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Abstract
Phylogenetic	niche	conservatism	implies	that	sister	taxa	will	have	similar	niches,	al-
though	 the	 niches	 of	 disjunct	 subspecies	may	 evolve	 differently.	 This	 study	 uses	
Macaca assamensis,	subspecies	assamensis	and	pelops,	to	investigate	the	similarities	
of	realized	climatic	niches	of	two	disjunct	subspecies	(separated	by	the	Brahmaputra	
River)	along	with	a	similarity	analysis	of	their	respective	regions’	climate.	Modeled	
distributions	were	 used	 to	 quantify	 their	 potential	 distribution	 under	 current	 and	
future	climate	scenarios.	The	climatic	similarity	between	regions	of	each	subspecies	
was	tested	with	principal	component	analysis	(PCA),	and	the	realized	climatic	niche	
overlap	between	two	subspecies	was	tested	with	a	multivariate	analysis	of	variance	
(MANOVA)	on	a	subset	of	the	least	correlated	variables	out	of	24	publicly	available	
topo-	bioclimatic	variables.	Tukey’s	honest	significance	difference	(HSD)	was	used	to	
test	 the	 range	differences	 (on	 all	 24	variables)	 between	 subspecies.	The	potential	
distribution	 of	 both	 taxa	 in	 the	 current	 climate	 and	 projected	 future	 climate	was	
model-	predicted	using	MaxEnt	and	Random	Forest.	We	found	significantly	different	
climatic	ranges	for	21	predictors	(HSD;	p < 0.05)	for	the	two	subspecies,	significantly	
different	climatic	conditions	for	their	regions	(using	PCA;	p < 0.001),	and	significantly	
different	realized	climatic	niches	for	the	two	subspecies	(MANOVA;	p < 0.001). The 
distribution	models	generated	a	larger	potential	area	than	the	currently	known	distri-
butions.	Although	literature	show	that	the	Brahmaputra	River	is	an	effective	disper-
sal	barrier,	we	found	some	of	the	neighboring	geographic	range	for	both	subspecies	
appears	to	be	potentially	suitable	for	the	other	taxon.	The	projected	future	potential	
areas	indicate	that	some	parts	of	the	currently	occupied	geography,	mostly	southern	
parts,	may	become	 climatically	 unsuitable,	whereas	 other	 new	geographical	 areas	
may	become	suitable.	Most	of	these	new	potential	areas	will	be	toward	the	north	
where	higher	and	fragmented	mountains,	which	has	conservation	implications.
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1  | INTRODUC TION

Phylogenetically	 closely	 related	 sister	 species	 and	 subspecies	 are	
expected	to	show	similarities	in	their	niches	(Losos,	2008;	Peterson,	
2011;	 Peterson,	 Soberón,	 &	 Sánchez-	Cordero,	 1999).	 However,	
there	 is	some	empirical	evidence	that	contradicts	 this	expectation	
(Chen,	 Hill,	 Ohlemüller,	 Roy,	 &	 Thomas,	 2011;	 Peterson	 &	 Holt,	
2003).	Subspecies	that	live	in	different	geographical	locations	(allo-
patric	distribution),	or	in	different	zones	along	mountain	slopes,	may	
have	different	niches	(Nakazawa	et	al.,	2010;	Vetaas,	2000).	Niche	is	
an	n-	dimensional	environmental	space	(fundamental	niche)	which	is	
constricted	(realized	niche)	by	species	interactions,	dispersal	limita-
tions,	and	land	use	(Hutchinson,	1957;	Sax,	Early,	&	Bellemare,	2013;	
Zhao,	 Ren,	 Garber,	 Li,	 &	 Li,	 2018).	 “Climatic	 niche”	 is	 the	 climatic	
space	 occupied	 by	 a	 species	 in	 a	 realized	 geographic	 distribution	
(Peterson	et	al.,	2011).

Species	 distribution	 can	 be	 characterized	 by	 climatic	 variables	
including	 precipitation	 and	 temperature,	 their	 interaction,	 and	 to-
pography	(Bell,	Bradford,	&	Lauenroth,	2014;	Margules,	Nicholls,	&	
Austin,	1987);	 these	variables	are	part	of	 the	principal	dimensions	
of	 a	 species’	 fundamental	 niche	 (Hutchinson,	 1957).	 The	 principal	
dimensions	of	fundamental	niches	tend	to	overlap	between	closely	
related	species	and	subspecies,	as	suggested	by	phylogenetic	niche	
conservatism	 (Losos,	 2008;	 Peterson	 et	al.,	 1999).	 However,	 this	
concept	is	complex	and	cannot	be	studied	and	expressed	well	with	
parsimony	 (Drew	&	Perera,	 2011)	 because	 the	 realized	 niche	 of	 a	
species	has	many	more	determining	factors	such	as	predator–prey	
relationships,	 food	 availability,	 disturbance,	 and	 other	 behavioral	
and	ecological	processes,	in	addition	to	climatic	variables	(Cushman,	
Littell,	&	McGarigal,	2010;	Hutchinson,	1957).	Ecological	niche	mod-
els	 (ENMs)	 without	 such	 range-	constraining	 factors	 do	 not	 really	
represent	the	“true”	realized	niche	of	a	species.	Species	distribution	
models	 (SDMs)	based	on	 such	ENMs	with	only	 topo-	climatic	 vari-
ables	tend	to	produce	a	potential	distribution,	rather	than	the	real-
ized	geographic	distribution	of	species	 (Jiménez-	Valverde,	Lobo,	&	
Hortal,	2008;	Sax	et	al.,	2013).

The	 climate	 forecast	 in	 the	 “business-	as-	usual”	 scenario	
(defined	 as	 future	 development	 trends	 following	 those	 of	 the	
past	without	 any	 change	 in	 policy	 (Metz,	 2001)),	 also	 known	 as	
Representative	 Concentration	 Pathways	 (RCP)	 8.5,	 projects	 the	
average	 surface	 temperature	 to	 be	 2.6°C	 to	 4.8°C	 warmer	 by	
the	end	of	 this	century	compared	with	 the	1986	to	2005	period	
(Collins	et	al.,	2013).	The	change	 in	average	surface	temperature	
and	precipitation	regime	may	generate	a	novel	climate	 in	the	fu-
ture	(Collins	et	al.,	2013;	Pendergrass	&	Hartmann,	2014;	Williams,	
Jackson,	&	Kutzbach,	2007).	A	globally	coherent	 “fingerprint”	of	
current	 climate	 change	 impacts	 on	 species	 has	 been	 recorded	
by	different	meta-	analyses	 (Chen	et	al.,	2011;	Parmesan	&	Yohe,	
2003),	and	similar	impacts	on	species	are	projected	under	future	
climate	 conditions	 (Bedia,	 Herrera,	 &	 Gutiérrez,	 2013;	 Peterson	
et	al.,	2002;	Zhang	et	al.,	2015).

Most	 studies	on	niche	similarity	are	carried	out	within	 species	
and	 between	 species,	 and	 between	 hybridizing	 parents	 and	 their	

decedent	 species	 (Nakazawa	 et	al.,	 2010;	 Peterson	 et	al.,	 1999;	
Suwal	 &	 Vetaas,	 2017;	 Vetaas,	 2002).	 The	 intraspecies	 (e.g.,	 sub-
species)	 fundamental	 niches	 are	 expected	 to	 overlap	 to	 some	 ex-
tent,	because	fundamental	niches	are	conserved	over	 time	 (Losos,	
2008).	 However,	 intraspecies	 realized	 niches	 may	 differ	 because	
of	 geographic	 isolation	 (such	 as	 allopatric	 or	 parapatric	 distribu-
tion),	dispersal	limitation,	and	competitive	exclusion	(Garcia-	Ramos,	
Sanchez-	Garduno,	&	Maini,	2000).

The	primary	aim	of	this	study	was	to	predict	the	potential	climate	
niche	for	Macaca assamensis	M’Clelland	1840	(Assamese	macaque,	
Figure	1)	based	on	species	distribution	modeling. Macaca assamensis 
diverged	from	M. radiata	when	M. radiata	expanded	its	distribution	
from	 the	 Indian	 peninsula	 towards	 the	Himalayas	 (Fooden,	 1988).	
Macaca assamensis	 has	 since	 been	 divided	 into	 two	 subspecies;	
M. assamensis	 ssp.	 pelops	 (western	 population)	 and	M. assamensis 
ssp.	assamensis	 (eastern	 population;	 further	 taxonomic	 details	 can	
be	found	in	the	“Taxa”	section;	Fooden,	1988;	Roos	et	al.,	2014).	We	
study	the	within-	species	climatic	niches	and	distribution	overlap	of	
these	 two	 subspecies	of	Macaca assamensis	 under	 the	 current	 cli-
mate	and	under	a	future	projected	climate	using	topo-	climatic	vari-
ables.	 The	 eastern	 population	 became	 isolated	 from	 the	 western	
population	(source)	because	of	glacial	retreat	in	a	warm	period	during	
the	late	Pleistocene	to	Holocene,	which	transformed	the	glacier	into	
a	major	river,	creating	the	current	barrier	at	the	eastern	end	of	the	
Himalayan	mountain	chain	(Fooden,	1988;	Khanal	et	al.,	2018).	This	
gives	rise	to	the	question:	Do	the	subspecies	have	a	high	degree	of	
similarity	in	their	realized	climatic	niches,	as	explained	by	phyloge-
netic	niche	conservatism	(Losos,	2008;	Peterson	et	al.,	1999),	or	do	
they	 have	 differently	 realized	 climatic	 niches	 because	 of	 climatic	
context	 from	disjunct	distributions	 since	 the	 last	maximum	glacia-
tion	 (ca.	 18,000	years	 ago)?	 To	 answer	 this	 question,	 here	we	 set	
out	to	investigate	(a)	whether	climatic	conditions	are	similar	between	
the	 respective	 regions	of	 the	 two	 subspecies	 of	M. assamensis,	 (b)	
whether	quantified	realized	climatic	niches	are	similar	between	the	
taxa,	and	(c)	where	the	potential	distributional	areas	under	current	
and	future	climate	scenarios	are	located?

F IGURE  1 Western	Assamese	macaque	(Macaca assamensis 
pelops)	in	the	moist	broad-	leaved	forest	of	eastern	Nepal,	at	
elevation	approx.	2,	700.	Photograph	by	coauthor	GRR
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2  | METHODS

2.1 | Study area

The	 study	 area	 ranges	 between	 77°E	 to	 117.3°E	 and	 5.6°N	 to	
36.5°N	and	covers	most	of	the	Hindu-	Kush	Himalayan	region	includ-
ing	Nepal,	Bhutan,	Bangladesh,	Myanmar,	Laos,	Thailand,	Cambodia,	
Vietnam,	 as	well	 as	 northern	parts	of	 India	 and	 southern	parts	of	
China	 (Figure	2).	We	 considered	 a	 study	 area	 larger	 than	 the	 cur-
rently	 known	 distribution	 of	 Macaca assamensis	 (Fooden,	 1980,	
1988;	Roos	et	al.,	2014;	Timmins	&	Duckworth,	2013;	Wada,	2005),	
so	that	models	may	reveal	any	peripheral	potential	areas	that	are	not	
yet	known.	Given	such	a	large	study	area,	there	is	high	topographi-
cal	diversity	including	floodplains,	valleys,	gentle	to	steep	mountain	
slopes,	and	small	streams	to	very	large	rivers.

Most	 of	 the	 study	 area	 is	 dominated	 by	 monsoon	 climate,	
where	a	high	proportion	of	 the	precipitation	occurs	during	sum-
mer	with	 a	minor	 cycle	 of	 precipitation	 during	 the	winter	 (Yihui	
&	 Chan,	 2005).	 The	 eastern	 region	 has	more	 evenly	 distributed	
precipitation	throughout	the	year	compared	to	the	western	region	
(http://sdwebx.worldbank.org/climateportal).	 The	 study	 area	 of-
fers	 tropical,	 subtropical,	 and	 temperate	 climatic	 regions	 as	well	
as	alpine.

Rapid	urbanization	and	extension	of	agriculture	 in	 the	 last	 few	
decades	 have	 led	 to	 considerable	 transformation	 of	 forest	 in	 this	
region	 (Giri,	Often,	Pradhan,	Kratzschmar,	&	Shrestha,	1998;	Zhao	
et	al.,	2006),	making	agriculture	the	dominant	 land-	use	type	 in	the	
region	(Stibig	et	al.,	2007).	This	transformation	has	fragmented	the	
habitats	of	the	macaque	species	(Boonratana,	Chalise,	Das,	Htun,	&	
Timmins,	2008).

2.2 | Taxa

Assamese	 macaque	 (Macaca assamensis	 Integrated	 Taxonomic	
Information	 System	 Taxonomic	 Serial	 Number	 (TSN)	 573018)	 is	 a	
member	of	the	sinica	group.	It	is	categorized	as	“Near	Threatened”	in	
the	Red	List	compiled	by	the	International	Union	for	Conservation	of	
Nature	(IUCN).	The	species	inhabits	the	mountain	regions	of	the	cen-
tral	and	eastern	Himalaya,	and	adjoining	south	and	southeast	Asian	
mountain	chains	(Boonratana	et	al.,	2008;	Fooden,	1980,	1982).	The	
eastern	population	is	said	to	range	from	Arunachal	Pradesh	in	India	
to	Thailand,	Laos,	Vietnam,	and	the	Yunnan	and	Guangxi	provinces	
in	China;	 the	western	population	 is	described	as	being	distributed	
from	West	 Bengal	 in	 India	 to	 central	 Nepal	 (Groves,	 2001).	 Two	
subspecies	 of	 M. assamensis	 are	 distinguished	 as	 the	 southeast	
Asian	Macaca assamensis	ssp.	assamensis	(TSN	945194)	and	the	sub-	
Himalayan	Macaca assamensis	 ssp.	 pelops	 (TSN	 945195).	 The	 two	
parapatric	subspecies	are	separated	by	a	described	zoogeographical	
barrier	(defined	here	as	a	physical	obstacle	that	prevents	migration	of	
M. assamensis);	the	Brahmaputra	river	in	northeastern	India	(Fooden,	
1982;	Roos	et	al.,	2014).	The	distribution	of	 the	 two	subspecies	 is	
fairly	well-	known,	but	quantitative	mapping	and	the	characteristics	
of	their	niche	and	distribution	are	lacking	(Regmi	et	al.,	2018).

2.3 | Occurrence data and pseudo- absence data

We	 used	 open-	access	 species	 occurrence	 data	 from	 Regmi	 et	al.	
(2018;	 collection	 from	1998	 to	2013)	 and	Fooden	 (1982;	museum	
records	 from	 1849	 to	 1980;	 n	=	186	 for	M. assamensis	 ssp.	 pelops 
and	n	=	184	for	M. assamensis	ssp.	assamensis)	to	generate	the	mod-
els.	These	are	“occurrence	only”	data,	and	we	therefore	generated	

F IGURE  2 Map	of	the	study	area	and	
recorded	locations	of	eastern	and	western	
populations	of	Macaca assamensis. The 
IUCN	range	map	was	extracted	from	
the	IUCN	Red	List	portal	(http://www.
iucnredlist.org),	accessed	on	27	November	
2016

http://sdwebx.worldbank.org/climateportal
http://www.iucnredlist.org
http://www.iucnredlist.org
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background	data	randomly	throughout	the	study	area	at	a	minimum	
of	5	km	linear	distance	(to	avoid	possible	clustering	of	multiple	points;	
5	km	is	an	arbitrary	value	equivalent	to	approximately	five	times	the	
pixel	size,	which	is	meaningful	in	landscape	scale)	between	any	two	
points	in	ArcGIS	10.3	(ESRI;	total	background	data	points	=	39,884)	
to	produce	the	niche	models	and	the	species	distribution	models.

2.4 | Environmental variables

On	a	broad	scale,	species	distribution	is	usually	correlated	with	the	
two	 principal	 climate	 factors:	 precipitation	 and	 temperature	 (Bell	
et	al.,	2014;	Thomas,	2010),	which	also	applies	to	mammals	(Li	et	al.,	
2013).	In	addition,	different	ecological	processes	such	as	predator–
prey	 dynamics	 and	 food	 availability	 also	 govern	 mammalian	 spe-
cies	distributions	(Li	et	al.,	2013;	McPherson	&	Jetz,	2007;	Trainor,	
Schmitz,	Ivan,	&	Shenk,	2014).	Theoretically,	all	ecological	processes	
are	 required	 for	 an	 informed	study	of	 the	 realized	niche	and	 real-
ized	distribution,	but	potential	niche	and	potential	distributions	can	
be	estimated	based	on	just	climatic	variables	(Bobrowski,	Gerlitz,	&	
Schickhoff,	 2017;	 Bobrowski	 &	 Schickhoff,	 2017;	 Drew	 &	 Perera,	
2011).

The	predictive	performance	of	species	distribution	depends	also	
on	the	magnitude	of	climate	change	as	well	as	partly	on	the	choice	
of	 input	 data	 and	 their	 resolution	 (Bobrowski	&	 Schickhoff,	 2017;	
Trivedi,	Berry,	Morecroft,	&	Dawson,	2008).	Hence,	as	a	test	we	used	
two	different	sources	of	bioclimatic	variables:	Climatologies	at	High	
resolution	for	the	Earth’s	Land	Surface	Areas	(CHELSA;	Average	of	
1979–2013;	Karger	et	al.,	2016,	2017)	and	WorldClim	(Version	1.4,	
average	of	1960	to	1990;	Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	
2005).	This	allows	for	a	comparative	study	similar	to	the	one	done	in	
Bobrowski	and	Schickhoff	(2017).	Both	climate	datasets	are	derived	
from	 the	 same	 source	 of	 data	with	 a	 few	but	 fundamental	 differ-
ences	in	their	preparation.	The	CHELSA	dataset	is	more	recent	and	
meant	 to	be	an	 improvement	derived	 from	statistical	downscaling	
with	gains	in	mountain	regions,	whereas	the	earlier	WorldClim	data-
set	is	based	on	weighted	spatial	interpolation	and	widely	established	
(Bobrowski	&	Schickhoff,	2017).	This	study	is	among	the	few,	which	
have	started	to	use	the	CHELSA	data	in	a	comparative	fashion.	The	
CHELSA	data	have	only	recently	been	released,	whereas	WorldClim	
has	been	 in	use	 for	more	 than	a	decade	unchanged.	The	CHELSA	
data	are	not	fully	tested	yet	by	the	global	user	community,	but	claim	
to	 correct	 a	weakness	 of	WorldClim	 data	 in	 orographic	 precipita-
tion	values	(Karger	et	al.,	2016).	Orographic	precipitation	correction	
is	particularly	 important	 for	studies	modeling	species	distributions	
in	mountainous	areas	such	as	the	Himalaya	(Bobrowski	et	al.,	2017;	
Singh	&	Kumar,	1997).	The	variables	with	CHELSA	data	will	be	called	
“CHELSA-	predictors,”	and	the	variables	with	WorldClim	data	will	be	
called	“WorldClim-	predictors”	hereafter.

Here,	 we	 used	 24	 predictors,	 which	 include	 21	 bioclimatic	
variables	 (bio01	 to	 bio19,	 annual	 biotemperature	 (ABT;	Holdridge,	
1947;	 Li,	Wen,	 Guo,	 &	 Du,	 2015),	 the	 Ellenberg	 climatic	 quotient	
(EQ;	Ellenberg,	1988;	Mellert	et	al.,	2016);	ABT	and	EQ	have	a	con-
sistent	 time	period	 and	 resolution	with	other	bioclim	variables)	 as	

well	 as	 three	 topographic	 variables	 (Supporting	 Information	 Table	
S1).	The	topographic	variables	are	elevation	(SRTM	90	m	digital	el-
evation	model	 [Jarvis,	 Reuter,	Nelson,	&	Guevara,	 2008]),	 derived	
slope,	and	aspect	 in	ArcGIS	10.3	 (ESRI).	Although	 land	cover	 is	an	
important	variable	in	the	distribution	of	species,	its	unavailability	for	
future	periods	meant	we	did	not	include	it	in	our	model	preparation.	
Climatic	variables,	however,	should	compensate	for	its	absence.	The	
high-	resolution	topographic	data	were	not	aggregated	to	match	the	
coarse	climate	data	because	we	did	not	use	the	raster	file	but	instead	
used	a	point-	based	method	where	raster	values	were	extracted	to	
points	 and	 analyzed	 (Kandel	 et	al.,	 2015;	 Regmi	 et	al.,	 2018).	 All	
the	data	used	 in	 this	 study	are	open	access,	 and	 the	variables	we	
prepared	 (ABT,	EQ,	slope,	aspect)	as	well	as	occurrence	data	have	
been	made	open	access	via	a	university	repository	http://hdl.handle.
net/1956/16960.

In	 a	 traditional	 approach,	 one	 of	 the	 problems	 when	 working	
with	 multiple	 variables	 is	 multicollinearity	 (Alin,	 2010),	 which	 is	
reduced	 by	 omitting	 highly	 correlated	 variables	 (Elith,	 Kearney,	 &	
Phillips,	 2010;	Fox	&	Weisberg,	2010).	Here,	we	 followed	 this	 ap-
proach	and	to	assess	which	variables	were	highly	correlated,	variable	
clusters	were	plotted	using	the	varclus	function	(Harrell,	2013)	in	R 
(R	Core	Team,	2017)	 for	both	CHELSA-		and	WorldClim-	predictors	
(Supporting	 Information	 Figure	 S1).	 We	 also	 calculated	 variance	
inflation	 factors	 (VIF)	 for	 all	 variables	 using	 the	 R	 package	 usdm 
(Naimi,	Hamm,	Groen,	 Skidmore,	&	Toxopeus,	 2014).	We	 selected	
one	variable	with	the	smallest	VIF	value	among	the	farthest	cluster	
members	from	each	cluster.	When	there	was	a	single	variable	 in	a	
clade,	 the	variable	was	also	selected.	This	resulted	 in	17	CHELSA-	
predictors	 and	 15	WorldClim-	predictors.	Next,	 the	 variance	 infla-
tion	factor	 (VIF)	 function	 (vifstep)	 in	the	usdm R	package	was	used	
to	select	 the	 final	 list	of	 least	correlated	variables,	using	a	 thresh-
old	of	VIF	<	5.0	(Guisan,	Thuiller,	&	Zimmermann,	2017).	This	gave	
seven	 common	 and	 two	 specific	 variables	 for	 both	 CHELSA-		 and	
WorldClim-	predictors	(Supporting	Information	Table	S1).	These	sub-
sets	of	variables	were	used	to	analyze	realized	climate	niche	differ-
ences	between	taxa	and	generate	species	distribution	models.

2.5 | Future climate scenario selection for potential 
distribution

The	global	warming	 trend	 in	 the	past	century,	particularly	 the	 last	
few	decades,	has	been	at	a	higher	rate	compared	to	previous	cen-
turies	(IPCC,	2007;	Stocker	et	al.,	2014).	The	Himalayan	region	has	
been	warming	more	 rapidly	 over	 the	 past	 few	 decades	 compared	
to	average	global	warming	(IPCC,	2007;	Shrestha,	Gautam,	&	Bawa,	
2012;	 Shrestha,	Wake,	Mayewski,	 &	Dibb,	 1999).	 Recent	monthly	
mean	 and	 annual	 mean	 temperatures	 have	 broken	 previous	 re-
cords	(GISTEMP	Team,	2016;	Hansen,	Ruedy,	Sato,	&	Lo,	2010),	and	
Friedrich,	 Timmermann,	 Tigchelaar,	 Timm,	 and	 Ganopolski	 (2016)	
consider	 that	 current	 climate	 projections	 are	 possibly	 underesti-
mated.	Further	evidence	of	this	has	been	reported	from	all	polar	re-
gions	(Comiso	&	Hall,	2014;	Pachauri	et	al.,	2014),	including	the	“third	
pole,”	the	Himalaya	(Armstrong,	2010;	Huettmann,	2012;	Pachauri	

http://hdl.handle.net/1956/16960
http://hdl.handle.net/1956/16960
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et	al.,	2014).	Given	the	current	governance	of	climate-	related	issues,	
we	have	adopted	a	precautionary	approach	to	our	choice	of	climate	
change	scenario	and	have	chosen	the	representative	concentration	
pathway	8.5	 (RCP8.5,	 “business-	as-	usual”)	 as	 a	 future	climate	 sce-
nario,	which	we	consider	to	be	the	most	realistic	for	our	study	area.

We	 took	 an	 average	 of	 five	 downscaled	 general	 circulation	
models,	 namely	 ACCESS1-	0,	 BCC-	CSM1-	1,	 GISS-	E2-	R,	 MIROC-	
ESM-	CHEM	 and	 MPI-	ESM-	LR,	 to	 reduce	 model-	wise	 variations	
(Beaumont,	Hughes,	 &	 Pitman,	 2008;	 Suwal	&	Vetaas,	 2017).	We	
predicted	for	a	single	worst	case	scenario	(i.e.,	RCP8.5)	and	a	single	
future	period	2070	(average	of	2060	to	2080;	Hijmans	et	al.,	2005).

2.6 | Analysis, distribution model 
preparation, and validation

The	values	of	all	environmental	variables	were	extracted	at	occur-
rence	points,	background	data	points,	and	lattice	points	(points	that	
are	arranged	 in	a	grid	at	3	arc	minutes	distance	 in	 the	study	area,	
total	=	177,938,	on	which	current	and	future	distributions	were	pre-
dicted).	All	 the	analyses	were	performed	as	a	point-	based	analysis	
(using	 environmental	 values	 extracted	 at	 points	 instead	 of	 raster	
files;	e.g.,	Kandel	et	al.,	2015;	Regmi	et	al.,	2018).

We	used	the	following	analytical	path:	We	applied	constrained	
principal	 component	 analysis	 (PCA)	 for	 the	 eastern	 and	 western	
regions’	 climatic	 difference;	 Tukey’s	 honest	 significant	 difference	
(HSD)	 test	 for	 climatic	 range	differences	 for	 all	 24	 variables;	mul-
tivariate	 analysis	 of	 variance	 (MANOVA)	 for	niche	differences	be-
tween	taxa;	 the	“background	test”	 to	analyze	niche	similarity	with	
available	climate;	and,	finally,	distributions	of	species	were	modeled	
with	MaxEnt	and	Random	Forest	(details	below).	This	was	done	with	
both	climate	datasets,	that	is,	CHELSA-		and	WorldClim-	predictors.

The	 climatic	 similarity	 between	 the	 eastern	 region	 (of	M. as-
samensis	spp.	assamensis)	and	western	region	(of	M. assamensis	spp.	
pelops)	was	evaluated	using	PCA	 in	the	R	package	vegan	 (Oksanen	
et	al.,	 2013).	An	equal	 number	of	 random	points	 (15,000	 for	 each	
region;	note:	Density	of	points	is	not	equal	here)	was	used	from	the	
eastern	 and	western	 regions,	 on	which	 raster	 values	 of	 nine	 least	
correlated	topo-	climatic	variables	were	extracted	from	raster	files.	
Then,	constrained	PCA	was	performed	on	the	values	(separately	for	
CHELSA	and	WorldClim-	predictors),	 and	 “region”	was	 treated	as	a	
predictor	to	analyze	climatic	similarity	between	regions	(999	permu-
tation	tests).

Post	hoc	Tukey’s	HSD	with	a	0.95	confidence	interval	was	used	
(for	occurrence	data)	 to	 test	 the	difference	 in	 the	 realized	climate	
range	 of	 all	 variables	 (square	 root-	transformed)	 between	 the	 two	
subspecies.	A	variable	range	graph	was	plotted	by	standardizing	all	
the	variables	to	values	between	0	and	2	to	aid	range	comparisons	be-
tween	the	taxa.	A	MANOVA	(Pillai,	1985)	was	used	to	test	whether	
the	realized	climatic	niches	of	the	two	subspecies	were	statistically	
similar.	We	used	a	subset	of	nine	selected	independent	variables	(cf.	
above),	and	the	taxa	were	coded	as	a	fixed	factor.

The	 background	 test	 evaluates	 whether	 the	 distribution	 (or	
niches)	of	two	species	is	more	or	less	similar	than	expected	based	

on	 the	environmental	background	of	where	 they	occur	 (Warren,	
Glor,	&	Turelli,	2010).	This	will	indicate	whether	the	realized	niche	
of	one	subspecies	 is	more	or	 less	similar	 to	the	realized	niche	of	
another	 subspecies	 based	 on	 the	 environmental	 conditions	 the-
oretically	available	to	them	(i.e.,	ignoring	the	barrier).	In	this	test,	
we	used	the	environment	of	the	whole	study	area	as	background	
because	M. assamensis	 ssp.	 assamensis	 is	 a	 descendant	 of	M. as-
samensis	ssp.	pelops,	which	dispersed	to	new	areas	in	the	past	and	
is	not	yet	fully	evolved	into	a	new	species.	This	asymmetric	back-
ground	test	was	performed	for	both	taxa,	and	similarity	measures	
D	 (Schoener,	 1968)	 and	 I	 (Warren,	 Glor,	 &	 Turelli,	 2008)	 are	 re-
ported	along	with	their	respective	statistics.	This	is	an	additional	
test	to	the	MANOVA	as	MANOVA	was	used	to	test	differences	in	
the	realized	niche	between	taxa	based	on	occurrence	data,	while	
the	background	test	assesses	whether	the	realized	niche	is	more	
or	 less	 similar	 than	 random	expectation	given	 the	climate	of	 the	
study	area.

To	 answer	 the	 third	 research	 question,	 species	 distribution	
models	 (SDMs)	were	 developed	 using	MaxEnt	 (Phillips,	 Anderson,	
&	 Schapire,	 2006)	 and	 Random	 Forest	 (Breiman,	 2001a;	 Liaw	 &	
Wiener,	 2002)	 algorithms,	 which	 are	 among	 the	 most	 commonly	
used	machine	learning	methods	(Aguirre-	Gutiérrez	et	al.,	2013;	Mi,	
Huettmann,	Guo,	Han,	&	Wen,	2017).	The	models	were	fitted	with	
binary	response	data	(occurrence	data	with	background	data)	in	the	
R	package	sdm	 (Naimi	&	Araújo,	2016).	Although	 it	 is	claimed	that	
both	algorithms	are	not	much	affected	by	multicollinearity	(Breiman,	
2001a;	Elith	et	al.,	2011),	the	models	were	run	on	subsets	of	the	nine	
least	correlated	predictor	variables,	because	higher	dimensionality	
may	cause	poor	model	extrapolation	and	transferability	 (Peterson,	
2011;	but	see	Breiman,	2001a,b)

Models	were	fitted	separately	for	each	subspecies	with	CHELSA-		
and	WorldClim-	predictors.	The	models	were	set	to	the	default	set-
tings,	except	replication,	which	was	set	as	fivefold	cross-	validation	
(CV)	for	10	times,	regularization	multiplier,	which	was	set	to	1.0	for	
M. assamensis	 ssp.	assamensis	and	0.5	for	M. assamensis	 ssp.	pelops 
(based	on	AIC	 scores	 tested	between	0	 and	10	at	0.5	 intervals	 in	
ENMTools	(Warren	&	Seifert,	2011))	in	MaxEnt,	and	using	out-	of-	bag	
(OOB)	sampling	in	Random	Forest.	Models	were	trained	with	70%	of	
binary	response	data	and	remained	30%	was	used	for	model	eval-
uation.	We	used	one	 threshold-	independent	evaluation	measure—
area	under	the	curve	(AUC)	of	the	receiver	operating	characteristic	
(ROC;	Bradley,	 1997;	Hanley	&	McNeil,	 1982)	 and	 two	 threshold-	
dependent	evaluation	measures—true	skill	 statistic	 (TSS;	Allouche,	
Tsoar,	&	Kadmon,	2006)	and	omission	error	with	“maximum	sum	of	
sensitivity	and	specificity”	threshold.

Predictions	 from	 models	 were	 made	 on	 lattice	 files	 prepared	
as	 above	 from	 each	 run	 for	 each	 subspecies	 and	 separately	 for	
CHELSA-		 and	 WorldClim-	predictors.	 Future	 predictions	 from	
CHELSA-	predictor-	trained	models	were	not	performed	because	the	
future	scenario	of	CHELSA	is	not	available	at	the	moment.	The	aver-
age	of	50	replications	(5	CV	*	10	runs)	predicting	the	relative	index	
of	occurrence	(RIO)	was	used	for	further	analysis.	The	average	(of	50	
replications)	variable	importance	based	on	the	AUC	test	score	was	
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extracted	from	MaxEnt	and	Random	Forest	models	and	illustrated	
graphically.

To	plot	a	two-	dimensional	realized	climatic	niche	for	each	sub-
species,	we	selected	one	temperature	and	one	precipitation	variable	
because	they	are	the	key	dimensions	of	climatic	niches	 (Bell	et	al.,	
2014;	 Margules	 et	al.,	 1987;	 Vetaas,	 2002).	 From	 the	WorldClim-	
predictors,	the	most	important	precipitation	and	temperature	vari-
ables	 are	 bio18	 and	 bio09,	 respectively,	 for	 both	 taxa.	 With	 the	
CHELSA-	predictors,	 bio18	 was	 the	 most	 important	 precipitation	
variable	 in	 three	of	 four	cases	 (two	 taxa,	 two	models),	 and	hence,	
it	was	chosen.	However,	 for	 the	 temperature	variable,	both	bio03	
and	bio08	were	 top	 in	 two	of	 four	cases.	For	simplicity,	we	chose	
bio08	over	bio03,	because	bio03	is	more	complex	(ratio	of	bio02	and	
bio07)	than	bio08.	The	two	selected	variable	sets	were	used	to	plot	
two-	dimensional	realized	climatic	space	with	density	 isolines	using	
the	R	package	ggplot2	(Wickham,	2010).

2.7 | Analysis of prediction similarity of 
CHELSA and WorldClim- predictors

The	similarities	 in	the	predictions	(Breiman,	2001b)	from	CHELSA-		
and	WorldClim-	predictors	 were	 analyzed	 using	 both	 MaxEnt	 and	
Random	Forest	models	from	raster	files	(in	ASCII	format,	prepared	
by	 inverse	distance	weighted	method	 from	RIO	value)	 supplied	 to	
the	 ENMTools	 software	 (Warren	 et	al.,	 2008).	 The	 range	 overlaps	
between	 taxa	were	analyzed	with	 the	 respective	 threshold	 “maxi-
mum	 sum	 of	 sensitivity	 and	 specificity”	 (e.g.,	 Jiménez-	Valverde	 &	
Lobo,	2007)	from	each	model.	The	similarity	of	the	predictions	be-
tween	eastern	and	western	populations,	and	between	MaxEnt	and	
Random	Forest	for	future	geographical	distributions,	was	estimated	

by ENMTools	using	two	indices	D	and	 I.	Both	D	and	 I	 indices	range	
between	0	 (no	 similarity)	 and	1	 (identical	 prediction).	 The	D	 and	 I 
are	calculated	by	taking	the	difference	between	the	relative	indices	
of	occurrence	score	for	each	grid	cell	(for	details	see	Warren	et	al.,	
2008;	Warren,	Glor,	&	Turelli,	2009).

3  | RESULTS

3.1 | Climatic similarity between the eastern and 
western regions

The	similarity	analysis	of	the	climatic	conditions	using	constrained	PCA	
shows	significantly	different	climatic	conditions	between	the	eastern	
and	western	 regions	with	both	CHELSA-		 (r2	=	0.194,	p < 0.001)	and	
WorldClim-	predictors	 (r2	=	0.198,	p < 0.001).	The	PCA	plots	 show	a	
partly	overlapping	distribution	of	points	from	the	two	regions	(details	
in	 Supporting	 Information	 Figure	 S2).	 Although	 the	 overall	 climatic	
conditions	are	significantly	different	between	the	eastern	and	west-
ern	regions,	there	are	patches	with	similar	climate	among	the	two.

A	“background	test”	was	performed	for	each	subspecies	with	
respect	 to	 the	 total	 climatic	 background	 available	 to	 them	 (in-
cludes	 both	 eastern	 and	western	 regions).	 The	 background	 test	
for	the	eastern	population	in	ENMTools	suggests	that	its	realized	
climate	is	less	similar	to	the	background	than	random	expectation	
(i.e.,	 given	 the	 background	 climate	 available;	 CHELSA:	D	=	0.14,	
p < 0.05; I	=	0.35,	p	<	0.05;	WorldClim:	D	=	0.22,	p < 0.05; I	=	0.49,	
p	<	0.05;	 Supporting	 Information	 Figure	 S3A),	 while	 the	 back-
ground	 test	 for	 the	western	 population	 shows	 that	 the	 realized	
climate	 does	 not	 significantly	 differ	 from	 the	 background	 cli-
mate	 (CHELSA:	D	=	0.29,	p > 0.05; I	=	0.56,	p	>	0.05;	WorldClim:	

F IGURE  3 The	two-	dimensional	realized	climatic	niche	(CHELSA:	bio08	(mean	temperature	of	wettest	quarter)	versus	bio18	
(precipitation	of	warmest	quarter;	left	panel);	WorldClim:	bio09	(mean	temperature	of	driest	quarter)	versus	bio18	(right	panel))	shows	that	
the	climatic	niche	of	the	western	population	(Macaca assamensis	ssp.	pelops)	overlaps	with	the	core	climatic	niche	of	the	eastern	population	
(M. assamensis	ssp.	assamensis)	and	the	climatic	niche	of	the	eastern	population	overlaps	a	peripheral	area	of	the	climatic	niche	of	the	
Western	population
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D	=	0.27,	 p > 0.05; I	=	0.54,	 p	>	0.05;	 Supporting	 Information	
Figure	S3B).

3.2 | Climatic niche overlaps between the 
two subspecies

Tukey’s	HSD	 test	 reveals	 significantly	 different	 ranges	 of	 21	 vari-
ables	between	the	two	subspecies	(except	bio14,	bio19,	and	aspect	

for	CHELSA-	predictors,	and	bio12,	bio16,	and	aspect	for	WorldClim-	
predictors;	 Supporting	 Information	 Table	 S2	 and	 Figure	 S4).	 The	
MANOVA	test	shows	significantly	different	realized	climatic	niches	
between	 the	 two	 subspecies	 (CHELSA:	 Pillai’s	 trace	=	0.86882,	
p < 0.001;	WorldClim:	Pillai’s	trace	=	0.7629,	p < 0.001).	The	climatic	
niche	 difference	 is	 also	 visible	 in	 the	 two-	dimensional	 niche	 plots	
(Figure	3),	where	the	density	isolines	of	the	two	subspecies	have	a	
distinct	orientation.

Method AUC TSS
Omission error 
(in %) Subspecies

CHELSA

MaxEnt 0.921 0.71 14.08 M.a.assamensis

Random	Forest 0.930 0.73 12.78 M.a.assamensis

MaxEnt 0.992 0.94 2.41 M.a.pelops

Random	Forest 0.989 0.92 4.48 M.a.pelops

WorldClim

MaxEnt 0.924 0.74 12.84 M.a.assamensis

Random	Forest 0.938 0.76 13.24 M.a.assamensis

MaxEnt 0.994 0.94 2.92 M.a.pelops

Random	Forest 0.993 0.94 2.70 M.a.pelops

Note.	Higher	area	under	the	curve	(AUC)	and	true	skill	statistic	(TSS)	values	indicate	a	better	model,	
as	do	lower	values	of	omission	error.

TABLE  1 Model	performance	
measures	of	MaxEnt	and	Random	Forest	
for	two	subspecies	of	Macaca assamensis

F IGURE  4 Variable	importance	based	on	area	under	the	curve	(AUC)	test	scores	from	MaxEnt	and	Random	Forest	models.	Bio02	=	mean	
diurnal	range,	bio03	=	isothermality,	bio08	=	mean	temperature	of	wettest	quarter,	bio09	=	mean	temperature	of	driest	quarter,	
bio13	=	precipitation	of	wettest	month,	bio14	=	precipitation	of	driest	month,	bio15	=	precipitation	seasonality,	bio18	=	precipitation	of	
warmest	quarter,	bio19	=	precipitation	of	coldest	quarter,	eq	=	Ellenberg	climatic	quotient
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3.3 | Potential distribution of sister taxa under 
current climatic conditions

The	 distribution	 models	 for	 the	 western	 population	 consist-
ently	 have	 better	 AUCs,	 TSSs,	 and	 omission	 errors	 compared	
to	the	eastern	population	models	 (Table	1).	The	most	 important	
variable	 of	 the	 different	 analyses	 with	 respect	 to	 subspecies,	

methods,	and	climate	data	source	varies	with	the	analysis	(details	
in	Figure	4).

The	 predicted	 potential	 distribution	 areas	 are	 wider	 than	
their	 currently	 known	 distribution	 areas	 for	 both	 subspecies	
(Figure	5a).	 This	 is	 particularly	 true	 for	 the	 eastern	 subspecies.	
Although	 the	 realized	climatic	niches	of	 the	 two	subspecies	are	
statistically	 different,	 the	 distribution	 models	 show	 that	 the	

F IGURE  5 Potential	distribution	of	two	subspecies	of	Macaca assamensis	based	on	MaxEnt	and	Random	Forest	models.	The	maps	
illustrate	relative	index	of	occurrence	(RIO)	predictions	for	M. assamensis	ssp.	assamensis	and	M. assamensis	ssp.	pelops	distributions	in	(a)	the	
current	climate,	using	CHELSA-	predictors	(left)	and	WorldClim-	predictors	(right),	and	(b)	a	future	(2070)	climate	scenario	(from	WorldClim-	
predictors	only)
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neighboring	areas	bordering	the	ranges	of	each	and	some	core	ge-
ography	areas	appear	to	be	broadly	suitable	for	both	subspecies	
(Figures	5a	and	6).	The	western	area	shows	comparatively	more	
potential	area	that	could	be	occupied	by	the	eastern	population	
(Figure	5a).	The	 result	 also	agrees	with	 the	background	 test	 (cf.	

above).	It	suggests	that	both	regions	have	some	potential	area	for	
both	subspecies.

The	 predicted	 overlaps	 of	 potential	 area	 between	 subspecies	
using	 an	 average	 of	 ‘maximum	 sum	 of	 sensitivity	 and	 specificity”	
threshold	(Table	2)	vary	among	methods	and	datasets.	The	overlap	

F IGURE  6 Potential	area	of	distribution	based	on	binary	predictions	(suitable/unsuitable)	with	maximum	sensitivity	plus	specificity	
thresholds	for	CHELSA-	predictors	and	WorldClim-	predictors,	as	modelled	by	MaxEnt	and	Random	Forest	under	current	climate	conditions.	
In	the	figure,	the	white	background	inside	the	study	areas	is	predicted	as	not	potential	area.	The	IUCN	range	map	was	extracted	from	the	
IUCN	Red	List	portal	(http://www.iucnredlist.org),	accessed	on	27	November	2016.	The	figure	implies	uncertainty	of	predictions	related	to	
climate	data	source	and	modelling	methods

CHELSA- predictors WorldClim- predictors

MaxEnt Random Forest MaxEnt Random Forest

M. a.	ssp.	pelops 0.055689 0.014217 0.049471 0.009709

M. a.	ssp.	
assamensis

0.172274 0.005475 0.138802 0.007842

Average 0.113981 0.009846 0.094136 0.008775

TABLE  2 The	“maximum	sum	of	
sensitivity	and	specificity”	threshold	for	
MaxEnt	and	Random	Forest	for	CHELSA	
and	WorldClim	data	sources	and	the	two	
subspecies	of	Macaca assamensis	to	
estimate	their	range	overlaps	under	the	
current	climate

http://www.iucnredlist.org
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between	 subspecies	 is	 1.6%	 and	 4.8%	 for	 MaxEnt	 and	 Random	
Forest,	 respectively,	 for	 CHELSA-	predictors.	 Similarly,	 overlap	 of	
subspecies	for	WorldClim-	predictors	 is	5.6%	and	6.9%	for	MaxEnt	
and	Random	Forest,	respectively.

MaxEnt	 models	 based	 on	 CHELSA-	predictors	 predict	 6.6%	
more	potential	area	for	the	eastern	population	and	3.6%	more	area	
for	 the	 western	 population	 compared	 to	 WorldClim-	predictors	
under	 the	 current	 climate.	 Random	 Forest	 models	 with	 CHELSA-	
predictors	predict	48.1%	more	potential	area	for	the	eastern	popu-
lation	and	10.1%	more	area	for	the	western	population	compared	to	
WorldClim-	predictors.

3.4 | The potential distribution of the two 
subspecies under a projected future climate

The	 comparison	 between	 MaxEnt	 and	 Random	 Forest	 on	 future	
potential	 areas	 for	 the	 two	 subspecies	 shows	 that	predictions	 are	
method-	dependent.	 The	 similarity	 between	 future	 predictions	 (D 
and	 I	similarity	 indices)	by	MaxEnt	and	Random	Forest	 is	between	
43	and	84%	 (Figure	7),	 respectively.	The	similarity	 in	 the	potential	
areas	in	the	future	climate	for	the	eastern	and	western	populations	
is	between	26	and	58%	(Figure	7).	The	predicted	potential	distribu-
tion	using	WorldClim-	predictors	is	depicted	in	Figure	5b.	In	the	fu-
ture	projected	 climate,	 the	number	of	potential	 patches	 is	 greater	
compared	to	current	climatic	conditions	(Figure	5a,b).	This	suggests	
fragmentation	of	 the	potential	 area	under	 future	 climate	 and	may	
cause	 loss	 of	 connectivity	 between	 the	 patches,	 thus	 threatening	
the	species	survival	and	having	implications	for	conservation.

3.5 | Prediction similarity test of CHELSA-  and 
WorldClim- predictors

We	created	four	models	using	the	CHELSA-	predictors	and	another	
four	 using	 WorldClim-	predictors.	 The	 AUC	 is	 always	 marginally	
greater	for	the	WorldClim-	predictors	than	for	the	CHELSA-	predictors.	
Similarly,	 based	 on	 the	 TSS	 scores,	 the	WorldClim-	predictors	 are	
generally	 better	 than	 the	 CHELSA-	predictors	 (three	 of	 four	mod-
els	and	one	equal).	The	omission	error	supports	 two	of	 four	mod-
els	for	both	data	sources.	Based	on	the	majority	of	results	from	the	
AUC,	TSS,	and	omission	error,	WorldClim-	predictors	outperform	the	
CHELSA-	predictors	(Table	1).

4  | DISCUSSION

4.1 | Climatic similarity between eastern and 
western regions

PCA	shows	that	climatic	conditions	in	the	eastern	region	and	west-
ern	region	are	different.	The	difference	in	climate	is	possibe	because	
of	 the	 positions	 of	 landmasses.	 The	 eastern	 region	 has	 compara-
tively	more	area	in	the	warmer	south,	whereas	the	western	region	
has	higher	mountains,	 resulting	 in	a	colder	climate.	 In	 the	western	
region,	about	75%	of	precipitation	occurs	during	the	monsoon	pe-
riod	(June	to	September)	while	in	the	eastern	region,	about	the	same	
amount	of	precipitation	 falls	between	May	and	November	 (http://
sdwebx.worldbank.org/climateportal).

Although	the	overall	climate	between	the	eastern	and	western	
regions	is	statistically	different,	both	regions	may	have	some	patches	
that	are	climatically	similar,	 for	 instance	a	 river	valley	or	mountain	
slope.	Such	areas	are	probably	predicted	as	being	suitable	for	both	
taxa	 in	our	models	 in	both	regions.	This	 is	supported	by	the	back-
ground	 test.	 The	 available	 background	 environment	 is	 not	 signifi-
cantly	 different	 from	 the	 environment	 of	 the	western	 population.	
The	western	 population,	 therefore,	 successfully	 colonized	 and	 es-
tablished	in	the	eastern	region	in	the	past	when	the	zoogeographic	
barrier	was	not	effective	(Fooden,	1988).

4.2 | Climatic niche overlaps between the 
two subspecies

The	 realized	 climatic	 ranges	 of	 most	 of	 the	 variables	 are	 signifi-
cantly	 different	 between	 the	 eastern	 and	western	populations,	 as	
suggested	by	Tukey’s	HSD	 test	 (Supporting	 Information	Table	S2).	
The	MANOVA	also	reveals	that	the	climatic	niches	of	the	two	taxa	
are	significantly	different,	possibly	due	to	 local	climatic	context.	 It	
is	 obvious	 that	when	 climates	 of	 two	 regions	 are	 significantly	 dif-
ferent,	the	realized	climate	niches	of	two	taxa	also	show	significant	
difference.	 It	 is	 the	 same	 case	with	 two	 parapatric	 subspecies	 of	
M. assamensis	 in	 this	 study.	 This	 result	 aligns	 with	 previous	 find-
ings,	 for	 instance	the	distinct	realized	niches	of	six	different	sister	
taxa	 of	 Hanuman	 Langur	 (Semnopithecus	 spp.)	 in	 Peninsular	 India	
(Chetan,	Praveen,	&	Vasudeva,	2014),	and	the	distinct	distribution	

F IGURE  7 Graph	of	similarity	indices	D	and	I	from	ENMTools	
for	predictions	by	MaxEnt	and	Random	Forest	for	future	climatic	
conditions	with	WorldClim-	predictors.	The	value	0	means	
completely	dissimilar	and	1	is	totally	identical	conditions.	The	
graph	shows	the	predicted	similarity	between	Macaca assamensis 
ssp.	assamensis	(MAA)	and	M. assamensis	ssp.	pelops	(MAP)	from	
Random	Forest	(RF)	modelling	(first	pair	of	columns)	and	MaxEnt	
(MX;	second	pair	of	columns)	and	illustrates	the	prediction	
similarity	between	MaxEnt	and	Random	Forest	in	reference	to	both	
taxa	(third	and	fourth	pairs	of	columns)

http://sdwebx.worldbank.org/climateportal
http://sdwebx.worldbank.org/climateportal
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and	different	realized	niches	of	a	subspecies	of	Californian	scrub	jay	
(Aphelocoma californica)	 in	Mexico	 (Peterson	&	Holt,	 2003).	 These	
previous	findings	and	our	results	suggest	that	closely	related	taxa	do	
not	necessarily	have	similar	realized	niches	(but	see	Peterson,	2011).	
The	macaque	subspecies	are	geographically	isolated	and	living	in	dif-
ferent	climatic	conditions,	which	may	promote	speciation	 (Matute,	
Novak,	&	Coyne,	2009;	Schluter,	2009).

The	 combined	 two-	dimensional	 realized	 climatic	 niche	 of	 both	
subspecies	 (Figure	3)	 shows	 their	 distinct	 orientation.	 Many	 points	
(and	isodensity	lines	too	in	the	case	of	WorldClim-	predictors)	of	the	
western	population	overlap	with	the	core	area	of	the	eastern	popu-
lation,	while	a	few	points	of	the	eastern	population	overlap	with	the	
core	realized	climate	niche	of	the	western	population.	This	suggests,	
assuming	 the	occurrence	data	are	 representative,	 that	although	 the	
climate	of	two	regions	is	significantly	different,	the	climate	of	the	east-
ern	population	 is	comparatively	more	suitable	 for	 the	western	pop-
ulation	than	vice	versa,	as	is	also	supported	by	the	background	test.

4.3 | The potential distribution of both subspecies 
in the current climate

Based	on	the	AUC	values,	all	MaxEnt	and	Random	Forest	models	are	
considered	good	(>0.9)	and	the	TSS	measures	suggest	that	MaxEnt	
and	Random	Forest	models	for	M. assamensis	ssp.	pelops	are	excel-
lent	(>0.9)	and	good	(>0.7)	for	M. assamensis	ssp.	assamensis	(Swets,	
1988;	Zhang	et	al.,	2015).	Our	models	can	thus	be	considered	valid	
and	allow	for	good	inference	(Table	1).	However,	the	omission	error	
of	 both	MaxEnt	 and	Random	Forest	 for	 the	 eastern	 population	 is	
notably	high.	This	is	probably	because	of	the	wide	geographic	distri-
bution	that	is	a	challenge	for	the	model-	training	procedure	(Franklin,	
Wejnert,	Hathaway,	Rochester,	&	Fisher,	2009;	McPherson	&	Jetz,	
2007;	Suwal	&	Vetaas,	2017).

There	are	some	model-	wise	variations	in	the	predicted	potential	
distributions	of	both	sister	taxa.	MaxEnt	and	Random	Forest	models	
suggest	that	there	are	more	potential	areas	than	are	currently	occu-
pied	or	reported	for	both	subspecies.	In	the	absence	of	the	true	area	
occupied	by	the	species,	we	could	not	accurately	estimate	the	total	
potential	 area	 that	 is	 not	 occupied	 by	 them.	 The	 prediction	maps	
(Figures	5	 and	 6)	 show	 that	 the	 eastern	 population	 has	 compara-
tively	more	potential	area	outside	its	currently	known	distribution,	
while	 the	western	 population	 has	 fewer	 suitable	 areas	 beyond	 its	
currently	reported	localities.	Some	of	the	areas	are	beyond	the	IUCN	
range	map	of	the	species	(Boonratana	et	al.,	2008;	Figure	6).

The	 IUCN	 range	 maps	 lack	 clear	 reproducible	 codes	 and	 are	
essentially	based	on	expert	knowledge	of	species	occurrences	and	
models.	They	do	not	use	recent	predictive	modeling	tools	and	docu-
mentation,	and	hence	lack	meaningful	quantitative	error	estimates.	
Here,	we	produced,	for	the	first	time,	a	model-	based	quantitative	po-
tential	distribution	map	using	the	best-	available	data	for	M. assamen-
sis,	which	is	more	transparent	and	repeatable	compared	with	expert	
maps.	 The	 IUCN	 range	 map	 of	 M. assamensis	 (Boonratana	 et	al.,	
2008)	 is	 broader	 than	 the	 currently	 known	 distribution	 (Fooden,	
1980,	1988;	Timmins	&	Duckworth,	2013;	Wada,	2005),	particularly	

in	the	northern	area.	There	are,	however,	a	few	occurrence	points	
in	Myanmar	and	Thailand	that	are	outside	the	IUCN	boundary	and	
the	range	map	is	much	wider	than	the	climatically	potential	area	pre-
dicted	by	our	models.	In	contrast,	Herkt,	Skidmore,	and	Fahr	(2017)	
demonstrated	that	their	potential	distribution	map	for	bats	in	Africa	
was	much	 larger	 than	 the	 IUCN-	expert	map.	We	 agree	with	 their	
observation	 that	 the	 IUCN	 maps	 differ	 considerably	 from	 SDMs,	
but	the	IUCN	maps	are	normally	based	on	documented	occurrences	
whereas	SDMs	often	find	the	potential	distribution	based	on	predic-
tor	variables.	SDMs	can	be	complementary	to	the	currently	available	
IUCN	species’	range	maps;	thus,	they	could	aid	species	conservation	
by	highlighting	the	potential	range	of	a	species	(Herkt	et	al.,	2017).	
If	applied	correctly,	this	approach	can	contribute	to	better	species	
management	and	serve	as	an	improved	tool	for	future	conservation	
in	areas	where	human	population	pressures	are	rising	steeply	(Mace	
et	al.,	2010).	This	option	is	technically	easy,	but	has	been	widely	ig-
nored	for	over	a	decade	in	the	times	of	the	Anthropocene.

Macaca assamensis	 is	already	categorized	as	“Near	Threatened”	
by	the	IUCN,	suggesting	the	need	for	much	higher	priority	in	its	con-
servation.	 The	 IUCN	has	 listed	 habitat	 destruction	 due	 to	 anthro-
pogenic	activities	as	 the	major	 threat	 to	 the	species;	other	 threats	
are	alien	invasive	species	in	the	habitat,	hunting,	and	trapping	(Gray	
et	al.,	2018).	The	predicted	potential	area—which	is	currently	thought	
to	be	unoccupied—under	current	climate	may	allow	the	extension	of	
their	distribution	or	provide	suitable	sites	for	their	 translocation	 in	
the	event	that	their	current	localities	become	subject	to	the	above-	
mentioned	threats	or	any	kind	of	disease	or	human–macaque	conflict.	
Our	findings	and	data	have	direct	conservation	implications	such	as	
prioritizing	species-	specific	conservation	areas,	formulating	species	
management	 and	 conservation	 action	 plans,	 identifying	 potential	
translocation	 sites,	 and	 exploring	 potential	 areas	 for	 new	 popula-
tions.	Our	output	is	open	access	in	the	hope	that	other	researchers	
and	conservationists	can	test,	re-	validate,	and	use	our	findings	to	the	
benefit	of	the	macaques	and	better	habitat	conservation	overall.

We	acknowledge	that	land	use	and	anthropogenic	disturbances	
can	shape	the	geographic	distribution	and	realized	niche	size	of	spe-
cies	(e.g.,	Miller	&	McGill,	2017;	Zhao	et	al.,	2018).	Landscapes	frag-
mented	by	human	land	use	can	interrupt	the	connectivity	between	
habitat	patches,	which	has	consequences	 for	 the	dispersal	of	 spe-
cies	 (e.g.,	Miller	&	McGill,	 2017).	 Additionally,	 species	 distribution	
and	the	realized	niche	of	species	are	also	defined	by	ecological	pro-
cesses	including	predator–prey	relationships	and	availability	of	food	
(Cushman	 et	al.,	 2010;	 Hutchinson,	 1957).	 However,	 here	we	 lim-
ited	our	scope	of	study	to	topo-	bioclimatic	variables	and	employed	
widely	 used	 algorithms	 to	 initiate	 this	 discussion	 and	 assessment.	
This	 is	because	data	about	anthropogenic	disturbance,	 food	avail-
ability,	biotic	interactions,	and	other	ecological	processes	are	com-
plicated	to	document,	although	land	cover	data	are	available	for	the	
current	period.	We	overlaid	a	land	cover	map	on	the	predicted	po-
tential	distribution	map	for	current	climate	(Supporting	Information	
Figure	 S5).	 The	 maps	 show	 that	 some	 of	 the	 predicted	 potential	
areas	 lie	outside	the	current	forest	area,	and	thus,	those	areas	are	
unlikely	 to	be	 inhabited	by	M. assamensis	 as	 it	 is	primarily	a	 forest	
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species.	We	did	not	use	the	land	cover	data	in	our	model	preparation	
because	we	aimed	to	model	the	potential	future	distribution	of	the	
species,	which	requires	predictable	variables.	At	the	moment,	this	is	
not	easily	achievable	for	land	cover;	however,	climatic	variables	can	
predict	reasonably.	One	of	the	potential	consequences	of	not	incor-
porating	such	variables	in	ENMs	and	SDMs	is	that	the	models	may	
predict	a	larger	realized	niche	and	wider	potential	distribution	than	
is	reasonable	(Zhao	et	al.,	2018).

4.4 | Potential distribution of the two subspecies 
under projected future climate

There	is	currently	no	good	way	to	test	whether	a	future	prediction	
is	 accurate	 or	 not	 (Huettmann	&	Gottschalk,	 2011).	 Typically,	 the	
validity	of	the	prediction	is	estimated	from	performance	measures	
of	the	models.	Based	on	the	AUC	and	TSS	(Table	1),	all	of	our	mod-
els	 are	 “good,”	 allowing	 for	 robust	 inferences.	However,	 there	 are	
some	model-	wise	discrepancies	in	their	predictions	(Figure	7).	These	
problems	are	often	tackled	by	making	an	ensemble	of	multiple	mod-
els	(Araújo	&	New,	2007;	Regmi	et	al.,	2018),	but	we	did	not	do	this	
here	directly.	 Instead,	we	used	one	of	 the	best	algorithms	 in	SDM	
(Aguirre-	Gutiérrez	et	al.,	2013;	Craig	&	Huettmann,	2009;	Mi	et	al.,	
2017),	and,	due	to	bagging,	Random	Forest	being	an	ensemble	model	
(Breiman,	2001a).

Regardless	 of	 some	geographic	 differences	 in	 the	 future	predic-
tions,	a	common	trend	seen	in	both	models	is	that	both	subspecies	will	
have	more	potential	area	in	the	future.	We	could	not	estimate	the	total	
area	because	we	avoided	using	any	thresholds	from	the	relative	index	
of	 occurrence	 (RIO)	 to	 convert	 the	 future	 prediction	 into	 suitable/
unsuitable	areas.	Continuous	RIO	values	incorporate	the	uncertainty	
directly	 to	 avoid	 both	 false-	positive	 as	well	 as	 false-	negative	 errors	
(Guisan	et	al.,	2013),	but	there	is	no	way	to	verify	the	results.	The	pre-
dicted	potential	areas	under	future	climate	are,	to	some	extent,	outside	
the	current	geographical	distribution	of	both	subspecies.	Accessibility	
of	 those	areas	and	 the	migration	capability	of	 the	species	may	be	a	
topic	of	additional	research;	it	is	not	ecologically	sound	to	assume	any	
type	of	migration,	although	 it	 is	commonly	done.	Here,	disregarding	
any	dispersal	 ability	 of	 the	 species,	we	only	 evaluated	 the	potential	
distribution	under	a	projected	future	climate,	which	can	 inform	con-
servation	policy	for	the	species	such	as	pro-	active	planning	for	assisted	
migration	or	the	allocation	of	potential	areas	to	protected	status.

4.5 | Prediction similarity test on CHELSA-  and 
WorldClim- predictors

The	comparative	study	of	the	modeling	using	climate	data	from	two	
sources	shows	that	results	can	depend	on,	and	be	sensitive	to,	the	
source	of	the	climate	data.	From	Tukey’s	HSD	test,	the	list	of	vari-
ables	whose	ranges	are	statistically	similar	varies	between	the	two	
sources	of	data.	Likewise,	the	prediction	maps	show	that	the	areas	
predicted	depend	on	the	climate	data	source.	This	result	aligns	with	
some	 previous	 findings	 (e.g.,	 Bedia	 et	al.,	 2013;	 Pliscoff,	 Luebert,	
Hilger,	&	Guisan,	2014).	Based	on	the	model	performance	measures	

(AUC,	TSS,	omission	error)	in	this	study,	the	CHELSA-	predictors	are	
outperformed	by	WorldClim-	predictors	by	a	marginal	value	(for	nine	
of	12	variables,	one	is	equal;	Table	1).	Our	climate	data	findings	for	
Asia	do	not	agree	with	previous	findings	by	Bedia	et	al.	(2013)	and	
Bobrowski	and	Schickhoff	(2017),	who	conclude	that	the	WorldClim	
dataset	is	inferior	to	others	and	that	it	leads	to	misleading	distribu-
tion	models	by	consistently	overpredicting	the	potential	distribution	
(Bedia	et	al.,	2013;	Bobrowski	&	Schickhoff,	2017).

5  | CONCLUSIONS

The	climatic	niches	of	 two	subspecies	of	Macaca assamensis are 
not	 as	 similar	 as	 expected	 by	 phylogenetic	 niche	 conservatism.	
Given	the	taxonomic	subspecies	would	be	valid;	the	difference	in	
climatic	niches	between	the	subspecies	 is	most	probably	due	to	
the	different	climate	of	the	eastern	and	western	regions.	Species	
distribution	models	predict	unique	as	well	as	some	common	po-
tential	distribution	areas	for	both	subspecies.	The	potential	geo-
graphic	 localities	 are	 predicted	 to	 change	 with	 contemporary	
anthropogenic	 climate	 change,	 which	 has	 implications	 for	 their	
conservation	management.
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