
Sea ice variability in the Nordic
Seas over Dansgaard–Oeschger
climate cycles during the last
glacial – A biomarker approach

Henrik Sadatzki

University of Bergen, Norway
2019

Thesis for the Degree of Philosophiae Doctor (PhD)



at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d )

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Sea ice variability in the Nordic Seas over
Dansgaard–Oeschger climate cycles during

the last glacial – A biomarker approach

Henrik Sadatzki

Date of defence: 15.02 2019

Thesis for the Degree of Philosophiae Doctor (PhD)



The material in this publication is covered by the provisions of the Copyright Act.

Print:	     Skipnes Kommunikasjon / University of Bergen

Title: Sea ice variability in the Nordic Seas over Dansgaard–Oeschger climate cycles during the last
glacial – A biomarker approach

© Copyright Henrik Sadatzki

Name:        Henrik Sadatzki

Year:        2019



	
   i 

Scientific environment 
The research leading to this dissertation was carried out at the Department of Earth 

Science and the Bjerknes Centre for Climate Research, University of Bergen, 

Norway. The PhD project benefitted from close collaborations with the NORCE 

Norwegian Research Centre, Bergen, Norway, and with the Alfred Wegener Institute 

Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany, where the 

bulk of laboratory work was performed. This PhD study was part of the Arctic Sea Ice 

and Greenland Ice Sheet Sensitivity (Ice2Ice) project and the research leading to these 

results has received funding from the European Research Council under the European 

Union´s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 

610055. Main supervisor of this PhD thesis was Eystein Jansen (University of 

Bergen) and co-supervisors were Trond M. Dokken (NORCE Norwegian Research 

Centre) and Rüdiger Stein (Alfred Wegener Institute). 

 

Department of Earth Science 
Faculty of Mathematics and Natural Science 

University of Bergen, Bergen, Norway 

 

Bjerknes Centre for Climate Research, 
Bergen, Norway 

 
NORCE Norwegian Research Centre, 

Bergen, Norway 

 

Alfred Wegener Institute Helmholtz Centre 
for Polar and Marine Research, 

Bremerhaven, Germany 

 

Arctic Sea Ice and Greeland Ice Sheet 
Sensitivity Project, Ice2Ice 

 

European Research Council 



	
   ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   iii 

Acknowledgements 
Many people supported me during the last years and it is their support, trust and 

friendship, which made this PhD thesis possible. For this I would like to express my 

deepest gratitude. 

First and foremost, I would like to thank my supervisor, Prof. Dr. Eystein Jansen, for 

giving me the opportunity to work on this exciting PhD project in the fantastic 

environment of the Ice2Ice project. I am deeply thankful for your great scientific 

guidance and advice as well as many thorough revisions of my manuscripts (often at 

short notice)! I am also very grateful to my co-supervisor, Dr. Trond M. Dokken. I 

thank you especially for plenty of extremely stimulating scientific (and private) 

discussions and brainstorming about new research avenues! I thank both of you for 

persistently supporting me, giving me an incredible freedom of action, and giving me 

ample opportunity for wonderful experiences in Norway, other countries, and at sea. I 

am also very grateful to my second co-supervisor, Prof. Dr. Rüdiger Stein, for helpful 

discussions on sea ice biomarkers and for giving me the opportunity of several 

wonderful research stays in Bremerhaven, inside and outside the AWI labs! 

I could not have accomplished my biomarker lab work without the great support of 

Dr. Kirsten Fahl and Walter Luttmer. I thank you very much for your patient 

assistance (especially in the beginning) and for a fun atmosphere during several 

weeks in the lab! I also thank Susanti Wirda for assistance in the lab. 

For friendship, support, discussions as well as sharing good and difficult moments 

inside and outside the office I am especially grateful to Lisa Griem, Evangeline 

Sessford, Dr. Sarah M. P. Berben and Dr. Margit H. Simon. I am really happy and 

thankful that I could share this PhD experience with you! A special thank goes to 

Margit for proofreading my thesis! 

I would also like to thank my friends at UiB, Uni/NORCE and elsewhere, who made 

this PhD journey a great time: Niklas Meinicke, Dr. Lukas W. M. Becker, Dr. Willem 

G. M. van der Bilt, Thomas J. Leutert, Carl Regnéll, Dr. Tamara Trofimova, Dr. 

Caroline Clotten, Dr. Fabian Bonitz, Dr. Madelyn Mette, Dr. Phoebe Chan, Sunniva 

Rutledal, Evi Naudts, Dr. Sevasti E. Modestou, Dr. Kerstin Perner and Dr. Francesco 

Muschitiello (thank you so much for fruitful discussions and insights into R). 



	
   iv 

I would also like to thank Amandine A. Tisserand, Dr. Jørund R. Strømsøe, Dr. Stijn 

De Schepper, Dr. Bjørg Risebrobakken, Dr. Carin Andersson Dahl and Dr. Martin 

Miles for discussions and a nice and inspiring working environment. Moreover, I am 

deeply grateful to Dag Inge Blindheim for laboratory assistance, picking many forams 

and joyful Donkey rounds! I also thank Dr. Eivind W. N. Støren for laboratory 

assistance. 

I am thankful to the whole Ice2Ice team in Bergen and Copenhagen for many fruitful 

meetings and interdisciplinary discussions, especially to Dr. Mari F. Jensen, Dr. 

Chungcheng Guo, Dr. Kerim H. Nisancioglu, Dr. Niccolò Maffezzoli, Dr. Paul 

Vallelonga, Dr. Helle A. Kjær and Dr. Bo M. Vinther. 

For great times and discussions at AWI (inside and outside the lab) I am grateful to 

Dr. Anne Kremer, Dr. Henriette M. Kolling, Kevin Küssner, Susanne Wiebe, Dr. 

Juliane Müller, Dr. Frank Lamy and Dr. Lester Lembke-Jene. 

For fruitful discussions and collaboration I would like to thank Dr. Laurie Menviel, 

Dr. Axel Timmermann, Dr. Andrea Spolaor and Dr. Ulysses S. Ninnemann. 

Also, I am deeply grateful to all my friends in Germany for persistent friendship and 

many shared moments in our lives. I would like to thank the whole group of 

wonderful people, perhaps referred to as ‘Freunde vom Baum’, ‘Torfrock Chor’, or 

‘Otterndorfer Rabauken’. Special thanks go to Jacob Allers, Dr. Arne Rüdiger, 

Christian Vogel, Florens Gillner, Torben Bätzig, Dr. Jens Mohr, Helge Söhle and 

Janina Garber. 

I wish to express my deepest gratitude to my parents, Norbert and Ulrike, and my 

sister, Jana, for unconditional support and endless trust in whatever I strive for!  

Last but not least, María, I will be forever grateful to you for awesome adventures and 

your invaluable support and encouragement! 

 
 

 

 

 



	
   v 

 

 

 

 

 

“The top of the world is turning from white to blue in summer as the ice that has long 

covered the north polar seas melts away. This monumental change is triggering a 

cascade of effects that will amplify global warming and could destabilize the global 

climate system.” 

 

Peter Wadhams, September 26, 2016 
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Abstract 
The Arctic sea ice cover is in fast transition. Resolving past sea ice fluctuations and 

its link with abrupt climate change might be key for a better understanding of yet 

unknown climatic consequences of future Arctic sea ice loss. The last glacial period 

was marked by recurring abrupt climate changes, referred to as Dansgaard–Oeschger 

(D–O) climate cycles. These D–O climate cycles and in particular the associated 

abrupt warming transitions by up to 15°C over Greenland happening within years or 

decades might have been linked to shifts in sea ice cover in the Nordic Seas.  

This PhD thesis aims at resolving and constraining the largely unknown millennial-

scale sea ice variability in the Nordic Seas and its pivotal role for abrupt climate 

changes during the D–O cycles based on empirical proxy data evidence. Novel sea ice 

reconstructions are mainly based on the sedimentary abundances of the sea ice algae 

biomarker IP25 and open-water phytoplankton biomarkers.  

This thesis includes two multi-decadal to centennial-scale biomarker sea ice records 

from the southern and central Norwegian Sea covering the time period ~30–40 

thousand years ago, which reveal unprecedented insights into the nature of glacial sea 

ice fluctuations during D–O cycles (Papers 1 and 2). A comparison of these 

biomarker sea ice records with LOVECLIM model output data of sea ice cover (Paper 

1) and a new bromine-enrichment sea ice record from the RECAP ice core (East 

Greenland) (Paper 2), sheds light on the mechanisms and timing of rapid sea ice shifts 

with respect to abrupt Greenland climate changes. A third biomarker sea ice record 

from the Eirik Drift south of Greenland elucidates the sea ice cover and export in the 

northwestern North Atlantic ~30–40 thousand years ago (Paper 3). This thesis also 

comprises a calibration based on a robust linear correlation between the sea ice index 

PIP25 in (sub-)Arctic surface sediments and modern spring sea ice concentration, 

which allows a quantification of past sea ice changes (Paper 2). 

The results presented in this thesis provide hitherto unknown details of spatiotemporal 

changes in glacial sea ice cover and tephra-assisted links to climate recorded in 

Greenland ice cores. Substantial rapid sea ice reductions and ocean overturning in the 

Norwegian Sea shaped the abrupt cold-to-warm D–O climate transitions, following a 

more gradual initial sea ice retreat. This reveals insights into sea ice-related feedbacks 

for abrupt D–O climate shifts and advances our understanding of abrupt transitions in 

the coupled ocean-sea ice-climate system during the last glacial. 



	
   viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   ix 

List of publications 
 

Paper 1 

Sadatzki, H., Dokken, T. M., Berben, S. M. P., Muschitiello, F., Stein, R., Fahl, K., 

Menviel, L., Timmermann, A., Jansen, E. Sea ice variability in the southern 

Norwegian Sea during glacial Dansgaard–Oeschger climate cycles. Manuscript in 

review for Science Advances 

 

Paper 2 

Sadatzki, H., Maffezzoli, N., Dokken, T. M., Simon, M. H., Berben, S. M. P., Fahl, 

K., Kjær, H. A., Spolaor, A., Stein, R., Vallelonga, P., Vinther, B. M., Jansen, E. 

Rapid sea ice reduction in the Nordic Seas and abrupt warming over Greenland during 

the last glacial. Manuscript in preparation 

 

Paper 3 

Sadatzki, H., Griem, L., Dokken, T. M., Ninnemann, U., Stein, R., Fahl, K., Jansen, 

E. Evidence of deep Zoophycos burrowing and an enhanced glacial sea ice cover from 

the Eirik Drift south of Greenland. Manuscript in preparation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

Contents 
 

Scientific environment            i 

Acknowledgements           iii 

Abstract           vii 

List of publications           ix 

1 Introduction            1 

 1.1 Opening remarks           1 

1.2 Arctic and sub-Arctic sea ice         2 

1.3 Oceanography of the Nordic Seas         6 

1.4 Dansgaard–Oeschger climate cycles        9 

1.5 The importance of sub-Arctic sea ice for Dansgaard–Oeschger cycles  19 

2 Objectives           25 

3 Approach, material and methods        27 

 3.1 Sea ice biomarker approach       27 

 3.2 Sediment core material        31 

 3.3 Sampling, sample preparation and analysis     33 

4 Summary of papers         35 

 4.1 Paper 1          35 

 4.2 Paper 2          36 

 4.3 Paper 3          37 

5 Synthesis and outlook         39 

 5.1 Synthesis          39 

 5.2 Outlook          43 

6 References           49 

7 Scientific results          61 

 7.1 Paper 1          61 

 7.2 Paper 2          95 

 7.3 Paper 3                   129 

 

 

 

 



	
  



	
   1 

1 Introduction 
1.1 Opening remarks 

The current Arctic sea ice loss, as pictured by Peter Wadhams´ quote in the beginning 

of this thesis, has led the scientific community to pay an increased attention to sea ice 

observation and to strive for a better understanding of the role of sea ice in the Earth´s 

climate system. The Intergovernmental Panel on Climate Change (IPCC) has 

highlighted in the latest, fifth Assessment Report that the annual average sea ice 

extent in the Arctic has decreased over the period 1979–2012 at a rate of 3.5–4.1 % 

per decade, which corresponds to a loss of 0.45–0.51 million square kilometers per 

decade (IPCC, 2013, Chapter 4 Observations: Cryosphere). It has been proposed that 

the diminishing sea ice has played a key role in the amplified warming in the Arctic 

over the last decades, compared to the global average temperature (Screen and 

Simmonds, 2010). It is believed that positive feedback mechanisms associated with 

sea ice decline, through reducing the albedo and enhancing ocean–atmosphere heat 

exchange, will lead to further rapid warming and sea ice loss in the future, potentially 

invoking severe consequences for polar ecosystems, Greenland ice sheet stability, and 

the global climate system (Screen and Simmonds, 2010). Although climate model 

simulations are improving, the majority of model simulations underestimate the 

Arctic sea ice decline that is observed since 1979 (Stroeve et al., 2007; IPCC, 2013, 

Chapter 4 Observations: Cryosphere). The reason for this may be an incomplete 

representation of feedback mechanisms in the coupled ocean-ice-climate system, an 

underestimation of sea ice thinning, and an underestimation of sea ice drift and export 

from the Arctic in the climate models (Boé et al., 2009; Rampal et al., 2011). This 

means that projections of future Arctic sea ice loss might be too conservative, that the 

Arctic Ocean may become ice-free in summer before the end of the twenty-first 

century, and that our knowledge of the implications of sea ice loss for future climate 

change remains incomplete (Boé et al., 2009; Rampal et al., 2011). 

For a better and more comprehensive understanding of the role of sea ice in the 

climate system, the detection of sea ice fluctuations in the past and investigation on 

how these were related to large-amplitude and abrupt climate changes are crucial. 

Albeit “…it´s really almost miraculous that we know anything about past climate” 

(Wallace Broecker, in Broecker, 2010, Preface, page ix), the Paleoceanography and 

Paleoclimatology communities are increasingly capable of resolving the details of 
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past changes in the coupled ocean-ice-climate system. Empirical evidence from proxy 

reconstructions and model simulations enable us to unravel abrupt ocean circulation, 

sea ice and climate changes in the past, which allows constraining the boundary 

conditions, rates and dimensions of natural climate variability, providing potential 

analogues for evaluating future climate projections. In the light of the current Arctic 

sea ice loss, the large ERC Synergy project Ice2Ice, a part of which is the present PhD 

thesis, puts forth a multi-disciplinary team effort to tackle the pressing question of the 

cause and future implications of past abrupt climate change recorded in Greenland ice 

cores and the wider Northern Hemisphere. Ice2Ice project members jointly work 

towards testing and evaluating the main hypothesis, being that Arctic and sub-Arctic 

sea ice cover exerts important controls on past and future Greenland temperature and 

ice sheet variation. A key target of this complex endeavor is a detailed investigation 

and understanding of hitherto unresolved ocean-sea ice feedbacks and mechanisms 

involved in the recurring abrupt Greenland warming events during the last glacial 

period ~10–100 thousand years ago, the so-called Dansgaard–Oeschger (D–O) events. 

This PhD thesis in particular aims at resolving the nature and timing of glacial 

changes in sub-Arctic sea ice cover and unraveling the role of sea ice in the abrupt 

climate transitions of the D–O events. 

 

1.2 Arctic and sub-Arctic sea ice 

Sea ice is an important component in the climate system as it affects Earth´s radiation 

budget, ocean–atmosphere heat, moisture and gas exchange, ocean circulation, and 

marine biological productivity (Dieckmann and Hellmer, 2010). In 2018, the Arctic 

sea ice cover varied between 12.6 million square kilometers in March and 3.3 million 

square kilometers in September (Fig. 1) and about 15 % of the world´s oceans are at 

least temporarily covered by sea ice (National Snow and Ice Data Center,	
  

https://nsidc.org/, accessed October 2018). While the sea ice cover has an enormous 

spatial extent, it only is a very thin layer of a few meters covering the ocean. This 

makes sea ice extremely vulnerable to small oceanic or atmospheric perturbations, 

meaning that a relatively small forcing can lead to dramatic sea ice shifts at a high 

pace, with substantial implications for the climate system (Dieckmann and Hellmer, 

2010). With this and the current Arctic sea ice decline in mind, Arctic summer sea ice 

is classified as a policy-relevant tipping element in the climate system and considered 
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as a critical feedback element for future and past abrupt climate change (Lenton et al., 

2008). 

Sea ice reflects 50–70 % of the incoming radiation, while the ocean surface reflects 

only 6 % (National Snow and Ice Data Center,	
  https://nsidc.org/, accessed October 

2018). This ~8–12 times higher ability of sea ice to reflect solar radiation (albedo), 

compared to ocean water, means that the extensive Arctic sea ice cover controls the 

reflection and absorption of solar energy and thus has a substantial influence on 

Arctic temperatures. Moreover, sea ice acts as an efficient thermal insulator, 

separating the cold atmosphere at high latitudes from warmer ocean waters 

underneath, which prevents ocean–atmosphere heat and gas exchange, evaporation, 

and surface-ocean mixing due to reduced wind forcing (Dieckmann and Hellmer, 

2010). Diminished surface-ocean mixing and associated lowered nutrient 

concentrations, together with a limited light availability, cause a substantially reduced 

phytoplankton production underneath the permanent, partially snow-covered, sea ice 

cover in the Arctic Ocean. Nevertheless, the sea ice itself forms a habitat for some 

specialized algae living within or at the bottom of the sea ice, such as sea ice diatoms 

 

 

Figure 1 Modern Arctic sea ice concentrations for (A) March 2018 and (B) September 2018. 
Total sea ice areas are indicated at the bottom of each panel. Pink lines indicate the median 
ice edge for the period from 1981 to 2010, for March and September in (A) and (B), 
respectively. Maps are based on monthly average data of Sea Ice Index, Version 3 (Fetterer 
et al., 2017) from the National Snow and Ice Data Center (accessed October 2018). 
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belonging to the genera of Haslea and Pleurosigma (Arrigo, 2010; Brown et al., 

2014). Ice algae production causes a yellow-brownish color of the bottom side of sea 

ice and forms a basic component for the marine ecology and carbon cycling in the 

Arctic (Horner and Alexander, 1972; Arrigo, 2010). Sea ice algae blooms occur in 

spring, when the light comes back, and are most pronounced in Arctic and sub-Arctic 

marginal seas with seasonal sea ice retreat (Arrigo, 2010; Xiao et al., 2015). 

The seasonally ice-free, large shelf areas north of Canada, Alaska, Eurasia, and east of 

Greenland are considered as sea ice factories, thus as areas where sea ice is formed 

(Dieckmann and Hellmer, 2010). Sea ice forms when seawater is freezing in winter, 

producing ice crystals and small droplets of accumulated sea salts (so-called brine). 

As the sea ice ages, the brine drains out to the underlying ocean through channels 

within the sea ice, which increases the salinity and thus density of the seawater, 

causing it to sink (Dieckmann and Hellmer, 2010). Brine rejection associated with sea 

ice formation thus affects local, vertical water masses movement, and through this 

deep-water formation process also influences the larger-scale ocean circulation 

(Dieckmann and Hellmer, 2010). Aged sea ice forms a freshwater source that, when it 

melts, reduces the surface ocean salinity and density, contributing to enhanced surface 

stratification. The latter process includes seasonal sea ice melting, which fosters 

surface stratification and recurring winter sea ice formation on site, and melting of sea 

ice that drifted away from its formation area. With his Fram expedition (between 

1893 and 1896) Fridtjof Nansen unambiguously showed that sea ice drifts from the 

shelf areas, through the Arctic Ocean, into the Nordic Seas, driven by winds and 

surface currents (Nansen, 1902). Intendedly frozen into sea ice near the New Siberian 

Islands, the Fram drifted with the sea ice and arrived northwest of Svalbard three 

years later. The Fram Strait (between Svalbard and Greenland) is the main gateway 

through which sea ice is exported from the Arctic Ocean to the Nordic Seas and 

downstream to the North Atlantic (Smedsrud et al., 2011). Hence, sea ice is 

transported far away from its formation area before it melts and thereby forms an 

important freshwater source that can affect surface stratification and ocean circulation 

on a larger scale. 

Today, large-scale seasonal sea ice retreat occurs in the Barents Sea and Labrador Sea 

(Fig. 1), where ocean currents provide enhanced oceanic heat flux that can erode the 
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sea ice cover. These areas are also among the “hot spots” where the overall sea ice 

decline occurred over the last decades (Lind et al., 2018). The Arctic sea ice loss is 

clearly visible and most pronounced in September sea ice extent, as recorded by 

satellites between 1979 and 2018, with an average rate of about 12.8 % per decade 

(Fig. 2). However, sea ice reduction is also affecting the winter sea ice extent, sea ice 

thickness, and the area of perennial sea ice cover in the Arctic (IPCC, 2013, Chapter 4 

Observations: Cryosphere). Based on a linear relationship observed between 

decreasing sea ice and increasing carbon dioxide concentration in the atmosphere, it 

has been proposed that radiative forcing associated with rising greenhouse gas 

concentrations and consequently rising temperatures may be a trigger of the sea ice 

decline (Notz and Stroeve, 2016). Nonetheless, the recent sea ice decline may also 

largely be driven by an enhanced oceanic northward heat advection observed in the 

Nordic Seas (Serreze et al., 2007; Spielhagen et al., 2011; Årthun et al., 2012; Zhang, 

2015; Årthun et al., 2017). Sea ice loss leads to both increased heat absorption due to 

a weakened albedo effect and to increased exposure of warmer ocean waters to the 

high latitude atmosphere in the Arctic. Both processes result in an amplified and 

larger warming in the Arctic compared to the global average (Screen and Simmonds, 

2010), a phenomenon that is referred to as Polar amplification and illustrates the 

climatic relevance of sea ice as a positive feedback mechanism. 

 

 
Figure 2 Northern Hemisphere sea ice extent anomalies during September for the period 
from 1979 to 2018. Monthly sea ice extent anomalies are plotted as percent difference 
between the extent for September of each year and the mean extent for September based on 
data from January 1981 to December 2010. The dashed grey line indicates the trend line 
based on a simple linear regression (or the slope). Figure is from the National Snow and Ice 
Data Center, https://nsidc.org/data/seaice_index/ (accessed October 2018). 
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1.3 Oceanography of the Nordic Seas 

The Nordic Seas, including the Norwegian Sea, Greenland Sea and Iceland Sea, play 

an important role for the North Atlantic and global ocean circulation and climate. It is 

the region where warm surface waters originating from the tropical Gulf Stream 

deliver heat to northern high latitudes up to the Arctic sea ice edge, and is also a key 

causal element for the mild climate conditions in Northern Europe and Scandinavia 

(Hansen and Østerhus, 2000). The ocean overturning in the Nordic Seas contributes 

about 6 Sv (106 m3/s) of deep overflow waters to the North Atlantic Deep Water 

(Hansen and Østerhus, 2000). The Nordic Seas are thus a key region for 

oceanographic processes controlling the Atlantic Meridional Overturning Circulation 

(AMOC), or the global thermohaline circulation, or Wallace Broecker´s Great Ocean 

Conveyor (Broecker, 1987; Broecker, 1991; Broecker, 2010).  

Today, strong gradients in sea surface temperature and salinity characterize the 

Nordic Seas, separating the warmer and more saline Atlantic domain in the eastern 

Nordic Seas from the cooler and fresher Polar domain in the western Nordic Seas 

(Fig. 3A and B). The Polar Front and Arctic Front mark the transition between the 

perennially or seasonally sea ice-covered Polar domain and the annually ice-free 

Atlantic domain in the central and eastern Nordic Seas (Fig. 3) (Hopkins, 1991). The 

contrasting surface ocean conditions are largely controlled by the two major surface 

ocean currents in the region, one being the North Atlantic Current transporting warm 

and saline Atlantic waters into the eastern Nordic Seas, and the other one being the 

East Greenland Current transporting cold, fresher and ice-covered waters from the 

Arctic Ocean to the northwestern North Atlantic (Fig. 3C) (Hopkins, 1991; Hansen 

and Østerhus, 2000). 

The North Atlantic Current can be considered as extension of the Gulf Stream and 

transports warm and saline waters from the subtropical North Atlantic to the 

Norwegian Sea, which in part continues to flow as Norwegian Atlantic Current to the 

Fram Strait and Barents Sea (Fig. 3) (Mauritzen, 1996). As it flows northward into the 

Norwegian Sea, these warm and saline surface waters gradually cool and thereby 

loose buoyancy. This process of surface water densification due to heat loss to the 

atmosphere causes part of the inflowing waters to sink and recirculate as intermediate 

or deep waters in the Nordic Seas and Arctic Ocean (Mauritzen, 1996). In addition,  
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Figure 3 Modern oceanographic and environmental conditions in the Nordic Seas and 
northern North Atlantic. (A) Annual average sea surface temperature and (B) annual average 
sea surface salinity, both based on the World Ocean Atlas (WOA) 13 dataset and averaged 
between 1955 and 2012. (C) Bathymetry and oceanography. NAC = North Atlantic Current, 
EGC = East Greenland Current, ISOW = Iceland Scotland Overflow Water, DSOW = 
Denmark Strait Overflow Water, DWBC = Deep Western Boundary Current. Circled crosses 
indicate deep convection cells in the Nordic Seas and Labrador Sea. (D) Chlorophyll a 
concentration during June 2012 based on long-term multi-sensor time-series of satellite 
ocean-colour data using the version 3-1 dataset produced by the Ocean Colour project of the 
ESA Climate Change Initiative (CCI) (http://catalogue.ceda.ac.uk/uuid/9c334fbe6d424a708 
cf3c4cf0c6a53f5) (Sathyendranath et al., 2018). Red dashed lines in (A) indicate the Polar 
Front (PF) and Arctic Front (AF). Black lines in (A)–(D) mark the modern sea ice extent 
during September (dashed) and March (solid), averaged between 1981 and 2010 
(http://nsidc.org; Fetterer et al., 2017). Maps were produced with the Ocean Data View 
software (Schlitzer, 2016). 
 

open ocean deep convection occurs near the sea ice edge in the Greenland Sea (and 

Labrador Sea), where new deep water is formed (Fig. 3C and Fig. 4) (Hansen and 

Østerhus, 2000). The newly formed and re-circulated deep waters cross the 

Greenland-Scotland Ridge as Denmark Strait Overflow Water and Iceland-Scotland 

Overflow Water, and then flow along sea floor morphology into the North Atlantic 

(Fig. 3C). As Deep Western Boundary Current, the deep waters flow along the eastern 
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and southern Greenland margins into the Labrador Sea and, together with deep water 

formed in the Labrador Sea, form the North Atlantic Deep Water (Dickson and 

Brown, 1994). The northward flow at the surface and the reverse flow at depth in the 

northern North Atlantic essentially constitute the upper and lower limb of the AMOC, 

with deep-water formation in the Nordic Seas and the Labrador Sea being main 

drivers of the Great Ocean Conveyor (Broecker, 1987; Broecker, 1991). 

Figure 4 Cross-section of modern oceanographic conditions in the Arctic Ocean and Nordic 
Seas and across the sea ice edge near the Fram Strait. The cross-section shows annual 
average water temperature (color-coded) based on the World Ocean Atlas (WOA) 13 dataset 
and averaged between 1955 and 2012. Major oceanographic features discussed in the text 
are indicated. Figure was produced with the Ocean Data View software (Schlitzer, 2016). 
 

The modern sea ice edge in the western and northern Nordic Seas essentially marks 

the boundary between contrasting environmental and oceanographic conditions of the 

Atlantic and Polar domains. While the phytoplankton production is generally reduced 

under the Arctic sea ice cover, it is stimulated in open waters of the Norwegian Sea 

but also at the sea ice edge where seasonal sea ice retreat occurs during summer, as 

reflected by the chlorophyll a concentration in surface waters (Fig. 3D). Furthermore, 

north of the sea ice edge in the Fram Strait the water column structure is substantially 

different from that in the Nordic Seas. The warm Atlantic inflow into the Nordic Seas 

continues into the Arctic Ocean at water depths of ~200–800 m beneath the sea ice 

cover (Fig. 4) (Mauritzen, 1996). This warm subsurface layer of Atlantic waters in the 

Arctic Ocean is sandwiched between cooler waters filling the deep basin and very 

cold and fresh waters at the surface, reflecting the strong surface stratification. A 

strong salinity gradient (halocline) causing this surface stratification compensates for 
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the vertical temperature inversion that would act against stratification, and prevents 

melting of sea ice from the oceanic heat reservoir below (Aagaard et al., 1981). This 

clearly illustrates the role of sea ice and its underlying surface stratification in 

effectively insulating the cold high-latitude atmosphere from relatively warmer ocean 

waters in the Arctic today, compared to oceanic heat being released to the atmosphere 

in the Nordic Seas (Fig. 4). 

The relevance of (sub-)Arctic sea ice for climate and the importance of deep-water 

formation in the Nordic Seas for global ocean circulation suggest that the Achilles 

heel of past abrupt climate change may be located in the Nordic Seas, following a 

phrasing by Stephan Rahmstorf (Rahmstorf, 2004). Only minor (freshwater) 

perturbations of the system can cause non-linear, abrupt changes between different 

ocean circulation and climate modes in the North Atlantic, as proposed for the glacial 

D–O cycles (Ganopolski and Rahmstorf, 2001). 

 

1.4 Dansgaard–Oeschger climate cycles 

The abrupt climate fluctuations of the D–O cycles during the last glacial comprise 

some of the most pronounced and puzzling examples of climate change. The 

millennial-scale D–O climate cycles were first documented in ice core records from 

Greenland and are named after the ice core pioneers Willi Dansgaard and Hans 

Oeschger. Thereafter, they were found in numerous ocean and climate records from 

around the world (e.g., Voelker, 2002). Their importance for a better understanding of 

the climate system has been widely recognized, for example by the IPCC (IPCC, 

2013, Chapter 5 Information from Paleoclimate Archives). Abrupt climate change 

occurs when the climate system is forced to cross a threshold, at which the system 

transitions into a new state, be it forced naturally or anthropogenically (Alley et al., 

2003). The abrupt climate change of the D–O cycles in the past and the one possibly 

expected for the future (IPCC, 2013, Chapter 12 Long-term Climate Change: 

Projections, Commitments and Irreversibility) might share similarities in terms of 

abruptness as well as the underlying dynamics in the coupled ocean-sea ice-climate 

system leading to the occurrence of abrupt climate change. Notably, despite wide-

ranging and long-term efforts in studying the D–O cycles, the mechanisms and 
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feedbacks involved in the abrupt climate transitions of the D–O cycles remain a 

matter of debate. 

The D–O cycles are reflected by numerous high-frequency and large-amplitude, 

millennial-scale fluctuations in the δ18O measured in ice cores from Greenland, which 

punctuated the last glacial period ~10–110 thousand years ago (Fig. 5A) (e.g., 

Dansgaard et al., 1993; NGRIP members, 2004). With the discovery of the D–O 

cycles in the mid 1980s, paleoceanographers and paleoclimatologists directed their 

focus towards millennial-scale ocean and climate variability during the last glacial 

period (Broecker, 2010). Before, the main target was to identify and understand the 

climatic imprint of cyclic changes in the Earth´s orbital configuration with respect to 

the sun, which have been described by and named after Milutin Milankovitch 

(Milankovitch, 1930). Northern Hemisphere summer insolation varies at periodicities 

of ~100,000 years (related to eccentricity), ~41,000 years (related to obliquity) and 

~20,000 years (related to precession), orbital insolation cycles that are referred to as 

Milankovitch cycles. The combined effect of these insolation changes on the climate 

system is reflected, for example, in the global benthic foraminiferal δ18O curve 

indicating the waxing and waning of Northern Hemisphere continental ice sheets 

during the last 150 thousand years (Figs. 5B and 5C) (Lisiecki and Raymo, 2005). 

Benthic δ18O records serve as stratigraphic reference records of orbital-scale climate 

variations to define the Marine Isotope Stages (MIS), where cold glacials (large ice 

volume – increased benthic δ18O) have an even number and warm interglacials 

(smaller ice volume – decreased benthic δ18O) have an odd number (Fig. 5B) (e.g., 

Prell et al., 1986). The abrupt D–O climate changes were particularly frequent in 

times of an intermediate insolation and an intermediate continental ice volume such as 

during MIS 3 (Fig. 5) (despite its odd number, MIS 3 is considered as part of the last 

glacial, but it is distinct from the full glacial MIS 2 and MIS 4 in terms of continental 

ice volume/sea level). The intermediate continental ice volume of MIS 3 corresponds 

to an average sea level that was about 70–90 m below the modern level, while sea 

level during the Last Glacial Maximum (~20 thousand years ago) was about ~120 m 

below the modern level (Waelbroeck et al., 2002; Siddall et al., 2003; Siddall et al., 

2008).  

The D–O cycles comprise recurring climate variations between cold Greenland 
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stadials (GS), intervals with decreased ice core δ18O, and warmer Greenland 

interstadials (GI), intervals with increased ice core δ18O (Fig. 5A). The abrupt jumps 

in the ice core δ18O marking the GS–GI transitions occur within decades and largely 

reflect atmospheric warming over the Greenland ice sheet (e.g., Dansgaard et al., 

1993; NGRIP members, 2004), which are referred to as D–O events. Independent air 

temperature estimates based on nitrogen isotope ratios of the air in gas bubbles 

included in the ice core, suggest that that the abrupt D–O warming amounts to 5–

16.5°C (Kindler et al., 2014). After the abrupt warming, Greenland temperatures 

gradually decrease throughout GI, and drop abruptly back to the stadial level at GI–

GS transitions, leading to a characteristic saw-tooth shape of the glacial ice core δ18O 

record (Fig. 6A). Other parameters measured in the ice cores also reveal the 

millennial-scale D–O variability, providing insights into other climate factors apart 

from air temperature (e.g., Seierstad et al., 2014). For example, deuterium excess and  

 

 
Figure 5 Late Pleistocene records of (A) δ18O of the NGRIP ice core from Greenland 
(NGRIP members, 2004), (B) global stack of benthic foraminiferal δ18O (Lisiecki and Raymo, 
2005), and insolation at 65°N for July (Berger and Loutre, 1991) for the last 140 thousand 
years. Marine Isotope Stages (MIS) are numbered at the top and peak glacial stages are 
shaded. All records are plotted on their own age scale from the original publications. 
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dust concentration in Greenland ice cores suggest that the moisture source area for 

precipitation in Greenland and the large-scale atmospheric circulation changed 

dramatically over the course of the D–O cycles (Masson-Delmotte et al., 2005; Ruth 

et al., 2007). Based on sub-annually resolved records and precise temporal constraints 

using annual layer counting in the ice core records, it has been proposed that a rapid 

northward shift of the moisture source and an increase in snow accumulation rate 

happened within decades or only a few years at the onset of a D–O event (Steffensen 

et al., 2008; Thomas et al., 2009). 

High-resolution paleoceanographic records from North Atlantic sediment cores also 

document the millennial-scale variability during the last glacial, akin to Greenland´s 

D–O cycles (Voelker, 2002). Based on evidence of planktic foraminifer assemblages 

and planktic foraminiferal δ18O, it has been suggested that surface ocean conditions in 

the North Atlantic were cooler and fresher during GS, and warmer and more saline 

during GI (e.g., Bond et al. 1993; McManus et al., 1999; van Kreveld et al., 2000; 

Sarnthein et al., 2001; Elliot et al., 2002; Jensen et al., 2018a). This is, for example, 

reflected by the relative abundance of the polar planktic foraminfer 

Neogloboquadrina pachyderma (sinistral) (Fig. 6B) (van Kreveld et al., 2000). 

Records of ice rafted debris (IRD – large clastic grains that are too large to have been 

transported by winds or currents) have revealed that the North Atlantic was 

characterized by an enhanced presence of icebergs during GS compared to GI, 

indicating a periodic iceberg (and thus freshwater) discharge from surrounding glacial 

ice sheets (e.g., Bond et al. 1993; van Kreveld et al., 2000; Sarnthein et al., 2001). 

Furthermore, glacial North Atlantic sediments revealed very pronounced and distinct 

IRD layers, characterized by high detrital carbonate content and extremely low or 

absent foraminifer abundance, first identified by Hartmut Heinrich (Heinrich, 1988). 

These layers are interpreted as reflecting massive discharges of iceberg armadas (and 

freshwater) from the Laurantide Ice Sheet in North America to the North Atlantic, 

associated with particularly cold sea surface temperatures (Heinrich, 1988; Andrews 

and Tedesco, 1992; Bond and Lotti, 1995; Hemming, 2004). These events are named 

Heinrich events and have been found in some but not all of the GS, in those GS which 

have the longest durations and precede the most pronounced GI; notably, the ice core 

δ18O record does not reflect a deterioration of ‘normal’ stadial Greenland temperature 

during Heinrich events (Fig. 6A).  
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Figure 6 Proxy records of glacial millennial-scale variability related to Dansgaard–
Oeschger climate cycles between 30 and 50 thousand years ago. (A) δ18O of the NGRIP ice 
core from Greenland (NGRIP members, 2004). (B) Relative abundance of the polar planktic 
foraminifera Neogloboquadrina pachyderma (sinistral) in core SO82-5 from the northern 
North Atlantic (van Kreveld et al., 2000). (C) Pa/Th of bulk sediment from core KNR191-
CDH19 from the Bermuda Rise (Henry et al., 2016). (D) Sediment total reflectance (L*) from 
core MD03-2621 from the Cariaco Basin (Deplazes et al., 2013). (E) δ18O of the WAIS 
Divide ice core (WDC) from the West Antarctic Ice Sheet (WAIS) (WAIS Divide Project 
Members, 2015). All records are plotted on their own age scale from the original 
publications. Greenland interstadials (GI) are numbered at top, Greenland stadials (GS; 
shaded bars) at bottom. 
 

In addition to the climate proxy records from the northern North Atlantic, a record of 

alkenone biomarkers showed that sea surface temperatures in the subtropical North 

Atlantic also varied in unison with Greenland´s climate variability during the last 

glacial (Sachs and Lehman, 1999). This illustrates a coupling between temperatures 

over Greenland with surface ocean temperatures in the entire North Atlantic as an 

element of the D–O climate variability. Proxy records such as benthic δ13C and 
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sedimentary Pa/Th from the deep subtropical Atlantic revealed that the vertical water 

mass structure and the lateral water mass transport varied on millennial timescales 

during the last glacial and deglacial (Fig. 6C) (McManus et al., 2004; Henry et al., 

2016; Waelbroeck et al., 2018). These proxy records suggest that the AMOC was 

enhanced during GI, reduced during all GS, and weakest during the Heinrich events 

(Henry et al., 2016). Changes in northward transport of warm and saline surface 

waters to the northern North Atlantic, associated with AMOC variations, is consistent 

with the proxy records of glacial surface ocean conditions in the North Atlantic (van 

Kreveld et al., 2000; Sarnthein et al., 2001). Hence, surface and deep ocean proxy 

records support the hypothesis that variations in the Great Ocean Conveyor, or 

AMOC, were the pacemaker of the glacial millennial-scale climate variability 

recorded in Greenland ice cores (Fig. 7) (Broecker et al., 1985; Broecker, 1991). 

Numerous marine and terrestrial climate records from around the globe have also 

revealed the glacial millennial-scale variability (Voelker, 2002). For example, the 

light reflectance record of a sediment cores from the Cariaco Basin north of 

Venezuela indicates changes in the relative contributions of terrigenous and biogenic 

components in the sediment (Fig. 6D) (Peterson et al., 2000; Deplazes et al., 2013). 

These reflectance changes might thus indicate lateral movements of the tropical 

rainfall belt and thus changes in the position of the Intertropical Convergence Zone 

(ITCZ) (Deplazes et al., 2013). The ITCZ is considered Earth´s thermal equator, 

where northeasterly and southeasterly trade winds converge and intense insolation 

causes moist air to rise, resulting in heavy rainfall in the tropics. Accordingly, as a 

response to the differences in heat distribution across the hemisphere during D–O 

cycles the average position of the northern extent of the ITCZ and associated rainfall 

(including seasonal shifts) were centered over the Cariaco Basin and its catchment 

area during GI and shifted southward during GS (Peterson et al., 2000; Deplazes et 

al., 2013). Other important climate archives documenting the D–O variability in phase 

with Greenland climate changes are speleothems (carbonate cave deposits). The 

speleothem δ18O records from China and South America suggest millennial-scale 

changes in strength and sources of monsoon rainfall, supporting that the ITCZ shifted 

between a more northerly position during warm GI and a more southerly position 

during cold GS on a global scale (Wang et al., 2001; Kanner et al., 2012).  
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Figure 7 Schematic of the two glacial circulation modes and climate states after Ganopolski 
and Rahmstorf (2001) (from Ganopolski and Rahmstorf, 2002). Bottom: the stable ‘cold’ or 
‘stadial’ mode. Top: the unstable ‘warm’ or ‘interstadial’ mode. The contours illustrate 
surface air temperature anomaly compared to the ‘stadial’ state. Surface current flowing 
north (red) and deep current flowing south (light blue) indicates the AMOC or Atlantic part 
of the Great Ocean Conveyor. Continental ice sheets are based on the reconstruction of 
Peltier (1994).  
 

Furthermore, δ18O and other records from Antarctic ice cores also reveal the glacial 

millennial-scale climate variability (WAIS Divide Project Members, 2015; Markle et 

al., 2017), illustrating its global significance. The high-resolution δ18O record of the 

West Antarctic Ice Sheet (WAIS) Divide ice core (WDC), however, illustrates that 

the temperature variability in Antarctica was asynchronous to that in Greenland (Fig. 

6E) (WAIS Divide Project Members, 2015). It has been estimated that on average 

abrupt Greenland warming led the onset of Antarctic cooling by 218 ± 92 years, while 
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Greenland cooling led the onset of Antarctic warming by 208 ± 96 years (WAIS 

Divide Project Members, 2015). This offset temperature evolution between the 

Northern and Southern Hemispheres has led to the notion of the thermal bipolar 

seesaw (Stocker and Johnsen, 2003; Stenni et al., 2011). There is a consensus that 

both latitudinal shifts of the ITCZ as well as the offset temperature variations in 

Greenland and Antarctica, are linked to millennial-scale changes in AMOC and 

associated meridional heat transport (Wang et al., 2001; Barker et al., 2009; Deplazes 

et al., 2013; WAIS Divide Project Members, 2015; Waelbroeck et al., 2018). 

It has been found that the recurring D–O signals in some intervals, but far from all, 

can be aligned by a pacing period of ~1,470 years in δ18O records from Greenland ice 

cores (Schulz, 2002; Rahmstorf, 2003) and in marine proxy records from the North 

Atlantic and Nordic Seas (Bond and Lotti, 1995; Dokken and Jansen, 1999; van 

Kreveld et al., 2000). It has been argued that this ~1,470 year periodicity in the 

climate cycles might be related to the sun´s activity (Braun et al., 2005; Braun and 

Kurths, 2010). Braun et al. (2005) demonstrated that a superposition of two cycles of 

freshwater input the North Atlantic with periods near 87 and 210 years can result in 

~1,470 year climate cycles. The periods near 87 and 210 years resemble those of the 

Gleissberg and DeVries solar cycles, respectively, mimicked to force the freshwater 

flux in the simulation  (Braun et al., 2005). This frequency conversion between 

forcing and response might be linked to the nonlinear behavior of the thermohaline 

ocean circulation system, illustrating that the ~1,470 year climate cycles might have 

originated from solar variability, even though solar variability itself does not reveal a 

~1,470 year cycle (Braun et al., 2005). The fact that the ~1,470 year cycle is absent in 

many time periods casts doubt on this narrative. A global climate model simulation 

with a low-resolution, simplified model by Ganopolski and Rahmstorf (2001) 

illustrated that a low-amplitude cyclic freshwater forcing could cause a rapid shift 

from a ‘cold’ circulation mode with deep-water formation south of Iceland to a 

‘warmer’ circulation mode with deep-water formation in the Nordic Seas, where the 

simulated Greenland temperature rise resembled that observed in ice core records 

(Fig. 7). The authors argued that the glacial ocean circulation was an excitable system 

and abrupt changes resulted from weak periodic forcing and stochastic fluctuations of 

the freshwater flux to the North Atlantic (Ganopolski and Rahmstorf, 2001; 

Ganopolski and Rahmstorf, 2002). The rapid shift between the two different 
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circulation modes in response to a more gradual freshwater forcing, but also the 

abrupt Greenland D–O climate transition itself, illustrate a strongly non-linear 

behavior of the glacial ocean–climate system and calls for a threshold at D–O climate 

transitions (Broecker, 2000; Ganopolski and Rahmstorf, 2001). The existence of such 

a “flipping” non-linear behavior is not robustly found in more complex models, 

except under large freshwater forcing (Stouffer et al., 2006). 

It has been argued that the weaker stadial circulation mode and the stronger 

interstadial circulation mode coexisted under intermediate-sized Northern Hemisphere 

ice sheets as during MIS 3, and that shifts between them could not only be triggered 

by variable freshwater flux to the North Atlantic, but also by small changes in ice 

sheet height and/or atmospheric carbon dioxide (CO2) (Zhang et al., 2014; Zhang et 

al., 2017). The transition from a weak to strong AMOC mode could have resulted 

from a slight change of the intermediate ice sheets (equivalent to a sea level drop by 

less than 2 m), which would have shifted the northern westerly winds northward; this 

would have affected the subpolar and subtropical gyre circulation such that less sea 

ice was exported to the northeastern North Atlantic, permitting strong convective 

deep-water formation and a strong AMOC (Zhang et al., 2014). The required 

millennial-scale changes in ice sheet height and thus sea level appear realistic for 

MIS 3, but are poorly constrained by empirical evidence (Siddall et al., 2003; Siddall 

et al., 2008). Atmospheric CO2, on the other hand, is well known from bubbles of 

ancient air included in Antarctic ice cores and varied between about 195 and 225 parts 

per million (ppm) on millennial timescales during MIS 3 (Ahn and Brook, 2008; 

Bauska et al., 2018). It has been suggested that an atmospheric CO2 rise, as observed 

during Heinrich events, might have affected the atmospheric moisture transport across 

Central America, modulating the freshwater budget of the North Atlantic and deep-

water formation (Zhang et al., 2017). Hence, this mechanism provides an alternative 

explanation of transitions between the weaker stadial and stronger interstadial AMOC 

mode, at least when the CO2 rise was large enough (Zhang et al., 2017).  

With the aim to elucidate the underlying dynamics of the globally distributed D–O 

climate variability, Menviel et al. (2014) presented a transient hindcast model 

simulation of multiple D–O cycles with MIS 3 boundary conditions. Forced by 

variable freshwater fluxes to the North Atlantic, this model simulation reproduced 
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numerous climate signals of both D–O cycles and Heinrich events, as seen in proxy 

records from around the globe (Menviel et al., 2014). They concluded that ice sheet 

calving and subsequent changes in AMOC were the main drivers of the millennial-

scale glacial climate variabiltiy (Menviel et al., 2014). Hence, model simulations, 

together with proxy evidence of IRD in the North Atlantic during GS, suggest that ice 

sheet dynamics and related periodic freshwater perturbations in the North Atlantic 

might have played an important role in abrupt D–O climate transitions, even though 

icebergs were not the trigger of cold GS (Ganopolski and Rahmstorf, 2001; Menviel 

et al., 2014; Zhang et al., 2014; Bond et al., 1993; van Kreveld et al., 2000: Sarnthein 

et al., 2001; Barker et al., 2015). Notably, all model-based studies mentioned above 

also referred to shifts in the North Atlantic sea ice cover and ocean–sea ice–

atmosphere feedbacks that amplify the abrupt climate transition in Greenland (see 

1.5) (Ganopolski and Rahmstorf, 2001; Menviel et al., 2014; Zhang et al., 2014; 

Zhang et al., 2017). 

Unforced model simulations also produce abrupt Greenland warming and cooling 

events which spontaneously arise in these runs and resemble the D–O cycles (Kleppin 

et al., 2015; Vettoretti and Peltier, 2016; Vettoretti and Peltier, 2018). Based on a 

preindustrial climate simulation, Kleppin et al. (2015) argued that stochastic 

atmospheric forcing, affecting the subpolar gyre circulation, sea ice cover, and 

meridional heat transport in the northwestern North Atlantic, triggers a climate 

warming transition. On the other hand, an unforced model simulation under Last 

Glacial Maximum boundary conditions has shown that abrupt Greenland warming 

can result from subsurface thermohaline instability underneath the sea ice cover in the 

northwestern North Atlantic (Vettoretti and Peltier, 2016; Vettoretti and Peltier, 

2018). In this model simulation, the subsurface thermohaline instability causes a rapid 

opening of a super-polynya, reinvigoration of ocean convection and heat release to the 

atmosphere (see 1.5) (Vettoretti and Peltier, 2016; Vettoretti and Peltier, 2018). 

Besides these internal atmospheric or oceanic forcings, or coupled ice sheet–ocean 

interactions, volcanic eruptions have also been discussed as potential trigger 

mechanism of the D–O climate cycles (Baldini et al., 2015). 

In summary, the D–O variability during the last glacial is well known from numerous 

climate and ocean records from around the world, and climate models can reproduce 
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the main features observed in the proxy records. However, the exact forcing 

mechanism of the D–O cycles and the origin of the ~1,470 year pacing of some of the 

D–O events are still not fully understood. Nevertheless, there appears to be a 

consensus that the strongly non-linear, abrupt climate transitions of the D–O 

cycles involved ocean circulation changes and sea ice-related feedbacks in the 

northern North Atlantic, which will be further outlined in the next chapter. 

 

1.5 The importance of sub-Arctic sea ice for Dansgaard–Oeschger cycles 

The importance of sea ice variability in past abrupt climate change has been 

acknowledged since the early days of the field of Paleoceanography, for example, by 

Ruddiman and McIntyre (1981) and Broecker et al. (1985). Moreover, its role as 

feedback mechanism in the climate system has been intensively studied for decades 

(e.g., Manabe and Stouffer, 1988; Schiller et al., 1997). Several studies have proposed 

that changes in the sea ice cover in the northern North Atlantic and Nordic Seas may 

form a key element explaining the non-linear behavior, striking abruptness and large 

amplitude of the D–O climate transitions recorded in Greenland ice cores (see 1.4) 

(Dansgaard et al., 1993; Alley et al., 1993; Broecker, 2000; Timmermann et al., 2003; 

Gildor and Tziperman, 2003; Denton et al., 2005; Li et al., 2005; Li et al., 2010; 

Petersen et al., 2013; Dokken et al., 2013). Novel sea ice proxy methods have been 

proposed and developed during the last years, which allow for direct and semi-

quantitative reconstructions of sea ice fluctuations in the past (Belt et al., 2007; Belt 

and Müller, 2013). Accordingly, investigation of linkages between ocean circulation, 

sea ice and abrupt climate change in the past – for example during the D–O cycles – 

has increasingly become a “hot topic” in Paleoclimate Research (e.g., Hoff et al., 

2016). 

Multiple proxy records suggest that during cold GS the surface ocean in the Nordic 

Seas was highly stratified by a surface freshwater lid, similar to the conditions 

observed in the Arctic Ocean today (e.g., Rasmussen et al., 1996; Rasmussen and 

Thomsen, 2004; Dokken et al., 2013). Both proxy and model data suggest that 

subsurface waters at intermediate depths were warmer during GS compared to GI and 

today, insulated from the atmosphere by a sea ice cover that is sustained by the 

freshwater layer (Fig. 8) (Rasmussen and Thomsen, 2004; Friedrich et al., 2010; 
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Dokken et al., 2013; Ezat et al., 2014). Hence, the relatively fresh polar surface 

waters, the Polar and Arctic Fronts and probably also the sub-Arctic sea ice cover 

may have extended to the south of the Nordic Seas or even to the North Atlantic 

during GS (Fig. 8) (Rasmussen and Thomsen, 2004; Dokken et al., 2013; Hoff et al., 

2016). This also suggests that there might not have been active open-ocean deep 

convection in the Nordic Seas during GS, but probably in the North Atlantic 

(Rasmussen et al., 1996; Dokken and Jansen, 1999; Rasmussen and Thomsen, 2004; 

Dokken et al., 2013; Ezat et al., 2014). On the other hand, proxy reconstructions 

indicate that there was active surface and deep-ocean mixing in the Nordic Seas 

during GI, implying a northward shifted position of the Polar and Arctic fronts and a 

reduced sea ice cover, roughly similar to today (Fig. 8) (Rasmussen and Thomsen, 

2004; Dokken et al., 2013). Deep ocean temperatures at >1,200 m water depth in the 

Nordic Seas were about 2–4°C lower during GI than during GS, suggesting a removal 

of the stadial subsurface oceanic heat reservoir linked to deep ocean convection (Ezat 

et al., 2014). Hence, the two different scenarios of oceanographic and sea ice 

conditions in the Nordic Seas during GS and GI, as illustrated in Figure 8, are 

consistent with reconstructed variations in AMOC and associated northward heat 

transport to the northern North Atlantic, and with the idea of two glacial circulation 

modes of the Great Ocean Conveyor during D–O cycles (neglecting the third weakest 

mode proposed for Heinrich events) (Fig. 7) (Broecker et al., 1985; Broecker, 1991; 

van Kreveld et al., 2000; Ganopolski and Rahmstorf, 2001; Henry et al., 2016). 

Indeed, climate model simulations have shown that a shift from an extensive sea ice 

cover to a reduced sea ice cover in the Nordic Seas leads to a ~10°C atmospheric 

winter warming over Greenland, consistent with results from ice core records (Li et 

al., 2005; Li et al., 2010). The model simulation also revealed a 50 % snow 

accumulation increase in Greenland associated with the sea ice reduction, which 

likewise agrees well with observations from ice core records (Li et al., 2005; Li et al., 

2010). Furthermore, sea ice retreat in the Nordic Seas could explain a northward shift 

in moisture source area for Greenland precipitation, as recorded by the rapid transition 

in deuterium excess in Greenland ice cores (Masson-Delmotte et al., 2005). This 

suggests that rapid switches in sea ice cover likely triggered, or at least contributed to 

the abrupt climate transitions during the D–O cycles (Timmermann et al., 2003; 

Gildor and Tziperman, 2003). Sea ice reduction may have amplified the D–O 
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warming at GS–GI transitions by reducing the cooling albedo effect and exposing 

relatively warmer subsurface water in the Nordic Seas to the atmosphere (see 1.2) 

(Gildor and Tziperman, 2003). In turn, sea ice expansion may have amplified the 

rapid cooling recorded in Greenland ice cores at GI–GS transitions through the same 

feedback mechanisms as described above. 

 

 
Figure 8 Scheme of hypothesized stadial and interstadial oceanographic and sea ice 
conditions in the Nordic Seas during glacial Dansgaard–Oeschger climate cycles (from 
Dokken et al., 2013). 
 

It has been suggested that variations in thermohaline circulation in the North Atlantic, 

presumably in combination with stochastic freshwater forcing, may have triggered 

rapid switches in sea ice cover, which in turn amplified the climate signal 

(Timmermann et al., 2003; Gildor and Tziperman, 2003; Menviel et al., 2014). The 

meridional heat flux controlling the sea ice cover in the North Atlantic and Nordic 

Seas may have been controlled, for example, by freshwater flux from continental ice 

sheets to the North Atlantic (Menviel et al., 2014), a strong salinity difference 

between the more saline North Atlantic and the fresher Nordic Seas without external 

freshwater forcing (Peltier and Vettoretti, 2016), and/or the subpolar gyre circulation 
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in the northwestern North Atlantic and stochastic atmospheric wind forcing thereof 

(Kleppin et al., 2015). Furthermore, the subsurface oceanic heat reservoir beneath the 

sea ice, as observed during GS in the Nordic Seas, might have triggered sea ice retreat 

in the Nordic Seas (Timmermann et al., 2003; Dokken et al., 2013; Jensen et al., 

2016; Jensen et al., 2018b). It has been shown that a relatively small increase in 

subsurface temperature of Atlantic waters flowing into the Nordic Seas can result in a 

rapid, non-linear destabilization and melting of sea ice, under a relatively small 

freshwater input (Jensen et al., 2016; Jensen et al., 2018b). 

There are a few sea ice proxy reconstructions from sediment cores from the southern 

Norwegian Sea covering the glacial D–O cycles, based on molecular biomarkers or 

dinoflagellate cysts (Hoff et al., 2016; Wary et al., 2016). Based on a 80,000 year-

long biomarker record with centennial to millennial-scale resolution, Hoff et al. 

(2016) argued that sea ice disappeared rapidly at the onset of the D–O events (GI), 

expanded later and peaked in near-perennial occurrence at the onset of the subsequent 

GS. This reconstruction thus seems to support the stadial and interstadial sea ice 

scenarios that have been proposed, for example, by Dokken et al. (2013) (Fig. 8). A 

sea ice record based on dinoflagellate cysts from the southern Norwegian Sea has 

revealed different trends in sea ice cover, compared to the biomarker record (Wary et 

al., 2016). The dinoflagellate cyst assemblages indicate that there was intensive 

winter sea ice formation during GI and reduced sea ice during cold GS (Wary et al., 

2016). The available sea ice records are both restricted to the southern periphery of 

the Nordic Seas, have a limited (centennial-scale) resolution, and seem to reveal 

opposing trends (Hoff et al., 2016; Wary et al., 2016). Hence, it remains uncertain 

how the Nordic Seas ice cover actually varied during the glacial D–O cycles. This 

uncertainty is a motivating factor behind the work performed in this PhD thesis. 

Some evidence of larger-scale sea ice fluctuations in the northern North Atlantic 

comes from halogen and sea salt records of Greenland ice cores (Maffezzoli et al., 

2018, in rev.). In particular, a new bromine enrichment record from the RECAP ice 

core from coastal Eastern Greenland indicates orbital and millennial-scale changes in 

seasonal sea ice cover in the northern North Atlantic over the last 120 thousand years 

(Maffezzoli et al., in rev.). A sea ice record from the NEEM ice core in northwestern 

Central Greenland has similarly revealed millennial-scale sea ice changes, but with 
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significantly higher temporal resolution than the RECAP ice core record (Spolaor et 

al., 2016). The NEEM record has been interpreted as reflecting an enhanced perennial 

sea ice cover in the Canadian Arctic during cold GS and less perennial but more 

seasonal Arctic sea ice during GI (Spolaor et al., 2016). However, the interpretation of 

ice core-based sea ice records can be hampered by shifts in the marine source area for 

moisture and aerosols as well as by changes in aerosol transport distance (Spolaor et 

al., 2016). Moreover, the temporal resolution of ~1,500 years for the glacial period in 

the RECAP ice core, which reflects North Atlantic conditions, is insufficient to 

properly resolve the D–O cycles (Maffezzoli et al., in rev.). Similar to proxy evidence 

from sediment cores, ice core-based evidence of sea ice changes in the Nordic Seas 

and North Atlantic region remains limited and does not unambiguously support the 

hypothesized stadial and interstadial sea ice scenarios (Fig. 8). 

Besides the hypothesized importance of sea ice shifts in the Nordic Seas for D–O 

climate cycles, model studies have suggested that changes in sea ice cover in the 

northwestern North Atlantic might have been crucial (Vettoretti and Peltier, 2016; 

Vettoretti and Peltier, 2018). In an unforced model simulation with spontaneously 

occurring D–O-like climate variations, abrupt Greenland warming resulted from rapid 

sea ice disappearance in the form of a sudden opening of a super-polynya in the ice-

covered northwestern North Atlantic (Vettoretti and Peltier, 2016; Vettoretti and 

Peltier, 2018). It has been argued that the rapid opening of the super polynya results 

from a subsurface thermohaline convective instability beneath the extended sea ice 

cover, under a diminishing surface salinity stratification (Vettoretti and Peltier, 2016; 

Vettoretti and Peltier, 2018). The subsurface thermohaline convective instability 

would cause a mixing up of relatively warm subsurface waters, which would melt the 

sea ice lid, and subsequently release heat to the atmosphere (Vettoretti and Peltier, 

2016; Vettoretti and Peltier, 2018), a mechanism similar to that proposed for the 

Nordic Seas (Dokken et al., 2013). Moreover, the authors suggested that sea ice 

export from the Arctic Ocean and Nordic Seas to the North Atlantic significantly 

contributed to gradual freshening in the North Atlantic sub-polar gyre region during 

GI, eventually leading to a reduction of North Atlantic Deep Water formation at GS–

GI transitions (Vettoretti and Peltier, 2018). However, there is no robust sea ice proxy 

evidence yet that could support or reject the simulated sea ice changes in the 

northwestern North Atlantic. 
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Altogether, proxy reconstructions and model simulation seem to support that sea ice 

fluctuations in the Nordic Seas and North Atlantic and sea ice-related feedback 

mechanisms amplified some kind of initial oceanographic and/or atmospheric forcing 

during the glacial D–O cycles, causing – or at least contributing to – the abrupt 

climate transitions recorded in Greenland ice cores. A recent study also suggested that 

“early-warning signals” for the abrupt climate transition of the D–O events, identified 

in the δ18O record of the NGRIP ice core, could be physically explained by sea ice 

fluctuations before the actual onset of a D–O event (Boers, 2018). However, the 

nature, timing and exact role of sea ice fluctuations in past abrupt D–O climate 

changes and underlying mechanisms remain speculative and uncertain, due to 

the lack of robust, high-resolution empirical proxy data evidence of the millennial-

scale sea ice variability in the Nordic Seas and North Atlantic. 
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2 Objectives 
The primary objective of this PhD project is to reconstruct the glacial millennial-scale 

sea ice variability in the Nordic Seas by generating biomarker sea ice proxy records 

that cover several abrupt D–O climate changes between ~30 and ~40 thousand years 

ago with unprecedented temporal resolution. The goal is to provide robust empirical 

proxy evidence of glacial sea ice variability in order to evaluate the relevance of past 

sea ice dynamics and ocean-sea ice-climate feedbacks for abrupt climate change over 

Greenland and the wider North Atlantic region. The overall hypothesis addressed is 

that sea ice retreat acted as a critical feedback mechanism that shaped the extremely 

abrupt and large-amplitude atmospheric warming of the D–O events. 

To reach these goals and address the hypothesis, the specific objectives are: 

1) To evaluate and advance the biomarker approach for qualitative and quantitative 

sea ice reconstructions. This will be based on reconciling new and previously 

published sea ice biomarker proxy data from modern surface sediments from Arctic 

and sub-Arctic core-top samples, in comparison with satellite-derived observations of 

modern sea ice concentration. 

2) To develop robust chronologies for sediment cores from regions with high 

sediment accumulation, providing a stratigraphic framework for high-resolution 

biomarker sea ice records. This will be based on stratigraphic alignment of pertinent 

marine and ice core proxy records, and in part assisted by tephrochronological 

constraints and radiocarbon (14C) dating of planktic foraminifera. 

3) To reconstruct and characterize glacial changes in sea ice cover and phytoplankton 

productivity in the Nordic Seas using novel molecular biomarker proxy records with 

multi-decadal to centennial-scale resolution from two key sites in the Norwegian Sea. 

4) To document the mechanisms and consequences of past sea ice retreat and 

expansion in the Nordic Seas. This will be achieved by comparing the new paleo-sea 

ice observations with 1) existing sediment proxy records of surface and deep-ocean 

temperature and convection in the Nordic Seas, 2) model simulated changes in Nordic 

Seas ice cover, and 3) ice core proxy records of sea ice in the Nordic Seas/North 

Atlantic and Greenland climate. 
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5) To reconstruct and provide insights into the nature and variability of glacial sea ice 

cover in the northwestern North Atlantic, using biomarker sea ice records from a 

high-sediment accumulation core site south of Greenland. 
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3 Approach, material and methods 
The methodological approach of this PhD project mainly relies on the identification 

and quantification of molecular biomarkers in marine sediments, used for 

reconstructing sea ice conditions and phytoplankton productivity in the Nordic Seas 

and North Atlantic during the last glacial. The new organic geochemical proxy 

datasets are supplemented by other sedimentological, micropaleontological and 

inorganic geochemical data of surface and deep ocean conditions, which were either 

previously published or newly acquired in the framework of this project.  

 

3.1 Sea ice biomarker approach 

Since Simon Belt first proposed the biomarker IP25 as an Ice Proxy (with 25 carbon 

atoms) (Fig. 9) (Belt et al., 2007), the development and utilization of biomarkers for 

advanced sea ice reconstruction in Arctic and sub-Arctic regions has increasingly 

been put forward. Previously, proxy methods used for sea ice reconstructions were 

based, for example, on the sedimentary abundance of IRD, assemblages of 

dinoflagellate cysts, diatoms and foraminifera, and the δ18O and δ13C of these 

microfossil shells (Weinelt et al., 2001; Sarnthein et al., 2003; Armand and Leventer, 

2010; Polyak et al., 2010; Stein et al., 2012). These proxies allow reconstruction of 

temperature and other water mass characteristics, but do not directly reflect sea ice 

conditions (Weinelt et al., 2001). The novel sea ice proxy IP25 is a specific compound 

that is produced during spring by sea ice diatoms which live in brine channels within 

the sea ice or underneath but attached to sea ice (see 1.2) (Belt et al., 2007; Thomas 

and Dieckmann, 2008; Brown et al., 2011). IP25 has been identified in marine 

sediments from Arctic and sub-Arctic regions covering the last glacial cycle (last 130 

thousand years or so), the Pliocene (~4 million years), and the Miocene (>5 million 

years) and thus appears to be a stable molecule even in deep and old sediments (Stein 

et al., 2012; Belt and Müller, 2013; Knies et al. 2014; Stein et al., 2016; Hoff et al., 

2016). Therefore, IP25 forms a key proxy that can provide unprecedented direct and 

robust evidence of sea ice conditions in the Nordic Seas during D–O cycles. 

IP25 is a highly branched isoprenoid (HBI) monoene (Fig. 9) (Belt et al., 2007). Its 

production was found to be restricted to the minority of sea ice diatom taxa and 

specific to few but widespread taxa of the groups of Haslea and Pleurosigma, that is 
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Haslea crucigeroides (and/or Haslea spicula), Haslea kjellmanii, and Pleurosigma 

stuxbergii var. rhomboides (Brown et al., 2014). Several studies have mapped the 

distribution of IP25 in core-top surface sediments in Arctic and sub-Arctic ocean 

regions, which clearly revealed that an increased sedimentary abundance of IP25 is 

associated with overlying seasonal sea ice conditions (Müller et al., 2011; Navarro-

Rodriguez et al., 2013; Stoynova et al., 2013; Xiao et al., 2015). In turn, IP25 is 

lowered and largely absent in surface sediments from regions that experience both 

open ocean conditions (such as the central Nordic Seas) and a perennial sea ice cover 

(such as the central Arctic Ocean) (Xiao et al., 2015). This illustrates the ambiguity of 

IP25 absence in marine sediments, which can suggest both ice-free and perennial sea 

ice conditions. 

 

 
Figure 9 Chemical structure of IP25 (after Belt et al., 2007). The double bond is located at 
C23–24. 
 

It has been suggested that combined analyses of IP25 and open-water phytoplankton 

biomarkers allow for improved sea ice reconstructions (Müller et al., 2009; Müller et 

al., 2011). Brassicasterol and dinosterol are biomarkers reliably reflecting 

phytoplankton production and open-water conditions (Boon et al., 1979; Volkman, 

1986; Volkman, 2003; Xiao et al., 2015). While dinosterol is produced by marine 

dinoflagellates (Volkman et al., 1993), brassicasterol is largely synthesized by marine 

diatoms, but also by marine haptophyte algae (coccolithophores), freshwater diatoms, 

and perhaps sea ice diatoms (Volkman, 1986; Fahl and Stein, 2012; Belt et al., 2013). 

Open-water haptophyte algae produce long-chain C37 ketones (alkenones), which also 

serve as indicator of marine phytoplankton productivity (Volkman et al., 1995). 

Furthermore, terrigenous biomarkers such as campesterol and β-sitosterol produced 
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by higher plants on land (Volkman, 1986), can reflect input of terrigenous material to 

the ocean (similar to IRD), supplementing biomarker records of marine ice algae and 

phytoplankton production.  

Moreover, there are several isomers of HBIs, which have different degrees of 

unsaturation (different numbers of double bonds) and are thus different from the HBI 

monene IP25 (which has one double bond) (Belt et al., 2000). While IP25 and the HBI 

dienes (HBI-II) appear to co-occur associated with seasonal sea ice in the Arctic, IP25 

has not (yet) been identified in the Southern Ocean but the HBI-II has been proposed 

as promising Ice Proxy for the Southern Ocean with 25 carbon atoms (IPSO25) (Belt 

et al., 2007; Belt and Müller, 2013; Belt et al., 2016). It is believed that HBI trienes 

(HBI-III) are synthesized by a small number of marine diatom taxa (Belt et al., 2015). 

Investigation of surface sediment samples from the Barents Sea has revealed that 

HBI-III is present under open waters, extremely reduced or absent under seasonal and 

perennial sea ice, and occurs in maximum abundance underneath the marginal ice 

zone (Belt et al., 2015). Accordingly, HBI-III is hypothesized to represent a potential 

proxy for retreating sea ice or the marginal ice zone in both the Northern Hemisphere 

(Belt et al., 2015) and Southern Hemisphere (Collins et al., 2013). 

Figure 10 illustrates how combined analyses of sea ice algae and phytoplankton 

biomarkers in Arctic surface sediments reveal insights into different sea ice 

conditions. An increased phytoplankton biomarker abundance and 

contemporaneously lowered/absent IP25 reflect open-ocean conditions; lowered or 

absent phytoplankton biomarker and contemporaneously lowered or absent IP25 

indicate perennial sea ice; and an increased abundance in both types of biomarkers 

mark seasonal sea ice conditions (Fig. 10) (Müller et al., 2011; Xiao et al., 2015). This 

combined biomarker approach thus overcomes the ambiguity of the absence of IP25 

and enables distinction between open-water and perennial sea ice conditions. 

Following this, it has been suggested that combining IP25 with an open-water 

phytoplankton biomarker in the so-called phytoplankton-IP25 index (PIP25), allows for 

improved, semi-quantitative sea ice reconstruction (Fig. 10) (Müller et al., 2011): 

PIP25 = [IP25]/([IP25] + [phytoplankton marker] × c)     (1) 
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Figure 10 Scheme illustrating ice algae and phytoplankton production under different sea ice 
conditions during spring/summer (slightly modified, but originally from Müller et al., 2011). 
The sedimentary abundances of the specific biomarkers (IP25 and phytoplankton marker) and 
PIP25 values expected for the different sea ice conditions are also indicated. 
 

The balance factor c corresponds to the ratio of mean IP25 and mean phytoplankton 

biomarker concentration for a given set of samples from a certain area or sediment 

core. It accounts for often very different concentrations of IP25 and phytoplankton 

biomarker (Müller et al., 2011). The PIP25 can be estimated using brassicasterol, 

dinosterol or HBI-III as phytoplankton biomarker. PIP25 values vary between 0 and 1, 

indicating open-ocean conditions and perennial sea ice cover, respectively (Fig. 10). 

Calibration studies using Arctic and sub-Arctic core-top samples have shown a robust 

positive linear correlation between PIP25 and modern spring sea ice concentration in 

various Northern Hemisphere ocean regions (Müller et al., 2011; Navarro-Rodriguez 

et al., 2013; Stoynova et al., 2013; Xiao et al., 2015; Kolling, 2017), illustrating the 

great potential of the sea ice biomarker approach. Furthermore, based on results from 

Barents Sea core-top samples Smik et al. (2016) argued that the dependence of the 

PIP25 on the balance factor c is smallest, and the positive linear correlation with spring 

sea ice concentration is strongest, for PIIIIP25 (using IP25 and HBI-III), as compared to 

PBIP25 (using IP25 and brassicasterol). Latest results from widespread Arctic and sub-

Arctic core-top samples reveal a similar trend (Kolling, 2017). 
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3.2 Sediment core material 

New biomarker proxy data was measured on a number of marine sediment samples 

from both core-tops (0–1 cm) of multicores and glacial sections of piston cores from 

the sub-Arctic and Arctic (Fig. 11; Tab. 1). The main target was to obtain biomarker 

sea ice records covering several D–O cycles during the last glacial with decadal to 

centennial-scale resolution. Three high-resolution sea ice records were generated for 

three key core sites in the southern and central Norwegian Sea (presented in Paper 1 

and Paper 2) and in the northwestern North Atlantic (presented in Paper 3) (sites 1–3; 

Fig. 11; Tab. 1). A variety of glacial sediment samples from core sites at the eastern 

and southern Greenland margins were additionally tested for their potential of 

applying the sea ice biomarker approach and providing high-resolution glacial sea ice 

records (sites 4–7; Fig. 11; Tab. 1). In most cases, however, biomarker extractions 

and analyses of these samples yielded IP25 (and other biomarker) concentrations 

below or close to the instrumental detection limit. In addition, multiple core-top 

samples were analyzed to supplement and evaluate the sea ice biomarker calibration 

database and allow for improved quantitative sea ice reconstructions during glacial 

D–O cycles (sites 8–48; Fig. 11; Tab. 1) (presented in Paper 2 and Paper 3). 

 
Figure 11 Core sites investigated in this PhD project. The core sites and proxy data produced 
are detailed in Table 1, according to the numbering shown here. Bathymetric map was 
produced with the Ocean Data View software (Schlitzer, 2016). 
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Table 1 Sediment cores and proxy data investigated in this PhD project. Numbers correspond 
to those shown in Figure 11. 1–3: High-resolution down-core records. 4–7: Down-core test 
samples. 8–48: Core-top samples. 

No. Core 
Latitude 

(°N) 
Longitude 

(°E) 
Water 

depth (m) 
Proxy data 

1 MD99-2284 62.375 -0.980 1,500 HBIs (no HBI-III), sterols, TOC 
2 MD95-2010 66.684 4.566 1,226 HBIs, sterols, alkenones, TOC 
3 GS16-204-23CC 58.229 -45.698 2,270 HBIs, sterols, TOC, pl. 14C, pl. δ18O 
4 GS16-204-21CC 57.712 -48.012 3,335 HBIs, sterols, TOC 
5 GS16-204-22CC-A 58.047 -47.039 3,160 HBIs, sterols, TOC 
6 GS15-198-36CC 67.861 -21.882 770 HBIs, sterols, TOC 
7 GS15-198-38CC 70.127 -17.663 1,610 HBIs, sterols, TOC 
8 GS15-198-36MC 67.861 -21.882 770 HBIs, sterols, TOC 
9 GS15-198-37MC 68.736 -20.873 1,284 HBIs, sterols, TOC 

10 GS15-198-38MC 70.127 -17.663 1,610 HBIs, sterols, TOC 
11 GS15-198-39MC 71.471 -17.083 1,699 HBIs, sterols, TOC 
12 GS15-198-40MC 70.823 -17.080 1,566 HBIs, sterols, TOC 
13 GS15-198-41MC 73.138 -15.679 1,992 HBIs, sterols, TOC 
14 GS15-198-42MC 73.188 -16.521 826 HBIs, sterols, TOC 
15 GS15-198-43MC 73.242 -16.296 1,251 HBIs, sterols, TOC 
16 GS15-198-44MC 74.948 -11.922 1,950 HBIs, sterols, TOC 
17 GS15-198-45MC 75.031 -10.947 2,628 HBIs, sterols, TOC 
18 GS15-198-46MC 75.003 -8.821 3,266 HBIs, sterols, TOC 
19 GS15-198-47MC 74.140 -8.821 3,046 HBIs, sterols, TOC 
20 GS15-198-48MC 72.072 -15.751 1,402 HBIs, sterols, TOC 
21 GS15-198-49MC 70.828 -19.113 1,292 HBIs, sterols, TOC 
22 GS15-198-50MC 70.839 -19.432 942 HBIs, sterols, TOC 
23 GS15-198-51MC 70.796 -19.509 712 HBIs, sterols, TOC 
24 GS15-198-52MC 70.711 -19.655 401 HBIs, sterols, TOC 
25 GS15-198-53MC 70.195 -20.379 311 HBIs, sterols, TOC 
26 GS15-198-54MC 69.064 -21.294 660 HBIs, sterols, TOC 
27 GS15-198-55MC 69.012 -21.274 942 HBIs, sterols, TOC 
28 GS15-198-56MC 68.962 -21.140 1,193 HBIs, sterols, TOC 
29 GS15-198-58MC 70.104 -20.987 602 HBIs, sterols, TOC 
30 GS15-198-59MC 70.115 -18.832 903 HBIs, sterols, TOC 
31 GS15-198-60MC 70.129 -18.644 1,167 HBIs, sterols, TOC 
32 GS15-198-61MC 70.123 -18.413 1,423 HBIs, sterols, TOC 
33 GS15-198-62MC 70.020 -13.563 1,423 HBIs, sterols, TOC 
34 GS15-198-63MC 70.528 -2.756 2,995 HBIs, sterols, TOC 
35 GS16-204-19MC 59.814 -39.799 2,675 HBIs, sterols, TOC 
36 GS16-204-21MC 57.712 -48.012 3,335 HBIs, sterols, TOC 
37 GS16-204-22MC 58.047 -47.039 3,160 HBIs, sterols, TOC 
38 GS16-204-23MC 58.229 -45.698 2,270 HBIs, sterols, TOC 
39 GS16-204-24MC 58.604 -46.380 2,540 HBIs, sterols, TOC 
40 FRAM2014/15-08 89.147 -96.200 2,006 HBIs, sterols, TOC 
41 FRAM2014/15-11 87.038 -61.357 1,260 HBIs, sterols, TOC 
42 FRAM2014/15-13 86.722 -52.088 960 HBIs, sterols, TOC 
43 FRAM2014/15-15-1 85.180 -25.387 1,340 HBIs, sterols, TOC 
44 FRAM2014/15-15-2 85.008 -23.540 1,160 HBIs, sterols, TOC 
45 FRAM2014/15-15-3 84.872 -22.442 1,750 HBIs, sterols, TOC 
46 FRAM2014/15-15-4 84.800 -21.547 1,630 HBIs, sterols, TOC 
47 FRAM2014/15-15-5 84.612 -20.238 810 HBIs, sterols, TOC 
48 FRAM2014/15-15-6 84.503 -19.880 820 HBIs, sterols, TOC 
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3.3 Sampling, sample preparation and analysis 

Two of the sediment cores (sites 1 and 2) investigated were previously retrieved 

during Marion Dufresne (IMAGES I) cruise MD101 in 1995 and Marion Dufresne 

(IMAGES V) cruise MD114 in 1999. The other piston cores and multicores were 

retrieved during G.O. Sars cruises GS15-198 in 2015 

(https://www.bcdc.no/files/bcdc-theme/documents/GS15-198_cruise%20report.pdf) 

and GS16-204 in 2016 (https://www.bcdc.no/files/bcdc-theme/documents/GS16-

204_cruise%20report.pdf) within the framework of the Ice2Ice project. After 

collection, the sediment cores were stored at 4°C in the facilities of the Department of 

Earth Science, University of Bergen, and Uni Research Climate (now NORCE 

Norwegian Research Centre). Sediment cores were sampled with metal spatulas. 

Sediment samples of ~4–30 g wet weight were transferred into glass vials and 

immediately frozen at –20°C for several days. Frozen sediment samples were freeze-

dried, subsequently weighed to obtain the water content and dry weights of each 

sample, and then homogenized using an agate mortar.  

Firstly, the total organic carbon (TOC) content was measured on ~100 mg of freeze-

dried and homogenized sediment powder using a carbon-sulphur determinator (CS-

125, Leco) at the Alfred Wegener Institute, Bremerhaven, after removal of carbonate 

by adding 500 ml hydrochloric acid to each sample. Secondly, biomarkers were 

extracted from ~5 g of freeze-dried and homogenized sediment powder either using 

an accelerated solvent extractor (ASE) or ultrasonication, and 

dichloromethane:methanol (2:1, v/v) as solvent. Before extraction, various internal 

standards were added to each sample for quantification purposes. The total extracts 

were then separated into a hydrocarbon fraction and a sterol fraction using open-

column chromatography, and analyzed by gas chromatography/mass spectrometry. 

All chemical sample preparations and biomarker analyses were performed in the 

organic geochemical laboratory facilities of the Alfred Wegener Institute. Due to 

slightly different methodological approaches applied on samples from the different 

cores, not all of the various biomarkers outlined in section 3.1 were equally obtained 

for all cores (Tab. 1). Further details on the biomarker extraction and analyses are 

given in the three manuscripts of this thesis (Papers 1–3). 
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For supplementary analyses of planktic δ18O, δ13C and 14C on core GS16-204-23CC 

(Tab. 1), wet sediment samples were washed over a 63 µm sieve, oven-dried at 50°C, 

and subsequently dry-sieved into different size fractions. δ18O and δ13C analyses were 

performed on 15–20 specimens of the polar planktic foraminifer Neogloboquadrina 

pachyderma (sinistral) using mass spectrometry at the FARLAB, Department of Earth 

Science, University of Bergen. 14C ages were measured on ~4–14 mg CaCO3 of N. 

pachyderma (s) using accelerator mass spectrometry at the W. M. Keck Laboratory, 

University of California, Irvine and at the Beta Analytic radiocarbon laboratory.  

More methodological details on biomarker analyses, previously published 

supplementary proxy records, construction of sediment core chronologies, and 

statistical analyses are given in the manuscripts (Papers 1–3). 
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4 Summary of papers 
4.1 Paper 1: Sea ice variability in the southern Norwegian Sea during glacial 

Dansgaard–Oeschger climate cycles 

In Paper 1 we investigate the nature, timing, and role of sea ice fluctuations in the 

southern Norwegian Sea for abrupt ocean and climate change during the last glacial 

period. For this purpose, we present new multi-decadal to centennial-scale resolution 

sea ice biomarker records from core MD99-2284 covering four Dansgaard–Oeschger 

climate cycles at 32–40 thousand years ago. The sea ice proxy reconstruction is based 

on the sea ice algae biomarker IP25, open-water phytoplankton sterols (brassicasterol 

and dinosterol), and the phytoplankton-IP25 index (PIP25) to derive semi-quantitative 

sea ice estimates. Our biomarker records indicate a strong seasonal sea ice cover in 

the southern Norwegian Sea during early cold Greenland stadials and largely open-

ocean conditions during peak warm Greenland interstadials. These reconstructed sea 

ice fluctuations are largely consistent with model output data of sea ice cover in the 

Norwegian Sea, based on a transient simulation with LOVECLIM (Menviel et al., 

2014). A statistical evaluation of the new sea ice records with published proxy records 

of near-surface temperature and planktic and benthic foraminiferal stable oxygen and 

carbon isotopes from the same sediment core (Dokken et al., 2013), reveals insights 

into the timing of sea ice changes with respect to deep ocean convection. We find that 

initial sea ice reductions at the core site preceded the major reinvigoration of 

convective deep-water formation in the Nordic Seas and abrupt Greenland warming. 

In turn, sea ice expansions led the buildup of a deep oceanic heat reservoir. Our 

findings suggest that the sea ice variability shaped regime shifts between surface 

stratification and deep convection in the Nordic Seas during abrupt glacial climate 

changes. 
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4.2 Paper 2: Rapid sea ice reduction in the Nordic Seas and abrupt warming over 

Greenland during the last glacial 

In Paper 2 we evaluate the biomarker approach for sea ice reconstruction and 

investigate spatio-temporal changes in the glacial sea ice cover in the Nordic Seas, 

with a focus on the link between large-scale sea ice reductions and abrupt warming in 

Greenland. Firstly, we present new biomarker sea ice data from several core-tops 

from the northern, eastern and southern Greenland margins, supplementing the 

database of published biomarker sea ice data from Arctic and sub-Arctic regions. 

Compared with satellite-based sea ice observations, our core-top biomarker data 

support an increased sedimentary IP25 abundance under seasonal sea ice. Furthermore, 

we establish a calibration curve for down-core biomarker records, based on a robust 

linear correlation between core-top PIIIIP25 (combining IP25 and the highly branched 

isoprenoid triene, HBI-III) and spring sea ice concentration (R2=0.87), following 

Smik et al. (2016) and Kolling (2017). Secondly, we present three independent sea ice 

records for the glacial period 32–41 thousand years ago, based on new biomarker sea 

ice data from core MD95-2010 (central Norwegian Sea), biomarker sea ice data from 

core MD99-2284 (southern Norwegian Sea), and bromine-enrichment sea ice data 

from the RECAP ice core (East Greenland). Our sea ice records consistently reveal 

millennial-scale sea ice variability in the Nordic Seas during several Dansgaard–

Oeschger climate cycles. Our independent sea ice records suggest substantial and 

large-scale rapid sea ice reductions within ~250 years or less at abrupt cold-to-warm 

Greenland climate transitions, following a more gradual initial disappearance of 

seasonal sea ice in the southern Norwegian Sea. This indicates that rapid sea ice 

retreat shaped the threshold-like transition from surface stratification with an 

extensive sea ice cover to major deep ocean convection in the Norwegian Sea with 

extended ice-free conditions. Our empirical evidence supports the critical role of sea 

ice decline as a positive feedback to unleash abrupt and large-amplitude atmospheric 

warming in Greenland during the last glacial. 

 

 

 

 

 



	
   37 

4.3 Paper 3: Evidence of deep Zoophycos burrowing and an enhanced glacial sea ice 

cover from the Eirik Drift south of Greenland 

In Paper 3 we report on new and published magnetic susceptibility, planktic 

foraminiferal δ18O and 14C data of four Eirik Drift sediment cores from 2,220–

2,270 m water depth and use these proxy records to constrain the glacial stratigraphy 

in this highly dynamic sedimentation regime. New lipid biomarker data is presented 

for one of the cores (GS16-204-23CC) with the aim to investigate the sea ice cover 

south of Greenland during the last glacial period. The highly consistent magnetic 

susceptibility records of the cores were aligned in order to place all multi-proxy 

records on a common depth scale. A chronology is developed for the last 65 thousand 

years using a 14C-based Bayesian chronology combined with a tuning of glacial 

meltwater signals in planktic δ18O records from the Eirik Drift to pertinent δ18O 

signals in a well-dated reference record from the northern Denmark Strait (Voelker et 

al., 1998). In two cores we find distinct intervals of several aberrant planktic δ18O 

values and aberrant 14C ages that are up to ~19,000 14C years younger than underlying 

and overlying 14C ages. Following Leuschner et al. (2002) and Küssner et al. (2018), 

we relate this stratigraphic distortion to deep Zoophycos burrowing, which suggests a 

displacement of foraminifera with ages of <10,000–12,500 14C years by more than 

400 cm down into glacial sediments, particularly identified within Greenland 

Interstadial 8 (~38 thousand years ago). Deep burrowing was probably related to 

declining food supply driven by a major shift towards enhanced sediment winnowing 

under strengthened bottom currents during the Holocene. Despite the stratigraphic 

distortion, an increased abundance of the sea ice algae biomarker IP25 in surrounding 

glacial sediments suggests an enhanced seasonal sea ice cover and/or sea ice export 

south of Greenland 32–41 thousand years ago, forming an important freshwater 

source for the glacial North Atlantic. Some millennial-scale sea ice variations may 

have occurred, but we find no evidence of major open-ocean conditions at the core 

site during Dansgaard–Oeschger warming events.  
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5 Synthesis and outlook 
5.1 Synthesis 

The research presented in this PhD thesis significantly advances the knowledge of 

past sea ice dynamics in the Nordic Seas during glacial millennial-scale abrupt 

climate changes. I generated multi-decadal to centennial-scale biomarker sea ice 

records from the Norwegian Sea and northwestern North Atlantic covering four D–O 

cycles ~30–40 thousand years ago. The new sea ice proxy results provide detailed and 

solid empirical evidence that 1) unprecedentedly resolves the nature, timing and role 

of sea ice variability during the abrupt D–O climate changes, and 2) highlights new 

pressing issues to be addressed by future research. 

The high-resolution sea ice records presented in Paper 1 suggest that glacial sea ice 

fluctuations did not simply follow air temperature changes recorded in Greenland ice 

cores. Sea ice variations in the southern Norwegian Sea during D–O cycles were 

rather asynchronous with Greenland temperature changes. The detailed sea ice 

reconstruction presented in this thesis allows reconciling lower-resolution sea ice 

records from the southern Norwegian Sea, which revealed partly contrasting trends in 

glacial sea ice variability (Hoff et al., 2016; Wary et al., 2016). The previously 

published sea ice records by and large showed either enhanced sea ice cover during 

GI and reduced seasonal sea ice cover during GS (Wary et al., 2016) or a near-

perennial sea ice cover during GS and reduced sea ice conditions during GI (Hoff et 

al., 2016). Our high-resolution sea ice records suggest that in the southern Norwegian 

Sea the seasonal sea ice cover was maximal at GI–GS transitions and during early 

parts of GS; initial sea ice retreat occurred during late GS; minimum sea ice or largely 

open-ocean conditions were reached at GS–GI transitions and persisted during peak 

GI, but only for ~200 years on average; and seasonal sea ice occurrence increased 

throughout later GI (Paper 1). Another new sea ice record from a core site further 

north (Paper 2) supports these trends in glacial sea ice variability, but also shows that 

in the central Norwegian Sea shifts from an extended sea ice cover to a reduced 

seasonal sea ice cover were more rapid and in phase with the Greenland D–O climate 

transitions (Paper 2). Hence, the new findings presented in this thesis are in agreement 

with model simulations (Menviel et al., 2014) and generally support the stadial and 

interstadial sea ice scenarios proposed by Dokken et al. (2013) (Fig. 8). However, 

they also indicate that the previously unresolved sea ice fluctuations in the glacial 
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Nordic Seas were an integral part of a cascade of processes leading to the abrupt 

climate changes in Greenland.  

The results presented in Paper 1 illustrate that variations in seasonal sea ice (IP25) and 

near-surface temperature in the southern Norwegian Sea were closely linked to each 

other, but asynchronous with variations in deep-water temperature at ~1,500 m in the 

Nordic Seas. This indicates that seasonal sea ice retreat in the southern Norwegian 

Sea was probably coupled with an enhanced advection of warm and saline surface 

waters from the North Atlantic during late GS (Paper 1). Once the winter sea ice 

season shortened in the southern Norwegian Sea, convective (winter) mixing of the 

surface ocean probably strengthened during late GS. However, the intermediate-deep 

heat reservoir of the Nordic Seas was still unaffected and did not yet release heat to 

the atmosphere. This points at near-surface thermohaline circulation changes that 

were accompanied by the rather gradual retreat in seasonal sea ice cover in the 

southern Norwegian Sea, which preceded the abrupt GS–GI climate transition in 

Greenland. The ultimate trigger of these changes remains unresolved, but the new sea 

ice records do not support a mechanism that would lead to a sudden sea ice demise 

(within years or decades) in the larger Nordic Seas/North Atlantic area, as observed in 

some model simulations (Vettoretti and Peltier, 2018). Nevertheless, the biomarker 

proxy evidence of initial seasonal sea ice retreat during later GS supports that “early-

warning signals” for abrupt D–O events, identified in the δ18O of the Greenland ice 

core, were caused by a destabilization of the sea ice cover on its way to a bifurcation 

(Boers, 2018). 

In fact, the sea ice records of core MD95-2010 from the central Norwegian Sea and 

that of the RECAP ice core presented in Paper 2 unambiguously resolve the rapid 

large-scale sea ice decline reflecting the bifurcation point at GS–GI transitions. This 

rapid large-scale sea ice decline, which occurred within ~250 years or less in the 

proxy records, provides unprecedented and robust evidence of a rapid sea ice switch 

mechanism that was proposed to shape the abrupt atmospheric warming of a D–O 

event (Timmermann et al., 2003; Gildor and Tziperman, 2003). The GS–GI 

bifurcation point was not only marked by the rapid large-scale sea ice decline, but 

also by coeval major reinvigoration of deep ocean convection in the Nordic Seas and 

an abrupt shift from Polar to warmer Atlantic surface conditions in the southern 
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Norwegian Sea (Paper 2). This, happening after the initial sea ice retreat and 

associated enhanced Atlantic inflow in the southern Norwegian Sea, reinforces that 

thermohaline circulation changes or other changes in the northward extent of the 

upper limb of the AMOC may have triggered the rapid switches in sea ice cover 

(Timmermann et al., 2003; Gildor and Tziperman, 2003; Menviel et al., 2014). The 

rapid sea ice decline in the central Norwegian Sea, documented and constrained in 

this PhD thesis, implies an amplification of atmospheric warming through a decreased 

albedo effect and increased exposure of relatively warm subsurface and surface-ocean 

waters to the atmosphere (Gildor and Tziperman, 2003). Our new sea ice proxy 

evidence thus ultimately underpins the hypothesis that sea ice retreat acted as a 

critical feedback mechanism that shaped the extremely abrupt and large-amplitude 

atmospheric warming of Greenland´s D–O events.  

The results of this thesis also indicate that production and export of sea ice may have 

acted as important freshwater source for the glacial Nordic Seas and northern North 

Atlantic. The sea ice record from the southern Norwegian Sea, presented in Paper 1, 

illustrates that seasonal sea ice was present and increased throughout GI, in agreement 

with previous findings (Hoff et al., 2016; Wary et al., 2016). This trend of increasing 

seasonal sea ice appears to have initiated with a previously unresolved intra-

interstadial sea ice expansion event, occurring after the peak warmth in Greenland 

(Paper 1). The increasing seasonal sea ice cover presumably resulted from freshwater 

input from the nearby Scandinavian and British ice sheets (Dokken et al., 2013; 

Alvarez-Solas et al., in rev.) and may have fostered surface stratification, which in 

turn reduced deep convection in the Nordic Seas. This was most likely one important 

factor causing the gradual atmospheric cooling over Greenland during GI. On the 

other hand, the rapid shift from a reduced to an extended sea ice cover in the central 

Norwegian Sea illustrates the presence of a threshold response or bifurcation point 

marking the GI–GS cooling transitions (Paper 2). Hence, our new data also support 

that rapid large-scale sea ice expansion rapidly increased the albedo, reduced ocean–

atmosphere heat exchange in the Nordic Seas, and thus amplified the atmospheric 

cooling over Greenland. This testifies not only the role of sea ice-related feedbacks in 

amplifying the abrupt cooling recorded at GI–GS transitions in Greenland ice cores, 

but also the importance of sea ice for the buildup of an intermediate-deep heat 

reservoir in the Nordic Seas. 
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The high-resolution sea ice record from the Eirik Drift, presented in Paper 3, reveals 

an enhanced seasonal sea ice presence south of Greenland ~31–41 thousand years 

ago. This may reflect a strengthened EGC and/or greater southward extension of the 

EGC, associated with increased sea ice export to the Labrador Sea during glacial D–O 

climate cycles, compared to today (Paper 3). The results of this thesis thus support 

previous suggestions that increased sea ice export from the Arctic Ocean and Nordic 

Seas to the northwestern North Atlantic might have contributed to a surface 

freshening and reduced deep convection in the North Atlantic during the last glacial 

(Vettoretti and Peltier, 2018). Although the glacial sea ice export to the Labrador Sea 

might have varied on millennial timescales, the exact nature and timing of these 

variations remain poorly constrained. The new sea ice record from a core site 

~200 km south of Greenland´s southern tip does not reveal indications of Atlantic-like 

open-ocean conditions, as found for the Norwegian Sea during D–O events (Paper 3). 

However, our proxy evidence does neither support nor reject the suggestion of a super 

polynya in the northwestern North Atlantic, which was found to lead to abrupt 

Greenland warming in a model simulation (Vettoretti and Peltier, 2016). 

Furthermore, the results presented in this thesis illuminate both processes that hamper 

robust age models of sediment cores and ways to improve those age models. In paper 

3 we argue that deep burrowing, probably by the Zoophycos producer, leads to 

displacement of younger foraminifer shells by >400 cm into older sediments. This 

results in a negative radiocarbon age offset of up to >19,000 years and distorted 

geochemical proxy signals, a stratigraphic distortion with previously unreported 

dimensions (Küssner et al., 2018). The severe stratigraphic distortion caused by deep 

burrowing, now documented for glacial sediment sections from the Eirik Drift crest, 

adds to the processes preventing reliable 14C-based age models. In general, 14C-based 

age models appear insufficient to precisely constrain the D–O variability ~30–40 

thousand years ago in marine proxy records, as both the analytical uncertainty and the 

uncertainty in the 14C calibration curves for this time period are in the order of several 

hundreds of years (Reimer et al., 2013). Moreover, calibration of glacial 14C ages is 

biased by variable and mostly unknown reservoir ages of seawater, which must be 

expected especially in northern high-latitude ocean regions characterized by varying 

sea ice and ocean convection conditions. Nevertheless, results of this thesis illustrate 

that robust age models for sediment cores from the Nordic Seas and northwestern 
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North Atlantic can be generated by stratigraphic alignment or tuning of sediment core 

and ice core proxy signals (Papers 1–3). We could show that identification and 

geochemical characterization of cryptotephra layers can independently validate and 

improve tuning-based age models (Paper 1).  

Based on such thorough tuning-based chronologies, we demonstrate in Paper 2 that 

reconstructed trends in sea ice cover in the Norwegian Sea are consistent with those 

found in the RECAP ice core. With the well constrained ice core chronology and local 

sea ice signals from the sediment core records, this thesis presents the most 

comprehensive and detailed sea ice reconstruction available for glacial abrupt D–O 

climate transitions (Paper 2). Moreover, core-top biomarker data included in Paper 2 

support and extend the previously observed strong linear relationship between the 

PIIIIP25 and spring sea ice concentration (Smik et al., 2016; Kolling, 2017). This 

enabled an advanced, quantitative reconstruction of changes in spring sea ice 

concentration in the central Norwegian Sea over the course of the D–O cycles. 

Accordingly, findings presented in this thesis suggest that the rapid sea ice decline 

that amplified the abrupt Greenland warming of a D–O event may correspond to a 

~50 % reduction of spring sea ice concentration at this particular core site in the 

central Norwegian Sea (Paper 2). 

 

5.2 Outlook 

I demonstrated that present and past sea ice conditions in sub-Arctic regions can be 

thoroughly reconstructed using sea ice algae and phytoplankton biomarkers from 

core-top and down-core samples, respectively. In particular, the PIIIIP25 index (IP25 

combined with HBI-III) reveals promising results with respect to quantitative sea ice 

reconstructions, that is spring sea ice concentration (Paper 2; Smik et al., 2016; 

Kolling, 2017). The new biomarker data presented in this thesis supplement the 

collection of Arctic and sub-Arctic core-top biomarker data. This extended database 

can be used to reassess the full potential of the different biomarkers for sea ice 

reconstruction and in particular advance the applicability of HBI-III and PIIIIP25 for 

sea ice margin and quantitative sea ice reconstructions (following Belt et al., 2015; 

Smik et al., 2016; and Kolling, 2017). Furthermore, the sea ice biomarker data 

presented in this thesis will serve as invaluable reference proxy database for the 
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development of new sea ice proxies such as from ancient DNA. The aDNAPROX 

project (led by Stijn De Schepper) is currently pursuing this attempt at the NORCE 

Norwegian Research Centre, which aims at calibrating ancient DNA signals in core-

top samples against sea ice data from biomarkers, dinocysts and satellite observations. 

This might allow distinguishing between proxy signals from organisms reflecting 

locally formed sea ice and drifted sea ice, which is crucial in EGC regions and 

currently difficult with existing sea ice proxy methods. In general, parallel analyses of 

different sea ice proxies in core-tops but also down-core records are required to test 

the robustness of each of the different sea ice proxies for sea ice reconstructions. 

The results presented in this thesis reveal the glacial millennial-scale sea ice 

variability in the Norwegian Sea in great detail and provide preliminary insights into 

the sea ice variability in the northwestern North Atlantic. Biomarker analyses of a few 

test samples from glacial section in sediment cores from the eastern and southern 

Greenland margins indicate that sea ice reconstruction in regions influenced by the 

EGC are difficult, probably due to a generally lowered phytoplankton production in 

polar waters. Nevertheless, robust high-resolution sea ice records from the 

northeastern, northern and northwestern North Atlantic are desirable in order to 

investigate the larger-scale spatiotemporal sea ice variations during the glacial D–O 

cycles. This is particularly important to constrain the maximum sea ice extent in the 

glacial North Atlantic and evaluate the significance of the largely unknown state of 

sea ice cover and deep convection in the Labrador Sea, and testing the idea of a super 

polynya in the Irminger Sea, which leads to abrupt Greenland warming in a model 

simulation (Vettoretti and Peltier, 2016; Vettoretti and Peltier, 2018). Sea ice records 

from the northern North Atlantic might also help constraining the glacial source area 

for aerosols and moisture precipitated in Greenland, which would improve the 

understanding of signals in sea ice records and other climate records from Greenland 

ice cores. 

In addition to further sea ice proxy records, future proxy records reflecting specific 

ocean conditions in the Nordic Seas and North Atlantic are needed to better constrain 

the dynamics involved in ocean circulation and sea ice changes during D–O climate 

cycles. This is crucial to better resolve and constrain the physical mechanisms that are 

found to potentially have caused the D–O ocean and climate variability in climate 
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model simulations (see 1.4 and 1.5). For example, compound-specific stable hydrogen 

isotopes (δD) on biomarkers, such as alkenones or sterols, might reflect changes in 

sea surface salinity (Schouten et al., 2006; Sachs et al., 2018), which could help better 

assessing the timing of freshwater input from the Scandinavian and British ice sheets 

and its role for sea ice expansion during GI. Furthermore, decadal to centennial-scale 

records of planktic and benthic 14C from the Nordic Seas could reveal further insights 

into surface and deep ocean mixing (Grootes, 2014). Such high-resolution 14C records 

covering the D–O cycles ~30–40 thousand years ago might document a strengthening 

in convective (winter) mixing in the southern Norwegian Sea, suggested to be 

associated with the initial sea ice retreat during late GS (Paper 2). This would be one 

important step in better resolving the mechanism causing the initial sea ice retreat 

during late GS, which intriguingly also occurred during Heinrich Event 4 (late GS9), 

when AMOC is believed to have been significantly reduced or even halted (Henry et 

al., 2016).  

To better resolve and understand the link between changes in AMOC and sea ice 

variability in the Nordic Seas, it is crucial to establish extremely robust and high-

precision chronologies for sediment core records from the Nordic Seas and for 

existing and upcoming Pa/Th records from the North Atlantic. In this regard, the 

chronology of core MD99-2284 – where the high-resolution sea ice record from the 

southern Norwegian Sea is from – will be independently supported and slightly 

refined by further crypto-tephra layers that can be geochemically and stratigraphically 

tied to tephra layers in the Greenland ice cores (Paper 2). This will enable us to 

constrain with even higher precision the timing and duration of shifts in sea ice cover 

(and other surface and deep ocean parameters) with respect to abrupt climate changes 

in Greenland ice core records. A robust chronology and the new high-resolution sea 

ice records from the Norwegian Sea may also be used to unravel how sea ice shifts in 

the Nordic Seas during D–O cycles were related to changes in the stability of the 

Greenland Ice Sheet. For this purpose, it would be necessary to link the sea ice 

records from the eastern Nordic Seas with IRD records from the western Nordic Seas, 

for example on the basis of consistent benthic δ18O variations reflecting intermediate 

and deep water temperature changes. In addition, high-resolution sea level 

reconstructions with independent robust chronologies may allow for better 
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constraining the evolution of ice sheet instability and freshwater input during D–O 

cycles. 

On the one hand, the present PhD thesis illustrates the great potential of biomarkers 

from Norwegian Sea sediment cores for detailed investigation of sea ice fluctuations 

during the last glacial. Also, the results of this thesis demonstrate that reinvigoration 

of deep convection in the Nordic Seas was accompanied by a rapid large-scale sea ice 

decline and abrupt atmospheric warming over Greenland during the D–O events ~30–

40 thousand years ago. On the other hand, previous studies showed that 

paleoceanographic proxy records from core sites MD95-2010 and MD99-2284 reveal 

major oceanographic changes during deglacial climate transitions (Dokken and 

Jansen, 1999; Bakke et al., 2009). However, the deglacial sea ice conditions in the 

climatically important central Norwegian Sea are largely unexplored. Therefore, 

investigation of the evolution of the Norwegian Sea ice cover from the Last Glacial 

Maximum over the deglacial period into the early Holocene forms a key target that 

future research should address. Biomarker sea ice records might reveal unprecedented 

insights into the role of sea ice for an extremely poorly ventilated deep Arctic 

Mediterranean during the last glacial (Thornalley et al., 2015). Moreover, the role of 

sea ice retreat as a positive feedback mechanism for abrupt Greenland climate change, 

as resolved in this thesis for the glacial D–O events, might be investigated with 

respect to well-constrained AMOC changes, abrupt Greenland warmings and 

northward moisture source shifts ~10–18 thousand years ago (McManus et al., 2004; 

Steffensen et al., 2008). The question arises whether reinvigoration of deep 

convection and concomitant rapid sea ice retreat in the Nordic Seas might have 

contributed to deglacial abrupt atmospheric CO2 rises by 10–15 ppm during times of 

abrupt Greenland warming, the source of which has yet to be constrained (Marcott et 

al., 2014).  

Finally, the results of this PhD thesis might be relevant with respect to the current and 

future Arctic sea ice decline and climate change. It can be noted that the sea ice 

decline and the transition from Arctic-like surface stratification to Atlantic-like open-

ocean convection, which our proxy records suggest to have happened in the 

Norwegian Sea at the onset of a D–O event, closely resemble observations from the 

modern Barents Sea (Lind et al., 2018). The reduction in (winter) sea ice occurrence 
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observed in the modern Barents Sea has been linked to an increased oceanic heat 

transport, that is, a strengthening and warming of the inflow of Atlantic waters into 

the Barents Sea (Årthun et al., 2012). This ‘Atlantification’ of the Barents Sea has 

also been linked with enhanced vertical mixing, increased upward heat fluxes, and the 

Arctic warming hotspot (Lind et al., 2018). It remains open, however, to what extent 

the sea ice decline and ‘Atlantification’ of the Arctic will expand and accelerate in the 

future, and how the rates of these changes and its consequences for the Greenland ice 

sheet, sea level rise and global climate change will eventually compete with those of 

the dramatic D–O climate events in the past. 
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