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Abstract 11 

Trough mouth fans are environments characterized by high sediment supply during glacial stages and 12 

the occurrence of large-scale instabilities. The geological record indicates that several of these 13 

environments have failed repeatedly resulting in large submarine landslides. The roles of sedimentation 14 

rate, weak layers, glacial loading and unloading as well as seismic activity on triggering megaslides in 15 

trough-mouth-fan systems is still unclear. A better understanding of the preconditioning factors, triggers 16 

and consequences of these landslides is crucial due to the hazard they pose to coastal communities and 17 

offshore industries.  18 

In this paper, we focus on the North Sea Trough Mouth Fan, which is the result of massive glacial 19 

sediment input delivered to the shelf edge through the Norwegian Channel, southeast Nordic Seas 20 

margin. The Tampen Slide, one of several large paleo-landslides that have happened within the North 21 

Sea Trough Mouth Fan, took place at c. 130 ka (end of MIS 6), and removed an estimated 1800 km3 of 22 

sediment. 23 

Here, we use boundary conditions from the Tampen Slide and 2D Finite Element Modeling (Abaqus 24 

software from Simulia) to evaluate the effects of variations in sedimentation rates as well as sediment 25 

properties on the generation of excess pore pressure, fluid flow, and slope stability along the axis of the 26 

trough-mouth-fan system. The model domain, 40 km in length and 2 km in height, is dominated by 27 

glacigenic debris flows and glacimarine sediment deposits. We use geotechnical data measured on 28 

samples of glacigenic and glacimarine sediment deposits from the nearby Ormen Lange gas field area 29 

to constrain the model. We evaluate the stability of the slope under various scenarios, including constant 30 

sediment loading, episodic changes in sedimentation rates and abrupt pulses in sediment delivery for a 31 

61 kyr period (MIS 6). The models show that increased sedimentation rates during glacial stages do not 32 

generate sufficient excess pore pressure to set off a landslide. Furthermore, the simulated overpressures 33 

for the different sedimentation scenarios do not significantly differ at the end of the model runs. The 34 

results also highlight the importance of a basal glacimarine sediment layer underneath the rapidly-35 

deposited sediments for the build-up of overpressure. Consequently, this glacimarine sediment layer has 36 

the inherited potential to act as a weak layer facilitating instability. However, as overpressure due to 37 
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sediment deposition alone does not result in slope failure, we couple the preconditioned slope with 38 

earthquake ground shaking. Based on attenuation models, an earthquake of approximately M6.9 or 39 

larger at a short distance from the Tampen Slide headwall could have triggered the landslide. Therefore, 40 

we suggest glacial sedimentation and a glacimarine sediment layer to represent preconditioning factors, 41 

and seismic shaking as the final trigger mechanism for the Tampen Slide, i.e. similar to the situation that 42 

lead to the development of the Storegga Slide in the same area. 43 

 44 

Keywords: North Sea Trough Mouth Fan – Tampen Slide – Slope stability – Overpressure – Trigger 45 

mechanism – Earthquake – Quaternary – Glaciation – North Atlantic – Glacial geomorphology  46 
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1. Introduction 47 

Evidence of submarine landslides is found both on low-latitude unglaciated and high-latitude (formerly) 48 

glacial-dominated continental margins (e.g. Canals et al., 2004). The largest submarine landslides, e.g. 49 

the Storegga Slide, tend to occur on continental slopes with remarkably low gradients (<2°). Despite 50 

this low dip, the remobilized slide masses runout over distances of several hundreds of kilometers 51 

(Hampton et al., 1996). Submarine landslides often develop as retrogressive translational failures, 52 

characterized by bedding-parallel glide planes that are separated by distinct escarpments (Hampton et 53 

al., 1996; Masson et al., 2010). The gravitational load and generation of overpressure linked to the rapid 54 

deposition of glacigenic debris flows (GDFs), plumite deposits and (glaci-)marine sediments seems to 55 

play a significant role for the initiation of large submarine landslides on glaciated margins (Bryn et al., 56 

2005; Tripsanas et al., 2008; L’Heureux et al., 2013). Differences in the strength behavior of marine 57 

clays and glacial clays are a key aspect for the development of these failures (Kvalstad et al., 2005b). 58 

Due to their potential for seafloor infrastructure damage and tsunami generation, submarine landslides 59 

may have a significant socio-economic impact (e.g. Pope et al., 2017). High sedimentation rates, 60 

changing sea levels, gas hydrate dissociation and earthquake shaking are frequently discussed as 61 

processes that affect slope stability in the submarine environment (e.g. Leynaud et al., 2009). The pre-62 

conditioning and trigger mechanisms are, however, not always easy to establish (Masson et al., 2010). 63 

It is, however, essential for geohazard and risk assessments to understand and distinguish between 64 

preconditioning factors and factors that trigger slope failure, as well as understanding the potential 65 

consequences. Overpressure is generally considered as a key aspect in most – if not all – pre-66 

conditioning factors (Vanneste et al., 2014).  67 

Sediment accumulation can outpace the dissipation of pore fluids if rates are high and/or permeability 68 

is low. Overpressure, here defined as pore pressure in excess of hydrostatic pressure, reduces the 69 

effective stress in the sediments. Overpressure can exist in deep and shallow formations and it most 70 

likely occurs where fine-grained sediments having low-permeability (<10-16 m2) inhibit pore fluid 71 

migration or at locations affected by large forcing mechanisms, such as rapid sediment deposition 72 

(Swarbrick and Osborne, 1998; Flemings et al., 2008; Scheider et al., 2009; Dugan and Sheahan, 2012). 73 
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Large-scale slope failures have happened in regions where sedimentation rates are high (McAdoo et al., 74 

2000; Urgeles and Camerlenghi, 2013). Having an important role in the pre-conditioning of subaquatic 75 

slopes, rapid sedimentation can set the conditions for the occurrence and volumes of large submarine 76 

mass movements (Masson et al., 2006; Dugan and Sheahan, 2012; Stoecklin et al., 2017). Numerical 77 

modeling indicates that rapid and prolonged sediment delivery from rivers or ice streams can generate 78 

sufficient overpressure to directly cause failure of nearly flat slopes (Stoecklin et al., 2017), or weaken 79 

the slope to such an extent that a moderate earthquake can cause failure (Stigall and Dugan, 2010). 80 

Overpressure generated by the rapid loading of glacial deposits during short periods of peak glaciations 81 

on top of marine sediments is likely one of the main preconditioning factors for the Storegga Slide (Fig. 82 

1) (Berg et al., 2005), and overpressure remnants are still observed behind its upper headwall (Strout 83 

and Tjelta, 2005). Oozes underlying Pleistocene glacial sediments have been suggested to affect lateral 84 

fluid migration (Bryn et al., 2005). In order to predict the amount of overpressure that can be generated 85 

by sediment deposition over time, i.e. during consolidation, information about sedimentation rates as 86 

well as the compressibility and permeability of the sediments and how these parameters change with 87 

increasing overburden stress and compaction is required (Urlaub et al., 2012; Kvalstad et al., 2005a).   88 

So-called weak layers are often considered to host the slip facilitating translational failure at all scales 89 

(Locat et al., 2014). Examples are the Storegga Slide (Bryn et al., 2005; Solheim et al., 2005), the 90 

intermediate-sized Cap Blanc Slide (Urlaub et al., 2018) or the much smaller Finneidfjord Slide 91 

(Vanneste et al., 2012). In this study, we define a weak layer as any geological layer or a sequence of 92 

layers promoting slope instability. Trough mouth fans (TMFs) are depositional systems characteristic 93 

for high-latitude (formerly) glacial continental margins. TMFs are largely built up by (stacked) GDFs 94 

that were deposited in periods when ice streams reached the shelf edge (King et al., 1996; Laberg and 95 

Vorren, 1996; Elverhøi et al., 1997).  There is ample evidence of the occurrence of submarine landslides 96 

in these TMFs (King et al., 1996; Vorren et al., 1998; Sejrup et al., 2005; Nygård et al., 2005; Hjelstuen 97 

et al., 2007; Rebesco et al., 2013), and TMFs are excellent records to study the relationship between 98 

large submarine landslides and ice-sheet changes on different types of margins (Vorren and Laberg, 99 

1997; Pope et al., 2018). The seafloor typically dips less than 3° in TMF areas (Gales et al., 2018). 100 
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Furthermore, seismicity in TMFs was most likely higher shortly after the deglaciation due to glacio-101 

isostatic rebound (Byrkjeland et al., 2000; Owen et al., 2007; Lee, 2009). Following the suggestion of 102 

Hjelstuen et al. (2007), megaslides are here defined as mass transport deposits with volumes larger than 103 

1000 km3. 104 

In this study, we model the stability of the slope across the North Sea TMF (Fig. 1) during Pleistocene 105 

climate changes, focusing on the effect of rapid sediment deposition and seismic shaking. This type of 106 

modeling has previously not been published on TMF systems and has the potential to contribute to 107 

identify controlling factors of slope stability on the North Atlantic margin, where the volumes involved 108 

in submarine landslides are one or several orders of magnitude higher than their counterparts on active 109 

margins (e.g. Hühnerbach et al., 2004; Urgeles and Camerlenghi, 2013). The study presented herein 110 

addresses the following questions: (1) Can increased sedimentation rates at the North Sea TMF during 111 

a period with shelf edge glaciation generate sufficient overpressure on a ~1° slope to cause slope failure?, 112 

(2) What is the effect of a glacimarine sediment layer at the base of rapidly deposited GDFs on slope 113 

stability?, (3) How important is the sedimentation pattern during the glacial period on slope stability?, 114 

and (4) What earthquake magnitude is required to trigger megaslides on a slope preconditioned by 115 

glacial sediment? Given some uncertainties in sediment parameters, as is often the case for submarine 116 

slope stability assessments (Vanneste et al., 2014), we emphasize that the results of our study should be 117 

interpreted in a qualitative rather than quantitative way. 118 

 119 

2. Geological setting 120 

The Pleistocene North Sea TMF lies at the outlet of the Norwegian Channel on the northern North Sea 121 

Margin (Fig. 1). Spreading over an area of 110,000 km2 and built up by nearly 40,000 km3 of sediments 122 

(Sejrup et al., 1996; King et al., 1996; Nygård et al., 2005; Hjelstuen et al., 2012), it is the largest 123 

Pleistocene TMF along the Norwegian continental margin (Fig. 1). The North Sea TMF is located in a 124 

region which has experienced subsidence rates of 0.7-0.8 m/kyr during the mid- and late-Quaternary 125 

(Sejrup et al., 2004). The fan has mainly been fed by erosional products delivered to the upper 126 

continental slope by the fast-flowing Norwegian Channel Ice Stream during maximum Pleistocene 127 
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glaciations in Marine Isotope Stages (MIS) 2, 6, 8, 10, and probably 12 (Fig. 3) (Sejrup et al., 2003; 128 

Nygård et al., 2005). The sediments deposited in the early Quaternary (2.6-0.8 Ma), however, are 129 

sourced from the Norwegian mainland in the east (Batchelor et al., 2017). The shelf geometry northeast 130 

of the North Sea TMF is uniform over a c. 150 km long distance, with a width of c. 60 km.  131 

The volcanic Møre Marginal High (Fig. 2) divides the wedge-shaped North Sea TMF into two main 132 

provinces, a proximal fan province characterized by an alteration between deposits of GDFs, 133 

glacimarine sedimentation and slide escarpments and deposits, and a distal fan province dominated by 134 

slide debrites (Nygård et al., 2005). The Pleistocene sedimentary column within the proximal province 135 

has been divided into ten sequences (P1-P10) (Fig. 2) (King et al., 1996; Nygård et al., 2005), reflecting 136 

the change in the sedimentary processes through glacial-interglacial cycles. Sequences P1, P4, P5, P8 137 

and P10 are dominated by GDFs, identified as acoustically transparent stacked lobate lenses in the 138 

acoustic data (Sejrup et al., 1996; King et al., 1998; Nygård et al., 2002). The glacimarine sediments (P2 139 

and P6) drape the GDFs and have an acoustically laminated seismic facies, which is only visible where 140 

the sediment package is thick enough. These glacimarine deposits are characterized as more fine-grained 141 

sediments with lower unit weights and shear strengths, and higher water contents, void ratios, 142 

permeabilities, consolidation coefficients, compressibilities, plasticity and sensitivity values compared 143 

to the GDFs (King et al., 1998; Berg et al., 2005; L’Heureux et al., 2013; Llopart et al., 2014).  144 

The three slide debrites (P3, P7 and P9) identified in the North Sea TMF are characterized by an 145 

acoustically chaotic facies between a smooth lower and irregular upper surfaces. The Tampen Slide 146 

(Figs. 1, 2), one of numerous prominent megaslides along the Norwegian-Barents Sea continental 147 

margin (e.g. King et al., 1996; Solheim et al., 2005; Hjelstuen et al., 2007), is the most recent submarine 148 

landslide initiated at the North Sea TMF. It is suggested to be of late MIS 6 age (~130 ka, Nygård et al., 149 

2007). It has been suggested that MIS 6 was characterized by at least three shelf edge ice sheet 150 

oscillations (Fig. 3) (Nygård et al., 2005). The debrite of the Tampen Slide (P3 in Fig. 2) has been traced 151 

from c. 500 m water depth at the shelf break to more than 2000 m water depth some 200 km basin-ward, 152 

and its ~300 m-high headwall is located c. 10 km west of the shelf break (Fig. 2). Nygård et al. (2005) 153 
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estimated a sediment volume of 1400 km3 failing along a 0.2-0.7°, and locally steeper (1°), slope for the 154 

Tampen Slide. 155 

Additional to the ~130 ka old Tampen Slide, the North Sea TMF experienced megaslides during MIS 9 156 

(Møre Slide) and MIS 11-12 (Stad Slide; Fig. 3) (Nygård et al., 2005; Solheim et al., 2005; Hjelstuen 157 

and Grinde, 2016). The TMF did not fail during the last glacial-interglacial cycle; however, the ~8100 158 

cal. yrs BP Storegga Slide happened nearby (Figs. 1, 2) (Bryn et al., 2005; Haflidason et al., 2005; 159 

calibration curve from published articles). These megaslides affect different areas of the North Sea TMF 160 

(Hjelstuen et al., 2007), as the Pleistocene ice-stream patterns have changed and sediment sources varied 161 

(Batchelor et al., 2017). 162 

In the study area, average sedimentation rates are in the order of c. 1 m/kyr for the glacial and deglacial 163 

periods (Lekens et al., 2005; Nygård et al., 2007), whereas the rates during interglacials fall in the range 164 

of 0.05-0.10 m/ka, i.e. only a fraction of the rate documented for glacial periods (Haflidason et al., 1998). 165 

Locally higher sedimentation rates of up to 36 m/ka are estimated near the Storegga Slide headwall 166 

during the last deglaciation (Hjelstuen et al., 2004). The excess load of rapidly-deposited glacial 167 

sediments and the disappearing ice sheets are suggested to have enhanced the local stress field and, in 168 

turn, the seismic activity in the region (Byrkjeland et al., 2000).  169 

 170 

3. Model configuration and slope stability analysis 171 

 172 

In this study, we use the Finite Element Modeling software ABAQUS (6.13-1) from Simulia to test 173 

various hypotheses to describe the potential for slope failure in the entire model domain at any time 174 

during deposition. We therefore perform a fully-coupled fluid flow-stress analysis using a model setup 175 

that accounts for large displacements using the finite strain theory.  176 

3.1 Model setup and input parameters 177 
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The Finite Element 2D Model input is partly based on the continental slope setting in the area of the 178 

Tampen Slide headwall including seismic reflection data interpreted by Nygård et al. (2005) (Fig. 2). 179 

The model domain has been subdivided into four simplified discrete Model Units (MU) (Fig. 4; Tab. 1). 180 

The seismic sequences P6-P10 (Figs. 2, 4) are summarized as “fill” material and represent MU4. We 181 

consider that MU4 is in stress equilibrium, assuming that the MIS 9 Møre Slide released the overpressure 182 

that might had accumulated before failure. GDF deposits representing MIS 8 (P5, 300-243 ka), which 183 

show the best-developed mounded seismic facies on the North Sea TMF (Nygård et al., 2005), overlie 184 

the “fill”-fundament and represent MU3. We assume that the deposits representing the MIS 8 deglacial 185 

and the MIS 7 interglacial, which cannot be identified in the seismic data, have been eroded by the 186 

Tampen Slide. A 10 m thick layer of stratified fine-grained glacimarine sediments is therefore included 187 

for this time period, defining MU2 (Fig. 4; Tab. 1). We estimate this layer to have a thickness of 10 m 188 

based on deglacial and interglacial sedimentation rates in the study area (Haflidason et al., 1998; Becker 189 

et al., 2018). The thickness of the sediments removed by the Tampen Slide (MU1) is estimated based 190 

on the intact stratigraphy upwards of the Tampen Slide headwall and extrapolated to simulate pre-failure 191 

conditions. We further assume MU1 to be thickest ~20 km downslope of the Tampen Slide headwall, 192 

corresponding with the right lateral boundary of the model. Characterized as relatively uniform in its 193 

rheological properties, MU1 consists of mainly GDFs deposited during MIS 6 (Tab. 1). 194 

Whereas the Storegga Slide developed retrogressively (Gauer et al., 2005), such behavior is not evident 195 

from the present seismic data in the Tampen Slide region. As we assume that the Tampen Slide was not 196 

initiated by the destabilization of a locally steeper slope, modeling a laterally complete profile is not 197 

expected to add significantly to the modeling results. We therefore laterally limit the model domain to 198 

40 km, consisting of a 10 km wide continental shelf and 30 km of continental slope. The paleo-slope 199 

dip used in the model (0.6°) runs parallel to the basal reflector of the Tampen Slide (Fig. 4).  200 

Sediment properties  201 

The three materials used in the model are characterized by GDFs (MU3), mainly GDFs (MU1) and 202 

glacimarine sediments (MU2) (Fig. 4, Tab. 1). All deposits are modelled as non-linear porous 203 
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elastoplastic materials, described by the Modified Cam Clay constitutive model. All soil units are 204 

inferred to have a Poisson ratio (ν) of 0.3, and a friction angle (φ) of 28°. These values are based on 205 

measurements performed on GDFs from a similar geological setting, i.e. the upper-middle continental 206 

slope of the Storfjorden TMF (Llopart et al., 2014). The dry density (ρdry) is 1.8 g/cm3 for glacimarine 207 

deposits and 2.0 g/cm3 for the GDF-dominated modeling units (Tab. 2) (King et al., 1998). 208 

For the consolidation properties (compressibility (λ) and permeability (k)) we use values measured on 209 

samples of glacial debris and glacimarine deposits from the nearby Ormen Lange gas field area on the 210 

upper Møre continental slope (Kvalstad et al., 2005a) (Fig. 1, Tab. 2). Even if the composition of glacial 211 

sediments is documented to vary in time and space (King et al., 1996), the use of these values can be 212 

justified as we expect similar depositional environments and similar sediments to be represented in the 213 

neighboring North Sea TMF. The slope of the normal compression line in the Modified Cam Clay model 214 

(λ), hereafter referred to as compressibility for simplicity, decreases with decreasing void ratio, 215 

averaging at 0.09 for GDFs and 0.29 for glacimarine deposits. The compressibility of mainly glacial 216 

debris (MU1) is 0.1 for all void ratios due to lack of consolidation tests for this sediment type. 217 

Permeability (k) is a function of porosity (n), and is defined as log10(k) = 11.5 · n – 14.6 for packages 218 

consisting of GDFs and mainly GDFs, and log10(k) = 7.6 · n – 13.8 for glacimarine deposits. The void 219 

ratio at 1 kPa (e0, void ratio at seafloor) is set to 3.5 (equals a porosity of 0.78) for the glacimarine 220 

sediments and 1.2 (equals a porosity of 0.55) for the GDF-dominated modelling units (Tab. 2). 221 

Simulating sediment deposition during MIS 6 222 

We simulate sediment deposition during MIS 6, at the end of which the Tampen Slide occurred, by 223 

consecutively “switching on” eight elements rows. Displacement and pore-pressure plane-strain 224 

elements are activated and stacked on top of the elements of the model in a sequence of steps. The load 225 

is gradually increasing over time within the deposited elements. Pore pressure development and slope 226 

stability are analyzed in both the newly deposited as well as the pre-existing sediments during the 227 

deposition of the element rows which define MU1. 228 
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Back-stripping of the stratigraphy allowed to better estimate the real sediment thicknesses at the time of 229 

deposition. Using a calculated decompacted MU1 thickness of ~340 m at the location of the Tampen 230 

Slide headwall, each row is ~40 m thick. An average compaction of 30 % caused by rapid glacial 231 

sediment loading is comparable to previous studies, in which compaction was estimated to up to 40 % 232 

(Hjelstuen et al., 2005). 233 

Meshing, boundary and initial conditions 234 

The mesh used in the modelling consists of 27,000 8-node biquadratic displacement, bilinear pore 235 

pressure elements with reduced integration (Fig. 4). The elements have a size of 40x40 m in MU1 and 236 

10x40 m in MU2, while a coarser mesh size was vertically adapted down in the model domain. These 237 

differences in element size are reasonable, as the uppermost sediment package is the area of interest and 238 

as changes in mechanical properties are less pronounced at larger depths (Hamilton, 1976; Karig and 239 

Hou, 1992). The element size also increases towards the lateral boundaries. The model does not allow 240 

any displacement at its base, while its lateral boundaries are constrained in the x-direction and free at its 241 

top. The lateral-landward and bottom boundaries are impermeable (Fig. 4), whereas fluids are free to 242 

flow from the surface, where overpressure is zero. The different model units extend over the entire 243 

length of the model domain and are permeable at their upper and lower boundaries (Fig. 4). 244 

For the initial conditions of the model, we assume that the sediments are normally consolidated, with a 245 

void ratio defined according to stress conditions and overpressure defined to be zero. This can be 246 

justified as (i) a major landslide (Møre Slide; Fig. 2) is assumed to release overpressure and reset the 247 

stress regime to overconsolidated conditions with zero excess pore pressure, and (ii) a long interglacial 248 

time period (243-191 ka; MIS 7) preceded the time of initiation of our model (Fig. 4), during which 249 

large amounts of fluids are expected to have escaped and overpressures to have dissipated as sediments 250 

have been deposited at low rates. 251 

3.2 Model runs 252 

Based on the age constrains of sequence P4 and the Tampen Slide (Nygård et al., 2005), we suggest that 253 

MU1 represents MIS 6 and that the Tampen Slide was initiated at the end of this MIS (~130 ka). We 254 
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initiate our model at the beginning of MIS 6, and then run it in eight steps and a total of 61 kyr, 255 

representing the sedimentation history during MIS 6. The added soils are consolidating in the process. 256 

Gravitational loads for the individual elements are ramped up during the step, with no load in the 257 

beginning and complete load at the end of a step. 258 

Uncertainties in timing and sediment decompaction have a large effect on the sedimentation rates. While 259 

the thickness of sequence P4 can be estimated with confidence, there are no age dates available from 260 

this 340 m thick sequence. In order to address this uncertainty, we ran models with three different 261 

sedimentation scenarios to identify situations in which particularly high pore pressures may be 262 

generated. 263 

The first scenario, considered the reference model, uses constant sedimentation rates of 3.3 m/kyr for 264 

MIS 6 and geotechnical values measured on samples from nearby locations (Kvalstad et al., 2005a). The 265 

goal of the reference model was to evaluate if constant temporal sediment loading has a destabilizing 266 

effect. Previous modelling studies have identified compressibility as a key factor for overpressure 267 

generation due to sediment deposition (Urlaub et al., 2012; Urlaub et al., 2015). We therefore use a 268 

higher compressibility value for the uppermost layer (MU1) than provided by Kvalstad et al. (2005a) in 269 

one scenario.  270 

Ice-sheet configurations and sedimentation rates might change during a marine isotope stage (Becker et 271 

al., 2018). In the second scenario, the sedimentation rates follow a pattern similar to the last glacial (MIS 272 

2), with an increase in sediment accumulation in the second half of the glacial (Hjelstuen et al., 2004). 273 

Such an ice sheet configuration has also been suggested for MIS 8 (Fig. 3) (Nygård et al., 2005). In this 274 

scenario, three element rows (equivalent to c. 120 m decompacted sediment) are deposited in the first 275 

30 ka, and five element rows (equivalent to c. 200 m decompacted sediment) in the last 30 ka. This 276 

scenario should test if episodically high sedimentation rates may generate a significant amount of 277 

overpressure. 278 

Sequence P4 can be separated into three GDF sequences, each having a maximum thickness of 100-200 279 

m (Nygård et al., 2005). These seismostratigraphic observations could indicate rapid on-off switching 280 
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of the Norwegian Channel Ice Stream, suggested for other glacials (Nygård et al., 2007; Becker et al., 281 

2018). Thus, in the third scenario, the GDF sequences of MU1 are each defined by two rows of high 282 

sedimentation rates. These rows were separated from each other by one row with half the sedimentation 283 

rate, and each GDF sequence was then deposited over 12 kyr. This model scenario evaluates the effect 284 

of pulses of high sedimentation rates on slope stability. 285 

 286 

3.3 Slope stability analysis and earthquake calculation 287 

The overpressure ratio (λ*), defined as the excess pore pressure (pe) divided by the vertical effective 288 

stress (σ’v) and the excess pore pressure, is a useful measure for the degree of overpressurization of the 289 

slope. For example, for a slope gradient of ~1° consisting of homogenous sediment with a friction angle 290 

of 30˚, an overpressure ratio of 0.96 is required to induce slope failure without any external force (Urlaub 291 

et al., 2015).  292 

𝜆∗ = (
𝑝−𝑝ℎ

𝜎𝑣−𝑝ℎ
) = 

𝑝𝑒

𝜎′
𝑣+𝑝𝑒

   (1) 293 

For the case that overpressure generated by rapid sedimentation is insufficient to initiate slope failure, 294 

we couple the 2D Finite Element Modeling with cyclic loading. Earthquakes can contribute to the 295 

destabilization of a slope, as the horizontal component of the earthquake acceleration generates shear 296 

stresses (Hampton et al., 1996). According to finite slope stability models and following the approach 297 

of ten Brink et al. (2009), earthquake-triggered submarine landslides in soft sediments occur when the 298 

shear stress on the slip surface exceeds the undrained shear strength of the sediment (e.g. Morgenstern, 299 

1967). This condition is expressed by the Factor of Safety (FoS) as 300 

𝐹𝑜𝑆 =
𝜎𝑣

′ ∙𝑡𝑎𝑛𝛷𝑐𝑟𝑖𝑡

𝜏+𝐹𝑒𝑞
   (2) 301 

where σ’v is the vertical effective stress, Φcrit the critical friction angle, τ the shear stress and Feq the 302 

earthquake acceleration shear stress parallel to the slope. In order to initiate slope failure (FoS≤1), we 303 

calculate 304 

 𝐹𝑒𝑞 = (𝜎𝑣
′ ∙ 𝑡𝑎𝑛𝛷𝑐𝑟𝑖𝑡) − 𝜏  (3) 305 

In previous studies (ten Brink et al., 2009; Stigall and Dugan, 2010), the critical horizontal earthquake 306 

acceleration ky has been calculated to  307 
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𝑘𝑦 =
𝐹𝑒𝑞

𝜎𝑣
′+𝑝𝑒

=
(𝜎𝑣

′ ∙𝑡𝑎𝑛𝛷𝑐𝑟𝑖𝑡)−𝜏

𝜎𝑣
′+𝑝𝑒

  (4) 308 

where pe is the excess pore pressure. 309 

We follow ten Brink et al. (2009) and link the critical acceleration, ky, to the spectral acceleration 310 

required for triggering slope failure, kPSA(T=0.75), as 311 

𝑘𝑃𝑆𝐴(𝑇=0.75) =
𝑘𝑦

0.15∙3.5
   (5) 312 

This relation is applied by ten Brink et al. (2009) for the slopes offshore Eastern North America which 313 

are geologically and tectonically similar to our study area, and assume the relation to be a reasonable 314 

choice for our application. We then relate the obtained kPSA(T=0.75)-value to earthquake magnitude and 315 

distance by considering an empirical ground motion prediction equation (GMPE). As no GMPE has 316 

been developed according to modern standards based on Norwegian data, we adopt the recent relation 317 

by Pezeshk et al. (2015) which is valid for Eastern North America, where ground motion characteristics 318 

are similar to our study area. 319 

 320 

4. Results 321 

We assess the effect of different scenarios of temporal sediment loading, compressibility contrasts, and 322 

a glacimarine sediment layer on pore pressure generation and slope stability. The results are presented 323 

as vertical profiles located 10 km downslope from the shelf break (x = 20 km, Fig. 4). This location 324 

represents the Tampen Slide headwall (Fig. 2), and likely the onset of failure assuming that the landslide 325 

did not develop retrogressively. 326 

4.1 Reference model 327 

Fig. 5 presents the results of the reference model, characterized by constant sedimentation rates and 328 

measured hydro-geomechanical sediment properties (Tab. 3), after the 61 ka long time span of MIS 6. 329 

The results show that excess pore pressure (pe) increases continuously with depth and time (Figs. 5a, 330 

7a-1) to 800 kPa at ~500 m below seafloor (bsf). Below this level, the excess pore pressure increases to 331 

3000 kPa towards the bottom of the model (Fig. 5a). The vertical effective stress (σ’v) is increasing 332 

constantly from 0 kPa at the seafloor to 30000 kPa at the base of the model (Fig. 5b). 333 
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The constant sedimentation rates of 3.3 m/kyr during MIS 6 result in maximum overpressure ratios (λ*) 334 

of 0.16 at depths of ~200 m bsf, with λ*-values varying from 0.1 to 0.16 within the rapidly-deposited 335 

MU1 (Figs. 5c, 7a-2). While λ* rapidly increases during the deposition of the first two rows, its rate of 336 

increase is lower during the deposition of the last six rows (Fig. 7a-2). The fluid gradients indicate an 337 

eastwards-oriented fluid flow, which is dominated by a vertical component (Fig. 5d). Although sediment 338 

depths with maximum overpressure ratios are likely to be affected by the Tampen Slide, less than 16% 339 

of the total overburden stress taken up by the excess pore pressure is insufficient to cause slope failure. 340 

Thus, constant sedimentation rates in the North Sea TMF during MIS 6 most likely did not generate 341 

sufficient excess pore pressure to cause slope failure. 342 

4.1.1 Changes in compressibility 343 

Deterministic sensitivity analyses on models used in previous studies (Urlaub et al., 2015) showed a 344 

high sensitivity of overpressure generation to compressibility. Therefore, we also ran the reference 345 

model under the assumption that the material characterizing MU1 is more compressible than expected. 346 

Therefore, the compressibility of MU1 was increased from 0.1 in the reference model to 0.13 for the 347 

compressibility test (Tab. 2, Fig. 6). The results from this model run show that the excess pore pressure 348 

rises with a steep gradient from the seafloor to values of 2500 kPa at the base of the highly-compressible 349 

layers (Fig. 7b-1), and that the pe-values are more than doubled compared to the pe-values in the 350 

reference model when using an increased compressibility (Fig. 7a-1). Excess pore pressures increase 351 

with a much lower gradient for low-compressible sediment properties in MU1 (Fig. 7a-1). Within the 352 

underlying MU3, the excess pore pressures rise with the same gradients for both model runs. 353 

This model run results in overpressure ratios of 0.55 at the top of the glacimarine layer at the profile 354 

location (MU2, Figs. 6, 7b-2). The highest overpressure ratios of 0.7 occur at the right–hand-size 355 

boundary of the model (Fig. 6b), where the deposited sediment package is thickest. Overpressure ratios 356 

decrease both atop and below MU2. Both a normal- and a high-compressible MU1 result in overpressure 357 

generation with time, with most of the overpressure generated during the first 15 ka (Figs. 7a-2, 7b-2). 358 

However, we note that utilizing a higher compressibility results in more significant overpressure ratio 359 

increases between the different time steps (Figs. 7a-2, 7b-2). Thus, the model run shows that an increase 360 
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in compressibility from 0.1 to 0.13 has large effects on overpressure generation. An increase of 33 % in 361 

compressibility results in an increase of 200 % of overpressure. On the other hand, void ratio values, 362 

decreasing through time, are comparable for both the reference and the enhanced compressibility model 363 

runs (Figs. 7a-3, 7b-3).  364 

4.1.2 Glacimarine layer  365 

The modelling shows that the highest overpressure ratios occur within the glacimarine layer (Figs. 5-7). 366 

Therefore, this unit could represent the level in the model domain which is closest to fail or to act as a 367 

slip plane. The overpressure ratio increases with depth, and reaches its maximum values at the top of 368 

the glacimarine layer or slightly above (Figs. 7a-2, 7b-2). The glacimarine layer is furthermore 369 

characterized by a higher void ratio, which slightly decreases with time (Figs. 7a-3, 7b-3). While excess 370 

pore pressures are more or less constant within the glacimarine layer (Fig. 7a-1, 7b-1), the overpressure 371 

ratios decrease in this unit (Fig. 7a-2, 7b-2), which probably can be explained by an increase in vertical 372 

effective stresses. Similar pe-gradients are observed for MU1 in the reference model compared to the 373 

model scenario from which the glacimarine layer was excluded (Figs. 7a-1, 7c-1). The glacimarine layer 374 

results in increased overpressure ratios in MU1 for the compressibility test run (Fig. 7b-1). Removing 375 

the glacimarine layer results in lower excess pore pressures and overpressure ratios, and no contrast in 376 

the void ratio values (Fig. 7c). The inherited effect of the glacimarine draping sediment layer at the base 377 

of the rapidly deposited GDFs is thus an increase in the gradients of both excess pore pressures and 378 

overpressure ratios in MU1 as well as a contrast in permeability. 379 

4.2 Variability in sedimentation rates 380 

The first five rows of the model, comprising ~200 m of sediments, were activated after different periods 381 

to test the effect of different temporal or staged loading on slope stability. In the reference model (Fig. 382 

8a), these rows were constantly deposited with a rate of 3.3 m/kyr. During this model run, the excess 383 

pore pressure and overpressure ratio at the top of the glacimarine layer steadily increase to values of 384 

~450 kPa and 0.13, respectively. While pe is showing a constant increase in time, λ* has a stronger rise 385 

during the deposition of rows 1 and 3 (Fig. 8a). We also note that the overpressure ratio is highest within 386 

the glacimarine layer itself, but that the differences to the neighboring sediments are small. 387 
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The model run of an ice-sheet build-up scenario (Fig. 8b), with sedimentation rates of 2.4 m/kyr for the 388 

first three rows and increased sedimentation rates of 4.2 m/kyr for the last two rows, results in higher 389 

pe- and λ*-values at the top of the glacimarine layer compared to the reference model. The excess pore 390 

pressure and overpressure ratio increase significantly during the deposition of the first rapidly-loaded 391 

row (row 4), and reach a maximum of 0.2 at the depth of the glacimarine layer. The excess pore pressure 392 

in MU1 is similar to the excess pore pressure generated in the reference model. The vertical and lateral 393 

profiles show that the highest overpressure values of this scenario are not generated within the 394 

glacimarine layer, but rather at the interface of the glacimarine layer and the rapidly-deposited GDFs 395 

(Fig. 8b).  396 

In the switch on/off scenario (Fig. 8c), excess pore pressures increase during the deposition of the four 397 

rapidly-deposited rows (4.2 m/kyr, rows 1-2 and 4-5), whereas no change is observed when deposition 398 

is slow (2.1 m/kyr, row 3). Overpressure ratios of 0.2 are generated at the top of the glacimarine layer 399 

at the end of both pulses of rapid sedimentation. Episodically high sedimentation rates may generate 400 

increases of +300 kPa per row in excess pore pressure and +0.07 per row in overpressure ratio. However, 401 

episodically high overpressure dissipation starts once the episode of high load is terminated. During the 402 

anticipated switch-off phase of the ice stream, the overpressure ratio is significantly decreasing to values 403 

of ~0.1 in the glacimarine layer. Unlike the other two scenarios, the switch on/off scenario shows highest 404 

overpressure ratios within MU1 and not in the glacimarine layer where overpressure decreases. At the 405 

end of the model run (5 rows or 200 m of sediment), the overpressure ratio is ~0.05 higher compared to 406 

the reference model for depths affected by the Tampen Slide. 407 

In summary, these models show that the excess pore pressure increases either continuously or more 408 

abruptly in time depending on the sedimentation pattern. However, the overpressure ratio in the 409 

glacimarine layer and MU1 generated after the deposition of the five rows do not significantly vary for 410 

the different sedimentation patterns. We also observe that episodically high sedimentation rates cannot 411 

compensate for the dissipating pore pressure during periods of low sedimentation. Maximum 412 

overpressure ratios develop either at the interface between the glacimarine layer and MU1, or within 413 

MU1. Rapid sedimentation rates result in maximum overpressured slopes at depths expected to be the 414 
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base of the Tampen Slide or above, whereas lower overpressures are generated for constant 415 

sedimentation rates. The model shows that the maximum overpressure ratio at the end of row 5 is 0.2, 416 

and that the totally generated overpressure is low. 417 

4.3 Slope stability and the effect of seismic shaking  418 

The results obtained from the various models, and particularly the overpressure ratio (λ*) and the Factor 419 

of Safety (FoS), were used to analyze slope stability. The FoS, defined by the failure-resisting strength 420 

of the sediment divided by failure-inducing stresses (Formula 2), was >1 at any time of deposition, and 421 

the slope is therefore considered stable. As sedimentation-related pore pressure generation cannot 422 

explain the Tampen Slide, we consider the possibility of having an earthquake as an external trigger 423 

mechanism. Highest overpressure ratios (Fig. 7a-2, 7b-2), and shear stress values of up to ~110 kPa are 424 

observed within the glacimarine layer of the reference model (Figs. 9a, b), indicating that the slope is 425 

closest to failure at this depth not only for the selected profile, but for the entire model. The required 426 

additional horizontal loading by earthquakes (Feq) to cause instability is in the order of 1.9 MPa. The 427 

critical horizontal earthquake acceleration (ky) at the location of the Tampen Slide headwall at the depth 428 

of the glacimarine layer is calculated to 0.49 g, which corresponds to kPSA(T=0.75) = 0.93 g (Fig. 9c). By 429 

applying the empirical ground motion prediction equation of Pezeshk et al. (2015), this level of ground 430 

shaking can be generated by an earthquake of magnitude M6.9 or larger in the immediate vicinity of the 431 

slide headwall, or by an event with M7.5 or larger at a distance of up to 3.5 km from the Tampen Slide 432 

headwall. 433 

 434 

5. Discussion 435 

Here, we evaluate the effect of different glacial sedimentation patterns and the 10 m-thick glacimarine 436 

sediment layer on overpressure generation and slope stability of the North Sea TMF. Potential trigger 437 

mechanisms for the Tampen Slide and future slide activity in the ~1˚-dipping North Sea TMF are 438 

discussed based on seismic and overpressure quantification. Finally, we discuss the results from this 439 

study in a global perspective. 440 

5.1 Effect of glacial sedimentation patterns on slope stability 441 
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The modelling shows that excess pore pressures build up due to the deposition of GDFs during MIS 6. 442 

The highest excess pore pressures and overpressure ratios are related to increased sediment 443 

accumulation in the second half of the model run or during extreme episodic pulses, whereas constant 444 

sedimentation rates result in a more stable slope, i.e. with less excess pore pressure generation. However, 445 

the magnitude of the resulting overpressure ratios at the end of the glacial stage does not vary 446 

significantly between the different models. We explain the lower overpressure ratios generated after 447 

time periods with decreased sedimentation rates (Figs. 8b, 8c) by pore pressure dissipation when 448 

sedimentation rates were low to medium. The sedimentation rates used for the model are based on 449 

stratigraphical constraints (Fig. 2). However, other studies indicate higher sedimentation rates along the 450 

Norwegian shelf break (Dimakis et al., 2000; Hjelstuen et al., 2004; Nygård et al., 2007). Previous 451 

studies also suggest that shelf-edge glaciations only lasted for short periods (Nygård et al., 2007; Becker 452 

et al., 2018). Thus, loading the North Sea TMF over a very short time period with extremely high 453 

sediment volumes could generate sufficient overpressure for slope failure. However, in order to fulfill 454 

the age constrains of MU1 (61 ka), such periods characterized by extreme loading would have to be 455 

compensated by periods characterized by low sedimentation rates, which is rather unlikely during shelf 456 

edge glaciations. The model runs indicate that an ice stream needs to be located near the shelf edge for 457 

high sedimentation rates to be maintained for most of a glaciation in order to create a slope more 458 

vulnerable to fail. Studies from the Gulf of Mexico show that sedimentation rates of 6-9 m/ka resulted 459 

in overpressure ratios of 0.7-0.8 (Schneider et al., 2009), indicating that even a doubling of the 460 

sedimentation rates at the North Sea TMF would probably not lead to overpressure-driven slope failure. 461 

Our models suggest that compressibility has a large effect on overpressure generation (Figs. 6, 7b). 462 

Strongly increased overpressure ratios (Fig. 7b-2) indicate that sediments characterized by a higher 463 

compressibility could have contributed to slope instability along the gently-dipping seabed of the North 464 

Sea TMF. However, compressibility values >0.13 for MU1 would be required to generate sufficient 465 

overpressure, which may be within the measuring error. This test showed that small changes in 466 

compressibility have a high impact on overpressure generation. 467 
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Numerical slope stability analysis of the Santa Barbara basin of the California borderland suggests that 468 

pre-conditioning through rapid sedimentation has controlled the emergence of large, slope-parallel 469 

landslides on the northern flank of that basin (Stoecklin et al., 2017). However, high sedimentation rates 470 

at the North Sea TMF during glacial stages cannot generate sufficient overpressure to cause slope failure 471 

on the ~1˚-dipping seabed. Different temporal sedimentation patterns do not significantly affect the 472 

amount of overpressure generated at the end of the model runs. The model scenarios assume 473 

overpressure to be zero at the beginning of the simulations, which is a rather conservative estimation. 474 

The role of ice load on the continental shelf and fluid migration from Miocene ooze layers have not been 475 

included as contributing factors to overpressure generation. Glacial unloading related to a melting 476 

Norwegian Channel Ice Stream most likely resulted in fluid migration away from the slope and towards 477 

the shelf, making the slope more stable. However, as the Norwegian Channel Ice Stream must have been 478 

warm-based, and ice overload did not significantly exceed the water column, ice unloading is probably 479 

only having a minor effect. Loading and unloading of the slope by ice sheet advances and retreats has 480 

been shown to have only minor effects on continental slope stability (Kratzke, 2018), and can thus be 481 

neglected. 482 

5.2 Potential of glacimarine deposits acting as a weak layers  483 

Bedding-parallel layers may represent so-called weak layers which play a key role in the development 484 

of slope failures (Haflidason et al., 2003; Berg et al., 2005; L’Heureux et al., 2013; Locat et al., 2014). 485 

However, slopes have been modelled to be prone to fail along preferential horizons at defined depths 486 

without the presence of an intrinsic weak layer (Stoecklin et al., 2017). For the North Sea TMF, 487 

observations in the seismic profiles show that sediments mainly consisting of GDFs (MIS 6) have been 488 

removed above a package consisting of GDFs (MIS 8) during the Tampen Slide (Fig. 2). We note that 489 

no glacimarine sediment package has been resolved in the seismic profile of the study area, but 490 

deglaciation packages have been observed for the time periods related to MIS 2 and MIS 6 on the Vøring 491 

Plateau (Fig. 1) (Haflidason et al., 2003; Lekens et al., 2005). Therefore, we suggest that such a deglacial 492 

and/or interglacial package has also existed in the area affected by the Tampen Slide, but has either been 493 

eroded by the megaslide or is too thin to be resolved in the seismic profiles (vertical resolution of c. 10 494 
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m, Nygård et al., 2005). The surface parallel to the seafloor, at a depth correlating with the glacimarine 495 

sediment deposits, is characterized by highest void ratios, highest overpressure ratios and highest shear 496 

stresses (Figs. 7, 9). 497 

The high permeability of the glacimarine layer could have accommodated vertically-oriented fluid flow 498 

(Fig. 10a). At the same time the low-permeable overlying package, mainly consisting of GDFs, acted as 499 

a barrier for vertical fluid flow. Combining these two effects would explain the highest overpressures at 500 

the very top of the glacimarine layer (Fig. 7). Thus, permeability contrasts linked to the glacimarine 501 

layer would significantly contribute to the preconditioning of the Tampen Slide. Gas accumulation 502 

below GDFs has also been suggested by ocean bottom seismometer investigations in the Storegga Slide 503 

area (Mienert et al., 2005b), and support our hypothesis that GDFs are a trap to vertical fluid flow.  We 504 

suggest fluids to accumulate at the top of the glacimarine layer. 505 

Therefore, we conclude that the glacimarine layer itself or the interface of the glacimarine layer with the 506 

overlying GDF-dominated sequence most likely acted as a weak layer for the Tampen Slide (Fig. 10a). 507 

Similar failure planes are found in fine-grained depositional units, such as plumite or glacimarine and 508 

hemipelagic sediments (Haflidason et al., 2003; Berg et al., 2005), on the mid-Norwegian continental 509 

margin, or in laminated glacimarine clays at the upper continental slope off Vesterålen (L’Heureux et 510 

al., 2013). Reported excess pore pressures of up to 0.2 within contouritic sediments below GDFs in the 511 

Storegga Slide area (Bryn et al., 2003), which also correlate with zones of anomalously low s-wave 512 

velocities (Mienert et al., 2005b), support the result of our model simulations. Although the stability at 513 

the expected Tampen Slide failure depth is reduced, overpressure-driven slope failure is not suggested. 514 

The effect of sedimentological and geotechnical properties of glacimarine layers beneath rapidly 515 

deposited glacial debris has previously been discussed at different locations within the North Atlantic. 516 

These layers are reported to have higher water contents and lower shear strengths (Lucchi et al., 2012), 517 

and are suggested to develop local overpressure zones (Bryn et al., 2003; Mienert et al., 2005b; Berg et 518 

al., 2005; Llopart et al., 2014). Coarser-grained glacial deposits overlain by less-permeable glacial 519 

sediments in the Barents Sea have been suggested to be charged by fluids and to act as weak beds 520 

(Bellwald and Planke, 2018). 521 
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5.3 Quantification of trigger mechanisms of the Tampen Slide 522 

It seems that high sedimentation rates alone did not lead to failure of the Tampen Slide, even if using 523 

increased compressibility values for the deposited GDFs in MIS 6. Gas hydrates, indicated by the 524 

presence of a bottom simulating reflector, are suggested to have contributed to the triggering of the 525 

Storegga Slide (Bünz et al., 2003; Mienert et al., 2005a). However, gas hydrates are rather unlikely to 526 

be built within GDFs (Bünz et al., 2003; Mienert et al., 2005a), and no gas hydrate indicators have been 527 

observed in conventional seismic profiles of the North Sea TMF. Therefore, gas hydrates are rather 528 

unlikely to have acted as an additional fluid source affecting overpressure build-up for the Tampen Slide. 529 

However, even if not identified in the seismic profiles, the presence of gas hydrates at the North Sea 530 

TMF at the age of the Tampen Slide cannot be excluded.  531 

The Tampen Slide could have been initiated at a locally steeper slope at the lower continental slope (Fig. 532 

2), similarly to which has been proposed for the Storegga Slide (Gauer et al., 2005; Kvalstad et al., 533 

2005b), and then developed retrogressively. However, as the lower slope of the North Sea TMF is 534 

beyond the main depocenters of GDFs (Fig. 2), initiation in the steepest region could be problematic for 535 

the build-up of sufficient pore pressure. The Miocene ooze layer, suggested to favor increased fluid flow 536 

in the lower slopes of the Storegga Slide (Riis et al., 2005), is overlain by a significantly thicker 537 

Pleistocene sediment sequence in the North Sea TMF, and has thus not been included in the simulations. 538 

As the morphology of the Tampen Slide does not indicate retrogressive slide development (Nygård et 539 

al., 2005) and as overpressure does not appear sufficient for slope failure at the position of its headwall, 540 

we suggest that an external trigger is the most likely cause for the initiation of the Tampen Slide.  541 

Our model results show that an earthquake of M6.9 or larger at a short distance from the Tampen Slide 542 

headwall could have triggered the Tampen Slide (Fig. 10b). At present, there is still a higher seismicity 543 

around the Quaternary depocenters than elsewhere along the Norwegian continental margin (Byrkjeland 544 

et al., 2000). An earthquake of magnitude M5.4 occurred in the distal part of the North Sea TMF as late 545 

as in 1988 (Norwegian National Seismic Network; www.skjelv.no), in an area where no active 546 

postglacial faults have been mapped. Faults with the potential for accommodating earthquakes of such 547 

magnitudes have not been identified in the North Sea TMF. However, seismic events in response to 548 
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glacio-isostatic rebound offshore Norway, accommodating earthquakes of M6.5-7 without breaking the 549 

surface, are considered to be likely (Bungum et al., 2005). Studies within the Storegga Slide region 550 

demonstrated the potential for large postglacial earthquakes to occur and to be able to shake sediment 551 

layers to a length and degree, which may lead to slope failure for sediments with a deposition-related 552 

low FoS (Solheim et al., 2005; Bungum et al., 2005; Lindholm et al., 2005). Severe seismic loading has 553 

also been proposed for slope failures within glacimarine sediments off Vesterålen (L’Heureux et al., 554 

2013). Studies from SE Canadian continental slopes suggest that the build-up of overpressure, linked to 555 

deposition of GDFs (Aksu and Hiscott, 1992; Hiscott and Aksu, 1994), allows earthquake-triggered 556 

failures along slopes with gradients as low as 1° (Tripsanas et al., 2008; Piper, 2014). An earthquake 557 

has also been suggested to be the final trigger for submarine mass movements of slopes controlled by 558 

high sedimentation rates in the Santa Barbara Basin (Stoecklin et al., 2017). Thus, we suggest an 559 

earthquake at the end of MIS 6, coupled with moderate overpressure from rapid sedimentation, to have 560 

acted as the additional driving stress necessary for slope failure for the Tampen Slide (Fig. 10b). This 561 

earthquake could either have been triggered by stress changes related to sediment deposited on the North 562 

Sea TMF itself or by crustal readjustment after the ice sheet retreat, similar to what has been suggested 563 

for large slope failures on the continental slope off SE Canada (Piper et al., 2003). Slope stability is 564 

reported to increase with increasing frequencies of earthquakes and decreasing sedimentation rates (ten 565 

Brink et al., 2016). Thus, an individual high-magnitude earthquake in this seismically moderate region, 566 

characterized by high sedimentation rates during glacial stages, seems to be a possible final trigger 567 

mechanism. A high peak spectral acceleration with a short duration will not induce slope failure. 568 

However, this point has already been accounted for in the approach we follow (ten Brink et al., 2009). 569 

The modelling attempt of this study included only one dimension of earthquake shaking, whereas 570 

seismic waves in reality affect the sedimentary sequence in three dimensions (Carlton and Kaynia, 571 

2016). The lower earthquake frequencies are closer to the resonance frequency of sediment layers and 572 

attenuate more slowly within the sediments. Consequently lower earthquake frequencies have longer 573 

durations and a higher potential for fluid mobilization than the higher frequencies. Thus, we suggest that 574 

lower earthquake frequencies are more important for slope failure initiation (Kramer, 1996).  575 
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Increased submarine landslide activity at glacial-interglacial transitions has previously been documented 576 

(Maslin et al., 2004; Owen et al., 2007; Urgeles and Camerlenghi, 2013). We suggest that the earthquake 577 

that may have initiated the Tampen Slide took place at the transition into MIS 5, when overpressure 578 

ratios and seismic activity are assumed to be highest. This timing probably indicates a large difference 579 

between slide initiation at the North Sea TMF and the Storegga Slide, which occurred ~15 kyr after peak 580 

glaciation (Haflidason et al., 2005). However, due to sparse chronostratigraphical constrains, we cannot 581 

exclude that the Tampen Slide was triggered during the MIS 5 interglacial or later. In that case the 582 

Tampen Slide had a similar delay as the Storegga Slide. 583 

5.4 Limitations of the numerical modeling study 584 

The numerical models incorporate uncertainties resulting from the limited resolution of seismic data for 585 

reconstruction of the sediment architecture, stratigraphy, as well as a lack of in-situ physical, 586 

mechanical, and seismological properties of the prevalent sedimentary units explained below in detail. 587 

There are actually no deep-drilling results available from the area, and geotechnical parameters are 588 

scarce. Furthermore, high-resolution 3D seismic data were not available either. Thus, the overall results 589 

of the numerical modeling conducted in this study should be understood qualitatively and the provided 590 

estimates of pore pressure levels and earthquake magnitudes considered as approximations of these 591 

values. Nevertheless, the parameters used are based on extensive geohazard assessment investigations 592 

for the nearby Ormen Lange gas field development (Kvalstad et al., 2005; and other) in a comparable 593 

geological setting. Aiming to test how slope stability changes with increasing overburden stresses, we 594 

used a reasonable range of parameters for the numerical simulations. 595 

1) Physical and hydro-geomechanical sediment properties: As no hydro-geomechanical information is 596 

available from the North Sea TMF, we used hydro-geomechanical sediment properties measured on 597 

samples from the nearby Ormen Lange gas field area (Kvalstad et al., 2005; and others). Even though 598 

the composition of glacial sediments are known to vary in time and space (King et al., 1996), the 599 

similarity in environmental conditions allow for such a transfer. Due to limits in seismic resolution (max. 600 

frequency of c. 10 m; Nygård et al., 2005) and an absence of wells, we summarize the composition of 601 

model unit MU1 to be mainly GDFs. 602 
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2) Stratigraphy: We simulated sediment deposition during MIS 6, and followed the suggestions that the 603 

Tampen Slide occurred at the end of this marine isotope stage (Nygård et al., 2005). However, the 604 

chronology of the North Sea TMF and the suggested date of the Tampen Slide, on which we base the 605 

sedimentation rates and overpressure build-up, are not well constrained or understood. Improvements 606 

in the chronological framework of the North Sea TMF are thus crucial to improve the modeling of 607 

sedimentation-related overpressure and triggering of megaslides. 608 

3) Pre-slide stress conditions: Our model further assumed overpressure to be zero at the beginning of 609 

the simulations. However, there might be some overpressure at the model initiation, as suggested by 610 

lateral fluid migration sourced from Miocene oozes in the explanation of the early Holocene Storegga 611 

Slide (Bryn et al., 2005; Riis et al., 2005). However, the pre-slide conditions are impossible to 612 

reconstruct with the currently available data. 613 

4) Seismological properties: The model was coupled to seismic shaking, which is based on formulas 614 

valid for eastern North America (ten Brink et al., 2009). The input parameters for these formulas are not 615 

calibrated against Scandinavia, and might be different for our study area. However, we assume a similar 616 

response due to similarities in geological and tectonical settings (Pezeshk et al., 2015). Thus, the 617 

earthquake triggering the overpressured slopes of the Tampen Slide could have been of lower magnitude 618 

than what we modeled in our study. 619 

5.5 Implications and global relevance  620 

Potential links between climate-controlled sedimentation, slope preconditioning, seismic activity and 621 

megasliding are demonstrated by numerical modeling of the Tampen Slide. However, the slopes of the 622 

North Sea TMF seem not to have failed in glacial stages with similar sedimentological and seismological 623 

conditions to the ones found at the end of MIS 6 (Fig. 3) (Nygård et al., 2005). It is not yet understood 624 

why megaslides at the North Sea TMF occurred in some periods characterized by rapid sedimentation, 625 

whereas the fan seems not affected by large slope failure in other periods. Megaslides during the last 626 

glacial/deglacial cycle have also not been observed along the Barents Sea margin (Hjelstuen et al., 2007). 627 

Lateral overpressure migration into the Storegga Slide area (Bryn et al., 2005) or the absence of a 628 

deglacial/interglacial sediment package at the base of the GDFs could additionally favor slope stability 629 
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in this period. The observation that the North Sea TMF did not fail during some shelf edge glaciations 630 

generating GDFs supports an earthquake as the ultimate trigger mechanism for the Tampen Slide. 631 

This study shows that changing glacial sedimentation patterns are not significant for the build-up of 632 

overpressure towards the end of glacial stages, but that the generation of overpressure is more depending 633 

on the total sediment overload. Our model runs indicate that overpressure ratios increase at a very low 634 

rate during periods characterized by glacial sedimentation, which are supposed to be some magnitudes 635 

higher compared to interglacial sedimentation rates (e.g. Lekens et al., 2005; Becker et al., 2018). Low 636 

seismicity, low interglacial sedimentation rates, and ongoing overpressure dissipation (Byrkjeland et al., 637 

2000, Haflidason et al., 1998) result in a margin that at present is more stable than shortly after the last 638 

glacial retreat. Dissipating overpressures, related to decreased sedimentation rates and fluids being 639 

discharged into the modern system, have been reported by Strout and Tjelta (2005) from the Storegga 640 

Slide area and by Dugan and Flemings (2002) for the New Jersey margin. However, dissipating 641 

overpressures in the region of the North Sea TMF indicate that overpressures might still be present in 642 

the shallow sub-surface of the study area (Fig. 10b). 643 

The effect of a glacimarine layer at the base of a package dominated by GDFs is modeled in this study, 644 

and could be applied to different TMF systems and glacially-affected margins all over the globe. The 645 

deposition of such thin layers seems to be fundamental for the evaluation of major slope failure in 646 

different glacial-interglacial cycles. However, there are still numerous uncertainties about weak layers. 647 

Probably required for megaslides, our knowledge about the thickness and geotechnical properties of 648 

these layers is limited. High-resolution 3D seismic data and deep boreholes for in-situ logging and 649 

sampling for geological and geotechnical data will also contribute to a better characterization of weak 650 

layers. High-resolution seismic data are also expected to resolve geological expressions on a meter-scale 651 

and provide information related to overpressure and fan morphologies relevant for fluid migration. 652 

Packages of GDFs overlying the glacimarine layer are suggested to act as seals for vertical fluid flow. 653 

Glacial sediments trapping fluids below have been observed in other previously glaciated environments 654 

(Dumke et al., 2014; Bellwald and Planke, 2018). 655 
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Similar to what has been assumed for the Storegga Slide region (Kvalstad et al., 2005a), we suggest that 656 

a strong earthquake is the only realistic trigger for a new submarine megaslide at the North Sea TMF. 657 

This earthquake has probably to be of higher magnitude than what we modeled for the overpressure-658 

preconditioned slope at the time of the Tampen Slide. It is, therefore, fair to state that today’s hazard of 659 

megasliding and tsunami originating from the North Sea TMF is considerably small, and that it will 660 

probably take another interglacial-glacial cycle and/or a strong earthquake to form a situation that would 661 

lead to another major landslide on the North Sea TMF. 662 

 663 

6. Conclusions  664 

In this study we model overpressure and slope stability along the gently-dipping (<1°) North Sea TMF, 665 

with the focus to capture stress conditions leading to the development of the Tampen Slide. The 666 

influence of sedimentation rate and sediment compressibility on strength reduction on glacial margin 667 

submarine slopes has been quantified within the model simulations. However, the results of model 668 

simulations should be understood in a qualitative way. 669 

Slope stability has been modeled for a scenario with shelf edge glaciations, ice sheet build-up and ice 670 

sheet oscillations during MIS 6, at the end of which the Tampen Slide occurred. As these different 671 

configurations result in significant differences in sediment delivery to the study site, we simulate slope 672 

stability with different sedimentation patterns, which according to our model result in similar levels of 673 

excess pore pressure. Highest overpressure ratios of 0.2 are generated at the interface of an inferred 674 

glacimarine layer, when utilizing sedimentation rates of ~4.2 m/kyr for the deposition of GDFs during 675 

ice-stream maxima. Constant sediment accumulation of 3.3 m/kyr results in an overpressure ratio of 676 

0.16. Tests with higher compressibilities of GDFs (0.13 instead of 0.10), on the other hand, result in 677 

maximum overpressure ratios of 0.55 at the top of an assumed glacimarine layer, which is located below 678 

a package consisting of GDFs. As the absence of the glacimarine layer decreases the overpressure ratio, 679 

the inherited permeability contrast of this layer is suggested to be fundamental for slope failures to be 680 

initiated at the North Sea TMF. The glacimarine layer is suggested to accommodate vertical fluid flow, 681 

which is initiated by the rapid deposition of GDFs, which are further acting as a barrier for vertical fluid 682 
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flow. The modeling suggests that excess pore pressure alone is not sufficient to destabilize the ~300 m-683 

thick sequence of mainly GDFs, which have been removed by the Tampen Slide. Thus, an earthquake 684 

of magnitude M6.9 or larger, close to the Tampen Slide headwall, is suggested to have caused slope 685 

failure at the time of the Tampen Slide. Even if such a magnitude event has never been historically 686 

documented in Scandinavia, seismicity related to stresses induced by post-glacial isostacy at the time of 687 

the Tampen Slide is expected to have been significantly higher than at present, allowing for frequent 688 

occurrence of such events. 689 

This case study has several implications for TMFs and glaciated margins all over the globe. The model 690 

runs showed that overpressure mainly depends on the thickness of sediment overburden, and not on the 691 

temporal pattern of glacial deposition. Small changes in the model input parameters, such as 692 

compressibility values of glacial sediments, have a big effect on overpressure generation. Geological 693 

weak layers seem to be required for megaslides along gently-dipping glaciated margins. However, 694 

overpressure alone is not capable of causing failure on these slopes. The modeling suggests that 695 

increased seismic activity is the final trigger mechanism for the Tampen Slide.  696 
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Notation 697 

λ logarithmic bulk modulus, “compressibility”, dimensionless 698 

λ* overpressure ratio, dimensionless 699 

ν Poisson ratio, dimensionless 700 

Φcrit effective angle of friction, °, critical angle of friction, shearing resistance 701 

ρdry dry density, kg/m3 702 

σv vertical stress, kPa 703 

σ’v vertical effective stress, kPa 704 

τ shear stress, kPa 705 

φ friction angle, ° 706 

e void ratio, dimensionless 707 

k permeability, m/s 708 

n porosity, dimensionless 709 

p pore pressure, kPa 710 

pe excess pore pressure, kPa 711 

ph hydrostatic pore pressure 712 

FoS Factor of safety 713 

Feq Earthquake acceleration shear stress parallel to the slope 714 

kPSA Peak spectral acceleration 715 

ky Critical horizontal earthquake acceleration 716 

 717 

Formula 718 

1) Void ratio 𝑒 =
𝑛

1−𝑛
 719 

2) Compressibility 𝜆 = − (
1

𝑉
) ∙ (

𝑑𝑉

𝑑𝑝
) and 𝜆 =

𝑙𝑛(𝑝)

𝑛
 720 

3) Overpressure ratio 𝜆∗ = (
𝑝−𝑝ℎ

𝜎𝑣−𝑝ℎ
) = 

𝑝𝑒

𝜎′
𝑣+𝑝𝑒

 721 

4) Factor of safety 𝐹𝑜𝑆 =  
𝜎𝑣 

′ ∙ 𝑡𝑎𝑛𝜙𝑐𝑟𝑖𝑡

𝜏+𝐹𝑒𝑞
 722 

5) Required earthquake acceleration 723 

shear stress parallel to the slope 𝐹𝑒𝑞 = (𝜎𝑣
′ ∙ 𝑡𝑎𝑛𝛷𝑐𝑟𝑖𝑡) − 𝜏 724 

6) Critical  horizontal earthquake 725 

acceleration 𝑘𝑦 =  
𝐹𝑒𝑞

𝜎𝑣
′+𝑝𝑒

 726 

7) Peak spectral acceleration 𝑘𝑃𝑆𝐴 =  
𝑘𝑦

0.15 𝑥 3.5
 727 

728 
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Figures: 995 

 996 

Fig. 1. The Norwegian continental margin with outline of identified submarine slides and the North Sea 997 

trough mouth fan (TMF). Stippled gray line indicates maximum ice sheet extent during the Last Glacial 998 

Maximum (Sejrup et al., 2016) and numbers in gray boxes indicate subsidence rates (Sejrup et al., 2004). 999 

Earthquakes with magnitudes M>4 since 1970 are shown (Norwegian National Seismic Network, 1000 

www.skjelv.no). FSE: Faroe-Shetland Escarpment, JMFZ: Jan Mayen Fracture Zone, OL: Ormen Lange 1001 

gas field, VE: Vøring Escarpment. World map from www.vectorworldmap.com. 1002 
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 1003 

Fig. 2. a) Interpreted seismic profile across the North Sea TMF (modified after Nygård et al., 2005 and 1004 

Hjelstuen et al., 2012). Seismostratigraphic units (P1-P10) and identified time horizons are indicated. 1005 

Profile location in Fig. 1. FSE: Faroe-Shetland Escarpment, b) Blow-up of the proximal province of the 1006 

North Sea TMF. 1007 

 1008 



43 

 

 1009 

Fig. 3. Assumed shelf edge glaciations of the Norwegian Channel Ice Stream during the past 500 ka 1010 

(modified after Nygård et al., 2005). Seismic units (P1-P10), relative sea level curve (Skene et al., 1998), 1011 

paleoslides identified along the Norwegian-Barents Sea margin (summarized by Hjelstuen et al., 2007) 1012 

and sedimentation patterns used in the different model runs of this study are shown. Slides on the North 1013 

Sea TMF are indicated in bold. Shelf-edge glaciations dominate the late Quaternary sedimentation, 1014 

whereas a different ice-sheet configuration is documented in early and mid-Quaternary (Batchelor et al., 1015 

2017).  MIS: Marine isotope stage, sr: Sedimentation rate, t: Time. 1016 

 1017 
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 1018 

Fig. 4. Two-dimensional model geometry for the time of the Tampen Slide (130 ka BP) reconstructed 1019 

based on the identified seismic sequences P4-P10 of Nygård et al. (2005). Headwall of the Tampen Slide 1020 

(white stippled line) and thin glacimarine layer (red line) are shown. Black arrow indicates location of 1021 

the profiles for the model output parameters (Figs. 7-9). Triangles indicate displacement boundary 1022 

conditions. The model simulations start with the deposition of eight rows of MU1. GDF: Glacigenic 1023 

debris flow. MU: Model unit. 1024 

  1025 
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 1026 

Fig. 5. Results of 2D FE consolidation analysis for the reference model run after deposition of MU1. 1027 

White stippled line indicates location of glacimarine layer (MU2) and black arrow show the position of 1028 

the Tampen Slide headwall. Note a vertical exaggeration of 10. Vectors in the permeability plot are 1029 

randomly selected, and only show the direction of fluid flow, but not the magnitude. 1030 

 1031 
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 1032 

Fig. 6. Comparison of overpressure ratio for different compressibilities (λ) in MU1 at the end of MIS 6. 1033 

a) Reference model with λ = 0.10, b) Reference model with λ = 0.13. 1034 

 1035 
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 1036 

Fig. 7. Vertical profiles visualizing the effect of the glacimarine layer on slope stability. Vertical profiles 1037 

±50m of the glacimarine layer at x = 20 km (white bar) are shown for several simulation time steps 1038 

represented by different colors. Color coding as well as location of vertical profiles in the model domain 1039 

are given at the bottom of the figure. The profiles show the evolution in time of excess pore pressure 1040 

(pe), overpressure ratio  (λ*) and void ratio (e). 1041 

 1042 
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 1043 

Fig. 8. Vertical profiles ± 50m of the glacimarine layer for the three sedimentation patterns showing the 1044 

evolution in time (different colors representing different time steps) of excess pore pressure (pe) and 1045 

overpressure ratio (λ*). Results of 2D FE consolidation analysis are shown to the right. a) Model run 1046 

with constant sediment load, b) Model run with variable sediment load, c) Model run with episodic 1047 

sediment load. 1048 

 1049 
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 1050 

Fig. 9. a) Vertical profiles for shear stress τ and vertical effective stress σ’v. We assume that the slope 1051 

will fail at the depth with highest shear stresses and lowest vertical effective stresses, which correlates 1052 

with the glacimarine layer (GM). Results of the reference model with measured compressibilities (black 1053 

line) and high-compressible layer mainly consisting of GDFs (stippled line) are indicated. b) Blow-up 1054 

along the expected location of slope failure. c) Peak spectral acceleration (kPSA) of the 2D FE 1055 

consolidation analysis for the reference model run with measured sediment properties at the age of the 1056 

Tampen Slide (t = 130 ka BP). White stippled line indicates location of glacimarine layer (MU2), black 1057 

arrow show the position of Tampen Slide headwall and the black cross the expected point of slope 1058 

failure. 1059 
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 1061 

Fig. 10. Conceptual sketch showing preconditioning and triggering of the Tampen Slide. a) Glacigenic 1062 

debris flows are common sedimentary processes during the MIS 6 shelf edge glaciations of the 1063 

Fennoscandian Ice Sheet (FIS). Numerous sequences of stacked and rapidly-deposited glacigenic debris 1064 

flows act as a seal for vertical fluid flow, and fluids accumulate in the glacimarine layer. The highest 1065 

overpressure ratios are generated c. 10 km away from the shelf edge, where the sediment accumulation 1066 

is highest. b) A earthquake of M6.9 or larger at a short distance from the Tampen Slide headwall trigger 1067 

the Tampen Slide at the location where highest overpressure values have been generated. The 1068 

glacimarine layer can only be identified upslope of the Tampen Slide headwall, where it still might be 1069 

overpressured. 1070 

 1071 
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Tab. 1. Model Units (MU) of this study. Thicknesses, P-wave velocities and ages according to Nygård 1073 

et al. (2005). Thicknesses in ms as observed in seismic profiles; thicknesses in m inferred from P-wave 1074 

velocities; CSU: Corresponding seismic unit after Nygård et al. (2005), GDFs: Glacigenic debris flows, 1075 

GMs: Glacimarine sediments, GFs: Gravity flows, MIS: Marine isotope stage, x: undefined. 1076 

MU CSU Sediment type Thickness 

[ms] 

Thickness 

[m] 

P-wave 

[m/s] 

Time 

[ka] 

Age Relative 

sedimentation 

 

1+2 P4 Mainly GDFs 259 246 1900 113 MIS 6 High 

1 P4 Mainly GDFs x 236 x 61 MIS 6 High 

2 P4 GMs/GFs x 10 x 52 MIS 7-8 Moderate 

3 P5 GDFs 74 63 1900 57 MIS 8 High 

4 P6-P10 Fill x x x 178 MIS 9-12 Low-High 

 1077 

 1078 

Tab. 2. Sediment properties of the material used in the modeling. Geotechnical correlations established 1079 

by NGI (Kvalstad et al., 2005a). 1080 

 Glacial debris Mainly glacial debris (Glaci)-marine sediments 

Poisson ratio, ν 0.3 0.3 0.3 

Friction angle, φ [°] 28 28 28 

Dry density, ρdry [kg/m3] 2.0 2.0 1.8 

Void ratio, e0 1.2 1.2 3.5 

Compressibility*, λ 0.04-0.17 

(e → 0.08-1.2) 

0.1 0.13-0.57 

(e → 0.25-2.77) 

Corresponding seismic unit P5 P4 Layer between P4 and P5 

*Logarithmic bulk modulus; void-ratio dependent 1081 

 1082 

 1083 

Tab. 3. Model scenarios. Compressibility (λ), permeability (k) and void ratio (e) defined in Tab. 3. A: 1084 

3.3 m/ka, B: 2.5 m/ka, C: 4.2 m/ka, D: 2.1 m/ka. GM: Glacimarine sediments, GDFs: Glacigenic debris 1085 

flows, MGDF: Mainly glacigenic debris flows, kx: Horizontal permeability, ky: Vertical permeability. 1086 

Consolidation properties based on geotechnical analyses of sediments from the Ormen Lange area (NGI, 1087 

Kvalstad et al., 2005b). 1088 

 Time 

[ka] 

Sedimentation 

rate 

λGM λGDF λMGDF kx/ky 

 

Reference Model 61 A Tab. 2 Tab. 2 0.1 1 

Reference Model, high compressibility 61 A Tab. 2 Tab. 2 0.13 1 

Reference Model, no glacimarine layer 61 A Tab. 2 Tab. 2 0.1 1 

Reference Model, 5 rows 38 A Tab. 2 Tab. 2 0.1 1 

Ice-sheet built-up, 5 rows 42 B/C Tab. 2 Tab. 2 0.1 1 

Switch on/off,  5 rows 36 C/D/C Tab. 2 Tab. 2 0.1 1 
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