then we can branch on the choices
of conflict back edges to be hit by H. The next definition and lemma captures
this intuition.

Let T be a bipartite tournament such that T − P is M -consistent for some
sets M, P ⊆ V (T ). Let L′ be a function such that given an M -consistent bipartite
tournament T for some set M ⊆ V (T ) and an integer k, outputs the set of
short back edges in the M -sequence (X1, Y1, . . . ) of T which is the union of all
sets of back edges Ei,i+1 between Xi ∪ Yi and Xi+1 ∪ Yi+1 such that the size of
matching in the bipartite graph (Xi ∪ Yi+1, Xi+1 ∪ Yi, Ei,i+1) is at least 201 log8 k.
Let long(T, M, P ) denote the set of long back edges in T − P .
Definition 6.31 (weakly-coupled). An instance (T, M, P, F, k) of CFVS is said
to be weakly-coupled if in the M -sequence of T − P , F is a subset of conflict back
edges containing all long back edges such that the matching in back edges between
any pair of consecutive blocks in T − P − F is at most 201 log8 k .

Since we can find a matching in bipartite graphs in polynomial time, it can
be checked in polynomial time whether a given CFVS instance (T, M, P, F, k) is
weakly-coupled or not.
Lemma 6.32. There exists a γ-reduction from a CFVS instance (T, M, P, ∅, k)
to a family C2 = {(T, M, P, F1, k), (T, M, P, F2, k) . . . } for γ = 2O( k

log k
) such that

every instance in C2 is weakly-coupled.



6.4. CONSTRAINED BTFVS 67

Proof. We construct C2 as follows. For each B ⊆ L′(T − P, M, k) such that
|B| ≤ 2k

log2 k
output a set FB := L′(T, M, k) \ B∪long(T, M, P ). For each set FB,

add the instance (T, M, P, FB, k) in C2 if (T, M, P, FB, k) weakly-coupled.
By the definition of γ-reduction and the construction of C1, the backward

direction is trivial. Now we consider the forward direction. Let H be an M -
homogeneous (M, P, ∅, k)-constrained solution for (T, M, P, ∅, k) and (X1, Y1, . . . )
be the M -sequence of T − P . It is sufficient to show that there is a CFVS instance
(T, M, P, F, k) such that H is a vertex cover of F . A pair of consecutive blocks
is said to have large back edge matching if the size of a matching in the set of
back edges between them is at least 201 log8 k. Fix a permutation σ of T − H and
choose any permutation σ′ of T −P such that σ′

T −H is σ. By Lemma 6.30, we have
that at most 200 log6 k edges are simple back edges between any pair of consecutive
blocks in the M -sequence of T − H. Rest of the back edges are conflict back edges
and must be hit by H. If the short back edge matching is large between a pair
of blocks, then at least 201 log8 k − 200 log6 k ≥ 200 log8 k of them are conflict
back edges. Hence, the number of set pairs with large short edge matching can
be at most k

200 log8 k
. This implies that at most 2 × k

200 log8 k
× 200 log6 k = 2k

log2 k
edges are simple back edges. Since the algorithm loops over all choices of subsets
B ⊆ L′(T, M, k), |B| ≤ 2k

log2 k
, C2 contains an instance with the required properties.

Moreover, |C2| is bounded by the number of subsets B. Now |L′(T, M, k)| ≤
|V (T )|2 which implies the number of subsets B is at most (k6)

2k
log2 k = 26 log k× 2k

log2 k =
2O( k

log k
). Hence, |C2| = 2O( k

log k
)

Definition 6.33 (matched). An instance (T, M, P, F, k) of CFVS is said to be
matched if F ∩ E(T − P ) forms a matching.

Note that it can be checked in polynomial time whether a given CFVS instance
(T, M, P, F, k) is matched or not.

Lemma 6.34. There exists a γ-reduction from a weakly-coupled CFVS instance
(T, M, P, F, k) to C3 := {(T, M, P1, F, k), (T, M, P2, F, k), . . . } for γ ≤ 1.6181k such
that C3 is weakly-coupled and matched. In addition, for each |Pi| = s ≤ k, C3 has
at most 1.618s CFVS instances.

Proof. We construct the family C3 using a branching algorithm. Consider the
graph G := (V (T ) \ P, F ∩E(T −P )). Start with k′ = k, P ′ := P and F ′ := E(G).
In each branch node, the sets P ′, F ′ are updated and finally for each leaf node
in the branch tree, the corresponding instance (T, M, P ′, F, k) is returned. As
long as there is a vertex v ∈ V (G) of degree at least 2 and k′ > 0, branch by
considering both the possibilities: v ∈ H or v /∈ H. In the branch in which v is
picked, decrease k′ by 1 and update P ′ = P ′ ∪{v} and F ′ = F ′ \E(v). In the other
branch, N(v) is added to P ′, E(N(v)) is removed from F ′ and k′ is decreased by
|E(N(v))|. The algorithm stops branching further in a branch in which either
k′ < 0 or k′ > 0 and for every vertex v, degree of v is at most 1. In the case that
k′ < 0 or |F ′| > k, the algorithm terminates the branch without returning any



68CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

instance and moves on to other branches. Any returned instance (T, M, P ′, F, k)
is added to C3 if the instance is regular, weakly-coupled and matched.

Again, the definition of the γ-reduction and above construction of C3, ensures
the backward direction. Now we consider the forward direction. Let (T, M, P, F, k)
be weakly-coupled and H be an M -homogeneous (M, P, F )-constrained solution
of T . Since, the above branching algorithm adds an instance into C3 with P ′

containing P such that F ∪ E(T − P ′) forms a matching, if C3 is non-empty,
all instances in it are weakly-coupled and matched. Since H hits F , there is a
subset P ′′ of H, such that F forms a matching in T − (P ∪ P ′′). Since the above
algorithm via branching considers all possible subsets P ′ containing P that make
F disjoint in some branch P ′ ⊆ P implying that C3 contains an M -homogeneous
(M, P ′, F )-constrained solution.

Now we argue about γ and the number of instances. Let s denote the size
of P ′ in any instance (T, M, P ′, F, k). Since, H must hit F ′ and F ′ are disjoint
s ≤ k. As P ′ ⊆ H, |F ′| ≤ k − s. The recurrence relation for bounding the number
of leaves with |F ′| = k − s in the branch tree of the above algorithm is given by:

gs(k) ≤ gs(k − 1) + gs(k − 2)

which solves to gs(k) ≤ 1.618s as gs(k) ≤ 1 for k = s.

Definition 6.35 (LowBlockDegree). An instance (T, M, P, F, k) of CFVS is
said to be LowBlockDegree if in the M -sequence (X1, Y1, X2, Y2, . . . ) of T − P ,
long(T, M, P ) ⊆ F and for every set Xi∪Yi, at most 201 log10 k edges of F \E(T −P )
are incident on Xi ∪ Yi.

Note that it can be checked in polynomial time whether a given CFVS instance
(T, M, P, F, k) is LowBlockDegree or not.

Definition 6.36 (X-preferred vertex cover). Given a bipartite graph G a set of
vertices X ⊆ V (T ) and a set of edges Q ⊆ E(G) such that Q is a matching in G,
a minimum vertex cover C of Q is called X-vertex cover of Q if for every edge
e ∈ Q such that e has exactly one endpoint in X, C contains the endpoint of e in
V (G) \ X.

Let T := (A, B, E) be a bipartite tournament and let X ⊆ A. Let π :=
(v1, v2, . . . , vl) be a permutation of X. A vertex v ∈ B is called inconsistent with
π, if there is no index i such that every vertex in {v1, v2, . . . , vi} is an in-neighbor
of v and every vertex in {vi+1, vi+2,...,vl

} is an out-neighbor of v. Given a CFVS
instance (T, M, P, F, k), a block in the M -sequence of T − P is said to have large
conflict edge matching if the block is incident with at least 201 log10 k edges in
F1 := F ∩ E(T − P ).

Lemma 6.37. There exists a γ-reduction from a weakly-coupled and matched
CFVS instance (T, M, P, F, k) to C4 := {(T, M, P1, F, k), (T, M, P2, F, k), . . . } for
γ = 2O( k

log k
) such that every instance in C4 is weakly-coupled, matched and Low-

BlockDegree.



6.4. CONSTRAINED BTFVS 69

Proof. Using M, P, F , we construct C4. Start with the M -sequence of T − P . Let
n = |V (T )|, t = 2k

201 log10 k
, P ′ := P and F ′ := F ∩ E(T − P ). Branch on every

family B of blocks such that |B| ≤ t. Branch on every subset M ′ of size at most
t · 30 log3 k. Let X be the union of M -sub-blocks and Y be the union of M̄ -sub-
blocks in B. Add every vertex in Y \ M ′ to P ′. Add every back edge neighbor of
M ′ to P ′. Branch on every permutation π of M ′. Add every vertex of X \ M ′ not
consistent with the permutation π to P ′. Let E ′ be the set of back edges incident
on X \ M ′. Let G := (V (T ), E ′). Note that G is a bipartite graph. Branch on
every minimum vertex cover of G by adding it to P ′. Add a ⋃ B-preferred cover
of conflict edges in F ′ incident on (X ∪ Y ) \ P ′ to P ′. Finally, we add a CFVS
instance (T, M, P ′, F, k) to C4 if (T, M, P ′, F, k) is LowBlockDegree.

Correctness: First we show that |C4| ≤ γ. |C4| is bounded by the product of the
number of family of blocks B, the number of sets M ′, the number of permutations of
M ′ and the number of minimum vertex cover of G. The number of family of blocks
B is bounded by nt as the number of blocks can be at most n. Similarly, the number
of subsets M ′ is bounded by nt·30 log3 k. The number of permutations is bounded by
(t · 30 log3 k)!. Since, (T, M, P, F, k) is weakly-coupled, the matching on back edges
incident on any block is at most 201 log8 k. Hence, the size of a maximum matching
in G is at most t · 201 log8 k. Hence, the number of minimal vertex cover of G is at
most 2t·201 log8 k. Since, n = |V (T )| = O(k3), after little arithmetic manipulation,
we have that |C4| ≤ nt × nt·30 log3 k × (t · 30 log3 k)! × 2t·201 log8 k = 2O( k

log k
).

By the definition of the family C4 and of γ-reduction, the backward direc-
tion is immediate. For the forward direction, let (T, M, P, F, k) be a weakly-
coupled and matched CFVS instance and let H be an M -homogeneous solution
of (T, M, P, F, k). It is sufficient to show that C4 has an instance (T, M, P ′, F, k)
such that P ′ ⊆ H.

Consider the M -sequence of T − P . Fix a permutation σ of T − H. Consider
a permutation σ′ of vertices in T − P whose restriction to T − H is σ. Let B
be the family of blocks with very large matching in the set of conflict edges F ′.
Since |H| ≤ k, the size of B is less than t = 2k

201 log10 k
. Since the size of vicinity

of any block is at most 30 log3 k, at most t · 30 log3 k vertices form the vicinity
M ′ of blocks in B. Let X be the union of M -sub-blocks and Y be the union of
M̄ -sub-blocks in B. Then, vertices in Y \M ′ belong to H. Since, M ′ is the vicinity
of the blocks, every back edge incident on M ′ is a conflict edge. Hence, the back
edge neighbor of M ′ belongs to H. For the same reason, the set of back edges
E ′ incident on X \ M ′ are conflict edges and H contains a minimum cover of E ′.
As M ′ ∩ H = ∅, any vertex inconsistent with σM ′ also belongs to H. Now, every
block in B is incident with conflict edges belong to F only which are disjoint,
we can greedily include a vertex cover of these edges by preferring to pick the
conflict edge neighbor of ⋃ B into H. This implies that every block in B after
removing P ′ is not incident with any conflict edge and hence (T, M, P ′, F, k) is
LowBlockDegree. Since P ′ includes all possibilities of the above choices, there is
an instance (T, M, P ′, F, k) in C4 that satisfies the required properties.

Definition 6.38 (Regular). An instance (T, M, P, F, k) of CFVS is said to be



70CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

regular if in the M -sequence (X1, Y1, X2, Y2, . . . ) of T − P , for every set Xi of size
at least 10 log5 k, there are at least |Xi|

10 log5 k
vertices in M and |Yi| ≤ 10 log5 k.

Note that it can be checked in polynomial time whether a given CFVS instance
(T, M, P, F, k) is regular or not. Let L be a function such that given a CFVS
instance (T, M, P, F, k) outputs the family of sets of vertices which is the union of
all sets Xi and Yj in the M -sequence of T − P such that |Xi|

mi
≥ 10 log5 k where

mi = |Xi ∩ M | and |Yj| ≥ 10 log5 k.

Lemma 6.39. There exists a γ-reduction from a CFVS instance (T, M, P, F, k)
to a family C1 := {(T, M, P1, F, k), (T, M, P2, F, k), . . . } of CFVS instances for
γ = 2O( k

log k
) such that every instance in C1 is regular.

Proof. We construct C1 as follows. Compute the sets L(T, M, k). For each
B ⊆ L(T, M, k) such that |B| ≤ 2k

log2 k
, output a pair of sets (M, P ′) = (M, P ∪

L(T, M, k) \ B). For each pair (M, P ′), add a CFVS instance (T, M, P ′, ∅, k) in
C1 if (T, M, P ′, ∅, k) is regular.

By the definition of γ-reduction and the construction of C1, the backward
direction is trivial. For the forward direction, let H be an M -homogeneous
(M, P, F )-CFVS solution of (T, M, P, F, k).

A set Xi in the M -sequence of T − P is called large if the ratio |Xi|
mi

is at least
10 log5 k. Similarly, Yi is large if |Yi| ≥ 10 log5 k. From each large set Xi at least
10mi log5 k − 10mi log3 k vertices belong to H. Similarly, from each large Yi, at
least 10 log5 k−10 log3 k belongs to H. Hence, if t is the total number of M -vertices
in the union of large sets, then in total at most k

10t log5 k−10t log3 k
× 10t log3 k ≤ 2k

log2 k
vertices from the union of large sets in the M -sequence of T −P do not belong to H.
Since the algorithm loops over all choices of subsets B ⊆ L(T, M, k), |B| ≤ 2k

log2 k
,

C1 contains an instance (T, M, P ′, F, k) satisfying the required properties.
Moreover, |C1| is bounded by the number of subsets B. Now |L(T, M, k)| ≤

|V (T )| which implies the number of subsets B is at most (k3)
2k

log2 k = 23 log k× k
log2 k =

2O( k
log k

).

As noted before BTFVS instance (T, k) is equivalent to CFVS instance
(T, ∅, ∅, ∅, k), we combine the results in the above Lemmas (abusing the nota-
tion slightly).

Lemma 6.40. There is a γ-reduction from a BTFVS instance (T, k) to a CFVS
family C ′ for γ ≤ 1.6181k such that every instance in C ′ is regular, weakly-coupled,
matched and LowBlockDegree. In addition, for each |P2| = s ≤ k, C ′ has at most
1.618s CFVS instances.

Proof. Given the BTFVS instance (T, k), run the algorithm of Lemma 6.25 to
obtain the CFVS family C. For each instance (T, M, P, ∅, k) ∈ C, run the algorithm
of Lemma 6.39 to obtain the CFVS family C1. For each instance (T, M, P, ∅, k) ∈ C1,
run the algorithm of Lemma 6.32 to obtain the CFVS family C2. For each instance
(T, M, P, F, k) ∈ C2, run the algorithm of Lemma 6.34 to obtain the CFVS family



6.4. CONSTRAINED BTFVS 71

C3. For each instance (T, M, P, F, k) ∈ C3, run the algorithm of Lemma 6.37 to
obtain the CFVS family C5(T, M, P2, F, k). C ′ is the union of these families.

The correctness and the running time follow from Lemmas 6.25, 6.39, 6.32,
6.34 and 6.37.

We redefine the d-Feedback Vertex Cover defined in Section 5.4 with a
slight modification. Let d, f and t be positive integers. Consider a class of mixed
graphs G(d, f, t) in which each member is a mixed multigraph T with the vertex
set V (T ) partitioned into vertex sets V1, V2, . . . , Vt and an undirected edge set
E(T ) ⊆ ⋃

i<j Vi × Vj such that for each i ∈ [t],

• T [Vi] is a bipartite tournament,

• the size of the feedback vertex set Hi for T [Vi] is at least f and at most 4f ,

• degE(Vi) ≤ d.

Given a mixed multigraph T ∈ G(d, f, t), a positive integer k, determine
whether there exists a set H ⊆ V (T ) such that |H| ≤ k and T − H contains
no undirected edges and is acyclic. If E(T ) is disjoint, we call the problem as
Disjoint Feedback Vertex Cover.

Lemma 6.41. There exists a polynomial time algorithm that given a CFVS in-
stance (T, M, P2, F, k) that is regular, weakly-coupled, matched and LowBlockDegree
outputs a partition (V1, V2, . . . , Vt) of V (T ) \ P such that t ≤ k

201 log12 k
and for each

i ∈ [t] Vi is a union of consecutive blocks in the M -sequence of T − P2 and at least
one of these hold

• the size of feedback vertex set of T [Vi] is at least f = 201 log12 k and at most
804 log12 k,

• at least 200 log12 k and at most 201 log12 k edges in F ∩E(T −P2) are incident
on Vi.

Proof. Let (X1, Y1 . . . ) be the M -sequence of T − P2. Consider the sequence
of blocks (Z1, Z2 . . . ) such that for each i, Zi := Xi ∪ Yi. Obtain the sequence
i1 = 1 < i2 < . . . of indices such that Vj := ⋃ij+1−1

i=ij
Zi as follows: for each j,

keep including Zi for i ≥ ij into Vj and stop the moment at least one of the
above conditions hold. To check the size of feedback vertex set in T [Vj] use the
approximation algorithm in Lemma 6.2 i.e. check if Lemma 6.2 outputs a feedback
vertex set for T [Vj] of size less than 4f .

Since by regularity, the feedback vertex set of any block is at most 10 log5 k and
since the CFVS instance is weakly-coupled, the size of a maximum matching on
back edges between any consecutive blocks is at most 201 log8 k. Since the CFVS
instance is matched and LowBlockDegree, the size of maximum matching in conflict
edges is at most 201 log10 k. Hence, including any block into a set Vi increases the
size of the feedback vertex set of T [Vi] by at most 10 log5 k + 201 log10 k. At the
same time, the degree of Vi can increase by at most 201 log10 k. Hence, the above



72CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT

algorithm outputs the required partition. Note that edges in F ∩ E(T − P2) form
a matching. Hence, t ≤ k

201 log12 k
.

Definition 6.42 (decoupled). An instance (T, M, P, F, k) of CFVS is said to be
decoupled if there is a partition (V1, V2, . . . , Vt) of V (T ) \ P such that t ≤ k

201 log12 k

and for each i ∈ [t]

• Vi is a union of consecutive blocks in the M -sequence of T − P ,

• the size of feedback vertex set of T [Vi] is at least f = 201 log12 k and at
most 804 log12 k, or at least 200 log12 k and at most d = 201 log12 k edges in
F ∩ E(T − P ) are incident on Vi.

• F contains short conflict edges between any pair of sets Vi and Vj.

Note that it can be checked in polynomial time whether a given CFVS instance
(T, M, P, F, k) is decoupled or not.

Lemma 6.43. There exists a γ-reduction from a regular, weakly-coupled, and
matched CFVS instance (T, M, P2, F, k) to a family C6 for γ = 2O( k

log k
) such that

every instance in C6 is regular, weakly-coupled, matched, LowBlockDegree and
decoupled.

Proof. Given (T, M, P2, F, k), we construct the family C6. Using the algorithm of
Lemma 6.41, we construct the partition (V1, V2, . . . , Vt) of V (T ) \ P2. For each Vi,
let Ei be the set of back edges incident on Vi from V (T )\(P2 ∪Vi). Let J := ⋃

Vi
Ei

be the union of such back edges. Now, we guess the subset B of back edges that
are not hit by the required feedback vertex set. For every subset B ⊆ J of size
at most 2 · t · 200 log6 k, let JB = J \ B. We require that the feedback vertex set
hits at least one end point of every edge in JB. Let D be the vertex cover of JB.
For every subset C ⊆ D, define PC := C ∪ NJB

(D \ C). For each PC , we add the
CFVC instance (T, M, P3, F, k) where P3 := P2 ∪ PC into C6 if (T, M, P3, F, k) is
regular, weakly-coupled, matched, LowBlockDegree and decoupled.

The backward direction is trivial. For the forward direction, let H be an
M -homogeneous (M, P, F )-CFVS solution. Observe that all the above algorithm
does is consider all possibilities via which H may hit the back edges between
T [Vi \ P2] and T [Vi \ P2] for any i, j. The number of choices of sets B is at most
(k6)2·t·200 log6 k = 2O( k

log k
). Note that in the M -sequence of T − P2, the matching

on short back edges between any pair of consecutive blocks is at most 201 log10 k.
Hence, the vertex cover of these back edges is at most 201 log10 k. Since the number
of sets in the partition (V1, V2, . . . ) is at most k

f
, the size of the total matching on

short back edges J is at most g = 201 log10 k × k
f
. Hence, the number of choices

for C is at most 2g = 2O( k
log k

). Hence, γ = 2O( k
log k

) × 2O( k
log k

) = 2O( k
log k

).

Lemma 6.44. There is a polynomial time reduction from a CFVS instance
(T, M, P2, F, k) that is regular, weakly-coupled, matched, LowBlockDegree and
decoupled to an instance of Disjoint Feedback Vertex Cover (T , k′) for
k′ = k − |P2|.



6.4. CONSTRAINED BTFVS 73

Proof. Given (T, M, P2, F, k), construct the DFVS instance with vertex set V (T )\
(M ∪ P2) and make the edges in F \ E(T − P2) between any two sets Vi and Vj

undirected. For any solution H for (T, M, P2, F, k), H \ P2 is a feedback vertex
set of T − P2 that hits F \ E(T − P2). Hence, H \ P2 is a feedback vertex cover
for (T , k′) for k′ = k − |P2|. In the backward direction, a solution S for (T , k′)
hits F \ E(T − P2) and is disjoint from M . Hence, S ∪ P2 is a solution for
(T, M, P2, F, k).

At this point, we can use the following lemma from [KL16c] with the only
difference being in the base case as we have a bipartite tournament instead of
a supertournament. We replace the naive 3k algorithm by 4k algorithm to find
a feedback vertex for each of T [Vi]. Note that bounding the size of feedback
vertex set in each of T [Vi] to O(log12 k) and the number of Vi’s to at most
O( k

log12 k
) implies that the maximum time spent in solving the base cases is at

most O( k
log12 k

) · 2O(log12 k).

Lemma 6.45. There exists an algorithm running in 1.5874s ·2O(df log k+d log s) ·nO(1)

time which finds an optimal feedback vertex cover in a mixed multigraph T ∈
G(d, f, t) in which the undirected edge set E(T ) is disjoint and |E(T )| = s.

Theorem 19. There exists an algorithm for BTFVS running in 1.6181k + nO(1)

time.

Proof. Using the algorithm of Lemma 6.40, construct the family C5 of CFVS
instances. For each instance (T, M, P2, F, k) ∈ C5, using the algorithm of Lemma
6.43 construct the family C6 of CFVS instances. Then for each CFVS instance
(T, M, P, F, k) using Lemma 6.44, construct the DFVC instance (T , k − |P |) which
is solved using the algorithm of Lemma 6.45. If for any instance, the algorithm of
Lemma 6.45 outputs a solution set S of size at most k − |P |, then we output yes,
otherwise output no.

The correctness of the algorithm follows from the correctness of the algorithms
in the Lemma 6.40, 6.43, 6.44 and 6.45. The running time of the algorithm is upper
bounded by

k∑
s=1

1.618k−s × 1.5874s · 2O(df log k+d log s) · nO(1) ≤ 1.6181k · 2O(d2+d log k) ·
nO(1).

Proposition 6.46. [FGLS16] If there exists a parameterized algorithm for any
vertex deletion problem into a hereditary graph class with running time cknO(1),
then there exists an exact-exponential-time algorithm for the problem with running
time (2 − 1

c
)n+o(n)nO(1).

The above proposition immediately implies the following theorem.

Theorem 20. There exists an algorithm for BTFVS running in 1.3820n time.



74CHAPTER 6. FEEDBACK VERTEX SET IN BIPARTITE TOURNAMENT



Chapter 7

Component Order Connectivity

7.1 Introduction
In the classic Vertex Cover problem, the input is a graph G and integer k,
and the task is to determine whether there exists a vertex set S of size at most
k such that every edge in G has at least one endpoint in S. Such a set is called
a vertex cover of the input graph G. An equivalent definition of a vertex cover
is that every connected component of G − S has at most 1 vertex. This view of
the Vertex Cover problem gives rise to a natural generalization: can we delete
at most k vertices from G such that every connected component in the resulting
graph has at most � vertices? Here we study this generalization. Formally, for
every integer � ≥ 1, we consider the following problem, called �-Component

Order Connectivity (�-COC).

Input: A graph G and a positive integer k.
Question: Does there exists a set S ⊆ V (G) such that |S| ≤ k and the

maximum size of a component in G − S is at most �?

�-Component Order Connectivity (�-COC)

The set S is called an �-COC solution. For � = 1, �-COC is just the Vertex Cover

problem. Aside from being a natural generalization of Vertex Cover, the family
{�-COC : � ≥ 1} of problems can be thought of as a vulnerability measure of the
graph G - how many vertices of G have to fail for the graph to break into small
connected components? For a study of �-COC from this perspective see the survey
of Gross et al. [GHI+13].

From the work of Lewis and Yannakakis [LY80b] it immediately follows that
�-COC is NP-complete for every � ≥ 1. This motivates the study of �-COC within
paradigms for coping with NP-hardness, such as approximation algorithms [WS11],
exact exponential time algorithms [FK10], parameterized algorithms [CFK+15,
DF13] and kernelization [Kra14, LMS12]. The �-COC problems have (for some
values of �) been studied within all four paradigms, see the related work section.

In this work we focus on �-COC from the perspective of parameterized complex-
ity and kernelization. Our main result is an algorithm that given an instance (G, k)

75



76 CHAPTER 7. COMPONENT ORDER CONNECTIVITY

of �-COC, runs in polynomial time, and outputs an equivalent instance (G′, k′)
such that k′ ≤ k and |V (G′)| ≤ 2�k. This is called a kernel for �-COC with 2�k
vertices. Our kernel significantly improves over the previously best known kernel
with O(�k(k + �)) vertices by Drange et al. [DDvtH14]. Indeed, for � = 1 our
kernel matches the size of the smallest known kernel for Vertex Cover [CKJ01]
that is based on the classic theorem of Nemhauser and Trotter [NJ74].

Related Work. 1-COC, better known as Vertex Cover, is extremely well
studied from the perspective of approximation algorithms [WS11, DS05], ex-
act exponential time algorithms [FGK09, Rob86, XN13], parameterized algo-
rithms [CFK+15, CKX10] and kernelization [CKJ01, NJ74]. The kernel with 2k
vertices for Vertex Cover is considered one of the fundamental results in the
field of kernelization. The 2-COC problem is also well studied, and has been
considered under several different names. The problem, or rather the dual problem
of finding a largest possible set S that induces a subgraph in which every connected
component has order at most 2, was first defined by Yannakakis [Yan81] under the
name Dissociation Set. The problem has attracted attention in exact exponential
time algorithms [KKS11, XK15], the fastest currently known algorithm [XK15]
has running time O(1.3659n). 2-COC has also been studied from the perspective
of parameterized algorithms [CCH+16, Tu15] (under the name Vertex Cover

P3) as well as approximation algorithms [TZ11]. The fastest known parameterized
algorithm, due to Chang et al. [CCH+16] has running time 1.7485knO(1), while
the best approximation algorithm, due to Tu and Zhou [TZ11] has factor 2.

For the general case of �-COC, � ≥ 1, Drange et al. [DDvtH14] gave a simple
parameterized algorithm with running time (� + 1)knO(1), and a kernel with
O(k�(� + k)) vertices. The parameterized algorithm of Drange et al. [DDvtH14]
can be improved to (� + 0.0755)knO(1) by reducing to the (� + 1)-Hitting Set

problem, and applying the iterative compression based algorithm for (� + 1)-
Hitting Set due to Fomin et al. [FGK+10]. The reduction to (� + 1)-Hitting

Set, coupled with the simple factor (� + 1)-approximation algorithm for (� + 1)-
Hitting Set [WS11] immediately also yields an (� + 1)-approximation algorithm
for �-COC. There has also been some work on �-COC when the input graph is
restricted to belong to a graph class, for a discussion of this work see [DDvtH14].

Comparing the existing results with our work, we see that our kernel improves
over the kernel of Drange et al. [DDvtH14] from at most O(k�(� + k)) vertices to
at most 2k� vertices. Our kernel is also the first kernel with a linear number of
vertices for every fixed � ≥ 2.

Overview of the algorithm. Our kernel for �-COC hinges on the concept of a
reducible pair of vertex sets. Essentially (this is not the formal definition used in
the chapter!), a reducible pair is a pair (X, Y ) of disjoint subsets of V (G) such
that N(Y ) ⊆ X, every connected component of G[Y ] has size at most �, and every
solution S to G has to contain at least |X| vertices from G[X ∪ Y ]. If a reducible
pair is identified, it is easy to see that one might just as well pick all of X into
the solution S, since any solution has to pay |X| inside G[X ∪ Y ], and after X
is deleted, Y breaks down into components of size at most � and is completely



7.1. INTRODUCTION 77

eliminated from the graph.
At this point there are several questions. (a) How does one argue that a

reducible pair is in fact reducible? That is, how can we prove that any solution
has to contain at least |X| vertices from X ∪ Y ? (b) How big does G have to be
compared to k before we can assert the existence of a reducible pair? Finally, (c)
even if we can assert that G contains a reducible pair, how can we find one in
polynomial time?

To answer (a) we restrict ourselves to reducible pairs with the additional
property that each connected component C of G[Y ] can be assigned to a vertex
x ∈ N(C), such that for every x ∈ X the total size of the components assigned
to x is at least �. Then x together with the components assigned to it form a set
of size at least � + 1 and have to contain a vertex from the solution. Since we
obtain such a connected set for each x ∈ X, the solution has to contain at least
|X| vertices from X ∪ Y . Again we remark that this definition of a reducible pair
is local to this section, and not the one we actually end up using.

To answer (b) we first try to use the q-Expansion Lemma (see [CFK+15]), a
tool that has found many uses in kernelization. Roughly speaking the Expansion
Lemma says the following: if q ≥ 1 is an integer and H is a bipartite graph with
bipartition (A, B) and B is at least q times larger than A, then one can find a
subset X of A and a subset Y of B such that N(Y ) ⊆ X, and an assignment of
each vertex y ∈ Y to a neighbor x of y, such that every vertex x in X has at least
q vertices in Y assigned to it.

Suppose now that the graph does have an �-COC solution S of size at most k,
and that V (G) \ S is sufficiently large compared to S. The idea is to apply the
Expansion Lemma to the bipartite graph H, where the A side of the bipartition is
S and the B side has one vertex for each connected component of G − S. We put
an edge in H between a vertex v in S and a vertex corresponding to a component
C of G − S if there is an edge between v and C in G. If G − S has at least |S| · �
connected components, we can apply the �-Expansion Lemma on H, and obtain a
set X ⊆ S, and a collection Y of connected components of G − X satisfying the
following properties. Every component C ∈ Y satisfies N(C) ⊆ X and |C| ≤ �.
Furthermore, there exists an assignment of each connected component C to a
vertex x ∈ N(C), such that every x ∈ X has at least � components assigned to it.
Since x has at least � components assigned to it, the total size of the components
assigned to x is at least �. But then, X and Y = ⋃

C∈Y C form a reducible pair,
giving an answer to question (b). Indeed, this argument can be applied whenever
the number of components of G − S is at least � · |S|. Since each component of
G − S has size at most �, this means that the argument can be applied whenever
|V (G) \ S| ≥ �2 · |S| ≥ �2k.

Clearly this argument fails to yield a kernel of size 2�k, because it is only
applicable when |V (G)| = Ω(�2k). At this point we note that the argument above
is extremely wasteful in one particular spot: we used the number of components
assigned to x to lower bound the total size of the components assigned to x. To
avoid being wasteful, we prove a new variant of the Expansion Lemma, where
the vertices on the B side of the bipartite graph H have non-negative integer



78 CHAPTER 7. COMPONENT ORDER CONNECTIVITY

weights. This new Weighted Expansion lemma states that if q, W ≥ 1 are integers,
H is a bipartite graph with bipartition (A, B), every vertex in B has a non-
negative integer weight which is at most W , and the total weight of B is at least
(q + W − 1) · |A|, then one can find a subset X of A and a subset Y of B such that
N(Y ) ⊆ X, and an assignment of each vertex y ∈ Y to a neighbor x of y, such
that for every vertex in X, the total weight of the vertices assigned to it is at least
q. The proof of the Weighted Expansion Lemma is based on a combination of the
usual, unweighted Expansion Lemma with a variant of an argument by Bezáková
and Dani [BD05] to round the linear program for Max-min Allocation of goods to
customers.

Having the Weighted Expansion Lemma at hand we can now repeat the
argument above for proving the existence of a reducible pair, but this time, when
we build H, we can give the vertex corresponding to a component C of G − S
weight |C|, and apply the Weighted Expansion Lemma with q = � and W = �.
Going through the argument again, it is easy to verify that this time the existence
of a reducible pair is guaranteed whenever |V (G) \ S| ≤ (2� − 1)k, that is when
|V (G)| ≥ 2�k.

We are now left with question (c) - the issue of how to find a reducible pair in
polynomial time. Indeed, the proof of existence crucially relies on the knowledge
of an (optimal) solution S. To find a reducible pair we use the linear programming
relaxation of the �-COC problem. We prove that an optimal solution to the
LP-relaxation has to highlight every reducible pair (X, Y ), essentially by always
setting all the variables corresponding to X to 1 and the variables corresponding
to Y to 0. For Vertex Cover (i.e 1-COC), the classic Nemhauser Trotter
Theorem [NJ74] implies that we may simply include all the vertices whose LP
variable is set to 1 into the solution S. For �-COC with � ≥ 2 we are unable to prove
the corresponding statement. We are however, able to prove that if a reducible
pair (X, Y ) exists, then X (essentially) has to be assigned 1 and Y (essentially)
has to be assigned 0. We then give a polynomial time algorithm that extracts
X and Y from the vertices assigned 1 and 0 respectively by the optimal linear
programming solution. Together, the arguments (b) and (c) yield the kernel with
2�k vertices. We remark that to the best of our knowledge, after the kernel for
Vertex Cover [CKJ01] our kernel is the first example of a kernelization algorithm
based on linear programming relaxations.
Overview of the chapter. The kernel for �-COC is proved in Sections 7.2, 7.3
and 7.4. In Section 7.2 we prove the necessary adjustment of the results on
Max-Min allocation of Bezáková and Dani [BD05] that is suitable to our needs.
In Section 7.3 we state and prove our new Weighted Expansion Lemma, and in
Section 7.4 we combine all our results to obtain the kernel.

7.2 Max-min Allocation
We will now view a bipartite graph G := ((A, B), E) as a relationship between
“customers” represented by the vertices in A and “items” represented by the



7.2. MAX-MIN ALLOCATION 79

vertices in B. If the graph is supplied with two functions wa : A → N and
wb : B → N, we treat these functions as a “demand function” and a “capacity”
function, respectively. That is, we consider each item v ∈ B to have value wb(v),
and every customer u ∈ A wants to be assigned items worth at least wa(u). An
edge between u ∈ A and v ∈ B means that the item v can be given to u.

A weight function f : E(G) → N describes an assignment of items to customers,
provided that the items can be “divided” into pieces and the pieces can be
distributed to different customers. However this “division” should not create
more value than the original value of the items. Formally we say that the weight
function satisfies the capacity constraint wb(v) of v ∈ B if ∑

uv∈E(G) f(uv) ≤ wb(v).
The weight function satisfies the capacity constraints if it satisfies the capacity
constraints of all items v ∈ B.

For each item u ∈ A, we say that f allocates ∑
uv∈E(G) f(uv) value to u. The

weight function f satisfies the demand wa(u) of u ∈ A if it allocates at least wa(u)
value to u, and f satisfies the demand constraints if it does so for all u ∈ A. In
other words, the weight function satisfies the demands if every customer gets
items worth at least her demand. The weight function f over-satisfies a demand
constraint wa(u) of u if it allocates strictly more than wa(u) to u.

We will also be concerned with the case where items are indivisible. In particular
we say that a weight function f : E(G) → N is unsplitting if for every v ∈ B
there is at most one edge uv ∈ E(G) such that f(uv) > 0. The essence of the
next few lemmas is that if we have a (splitting) weight function f of items whose
value is at most W , and f satisfies the capacity and demand constraints, then we
can obtain in polynomial-time an unsplitting weight function f ′ that satisfies the
capacity constraints and violates the demand constraints by at most (W − 1). In
other words we can make a splitting distribution of items unsplitting at the cost
of making each customer lose approximately the value of the most expensive item.

Allocating items to customers in such a way as to maximize satisfaction is
well studied in the literature. The lemmata 7.1 and 7.2 are very similar, both in
statement and proof, to the work of Bezáková and Dani [BD05][Theorem 3.2], who
themselves are inspired by Lenstra et al. [LST90]. However we do not see a way
to directly use the results of Bezáková and Dani [BD05], because we need a slight
strengthening of (a special case of) their statement.

Lemma 7.1. There exists a polynomial-time algorithm that given a bipartite
graph G, a capacity function wb : B → N, a demand function wa : A → N and a
weight function f : E(G) → N that satisfies the capacity and demand constraints,
outputs a function f ′ : E(G) → N such that f ′ satisfies the capacity and demand
constraints and the graph Gf ′ = (V (G), {uv ∈ E(G) | f ′(uv) > 0}) induced on the
non-zero weight edges of G is a forest.

Proof. We start with f and in polynomially many steps, change f into the required
function f ′. If Gf = (V (G), {uv ∈ E(G) | f(uv) > 0}) is a forest, then we return
f ′ = f . Otherwise, suppose that Gf contains a cycle C := e1e2e3 . . . e2s. Proceed
as follows. Without loss of generality, suppose c = f(e1) = min{f(e) | e ∈ C}, and
note that c > 0. Compute the edge weight function f � : E → R defined as follows.



80 CHAPTER 7. COMPONENT ORDER CONNECTIVITY

For ei ∈ C, we define f �(ei) = f(e) − c if i is odd, and define f �(ei) = f(e) + c if i
is even. For e /∈ C we define f �(ei) = f(e).

Every vertex of G is incident to either 0 or exactly 2 edges of C. If the vertex
v is incident to two edges of C then one of these edges, say e2i, has even index in
C, and the other, e2i+1 has odd. For the edge e2i we have f �(e2i) = f(e2i) + c and
for e2i+1 we have f �(e2i+1) = f(e2i+1) − c. Thus we conclude that for all v ∈ V (G),∑

u∈N(v) f �(uv) = ∑
u∈N(v) f(uv), and that therefore f � satisfies the capacity and

demand constraints. Furthermore at least one edge that is assigned non-zero
weight by f is assigned 0 by f � and Gf� = (V (G), {uv ∈ E(G) | f �(uv) > 0}) has
one less cycle than Gf . For a polynomial-time algorithm, repeatedly apply the
process described above to reduce the number of edges with non-zero weight, as
long as Gf� contains a cycle.

Lemma 7.2. There exists a polynomial-time algorithm with the following spec-
ifications. It takes as input a bipartite graph G := ((A, B), E), a demand func-
tion wa : A → N, a capacity function wb : B → N, an edge weight function
f : E(G) → N that satisfies both the capacity and demand constraints, and a ver-
tex r ∈ A. The algorithm outputs an unsplitting edge weight function h : E(G) → N

that satisfies the capacity constraints, satisfies the demands w′
a = wa − (W − 1)

where W = maxv∈B wb(v), and additionally satisfies the demand wa(r) of r.

Proof. Without loss of generality the graph Gf := (V (G), {uv ∈ E(G) | f(uv) >
0}) is a forest. If it is not, we may apply Lemma 7.1 to f , and obtain a function
f ′ that satisfies the capacity and demand constraints, and such that Gf ′ =
(V (G), {uv ∈ E(G) | f ′(uv) > 0}) is a forest. We then rename f ′ to f . By picking
a root in each connected component of Gf we may consider Gf as a rooted forest.
We pick the roots as follows, if the component contains the special vertex r, we
pick r as root. If the component does not contain r, but contains at least one
vertex u ∈ A, we pick that vertex as the root. If the component does not contain
any vertices of A then it does not contain any edges and is therefore a single vertex
in B, we pick that vertex as root. Thus, every item v ∈ B that is incident to
at least one edge in Gf has a unique parent u ∈ A in the forest Gf . We define
the new weight function h. For every edge uv ∈ E(G) with u ∈ A and v ∈ B we
define h(uv) as follows. h(uv) = wb(v) if u is the parent of v in Gf , and h(uv) = 0
otherwise.

Clearly h is unsplitting and satisfies the capacity constraints. We now prove
that h also satisfies the demand constraints w′

a and satisfies the demand constraint
wa(r) of r. Consider the demand constraint w′

a(u) for an arbitrary customer
u ∈ A. There are two cases, either u is the root of the component of Gf or it
is not. If u is the root, then for every edge uv ∈ E(G) such that f(uv) > 0
we have that uv ∈ E(Gf) and consequently that u is the parent of v. Hence
h(uv) = wb(v) ≥ f(uv), and therefore h satisfies the demand wa(u) of u. Since
wa(u) ≥ w′

a(u), we have that h satisfies the demand w′
a(u). Furthermore, since r

is the root of its component this also proves that h satisfies the demand wa(r).
Consider now the case that u is not the root of its component in Gf . Then

u has a unique parent in Gf , call this vertex v� ∈ B. We first prove that



7.3. THE WEIGHTED EXPANSION LEMMA 81

B

A

v

u

≥ wa(u)

≤ wb(v)

· · ·

f(e1) − c = 0

f(e2s) + c

f(e2) + c

f(e3) − c

f(e4) + c

B

A

v

u

≥ wa(u) − W + 1

wb(v)

v0

u

v2v1 v3

wb(v3)wb(v1)
wb(v2)

0
0

wb(v0)

≥ wa(u) − W + 1

Figure 7.1: Proof of Lemma 7.1 and 7.2. Cyclically shift smallest weight in a
non-zero weight cycle to obtain a forest. Root each tree in the forest at a vertex
in A such that each vertex in B has a parent in A. Assign the value of v ∈ B
to its parent u ∈ A. In this new assignment, a non-root vertex u ∈ A loses its
parent v0 ∈ B and f(v0u) ≤ W − 1 which explains the cost of making a splitting
assignment into an unsplitting assignment.

f(uv�) ≤ wb(v�) − 1. Indeed, since v� is incident to the edge uv� we have that v�

has a parent u� in Gf , and that u� �= u because v� is the parent of u. We have
that f(u�v�) + f(uv�) ≤ wb(v�) and that f(u�v�) ≥ 1, because u�v� is an edge
in Gf . It follows that f(uv�) ≤ wb(v�) − 1. We now proceed to proving that h
satisfies the demand w′

a(u).
For every edge uv ∈ E(G) \ {uv�} such that uv ∈ E(G) such that f(uv) > 0

we have that uv ∈ E(Gf) and consequently that u is the parent of v. Hence
we have that h(uv) = wb(v) ≥ f(uv). Furthermore h(uv�) = 0 while f(uv�) ≤
wb(v�) − 1 ≤ W − 1. Therefore h satisfies the demand w′

a(u).

7.3 The Weighted Expansion Lemma
Our kernelization algorithm will use “q-expansions” in bipartite graphs, a well
known tool in kernelization [CFK+15]. We begin by stating the definition of a
q-expansion and review the facts about them that we will use.

Definition 7.3 (q-expansion). Let G := ((A, B), E) be a bipartite graph. We
say that A has q-expansion into B if there is a family of sets {Va | Va ⊆ N(a), |Va| ≥
q, a ∈ A} such that for any pair of vertices ai, aj ∈ A,i �= j, Vai

∩ Vaj
= ∅.

Definition 7.4 (Twin graph). For a bipartite graph G := ((A, B), E) with a
weight function wb : B → N, the twin graph TAB := (A, B′) of G is obtained as
follows: B′ contains |wb(v)| twins of every vertex v ∈ B i.e. B′ := {v1, v2, . . . vwb(v) |
v ∈ B} and edges in TAB such that for all v ∈ B and i ∈ [wb(v)], N(vi) = N(v)
i.e. E(TAB) := {avi|a ∈ A, vi ∈ B′, v ∈ B, av ∈ E(G)}.



82 CHAPTER 7. COMPONENT ORDER CONNECTIVITY

Lemma 7.5. [CFK+15] Let G be a bipartite graph with bipartition (A, B). Then
there is a q-expansion from A into B if and only if |N(X)| ≥ q|X| for every
X ⊆ A. Furthermore, if there is no q-expansion from A into B, then a set X ⊆ A
with |N(X)| < q|X| can be found in polynomial-time.

Lemma 7.6 (Expansion Lemma [CFK+15]). Let q ≥ 1 be a positive integer and
G be a bipartite graph with vertex bipartition (A, B) such that |B| ≥ q|A|, and
there are no isolated vertices in B. Then there exist nonempty vertex sets X ⊆ A
and Y ⊆ B such that there is a q-expansion of X into Y , and no vertex in Y has
a neighbor outside X, i.e. N(Y ) ⊆ X. Furthermore, the sets X and Y can be
found in time polynomial in the size of G.

Lemma 7.7 (folklore). There exists a polynomial-time algorithm that given a
bipartite graph G := ((A, B), E) and an integer q decides (and outputs in case yes)
if there exist sets X ⊆ A, Y ⊆ B such that there is a q-expansion of X into Y .

Proof. We describe a recursive algorithm. If A = ∅ or B = ∅, then output no

and terminate. Otherwise, construct the twin graph TBA with weight function
w : A → N where for all u ∈ A, w(u) = q and let M be a maximum matching in
TBA. Consider the graph G′ := (A, B) with edge set E(G′) := {uv, u ∈ A, v ∈
B | uiv ∈ M}. Let A′ ⊆ A such that for all u ∈ A′, dG′(u) ≥ q and let B′ ⊆ B
such that B′ := ⋃

u∈A′ NG′(u). If N(B′) ⊆ A′, then return (A′, B′) and terminate.
Otherwise, recurse on G[A′ ∪ (B \ NG(A \ A′))].

If there are no sets X, Y such that there is a q-expansion of X into Y , then
for any pair of sets A′ ⊆ A, B′ ⊆ B either N(B′) \ A′ �= ∅ or |B′| < q|A′|. Since
at each recursive step, the size of the graph with which the algorithm calls itself
decreases, eventually either A′ becomes empty or B \ NG(A \ A′) becomes empty.
Hence, the algorithm outputs no. Now we need to show that if there exist sets
(A∗, B∗) such that there is a q-expansion of A∗ into B∗, then at each recursive
call, we have that A∗ ⊆ A and B∗ ⊆ B. At the start of the algorithm, A∗ ⊆ A
and B∗ ⊆ B. Since N(B∗) ⊆ A∗ and for all u ∈ A∗ dG(u) ≥ q, we have that
A∗ ∪ B∗ ⊆ V (G′). If N(B′) ⊆ A′, then the algorithm of Lemma 7.6 when run on
G′, q will output (A∗, B∗). Note that B∗ ⊆ B′. At the recursive step, A∗ ⊆ A′ and
since B∗ ∩ NG(A \ A′) = ∅, we have that B∗ ⊆ B′ \ NG(A \ A′). Hence, G[A∗ ∪ B∗]
is a subgraph of G[A′ ∪ (B \ NG(A \ A′))] which concludes the correctness of the
algorithm. Since at each recursive call the size of the graph decreases by at least
1, the total time taken by the above algorithm is polynomial in n.

One may think of a q-expansion in a bipartite graph with bipartition (A, B)
as an allocation of the items in B to each customer in A such that every customer
gets at least q items. For our kernel we will need a generalization of q-expansions
to the setting where the items in B have different values, and every customer gets
items of total value at least q.

Definition 7.8 (Weighted q-expansion). Let G := ((A, B), E) be a bipartite
graph with capacity function wb : B → N. Then, a weighted q-expansion in G
is an edge weight function f : E(G) → N that satisfies the capacity constraints



7.3. THE WEIGHTED EXPANSION LEMMA 83

wb and also satisfies the demand constraints wa = q. For an integer W ∈ N, the
q-expansion f is called a W -strict q-expansion if f allocates at least q + W − 1
value to at least one vertex r in A, and in this case we say that f is W -strict at r.
Further, a q-expansion f is strict (at r) if it is 1-strict (at r). If f is unsplitting
we call f an unsplitting q-expansion.

Lemma 7.9. There exists a polynomial-time algorithm that given a bipartite graph
G := ((A, B), E), an integer q and a capacity function wb : B → N outputs (if it
exist) two sets X ⊆ A and Y ⊆ B along with a weighted q-expansion in G[X ∪ Y ]
such that N(Y ) ⊆ X.

Proof. Construct the twin graph TAB := (A, B′) of G. Run the algorithm of
Lemma 7.7 with input TAB, q that outputs sets X ⊆ A and Y ′ ⊆ B′ such that X
has q-expansion into Y ′ and N(Y ′) ⊆ X. Consider the set Y := {v ∈ B | vi ∈ Y ′}.
Define a weight function f : E(G[X ∪Y ]) → N as follows: for all uv ∈ E(G[X ∪Y ])
f(uv) = |{vi ∈ Y ′|vi matched to u}|.

Clearly, N(Y ) ⊆ X. Now we claim that f is a weighted q-expansion in G[X∪Y ]
with capacity function wb and demand function wa = q. For any vertex u ∈ A,
there are at least q vertices in Y ′ are matched to u. Hence for all u ∈ A, we
have that ∑

v∈N(u) f(uv) ≥ q = wa. At the same time, for any vertex v ∈ B,
there are at most wb(v) copies of v in Y ′. Therefore, for all v ∈ Y we have∑

u∈N(v) f(uv) ≤ wb(v).

Lemma 7.10. There exists a polynomial-time algorithm that given a weighted
q-expansion f : E(G) → N in G := ((A, B), E), a capacity function wb : B → N

and an integer W such that W = maxe∈E(G) f(e) outputs an unsplitting W -strict
weighted (q − W + 1)-expansion in G.

Proof. Run the algorithm of Lemma 7.2 with inputs G, f, wa = q, wb, W and a
vertex u ∈ A. In case f is strict, u is the vertex r that makes f strict. Let the
function h : E(G) → N be the output of Lemma 7.2. Now h is an unsplitting
edge weight function that satisfies the capacity constraints, satisfies the demands
q − W + 1, and additionally satisfies the demand q of u. Hence, h is the required
unsplitting weighted W -strict (q − W + 1)-expansion in G.

Lemma 7.11 (Weighted Expansion Lemma). Let q, W ≥ 1 be positive integers
and G be a bipartite graph with vertex bipartition (A, B) and wb : B → {1, . . . , W}
be a capacity function such that ∑

v∈B wb(v) ≥ (q + W − 1) · |A|, and there are no
isolated vertices in B. Then there exist nonempty vertex sets X ⊆ A and Y ⊆ B
such that N(Y ) ⊆ X and there is an unsplitting weighted W -strict q-expansion of
X into Y . Furthermore, the sets X and Y can be found in time polynomial in the
size of G.

Proof. Construct the twin graph TAB from G and wb, the bipartition of TAB is
(A, B′). Now, obtain using the Expansion Lemma 7.6 with q′ = q + W − 1 on TAB

sets X ⊆ A and Y ′ ⊆ B′, such that N(Y ′) ⊆ X and there is a (q+W −1)-expansion
from X to Y ′ in TAB.



84 CHAPTER 7. COMPONENT ORDER CONNECTIVITY

Let Y := {v ∈ B | vi ∈ Y ′} (here the vi ∈ Y ′ are as in Definition 7.4). Then
N(Y ) ⊆ X and the (q +W −1)-expansion from X to Y ′ in TAB immediately yields
a weighted (q + W − 1)-expansion f from X to Y in G. Applying Lemma 7.10 on
G[X ∪ Y ] using the weighted (q + W − 1)-expansion f proves the statement of
the lemma.

7.4 Obtaining the Linear Kernel
Definition 7.12. For a graph G and a pair of vertex-disjoint sets X, Y ⊆ V (G),
we define the weighted graph G̃XY as follows: V (G̃XY ) := X ∪ Ỹ such that there
is a bijection h : cc(G[Y ]) → Ỹ where cc(G[Y ]) is the set of connected components
of G[Y ]. E(G̃XY ) := {xc | x ∈ X, c ∈ Ỹ , c = h(C) and x ∈ NG(C)}. We also
define a weight function w : Ỹ → N such that for all c ∈ Ỹ , w(c) = |h−1(c)|.

Definition 7.13 (Reducible Pair). For a graph G, a pair of vertex-disjoint sets
(X, Y ) where X, Y ⊆ V (G) is called a (strict) reducible pair if N(Y ) ⊆ X, the
size of every component in G[Y ] is at most �, and there exists a (strict) weighted
(2� − 1)-expansion in G̃XY .

Definition 7.14. A reducible pair (X, Y ) is called minimal if there is no reducible
pair (X ′, Y ′) such that X ′ ⊂ X and Y ′ ⊆ Y .

Lemma 7.15. There exists a polynomial-time algorithm that given an �-COC
instance (G, k) together with a vertex-disjoint set pair A, B ⊆ V (G) outputs (if it
exists) a reducible pair (X, Y ) where X ⊆ A and Y ⊆ B.

Proof. Construct G̃AB := (A, B̃) and run the algorithm of Lemma 7.9 with input
G̃AB, w, q = 2� − 1 which outputs sets X ⊆ A and Y ′ ⊆ B̃ (if it exists) along with
a weighted (2� − 1)-expansion of X into Y ′ such that N(Y ′) ⊆ X. Now from Y ′

we obtain the set Y := ⋃
y∈Y ′ h−1(y). Clearly, N(Y ) ⊆ X and hence, (X, Y ) is the

desired reducible pair.

Lemma 7.16. Given an �-COC instance (G, k), if |V (G)| ≥ 2�k and (G, k) is a
yes-instance, then there exists a reducible pair (X, Y ).

Proof. Without loss of generality, we can assume that G is a connected graph.
Let S be an �-COC solution of size at most k. Clearly, |V \ S| ≥ (2� − 1)k. We
define A := S and B := V \ S and construct G̃AB = (A, B̃). We have the weight
function wb : B̃ → N such that for all v ∈ B̃, wb(v) = |h−1(v)| ≤ �, as the size of
components in G[V \ S] is at most �. We have that ∑

v∈B̃ wb(v) ≥ (2� − 1)|A| and
there are no isolated vertices in B̃. Hence, (A, B) is the desired reducible pair.

Lemma 7.17. Let (X, Y ) be a reducible pair. Then, there exists a partition of
X ∪ Y into C1, ..., C|X| such that (i) for all ui ∈ X, we have ui ∈ Cj if and only
if i = j, (ii) for all i ∈ [|X|], |Ci| ≥ � + 1, (iii) for every component C in G[Y ],
there exists a unique Ci such that V (C) ⊆ Ci and ui ∈ N(C) and (iv) if (X, Y ) is
a strict reducible pair, then there exists Cj such that |Cj| ≥ 2� + 1.



7.4. OBTAINING THE LINEAR KERNEL 85

Proof. Construct G̃XY := (X, Ỹ ). Run the algorithm of Lemma 7.10 with input
G̃XY , q = 2� − 1, and W = �(as the capacity of any vertex in Ỹ is at most �) which
outputs an unsplitting weighted �-expansion f ′ in G̃XY . In polynomial time, we
modify f ′ such that if there is a vertex v ∈ Ỹ such that ∀u ∈ N(v), f ′(uv) = 0,
we choose a vertex u ∈ N(v) and set f ′(uv) = wb(v). For each ui ∈ X define
Ci := ui

⋃
f ′(uiv) 
=0 h−1(v). Since f ′ is unsplitting, the collection C1, . . . , C|X| forms

a partition of X ∪ Y . By the definition of Ci, we have that for any ui ∈ X, ui ∈ Cj

if and only if i = j. For any component C in G[Y ], h(C) is matched to a unique
vertex ui ∈ X by f ′, we have that V (C) ⊆ Ci. As f ′ is a weighted �-expansion,
|Ci| = 1 + ∑

f ′(uiv) 
=0 |h−1(v)| = 1 + ∑
f ′(uiv) 
=0 f ′(uiv) ≥ 1 + �. Let (X, Y ) be strict

at uj ∈ X. Then, we can use Lemma 7.10 to obtain the expansion f ′ such that
it is strict at uj. Hence, |Cj| = 1 + ∑

f ′(ujv) 
=0 |h−1(v)| = 1 + ∑
f ′(ujv) 
=0 f ′(ujv) >

1 + � + (� − 1) which implies |Cj| ≥ 2� + 1. This concludes the proof of the
lemma.

Lemma 7.18. Let (X, Y ) be a reducible pair. If (G, k) is a yes-instance for
�-COC, then there exists an �-COC solution S of size at most k such that X ⊆ S
and S ∩ Y = ∅.

Proof. By Lemma 7.17 we have that there are C1, . . . , C|X| ⊆ X ∪Y vertex disjoint
sets of size at least � + 1 such that for all i ∈ [|X|], G[Ci] is a connected set. Let
S ′ be an arbitrary solution. Then, S ′ must contain at least one vertex from each
Ci. Let S := S ′ \ (X ∪ Y ) ∪ X. We have that |S| ≤ |S ′| − |X| + |X| = |S ′|. As
any connected set of size � + 1 that contains a vertex in Y also contains a vertex
in X and X ⊆ S, S is also an �-COC solution.

Now we encode an �-COC instance (G, k) as an Integer Linear Program-

ming instance. We introduce n = |V (G)| variables, one variable xv for each vertex
v ∈ V (G). Setting the variable xv to 1 means that v is in S, while setting xv = 0
means that v is not in S. To ensure that S contains a vertex from every connected
set of size � + 1, we can introduce constraints ∑

v∈C xv ≥ 1 where C is a connected
set of size � + 1. The size of S is given by ∑

v∈V (G) xv. This gives us the following
ILP formulation:

minimize ∑
v∈V (G) xv,

subject to ∑
v∈C xv ≥ 1 for every connected set C of size � + 1

0 ≤ xv ≤ 1 for every v ∈ V (G)
xv ∈ Z for every v ∈ V (G).

Note that there are nO(�) connected sets of size at most � in a graph on n vertices.
Hence, providing an explicit ILP requires nO(�) time which forms the bottleneck
for the running time of the kernelization algorithm that follows. We consider the
Linear Programming relaxation of above ILP obtained by dropping the constraint
that x ∈ Z. By an optimal LP solution SL with weight L we mean the set of
values assigned to each variable, and optimal value is L. For a set of vertices
X ∈ V (G), X = 1 (X = 0) denotes that every variable corresponding to vertices
in X is set to 1 (0).



86 CHAPTER 7. COMPONENT ORDER CONNECTIVITY

Lemma 7.19. Let SL be an optimal LP solution for G such that xv = 1 for some
v ⊆ V (G). Then, SL − xv is an optimal LP solution for G − v of value L − 1.

Proof. Clearly, SL −xv is feasible solution for G−v of value L−1. Suppose it is not
optimal. Let SL′ be an optimal LP solution for G − v such that L′ < L − 1. Then,
SL′ ∪ xv with xv = 1 is an optimal LP solution for G with value < L − 1 + 1 = L
contradicting that the optimal solution value of LP for G is L.

From now on by running LP after setting xv = 1 for some vertex v, we mean
running the LP algorithm for G − v and including xv = 1 in the obtained solution
to get a solution for G.

Lemma 7.20. Let (X, Y ) be a strict reducible pair. Then every optimal LP
solution sets at least one variable corresponding to a vertex in X to 1.

Proof. By Lemma 7.18, we have that every connected set of size � + 1 in G[X ∪ Y ]
contains a vertex in X. Hence, from any LP solution SL, a feasible LP solution
can be obtained by setting X = 1 and Y = 0. Since, we have at least |X| many
vertex disjoint LP constraints, for each vi ∈ X, we have ∑

u∈Ci
xu = 1. By Lemma

7.17, there is a set Cj ⊆ X ∪ Y such that |Cj| ≥ 2� + 1. If xvj
�= 1, then there is

a vertex w ∈ Cj such that xw > 0. Let w ∈ C ⊂ Cj where G[C] is a connected
component in G[Y ]. Since |C| ≤ �, there is a connected set C ′ of size at least � + 1
in G[Cj] − C. But now ∑

u∈C′ xu < 1 contradicting that SL is feasible.

Lemma 7.21. Let (X, Y ) be a minimal reducible pair. If for any vertex v ∈ X,
an optimal LP solution sets xv = 1, then it also sets X = 1 and Y = 0.

Proof. We prove the lemma by contradiction. Let X ′ ⊂ X be the largest subset
of X such that X ′ = 1. Consider G̃XY . Let Y ′ ⊆ Ỹ be the set of vertices such
that N(Y ′) ⊆ X ′. Let Z := ⋃

v∈Y ′ h−1(v). By the minimality of (X, Y ), we have
that ∑

v∈Y ′ w(v) < (2� − 1)|X ′|. Hence, ∑
v∈Ỹ \Y ′ w(v) > (2� − 1)|X \ X ′|. Clearly,

the weighted (2� − 1)-expansion in the reducible pair (X, Y ) when restricted to
(X \ X ′, Y \ Z) provides a weighted (2� − 1)-expansion of X \ X ′ into Y \ Z.
This implies that (X \ X ′, Y \ Z) is a strict reducible pair in G − (X ′ ∪ Z). By
Lemma 7.19, we have that the LP solution restricted to G − (X ′ ∪ Z) is optimal.
Since (X \ X ′, Y \ Z) is a strict reducible pair, by Lemma 7.20, there is a vertex
u ∈ X \ X ′ such that xu = 1, but this contradicts the maximality of X ′. Therefore,
if for any vertex v ∈ X, an LP solution sets xv = 1, then it sets X = 1 and
Y = 0.

Lemma 7.22. There exists a polynomial time algorithm that given an integer �
and �-COC instance (G, k) on at least 2�k vertices either finds a reducible pair
(X, Y ) or concludes that (G, k) is a no-instance.

Proof. If (G, k) is a yes-instance of �-COC, then by Lemma 7.16, there exists a
reducible pair (X, Y ). We use the following algorithm to find one:

Step 1 Run the LP algorithm. Let A = 1 and B = 0 in the LP solution.



7.5. SEPARATION ORACLE FOR �-COC 87

Step 2 If both A and B are non-empty, then run the algorithm of Lemma 7.15
with input (G, k), A, B. If it outputs a reducible pair (X, Y ), then return
(X, Y ) and terminate. Otherwise, go to step 3.

Step 3 Now we do a linear search for a vertex in X. For each vertex v ∈ V (G),
do the following: in the original LP introduce an additional constraint that
sets the value of the variable xv to 1 i.e. xv = 1 and run the LP algorithm.
If the optimal value of the new LP is the same as the optimal value of the
original LP, then let A = 1 and B = 0 be the sets of variables set to 1 and 0
respectively in the optimal solution of the new LP and go to step 2.

Step 4 Output a trivial no-instance.

Step 1 identifies the set of variables set to 1 and 0 by the LP algorithm. By Lemma
7.21, we have that if there is a minimal reducible pair (X, Y ) in G, then X ⊆ A
and Y ⊆ B. So, in Step 2 if the algorithm succeeds in finding one, we return the
reducible pair and terminate otherwise we look for a potential vertex in X and
set it to 1. If (X, Y ) exists, then for at least one vertex, setting xv = 1 would set
X = 1 and Y = 0 (by Lemma 7.21) without changing the LP value and we go to
Step 2 to find it. If for each choice of v ∈ V (G), the LP value changes when xv is
set to 1, we can conclude that there is no reducible pair and output a trivial no

instance. Since, we need to do this search at most n times and each step takes
only polynomial time, the total time taken by the algorithm is polynomial in the
input size.

Theorem 21. For every constant � ∈ N, �-Component Order Connectivity

admits a kernel with at most 2�k vertices that takes nO(�) time.

7.5 Separation oracle for �-COC
We resume our discussion of separation oracles from Section 4.7. For �-COC, we
have an LP with n�+1 constraints: for every connected set of size � + 1, we need
the sum of the variables to be at least 1. So a separation oracle for this LP should
take an input G and variable values xv on all the vertices and then determine
whether there exists a connected set of � + 1 vertices with sum less than 1. If yes,
then that is a violated constraint. Let us first define this problem formally:

Input: A graph G and vertex weights w : V → R.
Question: Find a connected subgraph C on at least � + 1 vertices such

that the weight of subgraph C is less than 1, if one exists
where weight of a subgraph is the sum of weights of vertices
in it.

Min �-Connected-Subgraph (�-MCS)

Now, we prove that �-MCS is NP-complete by reducing from Set Cover.



88 CHAPTER 7. COMPONENT ORDER CONNECTIVITY

Theorem 22. Min �-Connected-Subgraph is NP-complete.
Proof. Let I := (U, H) be an instance of Set Cover such that |U | = n and
|H| = m. Construct the set-element incidence (bipartite) graph G := (A, B, E)
for I as follows: A contains a vertex for each set in H and B contains a vertex
for each element in U . Two vertices u ∈ A, v ∈ B are adjacent if and only if the
element corresponding to v belongs to the set corresponding to u. In addition,
B contains a special vertex b which is adjacent to every vertex in A. We define
the weight function as follows: w : V (G) → R such that ∀u ∈ A, w(u) = 1

k+1 and
∀v ∈ B, w(v) = 0. Finally, we set � := n + k.

We claim that I has a set cover of size k if and only if G has a connected
subgraph C of size � + 1 and weight less than 1. For the forward direction, assume
F is a set cover of size k. Let H ⊆ A corresponding to elements in F . Then,
G[H ∪ B] is a connected set on k + n + 1 vertices: every vertex in B − b has an
edge to at least one vertex in H and b is adjacent to every vertex in H.

For the backward direction, let C be a connected graph on n + k + 1 vertices
and weight less than 1. Clearly, |A ∩ V (C)| < k + 1, otherwise weight of C would
be at least 1. Rest of the vertices must belong to B. As C is connected and B is
independent, every vertex in B must have an edge in A ∩ V (C). Hence, the set
corresponding to elements in A ∩ V (C) form a set cover of size k.

To find a connected subgraph of minimum weight, we use color coding. The
technique of color coding was introduced by Alon, Yuster and Zwick [AYZ95].
Suppose the size (number of vertices) in the sought subgraph H be k. If we color
the vertex set of G, an n-vertex graph, using k colors where each vertex is assigned
one of the k colors uniformly and independently at random, then with probability
at least e−k, the vertices of H are colored with pairwise distinct colors. To justify
this argument it is easy to see that there are kn possible colorings of V (G) and
k!kn−k of these colorings are such that V (H) has pairwise distinct colors which
implies the probability of success to be at least kn

k!kn−k ≥ e−k. A typical sequence
of steps is to first obtain a random coloring of G, then find a colorful subgraph H
in G. To improve the success probability, repeat the above steps O(ek) times.

Now we describe the oracle implementation formally. Given a graph G and a
coloring c : V (G) → [k], a subgraph H of G is called colorful if the vertices in V (H)
get pairwise distinct colors under c. Note that c need not be a proper coloring of
G in which we require endpoints of an edge to have distinct colors. In our case, H
is a connected subgraph on � + 1 vertices. As the first step of the algorithm, we
color the vertices in V (G) uniformly and independently at random. As argued
above, with probability at least e−(�+1), a connected set H with minimum total
weight gets multicolored. Now our task is to find a minimum weight multicolored
connected set for which we use dynamic programming.
Theorem 23. Let G be an undirected, weighted graph with weights w : V (G) → R

and let c : V (G) → [k] be a coloring of its vertices with k colors. There exists a
deterministic algorithm that checks in time 3knO(1) whether G contains a colorful
connected subgraph on k vertices and, if this is the case, returns one such subgraph
of smallest weight.



7.5. SEPARATION ORACLE FOR �-COC 89

Proof. We assume that G is a connected graph. If G is not a connected graph,
then the algorithm described below is run on each connected component, and
the output of the algorithm is the logical OR of outputs corresponding to each
component.

Define a dynamic programming table T that takes as input a subset of colors
S and a vertex v and returns the minimum weight of a multicolored connected
subset that uses v and all the colors in S exactly once. If v is not colored with a
color in S, then set T [S, v] = ∞ . Otherwise,

T [S, v] = min
S′⊆S,v′∈N(v)

{T [S \ S ′, v] + T [S ′, v′]} (7.1)

In Equation 7.1, the subset S ′ is such that the color of v is not in S ′ and v′ is a
neighbor of v. Finally, the algorithm returns the smallest value in the last row
of the table. If this value is ∞, then G does not contain any colorful connected
set on k vertices. Otherwise, one can recover the multicolored connected set via
back-tracking.

To argue about the correctness of the algorithm, it is sufficient to show the
correctness of the Equation 7.1. We need to show two inequalities. First, we
show that T [S, v] ≤ minS′⊆S,v′∈N(v){T [S \ S ′, v] + T [S ′, v′]}. Observe that for any
v′ ∈ N(v), the union of connected sets corresponding to T [S \ S ′, v] and T [S ′, v′]
is also a connected set and as S \ S ′ and S ′ are disjoint, the union is colorful as
well. Hence, T [S, v] ≤ T [S \ S ′, v] + T [S ′, v′].

For the other inequality, let H be a connected set corresponding to T [S, v].
There is a partition (A, B) of H such that v ∈ A, B contains a neighbor of v and
both G[A] and G[B] are connected sets:

Remove v from H. If H \ v is connected let A := v and B := H \ v. Otherwise,
let A be defined as the union of v with all connected components of H \ v except
one (say, set C) and B has the component C.

Let S ′ be the set of colors of vertices in B and S \S ′ be the color of vertices in A.
Note that v ∈ A. Let v′ be a neighbor of v in B. By definition, T [S \ S ′, v] ≤ w(A)
and T [S ′, v′] ≤ w(B) where w(A) and w(B) are the sum of weights of vertices in
A and B respectively. Hence, T [S, v] = w(A) + w(B) ≥ T [S \ S ′, v] + T [S ′, v′].
This concludes the proof of correctness of the algorithm.

Observe that there are 2|S| · n terms in the equation 7.1. Hence, each of
entries T [S, v] can be computed in 2|S|nO(1) time. There are

(
k

|S|
)

many subsets
of colors of size |S|. Hence, the running time of the algorithm is bounded by∑k

i=0

(
k
i

)
2inO(1) = 3knO(1).

Derandomization. Algorithms based on color coding are randomized, but one
can often derandomize these algorithms. The basic idea of derandomization is as
follows: instead of picking a random coloring c : [n] → [k], we deterministically
construct a family F of functions f : [n] → [k] such that it is guaranteed that one
of the functions from F has the property that we hope to attain by choosing a
random coloring c.



90 CHAPTER 7. COMPONENT ORDER CONNECTIVITY

Definition 7.23. An (n, k, �)-splitter F is a family of functions from [n] to [�]
such that for every set S ⊆ [n] of size k there exists a function f ∈ F that splits
S evenly. That is, for every 1 ≤ j, j′ ≤ �, |f−1(j) ∩ S| and |f−1(j′) ∩ S| differ by
at most 1.

Theorem 24 ([AYZ95]). For any n, k ≥ 1 one can construct an (n, k, k2)-splitter
of size kO(1) log n in time kO(1)n log n.

Definition 7.24. An (n, k, k)-splitter is called an (n, k)-perfect hash family.

Theorem 25 ([NSS95]). For any n, k ≥ 1 one can construct an (n, k)-perfect
hash family of size ekkO(log k) log n in time ekkO(log k)n log n.

Let (G, k) be the input instance for �-COC, where n = |V (G)|. Instead of
taking a random coloring c of V (G), we use Theorem 25 to construct an (n, k)-
perfect hash family F . Then, for each f ∈ F , we invoke the dynamic programming
algorithm of Theorem 23 for the coloring c := f . The properties of an (n, k)-perfect
hash family F ensure that, if there exists a connected set H on � + 1 vertices
in G, there there exists f ∈ F that is injective on V (H) and, consequently, the
algorithm of Theorem 23 finds a colorful subgraph H for the coloring c := f . As a
consequence, we have the following improvement in Theorem 21.

Theorem 26. For every constant � ∈ N, �-Component Order Connectivity

admits a kernel with at most 2�k vertices that can be computed in (3e)� · nO(1) time.



Chapter 8

Connected Dominating Set

8.1 Beyond kernelization
As many real-world computational problems are NP-hard, the first question an
algorithm designer should answer when faced with large instances of such problems
is whether polynomial-time preprocessing can be applied. Ideally, these preprocess-
ing routines should run very fast (at least faster than the algorithms for solving the
problem) and little to no loss of information about solutions should occur. In the
past decade or so, progress in parameterized complexity [DF97] provided a robust
mathematical framework to analyze the performance of preprocessing routines. In
parameterized complexity, we consider instances (I, k) of a parameterized problem
Π ⊆ Σ∗ × N, where Σ is a finite alphabet. Typically, I is an instance of some
computational problem, and k denotes the parameter which reflects some struc-
tural property of the instance. The natural parameter is a bound on the size of an
optimal solution. A parameterized problem is said to admit a kernel if there is a
polynomial-time algorithm, called a kernelization algorithm, that reduces the input
instance down to an instance whose size is bounded by a function f(k) in k, while
preserving the answer. If f(k) is a linear, polynomial, or exponential function of k,
we say that this is a linear, polynomial, or exponential kernel respectively. Over
the last decade, kernelization has become a very active field of study, especially
with the development of complexity-theoretic tools to show that a problem is
not likely to admit a polynomial kernel [BDFH09, Dru15, FS11], or a kernel of a
specific size [DM12, DvM14b, HW12].

Unfortunately, going back to our real-world problem instances, it turns out that
the notion of polynomial kernels has a few limitations. In addition to the fact that
many typical problems have been shown not likely to admit polynomial kernels, the
formal definition of kernelization does not play well with approximation algorithms.
In other words, if our goal is not to solve an instance optimally (as would be
expected for most NP-hard problems as even the most efficient algorithms for
solving them would take exponential time) then, for a large number of problems,
it is not possible to translate an approximate solution to the instance (I ′, k′) into
an approximate solution to the original instance (I, k). Indeed, given anything
but an optimal solution to (I ′, k′), it is (for many problems) impossible to draw

91



92 CHAPTER 8. CONNECTED DOMINATING SET

conclusion about the original instance. To address these issues, Lokshtanov et
al. [LPRS16] developed the framework of lossy kernelization. Intuitively, the
framework combines notions from approximation and kernelization algorithms
to allow for approximation preserving kernels. In this framework, for α > 1,
an α-approximate kernel is a polynomial-time algorithm that takes as input an
instance (I, k) and outputs an instance (I ′, k′) of the same problem such that size
of (I ′, k′) is upper bounded by f(k), for a function f independent of |I|, and for
every c ≥ 1, a c-approximate solution for the new instance can be turned into a
cα-approximate solution of the original instance in polynomial time. In the case
of an α-approximate bikernel, the reduced instance need not be an instance of the
same problem.

Connected Domination Set
Both Dominating Set and Connected Dominating Set are NP-hard even
on very restricted graph classes, e.g. planar graphs of bounded degree [GJ79a].
Naturally, the complexity of the problems has been extensively studied under
different algorithmic frameworks, notably approximation algorithms and parame-
terized complexity. In parameterized complexity, Dominating Set (and hence
Connected Dominating Set) is a standard example of a W[2]-complete prob-
lem. This is widely believed to exclude the possibility of having FPT algorithms,
thereby no kernels whatsoever. Therefore, attempts have been made to find graph
classes on which the results are not so discouraging. This line of research has led to
very fruitful and insightful discoveries in parameterized complexity in general and
in kernelization in particular. For the Connected Dominating Set problem,
which admits an O(log n)-approximation algorithm [GK98], linear kernels are only
known for planar [LMS11] and H-topological-minor-free graphs [FLST13]. Poly-
nomial kernels are excluded already for graphs of bounded degeneracy [CPPW12]
and for graphs of bounded expansion [DDF+16]. In this chapter we prove the
following theorem.

Theorem 27. For every ε > 0, Connected Dominating Set, parameterized by
solution size, admits a (1 + ε)-approximate kernel with kO( d2

ε
) vertices on Kd,d-free

graphs and a (1 + ε)-approximate bikernel with O(g(ε)k) vertices on graphs of
bounded expansion, where g(ε) is a constant depending only on ε.

Unfortunately, there is a minor technical detail (which also can be found
in [DDF+16] for the case of r-Dominating Set) that prevents us from obtaining
a reduced instance of the same problem when dealing with graphs of bounded
expansion. Instead, we kernelize to an annotated version of the problem, where only
a given subset of vertices of G needs to be dominated by a connected set. Although
the technical details for dealing with the two graph classes are quite different, the
high-level approach is identical. Both kernelization algorithms follow the same
two-step strategy. First, our goal is to compute a “small” set of vertices whose
domination is sufficient, i.e. the set of dominatees or the so-called domination
core. The exact definition of a domination core will be different for the two graph



8.2. PRELIMINARIES 93

classes but intuitively it is simply a set of vertices whose domination guarantees
the domination of the whole graph. Having found a domination core of appropriate
size, the next step is to reduce the number of dominators, i.e. vertices whose role
is to dominate other vertices, and the number of connectors, i.e. vertices whose
role is to connect the solution. When reducing the number of vertices outside
the domination core, we borrow approximation techniques that are closely related
to the Steiner Tree problem. In the Steiner Tree problem, we are given
as input a graph G and a set T ⊆ V (G) of terminals. The objective is to find
a subtree of G spanning T that minimizes the number of vertices. Intuitively,
we find it easy to think about our approach as follows. The first step borrows
ideas from kernelization algorithms for Dominating Set and the second step
borrows ideas from approximation algorithms for the Steiner Tree problem.
By carefully combining the two and proving additional combinatorial results, we
obtain the claimed lossy kernels. Note that the size of our kernel for graphs of
bounded expansion matches (degree of the polynomial) the size of the best known
kernel for Dominating Set, while for Kd,d-free graphs we have an additional 1

ε

multiplicative factor in the exponent.

8.2 Preliminaries

8.2.1 Basics of graphs, sparse graphs, and notations

We use standard terminology from the book of Diestel [Die12] for those graph-
related terms that are not explicitly defined here. All graphs we consider are finite,
simple, and undirected. For a graph G, V (G) and E(G) denote the vertex and
edge sets of the graph, respectively. We let |G| = |V (G)| denote the number of
vertices in G and ||G|| = |E(G)| denote the number of edges in G. The density
of a graph G, density(G), is defined as density(G) = ||G||/|G|. The radius of
G, denoted radius(G), is the minimum integer r such that there exists a vertex
v ∈ V (G), called the center, which is at distance at most r from all vertices in
V (G), i.e. the shortest path between v and any other vertex of G has at most
r − 1 internal vertices. For a vertex v ∈ V (G), we let NG(v) = {u | uv ∈ E(G)}
denote the open neighborhood of v in G. The closed neighborhood of v is denoted
by NG[v] = NG(v) ∪ {v}. For a set X ⊆ V (G), we let NG[X] = ⋃

v∈X NG[v] and
NG(X) = NG[X] \ X. When the graph is clear from context we omit the subscript
G. We sometimes use the notation NX(v) = NG(v) ∩ X and refer to it as the
X-neighborhood of v. The degree of v, deg(v), is the number of neighbors of v, i.e.
deg(v) = |NG(v)|. For a positive integer r and a vertex v ∈ V (G), we let N r

G(v)
denote a ball of radius r around v, i.e. the set of all vertices in G that are at
distance at most r from v. For a vertex subset X ⊆ V (G), G[X] and G − X are
the graphs induced on X and V (G) \ X, respectively. A graph H is a subgraph of
G if V (H) ⊆ V (G) and E(H) ⊆ E(G[V (H)]).

Given a graph G and two vertex subsets D, Z ⊆ V (G), we say that D is a
Z-dominator if D dominates Z in G, i.e. every vertex z ∈ Z \ D is at distance



94 CHAPTER 8. CONNECTED DOMINATING SET

at most one from some vertex in D. A vertex v dominates itself and all its
neighbors. We denote by ds(G, Z) (cds(G, Z)) the size of a smallest (connected)
Z-dominator in G. By ds(G) (cds(G)) we mean ds(G, V (G)) (cds(G, V (G))).
For a set T ⊆ V (G), we denote by stG(T ) the size of, i.e. the number of vertices
in, the smallest Steiner tree connecting T in G (including vertices in T ).

Proposition 8.1. Let G be a graph, Z ⊆ V (G), such that G[Z] is connected, and
let D be a Z-dominator such that G[D] has at most p connected components. Then
a set Q ⊆ Z of size at most 2p such that G[D ∪ Q] is connected, can be computed
in polynomial time.

Proof. If D is connected, then we set Q = ∅ and the proposition follows. Hence,
assume that G[D] contains at least 2 connected components. Now, the algorithm
for finding Q does the following:
(1) We start by setting Q = ∅.
(2) If G[D ∪ Q] is connected, output Q.
(3) If there is a vertex z in Z \ (D ∪ Q) that is dominated from at least 2 different
components of G[D ∪ Q], we add z into Q.
(4) If there is an edge uv with both end vertices in Z such that the number of
components of G[D ∪ Q] that dominate at least one of {u, v} is at least 2, we add
u and v into Q.

Note that in both steps (3) and (4) we increase the size of Q by at most two
and decrease the number of connected components in G[D ∪ Q] by at least one.
Hence after at most p − 1 steps we end up with only one connected component.
Now we show that if we cannot apply step (3) nor step (4), then G[D ∪ Q] is
connected. Since, we cannot apply step (3), each vertex of Z is dominated by
exactly one connected component of D ∪ Q. Moreover, since we cannot apply
step (4), if uv is an edge in Z, then both u and v are dominated by the same
component of G[D ∪ Q]. Finally, since Z is connected, there is a path between
every pair of vertices of Z and all vertices on that path have to be dominated by
the same distinct component of G[D ∪ Q], which implies that G[D ∪ Q] consists
of a single connected component.

Definition 8.2. Let D be a connected graph and t ∈ N \ {0}. A (D, t)-covering
family is a family F(D, t) of connected subgraphs of D such that (i) for each
T ∈ F(D, t), |V (T )| ≤ 2t and (ii) ⋃

T ∈F(D,t) V (T ) = V (D).

Proposition 8.3. Let D be a connected graph and t ∈ N \ {0}. Then there is a
(D, t)-covering family F(D, t) such that |F(D, t)| ≤ |V (D)|

t
+1, and ∑

T ∈F(D,t) |V (T )| ≤
(1 + 1

t
)|V (D)| + 1.

Proof. Let TD be a spanning tree of D. We create a (D, t)-covering family
F(D, t) = {T1, T2, . . .}, which is a set of subtrees of TD constructed as follows. We
root TD at an arbitrary vertex r ∈ V (TD). For any pair of vertices u, v ∈ V (TD),
u is called a child of v if uv ∈ E(TD) and v lies on the path from u to r. For
each vertex v ∈ V (TD), we let weight(v) = 1 + ∑

u∈child(v) weight(u), where child(v)
denotes the set of children of v in TD. In other words, weight(v) is the number of



8.2. PRELIMINARIES 95

vertices in the subtree rooted at v. Leaves have weight one. We use Tv to denote
the subtree rooted at v. We construct F(D, t) = {T1, T2, . . .} from TD as follows:

1. If TD is empty, terminate. Otherwise, compute the weights of all vertices in
TD then sort the vertices in increasing order of weight.

2. If there exists a vertex whose weight is between t and 2t (inclusive), pick
the vertex with the smallest such weight, add Tv to F(D, t), delete Tv from
TD, then go back to step (1).

3. If there exists a vertex whose weight is strictly greater than 2t, pick the vertex
with the smallest such weight, greedily compute a subset S ⊆ child(v) such
that t <

∑
u∈S weight(u) < 2t, let R = child(v) \ S, add Tv − ⋃

w∈R V (Tw) to
F(D, t), delete Tu from TD, for every u ∈ S, then go back to step (1). Note
that by our choice of v, all children of v must have weight at most t − 1 as
otherwise case (2) would apply.

4. Otherwise, every vertex in TD has weight strictly less than t and hence TD

has at most t vertices (by the definition of the weight function). In this case,
simply add TD to F(D, t) and terminate.

It is not hard to see that whenever we delete a subtree in the above procedure
we never disconnect the tree. Moreover, the procedure terminates only when the
tree becomes empty and hence ⋃

T ∈F(D,t) V (T ) = V (TD). Whenever a tree is added
to F(D, t) in either step (2) or (3), the size of that tree is at least equal to t and
at most equal to 2t. For step (4), the size of the added tree is strictly less than t.
Combining those two facts, we know that |F(D, t)| is at most |V (D)|

t
+ 1, as the

size of the current tree TD is reduced by at least t for all but one subtrees. To
prove the last inequality, i.e. ∑

T ∈F(D,t) |V (T )| ≤ (1 + 1
t
)|V (D)| + 1, we let mult(v)

denote the multiplicity of v minus one, i.e. the number of subtrees T ∈ F(D, t)
in which v appears minus one. So if a vertex occurs only once, its multiplicity
is zero. Observe that ∑

T ∈F(D,t) |V (T )| ≤ |V (D)| + ∑
v∈V (TD) mult(v). However,

whenever the multiplicity of a vertex increases by one, the size of the running
subtree decreases by at least t (step (3)) or the procedure terminates (step (4)).
Hence, ∑

v∈TD
mult(v) ≤ |V (D)|

t
+ 1, and the bound follows.

A set S ⊆ V (G) is �-scattered in G if for every pair of distinct vertices in S the
distance between them is at least � + 1 in G. A useful observation which follows
from this definition is that if there exists a 2-scattered set S of size k in G, then
every dominating set of G must have size at least k since every vertex of G can
dominate at most one vertex of S. A clique in a graph is a subset of pairwise
adjacent vertices. An independent set is a subset of pairwise non-adjacent vertices.
We let Kc and Ic denote a clique on c vertices and an independent set on c vertices,
respectively. We let Ki,j denote a biclique (a complete bipartite graph) with i
vertices in one partition and j vertices in the other.



96 CHAPTER 8. CONNECTED DOMINATING SET

Sparse graphs We define the main classes we consider. We refer the reader
to [BLS99, NdM10] for more details. Contracting an edge uv of G results in a new
graph H in which the vertices u and v are deleted and replaced by a new vertex
w that is adjacent to every vertex in NG({u, v}). If a graph H can be obtained
from G by repeatedly contracting edges, H is said to be a contraction of G. If H
is a subgraph of a contraction of G, then H is a minor of G.

Definition 8.4 (Shallow minors). A graph M is an r-shallow minor of G, for
some integer r, if there exists a family of disjoint subsets V1, . . . , V|M | of V (G) such
that:

• each graph G[Vi] is connected and has radius at most r, and

• there is a bijection ω : V (M) → {V1, . . . , V|M |} such that for every edge
uv ∈ E(M) there is an edge in G with one endpoint in ω(u) and another in
ω(v).

The set of all r-shallow minors of a graph G is denoted by G�r. The set of all r-
shallow minors of all members of a graph class G is denoted by G�r = ⋃

G∈G(G�r).

Definition 8.5 (Grad and bounded expansion). For a graph G and an inte-
ger r ≥ 0, the greatest reduced average density (grad) at depth r is, ∇r(G) =
maxM∈G�rdensity(M) = maxM∈G�r||M ||/|M |. For a graph class G, ∇r(G) =
supG∈G∇r(G). A graph class G has bounded expansion if there is a function
f : N → R such that for all r we have ∇r(G) ≤ f(r).

For ease of presentation, and since we deal with several constants, we shall use
the following convention. We assume that a graph class of bounded expansion G
is fixed, and hence so are the values of ∇i(G), for all non-negative integers i. This
assumption is not strictly required but it significantly simplifies the analysis.

Recall that a class of graphs G has bounded degeneracy if every induced subgraph
of a graph G ∈ G has a vertex of degree at most d, for some constant d. Note that
bounded expansion implies bounded degeneracy, since the degeneracy of a graph
G is equal to 2∇0(G) (as G�0 contains exactly the subgraphs of G). Moreover a
d-degenerate graph cannot contain Kd+1,d+1 as a subgraph, which brings us to the
class of biclique-free graphs.

Definition 8.6. A class of graphs G is said to be d-biclique-free, for some d > 0,
if Kd,d is not a subgraph of any G ∈ G, it is said to be biclique-free if it is
d-biclique-free for some d.

Again, we assume a fixed biclique-free graph class, hence a fixed value of d. All
of our arguments can be easily extended to Ki,j-free graphs, for non-negative
integers i and j, but we use Kd,d-freeness for simplicity. Next, we state some useful
properties of graphs of bounded expansion and biclique-free graphs that will be
used later on.



8.2. PRELIMINARIES 97

Lemma 8.7 ([DDF+16]). Let G be a graph and let G′ be the graph obtained by
adding a universal vertex to G, i.e. a vertex adjacent to all vertices in G. Then,
for any non-negative integer r, ∇r(G′) ≤ ∇r(G) + 1.

Given two graphs G and H, the lexicographic product G � H is defined as the
graph on the vertex set V (G) × V (H) where vertices (u, a) and (v, b) are adjacent
if uv ∈ E(G) or if u = v and ab ∈ E(H).

Lemma 8.8 ([DDF+16]). For a graph G and non-negative integers t ≥ 1 and r
we have ∇r(G � Kt) ≤ 4(8t(r + t) · ∇r(G) + 4t)(r+1)2.

Let G be a graph and X be a subset of its vertices. For u ∈ V (G) \ X, we define
the r-projection of u onto X as follows: MG

r (u, X) is the set of all vertices w ∈ X
for which there exists a path in G that starts in u, ends in w, has length at most
r, and whose internal vertices do not belong to X. Note that MG

1 (u, X) = NX(u).
We omit the superscript when the graph is clear from context.

Lemma 8.9 ([DDF+16]). Let G be a class of graphs of bounded expansion. There
exists a polynomial-time algorithm that, given a graph G ∈ G, X ⊆ V (G), and
an integer r ≥ 1, computes the r-closure of X, denoted by clr(X), with the
following properties: (i) X ⊆ clr(X) ⊆ V (G), (ii) |clr(X)| ≤ Ccl1 · |X|, and
(iii) |MG

r (u, clr(X))| ≤ Ccl2 for each u ∈ V (G) \ clr(X), where Ccl1 and Ccl2 are
constants depending only on r and a fixed (finite) number of grads of G.

Lemma 8.10 ([DDF+16]). Let G be a class of graphs of bounded expansion
and r ∈ N. Let G ∈ G be a graph and let X ⊆ V (G). Then |{Y | Y =
Mr(u, X) for u ∈ V (G) \ X}| ≤ Cex · |X|, where Cex is a constant depending only
on r and a fixed (finite) number of grads of G.

Lemma 8.11 ([DDF+16]). Let G be a bipartite graph with bipartition (X, Y ) that
belongs to some graph class G such that ∇1(G) ≥ 1. Moreover, suppose that for
every u ∈ Y we have that N(u) �= ∅, and that for every distinct u1, u2 ∈ Y we have
N(u1) �= N(u2), i.e. Y is twin-free. Then there exists a mapping ϕ : Y → X with
the following properties: (i) uϕ(u) ∈ E(G) for each u ∈ Y and (ii) ϕ−1(v) ≤ Cch
for each v ∈ X, where Cch is a constant depending only on a fixed (finite) number
of grads of G.

Lemma 8.12 ([LMP+15]). Let G be a Kd,d-free bipartite graph with bipartition
(A, B) such that there are no two distinct vertices u, v ∈ B with N(u) = N(v).
Then, |B| ≤ 2d|A|d.

8.2.2 Lossy kernelization
Formally, we first require the notion of a parameterized optimization problem,
which is the parameterized analogue of an optimization problem in the theory of
approximation algorithms. Throughout this chapter we talk about only minimiza-
tion problems and we refer to [LPRS16] to see the symmetric definitions related
to maximization problems.



98 CHAPTER 8. CONNECTED DOMINATING SET

Definition 8.13. A parameterized minimization problem Π is a computable
function Π : Σ∗ × N × Σ∗ → R ∪ {∞}.

The instances of Π are the pairs (I, k) ∈ Σ∗ × N and a solution to (I, k) is
simply a string S ∈ Σ∗ such that |S| ≤ |I| + k. The value of a solution S is
Π(I, k, S). The optimum value of (I, k) is OPTΠ(I, k) = minS∈Σ∗,|S|≤|I|+kΠ(I, k, S)
and we remove the subscript Π if it is clear from the context. An optimum solution
for (I, k) is a solution S such that Π(I, k, S) = OPTΠ(I, k). Next we come to
the notion of an α-approximate polynomial-time preprocessing algorithm for a
parameterized minimization problem Π.

Definition 8.14. For α > 1, an α-approximate polynomial-time preprocessing
algorithm A for a parameterized minimization problem Π, is defined as a pair of
polynomial-time algorithms, called the reduction algorithm RA and the solution
lifting algorithm, that satisfy the following properties:

1. Given an instance (I, k) of Π, RA computes an instance (I ′, k′) = RA((I, k))
of Π.

2. Given (I, k), (I ′, k′), and a solution S ′ to (I ′, k′), the solution lifting algorithm
produces a solution S to (I, k) such that Π(I,k,S)

OPT(I,k) ≤ α Π(I′,k′,S′)
OPT(I′,k′) .

The size of a polynomial time pre-processing algorithm A is defined as, sizeA(k) =
sup{|I ′| + k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.

An α-approximate kernel for Π is an α-approximate polynomial-time prepro-
cessing algorithm A such that the size of A is upper bounded by a function in
the input parameter k. In the case of an α-approximate bikernel, the reduction
algorithm is allowed to output an instance of any problem. However, the size
of the instance still needs to be bounded by a function of the input parameter
k. A polynomial-size approximate kernelization scheme (PSAKS) is a family of
α-approximate polynomial kernelization algorithms for each α > 1, with size of
each bounded by a polynomial in the input parameter. The size of an output
instance of a PSAKS, when run on (I, k) with approximation parameter α, must
be upper bounded by f(α)kg(α), for some functions f and g independent of |I| and
k. We refer the reader to the work of Lokshtanov et al. [LPRS16] for more details
and several examples. In this work, we exhibit lossy kernels for Connected

Dominating Set (CDS), which is defined as follows, where G denotes the input
graph, k ∈ N and D is a subset of its vertices.

CDS(G, k, D) =
{

∞ if D is not a connected dominating set in G
min{|D|, k + 1} otherwise

Notice that in standard kernelization or fixed parameter tractable algorithms,
when we parameterize by solution size k, for a decision version of a minimization
problem, we actually do not care about solutions of size more than k. However,
we always aim for efficient algorithms, where efficiency is measured in terms of k.



8.3. BICLIQUE-FREE GRAPHS 99

Going by the same logic, we set CDS(G, k, D) = k + 1, when |D| ≥ k + 1, so that
all connected dominating sets D of cardinality more than k are “equally bad” or
indistinguishable. The symbol ∞ is used to distinguish between actual solutions
and other strings which are not solutions.

8.3 Biclique-free graphs
In this section we show that Connected Dominating Set, parameterized by
solution size, admits a PSAKS on Kd,d-free graphs. More precisely, we show that
Connected Dominating Set admits a (1 + ε)-approximate kernel on at most
kO( d2

ε
) vertices.

Finding the domination core. We begin by formally introducing the
notion of an r-domination core, where r ∈ N. We restate that all of our results
can be easily extended to Ki,j-free graphs, for constant positive integers i and j.

Definition 8.15 (r-domination core). Let G be a graph and Z ⊆ V (G). We say
that Z is an r-domination core if every set D of size at most r that dominates Z
also dominates V (G).

Note that V (G) is an r-domination core, for every r. However, our objective is
to obtain a k-domination core Z whose size is polynomially bounded in k. To that
end, we start with Z = V (G) and repeatedly reduce the size of Z, maintaining a
k-domination core throughout.

Lemma 8.16. There exists a polynomial-time algorithm that, given a Kd,d-free
graph G and a k-domination core Z ⊆ V (G) with |Z| > (2d + 1)kd+1, either
correctly concludes that ds(G) > k (and hence cds(G) > k) or outputs a vertex
z ∈ Z such that Z \ {z} is a k-domination core.

Proof. We design such an algorithm as follows. If there is no vertex v ∈ V (G)
such that the cardinality of the neighborhood of v in Z is at least � |Z|

k
�, then

the algorithm terminates and declares that ds(G) > k. Otherwise to find z ∈ Z,
the algorithm constructs a sequence of sets Z = X0 ⊇ X1 ⊇ · · · ⊇ X� and
a set S = {v1, . . . , v�} ⊆ V (G) such that Xi ⊆ N [vi]. We construct the sets
Z = X0 ⊇ X1 ⊇ · · · ⊇ X� and the set S using an iterative procedure. Initially,
we set S := ∅ and X0 := Z. At step i, if there is a vertex vi ∈ V (G) \ S whose
neighborhood in Xi−1 has at least � |Xi−1|

k
� vertices, then add vi to S and set

Xi := Xi−1 ∩ N [vi]. If no such vertex vi exists, then the algorithm outputs an
arbitrary vertex z ∈ Xi−1 \ S and stops.

The above procedure will construct a sequence Z = X0 ⊇ X1 ⊇ · · · ⊇ X�

and a set S = {v1, . . . , v�}. We first claim that � < d. Suppose � ≥ d. Then
there is a complete bipartite subgraph H of G with bipartition {v1, . . . , vd} and
Xd \ {v1, . . . , vd}. Since |Xd| ≥ |Z|

kd ≥ (2d+1)kd+1

kd ≥ 2d + 1, H contains Kd,d as a
subgraph, which is a contradiction to the fact that G is Kd,d-free. Hence � < d.



100 CHAPTER 8. CONNECTED DOMINATING SET

Moreover, since |X�| ≥ |Z|
(k)� ≥ (2d + 1)k2, there always exists a vertex z ∈ X� \ S

that the algorithm can select to output.
Now we prove the correctness of the algorithm. Clearly, if there is no vertex

v ∈ V (G) such that the cardinality of the neighborhood of v in Z is at least � |Z|
k

�,
then ds(G) > k and the algorithm declares it correctly. Otherwise let z ∈ X� \S be
the output and let Z ′ = Z \ {z}. We need to prove that Z ′ is still a k-domination
core. Let D be a set of size at most k that dominates Z ′. To prove that D is a
dominating set in G, it is enough to show that D dominates Z (because Z is a
k-domination core). Notice that every vertex in S is adjacent to z. Hence, to show
that D also dominates Z, it is enough to show that D ∩ S �= ∅. We will show that
if D ∩ S = ∅, then D cannot dominate all of X� \ {z} ⊆ Z ′. Since our algorithm
stops at step � + 1, we know that every vertex outside S can dominate strictly less
than (2d + 1)kd−� vertices from X�. As |X� \ {z}| ≥ (2d + 1)kd+1−�, |D| ≤ k and
every vertex outside S can dominate at most (2d + 1)kd−� − 1 vertices of X�, we
have that D ∩ S �= ∅. This completes the proof of the lemma.

Reducing connectors and dominators. Armed with a k-domination core
Z of size at most (2d + 1)kd+1, we partition the graph into two sets Z and
R = V (G) \ Z. Next, we define the equivalence relation � on R as follows:
∀u, v ∈ R, u � v if and only if NZ(u) = NZ(v). That is, we partition vertices in R
according to their neighborhoods in Z. Let R be the set of equivalence classes
defined by �. Our goal is to bound the size of R. To that end, we construct a
bipartite graph H with bipartition (A, B) from G as follows. We add a vertex
az ∈ A for each vertex z ∈ Z and we add a vertex bκ ∈ B for each equivalence
class κ of relation �. We add an edge azbκ ∈ E(H) whenever z is in NZ(w), for
some w ∈ κ. Finally, delete any isolated vertices in H. It is not hard to see that H
is a subgraph of G and hence is Kd,d-free. As a direct implication of Lemma 8.12,
we can bound the size of B by O(kO(d2)).
Lemma 8.17. The equivalence relation � has at most kO(d2) classes, i.e. |R| ∈
kO(d2).

As Z is a k-domination core, to find a dominating set of size at most k it is
enough to find a set which dominates Z. Hence for the purpose of domination,
it is redundant to pick more than one vertex from an equivalence class in R.
However, to get a connected dominating set, we may need to choose more than
one vertex from an equivalence class. The following lemma finds a small set of
relevant vertices which “approximately” preserves the connectivity requirements.
Lemma 8.18. Let (G, k) be an instance of Connected Dominating Set, where
G is a connected and Kd,d-free graph. For any fixed ε > 0, there is a polynomial-
time algorithm that either correctly concludes that cds(G) > k or outputs a set
Y ⊆ V (G) of cardinality kO( d2

ε
) such that (i) Y contains a k-domination core of

G and (ii) OPT(G[Y ], k) ≤ (1 + ε)OPT(G, k).
Proof. Let t ≥ 1 be a constant, which we fix later. We first define the Group

Steiner Tree problem. The input consists of an n-vertex graph H and sets



8.3. BICLIQUE-FREE GRAPHS 101

Q1, Q2, . . . , Qt ⊆ V (H) called groups. The task is to find a tree T of minimum size
which contains at least one vertex from every group Qi. The Group Steiner

Tree problem can be solved in O(2t·nO(1))-time using polynomial space [MPR+10].
Now we design an algorithm A with the properties claimed in the lemma.

Algorithm A will apply Lemma 8.16 repeatedly starting from a k-domination
core V (G) and either conclude that cds(G) > k or find a k-domination core Z
of size at most (2d + 1)kd+1 (in polynomial time). Now, let Z be a family of
groups {{z} | z ∈ Z} and let R be the set of equivalence classes defined by �.
The set R ∪ Z forms a family of groups of vertices in V (G). For every subset
Q = {Q1, . . . , Q�} ⊆ R ∪ Z of size at most 2t of groups in R ∪ Z, construct a
Group Steiner Tree instance on the graph G with groups Q1, . . . , Q�. Let
TQ be the corresponding solution. Note that since t is a constant each instance
can be solved in polynomial time. For every instance that we solve, if the size of
TQ is at most 2t then we mark the vertices of TQ in G. We denote the set of all
marked vertices by ⋃

TQ. If ⋃
TQ is not a dominating set in G, then algorithm

A declares that cds(G) > k. Otherwise, since G is assumed to be connected,
algorithm A runs the polynomial-time algorithm mentioned in Proposition 8.1 to
obtain a set W ⊆ V (G) such that ⋃

TQ ∪ W is a connected dominating set in G
and | ⋃

TQ ∪ W | ≤ 3| ⋃
TQ|. Algorithm A outputs Y = ⋃

TQ ∪ W as the required
set, where G[Y ] is a connected graph. Note that we also marked a solution of
Group Steiner Tree for Q = {Q} for every Q ∈ R ∪ Z. Hence ⋃

TQ contains
all of Z and a vertex from each group in R.

We now prove the correctness of the algorithm. Suppose cds(G) ≤ k, then
we claim that algorithm A outputs a set Y . If cds(G) ≤ k, then by Lemma 8.16,
algorithm A will, as the first step, correctly find a k-domination core Z of size at
most (2d + 1)kd+1 and the set of groups R ∪ Z. Let D be the graph induced by
a connected dominating set of size at most k in G (i.e. D is a tree). Let D′ be
an arbitrary set of cardinality at most |V (D)| such that for any w ∈ V (D), there
is a vertex w′ ∈ D′ with the property that {w, w′} ⊆ Q ∈ R ∪ Z and w′ ∈ ⋃

TQ.
That is, if V (D) has a vertex from a group Q in R ∪ Z, then D′ also has a vertex
from group Q which is, in addition, marked by algorithm A. Note that we can
construct the set D′ since ⋃

TQ contains at least one vertex from each group in
R ∪ Z.

Claim 8.19. D′ is a dominating set in G.

Proof of the Claim. Notice that Z ∩ V (D) = Z ∩ D′ and if any vertex in Z is
adjacent to a vertex in a group Q, then it is adjacent to all vertices in group
Q. This implies that D′ also dominates Z and since |D′| ≤ |V (D)| ≤ k, by the
definition of a k-domination core, D′ is a dominating set in G.

Hence we can conclude that if cds(G) ≤ k, then ⋃
TQ always dominates G

and algorithm A outputs a set Y . Moreover, since Z ⊆ ⋃
TQ ⊆ Y , we have that

Y contains a k-domination core. This concludes the proof of property (i) of the
lemma.



102 CHAPTER 8. CONNECTED DOMINATING SET

Now we prove that OPT(G[Y ], k) ≤ (1 + ε)OPT(G, k). Let D∗ be the graph
induced by a connected dominating set for G of minimum cardinality (i.e. D∗ is
a tree). If |V (D∗)| > k, then OPT(G[Y ], k) ≤ (1 + ε)OPT(G, k) holds trivially.
So we assume that |V (D∗)| ≤ k. We let F(D∗, t) = {T1, T2, · · · } denote a (D∗, t)-
covering family. Proposition 8.3 implies that there exists such a family for which
|F(D∗, t)| ≤ |V (D∗)|

t
+ 1 and ∑

T ∈F(D∗,t) |V (T )| ≤ (1 + 1
t
)|V (D∗)| + 1. Moreover,

the size of each connected subgraph T (in this case also subtree) is at most 2t.
We construct a new family F ′ from F(D∗, t) as follows. For each T ∈ F(D∗, t),
we replace T by TQ, where Q is the set of groups from R ∪ Z such that Q ∈ Q
if and only if V (T ) ∩ Q �= ∅ and TQ is the set of marked vertices in an optimal
Steiner tree connecting vertices from the groups in Q. Note that the fact that T is
of size at most 2t guarantees the existence of TQ (by construction). Moreover, the
size of TQ is at most the size of T , since T is also a solution for Group Steiner

Tree for Q. Let DF ′ denote the union of all vertices in F ′. Let D′ be a subset
of DF ′, of cardinality at most |V (D∗)|, such that for any w ∈ V (D∗), there is
a vertex w′ ∈ D′ with the property that {w, w′} ⊆ Q ∈ R ∪ Z and w′ ∈ DF ′.
That is, if V (D∗) has a vertex from a group Q in R ∪ Z, then D′ also has a
vertex from group Q. Using the same arguments as in the proof of Claim 8.19,
we know that D′ is a dominating set in G. This implies that DF ′ ⊇ D′ is also a
dominating set in G. Applying Proposition 8.1 in G[Y ] (with DF ′ as dominator
and since G[Y ] is connected), we obtain a connected dominating set of size at
most 2|F(D∗, t)| + |DF ′| ≤ 2|V (D∗)|

t
+ 2 + (1 + 1

t
)|V (D∗)| + 1 = (1 + 3

t
)|V (D∗)| + 3.

Now we can fix the constant t appropriately (i.e. roughly 3
ε
) and we get that

OPT(G[Y ], k) ≤ (1 + ε)OPT(G, k).
Now we show that |Y | = kO(d2). By Lemmata 8.16 and 8.17, we have that

|R ∪ Z| = O(kO(d2)). From the construction, it follows that | ⋃
TQ| = O(2t|R ∪

Z|O(t)) = O(2t ·kO(td2)) = kO( d2
ε

). Notice that Y = ⋃
TQ ∪W , where W is obtained

by applying Proposition 8.1 and hence we have that Y = | ⋃
TQ ∪ W | ≤ 3| ⋃

TQ| =
kO( d2

ε
).

Theorem 28. For every ε > 0, Connected Dominating Set, parameterized by
solution size, admits a (1 + ε)-approximate kernel with kO( d2

ε
) vertices on Kd,d-free

graphs.

Proof. Let (G, k) be the input instance, where G is a connected Kd,d-free graph
and k is a positive integer. We first describe the reduction algorithm RA. Using the
algorithm of Lemma 8.18, with inputs (G, k) and ε, in polynomial time, algorithm
RA either concludes that cds(G) > k and outputs (({v}, ∅), 0); or obtains a set
Y ⊆ V (G) and outputs (G[Y ], k) as the reduced instance. Let (G′, k′) be the
reduced instance. When G′ = ({v}, ∅), the size of the reduced instance is a
constant. Otherwise, by Lemma 8.18, we know that |Y | = kO( d2

ε
), which bounds

the kernel size.
The solution lifting algorithm works as follows. Given a solution D′ to the

instance (G′, k′), if D′ is a connected dominating set of size at most k, then the
algorithm returns the set D′. If D′ is a connected dominating set of size greater



8.4. GRAPHS OF BOUNDED EXPANSION 103

than k, then the solution lifting algorithm returns V (G) as a solution to (G, k).
If D′ is not a connected dominating set of G′, then the solution lifting algorithm
will output ∅. Let D be the output of the solution lifting algorithm.

We prove that the above reduction algorithm together with the solution lifting
algorithm constitute a (1 + ε)-approximate kernel. Note that if D′ is not a
valid solution of G′, then ∅ is not a valid solution for G and CDS(G′, k′, D′) =
CDS(G, k, D) = ∞. Hence we can restrict ourselves to the case when D′ is a
connected dominating set of G′. First, consider the case where the algorithm
of Lemma 8.18 outputs Y ⊆ V (G) and the reduced instance is hence (G′, k′) =
(G[Y ], k). From Lemma 8.18, we have that OPT (G[Y ], k) ≤ (1 + ε)OPT (G, k).
We show that in this case CDS(G, k, D) = CDS(G′, k′, D′). If |D′| > k, then
CDS(G, k, D) = CDS(G, k, V (G)) = k + 1 = CDS(G′, k′, D′). So assume that
|D′| ≤ k, which implies D = D′. Since D′ is a connected dominating set of G[Y ]
and, by Lemma 8.18, Y contains a k-domination core of G, it follows that D′

dominates G and CDS(G, k, D) = CDS(G′, k′, D′). Combining CDS(G, k, D) =
CDS(G′, k′, D′) and OPT (G[Y ], k) ≤ (1 + ε)OPT (G, k) we get CDS(G,k,D)

OP T (G,k) ≤
(1 + ε)CDS(G′,k′,D′)

OP T (G′,k′) . When (G′, k′) = (({v}, ∅), 0), we can easily verify that the
above mentioned approximation guarantee holds.

8.4 Graphs of bounded expansion
In this section we show that Connected Dominating Set, parameterized
by solution size, admits a (1 + ε)-approximate bikernel on at most O(f(ε) · k)
vertices. In fact, the reduced instance will be an instance of Subset Connected

Dominating Set (SCDS), which is defined as follows:

SCDS((G, S), k, D) =
{

∞ if D is not a connected S-dominator in G
min{|D|, k + 1} otherwise

The first phase of our algorithm, i.e. finding a domination core, closely follows the
work of Drange et al. [DDF+16] but requires subtle changes. We fix a graph class
G that has bounded expansion and let (G, k) be the input instance of CDS, where
G ∈ G and G is connected. We assume that ∇0(G) ≥ 1, otherwise G is a forest
and the problem can be solved in linear time.

8.4.1 Finding the domination core
We begin by formally introducing the notion of a c-exchange domination core,
which is different from the definition used in the previous section and from the
one considered in [DDF+16]. Here, c is a fixed constant which we set later.

Definition 8.20 (c-exchange domination core). Let G be a graph and Z be a
subset of vertices of G. We say that Z is a c-exchange domination core if for every
set X that dominates Z one of the following conditions holds:

1. X dominates G, or



104 CHAPTER 8. CONNECTED DOMINATING SET

2. there exist A ⊆ X and B ⊆ V (G) such that |B| < |A| ≤ c and (X \ A) ∪ B
is a set that dominates Z. Moreover the number of connected components
of (X \ A) ∪ B is at most the number of connected components of X. In
particular, if X is a connected set then (X \ A) ∪ B is also a connected set.

Proposition 8.21. Let G be a graph, c be a constant, and Z be a c-exchange
domination core of G, and X ⊆ V (G) be a Z-dominator. Then, there is a set Y
such that (i) |Y | ≤ |X|, (ii) Y dominates G, (iii) Y can be computed from X in
polynomial time, and (iv) the number of connected components of Y is at most
the number of connected components of X.

Proof. By Definition 8.20, if X dominates G then we are done. Otherwise, there
exist A ⊆ X and B ⊆ V (G) such that |B| < |A| ≤ c, X ′ = (X \ A) ∪ B is a set
that dominates Z, and the number of connected components of X ′ is at most the
number of connected components of X. Moreover, we can find such sets A and B
by going through all possibilities in time O(|V (G)|2c−1) (i.e., in polynomial time
for fixed c). By applying this argument iteratively on X ′, we will eventually find a
set Y which dominates G. Furthermore, by Definition 8.20, |B| < |A|, and hence
the size of the Z-dominator drops by one in each step. Therefore, the required set
Y can be found in time O(|V (G)|2c).

Clearly, V (G) is a c-exchange domination core, for any c, but we look for a
c-exchange domination core that is linear in k. Hence, we start with Z = V (G)
and gradually reduce |Z| by removing one vertex at a time, while maintaining the
invariant that Z is a c-exchange domination core. To this end, we need to prove
Lemma 8.22. Note that we only remove vertices from Z at this stage (no vertex
deletions), and hence the graph remains intact.

Lemma 8.22. There exists a constant Ccore > 0 depending only on a fixed (finite)
number of grads of G and a polynomial-time algorithm that, given a graph G ∈ G
and a c-exchange domination core Z ⊆ V (G) with |Z| > Ccore · k, either correctly
concludes that cds(G) > k or finds a vertex z ∈ Z such that Z \ {z} is still a
c-exchange domination core.

The rest of the subsection is dedicated to proving Lemma 8.22. The algorithm
of Lemma 8.22 consists of building a structural decomposition of the graph G.
More precisely, we identify a small set X that dominates G, so that if X was
deleted from the graph, Z would contain a large subset S, which is 2-scattered in
the remaining graph. Given such a structure, we can argue that in any optimal
Z-dominator, vertices of X serve as dominators for almost all the vertices of S.
This is because any vertex of V (G) \ X can dominate at most one vertex from S.
Since S will be large compared to X, some vertices of S will be indistinguishable
from the point of view of domination via X, and these will be precisely the vertices
that can be removed from the domination core. The following lemma, which was
proved by Drange et al. [DDF+16], gives us such a decomposition.



8.4. GRAPHS OF BOUNDED EXPANSION 105

Lemma 8.23. There exists a constant C ′
Z > 0 depending only on a fixed (finite)

number of grads of G and a polynomial-time algorithm that, given a graph G ∈ G,
an integer k, a constant C ′

S > 0, and a set Z ′ ⊆ V (G) with |Z ′| > C ′
Z · k, either

correctly concludes that ds(G) > k or finds a pair (X ′, S ′) with the following
properties: (1) |X ′| ≤ C ′

X · k, (2) X ′ is a Z ′-dominator in G, (3) for each
u ∈ V (G) \ X ′ we have |MG

3 (u, X ′)| ≤ C ′
M, and (4) S ′ ⊆ Z ′ \ X ′ is 2-scattered in

G − X ′, and |S ′| ≥ C ′
S · |X|, where C ′

X and C ′
M are constants depending only on a

fixed number of grads of G.

Corollary 8.24. There exists a constant CZ > 0 depending only on a fixed (finite)
number of grads of G and a polynomial-time algorithm that, given a graph G ∈ G,
an integer k, a constant CS > 0, and a c-exchange domination core Z ⊆ V (G)
with |Z| > CZ · k, either correctly concludes that ds(G) > k or finds a pair (X, S)
with the following properties: (1) |X| ≤ CX · k, (2) X dominates G, (3) for each
u ∈ V (G) \ X we have |MG

3 (u, X)| ≤ CM, and (4) S ⊆ Z \ X is 2-scattered in
G − X, and |S| ≥ CS · |X|, where CX and CM are constants depending only on a
fixed number of grads of G.

Proof. First we run the algorithm of Lemma 8.23 for G, k, Z ′ = Z, C ′
Z = CZ,

and constant C ′
S ≥ CS, which we fix later in the proof. If the algorithm of

Lemma 8.23 concludes that ds(G) > k, we correctly conclude that ds(G) > k.
Otherwise, let (X ′, S ′) be the output of the algorithm of Lemma 8.23. Since Z
is a c-exchange domination core, we find using Proposition 8.21, a set Y , such
that |Y | ≤ |X ′| and Y dominates G. We let X = cl3(Y ∪ X ′) and S = S ′ \ X.
Since X is a superset of Y , X satisfies property (2). Note that by Lemma 8.9,
X can be computed in polynomial time and it satisfies property (3). Moreover,
|X| = cl3(Y ∪ X ′) ≤ Ccl1 · |Y ∪ X ′| ≤ 2Ccl1 · |X ′| ≤ 2Ccl1 · C ′

X · k (Lemma 8.9)
and property (1) follows with CX = 2Ccl1 · C ′

X. Hence |S| ≥ |S ′| − |X| ≥
C ′

S · |X ′| − 2Ccl1 · |X ′| ≥ (C ′
S − 2Ccl1) · |X ′| ≥ (C′

S−2Ccl1)
2Ccl1

|X|. Therefore, if we set
the constant C ′

S = 2Ccl1(CS + 2Ccl1), we satisfy all properties.

Note that when ds(G) > k we can also conclude that cds(G) > k. Hence, in
the rest of the section we assume that we are given G, Z, and the constructed
sets X and S. We let R = V (G) \ X. Using this notation, S is 2-scattered in the
graph G[R]. Recall that for any vertex u ∈ R, we have |M3(u, X)| ≤ CM. Define
the following equivalence relation � on S: for u, v ∈ S, u � v ⇔ Mi(u, X) =
Mi(v, X) for each 1 ≤ i ≤ 3.

Lemma 8.25. There exists a constant Ceq > 0 depending only on a fixed (finite)
number of grads of G such that equivalence relation � has at most Ceq · 3Ceq · |X|
classes.

Proof. From Lemma 8.10, we know that the number of different 3-projections
in X of vertices of R is bounded by Cex · |X|. Observe that for each u ∈ S, we
have M1(u, X) ⊆ M2(u, X) ⊆ M3(u, X) and the number of choices for M3(u, X)
is again at most Cex · |X| (since S ⊆ R). Moreover, since u ∈ R, we have that
|M3(u, X)| ≤ CM (property (3) of Corollary 8.24). Hence, to define sets Mi(u, X)



106 CHAPTER 8. CONNECTED DOMINATING SET

for 1 ≤ i < 3 it suffices, for every w ∈ M3(u, X), to choose the smallest index j,
1 ≤ j ≤ 3, such that w ∈ Mj(u, X). The number of such choices is at most 3CM ,
and hence the claim follows by setting Ceq = Cex + CM.

We can now set the constant CS that is required in Corollary 8.24 and the constant
c of the exchange domination core. We let CS = (4Ceq + 1) · Ceq · 3Ceq and
c = (4Ceq + 1). Since we have that |S| > CS · |X|, from Lemma 8.25 and the
pigeonhole principle we infer that there is a class κ of relation � with |κ| > 4Ceq+1.
Note that we can find such a class κ in polynomial time, by computing the classes
of � directly from the definition and examining their sizes. We are ready to
prove the final lemma of this section: any vertex of κ can be removed from the
c-exchange domination core Z (recall that S ⊆ Z), which concludes the proof of
Lemma 8.22.

Lemma 8.26. Let z ∈ κ. Then Z \ {z} is a c-exchange domination core.

Proof. Let D ⊆ V (G) be a set that dominates Z ′ = Z \ {z} such that D does not
satisfy condition (2) of Definition 8.20 with respect to Z ′ (as otherwise we are
done). In particular, this implies that D cannot satisfy condition (2) with respect
to Z either. In other words, there exist no sets A ⊆ D and B ⊆ V (G) such that
|B| < |A| ≤ c, (D \ A) ∪ B has at most as many connected components as D,
and (D \ A) ∪ B dominates Z. Therefore, if D dominates all of Z, then D has to
satisfy condition (1) and dominate G. Hence, z is not dominated by D. We prove
that this leads to a contradiction.

Every vertex s ∈ κ \ {z} is dominated by D (since κ \ {z} ⊆ Z ′). For each
such s, let v(s) be an arbitrarily chosen vertex of D that dominates s. If v(s) ∈ X,
then v(s) also dominates z, since M1(s, X) = M1(z, X). Consequently, v(s) �∈ X
(because D does not dominate Z) and the vertices v(s) are pairwise different for
all s ∈ κ \ {z}, as S (and κ) is a 2-scattered set. Let W ′ = {v(s) : s ∈ κ \ {z}}.
Since |κ| > 4Ceq + 1, we have |W ′| ≥ c = 4Ceq + 1. Let W be a set of arbitrarly
chosen c vertices of W ′. Define D′ = (D \ W ) ∪ M3(z, X).

We first show that D′ dominates Z ′. Towards that, it is enough to show
that every vertex in N [W ] is dominated by M3(z, X) ⊆ D′. By property (2)
of Corollary 8.24, X is a dominating set in G. Hence, every vertex in N [W ] =
N(W ) ∪ W either belongs to X or has a neighbor in X. Let Y ⊆ X be the set
of vertices in X dominating N [W ]. Since every vertex in N [W ] is at distance at
most two from some vertex in κ (because each vertex in W is adjacent to a vertex
in κ), all vertices in Y are at distance at most three from some vertex in κ. This
implies that Y ⊆ M3(z, X) and therefore D′ dominates Z ′.

Note that |M3(z, X)| < |W | ≤ c and therefore D′, which still dominates Z ′,
violates condition (2) of Definition 8.20. However, the set D′ can have more
connected components than D has. Therefore, we add additional vertices to D′ to
ensure connectivity and still violate condition (2). For every vertex u ∈ M3(z, X)
there is a path Pu of length at most three between u and z. Let P = ⋃

u∈M3(z,X) Pu

and consider the set D′′ = D′ ∪ P . Note that |P | ≤ 3|M3(z, X)| ≤ 3Ceq.



8.4. GRAPHS OF BOUNDED EXPANSION 107

It remains to show that D′′ has at most as many connected components as D.
If a component C in D contains a vertex from W , then each connected component
C ′ of C \W contains a vertex vC′ ∈ N(W ) and as mentioned before, vC′ is adjacent
to a vertex in M3(z, X). But in D′′ all vertices of M3(z, X) are in one component
due to the vertices of P . Hence all such components of D contribute to only one
component of D′′. On the other hand, if C does not contain a vertex in W , then
clearly all vertices of C are also in D′′ and hence C is connected in D′′ as well. It
follows that D′′ has at most as many connected components as D, D′′ dominates
Z ′, and |M3(z, X) ∪ P | ≤ Ceq + 3Ceq < |W | = c = 4Ceq + 1, contradicting the
fact that D did not satisfy condition (2) of Definition 8.20.

8.4.2 Reducing connectors and dominators
Armed with a c-exchange domination core Z whose size is linear in k, our next
goal is to reduce the number of connectors and dominators (the number of vertices
in V (G) \ Z). To that end, we need the following lemma which is a generalized
version of Lemma 2.11 in [DDF+16].

Lemma 8.27 (Trees closure lemma). Let G be a class of bounded expansion and
let q and r be positive integers. Let G ∈ G be a graph and X ⊆ V (G). Then
a superset of vertices X ′ ⊇ X can be computed in polynomial time, with the
following properties: (1) For every Y ⊆ X of size at most q, if stG(Y ) ≤ rq then
stG[X′](Y ) = stG(Y ). (2) |X ′| ≤ Ctc · |X|, where Ctc is a constant depending only
on r, q, and a finite number of grads of G.

Proof. First, using Lemma 8.9 we compute X0 = clrq(X). Then, |X0| ≤ Ccl1 · |X|
and for each vertex u /∈ X0 we have |MG

rq(u, X0)| ≤ Ccl2. Now, for each set Y ⊆ X0
of at most q vertices, compute an optimal Steiner tree TY whose edges do not
belong to G[X0]; in case there is no such tree, set TY = ∅. Note that TY can be
computed in polynomial time for any fixed q [BHKK07]. Define X ′ to be X0 plus
the vertex sets of all trees TY that have size at most rq.
Claim 8.28. |X ′| ≤ Ctc · |X0|, where Ctc is a constant depending only on r, q,
and a finite number of grads of G.

Proof of the Claim. Let H be a graph on vertex set X0, where uv ∈ E(H) if and
only if there exists Y such that {u, v} ⊆ Y , TY �= ∅ and has size at most rq, and
hence its vertex set was added to X. Note that we do not add multiedges. For
every such set Y , H[Y ] induces a clique in H. Let ω(H) denote the number of
cliques in H. Clearly |X ′| ≤ |X0| + rq · ω(H), so it suffices to prove an upper
bound on ω(H).

Consider an edge uv ∈ E(H). The existence of this edge implies that u and
v appear together in some tree TY of size at most rq. Since TY does not contain
any edges from G[X0] (by construction), there must exist a path Pu,v of length
at most rq connecting u and v. The internal vertices of Pu,v do not belong to
X0. Take any w ∈ X ′ \ X0, and consider for how many pairs {u, v} ⊆ X0 it can
hold that w ∈ Pu,v. If {u, v} is such a pair, then in particular u, v ∈ MG

rq(w, X0).



108 CHAPTER 8. CONNECTED DOMINATING SET

But we know that |MG
rq(w, X0)| ≤ Ccl2, so the number of such pairs is at most

τ ≤ (Ccl2)2. Consequently, we observe that graph H is an (rq − 1)-shallow minor
of G � Kτ : when each vertex w ∈ X ′ \ X0 is replaced with τ copies, then we can
realize all the paths between u and v, in G � Kτ , so that they are internally vertex-
disjoint. From Lemma 8.8, we know that ∇rq−1(G � Kτ ) is bounded polynomially
in ∇rq−1(G) and τ , which in turn is also bounded polynomially in ∇rq−1(mc G).
Hence ∇rq−1(G � Kτ ) is bounded polynomially in ∇rq−1(mc G). The number of
cliques in graph of bounded expansion is linear in the number of vertices [BLS99].
Combining the fact that H has bounded expansion with |X ′| ≤ |X0| + rq · ω(H),
the claim follows.

Claim 8.29. If Y ⊆ X0 has size at most q and stG(Y ) ≤ rq then stG[X′](Y ) =
stG(Y ).

Proof of the Claim. Let TY be an optimal Steiner tree for Y in G, and let T1, T2, . . . , Tp

be the subtrees of size greater than one obtained after deleting all edges of TY for
which both endpoints are in X0. Note that deleting such edges can only create
either singleton vertices or subtrees of size greater than one. Moreover, let Yi,
1 ≤ i ≤ p, denote the set Y ∩ V (Ti). The existence of Ti certifies that some
tree of size at most |Ti| was added when constructing X ′ from X0, and hence
stG[X′](Yi) ≤ |Ti|. Consequently, we infer that

stG[X′](Y ) ≤
p∑

i=1
stG[X′](Yi) + |Y \

p⋃
i=1

Yi| ≤
p∑

i=1
|Ti| + |Y \

p⋃
i=1

Yi| ≤ |TY | = stG(Y ).

The opposite inequality stG[X′](Y ) ≥ stG(Y ) follows directly from the fact that
G[X ′] is an induced subgraph of G.

Claim 8.28 and the fact that |X0| ≤ Ccl1|X| prove property (2). Claim 8.29
and the fact that X ⊆ X0 prove property (1).

Now let Ż be a superset of Z, which we will fix later in Lemma 8.32, such
that |Ż| = O(k). We compute Z ′ = cl1(Ż) using Lemma 8.9; then we have that
|Z ′| = O(|Ż|) = O(k). Partition V (G) \ Z ′ into equivalence classes with respect
to the following relation �: For u, v ∈ V (G) \ Z ′, set: u � v ⇔ M1(u, Z ′) =
M1(v, Z ′). From Lemma 8.9 we know that for each u ∈ V (G) \ Z ′, it holds that
|M1(u, Z ′)| = O(1). Moreover, Lemma 8.10 implies that the number of possible
different projections M1(u, Z ′) for u ∈ V (G) \ Z ′ is at most O(|Z ′|). Hence, using
the same reasoning as in the proof of Lemma 8.25 we obtain the following.

Lemma 8.30. The equivalence relation � has at most O(|Z ′|) classes.

Construct a graph G̈ as follows. Start with G and, for each equivalence class
κ of relation �, add a new vertex uκ which is connected to all vertices in κ. Let
U = ⋃

κ∈ uκ. Our next step is to apply Lemma 8.27 to graph G̈ with X = Z ′ ∪ U ,
r = 2, and q = 2t (we fix the value of t later). Before we do so, we need to show
that G̈ still has bounded expansion.



8.4. GRAPHS OF BOUNDED EXPANSION 109

Lemma 8.31. The graph G̈ has bounded expansion.

Proof. We first construct a bipartite graph H with bipartition (A, B) as follows.
We add a vertex xz ∈ A for each vertex z ∈ Z ′ and we add one vertex yκ ∈ B for
each equivalence class κ of relation �. We add an edge xzyκ ∈ E(H) whenever z
is in M1(w, Z ′), for some w ∈ κ. Finally, delete any isolated vertices in H (applies
if some equivalence class has no neighbors in Z ′). It is not hard to see that H is a
subgraph of G and, consequently, has bounded expansion. We can therefore apply
Lemma 8.11 to obtain a mapping ϕ : B → A with yϕ(y) ∈ E(H), for each y ∈ B,
and ϕ−1(xz) ≤ Cch, for each xz ∈ A.

We now consider the graph
...
G which is obtained by adding a universal vertex

to G � KCch . From Lemma 8.8, we know that G � KCch has bounded expansion.
Applying Lemma 8.7 to

...
G, we know that

...
G also has bounded expansion. Hence, it

remains to show that G̈ is a subgraph of
...
G. From the mapping ϕ, we can associate

each (except at most one) equivalence class with some vertex in Z ′. In addition,
every vertex in Z ′ is associated with at most Cch classes. In other words, when
each vertex in Z ′ is replaced by Cch copies, each equivalence obtains a distinct
universal vertex. The extra universal vertex added to G � KCch guarantees that
the equivalence class with no neighbors in Z ′ is also covered. This completes the
proof.

Lemma 8.32. Let (G, k) be an instance of Connected Dominating Set, where
G is a connected graph of bounded expansion. Let CS = (4Ceq + 1) · Ceq · 3Ceq and
c = (4Ceq + 1). Then, for any fixed ε > 0, there is a polynomial-time algorithm
that either concludes that cds(G) > k or outputs a set Y ⊆ V (G) of cardinality
O(f(ε) · k), for some function f , and a set Z ⊆ Y , such that (i) Z is a c-exchange
domination core in G and (ii) OPTSCDS((G[Y ], Z), k) ≤ (1 + ε)OPTCDS(G, k).

Proof. We start by designing an algorithm A with the desired properties. Starting
with Lemma 8.22, Algorithm A either concludes that cds(G) > k or finds (in
polynomial time) a c-exchange domination core Z of size at most O(k). Since Z is a
Z-dominator itself, using Proposition 8.21, we find a set O, such that |O| ≤ |Z| and
O dominates G. Moreover, by Proposition 8.1, we find a connected superset Ö of
O, such that |Ö| ≤ 3|O|. Next, we let Ż be the set Z ∪ Ö and compute Z ′ = cl1(Ż)
using Lemma 8.9; then we have that |Z ′| = O(k). We then partition V (G)\Z ′ into
equivalence classes with respect to � (i.e. u � v ⇔ M1(u, Z ′) = M1(v, Z ′)).
From Lemma 8.30, we know that the equivalence relation � has at most O(k)
classes. Let X ′ be the set, again of size O(k), obtained after applying Lemma 8.27
to graph G̈ with X = Z ′ ∪ U , r = 2, and q = 2t (we fix the value of t later and U
is the set defined earlier).

Since Z ′ dominates the c-exchange domination core Z, from Proposition 8.21
it follows that we can find a set Z̈, such that |Z̈| ≤ |Z ′| and Z̈ dominates
G. Hence, we can apply Proposition 8.1 to obtain a set W of size at most
4|Z ′| such that Z ′ ∪ Z̈ ∪ W is a connected dominating set in G. Algorithm A
outputs instance ((G′, Z), k) = ((G[Y ], Z), k) which asks to dominate Z, where
Y = Z ′ ∪ Z̈ ∪ W ∪ (X ′ \ U). Note that, since we remove the set U and add W , the



110 CHAPTER 8. CONNECTED DOMINATING SET

graph G[Y ] is a connected induced subgraph of the original graph G. Moreover,
the total number of vertices in G[Y ] is at most O(k). The correctness of the
algorithm follows from the correctness of each step.

We now show that OPTSCDS((G[Y ], Z), k) ≤ (1 + ε)OPTCDS(G, k). Consider
the graph D∗ induced by an optimal connected dominating set of G (i.e. D∗ is a
tree). If |V (D∗)| > k, then OPTSCDS((G[Y ], Z), k) ≤ (1 + ε)OPTCDS(G, k) holds
trivially. So we assume that |V (D∗)| ≤ k. We let F(D∗, t) = {T1, T2, · · · } denote
a (D∗, t)-covering family. Proposition 8.3 implies that |F(D∗, t)| ≤ |V (D∗)|

t
+ 1 and∑

T ∈F(D∗,t) |V (T )| ≤ (1 + 1
t
)|V (D∗)| + 1. Moreover, the size of each subtree T is

at most 2t. We define groups on V (G) as follows. Each vertex v ∈ Z ′ belongs to a
unique group qv and each vertex in V (G) \ Z ′ belongs to group qκ, i.e. vertices in
the same equivalence class in � belong to the same group.
Claim 8.33. For any T ∈ F(D∗, t) there exists a tree T ′ in G′ of size at most
|V (T )| which contains at least one vertex from each group appearing in T .

Proof. Recall that, when constructing the graph G̈, we added one universal vertex
for each equivalence class in V (G) \ Z ′. Hence, after applying Lemma 8.27, we
know that for any Y ⊆ Z ′ ∪ U of size at most 2t (which is exactly a subset of the
groups) if stG(Y ) ≤ 4t then stG̈(Y ) = stG(Y ). Every vertex in Z ′ belongs to a
distinct group and every vertex uκ ∈ U is connected to all vertices in κ. Hence, any
tree of size greater than one containing a vertex uκ must also contain a neighbor
of uκ (from the same group). The existence of T implies that there exists a tree of
size at most 2t connecting all groups appearing in T . Hence, a tree T ′ certifying
this fact exists in G′.

We now construct a new family F ′ which consists of replacing each T ∈ F(D∗, t)
by a set T ′ in G′. Let D′′ = ⋃

T ′∈F ′ V (T ′). By the previous claim and the fact that∑
T ∈F(D∗,t) |V (T )| ≤ (1+ 1

t
)|V (D∗)|+1, we know that |D′′| ≤ (1+ 1

t
)|V (D∗)|+1 and

D′′ dominates Z ′ (since we never reduce the number of groups in D′′). Moreover, D′′

consists of at most |V (D∗)|
t

+1 components. Note that Ö is a connected Z-dominator
and therefore the set Ö∪Z is also connected. Now, since Z∪Ö ⊆ Z ′, D′′ dominates
Z ∪ Ö and applying Proposition 8.1, we obtain a connected (Z ∪ Ö)-dominator,
and hence also Z-dominator, D′ of size at most 2|V (D∗)|

t
+ 2 + (1 + 1

t
)|V (D∗)| + 1 =

2|V (D∗)|
t

+ 3 + |V (D∗)| + |V (D∗)|
t

= (1 + 3
t
)|V (D∗)| + 3. Setting t appropriately (i.e.

roughly 3
ε
) completes the proof.

Using the same arguments as in the proof of Theorem 28 and replacing
Lemma 8.18 by Lemma 8.32, we obtain the following:

Theorem 29. For every ε > 0, CDS admits a (1 + ε)-approximate bikernel with
O(f(ε) · k) vertices on graphs of bounded expansion, where f is some computable
function.



Part III

Concluding remarks

111





Chapter 9

Conclusions and future directions

In the thesis, we have studied the Feedback Vertex Set problem in tournaments
and bipartite tournaments (Chapters 5 and 6), a generalization of Vertex Cover

known as �-Component Order Connectivity (Chapter 7) and Connected

Dominating Set (Chapter 8). Starting with a formulation of these problems
as a Hitting Set problem, we can get algorithms and kernels (except for CDS)
which we have improved significantly. Yet, a lot is left to be explored and we
outline some of the future directions to take.

Feedback Vertex Set In chapter 5 and 6, we provided FPT algorithms with
running time 1.6181k · nO(1). It would be interesting to improve these algorithms.
We hope that the same template as in these chapters could be applicable in several
situations where one seeks a “small” set of vertices or edges to delete in order
to modify the input graph to a “rigid” structure; such as Cluster Vertex

Deletion, Cograph Vertex Deletion and Feedback Vertex Set in the
more general setting when the input graph is a multi-partite tournament [GY08].

�-Component Order Connectivity In chapter 7, we provided a kernel for
�-component order connectivity of size 2�k which is tight when � = 1. Is this
algorithm tight for general values of �? We also provide a separation oracle for
the problem that runs in (3e)� · nO(1) time. A natural question is can this running
time be improved? Note that by Set Cover Conjecture, we have that there is no
algorithm that solves general Set Cover in time (2 − ε)n for for any ε > 0 where
n is the size of the universe. As the reduction used for the NP-completeness of Min

�-Connected Subgraph uses the Set Cover problem with � = n + k (k being
the solution size of set cover), we have that Min �-Connected Subgraph can
not be solved in (2−ε)� time for any ε > 0. Note that via personal communications
with Mingyu Xiao, we came to know that he has a similar generalization of the
Weighted Expansion Lemma and his algorithm outputs a kernel of size 9�k and
runs in polynomial time. It would be interesting to know whether our kernel size
can be achieved in polynomial time.

113



114 CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS

Lossy Kernelization Lossy kernelization is a very new framework and most
of the problems are still open in this area. A good introductory source is the
work of Lokshtanov et al [LPRS16]. In Chapter 8, we showed that Connected

Dominating Set admits an α-approximate bikernel on graphs of bounded
expansion and an α-approximate kernel on Kd,d-free graphs, for every α > 1. For
Kd,d-free graphs we obtain instances of size kO( d2

α
) while for bounded expansion

graphs we obtain instances of size O(f(α)k) (i.e, linear in k), where f(α) is a
computable function depending only on α.

Note that the size of our kernel for graphs of bounded expansion matches the
size of the best known kernel for Dominating Set, while for Kd,d-free graphs
we have an additional 1

ε
multiplicative factor in the exponent. This leads us to

the following two interesting open questions. Is it possible to reduce the size of
our kernel on Kd,d-free graphs to f(ε)kO(d2) for some function f? And, in light of
the O(k(d−1)(d−3)−ε) lower bound for Dominating Set, it is possible to obtain a
lossy kernel for Dominating Set on biclique-free graphs that beats this bound?



Bibliography

[AB09] S. Arora and B. Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[ABI86] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms,
7(4):567–583, 1986.

[AFN04] J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data
reduction for dominating set. J. ACM, 51(3):363–384, 2004.

[AG08] N. Alon and S. Gutner. Kernels for the dominating set problem on
graphs with an excluded minor. Electronic Colloquium on Computa-
tional Complexity, 15(066), 2008.

[AK10] F. N. Abu-Khzam. A kernelization algorithm for d-hitting set. J.
Comput. Syst. Sci., 76(7):524–531, November 2010.

[AMS06] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of
sets for k-restrictions. ACM Trans. Algorithms, 2(2):153–177, April
2006.

[AP14] P. K. Agarwal and J. Pan. Near-linear algorithms for geometric
hitting sets and set covers. In 30th Annual Symposium on Computa-
tional Geometry, SOCG’14, Kyoto, Japan, June 08 - 11, 2014, page
271, 2014.

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the
Association for Computing Machinery, 42(4):844–856, 1995.

[BBF99] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm
for the undirected feedback vertex set problem. SIAM J. Discrete
Math., 12(3):289–297, 1999.

[BD05] I. Bezáková and V. Dani. Allocating indivisible goods. SIGecom
Exchanges, 5(3):11–18, 2005.

[BDFH09] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin.
On problems without polynomial kernels. J. Comput. Syst. Sci.,
75(8):423–434, 2009.

115



116 BIBLIOGRAPHY

[BEF+06] K. Burrage, V. Estivill-Castro, M. R. Fellows, M. A. Langston, S. Mac,
and F. A. Rosamond. The undirected feedback vertex set problem
has a poly(k) kernel. In Parameterized and Exact Computation,
Second International Workshop, IWPEC 2006, Zürich, Switzerland,
September 13-15, 2006, Proceedings, pages 192–202, 2006.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learn-
ability and the vapnik-chervonenkis dimension. J. ACM, 36(4):929–
965, 1989.

[BFL+09] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx,
S. Saurabh, and D. M. Thilikos. (Meta) Kernelization. In 50th
Annual IEEE Symposium on Foundations of Computer Science, At-
lanta, Georgia, USA, pages 629–638, 2009.

[BG95] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in
finite vc-dimension. Discrete & Computational Geometry, 14(4):463–
479, 1995.

[BHKK07] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets
möbius: Fast subset convolution. In Proceedings of the Thirty-ninth
Annual ACM Symposium on Theory of Computing, pages 67–74, New
York, NY, USA, 2007.

[BKMN16] K. Bringmann, L. Kozma, S. Moran, and N. S. Narayanaswamy.
Hitting set for hypergraphs of low VC-dimension. In 24th Annual
European Symposium on Algorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark, pages 23:1–23:18, 2016.

[BL82] L. W. Beineke and C. H. Little. Cycles in bipartite tournaments.
Journal of Combinatorial Theory, Series B, 32(2):140 – 145, 1982.

[BLS99] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1999.

[BvD10] H. L. Bodlaender and T. C. van Dijk. A cubic kernel for feedback
vertex set and loop cutset. Theory Comput. Syst., 46(3):566–597,
2010.

[Cai]

[Cai96] L. Cai. Fixed-parameter tractability of graph modification problems
for hereditary properties. Information Processing Letters, 58(4):171 –
176, 1996.

[CC04] M. Chlebík and J. Chlebíková. Approximation hardness of dominating
set problems. In Algorithms - ESA 2004, 12th Annual European



BIBLIOGRAPHY 117

Symposium, Bergen, Norway, September 14-17, 2004, Proceedings,
pages 192–203, 2004.

[CC15] L. Cai and Y. Cai. Incompressibility of h-free edge modification
problems. Algorithmica, 71(3):731–757, 2015.

[CCH+16] M. Chang, L. Chen, L. Hung, P. Rossmanith, and P. Su. Fixed-
parameter algorithms for vertex cover p3. Discrete Optimization,
19:12–22, 2016.

[CCL10] Y. Cao, J. Chen, and Y. Liu. On feedback vertex set new measure
and new structures. In Algorithm Theory - SWAT 2010, 12th Scan-
dinavian Symposium and Workshops on Algorithm Theory, Bergen,
Norway, June 21-23, 2010. Proceedings, pages 93–104, 2010.

[CDL+16] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto,
R. Paturi, S. Saurabh, and M. Wahlström. On problems as hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41, 2016.

[CDZ00] M. Cai, X. Deng, and W. Zang. An approximation algorithm for
feedback vertex sets in tournaments. SIAM J. Comput., 30(6):1993–
2007, 2000.

[CFK+15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Al-
gorithms. Springer, 2015.

[CFL+08] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci.,
74(7):1188–1198, 2008.

[CGH13] M. Cygan, F. Grandoni, and D. Hermelin. Tight kernel bounds for
problems on graphs with small degeneracy - (extended abstract). In
Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia
Antipolis, France, September 2-4, 2013. Proceedings, pages 361–372,
2013.

[CKJ01] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: Further observations
and further improvements. J. Algorithms, 41(2):280–301, 2001.

[CKX10] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex
cover. Theor. Comput. Sci., 411(40-42):3736–3756, 2010.

[Cla85] C. Clapham. The bipartite tournament associated with a fabric.
Discrete Mathematics, 57(1):195 – 197, 1985.

[CLL+08] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-
parameter algorithm for the directed feedback vertex set problem. J.
ACM, 55(5), 2008.



118 BIBLIOGRAPHY

[CNP+11] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van
Rooij, and J. O. Wojtaszczyk. Solving connectivity problems parame-
terized by treewidth in single exponential time. In IEEE 52nd Annual
Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, pages 150–159, 2011.

[CP12] M. Cygan and M. Pilipczuk. On fixed-parameter algorithms for split
vertex deletion. CoRR, abs/1208.1248, 2012.

[CPPW12] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk.
Kernelization hardness of connectivity problems in d-degenerate
graphs. Discrete Applied Mathematics, 160(15):2131–2141, 2012.

[DDF+16] P. G. Drange, M. S. Dregi, F. V. Fomin, S. Kreutzer, D. Lokshtanov,
M. Pilipczuk, M. Pilipczuk, F. Reidl, F. S. Villaamil, S. Saurabh,
S. Siebertz, and S. Sikdar. Kernelization and sparseness: the case
of dominating set. In 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016, February 17-20, 2016, Orléans,
France, pages 31:1–31:14, 2016.

[DDLS15] P. G. Drange, M. S. Dregi, D. Lokshtanov, and B. D. Sullivan. On
the threshold of intractability. In ESA, volume 9294 of Lecture Notes
in Computer Science, pages 411–423, 2015.

[DDvtH14] P. G. Drange, M. S. Dregi, and P. van ’t Hof. On the computational
complexity of vertex integrity and component order connectivity.
In Algorithms and Computation - 25th International Symposium,
ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings,
pages 285–297, 2014.

[DF95] R. G. Downey and M. R. Fellows. Parameterized Computational
Feasibility, pages 219–244. Birkhäuser Boston, Boston, MA, 1995.

[DF97] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-
Verlag, 1997.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer, 1999.

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[DFL+05] F. K. H. A. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond,
and K. Stevens. An O(2O(k)n3) FPT algorithm for the undirected
feedback vertex set problem. In Computing and Combinatorics, 11th
Annual International Conference, COCOON 2005, Kunming, China,
August 16-29, 2005, Proceedings, pages 859–869, 2005.



BIBLIOGRAPHY 119

[DGH+06] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truß. Fixed-
parameter tractability results for feedback set problems in tourna-
ments. In Algorithms and Complexity, 6th Italian Conference, CIAC
2006, Rome, Italy, May 29-31, 2006, Proceedings, pages 320–331,
2006.

[DGH+10] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truß. Fixed-
parameter tractability results for feedback set problems in tourna-
ments. J. Discrete Algorithms, 8(1):76–86, 2010.

[Die12] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[DM12] H. Dell and D. Marx. Kernelization of packing problems. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
68–81, 2012.

[Dru15] A. Drucker. New limits to classical and quantum instance compression.
SIAM J. Comput., 44(5):1443–1479, 2015.

[DS05] I. Dinur and S. Safra. On the hardness of approximating minimum
vertex cover. Annals of mathematics, pages 439–485, 2005.

[DvM14a] H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial
sparsification unless the polynomial-time hierarchy collapses. J. ACM,
61(4):23:1–23:27, 2014.

[DvM14b] H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial
sparsification unless the polynomial-time hierarchy collapses. J. ACM,
61(4):23:1–23:27, 2014.

[EG04] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter
clique and dominating set. Theor. Comput. Sci., 326(1-3):57–67, 2004.

[ENSS98] G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating mini-
mum feedback sets and multicuts in directed graphs. Algorithmica,
20(2):151–174, 1998.

[ERS05] G. Even, D. Rawitz, and S. Shahar. Hitting sets when the vc-
dimension is small. Inf. Process. Lett., 95(2):358–362, 2005.

[Fei98] U. Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, July 1998.

[FG06] J. Flum and M. Grohe. Parameterized complexity theory. Springer-
Verlag New York Inc, 2006.



120 BIBLIOGRAPHY

[FGK09] F. V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer
approach for the analysis of exact algorithms. J. ACM, 56(5), 2009.

[FGK+10] F. V. Fomin, S. Gaspers, D. Kratsch, M. Liedloff, and S. Saurabh.
Iterative compression and exact algorithms. Theor. Comput. Sci.,
411(7-9):1045–1053, 2010.

[FGLS16] F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact
algorithms via monotone local search. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 764–775, 2016.

[FGPR08] F. V. Fomin, S. Gaspers, A. V. Pyatkin, and I. Razgon. On the
minimum feedback vertex set problem: Exact and enumeration
algorithms. Algorithmica, 52(2):293–307, 2008.

[FH66] L. M. Frank Harary. The theory of round robin tournaments. The
American Mathematical Monthly, 73(3):231–246, 1966.

[FK10] F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2010.

[FKW04] F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential)
algorithms for the dominating set problem. In Proceedings of the 30th
International Conference on Graph-Theoretic Concepts in Computer
Science, WG’04, pages 245–256, Berlin, Heidelberg, 2004. Springer-
Verlag.

[FLST10] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidi-
mensionality and kernels. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin,
Texas, USA, January 17-19, 2010, pages 503–510, 2010.

[FLST12] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear
kernels for (connected) dominating set on H -minor-free graphs. In
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 82–93, 2012.

[FLST13] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear
kernels for (connected) dominating set on graphs with excluded topo-
logical subgraphs. In 30th International Symposium on Theoretical
Aspects of Computer Science, STACS 2013, February 27 - March 2,
2013, Kiel, Germany, pages 92–103, 2013.

[FS11] L. Fortnow and R. Santhanam. Infeasibility of instance compression
and succinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106,
2011.



BIBLIOGRAPHY 121

[GGH+06] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex
set and edge bipartization. J. Comput. Syst. Sci., 72(8):1386–1396,
2006.

[GHI+13] D. Gross, M. Heinig, L. Iswara, W. Kazmierczak, K. Luttrell, J. T.
Saccoman, and C. Suffel. A survey of component order connectivity
models of graph theoretic networks. 12:895–910, 2013.

[GHM+11] V. Guruswami, J. Håstad, R. Manokaran, P. Raghavendra, and
M. Charikar. Beating the random ordering is hard: Every ordering
CSP is approximation resistant. SIAM J. Comput., 40(3):878–914,
2011.

[GJ79a] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1979.

[GJ79b] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Series of Books in the
Mathematical Sciences. W. H. Freeman and Co., 1979.

[GK98] S. Guha and S. Khuller. Approximation algorithms for connected
dominating sets. Algorithmica, 20(4):374–387, 1998.

[GKW08] P. Giannopoulos, C. Knauer, and S. Whitesides. Parameterized
complexity of geometric problems. Comput. J., 51(3):372–384, 2008.

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method
and its consequences in combinatorial optimization. Combinatorica,
1(2):169–197, 1981.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and
combinatorial optimization. Algorithms and combinatorics. Springer-
Verlag, Berlin, New York, 1988.

[GM13] S. Gaspers and M. Mnich. Feedback vertex sets in tournaments.
Journal of Graph Theory, 72(1):72–89, 2013.

[GPP10] S. Guillemot, C. Paul, and A. Perez. On the (non-)existence of
polynomial kernels for Pl -free edge modification problems. In Pa-
rameterized and Exact Computation - 5th International Symposium,
IPEC 2010, Chennai, India, December 13-15, 2010. Proceedings,
pages 147–157, 2010.

[GY08] G. Gutin and A. Yeo. Some parameterized problems on digraphs.
Comput. J., 51(3):363–371, 2008.



122 BIBLIOGRAPHY

[HKL+13] P. Heggernes, D. Kratsch, D. Lokshtanov, V. Raman, and S. Saurabh.
Fixed-parameter algorithms for cochromatic number and disjoint
rectangle stabbing via iterative localization. Inf. Comput., 231:109–
116, 2013.

[HKMN10] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-
parameter algorithms for cluster vertex deletion. Theory Comput.
Syst., 47(1):196–217, 2010.

[HL12] S. Har-Peled and M. Lee. Weighted geometric set cover problems
revisited. JoCG, 3(1):65–85, 2012.

[HMvLW11] D. Hermelin, M. Mnich, E. J. van Leeuwen, and G. J. Woeginger.
Domination when the stars are out. In Automata, Languages and
Programming - 38th International Colloquium, ICALP 2011, Zurich,
Switzerland, July 4-8, 2011, Proceedings, Part I, pages 462–473, 2011.

[Hoc82] D. S. Hochbaum. Approximation algorithms for the set covering and
vertex cover problems. SIAM J. Comput., 11(3):555–556, 1982.

[HS81] P. L. Hammer and B. Simeone. The splittance of a graph. Combina-
torica, 1(3):275–284, 1981.

[Hsi11] S. Hsiao. Fixed-parameter complexity of feedback vertex set in
bipartite tournaments. In Algorithms and Computation - 22nd Inter-
national Symposium, ISAAC 2011, Yokohama, Japan, December 5-8,
2011. Proceedings, pages 344–353, 2011.

[HW12] D. Hermelin and X. Wu. Weak compositions and their applications
to polynomial lower bounds for kernelization. In Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
104–113, 2012.

[ID05] S. S. Irit Dinur. On the hardness of approximating minimum vertex
cover. Annals of Mathematics, 162(1):439–485, 2005.

[IMR+98] H. B. H. III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. Nc-approximation schemes for
NP- and pspace-hard problems for geometric graphs. J. Algorithms,
26(2):238–274, 1998.

[IP99] R. Impagliazzo and R. Paturi. The complexity of k-sat. In COCO
’99: Proceedings of the Fourteenth Annual IEEE Conference on Com-
putational Complexity, page 237, Washington, DC, USA, 1999. IEEE
Computer Society.



BIBLIOGRAPHY 123

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have
strongly exponential complexity? J. Comput. System Sci.,
63(4):512–530, 2001.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations,
held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York., pages 85–103, 1972.

[KD79] M. S. Krishnamoorthy and N. Deo. Node-deletion np-complete
problems. SIAM J. Comput., 8(4):619–625, 1979.

[Kho02] S. Khot. On the power of unique 2-prover 1-round games. In Pro-
ceedings on 34th Annual ACM Symposium on Theory of Computing,
May 19-21, 2002, Montréal, Québec, Canada, pages 767–775, 2002.

[KKS11] F. Kardos, J. Katrenic, and I. Schiermeyer. On computing the
minimum 3-path vertex cover and dissociation number of graphs.
Theor. Comput. Sci., 412(50):7009–7017, 2011.

[KL16a] M. Kumar and D. Lokshtanov. A 2lk kernel for l-component order
connectivity. In 11th International Symposium on Parameterized
and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus,
Denmark, pages 20:1–20:14, 2016.

[KL16b] M. Kumar and D. Lokshtanov. Faster exact and parameterized
algorithm for feedback vertex set in bipartite tournaments. In 36th
IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2016, December 13-15,
2016, Chennai, India, pages 24:1–24:15, 2016.

[KL16c] M. Kumar and D. Lokshtanov. Faster exact and parameterized
algorithm for feedback vertex set in tournaments. In 33rd Symposium
on Theoretical Aspects of Computer Science, STACS 2016, February
17-20, 2016, Orléans, France, pages 49:1–49:13, 2016.

[KM86] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree
clustering. Acta Informatica, 23(3):311–323, 1986.

[Kom15] C. Komusiewicz. Tight running time lower bounds for vertex deletion
problems. CoRR, abs/1511.05449, 2015.

[KP14] T. Kociumaka and M. Pilipczuk. Faster deterministic feedback vertex
set. Inf. Process. Lett., 114(10):556–560, 2014.

[KR02] S. Khot and V. Raman. Parameterized complexity of finding sub-
graphs with hereditary properties. Theor. Comput. Sci., 289(2):997–
1008, 2002.



124 BIBLIOGRAPHY

[KR08] S. Khot and O. Regev. Vertex cover might be hard to approximate
to within 2-epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008.

[Kra14] S. Kratsch. Recent developments in kernelization: A survey. Bulletin
of the EATCS, 113, 2014.

[KW13] S. Kratsch and M. Wahlström. Two edge modification problems
without polynomial kernels. Discrete Optimization, 10(3):193–199,
2013.

[LMP+15] D. Lokshtanov, A. E. Mouawad, F. Panolan, M. S. Ramanujan,
and S. Saurabh. Reconfiguration on sparse graphs. In Algorithms
and Data Structures - 14th International Symposium, WADS 2015,
Victoria, BC, Canada, August 5-7, 2015. Proceedings, pages 506–517,
2015.

[LMS11] D. Lokshtanov, M. Mnich, and S. Saurabh. A linear kernel for a planar
connected dominating set. Theor. Comput. Sci., 412(23):2536–2543,
2011.

[LMS12] D. Lokshtanov, N. Misra, and S. Saurabh. Kernelization–
preprocessing with a guarantee. In The Multivariate Algorithmic
Revolution and Beyond, pages 129–161. Springer, 2012.

[LPRS16] D. Lokshtanov, F. Panolan, M. S. Ramanujan, and S. Saurabh. Lossy
kernelization. CoRR, abs/1604.04111, 2016.

[LST90] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algo-
rithms for scheduling unrelated parallel machines. Math. Program.,
46:259–271, 1990.

[LY80a] J. M. Lewis and M. Yannakakis. The node-deletion problem for hered-
itary properties is NP-complete. J. Comput. Syst. Sci., 20(2):219–230,
1980.

[LY80b] J. M. Lewis and M. Yannakakis. The node-deletion problem for
hereditary properties is np-complete. J. Comput. Syst. Sci., 20(2):219–
230, 1980.

[LY94] C. Lund and M. Yannakakis. On the hardness of approximating
minimization problems. J. ACM, 41(5):960–981, September 1994.

[MMS15] S. M. Meesum, P. Misra, and S. Saurabh. Reducing rank of the
adjacency matrix by graph modification. In Computing and Combi-
natorics - 21st International Conference, COCOON 2015, Beijing,
China, August 4-6, 2015, Proceedings, pages 361–373, 2015.



BIBLIOGRAPHY 125

[Mos15] D. Moshkovitz. The projection games conjecture and the NP-hardness
of ln n-approximating set-cover. Theory of Computing, 11:221–235,
2015.

[MPR+10] N. Misra, G. Philip, V. Raman, S. Saurabh, and S. Sikdar. FPT
algorithms for connected feedback vertex set. In WALCOM: Algo-
rithms and Computation, 4th International Workshop, WALCOM
2010, Dhaka, Bangladesh, February 10-12, 2010. Proceedings, pages
269–280, 2010.

[MS16] S. M. Meesum and S. Saurabh. Rank reduction of directed graphs by
vertex and edge deletions. In LATIN 2016: Theoretical Informatics
- 12th Latin American Symposium, Ensenada, Mexico, April 11-15,
2016, Proceedings, pages 619–633, 2016.

[MWV16] M. Mnich, V. V. Williams, and L. A. Végh. A 7/3-approximation
for feedback vertex sets in tournaments. In 24th Annual European
Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus,
Denmark, pages 67:1–67:14, 2016.

[NdM10] J. Nesetril and P. O. de Mendez. From sparse graphs to nowhere
dense structures: Decompositions, independence, dualities and limits,
2010. European Congress of Mathematics.

[NG10] J. Nastos and Y. Gao. Bounded search tree algorithms for param-
eterized cograph deletion: Efficient branching rules by exploiting
structures of special graph classes. CoRR, abs/1006.3020, 2010.

[NHK08] T. Nieberg, J. Hurink, and W. Kern. Approximation schemes for
wireless networks. ACM Trans. Algorithms, 4(4), 2008.

[NJ74] G. L. Nemhauser and L. E. T. Jr. Properties of vertex packing and
independence system polyhedra. Math. Program., 6(1):48–61, 1974.

[NR03] R. Niedermeier and P. Rossmanith. An efficient fixed-parameter
algorithm for 3-hitting set. J. Discrete Algorithms, 1(1):89–102,
2003.

[NSS95] M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-
optimal derandomization. In 36th Annual Symposium on Foundations
of Computer Science, Milwaukee, Wisconsin, 23-25 October 1995,
pages 182–191, 1995.

[PM81] A. Paz and S. Moran. Non deterministic polynomial optimization
problems and their approximations. Theor. Comput. Sci., 15:251–277,
1981.



126 BIBLIOGRAPHY

[PRS09] G. Philip, V. Raman, and S. Sikdar. Polynomial kernels for dominat-
ing set in Ki,j-free and d-degenerate graphs. CoRR, abs/0903.4521,
2009.

[PRS12] G. Philip, V. Raman, and S. Sikdar. Polynomial kernels for dominat-
ing set in graphs of bounded degeneracy and beyond. ACM Trans.
Algorithms, 9(1):11, 2012.

[PY96] C. H. Papadimitriou and M. Yannakakis. On limited nondeterminism
and the complexity of the V-C dimension. J. Comput. Syst. Sci.,
53(2):161–170, 1996.

[Raz06] I. Razgon. Exact computation of maximum induced forest. In
Algorithm Theory - SWAT 2006, 10th ScandinavianWorkshop on
Algorithm Theory, Riga, Latvia, July 6-8, 2006, Proceedings, pages
160–171, 2006.

[Raz07] I. Razgon. Computing minimum directed feedback vertex set in
o(1.9977n). In Theoretical Computer Science, 10th Italian Conference,
ICTCS 2007, Rome, Italy, October 3-5, 2007, Proceedings, pages
70–81, 2007.

[Rob86] J. M. Robson. Algorithms for maximum independent sets. J. Algo-
rithms, 7(3):425–440, 1986.

[RRST96] B. Reed, N. Robertson, P. Seymour, and R. Thomas. Packing directed
circuits. Combinatorica, 16(4):535–554, 1996.

[RS97] R. Raz and S. Safra. A sub-constant error-probability low-degree
test, and a sub-constant error-probability pcp characterization of
np. In Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 475–484, New York, NY,
USA, 1997. ACM.

[RS06] V. Raman and S. Saurabh. Parameterized algorithms for feedback
set problems and their duals in tournaments. Theor. Comput. Sci.,
351(3):446–458, 2006.

[RS08] V. Raman and S. Saurabh. Short cycles make W -hard problems
hard: FPT algorithms for W -hard problems in graphs with no short
cycles. Algorithmica, 52(2):203–225, 2008.

[RSS06] V. Raman, S. Saurabh, and C. R. Subramanian. Faster fixed pa-
rameter tractable algorithms for finding feedback vertex sets. ACM
Trans. Algorithms, 2(3):403–415, 2006.

[Sas08] P. Sasatte. Improved FPT algorithm for feedback vertex set problem
in bipartite tournament. Inf. Process. Lett., 105(3):79–82, 2008.



BIBLIOGRAPHY 127

[Sey95] P. D. Seymour. Packing directed circuits fractionally. Combinatorica,
15(2):281–288, 1995.

[Spe89] E. Speckenmeyer. On feedback problems in diagraphs. In Graph-
Theoretic Concepts in Computer Science, 15th International Work-
shop, WG ’89, Castle Rolduc, The Netherlands, June 14-16, 1989,
Proceedings, pages 218–231, 1989.

[Tho10] S. Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans.
Algorithms, 6(2), 2010.

[Tru05] A. Truß. Parameterized algorithms for feedback set problems in
tournaments. Master’s thesis, Diplomarbeit, Institut für Informatik,
Friedrich-Schiller-Universität Jena, 2005.

[Tu15] J. Tu. A fixed-parameter algorithm for the vertex cover p3 problem.
Inf. Process. Lett., 115(2):96–99, 2015.

[TV12] J. A. Telle and Y. Villanger. FPT algorithms for domination in
biclique-free graphs. In Algorithms - ESA 2012 - 20th Annual Euro-
pean Symposium, Ljubljana, Slovenia, September 10-12, 2012. Pro-
ceedings, pages 802–812, 2012.

[TZ11] J. Tu and W. Zhou. A factor 2 approximation algorithm for the
vertex cover p3 problem. Inf. Process. Lett., 111(14):683–686, July
2011.

[Vaz03] V. V. Vazirani. Approximation Algorithms. Springer, 2003.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of
Probab. and its Applications, 16(2):264–280, 1971.

[Wah07] M. Wahlström. Algorithms, measures and upper bounds for sat-
isfiability and related problems. Technical report, Department of
Computer, 2007.

[WS11] D. P. Williamson and D. B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[XK15] M. Xiao and S. Kou. Faster computation of the maximum dissociation
set and minimum 3-path vertex cover in graphs. In Frontiers in
Algorithmics - 9th International Workshop, FAW 2015, Guilin, China,
July 3-5, 2015, Proceedings, pages 282–293, 2015.

[XN13] M. Xiao and H. Nagamochi. Exact algorithms for maximum inde-
pendent set. In Algorithms and Computation - 24th International
Symposium, ISAAC 2013, Hong Kong, China, December 16-18, 2013,
Proceedings, pages 328–338, 2013.



128 BIBLIOGRAPHY

[XN15] M. Xiao and H. Nagamochi. An improved exact algorithm for undi-
rected feedback vertex set. J. Comb. Optim., 30(2):214–241, 2015.

[Yan81] M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM
J. Comput., 10(2):310–327, 1981.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


