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Abstract

Diverse Lagrangian methods are used to study dispersion and mixing in a model in
the Norwegian Trondheim fjord. We focus on the tidally-driven currents, neglecting
wind-forcing, and generate a large number of particle trajectories. We first consider
traditional measures (absolute and relative dispersion) involving averages over all
particles. We then contour those measures, to gauge the spatial variations. Then we
examine a more recently developed measure, the Direct Lyapunov Exponent (DLE),
to further refine the description of the spatial variability. The results suggest regions
of strong mixing adjacent to regions with weak mixing, so that particles in nearby
regions may experience very distinct evolutions. And M2 dominates the dispersion;
adding additional tidal components affects mainly the amplitude of the particle
excursions rather than the character of the mixing.
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1 Introduction

The coastal shelf is an important region for shipping and oil exploration, for
fishing and aquaculture, and for recreation. As such, the transport of water-
borne nutrients, sediments and pollutants in the coastal environment is of vital
interest. Changes in sewer outflow can impact recreational activities and an oil
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spill can significantly affect fish stocks. So accurate assessments of transport
in given regions is highly desirable.

Trondheimsleia and the Trondheim fjord on the western coast of Norway are
such regions, used extensively by fishing and shipping companies and for vari-
ous industrial development projects. The flow in the fjord is complex, due to its
irregular coasts and variable bathymetry, and this hinders simple characteriza-
tions of the mixing. It is difficult to sample directly the diverse currents present
here, but numerical models are becoming sophisticated enough to provide re-
alistic predictions. Models can also be used for simulating pollutant transport
and also determining which physical processes most affect that transport.

Hereafter we focus on one portion of the mixing in the Trondheim fjord, that
due to the tides. This is a natural place to start, since tides dominate the
wind-driven currents in terms of flushing (Orre, 2004). We use a high resolu-
tion (50 m) model to advect a large number of passive particles, and then use
the resulting trajectories to diagnose the mixing. We do this by using vari-
ous Lagrangian measures, some traditional and some developed recently. The
picture which emerges is surprisingly complex.

Tidal mixing has been studied extensively, (e.g. Bowden, 1965; Forrest and
Usseglio-Polatera, 1984; Geyer and Signell, 1992; Signell and Butman, 1992;
Ridderinkhof and Zimmerman, 1992; Gjevik, 1996). Spatial variations in the
flow, induced primarily by topography, permit particles to drift systemati-
cally rather than just periodically returning to their starting positions. If the
horizontal particle displacements are comparable to the scale of the spatial
variations (e.g. between major topographic features), the particle trajectories
can even be unpredictable. This can lead to efficient lateral mixing of material.

Much of the early work on Lagrangian dynamics was motivated by the theory
of turbulence. The emphasis was on Lagrangian statistics, prioritizing the prob-
ability of particle displacements rather than describing single trajectories. 1

Given that the early theoretical work concerned homogeneous turbulence, the
statistics involved averaging over particle trajectories from the whole flow.
Single trajectories were viewed as irreproducible, and only the average behav-
ior was thought to be robust. But such averages ignore the spatial variations
in mixing which occur in most realistic environments. So more recent work,
much of it motivated by chaos and dynamical systems theory (Ottino, 1990;
Wiggins, 1992), has sought to understand these variations.

Lagrangian chaos, in which particle trajectories depend sensitively on their
starting positions and times, can occur in the simplest of flows. A seminal
example is the “blinking vortices” of Aref (1984). In this, two co-rotating vor-

1 Discussions of Lagrangian statistics are given by Batchelor (1953), Bennett (1987)
and LaCasce and Ohlmann (2003).
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tices are alternately turned on and off, advecting particles around them. The
Eulerian flow is entirely deterministic and can be expressed by a mathematical
mapping. But the Lagrangian motion can be chaotic, the more so with large
amplitude forcing. This example is relevant to mixing due to tides, which is
also oscillatory. Ridderinkhof and Zimmerman (1992) examined tidal disper-
sion from the perspective of chaotic mixing in relation to the Dutch Wadden
Sea, as did Ridderinkhof and Ridderinkhof and Loder (1994) for tidal flow in
the Gulf of Maine.

More recently, dynamical systems theory has sought to characterize the struc-
tures in chaotic flow which contribute to mixing. There are, for example, hyper-
bolic (saddle) points near which particle pair separations grow exponentially
in time. There are “manifolds”, distinct material surfaces along which parti-
cle separations contract or grow exponentially (e.g. Wiggins, 2005). There are
also transport barriers, across which particle motion is severely hindered or
prevented (e.g. Boffetta et al., 2001). A barrier surrounds the polar vortex in
the southern hemisphere stratosphere and hinders the lateral spread of ozone
(e.g. Haynes, 2005).

Hereafter we consider the tidal mixing in Trondheimsleia and the Trondheim
fjord using various measures from turbulence and dynamical systems theories.
For this study we focus solely on mixing induced by one or more of the dom-
inant tidal components, and exclude wind forcing and nonlinear effects. The
model is described in section 2 and the methods described in Section 3. The
results from two important regions in the fjord are presented in section 4 and
we conclude with discussion in section 5.

2 The high resolution tidal model

Moe et al. (2003), present a numerical model for simulating tides on a section
of the shelf off the coast of Møre and Trøndelag in Mid-Norway. This model,
which has 500 m grid resolution, demonstrated considerable skill in estimating
both the tidal velocity and elevation fields. The model is based on the (depth-
integrated) shallow water equations with linearized advection terms:
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where (U, V ) specify the volume fluxes per unit length in the horizontal plane,

3



η is the vertical displacement of the sea surface from the mean sea level,
H = H0 + η the total depth, H0 the mean depth, g acceleration of gravity, f
the Coriolis parameter, and cD the drag coefficient of the quadratic bottom
shear stress. The depth-averaged velocity is then given by:

u =
U

H
, v =

V

H
. (2)

The model employs realistic topography, but with a 2 m wall at the coasts.
The slip boundary condition is used at the wall. 2

The 500 m model was then used by Gjevik et al. (2005) to determine the flow
conditions along the open boundaries for a high resolution model for the inner
coastal region. The domain of the latter is depicted in Figure 1. The depth
matrix was calculated for an UTM coordinate grid (with ∆x = ∆y = 50 m)
based on multibeam bathymetric soundings and high resolution hydrographic
surveys by the Norwegian Hydrographic Service. With a horizontal Cartesian
coordinate system, origin at left lower corner of figure (1), and x- and y-axis
along the model domain, the horizontal components of the tidal depth mean
current velocity are represented as

u(x, y, t) =
∑

i

ui cos(ωit + χi − δui),

v(x, y, t) =
∑

i

vi cos(ωit + χi − δvi).
(3)

Here, (ui, vi) denotes the amplitude of the depth mean current of the i-th tidal
constituent, (δui, δvi) is the Greenwich phase, ωi the angular velocity and χi

the astronomical argument.

Simulations for the coasts of Møre and Trøndelag yielded harmonic constants
for the semi-diurnal components M2, S2, N2 and the largest diurnal compo-
nent, K1. Hereafter, we focus on the dispersion induced solely by these tidal
components. We therefore neglect the effects of wind forcing and nonlinear-
ities. As stated, the tides dominate the wind-forced currents in the region,
nevertheless it is possible that low frequency fluctuations induced by the wind
could modify the tidal dispersion; that will be studied later on. Nonlinear
effects are excluded (apart from the quadratic bottom stress) because advec-
tion has not yet been implemented in the model. So we exclude overharmonic
tides, like the M4, and the tidal residual flow. Both have a negligible effect
in the deeper parts of the channels, which cover most of the domain, but
could modify the response in the shallows (where bottom friction will also be
proportionally greater). Their effects will also be studied later on.

2 The lateral boundary layer plays a much smaller role in the basin than the bottom
boundary layer, noted also for instance by Signell and Geyer (1991).

4



Since the model employs the shallow water equations, it does not capture
vertical shear. The region is often well-mixed, particularly in winter, with
little vertical shear. But shear does become important in certain regions and
in the summer season. The focus hereafter is on the surface dispersion, but
because of the lack of shear, the subsurface dispersion could potentially differ.

2.1 Lagrangian particles

The model was used to advect passive (massless) Lagrangian particles. Their
trajectories were calculated by numerical integration of the equations

dxk

dt
= u(xk, yk, t) ,

dyk

dt
= v(xk, yk, t), (4)

where subscript k denotes the number of single particles (k = 1, ...,M,M =
number of particles) and (xk, yk) the position of particle k.

For the numerical integrations we used a fourth-order Runge-Kutta scheme as
an initiator combined with a fourth-order Adams-Moulton scheme. This com-
bination reduces computational cost while yielding a truncation error ∝ ∆t4.
In practice, however, we usually say that a fourth-order numerical integration
scheme has a second-order accuracy (Vetterling and Flannery, 2002). The code
for integrating these equations was developed by Gjevik (1996), and further
modified by Ommundsen (2002).

3 Method

3.1 Lagrangian statistics

Here we consider analyzing particle trajectories generated by the model. First
we examine probabilistic measures, which reflect how particles behave as a
group. These are of two types, measures concerning single particles and those
involving multiple particles.

Central to single particle statistics are the mean and variance of particle dis-
placements which reflect, respectively, the drift and spread of a “cloud” of
tracers. The variance is referred to as the “absolute dispersion”, defined:

D2(t) =
∑

i

(xi(t)− xi(0))
2 + (yi(t)− yi(0))

2 (5)
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where the sum is over all particles. The time derivative of the dispersion is
called the “diffusivity”. Under fairly general conditions (Taylor, 1921), the
diffusivity grows linearly in time for particles near their starting positions and
is constant at later times, the latter being a signature of Brownian motion.
So the absolute dispersion increases quadratically in time initially and linearly
later on. Between the asymptotic limits, one occasionally observes an interme-
diate growth phase, known as anomalous diffusion (Young, 1999). Anomalous
diffusion has been found in experiments (e.g. Solomon et al., 1993) but has
been difficult to resolve in geophysical flows.

The joint statistics of multiple particles reflect the straining out of a tracer
cloud. A central quantity is the variance of two particle separations, defined
as “relative dispersion”:

R2(t) =
∑
i6=j

(xi(t)− xj(t))
2 + (yi(t)− yj(t))

2 . (6)

Relative dispersion exhibits similar small and large time asymptotic behavior
as the absolute dispersion. At late times (large separations), the velocities of
the particle pair are uncorrelated and relative dispersion becomes absolute.
But relative dispersion exhibits a wealth of intermediate time behavior which,
depending on the initial particle separations, can persist for long periods. In
addition, this intermediate behavior depends on the flow. Lagrangian chaos
causes relative dispersion to grow exponentially while dispersion exhibits a
power law dependence on time in the (3-D) turbulent inertial range. Excellent
reviews of relative dispersion are given by Bennett (1987) and Sawford (2001);
a recent discussion of Lagrangian statistics in relation to observations is given
by LaCasce (2005).

3.2 Dynamical Systems Theory

Because Lagrangian statistics involve averages over many particles, they ne-
glect flow inhomogeneities. Particles near energetic features, like vortices, are
averaged together with others in quiescent regions. More recent measures ad-
dress inhomogeneity by seeking to identify flow structures which dominate the
particle spreading. To consider these, it is useful to define a flow map:

F t : x0 7→ x(t0 + t), (7)

where F relates a set of particle positions at time t0 to their later positions at
time t0 + t. If the flow is periodic in time and t is the period, (7) is called a
Poincare or a first return map. For numerically generated flows the velocity is
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known only at discrete spatial and temporal points. The flow (7) then defines
a sequence of mappings, Fn(x0) = xn, where n labels the discrete time.

There are special features in the flow, called “fixed points”, under such a
mapping. These are points, p such that p = Fn(p) for every n. We may
further distinguish “hyperbolic” and “elliptic” fixed points. The latter occur,
for instance, at vortex centers and cause particle pair separations to grow
algebraically in time. Hyperbolic points produce exponential growth of pair
separations. Associated with hyperbolic points are “manifolds”, distinct ma-
terial surfaces along which particle separations contract (“stable manifolds”)
or grow (“unstable manifolds”) exponentially. In terms of the mapping, the
stable manifold W s(p) of a hyperbolic point p consists of all points x ∈ R2

such that F t(x) → p as t → ∞ and the unstable manifold W u(p) is the set
of all points x ∈ R2 such that F t(x) → p as t → −∞. The result is that
stable manifolds act as attracting material surfaces and unstable manifolds as
repelling surfaces.

Different measures have been developed for detecting fixed points and mani-
folds (e.g. Wiggins, 1992; Malhotra and Wiggins, 1998; Wiggins, 2005). These
were originally designed for idealized flows, such as kinematic models with
periodic time dependence. Examples of such studies in the oceanic context in-
clude the mixing near an idealized meandering jet (Miller et al., 1997; Rogerson
et al., 1999) and in a recirculation behind an island (Miller et al., 2002).

3.3 Lyapunov exponents

Detecting fixed points and manifolds is less straightforward in realistic veloc-
ity fields. Nevertheless it is still possible to identify structures which dominate
straining, by looking directly at particle displacements. Several of these meth-
ods are centered on the concept of a Lyapunov exponent. Consider a pair of
trajectories near a hyperbolic point with initial displacement r(0). The relative
separation between them will grow exponentially fast with time;

r(t) ' r(0)eλt, (8)

where λ is a parameter with dimension t−1. For steady or periodic flows (to
which the concept of an infinite time limit applies), λ corresponds to a Lya-
punov exponent. Most flows however are non-periodic and most experiments
of finite length, so one speaks of a “Finite Time Lyapunov Exponent” (FTLE),
defined:

λ(τ) = lim
r(0)→0

1

τ
ln

r(τ)

r(0)
, (9)

assuming an infinitesimally small initial displacement. Under exponential growth,
the FTLE for a particle pair is constant in time. FTLEs have been used to

7



gauge mixing in kinematic models (Pierrehumbert, 1991), in models of the
stratosphere (Shepherd et al., 2000), in 2-D turbulence (Lapeyre, 2002) and
with in situ data from the ocean surface (LaCasce and Ohlmann, 2003).

In inhomogeneous flows, different particle pairs exhibit different growth rates
(pairs near elliptic points have Lyapunov exponents of zero). However if one
has an array of initially equally-spaced particles, one can map out the Lya-
punov exponent field by using information from the trajectories. To do this,
we define a Cauchy-Green strain tensor;

Σt(x0) =
[

∂x
∂x0

]T [
∂x
∂x0

]
, (10)

where x0 is the initial position vector, and x the position after being advected
by the velocity field over timestep t. Four neighboring trajectories can be used
to compute the finite differences in the strain tensor (10). Then the growth rate
in equation (9) is replaced by the the square root of the maximum eigenvalue
σt of the strain tensor (10), an indicator of the maximum stretching rate. One
may then define the Direct Lyapunov Exponent:

DLEt(x0) =
1

t− t0
ln

√
σt(x0) =

1

2(t− t0)
ln σt(x0). (11)

Note the DLE is a function of space. Contour plots of the DLE reveal regions of
heightened stretching, which generally are associated with hyperbolic invariant
manifolds (Haller and Yuan, 2000; Haller, 2001).

4 Results

The model domain is shown in Figure 1. In investigating the dispersion prop-
erties, we will focus initially on the M2 tide, the most energetic component.
The effect of adding additional components is considered afterward.

We will also focus on two sub-regions, shown in Figures 2 and 3. These exhibit
the strongest tidal currents in the fjord and thus should experience the great-
est mixing. Each covers an area 8× 8 km. The region in Figure 2 includes the
narrow channel between Garten and Storfosna in Trondheimsleia. The large
tidal velocities here occur primarily on the shallow banks and are clearly to-
pographically constrained. The region in Figure 3 includes the inner region of
Trondheimsleia and the mouth of the Trondheim fjord. Here too the currents
follow the topography, especially off the northern tip of Agdenes and on the
shallow bank on the east side of the fjord.

The dispersion in both regions is inhomogeneous. To illustrate this, we release
one particle at each timestep (i.e. every 6 min.) from five different sources
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(indicated in the upper panels of Figures 4 and 5 by the crosses). The lower
panels in those figures show the particle positions after each particle has been
advected six tidal cycles. Consider first the Garten - Storfosna region shown
in Figure 4; the red and black sources are in locations with strong currents
and significant lateral shear, the purple and indigo sources have more uniform
currents, while the blue sources are in relatively weak regions. As expected,
the red and black particles spread over a larger area, about 10 km in both
north-south and east-west directions. Interestingly they do not spread out
uniformly but spread rather in distinct bands. The purple and indigo particles
exhibit similar bandedness but spread only over 3-4 km. The blue particles
essentially follow elliptical paths and remain near their starting locations. The
inner fjord region experience similar inhomogeneous dispersion properties, see
Figure 5.

For the statistical measures, it is preferable to have an array of particles de-
ployed simultaneously. So we placed one particle in each grid cell (separated
by 50 m) over both of the sub-regions. This yielded 25, 600 particles in each
area. The particles were then advected forward for 10 tidal cycles.

Consider the averaged statistics first. The curves for the mean absolute dis-
persion (defined in 5) are shown in Figure 6. In both regions the dispersion
is growing, reflecting that the particles are drifting systematically from their
starting locations. The Storfosna - Garten dispersion shows a periodic collapse
of the variance at the end of each cycle, due to the (incomplete) return journey
to the starting locations. This oscillation is less pronounced at the inner fjord
site, suggesting a more disordered spreading.

Interestingly, the dispersion does not asymptote to a linear growth regime
(section 3.1) in either location. Both curves instead are subdiffusive, with D2 ∝
t0.42 in the mouth of Trondheimsfjorden and D2 ∝ t0.29 in the Storfosna -
Garten region. The possible causes for this are discussed below.

The relative dispersion in the Storfosna - Garten area is shown in Figures 7 and
8. The former shows the early growth while the latter shows the late growth
compared with the absolute dispersion. The early growth is nearly exponential,
with an e-folding time of about one tidal cycle. This growth phase only persists
for the first two cycles; thereafter the dispersion is slower than exponential.
So the lateral spreading changes as the particles become more disordered. The
dispersion after the second cycle (Figure 8) is closer to a power law dependence.
The exponent, 0.74, is somewhat more than twice the exponent for the absolute
dispersion (0.29). The relative dispersion is increasing toward the absolute
dispersion but is still less. So the mean separation between particles is less
than the mean separation between the individual particles and their starting
positions.
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As noted earlier, the limitation of mean statistics is that they involve averaging
particles from different mixing regimes. The displacements of the red and black
particles in Figures 4 and 5 are thus averaged together with those of the blue
particles. An alternate approach is to map values obtained from single or two
particle displacements back on to the initial field. Then “hot spots” can be
differentiated from regions of weak mixing.

For example, Figure 9 shows the absolute dispersion as a function of (x,y)
for the particles in the Storfosna - Garten region, 1 and 3 tidal cycles after
the initial deployment. As expected, the fields are not at all homogeneous
but exhibit bands of strongly localized advection separated by regions of very
weak advection. The largest dispersion occurs near land, not in the strong
current regions between the two promontories. The dispersion also depends
on when the particles are deployed. The spatial dependence of the dispersion
for particles deployed during the ebb tide (upper panels) differs remarkably
from that for particles deployed during the flood (lower panels).

A more refined picture of the straining is obtained by mapping the relative
dispersion (Figure 10). This reflects the separation of adjacent particles and
thus not necessarily large (single particle) displacements. In line with this,
the largest separations occur on the boundaries between regions of strong
and weak absolute dispersion, rather than in the middle of regions of large
absolute dispersion. These boundaries have a distinct filamentary appearance.
Moreover, the filaments spread out, filling the domain after successive cycles.

The DLE presents a very similar picture of the straining as the relative disper-
sion. To calculate the DLE, we apply equation (9) to produce a square matrix
of DLE values, which we then contour in Figure 11. As with the relative disper-
sion, the DLE indicates the straining occurs primarily along distinct material
surfaces which emanate from the coastal promontories, and then spread into
the interior with successive tidal cycles. Figure 12 shows the DLE values for
the inner fjord region.

If pairs are separating exponentially along the material surfaces, the value of
the DLE reflects the e-folding time for the growth in separation. The maximum
values in the Storfosna - Garten region after 1 tidal cycle are near 0.4. From
the mean relative dispersion, we inferred an e-folding time scale of about one
day. Since the latter pertains to square separations, the implied growth rate for
separations is about 0.5, similar to the maximum DLE. So the mean relative
dispersion evidently reflects the maximum rate of separation occurring in the
region. Note too that the maximum DLE after 3 tidal cycles is about three
times less than after 1 cycle; this is because the third cycle is after the period
of exponential growth. So the DLE should be decreasing with time.
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Lastly we consider what happens when additional tidal components are added. 3

The next most energetic component is the S2, which is roughly 35 % as strong
as the M2. Adding the S2 alters the dispersion very little. This can be seen for
example in the mean relative dispersion, shown in Figure 13. The dispersion
with M2 + S2 is somewhat greater than with M2 alone. The reason for this is
that the S2 during this period is in phase with the M2, and therefore increases
the amplitude of the particle displacements. The change however is relatively
minor. In other periods, when the S2 is out of phase, the M2 + S2 is less.

Potentially more interesting is the dispersion with the addition of the K1.
Since the S2 has the same time dependence as the M2, it is less surprising that
S2 acts primarily to change the amplitude. The K1 however has a different
frequency, and superimposing perturbations with different time dependencies
can enhance chaotic mixing (e.g. Pierrehumbert, 1991). However, this addition
also induces relatively minor changes. The K1 is only about 10 % as strong
as the M2, and adding it causes a small decrease in the relative dispersion
compared to that with M2 alone. Evidently the K1 would have to be stronger
in relative terms to change the results.

5 Discussion

We have deployed particles in a numerical model to quantify the lateral mixing
occurring in a tidally-driven fjord (Trondheimsleia and the Trondheims fjord
in western Norway). The flow represents that arising from the dominant tidal
components, the M2, S2 and also the K1, without wind-driving.

We quantified the particle motion using various measures. The general picture
which emerges is one of strongly inhomogeneous mixing, with the degree of
straining depending both on the tracer’s location and the time of its deploy-
ment in the tidal cycle. The specific findings were as follows:

• The absolute dispersion (the mean square displacement of particles from
their starting positions) suggests the asymptotic mixing is significantly sub-
diffusive, increasing somewhat slower than time to the first power. This
perhaps reflects the coasts constraining lateral spreading; it also implies that
one could not parameterize this tidal mixing as a simple diffusive process.

• The relative dispersion (the mean square separation of particle pairs) ex-
hibits exponential growth during the first 1-2 tidal cycles, with an e-folding

3 While the 50 m simulations were only run for the M2 tide, additional components
were simulated on a 100 m grid. However the Lagrangian dispersion due to the M2

with 100 m resolution was nearly the same as with 50 m resolution. So using the
100 m simulation for the following comparison is reasonable.
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time of about one cycle. This is consistent with chaotic mixing. The late-
time growth had a power law dependence on time, but was sub-diffusive,like
the absolute dispersion.

• Contouring the absolute dispersion as a function of space revealed adjacent
regions of large and small particle drift. Contouring the relative disper-
sion this way suggested the straining between particles was greatest on the
boundaries between these regions, on distinct material surfaces.

• The Direct Lyapunov Exponent revealed much the same structure as the
relative dispersion, with heightened straining occurring on material surfaces.
The exponential growth rate inferred from the mean relative dispersion was
comparable to the maximum DLE values after the first tidal cycle. So mean
relative dispersion evidently reflects the maximum straining occurring.

The straining in the two regions examined is dominated by the M2 tide. Adding
additional semi-diurnal components only modified the amplitude of the dis-
persion without significantly altering its spatial characteristics or its temporal
growth. Adding the K1 tide similarly did not affect the mean dispersion; how-
ever this is perhaps not surprising, given that the amplitude of the K1 is only
about 1/10th that of the M2.

The present model lacks both wind-forcing and nonlinear effects, and both
could conceivably alter the mixing properties. Both can produce lower fre-
quency fluctuations which could augment the particle drift induced by the
M2. We are in the process of including momentum advection into the tidal
code, and we will be able to test the modifications thereafter. Likewise, we will
implement wind forcing later on and evaluate that as well. But we emphasize
that the Lagrangian methods discussed in this work are applicable with more
complete models; so we would be able to compare later results directly with
those discussed here.

As noted, the mean absolute and relative dispersion present an ensemble pic-
ture of the particle spreading and miss the inhomogeneities revealed by the
mappings. But the mean measures nevertheless provide useful information
about the temporal variations in the mixing. The relative dispersion exhibits
two phases, an early exponential growth and a later power-law growth, and
this could not have been inferred from two snapshots of the DLE. In addition,
the DLE produced a field very similar to that from the mapped relative dis-
persion, which is easier to calculate. The DLE does reflect the growth rate,
assuming exponential growth is occurring. But we feel in any case that it
should be used in conjunction with the other measures, such as the mean dis-
persions. More advanced methods exist as well (Malhotra and Wiggins, 1998;
Haller and Yuan, 2000), but these are unlikely to yield drastic changes from
the picture inferred here.

These Lagrangian measures would be of great value for applications in the
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fjord. For example, a sewer outflow pipe would best be located near a region
of strong lateral shearing, to hasten lateral mixing. The promontories in the
Storfosna - Garten section are such regions. And large relative dispersion in
a region implies a sensitive dependence of trajectories on the particle’s initial
location. Knowing this will impact search and rescue operations.

6 Discussion

We have deployed particles in a numerical model to quantify the lateral mixing
occurring in a tidally-driven fjord (Trondheimsleia and the Trondheims fjord
in western Norway). The flow represents that arising from the dominant tidal
components, the M2, S2 and also the K1, without wind-driving.

We quantified the particle motion using various measures. The general picture
which emerges is one of strongly inhomogeneous mixing, with the degree of
straining depending both on the tracer’s location and the time of its deploy-
ment in the tidal cycle. The specific findings were as follows:

• The absolute dispersion (the mean square displacement of particles from
their starting positions) suggests the asymptotic mixing is significantly sub-
diffusive, increasing somewhat slower than time to the first power. This
perhaps reflects the coasts constraining lateral spreading; it also implies that
one could not parameterize this tidal mixing as a simple diffusive process.

• The relative dispersion (the mean square separation of particle pairs) ex-
hibits exponential growth during the first 1-2 tidal cycles, with an e-folding
time of about one cycle. This is consistent with chaotic mixing. The late-
time growth had a power law dependence on time, but was sub-diffusive,like
the absolute dispersion.

• Contouring the absolute dispersion as a function of space revealed adjacent
regions of large and small particle drift. Contouring the relative disper-
sion this way suggested the straining between particles was greatest on the
boundaries between these regions, on distinct material surfaces.

• The Direct Lyapunov Exponent revealed much the same structure as the
relative dispersion, with heightened straining occurring on material surfaces.
The exponential growth rate inferred from the mean relative dispersion was
comparable to the maximum DLE values after the first tidal cycle. So mean
relative dispersion evidently reflects the maximum straining occurring.

The straining in the two regions examined is dominated by the M2 tide. Adding
additional semi-diurnal components only modified the amplitude of the dis-
persion without significantly altering its spatial characteristics or its temporal
growth. Adding the K1 tide similarly did not affect the mean dispersion; how-
ever this is perhaps not surprising, given that the amplitude of the K1 is only
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about 1/10th that of the M2.

The present model lacks both wind-forcing and nonlinear effects, and both
could conceivably alter the mixing properties. Both can produce lower fre-
quency fluctuations which could augment the particle drift induced by the
M2. We are in the process of including momentum advection into the tidal
code, and we will be able to test the modifications thereafter. Likewise, we will
implement wind forcing later on and evaluate that as well. But we emphasize
that the Lagrangian methods discussed in this work are applicable with more
complete models; so we would be able to compare later results directly with
those discussed here.

As noted, the mean absolute and relative dispersion present an ensemble pic-
ture of the particle spreading and miss the inhomogeneities revealed by the
mappings. But the mean measures nevertheless provide useful information
about the temporal variations in the mixing. The mean relative dispersion ex-
hibits two phases, an early exponential growth and a later power-law growth,
and this could not have been inferred from contour-plots of the relative disper-
sion or the DLE. The DLE does reflect the growth rate, assuming exponential
growth is occurring. But we feel in any case that it should be used in conjunc-
tion with the other measures, such as the mean dispersions. More advanced
methods exist as well (Malhotra and Wiggins, 1998; Haller and Yuan, 2000),
but these are unlikely to yield drastic changes from the picture inferred here.

These Lagrangian measures would be of great value for applications in the
fjord. Pathogen spreading from salmon farms is one example of a potential
threat carried by coastal mixing. Information on which area that experiences
the most rapid mixing is therefore of great interest. A sewer outflow pipe
would best be located near a region of strong lateral shearing, to hasten lateral
mixing. The promontories in the Storfosna - Garten section are such regions.
And large relative dispersion in a region implies a sensitive dependence of
trajectories on the particle’s initial location. Knowing this will impact search
and rescue operations.
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Fig. 2. Current velocity field for the tidal component M2 in the Storfosna - Garten
area, left figure shows maximum southward currents, right figure shows maxi-
mum northward currents 6.2 hours later. x− and y−axis are given in kilometres,
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heimsfjorden, left figure shows maximum southward currents, right figure shows
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Fig. 4. Five selected sources for continuous releases of Lagrangian particles in the
Sorfosna - Garten area. The right figure shows the spreading after 6 tidal cycles (74
hours) with the M2 constituent. x− and y−axis are given in kilometres.
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Fig. 5. Five selected sources for continuous releases of Lagrangian particles at the
mouth of Trondheimsfjorden. The right figure shows the spreading after 6 tidal
cycles (74 hours) with the M2 constituent. x− and y−axis are given in kilometres.
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Fig. 6. Mean absolute dispersion from the two locations in Trondheimsleia over eight
tidal cycles, the Storfosna - Garten area depicted with circles and the inner fjord
with x-marks.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

Cycle

km
2

Storfosna rel. disp.
exp(t)
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Fig. 9. Contour plot of D2 values after 1 (left) and 3 (right) tidal cycles for the
Storfosna - Garten area. Upper panel differ from the lower panel by half a tidal
cycle phase shift in the starting point. x− and y−axis are given in kilometres, color
depth-scale in km2.
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Fig. 10. Contour plot of R2 values after 1 (left) and 3 (right) tidal cycles for the
Storfosna - Garten area. Upper panel differ from the lower panel by half a tidal
cycle phase shift in the starting point. x− and y−axis are given in kilometres, color
depth-scale in km2.
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Fig. 11. Contour plot of DLE values after 1 (left) and 3 (right) tidal cycles for the
Storfosna - Garten area. Upper panel differ from the lower panel by half a tidal
cycle phase shift in the starting point. x− and y−axis are given in kilometres, color
depth-scale in hour−1.
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Fig. 12. Contour plot of DLE values after 1 (left) and 3 (right) tidal cycles at the
mouth of Trondheimsfjorden. Upper panel differ from the lower panel by half a tidal
cycle phase shift in the starting point. x− and y−axis are given in kilometres, color
depth-scale in hour−1.
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Fig. 13. Mean relative dispersion from the Storfosna - Garten area over eight tidal
cycles, with the additional tidal components S2 and K1.
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