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Cubical and cosimplicial descent

Bjørn Ian Dundas and John Rognes

Abstract

We prove that algebraic K-theory, topological Hochschild homology and topological cyclic
homology satisfy cubical and cosimplicial descent at connective structured ring spectra along
1-connected maps of such ring spectra.

1. Introduction

In this paper we extend the techniques used in [Dun97] to prove that algebraic K-theory,
topological Hochschild homology and topological cyclic homology of connective structured ring
spectra all satisfy descent along 1-connected maps of such ring spectra.

Theorem 1.1 (Cubical descent). Let R be a connective commutative S-algebra and let A
and B be connective R-algebras. Suppose that the unit map ι : R→ B is 1-connected. Then
the functors F = K, THH and TC satisfy cubical descent at A along R→ B, in the sense that
in each case the natural map

η : F (A)
'−→ holim

T∈P
F (X(T ))

is an equivalence of spectra. Here P denotes the partially ordered set of nonempty finite subsets
T = {t0 < · · · < tq} of N, and X(T ) ∼= A ∧R B ∧R · · · ∧R B, with (q + 1) copies of B.

When the cubical diagram T 7→ X(T ) arises from a cosimplicial spectrum [q] 7→ Y q, the
homotopy limit over P can be replaced by a homotopy limit over the category ∆ of nonempty
finite totally ordered sets [q] = {0 < · · · < q}. This happens, for instance, when the R-algebra
B is commutative.

Theorem 1.2 (Cosimplicial descent). Let R be a connective commutative S-algebra, let A
be a connective R-algebra, and let B be a connective commutative R-algebra. Suppose that the
unit map ι : R→ B is 1-connected. Then the functors F = K, THH and TC satisfy cosimplicial
descent at A along R→ B, meaning that in each case the natural map

η : F (A)
'−→ holim

[q]∈∆
F (Y q)

is an equivalence of spectra. Here Y q = A ∧R B ∧R · · · ∧R B, with (q + 1) copies of B.

These results will be proved in Theorems 2.4, 2.5 and 3.7. They apply, in particular, at any
connective S-algebra A along the unit map ι : S→MU for complex bordism. In the case of a
group S-algebra A = S[Γ], this is relevant for Waldhausen’s algebraicK-theory A(X) ' K(S[Γ])
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of the space X = BΓ. In the final section we discuss a program to analyze K(S[Γ]) and TC(S[Γ])
in terms of K(Y •) and TC(Y •) for Y q = S[Γ] ∧MU ∧ · · · ∧MU , with (q + 1) copies of MU .

2. Cubical descent

2.1. Cubical diagrams

We use terminology similar to that in [Goo91, §1], including the notions of k-Cartesian
and k-co-Cartesian cubes. For each integer n ≥ 1, let Pnη be the set of subsets T ⊆ {1, . . . , n},
partially ordered by inclusion, and let Pn ⊂ Pnη be the partially ordered subset consisting of
the nonempty such T . A functor X : Pnη → C from Pnη to any category C is called an n-
dimensional cube, or an n-cube, in that category. The restriction of X to Pn is the subdiagram
X|Pn obtained by omitting the initial vertex X(∅) of the n-cube. Given any functor F from
C to spectra, the composite functor F ◦X is an n-cube of spectra, which we also denote as
F (X). There is a natural map

ηn : F (X(∅)) −→ holim
T∈Pn

F (X(T )) = holim
Pn

F (X)

from the initial vertex of F (X) to the homotopy limit [BK72, Ch. XI] of the remaining part of
the n-cube. We simply write F (X) in place of F (X|Pn) when it is clear that the restriction over
Pn ⊂ Pnη is intended. When forming the homotopy limit of a diagram of spectra we implicitly
assume that each vertex has been functorially replaced by a fibrant spectrum, and dually for
homotopy colimits. This requires that F takes values in a model category of spectra, such as
that of [BF78] or any one of those discussed in [MMSS01], with homotopy category equivalent
to the stable homotopy category. By definition, the n-cube F (X) is called k-Cartesian if and
only if ηn is a k-connected map. This is equivalent to the n-cube being (n+ k − 1)-co-Cartesian,
since the iterated homotopy cofiber of an n-cube of spectra is equivalent to the n-fold suspension
of its iterated homotopy fiber. Consider also the partially ordered set Pη of finite subsets T
of N = {1, 2, 3, . . . }, and let P ⊂ Pη be the partially ordered subset of nonempty such T . A
functor X from Pη is an infinite-dimensional cube, or ω-cube.

Definition 2.1. There is a natural map

η : F (X(∅)) −→ holim
T∈P

F (X(T )) = holim
P

F (X)

and a natural equivalence holimP F (X) ' holimn holimPn F (X) that connects η to holimn ηn.
We say that F satisfies cubical descent over X if η is an equivalence of spectra.

For example, if the connectivity of ηn grows to infinity with n, then η is an equivalence and
F satisfies cubical descent over X. Cubical descent for F over X ensures that the homotopy
type of the spectrum F (X(∅)) is essentially determined by the homotopy types of the spectra
F (X(T )) for nonempty finite subsets T ⊂ N.

2.2. Amitsur cubes

Let R be a connective commutative S-algebra, where S denotes the sphere spectrum. First, let
A and B be connective R-modules, and let ι : R→ B be a map of R-modules. We can and will
assume that A and B are flat, i.e., R-cofibrant as R-modules in the sense of [Shi04, Thm. 2.6(1)].
Let n ≥ 1, and consider the n-cube Xn = Xn

R(A,B) : T 7→ Xn(T ) of spectra given by

Xn(T ) = A ∧R X1,T ∧R · · · ∧R Xn,T , (2.1)
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where Xi,T = B for i ∈ T and Xi,T = R for i /∈ T . For each inclusion T ′ ⊆ T among subsets
of {1, . . . , n}, the map Xn(T ′)→ Xn(T ) is the smash product over R of idA with a copy of
idB for each i ∈ T ′, a copy of ι : R→ B for each i ∈ T \ T ′, and a copy of idR for each i /∈ T .
Letting n vary, these definitions assemble to specify an ω-cube Xω in spectra, whose restriction
over Pnη ⊂ Pη is the n-cube Xn. These constructions are homotopy invariant, because of the
assumption that A and B are flat as R-modules.

Lemma 2.2. Suppose that ι : R→ B is 1-connected. Then each d-dimensional subcube of
the n-cube Xn = Xn

R(A,B) is d-Cartesian and (2d− 1)-co-Cartesian, for every 0 ≤ d ≤ n.

Proof. Let B/R denote the 1-connected homotopy cofiber of ι : R→ B. The iterated
homotopy cofiber of any d-dimensional subcube of Xn is equivalent to the smash product
over R of A with d copies of B/R and (n− d) copies of R or B. Hence it is at least (2d− 1)-
connected. Thus the d-dimensional subcube is (2d− 1)-co-Cartesian, which, as we noted earlier,
is equivalent to it being d-Cartesian.

Next, suppose that A and B are connective R-algebras, and that ι : R→ B is the unit map
of B. We can assume that A and B are R-cofibrant as R-algebras in the sense of [Shi04,
Thm. 2.6(3)]. The underlying R-modules of A and B are then flat. We view R as a base, A
as the object at which we wish to evaluate a functor, and R→ B as a covering that induces
a covering A→ A ∧R B. In this case the n-cube Xn = Xn

R(A,B) : T 7→ Xn(T ), defined by the
same expression as in (2.1), takes values in the category of connective R-algebras. For varying n,
these assemble to an ω-cube Xω = Xω

R(A,B).

Definition 2.3. Let F be any functor from connective R-algebras to spectra. We call
F (Xω) the Amitsur cube for F at A along ι : R→ B, by analogy with the algebraic construction
in [Ami59]. When F satisfies cubical descent over Xω we say that F satisfies cubical descent
at A along R→ B.

Cubical descent for F at A along R→ B ensures that F (A) can be recovered from the
diagram T 7→ F (Xω(T )) for T ∈ P , having entries of the form F (A ∧R B ∧R · · · ∧R B) with
one or more copies of B.

2.3. Cubical descent for K, THH and TC

Let A 7→ K(A) denote the algebraic K-theory functor from connective S-algebras to spectra,
see [BHM93, §5] and [EKMM97, Ch. VI].

Theorem 2.4. Let R be a connective commutative S-algebra, let A and B be connective
R-algebras, and suppose that the unit map ι : R→ B is 1-connected.

(a) For each n ≥ 1, the n-cube K(Xn) = K(Xn
R(A,B)) : T 7→ K(Xn(T )) is (n+ 1)-

Cartesian.
(b) Algebraic K-theory satisfies cubical descent at A along R→ B.

Proof. By Lemma 2.2 the n-cube Xn : T 7→ Xn(T ) has the property that every d-
dimensional subcube is d-Cartesian. Hence the assertion that the n-cube K(Xn) is (n+ 1)-
Cartesian is the content of [Dun97, Prop. 5.1]. In other words, the natural map ηn : K(A)→
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holimPn K(Xn) is (n+ 1)-connected. Thus η : K(A)→ holimP K(Xω) is an equivalence, and
K satisfies cubical descent over Xω.

Let A 7→ THH(A) denote the topological Hochschild homology functor from connective S-
algebras to cyclotomic spectra, see [BHM93, §3] and [HM97, §2]. In particular, the circle group
T acts naturally on the underlying spectrum of THH(A), and for each subgroup C = Cpm ⊂ T
of order pm, where p is a prime, there is a homotopy orbit functor A 7→ THH(A)hC and a fixed
point functor A 7→ THH(A)C . These are related by a natural homotopy cofiber sequence of
spectra

THH(A)hCpm

N−→ THH(A)Cpm
R−→ THH(A)Cpm−1 (2.2)

called the norm–restriction sequence. Let TR(A; p) = holimR,m THH(A)Cpm be the sequential
homotopy limit over the R-maps. Let F : THH(A)Cpm → THH(A)Cpm−1 be the map forgetting
part of the invariance, and let TF (A; p) = holimF,m THH(A)Cpm be the sequential homotopy
limit over the F -maps. The R-maps induce a self-map of TF (A; p), also denoted R, and the
topological cyclic homology functor TC(A; p) can be defined as the homotopy equalizer of id
and R:

TC(A; p)
π // TF (A; p)

id //

R
// TF (A; p) .

The (integral) topological cyclic homology of A, denoted TC(A), is defined as the homotopy
pullback of two maps∏

p prime

TC(A; p)p −→
∏

p prime

holim
F,m

THH(A)
hCpm

p ←− THH(A)hT ,

see [DGM13, Def. 6.4.3.1]. The left hand map is defined in terms of π : TC(A; p)→ TF (A; p)
and the comparison maps Γm : THH(A)Cpm → THH(A)hCpm from fixed points to homotopy
fixed points. The right hand map is induced by the forgetful maps THH(A)hT → THH(A)hCpm

associated to the inclusions Cpm ⊂ T, for varying p and m. The subscript “p” denotes p-
completion. For each prime p, the projection TC(A)→ TC(A; p) becomes an equivalence after
p-completion.

Theorem 2.5. Let R be a connective commutative S-algebra, let A and B be connective
R-algebras, and suppose that the unit map ι : R→ B is 1-connected. Consider the n-cube
Xn = Xn

R(A,B), as above.
(a) Each d-dimensional subcube of THH(Xn) is d-Cartesian and (2d− 1)-co-Cartesian.
(b) Each d-dimensional subcube of THH(Xn)hC , THH(Xn)C and TR(Xn; p) is d-Cartesian

and (2d− 1)-co-Cartesian, for every C = Cpm ⊂ T.
(c) Each d-dimensional subcube of TF (Xn; p) and TC(Xn; p) is (d− 1)-Cartesian and

(2d− 2)-co-Cartesian.
(d) Topological Hochschild homology, THH(−)hC , THH(−)C , TR(−; p), TF (−; p), TC(−; p)

and (integral) topological cyclic homology all satisfy cubical descent at A along R→ B.

Proof. (a) The underlying spectrum of THH(A) is naturally equivalent to the realization
Bcy(A) of the cyclic bar construction [q] 7→ A ∧ · · · ∧A, with (q + 1) copies of A. Hence there
is a natural equivalence

THH(A ∧R B ∧R · · · ∧R B) ' Bcy(A ∧R B ∧R · · · ∧R B)
∼= Bcy(A) ∧Bcy(R) B

cy(B) ∧Bcy(R) · · · ∧Bcy(R) B
cy(B) ,
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where Bcy(R) is a connective commutative S-algebra, Bcy(A) and Bcy(B) are flat connective
Bcy(R)-modules, and Bcy(ι) : Bcy(R)→ Bcy(B) is a 1-connected map of Bcy(R)-modules. By
Lemma 2.2 each d-dimensional subcube of

THH(Xn
R(A,B)) ' Xn

Bcy(R)(B
cy(A), Bcy(B))

is (2d− 1)-co-Cartesian.
(b) Each d-dimensional subcube of THH(Xn)hC is at least as co-Cartesian as the corre-

sponding d-dimensional subcube of THH(Xn), because homotopy orbits preserve connectivity.
The analogous claim for the subcubes of THH(Xn)C , with C = Cpm , follows by induction on m
from the norm–restriction homotopy cofiber sequence.

The equivalent Cartesian claims for the subcubes of THH(Xn)hC and THH(Xn)C follow.
In other words, the iterated homotopy fiber of each d-dimensional subcube of THH(Xn)hC or
THH(Xn)C is (d− 1)-connected. By the norm-restriction sequence, it follows that the map
of iterated homotopy fibers induced by the R-maps THH(Xn)Cpm → THH(Xn)Cpm−1 is d-
connected, for each m. Hence the iterated homotopy fiber of each d-dimensional subcube of
TR(Xn; p) is also (d− 1)-connected, by the Milnor lim-lim1 sequence. No connectivity is lost,
because lim1 vanishes on sequences of surjections, cf. [Dun97, Lem. 4.3].

(c) The Cartesian claims for TF (Xn; p) and TC(Xn; p) follow from those for the cubes
THH(Xn)C and TR(Xn; p), respectively, since the sequential homotopy limit over F -maps
defining TF (−; p), and the homotopy equalizer of id and F calculating TC(−; p) in terms of
TR(−; p), both reduce connectivity of iterated homotopy fibers by at most one, cf. [Dun97,
Prop. 4.4].

(d) For each of the functors F = THH, THH(−)hC , THH(−)C , TR(−; p), TF (−; p) and
TC(−; p), the natural map ηn : F (A)→ holimPn F (Xn) is n- or (n− 1)-connected. Thus the
natural map η : F (A)→ holimP F (Xω) is an equivalence, and each of these functors satisfies
cubical descent over Xω. Finally, for integral topological cyclic homology we use that each
vertex in the natural diagram defining it satisfies cubical descent, since holimP commutes up
to a natural chain of equivalences with other homotopy limits.

2.4. Two spectral sequences

For each ω-cube F (X) of spectra, the equivalent homotopy limits

holim
P

F (X) ' holim
n

holim
Pn

F (X)

give rise to two spectral sequences. On the one hand, we have the homotopy spectral sequence

Es,t1 = πt−s hofib(ps) =⇒s πt−s(holim
n

holim
Pn

F (X))

with s ≥ 0, associated to the tower of fibrations

· · · → holim
P s+1

F (X)
ps−→ holim

P s
F (X)→ · · · → holim

P 1
F (X)

p0−→ ∗ , (2.3)

see [BK72, IX.4.2]. Here hofib(ps) denotes the homotopy fiber of the map ps, which is equivalent
to the iterated homotopy fiber of the s-dimensional subcube of F (X|P s+1) with vertices indexed
by the T ∈ P s+1 with s+ 1 ∈ T . The notation =⇒s indicates that s is the filtration degree.

This spectral sequence is conditionally convergent [Boa99, Def. 5.10] to the sequential limit
lims π∗(holimP s F (X)) of the homotopy groups of that tower. For each r ≥ 1, the bigrading of
the dr-differential is given by

ds,tr : Es,tr −→ Es+r,t+r−1
r .

Following the usual conventions for Adams spectral sequences, dr maps bidegree (x, y)
in the (t− s, s)-plane to bidegree (x− 1, y + r). If the derived limit RE∞ = lim1

r Er of
Er-terms vanishes in each bidegree, then the spectral sequence converges strongly to
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π∗(holimn holimPn F (X)), see [Boa99, Thm. 7.4], which is isomorphic to π∗F (X(∅)) when
F satisfies cubical descent over X. We call this the cubical descent spectral sequence.

Corollary 2.6. Let R be a connective commutative S-algebra, let A and B be connective
R-algebras, and suppose that the unit map ι : R→ B is 1-connected. Let X = Xω

R(A,B), and
let F be one of the functors

– K, TC (with c = +1),
– THH, THH(−)hC , THH(−)C , TR(−; p) (with c = 0),
– TF (−; p), TC(−; p) (with c = −1).

Then the cubical descent spectral sequence

Es,t1 = πt−s hofib(ps) =⇒s πt−sF (A)

vanishes above the line t− s = s+ c of slope +1 in the s ≥ 1 part of the (t− s, s)-plane. Hence
the spectral sequence collapses at a finite stage in each bidegree, RE∞ = 0, and the spectral
sequence is strongly convergent.

Proof. First consider the cases F = K,THH, . . . , TC(−; p) (but not F = TC). By Theo-
rems 2.4 and 2.5 the map ηn : F (A)→ holimPn F (Xn) is (n+ c)-connected for each n ≥ 1, so
ps : holimP s+1 F (Xs+1)→ holimP s F (Xs) is (s+ c)-connected for each s ≥ 1. Thus Es,t1 = 0
for t− s < s+ c and s ≥ 1.

The case F = TC remains. For this we appeal to [DGM13, Thm. 7.0.0.2] (where K(B) in
the lower left-hand corner of the displayed square should be replaced with K(A)), to see that
for each s ≥ 1 the square

holimP s+1 K(Xs+1)
ps //

trc

��

holimP s K(Xs)

trc

��

holimP s+1 TC(Xs+1)
ps // holimP s TC(Xs)

is homotopy Cartesian. This uses that π0X
s+1(T ) is constant as a functor of T , by our

assumptions on R, A, B and ι. Hence the spectral sequences for K and TC have the same
groups Es,t1 for all s ≥ 1, and from the case F = K we know that these groups vanish for
t− s < s+ 1.

On the other hand, we have the homotopy limit spectral sequence

Es,t2 = lim
P

s πtF (X) =⇒s πt−s holim
P

F (X)

of [BK72, XI.7.1], associated to P -shaped diagrams of spectra. We call this the cubical
homotopy limit spectral sequence. The abutment is isomorphic to π∗F (X(∅)) when F satisfies
cubical descent over X. We do not know whether the cubical descent spectral sequence and
the cubical homotopy limit spectral sequence are isomorphic for all ω-cubical diagrams F (X),
but in Subsection 3.4 we will see that this is the case whenever the diagram F (X|P ) arises
from a cosimplicial object F (Y •) by composition with a specific functor f : P → ∆, which we
will now introduce.
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3. Cosimplicial descent

3.1. Cosimplicial objects

Let ∆η be the category of finite totally ordered sets [q] = {0 < · · · < q} and order-preserving
functions, where q ≥ −1 is an integer. The object [−1] = ∅ is initial in this category. Let ∆ ⊂
∆η be the full subcategory generated by the objects [q] with q ≥ 0. For n ≥ 1, let ∆<n

η ⊂ ∆η

and ∆<n ⊂ ∆ be the respective full subcategories generated by the objects [q] with q < n.
A coaugmented cosimplicial object in C is a functor Y : ∆η → C . We let Y q = Y ([q]), for

each q ≥ −1. We can also write Y as η : Y −1 → Y •, where Y • is the cosimplicial object given by
the restriction of Y over ∆ ⊂ ∆η. For n ≥ 1, a functor Y<n : ∆<n

η → C is called a coaugmented
(n− 1)-truncated cosimplicial object, also written as η : Y −1 → Y •<n, where Y •<n = Y<n|∆<n.

Definition 3.1. Given any functor F from C to spectra, the composite functor F ◦ Y is
a coaugmented cosimplicial spectrum F (Y ), which we can write as η : F (Y −1)→ F (Y •). We
say that F satisfies cosimplicial descent over Y if the natural map

η : F (Y −1) −→ holim
[q]∈∆

F (Y q) = holim
∆

F (Y •)

is an equivalence of spectra. This ensures that the homotopy type of F (Y −1) is essentially
determined by the homotopy types of the spectra F (Y q) for q ≥ 0.

3.2. Comparison of cubical and cosimplicial objects

There is a well-defined functor fη : Pη −→ ∆η that maps the element T = {t0 < · · · < tq} ⊂
N to the object [q], and maps the inclusion T \ {ti} ⊂ T to the i-th face operator δi : [q − 1]→
[q], for each 0 ≤ i ≤ q. By restricting fη, one gets functors f : P → ∆, fnη : Pnη → ∆<n

η and
fn : Pn → ∆<n.

Composition with fη : Pη → ∆η takes each coaugmented cosimplicial spectrum F (Y ) to an
ω-cube F (X) = F (Y ) ◦ fη in the category of spectra. Likewise, composition with fnη : Pnη →
∆<n
η takes each coaugmented (n− 1)-truncated cosimplicial spectrum F (Y<n) to an n-cube

F (Xn) = F (Y<n) ◦ fnη of spectra. If F (Y<n) is given by restricting F (Y ) over ∆<n
η ⊂ ∆η then

F (Xn) is given by restricting F (X) over Pnη ⊂ Pη.

Proposition 3.2. The functors f : P → ∆ and fn : Pn → ∆<n are left cofinal. Hence, for
any cosimplicial spectrum F (Y •) the canonical map

f∗ : holim
∆

F (Y •)
'−→ holim

P
(F (Y •) ◦ f)

is an equivalence, and for any (n− 1)-truncated cosimplicial spectrum F (Y •<n) the canonical
map

f∗n : holim
∆<n

F (Y •<n)
'−→ holim

Pn
(F (Y •<n) ◦ fn)

is an equivalence.

Proof. The assertion that fn is left cofinal, i.e., that the left fiber fn/[q] has contractible
nerve for each object [q] of ∆<n, is proved in [Car08, §6]. Note that the argument offered at this
point in [DGM13, A8.1.1] is flawed. The left fiber f/[q] is the increasing union of the left fibers
fn/[q], hence its nerve is also contractible. The equivalences of homotopy limits then follow
from the cofinality theorem of [BK72, XI.9.2], applied level by level for diagrams of (implicitly)
fibrant spectra.
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Corollary 3.3. Let Y be a coaugmented cosimplicial object in C , and let F be a functor
from C to spectra. Then F satisfies cosimplicial descent over Y if and only if F satisfies cubical
descent over X = Y ◦ fη.

Corollary 3.4. For any cosimplicial abelian group A•, the canonical homomorphisms

f∗ : πsA• ∼= lim
∆

sA•
∼=−→ lim

P

s (A• ◦ f) and f∗n : lim
∆<n

sA•
∼=−→ lim

Pn

s (A• ◦ fn)

are isomorphisms, for each s ≥ 0.

Proof. A direct algebraic proof is possible, but here is an argument based on the
results of Bousfield–Kan [BK72]. Consider the cosimplicial Eilenberg–Mac Lane space
K(A•, s). By [BK72, XI.7.2] there are natural isomorphisms π0 holim∆K(A•, s) ∼= lims

∆A•

and π0 holimP K(A• ◦ f, s) ∼= lims
P (A• ◦ f). By Proposition 3.2 and [BK72, XI.9.2] the map

f∗ : holim∆K(A•, s)→ holimP K(A• ◦ f, s) is a homotopy equivalence. This gives the iso-
morphism f∗ : lims

∆A• ∼= lims
P (A• ◦ f). The proof for fn : Pn → ∆<n is practically identical.

Finally, by [BK72, XI.7.3] there is a natural isomorphism πsA• ∼= lim∆
sA•.

3.3. Amitsur resolutions

We now suppose that R is a connective commutative S-algebra, that A is a connective
R-algebra, and that B is a connective commutative R-algebra with unit map ι : R→ B and
multiplication map µ : B ∧R B → B. The condition that B is commutative ensures that µ is a
morphism of connective R-algebras. We can assume that A is R-cofibrant as an R-algebra, and
that B is R-com-alg-cofibrant as a commutative R-algebra in the sense of [Shi04, Thm. 3.2].
(This follows if B is positive stable cofibrant in the sense of [MMSS01, Thm. 15.2(i)].) The
underlying R-modules of A and B are then flat, by [Shi04, Cor. 4.3], so that the results of
Section 2 carry over to this situation.

Consider the cosimplicial connective R-algebra Y • = Y •R(A,B) : [q] 7→ Y q given by

Y q = A ∧R B ∧R · · · ∧R B , (3.1)

with (q + 1) copies of B. The coface maps

di = idA ∧ (idB)∧i ∧ ι ∧ (idB)∧q−i : Y q−1 −→ Y q

for 0 ≤ i ≤ q, and the codegeneracy maps

sj = idA ∧ (idB)∧j ∧ µ ∧ (idB)∧q−j : Y q+1 −→ Y q

for 0 ≤ j ≤ q, are induced by the unit map ι and the multiplication map µ, respectively.
The unit map ι also induces a coaugmentation η : A→ Y 0 = A ∧R B that makes A→ Y •

a coaugmented cosimplicial connective R-algebra, i.e., a functor Y = YR(A,B) from ∆η to the
category of connective R-algebras:

A
η
// A ∧R B

//
// A ∧R B ∧R Boo

//
//
//
· · · .oo

oo

Definition 3.5. Given a functor F from connective R-algebras to spectra, we call the
coaugmented cosimplicial spectrum η : F (A)→ F (Y •) = F (Y •R(A,B)) the Amitsur resolution
for F at A along ι : R→ B. When F satisfies cosimplicial descent over A→ Y • we say that F
satisfies cosimplicial descent at A along R→ B.
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Cosimplicial descent for F at A along R→ B ensures that the coaugmented cosimplicial
spectrum

F (A)
η
// F (A ∧R B)

//
// F (A ∧R B ∧R B)oo

//
//
//
· · ·oo

oo

induces an equivalence

η : F (A)
'−→ holim

[q]∈∆
F (Y q) = holim

∆
F (Y •)

from F (A) to the homotopy limit of the remainder of the diagram, having entries of the form
F (A ∧R B ∧R · · · ∧R B) with one or more copies of B.

Lemma 3.6. There is a natural isomorphism Xω
R(A,B) ∼= YR(A,B) ◦ fη.

Proof. For T = {t0 < · · · < tq} ⊂ N, with fη(T ) = [q], both Xω
R(A,B)(T ) and YR(A,B)([q])

are identified with

A ∧R B ∧R · · · ∧R B ,

where there are (q + 1) copies of B. For each T ′ ⊂ T , the induced morphisms in Xω
R(A,B) and

YR(A,B) ◦ fη are evidently compatible with these identifications.

Theorem 3.7. Let R be a connective commutative S-algebra, A a connective R-algebra
and B a connective commutative R-algebra, and suppose that the unit map ι : R→ B is 1-
connected. Then algebraic K-theory, topological Hochschild homology, THH(−)hC , THH(−)C ,
TR(−; p), TF (−; p), TC(−; p), and (integral) topological cyclic homology all satisfy cosimplicial
descent at A along R→ B.

Proof. Combine Theorems 2.4 and 2.5, Corollary 3.3 and Lemma 3.6.

3.4. More spectral sequences

For each coaugmented cosimplicial spectrum η : F (Y −1)→ F (Y •), the equivalent homotopy
limits

holim
∆

F (Y •) ' holim
n

holim
∆<n

F (Y •)

give rise to two spectral sequences. These turn out to be isomorphic to one another, as well as
to the two spectral sequences of Subsection 2.4, when we consider cubical diagrams that arise
from cosimplicial diagrams by composition with the left cofinal functor f .

On the one hand, we have the homotopy spectral sequence

Es,t1 = πt−s hofib(δs) =⇒s πt−s(holim
n

holim
∆<n

F (Y •))

associated to the tower of fibrations

· · · → holim
∆<s+1

F (Y •)
δs−→ holim

∆<s
F (Y •)→ · · · → holim

∆<1
F (Y •)

δ0−→ ∗ , (3.2)

which we call the cosimplicial descent spectral sequence.
By Proposition 3.2, the tower of fibrations (3.2) is equivalent to the tower (2.3) when X =

Y ◦ fη, F (X) = F (Y ) ◦ fη and F (X|P ) = F (Y •) ◦ f . Hence in these cases the cosimplicial
descent spectral sequence for η : F (Y −1)→ F (Y •) is isomorphic to the cubical descent spectral
sequence for F (X).

There is also the Bousfield–Kan homotopy spectral sequence

Es,t1 = πt−s hofib(τs) =⇒s πt−s TotF (Y •)
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of the cosimplicial spectrum F (Y •), associated to the tower of maps

· · · → Tots F (Y •)
τs−→ Tots−1 F (Y •)→ · · · → Tot0 F (Y •)

τ0−→ ∗ , (3.3)

see [BK72, X.6.1]. To ensure that the maps τs are fibrations, we first implicitly replace
F (Y •) with an equivalent fibrant cosimplicial spectrum F (Y •)′ [BK72, X.4.6]. This fibrant
replacement does not change the homotopy type of F (X|P ) = F (Y •) ◦ f or any of the
associated homotopy limits that we consider. The E2-term of this homotopy spectral sequence
can then be expressed as

Es,t2 = πsπtF (Y •) =⇒s πt−s TotF (Y •) ,

see [BK72, X.7.2]. We prove in Proposition 3.10 that there are natural equivalences

Totn F (Y •)
'−→ holim

∆<n+1
F (Y •)

(after the implicit fibrant replacement of F (Y •)). Varying n, these equivalences are compatible
with the maps τs and δs, and with the equivalence

TotF (Y •)
'−→ holim

∆
F (Y •)

of [BK72, XI.4.4]. Hence the tower (3.3) is equivalent to the tower (3.2), and the cosimplicial
descent spectral sequence is isomorphic to the Bousfield–Kan homotopy spectral sequence of
F (Y •), starting with the E1-term.

On the other hand, we have the cosimplicial homotopy limit spectral sequence

Es,t2 = lim
∆

s πtF (Y •) =⇒s πt−s holim
∆

F (Y •) .

By [BK72, XI.7.5] there is a natural map from the Bousfield–Kan homotopy spectral sequence
of F (Y •) to the cosimplicial homotopy limit spectral sequence, and this map is an isomorphism
at the E2-term, hence also at all later terms.

Finally, the functor f : P → ∆ induces a map f∗ of homotopy limit spectral sequences from

Es,t2 = lim
∆

s πtF (Y •) =⇒s πt−s holim
∆

F (Y •)

to

Es,t2 = lim
P

s πtF (X) =⇒s πt−s holim
P

F (X) ,

where F (X|P ) = F (Y •) ◦ f . This is the map of Bousfield–Kan spectral sequences associated to
a canonical map f∗ : Π•∆F (Y •)→ Π•PF (X|P ) of cosimplicial spectra, see [BK72, XI.5.1], so the
map of E2-terms is the isomorphism f∗ of Corollary 3.4. Thus, whenever F (X|P ) arises from
F (Y •) by composition with f , the cosimplicial homotopy limit spectral sequence for F (Y •) is
isomorphic to the cubical homotopy limit spectral sequence for F (X|P ).

Proposition 3.8. (a) Let F (Y •) be any cosimplicial spectrum, with fibrant replacement
F (Y •)′, and let F (X|P ) = F (Y •) ◦ f . The first three of the spectral sequences

Es,t1 = πt−s hofib(ps) =⇒s πt−s(holim
n

holim
Pn

F (X)) (cubical descent)

Es,t1 = πt−s hofib(δs) =⇒s πt−s(holim
n

holim
∆<n

F (Y •)) (cosimplicial descent)

Es,t1 = πt−s hofib(τs) , E
s,t
2 = πs πtF (Y •) =⇒s πt−s TotF (Y •)′ (Bousfield–Kan)

Es,t2 = lim
∆

s πtF (Y •) =⇒s πt−s holim
∆

F (Y •) (cosimplicial homotopy limit)

Es,t2 = lim
P

s πtF (X) =⇒s πt−s holim
P

F (X) (cubical homotopy limit)

are isomorphic at the E1-term, and all five are isomorphic at the E2-term, hence also at all later
terms. If RE∞ = 0 these spectral sequences all converge strongly to the indicated abutments.



CUBICAL AND COSIMPLICIAL DESCENT Page 11 of 22

(b) Let F (Y ) be any coaugmented cosimplicial spectrum, and let F (X) = F (Y ) ◦ fη. If F
satisfies cubical descent over X, or equivalently, if F satisfies cosimplicial descent over Y ,
then each abutment in (a) is isomorphic to π∗F (Y −1) = π∗F (X(∅)). If F (Y ) is the Amitsur
resolution η : F (A)→ F (Y •R(A,B)), so that F (X) is the Amitsur cube F (Xω

R(A,B)), then this
common abutment is π∗F (A).

Proof. (a) The stated isomorphisms were all discussed before the statement of the
proposition. Each spectral sequence is derived from a tower of fibrations, hence is conditionally
convergent to the sequential limit of the homotopy groups of the terms in this tower. When
RE∞ vanishes, each homotopy group of the homotopy limit of the tower is isomorphic to
that sequential limit, and the spectral sequence is strongly convergent, by [BK72, IX.5.4] or
[Boa99, Thm. 7.4].

(b) Cosimplicial descent for F over Y ensures that F (Y −1) ' holim∆ F (Y •).

Theorem 3.9. Let R be a connective commutative S-algebra, A a connective R-algebra, B
a connective commutative R-algebra and suppose that the unit map ι : R→ B is 1-connected.
Let F be one of the functors

– K, TC (with c = +1),
– THH, THH(−)hC , THH(−)C , TR(−; p) (with c = 0),
– TF (−; p), TC(−; p) (with c = −1).

Then the E1-term of the (cubical/cosimplicial) descent spectral sequence for F at A along
ι : R→ B vanishes in all bidegrees (s, t) with t− s < s+ c and s ≥ 1. It is strongly convergent
to π∗F (A), with E2-term given by

Es,t2 = πs πtF (Y •R(A,B)) =⇒s πt−sF (A) .

Proof. The description of the E2-term is that of the Bousfield–Kan spectral sequence. The
vanishing line for the E1-term of the cubical descent spectral sequence is that of Corollary 2.6.
It follows that in each bidegree (s, t) there is a finite r such that Es,tr = Es,t∞ , which implies that
REs,t∞ = 0. Hence each version of the spectral sequence converges strongly to the homotopy
groups of F (Y −1

R (A,B)) = F (A).

In the discussion above we used the following result, for which a proof does not seem to have
appeared in the literature.

Proposition 3.10. Let Z• be any fibrant cosimplicial space or spectrum. There are
compatible natural equivalences

z∗ : Totn Z
• '−→ holim

∆<n+1
Z•

for all 0 ≤ n ≤ ∞.

Proof. When Z• is a fibrant cosimplicial space and n =∞, this result is [BK72, XI.4.4].
We indicate how to adapt their proof to the case of finite n.

Let D = ∆<n+1, let i : D → ∆ be the inclusion of the full subcategory, let S be the
category of spaces (= simplicial sets), and let S ∆ = cS and SD be the functor categories
of cosimplicial spaces and n-truncated cosimplicial spaces, respectively. Composition with i
defines the restriction functor i∗ : cS → SD. Let i∗ = LKani : SD → cS be the left Kan
extension, left adjoint to i∗. For each [k] ∈ D, with 0 ≤ k ≤ n, let D/[k] be the over category
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and let N(D/[k]) denote its nerve (also known as its underlying or classifying space). For
[k] ∈ D, let z : N(D/[k])→ ∆[k] be the “zeroth vertex map” sending each vertex α : [p]→ [k]
in N(D/[k]) to the vertex α(0) in ∆[k], see [BK72, XI.2.6(ii)]. It is a weak equivalence for
each [k] in D, since both N(D/[k]) and ∆[k] are contractible. Composition with z defines a
morphism of mapping spaces

homcS (i∗i
∗∆, Z•) ∼= homS D (i∗∆, i∗Z•)

z∗−→ homS D (N(D/−), i∗Z•) = holim
D

i∗Z• .

Here (i∗i
∗∆)[q] = colim[k]→[q] ∆[k] ∼= skn ∆[q] for [q] ∈ ∆, where [k]→ [q] ranges over the left

fiber category i/[q] of i at [q]. Hence we can rewrite z∗ as

z∗ : Totn Z
• = homcS (skn ∆, Z•) −→ holim

D
i∗Z• .

To prove that z∗ is a weak equivalence, we will use that SD with the Reedy model structure
is a simplicial model category [Hir03, Thm. 15.3.4]. Here D has the evident Reedy category
structure inherited from ∆. It suffices to prove that z : N(D/−)→ i∗∆ is a weak equivalence
of cofibrant objects and that i∗Z• is a fibrant object, in the Reedy model structure on SD.
We have already observed that z is a Reedy weak equivalence. The cosimplicial space ∆ is
unaugmentable, hence cofibrant in the model structure on cS , see [BK72, X.4.2]. The latching
map of i∗∆ at each object [k] in D is equal to the latching map of ∆ at [k] ∈ ∆, and therefore
i∗∆ is Reedy cofibrant. By assumption, Z• is fibrant in the model structure on cS , see [BK72,
X.4.6]. The matching map of i∗Z• at each object [k] in D is equal to the matching map of Z•

at [k] ∈ ∆, hence i∗Z• is Reedy fibrant. It remains to check that N(D/−) is Reedy cofibrant.
This follows immediately from the fact that it is cofibrant in the projective model structure on
SD, see [Hir03, Prop. 14.8.9, Thm. 11.6.1].

Finally, the case of a fibrant cosimplicial spectrum follows by applying the unstable result
level by level.

3.5. Tensored structure and topological André–Quillen homology

In this subsection we specialize to the case when both A and B are commutative R-
algebras. This category is tensored over spaces, taking any simplicial set S : [p] 7→ Sp and
any commutative R-algebra A to the realization S ⊗R A of [p] 7→ Sp ⊗R A = A ∧R · · · ∧R A,
i.e., the coproduct of one copy of A for each element of Sp. (For infinite Sp we extend this
construction by the filtered colimit over finite subsets.) In the case when S = S1 = ∆[1]/∂∆[1]
is the simplicial circle and R = S is the sphere spectrum, S1 ⊗S A = Bcy(A) is the cyclic bar
construction considered in the proof of Theorem 2.5, which is equivalent to THH(A) when A is
flat. Suppose now that A and B are R-com-alg-cofibrant, hence flat as R-modules. Our results
about descent for THH generalize as follows.

Proposition 3.11. If the unit map R→ B is 1-connected, then tensoring with any
simplicial set S satisfies cosimplicial descent at A along R→ B, meaning that

η : S ⊗R A
'−→ holim

∆
S ⊗R Y •R(A,B)

is an equivalence.

Proof. Tensors commute with coproducts, so S ⊗R Y •R(A,B) is isomorphic to
Y •R(S ⊗R A,S ⊗R B). Lemma 2.2 shows that Xn

R(Sp ⊗R A,Sp ⊗R B) is (2n− 1)-co-Cartesian
for each p ≥ 0, which implies that Xn

R(S ⊗R A,S ⊗R B) is (2n− 1)-co-Cartesian and n-
Cartesian, for each n ≥ 1. Hence

ηn : S ⊗R A −→ holim
∆<n

Y •R(S ⊗R A,S ⊗R B) ' holim
Pn

Xn
R(S ⊗R A,S ⊗R B)
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is n-connected, and therefore η is an equivalence.

Using either the Bökstedt type model as in [BCD10] (extended mutatis mutandis to
connective orthogonal or symmetric spectra) or a model with more categorical control as in
[BDS16], the fundamental homotopy cofiber sequence (2.2) leads to the equivariant extension
given below. This generalizes our descent results for TC(−; p) to the various forms of covering
homology considered in [BCD10, Sec. 7]. In particular, the higher topological cyclic homology of
[CDD11] satisfies cosimplicial descent at connective commutative S-algebras along 1-connected
unit maps.

Corollary 3.12. If G is a finite group acting freely on S, and R→ B is 1-connected,
then tensoring with S satisfies equivariant cosimplicial descent at A along R→ B, meaning
that

η : S ⊗R A
'−→ holim

∆
S ⊗R Y •R(A,B)

is a G-equivariant equivalence.

Proof. We have to show that for every subgroup H ⊆ G, the map ηH of H-fixed points is
an equivalence. This follows by essentially the same argument as for THH, e.g. by [BCD10,
Lem. 5.1.3], using induction over the closed families of subgroups and the fact that homotopy
orbits preserve connectivity.

Coming back to the non-equivariant situation, cosimplicial descent is satisfied by topological
André–Quillen homology, which we will denote by TAQR(A).

Proposition 3.13. If the unit map R→ B is 1-connected, then topological André–Quillen
homology satisfies cosimplicial descent at A along R→ B, in the sense that

η : TAQR(A)
'−→ holim

∆
TAQR(Y •R(A,B))

is an equivalence.

Proof. By [BM05, Thm. 4], there is an equivalence

TAQR(A) ' hocolim
m

Σ−m(Sm ⊗R A)/A

of A-module spectra, where (Sm ⊗R A)/A denotes the homotopy cofiber of the map A→
Sm ⊗R A associated to the base point in Sm = (S1)∧m. The map is at least (m− 1)-connected,
for each m ≥ 0, and likewise for B in place of A. It follows that the map

A ∧R (B/R) ∧R · · · ∧R (B/R) −→ (Sm ⊗R A) ∧R (Sm ⊗R B)/R ∧R · · · ∧R (Sm ⊗R B)/R

(with n ≥ 1 copies of B/R and of (Sm ⊗R B)/R) is at least (m+ 2n− 3)-connected. Hence
the n-cube

T 7→ Σ−m (Sm ⊗R Xn(T ))/Xn(T )

(with Xn = Xn
R(A,B)) is (2n− 3)-co-Cartesian, for each m ≥ 0. Thus the n-cube T 7→

TAQR(Xn(T )) is (2n− 3)-co-Cartesian and (n− 2)-Cartesian, so that

ηn : TAQR(A) −→ holim
Pn

TAQR(Xn
R(A,B))

is at least (n− 2)-connected. Passing to the homotopy limit over n, it follows that η is an
equivalence.



Page 14 of 22 BJØRN IAN DUNDAS AND JOHN ROGNES

3.6. Less commutative examples

Let us return to the situation where A is not necessarily commutative. In Subsection 3.3
we took B to be commutative to ensure that µ : B ∧R B → B and the codegeneracy maps
sj : Y q+1 → Y q are morphisms of R-algebras. For non-commutative B, we can still define what
we might call a precosimplicial R-algebra [q] 7→ Y q, where now [q] ranges over the subcategory
M ⊂ ∆ with morphisms the injective, order-preserving functions. The functor f : P → ∆
defined at the beginning of Subsection 3.2 factors as the composite of a functor e : P →M
and the inclusion i : M → ∆. Here e is not left cofinal, so the analogue of Proposition 3.2 does
not hold for general precosimplicial spectra Z•. On the other hand, i : M → ∆ is left cofinal,
see [DD77, 3.17], so for cosimplicial Y • the canonical map

holim
∆

Y •
'−→ holim

M
Y • ◦ i

is an equivalence. Hence

holim
M

Z•
'−→ holim

P
Z• ◦ e

is an equivalence for each precosimplicial spectrum Z• = Y • ◦ i that admits an extension to a
cosimplicial spectrum.

By an O R-ring spectrum, for an operad O, we mean an O-algebra in the category of R-
modules. We now relax the commutativity condition on B to only ask that it is an E2 R-ring
spectrum, i.e., an O R-ring spectrum for some E2 operad O. Then B is equivalent to a monoid
in a category of A∞ R-ring spectra, by [BFV07, Thm. C], since the tensor product of the
associative operad and the little intervals operad C1 is an E2 operad, and C1 is an A∞ operad.
In other words, we may assume that ι : R→ B and µ : B ∧R B → B are morphisms of C1

R-ring spectra, so that the Amitsur resolution A→ Y •R(A,B) is a coaugmented cosimplicial
object in the category of connective C1 R-ring spectra.

Using a monadic bar construction [May72, §9] to functorially turn C1-algebras into monoids,
we may replace this Amitsur resolution with an equivalent coaugmented cosimplicial connective
R-algebra A→ Ȳ •R(A,B), which we might denote by ȲR(A,B). Applying a homotopy functor
F from connective R-algebras to spectra, we thus obtain a coaugmented cosimplicial spectrum
F (A)→ F (Ȳ •R(A,B)).

The ω-cubical diagram ȲR(A,B) ◦ fη remains equivalent to the Amitsur ω-cube associated
to the R-module A and the unit map ι : R→ B of C1 R-ring spectra. Replacing B with an
equivalent R-algebra B̄, we obtain an equivalent ω-cube Xω

R(A, B̄). Hence there is a chain of
equivalences

Xω
R(A, B̄) ' ȲR(A,B) ◦ fη .

Substituting this for Lemma 3.6 in the proof of Theorem 3.7, we obtain the following
generalization of that theorem.

Theorem 3.14. Let R be a connective commutative S-algebra, let A be a connective R-
algebra, and let B be a connective E2 R-ring spectrum. Suppose that the unit map ι : R→ B
is 1-connected. Then the functors F = K, THH and TC, as well as their intermediate variants,
satisfy cosimplicial descent at A along R→ B, in the sense that

η : F (A)
'−→ holim

∆
F (Ȳ •R(A,B))

is an equivalence. Here Ȳ qR(A,B) and Y qR(A,B) are equivalent as A∞ R-ring spectra, for each
q ≥ 0.
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4. Applications

4.1. Algebraic K-theory of spaces

For each topological group Γ, the spherical group ring S[Γ] = Σ∞Γ+ is a connective S-algebra.
When X ' BΓ, the algebraic K-theory of S[Γ] is a model for Waldhausen’s algebraic K-
theory A(X) of the space X, see [Wal85]. When X is a high-dimensional compact (topological,
piecewise-linear or differentiable) manifold, A(X) is closely related to the space of h-cobordisms
on X and the group of automorphisms of X [WJR13]. This motivates the interest in the
algebraic K-theory of S and the associated spherical group rings.

Base change along the Hurewicz map S→ HZ induces rational equivalences S[Γ]→ HZ[Γ]
and K(S[Γ])→ K(HZ[Γ]). In particular, A(∗) = K(S)→ K(HZ) = K(Z) is a rational equiv-
alence, and Borel’s rational computation of the algebraic K-theory of the integers [Bor74]
gives strong rational information about the h-cobordism spaces and automorphism groups of
high-dimensional highly-connected manifolds [Igu88, p. 7].

4.2. Descent along S→ HZ

To obtain torsion information about A(X) = K(S[Γ]) one can instead consider the
cosimplicial resolution

S
η
// HZ //

// HZ ∧HZoo
//
//
//
· · ·oo

oo

in the category of connective S-algebras, and the induced coaugmented cosimplicial spectrum

K(S[Γ])
η
// K(HZ[Γ])

//
// K((HZ ∧HZ)[Γ])oo

//
//
//
· · · .oo

oo

By Theorem 3.7 the natural map from K(S[Γ]) to the homotopy limit of this cosimplicial
spectrum is an equivalence, and similarly for THH and TC. These cases of descent, along
S→ HZ, are essentially those studied in [Dun97]. See also [Tsa00] for descent results in the
context of commutative rings.

A computational drawback with this approach is the structure of the smash product

(HZ ∧ · · · ∧HZ)[Γ] = S[Γ] ∧HZ ∧ · · · ∧HZ

with (q + 1) copies of HZ. It is a connective HZ-algebra, hence equivalent to a simplicial ring,
but for q ≥ 1 the algebraic K-theory and topological cyclic homology of this simplicial ring
appear to be difficult to analyze.

4.3. Descent along S→MU

Experience from algebraic topology shows that the complex bordism spectrum MU is a
convenient stopping point on the way from the sphere spectrum to the integers:

S −→MU −→ HZ .

Here MU is a commutative S-algebra with 1-connected unit map S→MU . The coefficient
ring MU∗ = π∗(MU) = Z[xk | k ≥ 1] and the homology algebra H∗(MU) ∼= H∗(BU) = Z[bk |
k ≥ 1] are explicitly known [Mil60], [Nov62], with |xk| = |bk| = 2k for each k. The associated
cosimplicial resolution

S
η
// MU

//
// MU ∧MUoo

//
//
//
· · ·oo

oo

induces the coaugmented cosimplicial spectrum

K(S[Γ])
η
// K(MU [Γ])

//
// K((MU ∧MU)[Γ])oo

//
//
//
· · · .oo

oo
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By Theorem 3.7, applied with R = S, A = S[Γ] and B = MU , the natural map from K(S[Γ]) to
the homotopy limit of this cosimplicial spectrum is an equivalence, and there are corresponding
equivalences for THH and TC.

From its definition as an E∞ Thom spectrum, MU comes equipped with a Thom equivalence
MU ∧MU 'MU ∧BU+. Hence the smash product

(MU ∧ · · · ∧MU)[Γ] ' S[Γ] ∧MU ∧BUq+
that occurs in codegree q is not significantly more complicated for q ≥ 1 than for q = 0. This
means that it may be more realistic to study K(S) by descent along S→MU than by descent
along S→ HZ. We propose that in order to understand A(∗) = K(S) from the chromatic
point of view [MRW77], [Rav84], one should study this cosimplicial resolution, starting with
K(MU) and continuing with K(MU ∧BUq+) for each q ≥ 0, together with the associated
descent spectral sequence converging to π∗K(S). Similar remarks apply for A(X) = K(S[Γ])
and for the functors THH and TC, see Theorem 3.9.

4.4. (Hopf-)Galois descent

In the language of [Rog08, §12], the map S→MU is a Hopf–Galois extension of commutative
S-algebras. Our result can be viewed as proving 1-connected Hopf–Galois descent for K, THH
and TC, but the actual Hopf S-algebra coaction plays no role in the proof. Analogously, consider
a G-Galois extension A→ B of commutative S-algebras, in the sense of [Rog08, §4], with G
a finite group. The equivalence B ∧A B ' F (G+, B) ∼= F (G2

+, B)G induces a level equivalence
of cosimplicial resolutions from

A
η
// B

//
// B ∧A Boo

//
//
//
· · ·oo

oo

to

A
η
// F (G+, B)G

//
// F (G2

+, B)Goo
//
//
//
· · · ,oo

oo

i.e., from the Amitsur resolution Y • = Y •A(A,B) to the cosimplicial commutative S-algebra
F (E•G+, B)G obtained by mapping out of the free contractible simplicial G-set E•G : [q] 7→
EqG = Gq+1.

Algebraic K-theory preserves equivalences and commutes with finite products, so the
cosimplicial spectra K(Y •), K(F (E•G+, B)G) and F (E•G+,K(B))G are level equivalent.
Hence the homotopy limit of K(Y •) is equivalent to the homotopy fixed point spectrum
F (EG+,K(B))G = K(B)hG, where EG = |E•G|. (The homotopy type of K(B)hG only
depends on the homotopy type of K(B) as a spectrum with G-action, and the G-action is
determined by functoriality.) The canonical map η : K(A)→ K(B)hG is not in general an
equivalence, so algebraic K-theory does not in general satisfy descent along Galois extensions
A→ B. However, a recent result of Clausen, Mathew, Naumann and Noel [CMNN17, Thm. 1.7]
shows that, after any “periodic localization”, algebraic K-theory satisfies descent along all maps
A→ B of commutative S-algebras for which B is dualizable as an A-module and the restriction
map K0(B)→ K0(A) is rationally surjective. Again, the Galois condition plays no role for their
proof. See also [Tho85] for the corresponding result for Bott localized algebraic K-theory of
commutative rings (or schemes).

4.5. Descent along S→ X(n)

There is a sequence of E2 ring spectra X(n) interpolating between S and MU , see [DHS88].
Recall that MU = BUγ is the Thom spectrum of a virtual vector bundle γ over BU . For each
n ≥ 2, let X(n) = ΩSU(n)γ be the Thom spectrum of the pullback of γ over the double loop
map ΩSU(n)→ ΩSU ' BU . Then X(n) is an E2 ring spectrum, by [LMSM86, Thm. IX.7.1],
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with 1-connected unit map. There are natural maps of E2 ring spectra

S −→ . . . −→ X(n) −→ . . . −→MU −→ HZ

connecting these examples to those previously discussed. We identify H∗(X(n)) ∼= H∗(ΩSU(n))
with the subalgebra Z[b1, . . . , bn−1] of H∗(MU) ∼= H∗(BU) = Z[bk | k ≥ 1].

By Theorem 3.14, the functors K, THH and TC satisfy descent along S→ X(n) for each
n ≥ 2. There are Thom equivalences X(n) ∧X(n) ' X(n) ∧ ΩSU(n)+, so the study of K(S)
by descent along S→ X(n) leads to the study of the algebraic K-theory of X(n) ∧ (ΩSU(n))q+
for q ≥ 0, and similarly for K(S[Γ]), THH and TC. The E2 ring spectra X(n) are closer to S
than MU , hence K(X(n)) can yield finer information about K(S) than K(MU) does. However,
like in the case of S, the homotopy groups of X(n) are not explicitly known, so a direct analysis
of π∗THH(X(n)) and π∗TC(X(n)) may be less feasible than in the case of MU .

4.6. Trace methods

The cyclotomic trace map trc : K(B)→ TC(B; p) introduced in [BHM93], in conjunction
with the relative equivalence theorem from [Dun97], is the main method available for calculating
the algebraic K-groups of connective S-algebras other than (simplicial) rings. See also [DGM13,
Ch. 7]. In the case of the sphere spectrum, TC(S; p) is p-adically equivalent to S ∨ ΣCP∞−1, so
calculations of π∗K(S) are possible in a moderate range of degrees [Rog02], [Rog03] (see also
more recent work of Blumberg–Mandell [BM16] at irregular primes). Nonetheless, complete
calculations are at least as hard as those for π∗(S), hence appear to be out of reach.

The difficulty of understanding the stable homotopy groups of spheres can be formulated as
the difficulty of understanding the Adams–Novikov spectral sequence [Nov67]

Es,t2 = Exts,tMU∗MU (MU∗,MU∗) =⇒s πt−s(S), (4.1)

i.e., to understand the descent spectral sequence

Es,t2 = πsπtY
• =⇒s πt−s holim

∆
Y •

associated with the cosimplicial commutative S-algebra Y • = Y •S (S,MU), with Y q = MU ∧
· · · ∧MU 'MU ∧BUq+. An advantage of this approach is that chromatic phenomena in π∗(S)
are more readily visible at the E2-term of the Adams–Novikov spectral sequence.

By analogy, the difficulty of understanding π∗K(S) and π∗TC(S; p) can be separated into
two parts: first that of understanding the cosimplicial objects [q] 7→ π∗K(Y q) and [q] 7→
π∗TC(Y q; p), and secondly that of understanding the behavior of the descent spectral sequences

Es,t2 = πsπtK(Y •) =⇒s πt−sK(S)

and

Es,t2 = πsπtTC(Y •; p) =⇒s πt−sTC(S; p) .

The first aim of understanding π∗K(MU) and π∗TC(MU ; p), corresponding to q = 0, then
plays an analogous role to that of understanding MU∗ = π∗(MU). An optimist may seek to
discern chromatic phenomena in π∗K(S) and π∗TC(S; p) at the level of these E2-terms.

4.7. Descent for THH

As an illustration, Theorem 3.9 for THH at S along S→MU gives a strongly convergent
descent spectral sequence

Es,t2 = πsπtTHH(Y •) =⇒s πt−sTHH(S) .

There is an equivalence THH(MU) 'MU ∧ SU+, by [BCS10, Cor. 1.1], and the Atiyah–
Hirzebruch spectral sequence E2

∗,∗ = H∗(SU ;MU∗) =⇒ π∗(MU ∧ SU+) collapses at E2 to give
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the algebra isomorphism

π∗THH(MU) ∼= MU∗ ⊗ E(ek | k ≥ 1) = LE

of [MS93, Rmk. 4.3]. Here L = MU∗ = Z[xk | k ≥ 1] is the Lazard ring, E = E(ek | k ≥ 1) is
the exterior algebra over Z on a sequence of generators ek, with |ek| = 2k + 1, and LE = L⊗ E
is shorthand notation for their tensor product. Similarly,

MU∗THH(MU) ∼= π∗(MU ∧MU ∧MU THH(MU))
∼= LB ⊗L LE ∼= LBE

is flat as a left MU∗-module, where LB = MU∗MU and B = H∗(MU) ∼= Z[bk | k ≥ 1], and

π∗THH(MU ∧MU) ∼= π∗(THH(MU) ∧MU ∧MU ∧ THH(MU))
∼= LE ⊗L LBE ∼= LE ⊗BE .

In general, π∗THH(Y q) ∼= LE ⊗ (BE)⊗q, and [q] 7→ π∗THH(Y q) is the cobar construction
associated to the split Hopf algebroid (LE,LE ⊗BE), see [Rav86, App. A1]. Hence the descent
spectral sequence for THH takes the form

Es,t2 = Exts,tLE⊗BE(LE,LE) =⇒s πt−sTHH(S) . (4.2)

The unit inclusion Z→ E induces an equivalence

(MU∗,MU∗MU) = (L,LB) −→ (LE,LE ⊗BE)

of Hopf algebroids, which induces an isomorphism from the Adams–Novikov spectral
sequence (4.1) to the descent spectral sequence (4.2). This is of course compatible with the
identity S = THH(S), and shows, somewhat tautologically, that the descent spectral sequence
for THH at S along S→MU has an E2-term that is susceptible to chromatic analysis along
the lines of [MRW77] and [Rav86, Ch. 5].

By contrast, descent for THH at S along S→ HZ leads to the study of π∗THH(HZ ∧
· · · ∧HZ) ∼= π∗(THH(Z) ∧ · · · ∧ THH(Z)), with (q + 1) copies of HZ or THH(Z), and while
π∗THH(Z) is explicitly known [BM94, §5], the term π∗(THH(Z) ∧ THH(Z)) is not flat over
π∗THH(Z), and there is no description of the resulting E1-term as the cobar complex of a
Hopf algebroid. If we instead were to study the functor F (A) = THH(A) ∧ S/p, where S/p is
the mod p Moore spectrum, then π∗F (HZ ∧HZ) = π∗(THH(Z) ∧ THH(Z);Z/p) is a flat Hopf
algebroid over π∗F (HZ) = π∗(THH(Z);Z/p). The associated cobar complex is isomorphic to
the E1-term of the descent spectral sequence for F at S along S→ Z, which in turn is isomorphic
to the THH(Z)-based Adams spectral sequence for S/p, see [MNN17, Prop. 2.14]. The canonical
THH(Z)-based tower for S/p is also a mod p Adams tower for S/p, so these spectral sequences
are therefore isomorphic to the mod p Adams spectral sequence for S/p, from the E2-term and
onwards.

4.8. Fixed points of THH

The next steps toward analyzing descent for TC along S→MU would be to study descent
for the fixed point functor THH(−)C along S→MU , for each C = Cpm . Let THH(A)tC =

[ẼC ∧ F (EC+, THH(A))]C denote the C-Tate construction on THH(A), i.e., the C-fixed points
of the Tate C-spectrum of [GM95, pp. 3-4]. The comparison maps

Γm : THH(MU)Cpm −→ THH(MU)hCpm

Γ̂m : THH(MU)Cpm−1 −→ THH(MU)tCpm

are known to be equivalences after p-completion, by [LNR11, Thm. 1.1] in the case m = 1,
hence also for the cases m ≥ 2 by [Tsa98, Thm. 2.4] or [BBLNR14, Thm. 2.8]. It is very likely
that the same methods will apply when Y 0 = MU is replaced by Y q = MU ∧ · · · ∧MU for
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q ≥ 1. If so, the p-completed spectral sequence

Es,t2 = πsπtTHH(Y •)
Cpm

p =⇒s πt−sTHH(S)
Cpm

p

can equally well be analyzed using Cpm -homotopy fixed points or Cpm+1-Tate constructions in
place of Cpm-fixed points. A first step in this direction would be to determine the differential
structure of the Cp-Tate spectral sequence

Ê2
s,t = Ĥ−s(Cp;πtTHH(MU)) =⇒s πs+tTHH(MU)tCp .

By truncation to the second quadrant, this would determine the Cp-homotopy fixed point spec-
tral sequence converging to π∗THH(MU)hCp , hence also π∗THH(MU)Cp after p-completion.

The comparison maps Γm : THH(S)Cpm → THH(S)hCpm and Γ̂m : THH(S)Cpm−1 →
THH(S)tCpm are also p-adic equivalences, by the proven Segal conjecture [Car84], but even
in the case m = 1 the differential structure of the Cp-Tate spectral sequence converging
to π∗THH(S)tCp ∼= π∗(S) is not known [Ada74]. In the case of THH(Z) the maps Γm and
Γ̂m are not quite equivalences, but they do induce isomorphisms in homotopy with mod p
coefficients in non-negative degrees. The structure of the Cpm-Tate spectral sequence converging
to π∗(THH(Z)tCpm ;Z/p) is known [BM95], [Rog99a], [Rog99b], but these calculations appear
to be difficult to extend to the case of THH(HZ ∧ · · · ∧HZ).

4.9. Topological periodic homology

The limiting maps

Γ: TF (MU ; p) −→ holim
m

THH(MU)hCpm ←− THH(MU)hT

Γ̂ : TF (MU ; p) −→ holim
m

THH(MU)tCpm ←− THH(MU)tT

are also equivalences after p-completion, cf. [BM95, (2.11)] and [AR02, Thm. 5.7]. Thus the
E2-terms of the T-homotopy fixed point and T-Tate spectral sequences

E2
∗,∗ = Z[t]⊗ π∗THH(MU) =⇒ π∗THH(MU)hT

Ê2
∗,∗ = Z[t±1]⊗ π∗THH(MU) =⇒ π∗THH(MU)tT

are known, and both converge to π∗TF (MU ; p) after p-completion. Note that TP (MU) =
THH(MU)tT is the arithmetically interesting topological periodic homology studied by
Hesselholt [Hes17], also known as periodic topological cyclic homology or topological de Rham
homology. As in the case of TF (S; p), the inverse Frobenius operator ϕ−1 = R : TF (MU ; p)→
TF (MU ; p) extends to TP (MU) after p-completion, without any further localization.

4.10. Rational analysis

The rational algebraic K-groups of MU , i.e., π∗K(MU)⊗Q, were determined in [AR12,
Thm. 4.2] by using Goodwillie’s theorem [Goo86]. The Poincaré series is

x5

1− x4
+

1 + xh(x)

1 + x
= 1 + x3 + 3x5 + 3x7 + x8 + 6x9 + 2x10 + . . .

where

h(x) =
∏
k≥1

1 + x2k+1

1− x2k
.

A similar result holds for each π∗K(Y q)⊗Q, where Y q = MU ∧ · · · ∧MU , with (q + 1)
copies of MU . Since π0Y

q = Z and Y q is connective and of finite type, we know by an easy
generalization of [Dwy80, Prop. 1.2] that Es,t1 = πtK(Y s) is a finitely generated abelian group in
each bidegree (s, t). By the following result Es,t2 = πsπtK(Y •) is in fact finite in each bidegree,
except at the edge s = 0, where E0,t

2 is rationally isomorphic to πtK(Z).
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Proposition 4.1. The rationalized descent spectral sequence

Es,t2 ⊗Q = πsπtK(Y •)⊗Q =⇒s πt−sK(S)⊗Q ,

for algebraic K-theory at S along S→MU , collapses at the E2-term to the edge s = 0.

Proof. The vanishing line and strong convergence of the descent spectral sequence Es,t2 =⇒s

πt−sK(S) from Theorem 3.9 imply the same vanishing line and strong convergence for the
rationalized spectral sequence.

The unit map S→ Y q and the zeroth Postnikov section Y q → HZ induce maps K(S)→
K(Y •)→ K(Z) that, after rationalization, split off a copy of K(S) from K(Y •). It remains to
prove that the remainder of the rationalized spectral sequence, associated to the cosimplicial
spectrum with the homotopy fiber of K(Y q)→ K(Z) in codegree q, collapses to zero at the
E2-term.

The Hurewicz homomorphism MU∗ = π∗(MU)→ H∗(MU) ∼= B is a rational equivalence,
so π∗THH(MU) is rationally isomorphic to HH∗(B) = BE, where B = Z[bk | k ≥ 1] and E =
E(ek | k ≥ 1). Connes’ B-operator on HH∗(B) corresponds to the suspension operator σ, which
is the differential and derivation given by σ(bk) = ek for each k ≥ 1. Hence the rationalized
de Rham homologyHdR

∗ (B)⊗Q = H∗(BE, σ)⊗Q = Q is trivial in positive degrees. By [AR12,
Cor. 2.4], which is a consequence of [Goo86, II.3.4], it follows that the trace map K(MU)→
THH(MU) identifies the kernel of π∗K(MU)→ π∗K(Z) with the image of σ : BE → BE, after
rationalization.

Similarly, π∗THH(Y •) is rationally isomorphic to the cosimplicial resolution [q] 7→
HH∗(B

⊗q+1) ∼= (BE)⊗q+1 associated to ι : Z→ BE. By [AR12, Cor. 2.4] again, the trace
map identifies the kernel of π∗K(Y q)→ π∗K(Z) with the image of σ : (BE)⊗q+1 → (BE)⊗q+1,
after rationalization. Let (C∗, δ) and (D∗, δ) be the associated cochain complexes, with
Cq = (BE)⊗q+1 and Dq = im(σ) ⊂ Cq. The E2-term of the remainder of the descent spectral
sequence is given by the cohomology of (D∗, δ), after rationalization.

The augmentation ε : BE → Z induces a cochain contraction ε⊗ id⊗qBE of η : Z→ C∗,
mapping x0 ⊗ x1 ⊗ · · · ⊗ xq ∈ Cq to ε(x0)x1 ⊗ · · · ⊗ xq ∈ Cq−1. It restricts to a contraction of
0→ D∗, since ε⊗ id⊗qBE commutes with σ. Hence the cohomology of (D∗, δ) is zero, as claimed.
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