
Randomised Construction and

Dynamic Decoding of LDPC

Codes

by

Joakim Grahl Knudsen

Thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science.

B

E
RGEN

SI
S

U
N

IV
ERSITA

S

University of Bergen
Department of Informatics

Preface

This thesis is the result of my work as a Master student at the University of
Bergen, Department of Informatics.

I would like to thank my supervisor Matthew G. Parker for his excellent
guidance and help with my thesis, and for always having time to discuss new
ideas and details which occurred underway.

Also, I must thank my fellow students for their help and support towards
submitting this thesis; Tom F. Danielsen, Sondre Rönjum, Martin Arver and
Raymond Hilseth. Special thanks and love to Marthe and Blanco for their
patience and understanding while I have been hardly ever home. Finally, I
would like to thank my family, who have been behind me from the beginning,
and encouraging me to keep going.

Certain errors and misprints have been corrected in this updated

edition of the thesis. Original submission: November 30, 2005

Bergen, November 9, 2006,

Joakim Grahl Knudsen

2

Contents

1 Introduction 10

2 Objects 12

2.1 GF (2)–Binary Fields . 12
2.2 Matrices . 12

2.2.1 Various Definitions . 12
2.3 Linear Codes . 13

2.3.1 Standard Forms . 13
2.4 The Graph Structure . 14

2.4.1 Adjacency Matrix . 15
2.4.2 Bipartite . 15
2.4.3 Directed . 15
2.4.4 Girth . 15
2.4.5 Pivot . 15

2.5 Factor Graphs . 17
2.5.1 Background . 17
2.5.2 The Decoding Problem 17
2.5.3 Extrinsic Principle . 18

2.6 Distributed Work . 19
2.7 Forward Error Correction . 19

2.7.1 Minimum Distance . 20

3 Channel Models 21

3.1 Channel Types . 21
3.1.1 Modulation . 21

3.2 Noise . 22
3.2.1 Discrete Modulated Channel 22
3.2.2 Additive White Gaussian Noise Channel 23
3.2.3 Shannon’s Noisy Channel Theorem 24

3.3 Modelling and Simulation . 24
3.3.1 Bandwidth Expansion . 24
3.3.2 Generating Gaussian Noise 25

4 Constructing LDPC Codes 29

4.1 Random Constructions . 29
4.1.1 What Code is H? . 30
4.1.2 Equivalence of Random Codes 31
4.1.3 Gallager Codes . 32

3

4.1.4 Ensembles of Codes . 32
4.1.5 Random, (N) . 33
4.1.6 Regular, (N, γ, ρ) . 33
4.1.7 Irregular, (N, γ(x), ρ(x)) 34
4.1.8 Density Evolution . 37

4.2 Structured Constructions . 38
4.3 Cycles and Girth . 38

4.3.1 Are Cycles Harmful? . 39
4.4 Randomized Construction Algorithms 40

4.4.1 Gallager’s Pseudorandom Procedure 40
4.4.2 Lin and Costello . 41
4.4.3 Complete Acyclic . 42

4.5 Bit-Filling . 43
4.5.1 Heuristics: Adding Variables 45
4.5.2 Maximising Rate . 46
4.5.3 Maximising Girth . 46
4.5.4 Look-ahead; the sets Uj and Nc 47
4.5.5 Relaxing Girth . 49

4.6 Extending the Bit-Filling Algorithm 50
4.6.1 Improvement 1: Relaxing Girth 50
4.6.2 Improvement 2: Updating U 51
4.6.3 Extension 1: Local Girth Detection 54
4.6.4 Extension 2: jumpBack 55

4.7 Results . 57
4.7.1 Maximizing Rate . 57
4.7.2 Maximizing Girth . 58

5 Encoding 59

5.1 Matrix Encoding . 59
5.1.1 Decoding in Standard-Form 60
5.1.2 Appending Im to H . 61
5.1.3 Standard LDPC Encoding 63
5.1.4 Efficient Encoding . 64

6 Sum-Product Decoding 66

6.1 Maximum Likelihood Decoding 66
6.2 Distributed Decoding on Factor Graphs 67

6.2.1 Syndrome Decoding . 67
6.2.2 Cyclic Factor Graphs . 68

6.3 Sum-Product Algorithm . 69
6.3.1 Iterative Decoding . 69
6.3.2 Initialization: Demodulation 70
6.3.3 Messages . 71
6.3.4 Function Types . 71
6.3.5 Generalized Update Rule 73
6.3.6 Optimized SPA for Decoding 75
6.3.7 Likelihood Ratios . 76
6.3.8 Scheduling . 77
6.3.9 Stopping Criterion . 78
6.3.10 Comments . 79

4

7 Simulations and Results 80

7.1 Components . 80
7.1.1 Channel . 80
7.1.2 Receiver . 81

7.2 Bit-Error Rate Simulations . 81
7.2.1 Uncoded Transmissions 82
7.2.2 Word-Error Rate . 83

7.3 Characteristic Data . 83
7.3.1 Error Floors . 84

7.4 Simulations . 86
7.4.1 Flooding Schedule . 86

8 Experimental Decoding 88

8.1 Feedback, Short Cycles . 88
8.2 Detecting Cycles . 89

8.2.1 Using the SPA . 89
8.2.2 Flooding Scheduling . 91
8.2.3 Implicit Feedback . 91
8.2.4 Practical Comments . 91

8.3 Avoiding Cycles . 92
8.3.1 Delaying 4-Cycles . 92

8.4 Dynamic Decoding . 93
8.4.1 Rotating H using Pivot 94
8.4.2 Breaking Oscillation . 95
8.4.3 Consequences of Pivoting 95
8.4.4 Maintaining Sparsity . 96
8.4.5 Protecting Soft Information 97

8.5 Alternative Scheduling . 99
8.5.1 Thresholding . 99

8.6 Hybrid Decoding . 100
8.7 Comments . 100

8.7.1 Unfinished Results . 102

9 Concluding Remarks 104

9.1 Open Problems . 104
9.1.1 Ant Traversal Decoding 104
9.1.2 Avoid Going Round Cycles 104
9.1.3 Strong Subcodes . 104
9.1.4 Graph-Based Encoding 105

A Approximated Discrete Log 106

B Tools 108

B.1 1: Augmented EBF . 108
B.1.1 Shortcuts . 109
B.1.2 No Optimisation . 109

B.2 2: Code Library . 109
B.3 4: SPA Decoder . 110
B.4 11: Channel Simulator . 110
B.5 21: Check Girth . 111

5

B.6 22: Draw Graph . 111
B.7 Etcetera . 111

B.7.1 Convert Maple - Alist . 111

Bibliography 112

6

List of Tables

4.1 The BFT is extended to also keep track of where the girth-bound
was relaxed, such that we may resume construction from any
position vi′ . 56

4.2 Maximising rate using EBF, compared to results of MacKay.
Columns labelled ’I’ and ’II’ are from [1], while our results are in
the rightmost subtable, starting with the column ’III.’ All codes
optimized on girth, g = 4 (giving G(H) = 6). 57

4.3 Maximising girth using EBF, again compared to [2] with our
results in the two rightmost subtables. Column ’IV’ is the results
of using the extensions suggested in this thesis. 58

6.1 Θ4, p = 4, o = 1, truth table τXOR, and an example calculation of
µu→v3 . Observe the symmetric decomposition lines in the ’Input’
part of the table showing how the XOR function may be partitioned. 72

A.1 Θ10 (abridged), p = 10, o = 5, truth table τDL. 107

7

List of Figures

2.1 Pivoting on edge (u, v) of the bipartite graph. Removed edges
are dotted, and created (new) edges are solid, black lines. Edges
that are not part of the operation, are colored gray. Note how v
becomes the systematic edge. 16

2.2 The factorization of (2.8), in FG form. 17
2.3 The Factor Graph representation of the code defined by the Parity-

Check matrix of (2.9). 18

3.1 Binary Phase-Shift-Keying Modulation. 22
3.2 The Discrete Memoryless Channel is a probabilistic mapping

from b-ary inputs to q-ary outputs, and is completely specified
by the transition probabilities. 23

3.3 Simulating AWGN noise; note how distribution (shape) depends
not only on SNR, but also on coderate. Also, the figure illustrates
the offsets corresponding to means µ = ±Es = 1. 26

3.4 Uniform distribution: n = 105 random samples of lrand48(),
over the interval [µ − 4σ, µ + 4σ]. 27

3.5 Approximations of the Normal Distribution. 28

4.1 Comparison of 7 random [250, 125] codes from the same (250, 3, 6)-
ensemble. The performance is almost identical, as expected. . . . 31

4.2 The evolution of the convergence in decoding a small, irregular
LDPC code, at SNR 3dB (y-axis shows Bit-Error probability). . 36

4.3 The irregular LDPC code shows gain at high SNR, due to lowered
flooring effect from reduced word-error rate–Fig. 4.3(b). 37

4.4 Two small cycles; the ’butterfly’ 4-cycle (in bold), and the ’bow-
tie’ 6-cycle. 38

4.5 Comparison of the same ensemble, varying over increasing girth,
g. Note the expected gain in avoiding 4-cycles, and, conversely,
the similarity of girth g = 6 and 8. 39

4.6 For m = 7 and γ = 3, ι = 3 bits are connected while G is still
acyclic. 42

4.7 The sets U and N after connecting c⋆ to vi; Nc0 = {c1, c2}, Nc1 =
{c0, c2, c3, c4}, Nc2 = {c0, c1}, Nc3 = {c1, c4, c

⋆}, Nc4 = {c1, c3}, Nc⋆ =
{c3}, and Nc6 = ∅. 48

4.8 All m = 7 checks infeasible; F = ∅. 49
4.9 After connecting c2, the regular updating of U handles any re-

ordering of subsets; note the grey checks have been “moved down”
to their correct subsets. 52

8

5.1 Systematic versus non-systematic. 62

6.1 The noisy channel symbol from the input bit is adjusted by the
bias of the local constraint nodes. Hence, the tentative decoding
is contained in bit nodes, and its protection is proportional to the
size of its support, |n(v)|. 68

6.2 Equivalent Factor Graph representations of the XOR4 function.
The double-circled node is an auxiliary ’state-node,’ containing
only the end result of the chaining. 76

7.1 Comparison of simulated uncoded BER, and theoretical uncoded
BER according to (7.3). To gather sufficient data, we simulated
5× 103 transmissions over the interval [0, 4〉; 5 × 104 over [4, 7〉;
and 106 over [7, 10〉. 82

7.2 The average number of “decoder iterations” is independent of
timeout, and only weakly dependent on N [3]. 85

7.3 Increased precision (no flooring) as max is increased. 86
7.4 Our simulation software validated against the results of MacKay. 87

8.1 Girth Monitor on a small LDPC code. Within 4 flooding itera-
tions, all bits have determined their effective girth (which, in this
case, equals local girth). Age fields of messages are not shown. . 90

8.2 An example showing the iteration updating cj 92
8.3 The simplified graph, G⋆, suitable for pivot. 94
8.4 Density of 48 × 96 LDPC Code (MacKay) over 1000 random

pivots. The code is (3, 6)-regular, which gives ∆0 = 3/48 = 1/16. 95
8.5 By restricting the application of pivot, we are able to control the

increase in density, while still rotating the rowspace of H . The
code is the same as in Fig. 8.4, with density ∆0 ≃ 0.18. 96

8.6 Hybrid Scheduling, which consists of regular Flooding iterations,
interspersed with one pivot operation (with probability p). 101

8.7 Hybrid Scheduling, but with ’avoid4’ scheduling instead of Flood-
ing. 101

8.8 Dynamic decoding, using pivot. 102
8.9 An unexplained gain at low SNR. 103

9

Chapter 1

Introduction

Low-Density Parity-Check (LDPC) codes were originally invented by Gallager
[4] in his 1963 thesis. These asymptotically optimum codes were among the
first results to verify Shannon’s ’Noisy Channel Coding Theorem’ [5] from 1948,
which claimed that, for any rate R = k/N < C (channel capacity), there exist
a random code that can achieve arbitrarily low decoding error. However, as
predicted by Shannon, Gallager’s codes were extremely large in order to achieve
this optimum, and, as such, ahead of their time, mainly in terms of what was
technologically possible at the time, but also what was actually needed. Cur-
rent throughput needs were well satisfied by the conventional, short blocklength
Reed-Solomon Codes, developed just prior to LDPC.

Along with the explosive demand for bulk data transmissions, came the
discovery of Turbo codes in 1993 [6], almost three decades later. This sparked
renewed interest in capacity-approaching codes, and Gallager’s findings were
not completely forgotten [7, 8, 9]. In fact, variations on LDPC design quicky
caught up with (and surpassed, [10, 11]) Turbo codes, pushing the record even
closer towards the Shannon Limit [12].

The results of Shannon are well established, and it does not appear likely
that one may exceed the Shannon Limit. Hence, the code approaching capacity
most closely will definitely become the choice for next-generation communica-
tions standards, ranging from mobile (IEEE802.16) to long-haul optical com-
munication and broadcasting [13, 14]. For instance, in 2004, LDPC became the
new standard for satellite broadcasted, high-definition TV (HDTV),1 replacing
the 10-year-old previous standard. Also, in LAN and Internet protocols, where
entire packets of information are lost underway to receiver, the long blocklength
of LDPC codes2 is well-defined for encoding redundant messages at the packet-
level (as opposed to bit-level). The receiver may then restore a certain number
of missing packets locally, significantly reducing latency of online audio and
video streams–as predicted by Luby et al. in 1997 [10].

In this thesis we will explore the basic concepts regarding LDPC codes;
how they are constructed, encoded, and–in particular–how they are decoded.
By operating on the equivalent graph-representation of the sparse code, the
Sum-Product Algorithm approximates optimum decoding at a complexity that

1Digital Video Broadcasting-2 and IEEE802.3an.
2Several hundreds MBytes are common [15].

10

is linear in blocklength. Pieces of information flow independently through the
graph, where they are subject to an extremely simple, generalised update rule.
Based on local decisions, individual nodes determine when to ’fire,’ and in which
direction. The success of the process is measured in terms of convergence, which–
to a large extent–depends on avoiding certain ’bad topologies’ in the graph.

The aim of this thesis is to explore such topologies, and their effects on
the performance of LDPC codes. Conventionally, codes constructed specifically
to minimise the occurrence of such problems in decoding. In addition to this,
we suggest the converse approach of modifying the decoding rules such that
information may simply avoid such topologies alltogether.

This should be of interest not only as it simplifies the construction require-
ments, but more importantly as it illustrates how to achieve reliable communica-
tions in a dynamic network, in which the optimum code may change structurally
from transmission to transmission.

The structure of the thesis is as follows. Chapter 2 presents a brief overview
of the terminology and concepts used in the thesis. Chapter 3 describes the
most important channel models, and how these may be modelled to within a
satisfactory accuracy in a computer simulation. The problem of constructing
good, optimised LDPC codes is the topic of Chapter 4, with an emphasis
on randomised constructions–following the lead of [4]. A specific construction
algorithm, the ’Extended Bit-Filling’ algorithm [1], is discussed in detail. The
remainder of the chapter is devoted to our improvements and extensions to the
algorithm (or, ’scheme’), as well as some performance results. Chapter 5 is a
brief overview of the encoding problem, which until recently3 has been the ma-
jor bottleneck reducing the application of LDPC codes. Chapter 6 contains a
somewhat unorthodox description of the well-known Sum-Product Algorithm,
illustrating its decomposability into one, unified (function-independent) update
rule. Chapter 7 begins with a look at the details of simulating the Bit-Error
Rate performance of a communications system (code, channel, and decoder).
Chapter 8 takes this one step further, and begins looking at some of the novel
SPA schedules mentioned above. What local decisions can be made at the re-
ceiver end (i.e., decoder) to improve convergence; and, thus, code performance?
Finally, the thesis is completed with a short summary, followed by some appen-
dices describing our software (enclosed CD).4

3Encoding via sparse matrix operations has pushed the complexity down to match the
linear decoding algorithm.

4The software package can also be downloaded at http://www.ii.uib.no/∼joakimk/
LDPC-tools/.

11

Chapter 2

Objects

When using computers to model and simulate real-world systems, there will
often exist no simple internal ordering between the components. Such relations
might otherwise be used in the design of highly streamlined, perhaps distributed
algorithms, using, say, mathematical formulas to solve the problem efficiently.
Often, such simulations are realized by matrices storing datasets, which, then,
are manipulated through basic linear algebra.

In the more arbitrary situations, where internal relations are unstructured,
or even truly random, general purpose data structures–such as graphs–are in-
tuitively very helpful. By linking dependent components, complex systems of
unevenly sized components are naturally expressed as a graph.

2.1 GF (2)–Binary Fields

Without going into detail on field arithmetics, we mention that the finite field
over which we will define our codes, is the binary (Galois) field, GF (2), consist-
ing of elements {0, 1}.

2.2 Matrices

A matrix is defined as a compact container (rectangular array) for storing “the
essential information of a linear system” [16]. With this construction follows
the vast terminology and the transformations defined in linear algebra. In the
following, we will review some of the most important definitions and notation
used in this thesis.

2.2.1 Various Definitions

The size of a matrix, denoted by a× b, describes its height (in rows), and width
(in columns), respectively–and always in that order. In this thesis, we are most
interested in the row vectors, ~rj ∈ GF (2)N . A set of non-zero vectors B =
{~r0, ~r1, . . . , ~rk−1} is linearly dependent if the sum (in GF (2)) of these |B| = k
vectors is 0 (otherwise, they are lin. independent). Such a set of independent
vectors is called a basis since they span out a vector space, V . The dimension
of this space is determined by the size of its basis; dim(V) = |B| = k; such that

12

2.3 Linear Codes

“any set in V containing more than k vectors must be linearly dependent” [16].
The space consists of all linear combinations of the vectors in the basis, giving
a total of |V | = 2k vectors–always including the all-zero vector.

The rank of a matrix is the dimension of its row or column space. The
weight of a vector is defined as the total number of non-zero (i.e., ’1’) entries.
The density, ∆H , of a matrix, H , is the average weight distribution taken over
all row vectors in H . A matrix is called sparse if its density is less than 0.5, and
very sparse, if the density remains constant while N → ∞. [8].

2.3 Linear Codes

The vector space VN , spanned out by some basis consisting of independent
vectors of length N , is a linear code. This space is usually denoted as a [N, k]-
code, C, where k = dim(C). The 2k vectors in C are called codewords, and the
fact that C ⊂ GF (2)N–that there exist vectors that are not codewords–is the
necessary and sufficient condition for error-detection (and, a certain amount
of error correction). This redundancy, m = N − k, determines the code rate,
R = k/N , a measure on how much information is sent per codeword.

The definition of a linear binary code, is that the sum of any subset of
codewords always equals some codeword (commutative). The dual code, C⊥, is
a [N, N − k] linear code, which is called the null space of C, owing to the fact
that the cross-product of two orthogonal vectors (i.e., some codeword of C, and
some of C⊥) is 0.1 This leads to the most fundamental fact in working with
linear codes;

GHT = ~0 mod 2. (2.1)

The (Hamming) distance between two codewords is defined as the number
of positions in which they differ (can be easily calculated as the weight of the
sum of the vectors, modulo 2). Since all codewords in a linear code are equally
likely, we measure the minimum distance, dmin, as the weight of the minimum
weight codeword. Often, this is included in the code definition; [N, k, dmin].

In the theory of linear codes, it is common to represent vectors as columns
vectors. We will follow this convention in this thesis.

2.3.1 Standard Forms

Usually, codes are constructed (via the generator matrix, or polynomial) to
have specific rate, R = k/N ≤ 1, where k denotes the amount of information
sent per block. Hence, the error-protection, or redundancy, are the remaining
m = N − k bits. From (2.1), we see that k = rank(G), and m = rank(H) ≥ k.
Constricted to N bits per block, there is a tradeoff between rate and protection;
increasing k means sending more information at a time–at a higher rate–but
with less protection, m. Conversely, we may design a code with low rate, say
R = 1/4, which means that only one fourth of each block is information, the
rest redundancy. From this, we see that m ≥ k.

To simplify the above mentioned relationship between H and G (2.1), con-
ventions exist on the internal order of bits (i.e., columns) so that it is trivial

1Their internal angle is 90◦.

13

2.4 The Graph Structure

to calculate the one matrix from the other. The k × N standard-form of the
generator matrix is

G′ = [Ik |P], (2.2)

where Ik is the k × k identity matrix, and P is a random, k × m matrix corre-
sponding to the m = N − k redundant (protection) bits. In the following, we
will use the notation M ′ to denote that a matrix, M , is in its standard-form.
Due to the identity part, we see that (2.2) defines a systematic code, in which
the k information bits are transmitted in ’raw form.’ Also, the identity part
ensures that G′ has full rank (all k rows are linearly independent–see Ch. 2).

Any k-bit information vector, s, may be encoded to an N -bit codeword, x,
by multiplication with G′

x = s(G′)T = G′sT , (2.3)

which is of complexity O(N2). More efficient encoding schemes for sparse codes
exist, which is discussed in Ch. 5. Any row of G′–as well as any linear combina-
tion of rows in G′–is a codeword. In both cases, we see that the set of codewords
(the vectorspace) spanned out by G′ (i.e., the code, C), has dimension k, and
consists of 2k codewords.

The Parity Check matrix, H , is defined to span out the null space of C, such
that all codewords may be identified by their common syndrome (checksum), ~0
(2.1);

C = {x ∈ GF (2)N |xHT = ~0 }. (2.4)

Since |C| = 2k < 2N = |GF (2)N |, we may use this fact to detect (and correct,
as discussed in Ch. 6) N -bit vectors that are not valid codewords, typically due
to channel noise. Using (2.2), we define the (N − k) × N (standard-form) H ′

as

H ′ = [PT | IN−k], (2.5)

where PT is the transpose of the random part of G′. It is quite possible to switch
the internal ordering of P and I parts, as long as H ′ and G′ are ’opposite’ in
that they null each other out.2

2.4 The Graph Structure

In essence, the graph, G, consists of a set of vertices, V , and a set of edges,
E . We will denote the number of vertices as |V| = N . Edges can be one-
or two-way, making for a directed or undirected graph, respectively. In this
sterile form, the graph only expresses the structure of the problem at hand.
By superposing a particular instance of the problem onto these objects, this
structure allows the use of simple, yet powerful graph-based algorithms to solve
the original problem. Consider, for instance, the classical problem of finding the
shortest path between two cities on a map containing N cities. Here, the graph

2Often, standard-form is defined by G′ = [P | Ik], e.g. [17]. This is only a matter of
convention, in that the receiver must know where in the codeword the information is stored.

14

2.4 The Graph Structure

setting is very intuitive, where cities are represented by vertices, and roads by
edges. By superposing the particular instance (city names, road distances, and
perhaps even road traffic indicators etc.), Dijkstra devised an O(N) algorithm
for evaluating all possible routes between two cities, and returning the optimum
route comprising the fewest number of edges. Some graph-theoretical definitions
will be useful, and are introduced briefly in the remainder of this section.

2.4.1 Adjacency Matrix

The Adjacency Matrix, A, of a graph with N nodes is a symmetric N × N
matrix, in which position (j, i) indicates that node j is connected to node i
by exactly aj,i ≥ 0 edges. Also, nodes can (normally) not be connected to
themselves, which ensures that ai,i = 0, ∀i.

2.4.2 Bipartite

A graph is called bipartite iff V can be partitioned into two subsets, a and b, in
such a way that all edges have one vertex in a and the other vertex in b; i.e.,
no edges connect vertices within the same subset. This is called an (|a|, |b|)-
bipartite graph, and means that A is non-zero only in the submatrices, H and
HT , which map nodes in a to nodes in b;

A =

[
0 H

HT 0

]

.

Hence, bipartite graphs are compactly represented by the |a| × |b| H-part of A.
A bipartite graph is said to be (γ, ρ)-regular if each node in a has degree γ; and
each node in b has degree ρ.

2.4.3 Directed

In a directed graph, an edge is a one-way connection between two nodes. An
undirected graph is easily modelled by a directed graph, by doubling up every
edge.

2.4.4 Girth

Any set of edges connecting two (not necessarily different) vertices, u, v, is called
a walk. If no vertex is visited more than once, the walk is called a path. A cycle
is defined as a path where v = u. Since G may contain several cycles of various
lengths, the length of the shortest cycle is refered to as the girth, G(H), of the
graph (where, in this notation, H is the adjacency matrix).

2.4.5 Pivot

Later in this thesis, we will investigate the operation of LDPC on dynamically
updated graphs. The update will use an operation called Pivot, which is most
commonly defined on a matrix, and is the main engine of Gaussian Reduction.
By pivoting on a non-zero entry (j, i) in the matrix, the result is that row j is
added (modulo 2) to all other rows j′ 6= j iff (j′, i) 6= 0. This has the effect of
clearing all non-zero entries in column i, except for position j which has become

15

2.4 The Graph Structure

Figure 2.1: Pivoting on edge (u, v) of the bipartite graph. Removed edges are
dotted, and created (new) edges are solid, black lines. Edges that are not part
of the operation, are colored gray. Note how v becomes the systematic edge.

the pivot of column i. A weight 1 column that is non-zero in position j is refered

to as the jth identity vector, ~ej .
In [18], the action of pivot on an edge (u, v) of a graph is defined as a

transformation which takes G to an equivalent, yet structurally different, graph,
G′. The resulting set of unique graphs, obtained by repeating the operation, is
called the “pivot orbit,” whose size is an important parameter of the graph (see
[19] and [20]).

The local neighbourhood, n(u), of a node u is defined as the nodes adjacent
(r eachable via one edge) to u. In a bipartite graph, all nodes in n(u) must per
definition be in the opposite partition to u. If (u, v) is an edge in G, then the
nodes in n(u) and n(v) must also be in opposite partitions as well. Obviously,
n(u) and n(v) can not have any nodes in common; the overlap, Ou,v, (of nodes)
is zero. As described in [18], pivot on a bipartite graph can then be carried out
by simply complementing the set of edges between n(u) and n(v) \ {u}. Fig.
2.1 shows an example.

Where column j is transformed to the identity vector, the corresponding
node; v, is disconnected from the graph, save for the pivot edge, (u, v). Hence,
the ordering of nodes is important, as it does not make sense for the row (check
node) to become systematic. We define the graph-based pivot operation as an
operation on an edge from a check to a bit node. This is the explanation for
the skewed bipartition, in which u is excluded from n(v), while v is included in
n(u). Save from the pivot edge (u, v), the column node, v, is then completely
disconnected from the graph–as defined by the identity vector, ~ej, in the matrix
description.

Define the overlap, OE
u,v, of edges between n(u) and n(v)\{u} as the number

of edges connecting the two local neighbourhoods. To be precise, we count
the number of “direct links” across the local bipartition. In Fig. 2.1, these
correspond to the 4 dotted lines. Then, we know that the number of edges
removed (and created) by pivoting on edge (u, v), is

E† = OE
u,v, and, (2.6)

E⋆ = (|n(u)|)(|n(v)| − 1) − E†, (2.7)

respectively. The pivot operation has complexity O(|n(u)||n(v)|) = O(γρ).

16

2.5 Factor Graphs

Figure 2.2: The factorization of (2.8), in FG form.

2.5 Factor Graphs

Factor Graphs (FG) are a specific class of graphs, which have long been used
to model systems across a wide range of sciences. By exploiting the reducibility
of the problem at hand, the “FG strategy” is to separately solve the resulting
chain of subproblems. Following an example of [21]; the function

p(u, w, x, y, z) = p(u)p(w)p(x|u, w)p(y|x)p(z|x), (2.8)

can be solved more efficiently by using the factorization provided on the right-
hand side, since answers to subproblems can be reused. For instance, this is
achieved by message-passing on the corresponding FG (Fig. 2.2), which encodes
the factorization of (2.8) in its structure. Two vertices are linked via edges iff
dependencies exist between the components they represent. Several articles give
in-depth introductions on FG, in particular [22, 21], and we will focus mainly
on their application to the decoding problem.

2.5.1 Background

As reviewed in [22], FG’s are “generalization[s] of the ’Tanner Graphs’ of Wiberg
et al.,” that Tanner used to model the internal system of the iterated LDPC
decoder. In general, FG is a versatile tool for solving many problems, by having
edges represent variables, and vertices represent functions. The dependencies
mentioned above are expressed as an edge being connected to a vertex iff the
corresponding variable (edge) is in the domain of the corresponding function
(vertex). This variable/function dependency is a two-way relationship where
both objects use the information of the other, so FG’s rely on undirected edges.

By identifying the particular network of functions and variables, systems
ranging from artificial intelligence networks (belief propagation), statistics, and
filtering problems can be modelled by an FG. As discussed in Ch. 6, this allows
for the common solution by the surprisingly simple Sum-Product Algorithm.

2.5.2 The Decoding Problem

In the context of LDPC decoding, the system is modelled by a network of simple
linear functions; the binary XOR3, and the “equality function4” By viewing the

3Addition in GF(2), s.t. XOR(1, 1) = 1 ⊕ 1 = 0.
4Conventionally, these are refered to as “variable nodes”, although there is no particular

need for such a distinction between vertices, as will be discussed in Ch. 6.

17

2.5 Factor Graphs

Figure 2.3: The Factor Graph representation of the code defined by the Parity-
Check matrix of (2.9).

m × N Parity-Check matrix, H , as an adjacency matrix of a bipartite graph,
each of the m check-equations can be modelled by XOR-functions, while each
of the N bits of C are modelled by equality functions. In the following, we will
refer to these function vertices as simply checks and bits, respectively. Fig. 2.3
shows the graphical representation of the toy linear code defined by the following
Parity-Check matrix,

H =

1 1 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

. (2.9)

This system encodes a non-unique5 factorization of the linear code’s char-
acteristic function, χC , which indicates whether the global constraint HvT = 0
is satisfied (valid codeword). Continuing the example of (2.9), we have the
following factorization, which is visible from the check nodes of Fig. 2.3

χC(v0, v1, . . . , v5) = [(v0, v1, . . . , v5) ∈ C]

= [v0 ⊕ v1 ⊕ v2 = 0] [v0 ⊕ v3 ⊕ v5 = 0]

[v1 ⊕ v4 ⊕ v5 = 0] [v2 ⊕ v3 ⊕ v4 = 0]. (2.10)

2.5.3 Extrinsic Principle

In working with the convergence of Belief Propagation algorithms, such as the
Sum-Product Algorithm (Ch. 6), an important principle is to minimise the
occurrence of self-regulating processes; or feedback. Extrinsic information is
understood as information that is collected exclusively from other parts of the
system. By attempting to keep all calculations extrinsic, the system is more
capable of repairing errors.

5Note that the Parity-Check matrix of a linear code represents an immediate factorization
of χC into m XOR-functions, which are also highly reducible (see Ch. 6).

18

2.6 Distributed Work

2.6 Distributed Work

Most research on LDPC codes, and error-correction software in general, works
explicitly in a linear algebra setting. Many convenient algorithms for code
design, encoding, and decoding are implemented using matrices and vectors as
data structures. In this project, we have decided on maintaining a distributed
approach, thinking more in terms of hardware implementations where the graph-
based Factor Graph implementation is a natural environment. For instance,
in Ch. 6, we investigate the design of a distributed decoder running the Sum-
Product algorithm using local operations on nodes. As such, information flowing
through the FG is represented as messages stored in Edge objects.

Matrices representing LDPC codes are sparse and, as such, a matrix-oriented
algorithm needs to search through the length N (m) row (column) vectors to
locate, and action on, the non-zero positions. Typically, for (software) SPA
implementations, there are separate m×N matrices for storing the Parity Check
(“adjacency”) matrix, as well as the input and output SPA floating point soft
messages [17, 23]. Again, the sparsity and large blocklength, makes this a quite
wasteful design, both in terms of memory (space) and complexity (time).

The added memory requirements of actually constructing the graph objects,
is alleviated by the increased efficiency of each vertex having direct (constant
time) access to its adjacent input-objects. Furthermore, since Vertex and Edge
objects essentially consist only of the fields corresponding to the matrices de-
scribed above, the memory usage is reduced. This gives an increase of both
speed and memory.

Working in a distributed environment has many interesting real-life impli-
cations, which may present novel applications for LDPC coding.

2.7 Forward Error Correction

From the perspective of the receiver, there are several ways of combating the
disturbances caused by channel noise. In short, coded transmissions permit two
countermeasures; error detection, and correction. Basic Coding Theory shows
that by adding redundancy to the transmissions, it is possible for the receiver
to detect the presence of error by, basically, comparing versions of the same
message. For instance, if each message is repeated three times in succession,
error is determined when there are discrepancies among the received versions
(which should otherwise be identical). However, this redundancy does not pro-
vide information on the location of error, and the only recourse is asking for
retransmission. Such Automatic Repeat Request (ARQ) schemes require a two-
way channel, which is not always a feasible option, for instance in long-haul,
deep space transmissions.

Using mathematical relationships, it is possible to apply the redundancy
more efficiently such that the receiver may infer also the positions of error. This
Forward Error Correction alleviates the need for a two-way channel, trusting
the receiver with the responsibility of ensuring reliable communications.

19

2.7 Forward Error Correction

2.7.1 Minimum Distance

The minimum distance of a code is defined as the minimum number of bits that
differ between any pair of codewords. This count is a fundamental property of
linear codes, and reveals the capability of the code; detecting s ≤ dmin(C) − 1
errors, and correcting t ≤ (dmin(C) − 1)/2 errors (see [24] for proof).

By using the redundancy to increase the distance between codewords, the
error correction capabilities of the code are improved.

20

Chapter 3

Channel Models

The primary purpose of Error Correcting Codes is the ability to counteract
the inevitable presence of interference, or noise, during transmission. Such
noise comes in many different shapes, and amount to a major challenge in any
communications scenario.

For simulation purposes – when we want to predict certain features of code
constructions – we must acknowledge the fact that simulations, and idealized
channels, will not provide accurate information on how the code will perform in
real life situations. Following Gallager’s warning; “such insight should be used
with caution [4].”

3.1 Channel Types

Wikipedia defines a channel as “the medium through which information is trans-
mitted from a sender (or transmitter) to a receiver[25].” There is a wide variety
of systems that satisfy this definition, where some may be less obvious than oth-
ers. All systems involving a cable, or similar physical link across some distance,
immediately come to mind. Also, a multitude of wireless channels exist, ranging
across the entire low wavelength-end of the electromagentic spectrum[26]. Lend-
ing from [27], typical examples include “twisted-pair telephone wires, shielded
cable-TV wire, fiber-optic cable, deep-space radio, terrestrial radio, and indoor
radio.” However, channels are also found discretely integrated within the plastic
hoods of CD/DVD units, hard-drives of computers; largely, any system where
data is read or written to a storage medium.

3.1.1 Modulation

Although digital channels exist, where bits are transmitted directly in their
quantized form, e.g. pulses of light through an optical cable, most channels in
use today are analog. Bits of the digital source must be converted, or modulated,
to distinguishable peaks of energy, i.e. waveforms of a specific duration T , prior
to transmission. At the receiving end, these waveforms can be demodulated
back to bits, by sampling the stream in intervals of length T .

Even without coding, modulation by itself provides some amount of protec-
tion against transmission errors. By ensuring that the different bits are mapped

21

3.2 Noise

−s +s

Figure 3.1: Binary Phase-Shift-Keying Modulation.

to waveforms of maximum difference,1 we have the best chance of still being
able to tell the distorted waveforms apart at the other end. In the binary input
case, we map bits 1 and 0 to waveforms of opposite phase, i.e. shifted by π
(180◦)

s1(t) =

√

2Es

T
cos(2πf0t)

s2(t) =

√

2Es

T
cos(2πf0t + π) = −s1(t), (3.1)

where the carrier frequency f0 is a multiple of 1/T , and Es is the energy of
each transmitted signal, or channel symbol. As is obvious from Fig. 3.1, the
two signals in the BPSK constellation are maximally separated. To further
increase the difference, we have to ’scale’ the entire constellation, thereby pulling
the symbols further apart. However, this comes at an obvious cost, namely,
increased energy usage per symbol, Es.

3.2 Noise

One common problem with any type of channel is the inevitable presence of
noise, affecting sections or individual elements of the stream (bits).

These disturbances are caused by many different sources. Some are due to
natural conditions affecting the link, such as electrostatic energy from lightning
affecting a copper wire, or the intereference of hard weather, or solar flares in
deep space on wireless transmissions. In addition, links are often part of a dense
network, where magnetic fields create ’cross-talk’ across adjacent streams.

At the receiving end, the stream of waveforms is demodulated back to bits,
but, in practice, their shapes will be altered by noise. Depending on the ampli-
tude, or strength, of the original signal, and the amount of noise, some number
of waveforms will always be demodulated to the wrong bit. Unless carefully
handled, such channel errors would render any channel useless at all but very
high signal power levels, where errors are less frequent.

3.2.1 Discrete Modulated Channel

The Discrete Memoryless Channel (DMC) is a digital channel, in which bits
are transmitted directly, without modulation. Such channels are also called
Discrete-Input, Discrete-Output channels. In other words, there is no soft in-
formation available, and we must perform hard decisions during decoding.

Any DMC is completely described by a set of bq transition probabilities, P ,
which are the probabilities of each b-ary source bit being mapped to each q-ary
target bit.

1By treating symbols as ary coordinates in a q-dimensional space, we may apply geometrical
distance measures to optimise such mappings–or signal constellations [17].

22

3.2 Noise

P(q-1|b-1)

P(0|0)

P(1|1)
P(q-1|0)

P(1|b-1)
P(0|b-1)

P(q-1|0)

0

b-1

0

q-1

1...

...

Figure 3.2: The Discrete Memoryless Channel is a probabilistic mapping from
b-ary inputs to q-ary outputs, and is completely specified by the transition
probabilities.

Since this is a discrete channel, only bit-crossover errors are possible, where a
bit is received at a different value than defined by its intended mapping. In other
words, there are no “gray areas” between symbols of the q-ary output alphabet.
However, there is some amount of soft information to use in decoding. For each
received symbol, c, we know it must have originated from exactly one of the b
possible source symbols, such that

P (c|0) + P (c|1) + · · · + P (c|b − 1) = 1. (3.2)

Each symbol, c, comes with an implicit probability distribution, which depends
on the respective transition probabilities. This set of probabilities completely
defines the DMC.

Since the channel is memoryless, there are no statistical dependencies among
the individual symbols. What happens to any given symbol, is completely
unaffected by what may have happened to the previously transmitted symbols.

3.2.2 Additive White Gaussian Noise Channel

In most real-life situations, we are working with analog channels, and unquan-
tized channel symbols. The required modulation amounts to an increased com-
plexity of the system. However, the soft values contain more information about
the a priori source symbols they represent, which can be used to increase code
performance by several decibel.

Consider the Binary Symmetrical Channel (BSC) which is a DMC with b =
q = 2. This is a completely quantized channel, where the only soft information
is the reliability measure provided by knowing the channel transition (error)
probability, p = P (0|1) = P (1|0) = 1 − P (0|0) = 1 − P (1|1). By increasing the
range of output symbols, q, we increase the amount of soft information available
to the receiver.

The Additive White Gaussian Noise (AWGN) channel is a Binary-Input,
Unquantized-Output channel that can be viewed as the result of extending the
output range to the real numbers, q = ∞. This channel subjects source symbols,
si, to noise in the form of random peaks of energy, which are successively added
onto each transmitted symbol. The amount of noise at any time instant can be

23

3.3 Modelling and Simulation

described by a random, normally distributed (i.e., White Gaussian) variable,
ni, such that channel symbols become

ci = si ⊕ ni.

The randomness of the Gaussian noise has a one-sided power spectral density
(PSD) N0, which depends on the “noise level,” or variance, σ2

N0 = 2σ2. (3.3)

3.2.3 Shannon’s Noisy Channel Theorem

Shannon’s theorem [5] shows that each channel has a capacity, C, and that for
any rate R < C, there exist codes of rate R that can achieve arbitrarily low de-
coding error, P (e), when decoded using Maximum-Likelihood decoding (MLD).
LDPC codes are based on this theorem, which also requires that blocklength,
N , must be allowed to be sufficiently large, such that [17]

P (e) ≤ 2−NEb(R) → 0,

for fixed R. The (positive) function Eb(R) is determined by the channel char-
acteristics.

This is the basis for the asymptotically optimum performance of LDPC codes
using Sum-Product Algorithm decoding, which approximates MLD (see Ch. 6).

3.3 Modelling and Simulation

Error correcting codes can be compared based on their most important param-
eter; their ability to handle channel noise. By simulating a channel model, in
software or hardware, a plot is made of the average Bit-Error Rate (BER) as
the Signal-to-Noise Ratio is incremented from low to high. Any code can only
correct a certain amount of bit errors. By simulating the transmission and
decoding of codewords, the BER at the current SNR can be calculated. To
achieve a sufficient degree of statistical confidence in the BER, the simulation
must be repeated, and the averaged BER reported. The plot is then generated
by calculating the average BER at the simulated SNR intervals.

3.3.1 Bandwidth Expansion

When modelling channel noise, it is very important to be aware of what pa-
rameters that have the highest effect on the outcome, and how to adjust these.
These factors are not always obvious.

In real transmissions, an output from the channel encoder is produced every
T seconds, i.e. the transmission rate is

R = R/T = k/NT [bits/sec.]. (3.4)

A reliable channel should have a bandwidth of

W ≥ 1/2T [Hz]. (3.5)

24

3.3 Modelling and Simulation

In the uncoded case, code rate is R = k/N = 1, and every single channel
symbol represents one source symbol. In other words, we are transmitting at
maximum transmission rate, R = 1/T , and with minimum (none) error protec-
tion, N −k = 0. Given (3.4) and (3.5), we note that the uncoded transmission
rate,

Runcoded = 1/T ≤ 2W, (3.6)

is only limited by available bandwith, W .
In the coded case, where N − k > 0 and R < 1, we have some protection

against noise, which comes at the cost of reduced efficiency, R. Per definition,
we always output one channel symbol per T seconds, but the added redundancy
at the source requires the use of several channel symbols to represent one source
symbol. Again observing (3.4) and (3.5), we find that Rcoded is limited by an
additional factor; namely, code rate R < 1:

Rcoded = R/T ≤ 2RW. (3.7)

To produce accurate simulations for coded transmissions, we need to expand
the bandwidth of the (virtual) channel by a factor of R−1 to maintain constant
transmission rate, when compared to the uncoded case. If the energy per channel
symbol is Es, and we are using a code of rate R = k/N , we define the energy
per information-bit, or source symbol, as

Eb =
Es

R
, R ≤ 1. (3.8)

This distinction between channel and source energy is important when produc-
ing accurate simulations.

In a coded transmission, the probability of error can be expressed as the
ratio of source symbol energy to noise PSD. Taking the above observations into
account, (3.8) and (3.3) give the Signal to Noise Ratio (SNR)

Eb

N0
=

Es

RN0
=

Es

2Rσ2
. (3.9)

3.3.2 Generating Gaussian Noise

Soft decoding (Ch. 6) of LDPC codes makes the AWGN channel an obvious
choice of simulation environment in which to evaluate code error performance.
The unquantized, modulated channel symbols can easily be demodulated and
mapped to a posteriori bit-value probabilities (APP’s), which are fed directly
into the SPA decoder.

To sample White Gaussian noise in a computer simulation, we need a source
of random numbers with a normal distribution. As defined in [28], “the Gaus-
sian function is the probability function of the normal distribution,” which is
expressed as

f(x) =
1

σ
√

2π
exp−(x−µ)2/2σ2

, (3.10)

with mean µ = ±√
Es = ±1. The shape of the distribution; i.e. the range

over which the output samples are spread, is regulated by the variance, σ2. As

25

3.3 Modelling and Simulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 0-1

P
ro

b.
 d

en
si

ty

Channel Symbol

Probability Densities of a Binary-Input AWGN Channel at Various SNR and Coderates

4dB, R = 1/2, σ = 0.631

4dB, R = 1/1, σ = 0.446

6dB, R = 1/1, σ = 0.355

6dB, R = 1/2, σ = 0.501

Figure 3.3: Simulating AWGN noise; note how distribution (shape) depends
not only on SNR, but also on coderate. Also, the figure illustrates the offsets
corresponding to means µ = ±Es = 1.

Algorithm 1 The Box-Muller Algorithm [29].

Pairs of uniform random numbers serve as a basis for creating two Rayleigh-
distributed variables, as part of a uniform distribution. By using a simple
transformation function, these are converted to one normally distributed ran-
dom number.

indicated by Fig. 3.3, the variance is narrowed by increasing SNR; increasing
rate, R; or both.

The standard software methods, like rand() and lrand48() in C++, are
designed to output a uniform distribution of pseudorandom2 numbers, but sim-
ple algorithms exist that alter the distribution without corrupting the original
degree of randomness.

The Box-Muller algorithm effectively produces normally distributed num-
bers at a constant complexity. Yet, as pointed out in [30], regular patterns
appear in the output, due to the “continuous and differentiable mapping” by
the trigonometrical functions. The same article concludes that the distribution
can be improved by “using a dicontinuous transformation mapping” scheme,
such as Von Neumann’s rejection method.

Given (3.9), we can calculate the noise variance, σ2, corresponding to the
SNR we want to simulate

σ2 = (2R
Eb

N0
)−1, (3.11)

and use one of the methods described to sample the corresponding normal dis-
tribution, typically with mean µ = 0.

2Actual randomness is very difficult to reproduce in software, but clever mathematical
algorithms can approximate randomness to a satisfying degree.

26

3.3 Modelling and Simulation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-3 -2 -1 0 1 2 3

F
re

qu
en

cy

Symbol energy (dB)

1 dB, σ=0.6302
9 dB, σ=0.2509

Figure 3.4: Uniform distribution: n = 105 random samples of lrand48(), over
the interval [µ − 4σ, µ + 4σ].

Algorithm 2 Von Neumann’s Rejection Method.

The uniform distribution can be transformed to any shape, as defined by an
arbitrary density function, h(x). A uniform, random point, x, within the domain
of h(x) is selected, along with a random “weight”, y, selected within the range
of h(x). Since (3.10) is a PDF, the domain can be clipped to [µ − 4σ, µ + 4σ]
with a confidence of > 99% (ref. Fig 3.4), and the range is [0, f(µ)].
The point x is returned as the normal-distributed value if and only if it satisfies
the constraint, y < h(x). The method is repeated until a valid (point,weight)-
pair is picked.

As indicated by Fig. 3.5, for our purposes, both methods approximate the
normal distribution with satisfactory accuracy. However, for our simulations,
we are using the slightly superior method of Von Neumann.

In the following chapters, we will conveniently refer to processes as “ran-
dom,” while understanding the actual, pseudorandom processes involved.

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-3 -2 -1 0 1 2 3

F
re

qu
en

cy

Symbol energy (dB)

1 dB, σ=0.6302
9 dB, σ=0.2509

Normal Distribution

(a) Box-Muller

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-3 -2 -1 0 1 2 3

F
re

qu
en

cy

Symbol energy (dB)

1 dB, σ=0.6302
9 dB, σ=0.2509

Normal Distribution

(b) Von Neumann

Figure 3.5: Approximations of the Normal Distribution.

Chapter 4

Constructing LDPC Codes

LDPC codes have received a great deal of attention since the rediscovery (ref.
Ch. 1) of their outstanding potential. Along with the increase in computer
processing power, the once considered impractical codes have long since proved
to be quite usable in modern transmission systems. Already in 1997, Luby et
al. considered LDPC codes to be “extremely useful for applications such as
real-time audio and video transmission over the Internet” [10].

Gallager’s original description [4] described a quite specific structure which
was based on a random construction of the Parity-Check matrix, H . In his
work, which was ahead of its time both in terms of computational resources
and performance, he defined a type of LDPC code which can be viewed as the
foundation for current work in the area.

In this chapter, we will explore typical considerations involved in construct-
ing optimal, or capacity approaching codes, along with a selection of construction
algorithms. As discussed in Ch. 1, the (linear) codes are completely described
by H . As observed by Gallager, this gives a practical approach to the construc-
tion problem, in which H is typically filled with non-zero entries according to
some (random) scheme.

As with all probabilistic methods, such random construction schemes often
fail; and the codes produced, although near-optimal1, may not be very usable.
For practical application of LDPC codes, deterministic, or structured2, methods
are more valuable [35, 36]. Although we will mainly adopt the guidelines of
Gallager, we will also review some of the important structured constructions.

4.1 Random Constructions

In 1948 Shannon [5] introduced the concept of using random codes to achieve
arbitrarily good Forward-Error Correcting (FEC) codes. With this, an upper
bound on the possible throughput of any channel–the Shannon limit–became the
common goal of research. Shannon’s proofs were not supported by any practical
results, and were generally considered only theoretically interesting for several

1Chung et al. were in 2001 able to approach the Shannon limit with a margin of merely
0.0045 dB [12]. Similar results are frequently reported, [31, 32, 1, 33] etc.

2Such methods are in some cases refered to as explicit [9, 34].

29

4.1 Random Constructions

decades. In fact, the general assumption was that a suboptimum rate, R0, was
a more realistic channel bound [32, 31].

The findings appeared to be realizable by Gallager’s 1963 LDPC codes, how-
ever, due to the large blocklengths, these were mainly of theoretical interest at
the time. With the improvements in technology, these ideas are no longer infea-
sible. Also, unlike the recent Turbo Codes, restrictive patents have conveniently
expired, making the technology publich domain. Due to practical approxi-
mations of Maximum Likelihood Decoding (e.g., Belief Propagation, and the
Sum-Product Algorithm; See Ch. 6), the seemingly insurmountable problem of
transmitting close to capacity has effectively been solved.

However, most of the excellent results in LDPC research are based on the
prerequisite that blocklengths are allowed to grow arbitrarily large. In fact, the
results of both Shannon and Gallager are based on random codes that are only
asymptotically very good – as N goes to ∞. This is also pointed out in more
recent results [31, 32]. The random nature of the constructions also implies that
any code will be rigorously fixed to its particular blocklength. This has very real
consequences in practical scenarios. For instance, in packet-based protocols em-
ploying variable blocklengths, such as TCP/IP, one would require multiple code
definitions, consuming a “significant [amount] of non-volatile memory storage
[35].” Reckognizing these practical issues, we will try to maintain a practical
focus while working with random LDPC constructions.

4.1.1 What Code is H?

In Ch. 2, we see how linear codes are well defined by a Generator matrix,
which spans out the space of codewords (the codespace), C. When working
with LDPC codes, it is common to focus on the random m × N Parity-Check
matrix, H , which only implicitly defines the code by spanning out the null space
(i.e., the dual code, C⊥). In a construction setting, this approach is somewhat
backwards. For instance, we typically do not know the precise rank of the
resulting construction, rank(H) = N − k ≤ m, which defines the dimension
dim(G) = k of C. This is a very characteristic parameter of a linear [N, k] code.

Before we proceed further, we briefly repeat the conventions on standard
matrix forms (indicated with a tick; e.g. M ′) that we adhere to in this thesis
(see Ch. 2). The k systematic bits of G′ are placed at the beginning of code-
words, such that G′ = [Ik |P]. The Parity-Check matrix spans out the null
space of the code, which requires the ordering H ′ = [PT | IN−k]. This gives us
the fundamental relationship (2.1), GHT = ~0 mod 2.

When we construct codes using a randomized scheme, we initially assume
that the resulting matrix H will have full rank, m = N −k. Recalling code rate,
R = k/N < 1, the design rate is defined [11] as,

R′ = (N − rank(H))/N = 1 − γ/ρ ≤ R, (4.1)

as the desired code rate. If rank(H) < m = N − k, then we have constructed
a different code. If k′ = N − rank(H) > k, then this is a [N, k′]-code, in
other words a code of slightly higher rate than intended [32]. The rank of
random codes should always be checked (using Gaussian Reduction) as part of
the construction process.

30

4.1 Random Constructions

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3 3.5

B
E

R

Eb/N0 (dB)

Simulation Results over AWGN Channel
125x250, g=8 LDPC Code, 100 Flooding Iterations

Code 1
Code 2
Code 3
Code 4
Code 5
Code 6
Code 7

Uncoded

(a) BER performance

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3 3.5

D
et

ec
te

d
E

rr
or

s

Eb/N0 (dB)

Simulation Results over AWGN Channel
125x250, g=8 LDPC Code, 100 Flooding Iterations

Code 1
Code 2
Code 3
Code 4
Code 5
Code 6
Code 7

(b) Detected Errors

Figure 4.1: Comparison of 7 random [250, 125] codes from the same (250, 3, 6)-
ensemble. The performance is almost identical, as expected.

Say we need a [900, 300] (R′ = 1/3) code. We would then aim for construct-
ing a random 600× 900 H-matrix, of rank(H) = m = 600 linearly independent
rows, such that the resulting G′-matrix (recall that ′ means standard form)
may have a k × k identity part (2.2). Say H has only rank(H) = 500 linearly
independent rows. The corresponding code is, then, an [900, 400]-code, of rate
R = 4/9.

Although there exist structured LDPC construction schemes that focus on
achieving full rank; e.g., based on cyclic shifts, the observation of this thesis
is that most schemes rely on a probabilistic argument. The sparsity (∆H =
O(N), ρ ≪ N) of Low-Density Parity-Check codes codes implies that the like-
lihood of producing two (or several) random rows that are linearly dependent,
is low (as N grows large); especially when the column-weight, γ, is odd [32].
Hence, if faced with underfull rank, we may simply retry the construction, using
a different seed for the random number generator.3

In passing, we make the observation that certain codes may benefit from
redundancy.

4.1.2 Equivalence of Random Codes

Random constructions can be grouped into ensembles [4], by observing what
parameters are fixed, and serve as the common framework of the LDPC codes.
An intuitive ordering of ensembles would be in terms of their respective codes’
common ability to correct errors, which, as will be discussed, can be readily
averaged by examining any, randomly selected member of an ensemble.

Most construction schemes for random codes are based on randomly4 filling
H with non-zero elements from GF (q), within the boundaries of the framework.
In other words, frameworks restrain the construction process, as features that
would deteriorate performance can easily be avoided.

From a graphical perspective, the edges are connected between the two sets
of nodes in the bipartite graph. Given a set of parameters (framework), there

3Typically, time() is used as seed, which means that each subsequent run of the algorithm
will be based on a unique seed.

4As discussed in Ch. 3 we always deal with pseudorandom processes, but write ’random,’
for brevity.

31

4.1 Random Constructions

exist many similar, valid random constructions.5 We say similar to emphasize
the fact that codes within an ensemble are not equivalent in the sense that
they span out different null spaces. The concept of grouping random codes is
based on the fact that these codes exhibit (asymptotically) similar performance,
despite their different codespaces. Hence, any code selected at random will give
valid and characteristic information on the general performance of the codes in
the same ensemble. This allows us to discuss optimization schemes by focusing
only on design parameters (the framework of the ensemble), without going into
detail of the bit-level structure (i.e., edges) of specific codes. Fig. 4.1 shows an
example.

The basic parameters of a framework are blocklength, N , and code rate,
R = k/N < 1; variable, or bit, node degree6 γ; and check node degree, ρ. Note
that the redundancy, m, is implicitly defined by the code rate;

m = N − k = N − RN = N(1 − R), R < 1. (4.2)

4.1.3 Gallager Codes

As a simple example, consider the ’Gallager codes’ [4]. Here, every column
vector of H has exactly γ non-zero entries (weight γ), and every row vector
has exactly weight ρ. These frameworks are denoted by (N, γ, ρ). In Gallager’s
notation, this reads (N, j, k).

Picture creating sockets on all nodes, into which edges can be plugged; γ
sockets per bit node, and ρ per check node. Codes of this framework correspond
to some particular permutation of the

|E| = Nγ = mρ (4.3)

edges, such that each bit node is connected to γ check nodes, and each check
node is connected to ρ bit nodes. Other frameworks that optimise different
parameters for want of better codes, will be discussed further on in this chapter.

4.1.4 Ensembles of Codes

Gallager’s work was not on randomly chosen codes as these would most cer-
tainly contain harmful, short cycles, but rather with “explicit graphs [...] to
which his analysis does apply” [33]. Recent work by Richardson et al. [11,
Concentration statement, p. 600] has proved the assumption that the codes
in an ensemble are equivalent. This confirms the advantage in working with
ensembles; that the average performance of the entire ensemble is well approxi-
mated by the performance of (almost) any constituent code. This has valuable
practical implications when evaluating Bit-Error Performance (BER) in Ch. 7.
Even though two codes, or instances of the same ensemble, can be quite differ-
ent in terms of the actual connections between nodes, we may still expect equal
performance due to this proof of equivalence–as we saw in Fig. 4.1.

MacKay [32] presents a fine-grained partitioning of important random LDPC
ensembles (Def. 1), ordered by what is assumed to be decreasing probability of

5The size of an ensemble (the number of valid codes), depends on the stringency of the
framework. Some are more easily satisfied than others, resulting in a larger space of codes.

6Initially, node degrees are considered constant. In the following, we will see how these are
generalised to weight degree sequences.

32

4.1 Random Constructions

Definition 1 MacKay’s Ensembles of Very Sparse Matrices [32].

1. Matrix H generated by starting from an all-zero matrix and randomly
flipping γ not necessarily distinct bits in each column.

2. Matrix H generated by randomly creating weight γ columns.

3. Matrix H generated with weight γ per column and (as near as possible)
uniform weight per row.

4. Matrix H generated with weight γ per column and uniform weight per row,
and no columns having overlap greater than 1 (meaning, ’no 4-cycles’).

5. Matrix H further constrained so that its bipartite graph has large girth
(meaning, ’girth G(H) > 6’).

6. Matrix H = [C1 |C2] further constrained or slightly modified so that C2

is an invertible m × m matrix (see Ch. 5).

decoding error. These six ensembles serve as illustative examples as we briefly
discuss the main types of random constructions, below. For each class of en-
sembles, we discuss the corresponding framework. In all cases, the redundancy
(number of rows in H), m, is defined implicitly by the desired code rate, as in
(4.2).

4.1.5 Random, (N)

The random ensemble consists of codes that are defined by a very minimum of
parameters; blocklength N . By only requiring that the codes be sparse (low-
density), H may be populated by arbitrary, low-weight column vectors. This
means that we should expect quite poor performance, especially due to the
expected high frequency of 4-cycles [33, 32]. As seen in Ch. 6, this affects the
number of independent decoder iterations, deteriorating BER performance; see
also Fig. 4.5.

Ensemble 1 from Def. 1 defines the random ensemble, in which an m×N =
N(1 − R) × N matrix is filled with O(γN) non-zero bits. MacKay adds the
constraint of requiring that all column vectors have equal weight, γ. This does
not ensure any weight distribution across the row vectors.

4.1.6 Regular, (N, γ, ρ)

Returning to the work of Gallager [4], we find the origins of the added constraint
of explicitly fixing the weight of the column (γ) and row (ρ) vectors of H . The
construction of regular LDPC codes–often simply called Gallager codes–can be
accomplished by adding weight-γ columns to H in such a way that the total
weight of any row will equal ρ. In order to obtain codes which would conform to
his mathematical analysis, Gallager furhter ensured that no two columns would
have overlap of more than one position; i.e. no 4-cycles [4].

As will be seen, strict regularity in both γ and ρ can be quite difficult
to achieve. Construction is often simplified by requiring only that the weight
along one dimension be fixed, while the other be upper bounded [1]. If the

33

4.1 Random Constructions

weight along the ’bounded dimension’ (typically, ρmax for the row vectors) is
uniformly distributed, then such semi-regular constructions can be quite close
approximations to regular codes.

The early results indicating the excellent performance of LDPC codes (at
least in theory at the time), were due to strictly regular codes. It is established
[10, 32, 11] that the best regular LDPC codes are from the (N, 3, 6) ensembles.
These results were already encountered in [4], where column weights larger or
equal to 3 were found to give “minimum distance that increases linearly with
the block length for j and k [i.e., γ and ρ] constant.” A general intuition is to
keep the column weight high (and odd), while simultaneously minimizing the
row weight [33]. Typical iterative LDPC decoding algorithms, as explored in
Ch. 6, are based on local decisions where a node will try to determine its correct
state by using only extrinsic information.7 The decoder will attempt to rectify
the states of bit nodes, such that it may output correct overall state–a valid
codeword–that will most likely8 equal the true, originally transmitted codeword,
x. The amount of extrinsic information available to any bit, its support, should
therefore be maximized to increase the chance of bits converging to their correct
state (see Fig. 6.1). For the check nodes, the converse is true. The check nodes
also depend exclusively on extrinsic information to determine whether they are
satisfied or not. Since their input is solely from bit nodes, which often are in
error, it becomes clear that the best decisions are made if check nodes have fewer
potentially confusing inputs. As the number of edges, |E| (4.3), is constant,
this becomes a problem of balancing conflicting requirements.

In retrospect, MacKay reckons that the somewhat simple, regular Gallager
codes (1963) “would have broken practical coding records up until 1993” [32].
Ensembles 2 through 6 are examples of regular LDPC codes. The careful dis-
tribution of weight in the third ensemble is a typical semi-regular code, quite
similar to the constructions we will focus on in the following sections.

4.1.7 Irregular, (N, γ(x), ρ(x))

In the wake of Turbo codes, research has been made into the gain of allowing
irregular weight distributions in H . Originally conceived by Luby et al. in [10],9

the main idea would be to optimize code performance by carefully adjusting the
vector of bit and check node degrees, γ(x) and ρ(x) respectively.10 As discussed
above, very good codes depend on finding a fair tradeoff between maximised bit
degree, and minimised check degree. By increasing the support of some bits, one
can expect quick convergence with high precision at these positions; which, in
turn, help the lesser supported bits to stabilize. Returning to [37], such strong
bits are called “elite bits.”

7As defined in Ch. 2, extrinsic information is gathered exclusively from other parts of the
system, such that the node is not biased by its current (possible erraneous) value.

8As discussed furhter in Ch. 6, decoders may produce a different, yet valid, codeword.
The frequency of such undetected errors is proportional to density; i.e, low.

9Actually, the results in this paper rely on the concatenation of a cascade of irregular codes,
followed by a final convolutional code, in order to achieve capacity-approaching performance.

10Luby denotes column (bit) weight sequences by λ(x).

34

4.1 Random Constructions

The degree sequences are conveniently expressed using polynomials [10],

γ(x) =
∑

i

γix
i−1

ρ(x) =
∑

i

ρix
i−1

where the coefficient γi (ρi) gives the fraction of the bit (check) nodes11 of
degree i.

Precise theory in the area has proven difficult to find, and studies in [33] and
[11, 31] rely on time-consuming computer searches to find the best ensembles
of codes. Typically, one profile is given as input (say, γ(x)), from which a good
“partner vector” (ρ(x)) can be found. Also, many cases simplify the search by
fixing the distribution along one dimension; typically using constant row-weight,
ρ. Interesting online resources for optimized degree distributions are found at
[38, 39].

By analysing the asymptotic performance (N → ∞) of a simple, iterated
decoder, peformance characteristics were revealed for both regular and irregular
codes. This analysis produced a differential equation expressing the convergence
of the decoder. From this, an important mathematical condition was derived
[10];

ρ[1 − δγ(x)] > 1 − x, x ∈ [0, 1) (4.4)

indicating the maximum tolerable noise level, δ, given some degree distribu-
tions γ(x) and ρ(x). Two important results were proved in this groundbreaking
work. By observing that the best regular codes (the (3, 6)-ensemble) would
violate (4.4) at noise levels “far from the optimal value [δ]”, it was possible
to prove the sub-optimality of regular codes.12 Aided by this condition, spe-
cific constructions were found that would satisfy (4.4). Given some γ(x) and
channel threshold δ, a computer search for a check degree sequence, ρ(x), that
would satisfy (4.4) could be performed. This proved that irregular codes–if
carefully constructed–would transmit at rates arbitrarily close to channel ca-
pacity. Similarly to the inherent gain of utilizing available soft information to
increase decoder performance, partitioning the node degrees into a profile gives
more flexibility in finding the optimum degree distribution.

Fig. 4.2 shows the convergence of a small, irregular LDPC code. The degree
sequence, γ(x), is not optimised in any way, yet suffices to illustrate the relation-
ship between convergence and support; that elite bits converge fast, and may
then ’assist’ weaker bits. The row-weights are upper-bounded by ρmax = 8, and
is quite regular. Notice the significant drop in BER of the ’elite bits’ (degrees
5 and 7) already after the first iteration (t = 2). As expected, the convergence
seems to propagate through the graph as a wave; where the higher connected
(protected) bits aid–or, trigger–the convergence of weaker bits. The BER per-
formance of the code is shown in Fig. 4.3.

11The notation where γi is the coefficient of xi−1 is due to the extrinsic principle of SPA,
in which nodes exclude one input in producing (extrinsic) output. This leads to compact
notation.

12These observations were made specifically for rate 1/2 codes, but convey information on
the general performance of irregular LDPC codes.

35

4.1 Random Constructions

 6⋅10-3

 4⋅10-3

 2⋅10-3

 1⋅10-3

 8⋅10-4

 6⋅10-4

 0 10 20 30 40 50 60 70 80 90

Bits

Bit-Error Distribution, 45x90, g=6 Irregular LDPC Code
λ2=0.0556, λ3=0.7222, λ5=0.1667, λ7=0.0556

t=1
t=2
t=4
t=8

t=16
t=32
t=64

T=100

Figure 4.2: The evolution of the convergence in decoding a small, irregular
LDPC code, at SNR 3dB (y-axis shows Bit-Error probability).

The bits are sorted in order of increasing degree; i.e., the first 5.56% have
degree 2. Vertical seperation lines indicate the transition from one degree to
the next. Each horizontal ’layer’ shows a snapshot of the bit-error distribution
just prior to decoder iteration t. In the following, we understand t as the point
where that iteration is just about to begin; hence, t = 1 means that the decoding
has not yet begun. The decoder timeout, T = 100, is the maximum number of
iterations before declaring a (word) failure (Ch. 6).

At each point t, we examine the decoder state, and count the number of
times each bit, vi, is in error.13 Since the state changes more quickly at first,
and then slows down as t grows, we observe iterations numbered by

t = 2j , 0 < j ≤ h = ⌊log2(T)⌋, (4.5)

such that t = {1, 2, 4, 8, . . . , 2h}. We also observe the final decoder iteration,
t = T = 100, thereby producing a (h + 1) × N matrix of counters, M , of which
row mj contains the distribution for iteration t. At SNR 6dB, the majority of
simulations actually converge to a valid codeword within the first 8 iterations,
and these do not contribute data to the counters for t > 8. To produce plots
of ≥ 95% confidence, we must repeat the experiment S times; until all rows mj

have counted at least 100 errors.14

13This is a simulation; an artificial transmission where the receiver can compare the decoder
convergence to the correct, error-free original codeword, and, this, produce diagnostics data.

14Assuming bit-errors are statistically independent events.

36

4.1 Random Constructions

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7

B
E

R

Eb/N0 (dB)

Simulation Results over AWGN Channel
45x90, g=6, Irregular vs. Irregular LDPC Codes, 100 Flooding Iterations

Regular
Irregular

Uncoded

(a) BER

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 3 3.5 4 4.5 5 5.5 6 6.5

W
E

R
 (

U
nd

et
ec

te
d)

Eb/N0 (dB)

Simulation Results over AWGN Channel
45x90, g=6, Irregular vs. Irregular LDPC Codes, 100 Flooding Iterations

Regular
Irregular

(b) WER

Figure 4.3: The irregular LDPC code shows gain at high SNR, due to lowered
flooring effect from reduced word-error rate–Fig. 4.3(b).

In summary; for iteration t, we may produce the Bit-Error Rate (BER) as

BERt =
Bt

NS
, (4.6)

where Bt is the total number of bit-errors at iteration t (summed over all N bits).
(4.6) is then averaged over each individual bit, vi, by using the information in
the matrix of counters;

BERt,vi
= BERt · (bi/st). (4.7)

4.1.8 Density Evolution

As discussed in Chapter 6, successful and correct decoding is a question of
whether the overall bit-error probability, pi, as a function of iteration number,
t, decreases towards zero. Density Evolution (DE) [31] is a technique for observ-
ing such convergence in SPA messages–at some fixed SNR level–as the decoder
iterates. By observing the drop in bit-error probability (i.e., convergence) from
one decoder iteration to the next (until timeout), a plot is made showing the
’evolution of density.’ At certain points such plots show a tendency towards flat-
tening out (converging) to a fixed stable point. These correspond to situations
where the decoder gets stuck, and can not proceed. If this flattening occurs at
a too high error-probability, then this is most likely a decoder error. However,
often the flattening breaks off again, dropping towards another fixed point at a
lower error-level.

Density Evolution is used to produce Extrinsic Information Transfer (EXIT)
charts, which, essentially, consist of a plot generated using DE, which indicates
the convergence of the decoder at a specific SNR. [17]. By also plotting the
mirror of this curve, one may see a tunnel form in between the two. This
indicates that the decoder is expected to converge. However, as SNR is lowered
(and DE produces other curves), the curves may intersect; ’blocking’ the tunnel.
This is indication that the decoder will fail to converge. The smallest SNR not
causing failed convergence (i.e., first creating a tunnel), is called the channel
threshold, and is a significant parameter of the decoder.

37

4.2 Structured Constructions

Figure 4.4: Two small cycles; the ’butterfly’ 4-cycle (in bold), and the ’bow-tie’
6-cycle.

4.2 Structured Constructions

As we have seen, random constructions exist that more or less guarantee asymp-
totically optimum performance. While this remains a very valuable theoretical
result, it presents certain disadvantages when LDPC codes are to be used in
actual communication scenarios. Random constructions need to be stored ex-
plicitly in memory in order to be used for encoding or decoding. Long block-
length means very large memory usage just to store the m × N Parity Check
matrix; or the O(Nγ) bipartite graph. This also affects the computational effi-
ciency of the code which, in real life, might be even more crucial than the BER
performance–see Ch’s. 5 and 6. An alternative approach might seem quite in-
tuitive at this point; to use some form of structure to achieve a deterministci
construction algorithm.

Analysis of structured LDPC codes is not as dependent on the grouping of
codes into ensembles. Furthermore, the same generic method, given various
input parameters, is able to output a range of specifically designed codes, e.g.
of various blocklength [35]. The main advantages in using structure can be
summarized as an increase in flexibility/adaptability, and a reduction in cost;
in terms of complexity, memory usage, and transmission latency. The latter is
due to the possibility of specifically adapting decoders to the structural pattern
of the code.

4.3 Cycles and Girth

As with any random graph structure, the presence of cycles in LDPC codes is a
natural, inevitable feature which is difficult to counteract. Given the bipartite
nature of the graphs represented by the H-matrix, with variable nodes on one
side, and check nodes on the opposite, any cycle can always be “rotated” so that
it begins and ends in a check-node. Also, within the cycle, all edges must always
be between two nodes of different type. In terms of the underlying H-matrix,
this translates to a “zig-zagging motion” along columns and rows, changing
direction at non-zero positions, in a strictly alternating manner. Due to the
lack of redundant (i.e., double) edges, the shortest possible cycle is of length 4,
and manifests itself in the shape of two columns having more than one common
row. Another characteristic shape, is the ’bow-tie’ shape of the 6-cycle; see Fig.
4.4.

38

4.3 Cycles and Girth

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10

B
E

R

Eb/N0 (dB)

Simulation Results over AWGN Channel
60x90, g=4, 6, 8 LDPC Codes, 100 Flooding Iterations

g=8
g=6
g=4

Uncoded

(a) BER performance

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0 1 2 3 4 5 6 7 8 9

W
E

R
 (

U
nd

et
ec

te
d)

Eb/N0 (dB)

Simulation Results over AWGN Channel
60x90, g=4, 6, 8 LDPC Codes, 100 Flooding Iterations

g=8
g=6
g=4

(b) Detected Errors

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10

D
et

ec
te

d
E

rr
or

s

Eb/N0 (dB)

Simulation Results over AWGN Channel
60x90, g=4, 6, 8 LDPC Codes, 100 Flooding Iterations

g=8
g=6
g=4

(c) Undetected Errors

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10

D
ec

od
er

 E
rr

or
s

Eb/N0 (dB)

Simulation Results over AWGN Channel
60x90, g=4, 6, 8 LDPC Codes, 100 Flooding Iterations

g=8
g=6
g=4

(d) Decoder Errors

Figure 4.5: Comparison of the same ensemble, varying over increasing girth, g.
Note the expected gain in avoiding 4-cycles, and, conversely, the similarity of
girth g = 6 and 8.

4.3.1 Are Cycles Harmful?

LDPC codes based on cyclic graphs (girth G(H) < ∞) suffer loss in error
performance when decoded with the message passing algorithm (See ch. 6).
Cycles introduce feedback in the flow of messages, allowing bits that are part of
a cycle to stimulate themselves with their own–possibly erranoeus–state. This
violates the SPA principle that messages contain only extrinsic information.
Obviously, the number of independent iterations of the decoder equals half the
girth of the graph, G(H)/2 [4]. Furthermore, Tanner was able to provide proof
of a definite dependency between girth and minimum distance [7].

In the theory of LDPC codes, it is often understated that optimal girth
(i.e., complete acyclicity) is prohibitally difficult to achieve. Furthermore, some
results (e.g. [11, 32]) indicate that such violations of the local tree assumption
might not disrupt decoding to any mentionable extent. Published work tends to
rely on the convention that girth > 4 provides sufficient feedback protection. For
instance, as shown in [37], such ’bad topologies’ in the associated factor graph
lead to unnaturally low minimum distance, giving rise to undetected word-errors
(WER)–see Ch. 7. Avoiding 4-cycles is “sufficient to prevent the topology [...]
from occurring,” and many construction schemes produce codes that are “only”
free of 4-cycles [17, 32, 4].

Simultaneously, others (e.g., Campello et al. [1]; which we will focus on
in the following sections) are more stringent, insisting that maximising girth

39

4.4 Randomized Construction Algorithms

Construction 1 Gallager’s Construction Method [4].

Initialize the first row of H with ρ non-zero entries along the first ρ positions.
Each following row of this first (N/γ)×N submatrix is then a ρ-bit shift of the
previous. Finally, the remaining submatrices are random column permutations
of that first submatrix.

will generally improve code performance. This motivates construction schemes
which can guarantee some minimum bound on the girth of the constructions.
Some construction schemes rely on a post-processing of the graph, where cycles
are identified and removed by deleting (or permuting) columns (or rows) of H .
While this may increase overall construction efficiency, such alterations of H
may easily produce unforseen side-effects – perhaps even closing new, shorter
cycles.

4.4 Randomized Construction Algorithms

The previous discussions have laid the foundation for perhaps one of the most
interesting areas of ongoing research within LDPC codes, namely how to ac-
tually construct codes that satisfy the desired framework (valid member of the
ensemble). Regarding the near-optimum performance shown in very long codes,
a valid question is whether it is possible to design smaller, more practical codes
that inherit at least fractions of these capabilities.

There are numerous algorithms and schemes which, basically, use some sort
of computer search to construct codes fullfilling the design requirements. Pio-
neering this work, was Gallager, with his “pseudorandom procedure” for gener-
ating random, regular codes.

4.4.1 Gallager’s Pseudorandom Procedure

The original work by Gallager [4] describes a scheme which is part structured
(explicit) and part random. His constructions were parameterized by the frame-
work (N, γ, ρ),15 strictly regular codes.

By horizontally partitioning H into γ submatrices, the construction ensures
that every row (column) contains exactly ρ (γ) non-zero entries.

1 1 1 1
1 1 1 1

. . .

1 1 1 1
π (H0)

...
π (H0)

The “stair-case” initialization of the first submatrix guarantees that any
column permutation will always have exactly one non-zero position in every

15Original notation is (N, j, k) [4].

40

4.4 Randomized Construction Algorithms

Construction 2 S. Lin and D. J. Costello’s random method [17].

Given a partial construction, Hi−1, and a candidate vector, hi. If candidate
vector hi does not introduce any 4-cycles with respect to the previous submatrix,
Hi−1; and if all rows in Hi = Hi−1 ∪ {hi} obey the row-weight bound, hi is
permanently added to Hi−1. Otherwise, hi is permanently rejected, and another
candidate is picked from the pool. This process is repeated until N columns are
added to H (success); or there are no further candidates in the pool (failure).

column. In total, the resulting H matrix must be a strictly (γ, ρ)-regular LDPC
code. However, the girth of H depends on the permutations chosen, and Gal-
lager suggested avoiding 4-cycles without describing any specific method for de-
termining good permutations of the submatrices. Hence, this scheme depends
on computer search.

4.4.2 Lin and Costello

A quite straight-forward technique, due to Lin and Costello [17], is to use a
variation on random construction, where the m×N matrix (where m = N−RN)
is grown column-by-column. In addition to fixed weights due to regularity,
design considerations also include g > 4. In other words, we have a (N, γ, ρ)-
ensemble, similar to no. 4 in Def. 1.

By means of brute force computer search, the algorithm tries to find a valid
column vector, hi, to add to the previous construction Hi−1. The process is
based on a heuristic approach, where candidate columns are picked at random
from a pool, P , of all possible binary, weight-γ vectors of length m. Each
candidate is subject to the constraints of the ensemble, which determine whether
it can be permanently added to Hi−1; See Constr. 2. Given a subcode Hi−1

satisfying all constraints γ, ρmax, and g, we still need to evaluate each candidate
for the vacant position by means of a time-inefficient look back scheme. In our
simple implementation, this had complexity O(imγ2). As the search space Hi−1

grows, it becomes increasingly difficult to find a valid vector, and the above
evaluation is repeated exponentially many times.

Following this method, a matrix H is constructed, in which all columns have
equal weight; no row has weight exceeding an upper bound; and no two columns
share more than one common row. Furthermore, due to the random selection
of candidate columns, we are not guaranteed full rank, yet the code rate, R, is
lower bounded due [17], and upper bounded by our ’design rate’ (4.1), giving;

1 − γ

ρ
≤ R < R′. (4.8)

A straight-forward implementation of this method reveals the inherent disad-
vantages involved in such a relatively brute-force approach. The crucial element
in this method is to avoid early exhausting of the pool of candidates. By proper
adjustment of the design parameters N and γ, the pool, P , of candidate vec-
tors hi can easily be made considerably larger than the required number, N , of
suitable vectors;

|P | =

(
N − k

γ

)

=

(
N(1 − R)

γ

)

≫ N. (4.9)

41

4.4 Randomized Construction Algorithms

Figure 4.6: For m = 7 and γ = 3, ι = 3 bits are connected while G is still
acyclic.

Increasing the offset between |P | and N certainly improves the probability of
completing a construction. Yet, the method is not particularily adapted to
handling such large sets of vectors in an efficient way. For instance, we found it
impractical to keep track of which of the |P | candidate vectors had previously
been considered. This would require extensive bookkeeping, which would also
lead to look-up latency. By randomly selecting a vector–which might very well
be in use, or previously rejected–the subsequent look-back validation will in any
event determine whether it can be used;

1. A previously rejected vector will never be accepted as the conflict causing
the initial rejection, will still exist in Hi−1.

2. If v is already in use in Hi−1 we would obviously detect an overlap of
γ > 2 positions, causing rejection.

3. Otherwise, it will only be accepted if it satisfies the normal requirements
of this framework.

Our analysis of this algorithm concludes that the major disadvantage is the
repeated scan through the previous submatrix, Hi−1, to (re)evaluate candidate
vectors. A practical approach towards constructing real-life codes should not
rely on any form of ’backward-looking’ computer search.

4.4.3 Complete Acyclic

Before we introduce the most important construction algorithm in this thesis,
the Extended Bit-Filling Algorithm, we describe a straight-forward method of
constructing completely acyclic graphs. This is not meant as an attempt at
designing a code construction algorithm, but rather a way of bounding what is
achievable in terms of girth.

The first bit, v1, is connected to γ arbitrary checks. Obviously, each sub-
sequen bit vi could select γ among the m − γi remaining unused checks, but,
since we are trying to maximize rate, we need to be careful not to exhaust all
m checks prematurely.

42

4.5 Bit-Filling

At stage i > 1, there are ui = (i−1)(γ−1)+1 used checks. Bit vi can connect
to exactly one of these checks without closing any cycle; while the remaining
γ − 1 checks must be unused. Hence, this scheme may proceed like this for as
long as ui ≤ m − (γ − 1); i.e., for

ι = ⌊m − γ

γ − 1
⌋ + 1 (4.10)

bits. Beyond this point, we can not connect any bit (using γ = 3 edges) without
closing a cycle in G. Fig. 4.6 shows an example where the 2nd and 3rd edge of
vι+1 will close cycles.

Using a similar reasoning, it is possible to bound the length of the longest
possible cycle as a function of ι. For the sake of argument, consider the situation
where each bit prior to vι places its one ’backward’ edge within the checks unique
to the previous bit. Define the set of checks unique to bit vi as Ci (the shaded
checks in Fig. 4.6). Then it is possible for vι+1 to connect to both ’ends’ of
G; namely, C1 and Cι. This Hamiltonian cycle will then traverse the entire
(sub)graph for a girth of

gmax = 2(ι + 1). (4.11)

Note that any subsequent connection (edge) can not possibly close any longer
cycle in G, since we have exhausted all ι ’acyclic bits.’ Interestingly, gmax de-
pends only on m, and not on the number of bits, N . Note that the maximal
cycle in the example of Fig. 4.6 is 2(ι + 1) = 8.

By investigation of the graph, it is apparant that the underlying matrix is
redundant. For instance, the rows corresponding to the shaded check nodes in
Fig. 4.6 are identical (connected to one and the same bit, only). Also, there
are other dependencies. As we have discussed earlier, tree graphs define poor
codes. However, this tree is only a intermediate, acyclic construction on which
larger, cyclic yet high girth codes may be built. In the following, we will use the
girth-bound (4.11) in the design of more complex LDPC construction schemes.

4.5 Bit-Filling

Viewing an LDPC code as some instance of an ensemble, which may consist of a
large number of similar (not equivalent) codes comes in very useful when faced
with the complex problem of randomly constructing LDPC codes. Given some
framework of desired parameters this problem boils down to sampling one of
the (perhaps numerous) codes in this ensemble.

After reviewing several publications on the randomised construction of LDPC
codes, the work of Campello et al. on the ’Bit-Filling’ (BF) algorithm [2, 1]
appeared to be quite useful. Randomised construction algorithms often rely
heaviliy on computing power. Several investigated articles, e.g. [32] and [17],
check that design parameters are upheld by repeatedly looking back–searching
through the intermediate construction–and using this information to guide the
construction process so that it may steer clear of violations.

Randomised algorithms tend to get stuck in situations from which they can
not proceed without violating some constraint. As such, a fail-then-retry ap-
proach is required in order to increase the frequency of complete constructions.

43

4.5 Bit-Filling

Construction 3 J. Campello and D. S. Modha’s Extended Bit-Filling algorithm
[1].

Given a subgraph Gi−1 of girth G(Hi−1) > g′ ≥ g, the next bit node, vi, is
connected to a check, c⋆, selected from a subset F = VC \ {U ∪ Ā}. Any
c′ ∈ U would close a cycle (if connected to vi), and deg(c′′) = ρ, ∀ c′′ ∈ Ā (max
degree). By updating these sets after connecting (vi, c

⋆), we can safely select
the next check from F . If F = ∅ and g′ > g we can relax the girth bound,
g′ := g′−2, and free checks from U → F (otherwise, construction fails). Repeat
until ⌊mγi⌋ checks are connected to vi, and proceed to vi+1 with U = ∅. If
i = N , construction is successful.

The Bit-Filling algorithm is such an algorithm that often requires many repe-
titions to complete a construction. Clever, yet simple, measures are taken to
improve the difficulties of probabilistic design, most importantly, the waste-
ful look-back process is replaced by a more efficient look-ahead design. Simple
bookkeeping underway increases overall efficiency, while–as with look-back–aids
the construction, guiding it away from pitfalls and dead ends.

The BF algorithm was initially introduced in 2001 [2]. The same year, it
was modified to the Extended Bit-Filling (EBF) algorithm [1], described in a
follow-up paper. The main principle remained the same, but several ideas were
improved. In this section we will reproduce the characteristics of this algorithm,
and also discuss some of our implementational modifications which appear to
improve the algorithm.

The EBF algorithm is a multi-purpose construction scheme which is capable
of producing LDPC codes from different ensembles (ref. Def. 1; no. 5 in
particular). By choosing one parameter as the optimisation the scheme attempts
to add as many columns (bits) to the construction as possible without violating
the constraint. However, compared to Constr. 2, EBF employs a more fine-
grained approach by locally searching for the optimal vector, check by check.
By means of a greedy approach,16 it is possible to solve the construction problem
in polynomial time, as opposed to other, often exponential solutions.

This improvement enables one to construct more extreme codes than what
is generally possible using other algorithms. In comparison with other schemes,
EBF shows competitive results, often even outperforming the competition.17

As an example, we consider a regular construction which is optimized on
girth, G(H). Given parameters (m, g, γ(x), ρmax) locally good (not necessarily
locally optimum) column vectors of length m (and weight ⌊mγi⌋) are found,
and added to H . In this example, vectors must satisfy the requirements that
no row vectors outweigh ρmax (regularity), and the girth of the graph remains
g ≤ G(H) ≤ ḡ (optimisation). Here, ḡ is an upper bound on G(H).

In its straight-forwardness of design, EBF is a quite versatile algorithm which
can easily be modified to optimise on other parameters. For instance, there is
often the need for maximum-rate codes where we try to minimise m, while all

16Where local decisions are based solely on the information currently available–the state of
the construction so far–“in hope of finding the global optimum.” [40]

17At the time, Campello et al. used the codes of MacKay’s design [41] as a test of strength.
See Sect. 4.7 for our results.

44

4.5 Bit-Filling

other parameters are fixed. In other scenarios we may be forced to operate
at a given rate, where the aim might be to maximise girth. In addition to
the above example, Campello et al. demonstrated irregular constructions by
fixing a column weight sequence, γ(x); and graphs of maximized girth by using
a technique of “relaxing” girth, which we will discuss in the following. This
flexibility is perhaps the most interesting aspect of the EBF algorithm. In the
following discussions we will focus on the optimisation of girth, and later show
how EBF is applied to other frameworks.

4.5.1 Heuristics: Adding Variables

Quite conventionally, H is ’grown’ one column at a time. When column hi

corresponds to bit node vi in the graph, this is analogous to selecting ⌊mγi⌋
unique check nodes from the pool,

F = VC \ {U ∪ Ā}. (4.12)

The checks in F are refered to as feasible, indicating that they may safely be
connected to bit vi without violating the main design constraints girth and row-
weight. Infeasible checks are stored in U and Ā, which are defined in Constr.
4.5.18 The idea is that, by maintaining thorough ’bookkeeping’ (4.12), we can
add the next check in constant time; alleviating the need for complex look-back
schemes. In short, this is achieved by updating (4.12) after connecting each
bit, using an efficient look-ahead search which will be discussed shortly.

We find it more convenient to focus on the graph representation of the con-
struction problem, so designing column hi is thought of as identifying ⌊mγi⌋
feasible checks to connect to bit node vi. These checks are kept in a ’workspace,’
U1, and, at completion of this bit, these are written to column hi of the underly-
ing matrix, H . Since we must avoid double edges19 in the graph, the workspace
is a part of the exclusion set, U . The notation U1 also reveals a partitioning of
U , which will also be discussed later.

There is a subtle distinction between the exclusion sets U and Ā. Checks
in the former set are deemed infeasible due to the threat of closing cycles. As
we move on to the next bit, vi+1, it is obvious that the first edge can not close
any cycle, since it is a ’dead-end,’ deg(vi+1) = 1; as node vi in Fig. 4.7. Hence,
we reset U at the end of each completed bit (Constr. 4.5). On the other hand,
once a check has reached its maximum degree, ρ, it is permanently excluded by
moving it to Ā. This set is never purged. In this sense, the weight constraint
is more strict than the girth constraint, as i → N . However, it is important to
observe that the number of checks excluded due to girth does also grow with i,
which is seen when we update F after connecting the first check to vi+1.

The success of a greedy algorithm depends on the quality of the heuristic
choices made during each iteration, and Campello et al. explore several ap-
proaches. The EBF algorithm works independently of the heuristic used, so any
such scheme can be ’plugged in’ as needed. The heuristics suggested in [1] are

18The original description [2] defines A, the set of (feasible) checks that are not fully con-
nected. We find it more intuitive to refer to the complementing set, Ā.

19Column hi is prescribed ⌊mγi⌋ unique non-zero entries; hence, no double edges in G.

45

4.5 Bit-Filling

Definition 2 Constructions of Maximized Girth; Problem I.2 in [1].

Suppose that we are given positive integers m, N , ρ, and γ(x). We would like
to construct a m×N parity check matrix H with the largest possible girth g ≤
G(H) ≤ ḡ such that H has exactly ⌊mγi⌋ ones in the i-th column, 1 ≤ i ≤ N ,
and at most ρ ones in each row.

motivated by the desire to keep row weights ρj as homogenous as possible, by
picking each c⋆ among the feasible check nodes least used so far. This “first-
order heuristic,” called 1-h, is shown to “yield quite competitive codes,” and is
part of our EBF implementation. Campello et al. extend this method towards
“complete-homogeneity” (c-h) by optimising the local choices; i.e. trying to
identify the very least connected check in F . The search space is thereby re-
duced to F1 ⊆ F , consisting of the checks in F that have the sparsest neighbour-
hood. Next, F2 ⊆ F1 is produced by considering the degree of the neighbouring
checks of those in F1. In general, Fj ⊆ Fj−1 by keeping only those checks that
have the minimum-degree neighbours. The optimal (i.e., least connected in G)
check is found as soon as some subset contains one check; |Fl| = 1, l ≥ 1. If, at
some stage, l, |Fl| > 1

∧ |Fl+1| = 0, the search fails and we apply 1-h (select
randomly) over Fl; which is still an improvement over applying 1-h over the
entire F .

4.5.2 Maximising Rate

Simulation results in [1] (and those observed in this thesis) indicate that EBF
is quite competetive. Aside from the convenient reduction in complexity, what
discerns EBF from other construction schemes is the flexibility in what param-
eter one wants to optimize. In the original publication of the BF algorithm
[2], this objective was formulated as maximising rate such that G has girth
G(H) exactly equal ḡ = g.20 By fixing parameters m and g′, the construction
proceeds in adding columns until, at some bit, vi, the girth bound is violated.
Since N–the actual number of bits we are able to construct–is unknown, the
column-weight sequence γ(x) is undefinable, and all columns must have equal,
fixed weight, γ. On the other hand, since ρ is obviously dependent on N , no
restriction can be placed on the row weights [2]. Hence, the codes produced in
this setting can not be irregular (due to columns), nor completely regular (due
to rows).

4.5.3 Maximising Girth

In this detailed discussion of the EBF algorithm, we will maintain focus on the
optimised-girth constructions. The EBF version of the algorithm was designed
more or less exclusively with the aim of solving the problem of maximizing
girth–see Def. 2.

In short, EBF solves problem I.2 by repeatedly applying the original BF
algorithm over a floating girth bound which is allowed to decrement from ḡ to
g. At this point, it is valuable to use the result of (4.11) to bound the maximum

20A lower bound of, say, g = 4, means “no 4-cycles.”

46

4.5 Bit-Filling

girth. By letting ḡ = gmax, we avoid wasting time working with girth bounds
that are inachievable given design parameters R and γ(x).

Even though the extended version (EBF) is improved to resume construction
if it gets stuck, it is important to note that it is not an improvement on the
main design problem–avoiding the minimum (length-g) cycles. EBF can only
resume construction while g′ > g, in which cases BF would proceed undisturbed.
However, the general assumption is that EBF might produce codes of slightly
higher girth than the prescribed minium bound, g. In order to continue, and
possibly complete the construction (all N bits), EBF must accept the presence
of ever smaller, yet all acceptable (g′ > g), cycles in the graph. Even though
there are different opinions on the actual effect of feedback in SPA decoding,
there is consensus in that very small cycles will negatively affect performance
(assuming a ’flooding’ schedule–see Ch. 8). In summary, EBF, like BF, does
work with a lower bound on girth, g; at which point both algorithms will fail.

4.5.4 Look-ahead; the sets Uj and Nc

As mentioned, the first connection to a bit node, vi, can not possibly close any
cycle in Gi−1. Hence, U–the set of infeasible checks due to the girth constraint–is
reset at the beginning of each bit;

U = ∅, (4.13)

such that F is updated according to (4.12). In this section, we will show that
as long as U and F are maintained, no subsequent connections to vi can close
any cycle.

Since the construction process is conducted strictly from the perspective of
the check nodes, we define ’neighbours’ as two or more checks that are con-
nected via the same bit. This bit is, then, defined as their ’parent.’ Since we
normally wish to avoid 4-cycles in G, we may assume that any pair of checks
has at most one parent. Otherwise, if two checks were connected via several
bits, we would–per definition–have a 4-cycle.

After connecting the first check, c⋆
1, to vi, effort is made to look ahead and

exclude from F all checks that, if also connected to vi, would close any cycle of
length ≤ g′. To this aim, two sets are meticulously updated; Nc–the neighbours
of c; and Uj–those checks in Gi−1 threatening to close a cycle of length 2j. In
order to avoid small cycles, a breadth-first traversal (BFT, Def. 3) from each
new c⋆ identifies all neighbours within a radius of g′−2 edges21 from the checks
in U1. BFT has complexity O(|V | + |E|) [42], so the complexity of connecting
γ(i) checks to bit vi is

O((m + i)γ(i)). (4.14)

Fig. 4.7 illustrates the situation after connecting c⋆. The look-ahead function
needs accurate information on the neighbours of each check in G, so the process
begins by updating N -lists. The new edge links c⋆ (via vi) to all/any previous
checks c′ ∈ U1, and, conversely, links each c′ to c⋆:

Nc⋆ := Nc⋆ ∪ U1 \ {c⋆},
Nc′ := Nc′ ∪ {c⋆}, ∀ c′ ∈ U1 \ {c⋆}. (4.15)

21Or, equivalently, since G is strictly bipartite, g′/2 − 1 hops (check → bit → check) away.

47

4.5 Bit-Filling

Definition 3 Properties of Breadth-First Traversal (BFT).

1. All neighbours of c⋆ within a radius of g′ − 2 edges will be identified, and
marked infeasible.

2. The traversal finds the minimum distance (from vi) to all neighbours of
c⋆.

Figure 4.7: The sets U and N after connecting c⋆ to vi; Nc0 = {c1, c2}, Nc1 =
{c0, c2, c3, c4}, Nc2 = {c0, c1}, Nc3 = {c1, c4, c

⋆}, Nc4 = {c1, c3}, Nc⋆ =
{c3}, and Nc6 = ∅.

The neighbours of c⋆, c′ ∈ Nc⋆ , threaten to close cycles of length 4. If g′ ≥ 4
(which is normally the case), this would violate the girth bound, so these checks
are appended to subset U2. Next, c′′ ∈ Nc′ at a distance of j +1 = 4 edges from
c⋆, threaten to close cycles of length 2j = 6. If g′ ≥ 6, then these checks are also
infeasible, and are appended to subset Uj = U3. Continuing in this fashion, we
encounter all checks that are infeasible according to the current girth bound.
The search stops when j = g′/2, since we must accept cycles of length > g′ ≥ g;

Uj =
⋃

c′∈Uj−1

Nc′ , 2 ≤ j ≤ g′/2 (4.16)

where U1 is the current connections to vi, such that;

U =

g′/2
⋃

j=1

Uj . (4.17)

When N and U are updated carefully, we can safely select the next c⋆ from
F according to (4.12). Each subset Uj can be viewed as a protection against
currently unwanted cycles of length 2j ≤ g′.

The degree of check-nodes is upper bounded by ρ, and the look-ahead func-
tion explores neighbours within a maximum distance of g′−2 edges. Hence, the
complexity of updating U according to c⋆ is

O(g′ρ). (4.18)

48

4.5 Bit-Filling

Figure 4.8: All m = 7 checks infeasible; F = ∅.

As an example, let g′ = 12 which gives a search radius of j ≤ 6. Using the
graph of Fig. 4.7, we note that the checks in U4 have no unexplored neighbours
(U5 = ∅), so the updating can stop early at these “dead-ends.”

To guarantee safe selection from F , the EBF algorithm requires that Def. 3
(BFT) is satisfied.

4.5.5 Relaxing Girth

As a steadily increasing number of bit nodes are randomly connected to a con-
stant number of check nodes (that is also smaller, m < N , R < 1), it becomes
increasingly difficult to avoid cycles of length ≤ g′ in the graph. Consider the
situation of Fig. 4.8 where all m checks are infeasible, such that (4.12) gives,

U = VC \ Ā ⇐⇒ F = ∅. (4.19)

At such points–where BF construction fails–the EBF construction is able to
resume construction for as long as g′ > g. To do so at the minimum expense
(in terms of girth), the least threatening checks are freed from U , and put back
in the pool, F . These are the checks that threaten to close the longest cycles
(length g′) in the graph. The girth bound is relaxed to

g′ := g′old − 2. (4.20)

[1] suggests the freed checks are identified by reconstructing U (4.13) - (4.17)
[2, 1] based on the current contents of U1. Since U now only encompasses the
checks out to the reduced search radius, any checks at a distance of g′ edges
from U1 will necessarily be ’left behind’ in F . This means that the procedure
will move precisely the checks in Uj to F .

Note that is it quite possible that the corresponding subset, Ug′

old
/2, is empty.

For example, consider the situation of Fig. 4.8, as, say, g′old = 12 is relaxed to
g′ = 10. However, Ug′

old
/2 = U6 = ∅, so no checks turn out to be freed. Hence,

F remains empty, and the reconstruction of U was wasted. As the algorithm
tries to resume construction, this will immediately trigger an additional relax-
ation step (4.20). In the original EBF description [1], this process is repeated

49

4.6 Extending the Bit-Filling Algorithm

until at least one check is freed allowing construction to continue. Hence, girth
can drop several steps within one and the same bit, each time at at the cost of
reconstructing U (4.14).

During EBF execution, girth is allowed to drop from ḡ to g, i.e., a maximum
of (ḡ − g)/2 times. In our experience, girth will normally drop to its minimum
value, g.22 Furthermore, since each relaxation step requires a complete recon-
struction of U “from scratch” (even in those cases where F remained empty), it
is obviously valuable to streamline this operation.23 By seperately storing the
subsets, U1 through Ug′/2, we were able to improve efficiency by never recon-
structing the sets.

In the remainder of this chapter we will discuss our modifications to the
Bit-Filling algorithm.

4.6 Extending the Bit-Filling Algorithm

The process of resuming construction can be performed in a more efficient man-
ner simply by exploiting information already available in U . While implementing
the EBF algorithm, we encountered several interesting improvements which we
describe in this section. The aim of our adjustments are to further improve the
look-ahead (BFT) function, see Def. 4.

The EBF algorithm does not explicitly require neighbours to be placed in
their correct subset, however, maintaining this order does not require any addi-
tional computations, and can be used to increase the efficiency of the algorithm.
This stronger requirement is used in the end of this section, where we introduce
our modifications to the EBF algorithm.

Also, in this section, we discuss some augmentations to the scheme, which
allows it to perform further tasks.

4.6.1 Improvement 1: Relaxing Girth

The crucial point of the improvements is to never reconstruct the entire set
U . To achieve constant-time girth relaxation, as described in the first part of
Def. 4, we modify the look-ahead function (BFT) so that it satisfies the second
requirement. First, it is important to underline that breadth-first traversal from
c⋆ (as described in the original EBF [1]) already provides us with the information
required for the improvements. The first property of Def. 3 is sufficient to avoid
cycles of length ≤ g′; whereas the second determines the exact “threat level,”
τ , of each infeasible check. Define

τ(c) =

{
t if c ∈ Ut

0 if c ∈ F
(4.21)

In the aim of maximizing girth, shorter cycles are more harmful. Consequently,
we interpret low values of (4.21) as high threat levels.

As connections are added to the current bit, vi, BFT indentifies all checks
in G that are infeasible due to the particular choices in U1. As the traversal

22Even then, EBF often requires repeated attempts to complete a construction; see Ch. 7.
23Note that, in [2, 1], it does not appear as if this layer-information explicitliy used.

50

4.6 Extending the Bit-Filling Algorithm

Definition 4 Improvements to the Extended Bit-Filling algorithm.

1. Immediately identify the “outermost” nonempty subset, Ujmax (4.22),
such that girth can be relaxed in one operation.

2. Never reconstruct U ; the look-ahead function is modified to handle any
necessary changes in U during the normal update according to c⋆ only
(and not the entire U1).

“fans out” from U1, (4.16) - (4.17), all neighbouring checks within a radius of
g′/2 − 1 hops (a hop is two edges) are stored in U . We observe that BFT can
be stopped early if–at some point, j < g′/2–we run out of neighbours to visit.
Define jmax as the index of the ’outermost’ non-empty subset;

jmax = max
2≤j≤g′/2

{ j : Uj 6= ∅ ∧ Uj+1 = ∅ }. (4.22)

Note that, if Uj+1 = ∅, then–by neccessity–all subsequent subsets must also be
empty, since Uj+1 leaves no neighbours to follow further. The stopping terms
of both (4.16) and (4.17) can now be changed to read

2 ≤ j ≤ min(g′/2, jmax), (4.23)

such that BFT may terminate as soon as possible.
According to (4.23), the search is stopped early when there are no further

unexplored edges, indicating that the distance (in hops) from U1 to its outermost
neighbours may be ≤ g′/2 − 1. To satisfy the first improvement of Def. 4, we
simply require BFT to keep track of where it terminates. jmax (4.22) is defined
as the index of the outermost non-empty subset, at a distance of jmax − 1 hops
away from U1. This gives,

Ujmax 6= ∅, and, Ui = ∅ , ∀ jmax < i ≤ g′/2. (4.24)

When we need to relax girth, we avoid repeatedly decrementing g′ since we
already know jmax. (4.23) immediately identifies the neighbours posing the
minimum threat, namely Ujmax , and girth is relaxed in one step to

g′ := 2jmax − 2, jmax ≤ g′old. (4.25)

Hence, by slightly augmenting the normal bookkeeping (BFT) procedure of
EBF, we are able to relax girth in constant time, using (4.22) and (4.25).
Hence, we have satisfied the first demand of Def. 4.

4.6.2 Improvement 2: Updating U

According to the second demand of Def. 4, we wish to avoid reconstructing
U (from scratch) as a part of relaxing girth. We have seen how to immedi-
ately identify the checks that are to be freed, but what happens when we skip
reconstruction, and simply proceed with the construction?

The next connection, c⋆
2, will be selected from these recently infeasible checks,

which suddenly places c⋆
2 in the most immediate subset, U1. This, in itself, is not

a problem since we have already accepted the presence of cycles of length 2jmax

51

4.6 Extending the Bit-Filling Algorithm

Figure 4.9: After connecting c2, the regular updating of U handles any reorder-
ing of subsets; note the grey checks have been “moved down” to their correct
subsets.

edges (or, jmax hops). However, the neighbourhood of c⋆
2, is now reachable via

a shortcut–namely, via the new edge, (vi, c
⋆
2). Keeping with the second demand

of Def. 4, we need to avoid “reconstructing U from scratch” [1] after each girth
relaxation; saving a total complexity of O(|U1|g′ρ) (ref. (4.18)). To account
for shortcuts without reconstructing U , we need BFT to make the necessary
adjustments to U during the normal updating according to c⋆

2. We will now
discuss the second demand.

Returning to the example of Fig. 4.8. At the start of bit v3, the graph is still
acyclic, g′ = ḡ. After connecting the first check, c5, and updating the proper
N -lists (4.15), all checks become infeasible; i.e.,

U1 = {c5}
U2 = Nc5 = {c3, c6}
U3 = Nc3 ∪ Nc6 = {c1, c4}
U4 = Nc1 ∪ Nc4 = {c0, c2}
U5 = Nc0 ∪ Nc2 = ∅.

As we know from (4.10), v3 should be expected to close one/several cycles of
maximum length, gmax = 8. This coincides with (4.22), which yields jmax = 4,
and we relax girth according to (4.25) giving g′ := 6, meaning “no 6-cycles.”
Now, construction can resume with F = U4.

Consider what happens if we simply proceed with the construction at this
point without reconstructing or updating U . Say the next connection is c2, as
illustrated in Fig. 4.9. Using (4.16) - (4.17) we would add c2 to U1, and c0 to
U2. However, the rest of Nc2 = {c1, c5} is already in U (as opposed to being
’free,’ in F), so the procedure would stop, wrongfully leaving c1 in U3. Again,
F = ∅, and the second relaxation step (g′ = 4) would free U3 = {c1, c4}, even
though c1 will close a 4-cycle. Somehow, c1 must be moved down to U2 so that
its true threat-level is respected, and we do not risk mistakenly closing unnecce-
sarily short cycles.

52

4.6 Extending the Bit-Filling Algorithm

After connecting a new check, c⋆, the BFT processes its neighbours, Nc⋆ .
However, to avoid situations as above, we suggest a simple modification of re-
processing those checks that are obviously posing new threat-levels. These can
be identified by checking (4.21). In short; while processing the new c⋆, BFT
detects any ’shortcuts’ in U ; moves those checks down to their correct subset;
and, process the neighbours of these particular checks only. Since BFT now
re-processes only those checks that are necessary, we have satisfied the second
demand of Def. 4, and the update is optimal. This is yet another improvement
to the EBF algorithm. To be precise, we change the BFT rules from (4.16) -
(4.17) to,

Uj = Uj

⋃

Unew
j \ Uold

j , 2 ≤ j ≤ min(g′/2, jmax) ∧ Uj−1 6= ∅, (4.26)

using the stopping rule of (4.23). Also, the update stops early if there are no
further neighbours to (re)process. In compliance with Def. 4, the update is
based on c⋆ only, and,

Unew
1 = {c⋆},

Unew
j = { c ∈ Nc′ : c′ ∈ Unew

j−1 ∧ (τ(c) = 0 ∨ τ(c) > j) },
Uold

i = { c ∈ Nc′ : c′ ∈ Unew
j−1 ∧ τ(c) = i > j }. (4.27)

Note that this scheme also contains the normal look-ahead function; by pro-
cessing all ’undetected’ neighbours for which τ(c) = 0. Only when the updating
(4.26) is complete, c⋆ is added to workspace U1.

Continuing with the previous example; after connecting c2, the following
updates are made to U . First, we note the stopping term (4.23) gives 2 ≤ j ≤ 3.
As prescribed, BFT begins at j = 2, with Unew

1 = {c2}. Nc2 = {c5, c0, c1}, so
(4.27) checks the threat-levels of these checks. τ(c5) = 1 < j, so we do not
consider this check further. However, τ(c0) = 4 > j, so we move this down to
U2, and mark it for reprocessing. Also, τ(c1) = 3 > j, so this is also moved
down. For j = 2, (4.26) - (4.27) give

Unew
2 = {c0, c1}, and, Uold

2 = ∅, such that,

U2 = U2 ∪ Unew
2 = {c3, c1, c0, c6},

Uold
3 = {c1}, and,

Uold
4 = {c0}. (4.28)

Next, j = 3 with Unew
2 = {c0, c1}. Since the stopping criterions of (4.26)

have not been met, we process Nc0 = {c1, c2}. Since τ(c1) = 2 < j, and
τ(c2) = 1 < j, c1 and c2 are not considered further. Also, Nc1 = {c0, c2, c4} all
have threat-levels ≯ j, so neither are these considered further. Now, Unew

3 = ∅
and we have no ’fresh checks’ to process further. Simultaneously, at this point
j = g′/2 = 3, and we have reached the boundaries of the new search radius, so
the updating stops by updating U1 = U1 ∪ {c⋆} = {c5, c2}. The updated (and
safe) U is now

U1 = {c5, c2}
U2 = {c0, c1, c3, c6}
U3 = {c4}.

53

4.6 Extending the Bit-Filling Algorithm

Since F = ∅ once again, we may safely free the outermost subset, which
in this case is U3, without risking cycles of length < 2g′old = 6. By using
the information already available, the added complexity of reducing girth by
reconstructing U (4.14) is alleviated–at no extra cost to the regular BFT ’look-
ahead’ function.

4.6.3 Extension 1: Local Girth Detection

The EBF algorithm focuses on avoiding cycles (in G) of length g <≤ g′ ≤
ḡ. Each time the running girth bound is relaxed g′ := g′old − 2, we ’accept’
the presence of one (or several) length g′old cycles, and proceed with the new,
moderated aim of avoiding length g′ cycles (where g′ < g′old). Our modified
BFT guarantees that all ’infeasible’ checks are in their correct, minimum subset
of U . Following a girth-relax, we have that F = Ujmax–the least threatening
checks–so we know that the next c⋆ closes a cycle of length 2jmax edges (or,
jmax hops).

If EBF construction succeeds, the girth of the graph is G(H) = g′ + 2 > g.
However, girth is (per definition) only a lower bound on the length of the cycles
in G, and there will obviously be longer cycles in G, and it can be valuable to
know the more fine-grained girth profile of the graph. The girth of bit v, gv, is
defined as “the length of the shortest cycle [in G] that passes through v” [43]
(see also Ch. 8). Considering the bit-by-bit and girth-by-girth construction
of EBF, we suggest an extension to the algorithm which, again, uses already
available information to keep a running track of the girths of all bits. Prior to
construction, we initialize all bits with the maximum cycle length according to
m; gv = gmax (4.11).

Returning to the example of Fig 4.8 where, as discussed, the graph is acyclic
in the first ι = 3 bits. Next, the first edge connected to vι+1 can not close
any cycle, so the graph is still acyclic after connecting c5. After updating U on
c⋆ = c5, using (4.26) - (4.27), we have,

U1 = {c5}
U2 = {c3, c6}
U3 = {c1, c4}
U4 = {c0, c2}.

Once again in this small example, all checks are infeasible, and we must relax
girth in order to proceed. (4.23) gives jmax = 4, such that (4.25) gives g′ := 6,
and EBF proceeds with F = U4 = {c0, c2}. As the next check, c2, is connected,
we know that we close one or several 8-cycles–the question is then which bits are
affected by these cycles? Incidentally, these are the ’shortcuts’ through U which
the modified BFT is designed to avoid (4.26) - (4.27). Using the information
in U before updating on c2 (BFT), we may enumerate these 8-cycles by tracing
the paths from c2 ∈ U4, all the way down to U1.

Define the look-up table π as containing the parent (i.e., bit node) of all
pairs of check nodes is G. I.e., π(ca, cb) = i iff ca ∈ Ncb

∧ cb ∈ Nca
; otherwise,

π(ca, cb) = −1. Define Lj as the check(s) connecting two adjacent subsets, Uj+1

54

4.6 Extending the Bit-Filling Algorithm

and Uj ,

Lj =
⋃

c′∈Lj+1

⋃

c∈Uj

{ c : π(c′, c) ≥ 0 }, 1 ≤ j < jmax, (4.29)

where Ljmax , {c⋆}, only. Note that the total number of cycles is determined
by the number of links between any adjacent subsets; i.e., as n = |Lj| for any
1 ≤ j < jmax (excluding Ljmax , which is defined of size 1). All cycles are
obviously closed via the current bit, vi.

(4.29) enumerates all checks that are part of the n cycles, of length gv =
2jmax − 2. The bits that comprise the other half of the nodes in these cycles
are exactly those found in (4.29), where π(c′, c) ≥ 0. The EBF ’look-ahead’
guarantees that there are no shorter cycles in G, hence, gv must be the girth of
these bits; where girth is (again) defined as the length of the shortest cycle.

Continuing the example, where we have jmax = 4 and the current bit node
is v3. Beginning with L4 = {c2} (as defined), we work our way down towards
U1, finding (4.29),

L3 = {c1} ⇔ π(c2, c1) = v0

L2 = {c3} ⇔ π(c1, c3) = v1

L1 = {c5} ⇔ π(c3, c5) = v2. (4.30)

We have thereby enumerated all bits that are ’touched’ by the new cycle,
and may update their local girths correspondingly. For illustrational purposes
only (the edges are irrelevant), we output the n = |L3| = |L2| = 1 cycle of
length gv = 8. By appending the current bit, v3, to both ends of (4.30) we
have,

v3 → c2 → v0 → c1 → v1 → c3 → v2 → c5 → v3.

Using EBF to update the local girths of bits during construction adds only
a constant overhead to the update (4.26) - (4.27). As emphasized above, the
purpose of this extension is not to enumerate the cycles occurring in G, but
rather to ensure that the (augmented) EBF scheme terminates with the precise
girth of each bit, which–as we will discuss further in Ch. 8–can be used to
facilitate SPA decoding.

4.6.4 Extension 2: jumpBack

As indicated by the results of Ch. 7, the Bit-Filling algorithms often require
many executions before completing constructions. The original EBF algorithm
[1] is identical to ’regular’ BF [2] in the way it handles failed constructions; both
discard any incomplete work and initiate a new attempt “from scratch.” When
working with heuristic algorithms, it is often possible to reuse at least parts of
the failed work as a basis for further constructions.

Given the previous discussions on the randomised LDPC construction prob-
lem, it appears as if the ’hardness’ of completing the next bit grows linearily
with i. If so, one could claim that some proportion of constructions, say the first
70 percent of the bits, is almost independent of the overall construction prob-
lem. It is within the final part of G that the random choices have the most dire
consequences, making this an appropriate focus for computational resources.

55

4.6 Extending the Bit-Filling Algorithm

j 0 1 2 3 4 5 6 7 8
g′ 20 18 16 14 12 10 8 6 4 . . .
i′ 5 5 7 9 10 10 10 – –

Table 4.1: The BFT is extended to also keep track of where the girth-bound
was relaxed, such that we may resume construction from any position vi′ .

By simple bookkeeping, it is possible to resume construction from any ar-
bitrary bit. Since we will resume construction from the beginning of a bit, we
know that we can immediately reset U and F according to (4.12) and (4.13).
Furthermore, we will need to strengthen the girth bound (oppsite of relaxing)
to make up for the relaxations which led to g′ < g and failure. In order to be
able to ’jump back’ to any bit i′ < i, we will need to keep track of the positions
i where girth was relaxed. Defining the look-up table

r[j] , position (bit) where g′ = ḡ − 2j, 1 ≤ j < g′/2. (4.31)

When resuming from position i′, we can immediately strengthen g′ to

g′ = ḡ − 2l : l = max { i : r[i] ≤ i′ }. (4.32)

Recall that girth may very well have been relaxed several times within one
and the same bit. Consider a small example, where, say, ḡ = 20. At position
(bit) v10 the construction fails; see Table 4.1. Say we want to resume construc-
tion from i′ = 8 (v8), we find that (4.32) gives r[2] = 7 ≤ i′ = 8, such that
g′ = 20 − 4 = 16; which corresponds with Table 4.1.

Resuming construction from bit vi′ involves the repeated ’unplugging’ of all
bits vi, i ≥ i′. Removing the edges connecting bit vi to G, is mainly a matter
of bookkeeping on the row-weight exclusion set, Ā, and the neighbour-sets, Nc.
Recall that the underlying H-matrix is defined as an adjacency matrix of G, so
we determine the connections to be removed by inspecting the corresponding
column of hi′ ;

U
(i′)
1 = {cj : Hj,i′ 6= 0, 0 ≤ j < m}. (4.33)

Since we have no double edges in G, we adjust Ā by simply reducing the

degree of each check c ∈ U
(i′)
1 by one;

Āc := Āc − 1, ∀ c ∈ U
(i′)
1 . (4.34)

Also, we need to undo the bookkeping of N -lists, (4.15). To avoid having to
scan through the columns of H once again, we perform this simultaneously with
(4.34). In our EBF implementation we consequently append (using (4.23)) to
the neighbour-lists as new connections are registered. By simply stripping off
the final Āc − 1 entries of Nc, we remove all/any edges previously connecting c
to the expired bits;

Nc := Nc \ { final Ā′
c − 1 entries of Nc }, ∀c ∈ U i′

1 . (4.35)

56

4.7 Results

γ m N
Bit-Filling

MacKay I II III Av. Att’s ρmax

3 60 492 485 489 512 467 791 27
3 62 495 483 508 550 500 3615 28
3 90 998 1087 1120 1171 1085 2641 40
3 100 900 1339 1353 1452 1351 231 45
3 111 999 1636 1717 1786 1677 1801 50
4 222 1998 2752 1967 3164 2970 4531 58
4 282 4376 4821 4867 5128 4809 1932 83
4 300 4096 5499 5499 5867 5473 3552 87
4 444 3584 12360 12370 13035 12429 1007 128

Table 4.2: Maximising rate using EBF, compared to results of MacKay.
Columns labelled ’I’ and ’II’ are from [1], while our results are in the right-
most subtable, starting with the column ’III.’ All codes optimized on girth,
g = 4 (giving G(H) = 6).

This process (4.34) - (4.35) is repeated until we reach the ’destination bit,’
i′. At this point, the construction has been reset to the beginning of bit vi′ ,
and can proceed without any further considerations. The look-up table (4.31)
is then overwritten (according to BFT) from this position i′, to facilitate future
’jumping back.’

4.7 Results

The Bit-Filling algorithm (BF), and it’s extended version, EBF, were success-
fully implemented using C++. As “main heuristic,” we chose the “first-order
homogeneity,” 1-h [1].

4.7.1 Maximizing Rate

In assessing the performance of our version–without modifications described in
Ch. 4.6.4–we reproduced the results of [2], in which EBF is compared to the
results of MacKay [41] in terms of maximized rate. By running EBF 5000 times,
keeping the optimal (highest N) code, our results showed improvement over the
original EBF results;24 see Table 4.2.

Our data is presented in the rightmost subtable, along with results on the
average blocklength, followed by the number of constructions (in 5000) before
the maximum blocklength was achieved. As in the original table, all codes are
of girth 6 (i.e., no 4-cycles), and, since we were maximizing blocklength, ρ was
left unrestricted. The resulting maximum row-weight is listed in the rightmost
column, and these values are rather in the high-end making the high-rate codes
not as sparse as desirable.

24Even when compared to the “complete homogeneity” heuristic, c-h, which we did not
implement.

57

4.7 Results

γ m N g
II III Att. +2 +4 IV Att. +2 +4

3 408 816 8 8 3 89.0%
84.9%

57.0%
54.2% 8 1 87.4%

84.9%
55.8%
54.2%

3 504 1008 8 8 3 96.0%
91.4%

61.1%
57.9% 8 1 94.0%

91.4%
60.2%
57.9%

4 544 816 8 8 12 66.2%
62.4%

43.5%
40.7% 8 1 65.3%

62.4%
42.9%
40.7%

3 272 408 10 10 2 68.9%
67.2%

56.1%
52.9% 10 15 68.1%

67.2%
54.2%
52.8%

3 544 816 10 10 1 83.3%
79.2%

65.3%
62.4% 10 1 81.1%

79.2%
64.2%
62.4%

3 1280 1920 12 12 103 72.8%
70.7%

61.7%
60.0% 12 127 71.9%

70.7%
61.5%
60.0%

Table 4.3: Maximising girth using EBF, again compared to [2] with our results
in the two rightmost subtables. Column ’IV’ is the results of using the extensions
suggested in this thesis.

4.7.2 Maximizing Girth

The most prominent feature of the EBF algorithm is the ability to maximize
girth. Again, comparing to [3] (g = 6), Campello et. al presented the results of
Table 4.3 in [1]. Our results are in the subtables marked ’III’ and ’IV.’

In all experiments, we bounded girth by [gII , 100], where gII refers to the
value prescribed by column ’II.’ We observed the resulting (maximum) girth over
a total of 5000 runs. In subtable ’III,’ we easily reproduced the published EBF
results using our ’basic’ implementation. This implies that construction must
resume ’from scratch’ after every failure (g′ < gII). Using this same technique,
we were unable to improve the results. Columns ’+2’ and ’+4’ are attempts at
the two successive girths (e.g., if gII = 8, we tried 10 and 12), again for 5000
runs each. The top number shows the maximum completed columns, while
the bottom number is the average over 5000 runs–both as percentage fractions.
However, many came close (> 80% average), so perhaps minor adjustments
to the parameters–such as increasing no. runs; or, increasing ρ–would allow
improvement.

The data in subtable ’IV’ are the same experiments repeated using the mod-
ified EBF algorithm. Here, we use the ’jumpBack’ extension described previ-
ously, with parameters set such that if construction completes > 50% of N
(more than half done), then the following 1.3N attempts will resume from this
half-way point, using this sub-construction as a ’basis’ upon which to try a dif-
ferent set of random choices. Unfortunately, these results are not encouraging,
and show that–in this experiment, at least–the EBF algorithm does not improve
with the jumpBack scheme. However, it should be underlined that it would be
satisfactory to try to adjust the threshold, and see whether improvement could
be found; however, this was beyond what was achievable within the deadline of
this thesis.

58

Chapter 5

Encoding

In order to approach the theoretical limits due to Shannon, Gallager deviced ex-
tremely long, random codes that are also very sparse. This facilitates decoding,
and, as known (and discussed in Ch. 6), the results are still quite impressive.
However, the tradeoff limiting the application of random LDPC codes is the
high encoding complexity.

Encoding contributes to the distinction between LDPC codes of practical
and theoretical interest. The former group is dominated by random codes with
blocklengths of the order 104+, where performance can be made arbitrarily
close to the Shannon limit [12]. Among the latter, more applicable codes, are
the “structured” codes discussed briefly in Ch. 4. Often, these are designed in
such a way as to facilitate efficient encoding using, for instance, Linear Shift
Registers (LFSR’s). Elementary encoding of linear codes is achieved using the
Generator matrix, which, as we saw in Ch. 2, is a O(N2) operation. Structured
LDPC codes are often designed to allow efficient encoding, while random codes
must resort to the basic approach. However, certain efficient sparse-matrix oper-
ations do exist, allowing near-linear time encoding of LDPC codes, which would
otherwise much less useful.

In this chapter, we will look at the process of encoding LDPC codes, main-
taining our focus on random codes.

5.1 Matrix Encoding

In the most basic sense, any [N, k] linear code, C, may be encoded via an1

k × N Generator matrix, G, consisting of k linearly independent rows. The
corresponding [N, N − k] dual code, C⊥, may be used for decoding (see Ch. 6),
and the generator matrix for the null space2 is known as a Parity Check matrix,
H , of C. Recalling that GHT = ~0 mod 2. In other words, any codeword, x, of
C is a linear combination of some subset of row vectors, ~g, and, hence, any such
product xHT must equal 0. Any random k-bit information sequence may be
encoded through multiplication with G. The major concern with LDPC codes

1As we have seen, there are several equivalent matrix representations–an ensemble–for any
given code.

2As discussed in Ch. 2.

59

5.1 Matrix Encoding

Definition 5 Elementary Row Operations [16] used in Gaussian Reduction.

1. (Replacement) Replace one row by the sum of itself and a multiple of
another row.

2. (Interchange) Interchange (swap) two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

is then, simply, that the O(N2) encoding complexity (matrix multiplication)
is disproportional to the streamlined, linear-time SPA decoding. The schemes
explored in this section all share this common bottleneck, and focus mainly on
the preprocessing stage, in preparing the code for use in a system.

Again, we encounter real-life difficulties with the theoretically-poised random
LDPC codes. When aiming at approaching capacity (Shannon limit) as closely
as possible, one is less concerned with the details of the code that is defined by
H , and perhaps more interested in proving some asymptotic behaviour of an
ensemble. As we will see in Ch. 7, we do not need to know the code(space)
in order to simulate Bit-Error Rate (BER) performance. The all-zero, N -bit
vector is necessarily a valid codeword of any linear code (2.1), so one may skip
the encoding process alltogether.

In the remainder of this chapter, we will have a brief look at some ways of
encoding random LDPC codes. Consider a random, sparse m × N matrix, H ,
that is optimised for decoding. For encoding purposes, we need G′, which we
find via Gaussian Reduction (GR, Def. 5) on H , followed by the transformation
(2.2). Any linear dependencies in H will then be ’neutralized’ by GR, and
moved to the bottom of H ′.

Since linearly dependent rows in H may be removed entirely without chang-
ing the codespace, it is apparent that such dependencies are not part of defining
the code. However, redundant protection means overdefined codes, which can
be helpful in the decoding process. Consider this as added protection, in terms
of Parity Check constraints. However, this preprocessing stage (GR) requires
O(N3). An important point is to maintain (row) equivalence between matrices
at all times, otherwise the null space–and, the codespace–will change. For in-
stance, columns of both G and H map to codeword bits, so we may not perform
any column operations when reducing H ′ to standard form. However, this is
only important if we wish to maintain the relationship (2.1) between H and
G. In many cases, it is acceptable to change the codespace by performing the
identical permutations to both H and G. This way, (2.1) is maintained.

5.1.1 Decoding in Standard-Form

Although reducing (GR) H to standard-form may seem to be (and often is) a
textbook description of encoding linear codes, this approach is not well suited
for use with Sum-Product (SPA) LDPC decoding. Say we were to use H ′ to
construct our SPA decoder. From Ch. 4, we are aware of the puzzle it is to
construct good LDPC codes; e.g., girth, density etc. Reduction to standard
form (GR) is not a very ’clean’ transformation, it does not take any precautions

60

5.1 Matrix Encoding

before performing the row operations in Def. 5. Generally, the result is that
the P -part of H ′ is quite dense, which, in turn, means lots of 4-cycles. Also,
the identity-part, Im, translates to m bit nodes of weight 1 (only connected to
one Parity Check node). This means that there is a significant number of bits
that are very weakly protected, meaning that the decoder is unable to produce
a good bias on whether such a bit is ’correct’ (or, conversely, if it should ’flip
its value’).3 Fig. 5.1 show clear indications on the extremely poor results when
decoding on H ′; in particular, Fig. 5.1(a), where performance is worse than
uncoded. Incidentally, this is the converse situation of the highly connected,
’elite bits’ used to motivate irregular LDPC design in Ch. 4. In the systematic
case, the non-systematic bits (weight > 1) may be seen as elite, and converge
easier. However, in this case, they are unable to ’help’ the systematic bits, which
’have no support.’

5.1.2 Appending Im to H

One clean and efficient way to overcome the obstacles of row-reducing H is to
simply alter the construction perspective. Using the EBF (or similar scheme),
we construct only the P -part of H ′. We may then augment the sparse, random
m × N (sub)matrix to a m × (N + m) standard-form Parity Check matrix by
simply appending Im to P . Similar to the definition of G′, we note how the
identity part ensures that the resulting H ′ has full rank, m = N − k; regardless
of the original rank of P . If desired, blocklength N may be preserved by simply
designing P as an m × (N − m) matrix.

It is easily proven that the augmented matrix, H ′, maintains the important
design characteristics of P , such as girth, density, and blocklength (as described
above).

Starting with girth; consider the original, optimized construction, P , with
girth G(H). The ’extra’ submatrix, Im, consists of weight-1 pivot columns, each
with a non-zero entry in an unique row (along the main diagonal). Considering
the graph representation of H ′, no cycle of length ≥ G(H) can ever be extended
by going via any systematic bit because each of these are ’dongles,’ or dead-
ends. In other words, no path entering a systematic bit can ever proceed further
without going back along the same edge. Hence, it is not a cycle (as defined in
Ch. 2), and the girth remains unchanged.

Where the density of the original matrix is approximately ∆P = mρ
mN = ρ/N ,

the very sparse Im reduces the density of the augmented matrix,

∆H′ =
m(ρ + 1)

m(m + N)
=

ρ + 1

m + N
< ∆P. (5.1)

Finally, there is the question of rank. Say the rank of P is kP < m; i.e., P
contains linear dependencies (not of full rank). As mentioned above, Im inca-
pacitates any linear dependencies in P , such that H ′ must be of full rank, even
when P is singular. Changing k (to k = m) will redefine the code completely.
However, the sparsity of P will usually result in kP = m, such that this is not
an issue. Otherwise, one may protect the underfull rank, kP , by appending a
’smaller’ identity matrix, IkP

to P .

3See Fig. 6.1.

61

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8

B
E

R

Eb/N0 (dB)

Simulation Results over AWGN Channel
45x90, g=6 LDPC Code, 100 Flooding Iterations

Nonsystematic
Systematic

Systematic, GR
Uncoded

(a) Bit-Error Rate (BER).

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8

W
E

R
 (

U
nd

et
ec

te
d)

Eb/N0 (dB)

Simulation Results over AWGN Channel
45x90, g=6 LDPC Code, 100 Flooding Iterations

Nonsystematic
Systematic

Systematic, GR

(b) Undetected Word-Error Rate (WER).

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8

D
et

ec
te

d
E

rr
or

s

Eb/N0 (dB)

Simulation Results over AWGN Channel
45x90, g=6 LDPC Code, 100 Flooding Iterations

Nonsystematic
Systematic

Systematic, GR

(c) Detected WER.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7 8

D
ec

od
er

 E
rr

or
s

Eb/N0 (dB)

Simulation Results over AWGN Channel
45x90, g=6 LDPC Code, 100 Flooding Iterations

Nonsystematic
Systematic

Systematic, GR

(d) Introduced (Decoder) Errors.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 10 20 30 40 50 60 70 80 90

E
rr

or
 D

is
tr

ib
ut

io
n

(%
)

Bits

Bit-Error Distribution; Non-Systematic vs. Systematic
45x90, g=6 LDPC Code

Systematic Bits

7.0dB
6.0dB
4.5dB
3.0dB
1.5dB

Nonsystematic, 4.5dB

(e) Error-distribution.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 10 20 30 40 50 60 70 80 90

E
rr

or
 D

is
tr

ib
ut

io
n

(%
)

Bits

Bit-Error Distribution; Non-Systematic vs. (Reduced) Systematic
45x90, g=6 LDPC Code

Systematic Bits

7.0dB
6.0dB
4.5dB
3.0dB
1.5dB

Nonsystematic, 4.5dB

(f) Error-distribution.

Figure 5.1: Systematic versus non-systematic.

5.1 Matrix Encoding

Fig. 5.1 shows various simulation results comparing systematic and non-
systematic versions of equivalent codes. Both N = 90, k = m = 45 (full rank),
girth g = 6 codes were constructed using the EBF algorithm (Ch. 4), where the
systematic code was constructed by augmenting an m×(N−m) non-systematic
code with the identity matrix, Im. The plots show an unmistakable tendency
towards deterioration in the systematic case; already at BER 10−4, Fig. 5.1(a)
shows a gain of well over 1 dB when comparing non-systematic to systematic
codes. Fig. 5.1(e) reveals the incapability of the decoder to correct errors in the
systematic bits–note the uniform distribution in the non-systematic case. How
this remainder of errors (after decoding) causes such a large gain, is evident
from Fig’s 5.1(b)-5.1(d). First, recall the correlation between sparsity and code
minimum distance, dmin. Fig. 5.1(b) shows an extreme increase in undetected
word-errors; where the decoder converges to a valid codeword other than the
correct, transmitted codeword. If dmin decreases–compressing the codespace, so
to speak–it becomes more easy for the decoder convergence to be pulled into
the ’gravity of nearby codewords.’4 Fig. 5.1(c) show the detected word-error
rate; where the decoder simply ’gives up’ trying to converge to a valid codeword.
The fact that these plots are quite similar, is actually further evidence of the
change in dmin, since this leaves only Fig. 5.1(b) (the undetected WER) as
explanation for the gain. Finally, Fig. 5.1(d) shows the mistakes made during
decoding; again, both codes seem to cause a similar amount of ’internal errors’
(not caused by channel noise).

5.1.3 Standard LDPC Encoding

The basic method for encoding LDPC codes is quite similar to that described
above. To protect the optimised features of the code, it is common to replace
the identity matrix with a more well-defined Parity Check (sub)matrix, C2, that
is invertible5 [32, 44]. We have,

H = [C1 |C2], (5.2)

where C1 ∈ GF (2)m×k and C2 ∈ GF (2)m×m. Since C2 is invertible, it must be
non-singular, thus ensuring that the code has full rank, rank(H) = N − k =
m, k = N −m. The major difference is that C2 is not required to be the identity
matrix, and that C1 can be any random matrix, enabling greater freedom in
constructing a code that is well suited for SPA decoding. Clever design allows
us to calculate G′ without altering H ;

G′ = [Ik | (C−1
2 C1)

T]. (5.3)

With (5.2) - (5.3), (2.1) holds, and we may decode on H (5.2).

If we allow column swaps in GR, it is much easier to produce H ′, and G′.
Denote the ordered sequence of column-swaps performed on H (during GR) as
π, producing the standard-form π(H ′) which gives the corresponding standard-
form π(G′). However, due to the column permutations, (2.1) no longer holds;
π(G′)HT 6= 0. Bit-positions in codewords produced by encoding on π(G′)

4As in the sphere-packing bound, e.g. [24].
5Non-singular and rectangular.

63

5.1 Matrix Encoding

are permuted according to π, and these codewords do not satisfy the code-
membership requirement (2.4). Hence, we must decode using π(H ′); and not
the original, well-defined H .

However, it is possible to ’undo’ the column-swaps, such that the generator
matrix produces codewords that belong to the original code–and H . By applying
the reversed column-swap sequence, π̄, we produce the ’near-standard-form’
matrix, G̃′ = π̄(π(G′)), which ’matches’ the original H (2.1);

G̃′HT = ~0 mod 2.

We may now encode using G̃′, and decode using the original, well-defined H .
Since G̃′ is not in standard-form, and the k information-bits are permuted within
the codeword, the decoder must store a k-bit vector identifying the systematic
bits. This is similar to interleaved codes, and might increase the error-correction
abilities when transmitting over a burst-error channel.

Consider the following example. The random matrix,

H =

1 0 1 1 1 1
0 1 1 0 0 1
0 1 1 1 0 0
0 1 1 0 1 1

(5.4)

turns out to be of full rank, but requires column-swaps to set it in standard-form.
By performing the swaps π = { (3, 4), (4, 5) }, we get π(H ′), and

H =

1 0 1 0 0 1
0 1 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0

→ π(H ′) =

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 0 1
0 0 0 1 0 0

.

We may now produce the (permuted) Generator matrix using (2.2)

π̄(G′) =

[
1 1 0 0 1 0
1 1 1 0 0 1

]

→ G̃′ =

[
1 1 1 0 0 0
1 1 0 1 0 1

]

.

However, we are still left with encoding latency due to the O(N2) matrix
multiplication (2.3).

5.1.4 Efficient Encoding

Richardson et al. [45] have deviced a matrix-oriented encoding scheme which
attempts to exploit the convenient sparseness of LDPC codes, and bring the
complexity down to O(N).

In a preprocessing stage, the approximate lower triangular form, H̃ (our
notation), is produced. This is defined as the partitioned H matrix (still m×N
in total), where the upper-right submatrix, T , is in lower triangular form and
the “gap,” defined as the width of B and D, is as small as possible;

H̃ =

[
A B T
C D E

]

. (5.5)

64

5.1 Matrix Encoding

By allowing row and column permutations only, the sparsity of H̃ is not
degraded; unlike the case with regular GR. Without going into detail,6 H̃ is
processed further, such that the actual encoding process may be performed in
an efficient manner. The codeword, x, is produced as three separate vectors,
where s is the k-bit information part;

x = (s, p1, p2). (5.6)

Parts p1 and p2 comprise the m-bit redundancy, and are now both computable
using optimized, O(N + g2) sparse-matrix operations described in [45]. Here, g
is defined as the ’width’ of the gap in (5.5).

6[45] contains a concise summary of the process.

65

Chapter 6

Sum-Product Decoding

In the Forward Error Correction (FEC) scenario, which we focus on in this the-
sis, we assume that there is no possibility of requesting retransmission of noisy
messages. This one-way restriction is by far the greatest obstacle in achiev-
ing useful transmissions. For instance, in deep-space communications the data
might be subject to only moderate disturbance, and should be expected to arrive
relatively unscathed. However, the transmission time is so great that requests
for retransmission might eventually reach a dead emitter. To compensate for
this handicap, one typically accepts a somewhat higher latency (or delay) in
FEC decoders.

In this chapter we will explore the implications of decoding from a strictly
local perspective. Not only does this refer to the receiver in the one-way FEC
scenario, but also to the internal structure of the decoder itself. Conventionally,
due to the high complexity of decoders in general, most systems currently rely
on software implementations [46]. The distributed structure of Factor Graphs
permits the assembling of a Sum-Product Algorithm (SPA) decoder from local
suboperations only, making LDPC decoders well suited for efficient, low power
hardware implementation. This also improves on precision issues and numerical
instabilities (such as buffer overflow), yet, a typical concern for on-chip design
is the prohibitively intricate cross-wiring prescribed by the large high-girth H-
matrix [47]. This presents a second challenge for designing good LDPC codes
and decoders; how can we improve performance of practically sized codes. From
chapter 4, we have already seen the design of optimized small LDPC codes using
the Bit-Filling algorithm.

6.1 Maximum Likelihood Decoding

In its essence, the decoding problem amounts to finding the valid codeword
which most resembles what was received at the channel output, y. In other
words, find the best estimate codeword, x̂, that satisfies the Maximum Likeli-
hood (ML) condition;

x̂ = max
x′∈C

P (x′ = x |y)

= min
x′∈C

dH(x′ − y), (6.1)

66

6.2 Distributed Decoding on Factor Graphs

where x is the original codeword, and dH the Hamming distance between vectors.
The ML-decoding strategy (MLD) guarantees optimal results1, but requires ex-
haustive search through the vectorspace of the code. Since |C| = O(2N) [48],
this is mainly of theoretical interest–as a benchmark against which to compare
other, more practical strategies.

Another important concept is the distinction between hard and soft decod-
ing. As mentioned in Ch. 3, it is helpful to take advantage of the extra informa-
tion available in the real-valued channel output. Classical decoding will imme-
diately quantize this information into ’hard values,’ to which efficient modulo-2
operations apply (e.g, addition can be performed by simple XOR). By accepting
the added complexity of handling soft information, one achieves an immediate
coding gain of 2 - 3 dB.

6.2 Distributed Decoding on Factor Graphs

In the field of (very) long block codes, such as LDPC codes, one cannot construct
decoders with complexity proportional to 2N , so this renders MLD infeasible.
By observing tree codes, Gallager observed that the decoding process could be
split up into a network of suboperations, each performing only trivial computa-
tions. By allowing the decoding process to propagate through the tree, in one
forward and one backward pass, each node (bit or check) would only need to
communicate with its immediate neighbourhood. Hence, the overall complexity
of decoding N bits drops from O(2N) to O(N2ρ), where ρ is a bound on the
size of the input to suboperations. In this work, Gallager experienced optimum
results with (N, 3, 6)-regular2 LDPC codes; an ensemble that still remains valid
today.

6.2.1 Syndrome Decoding

The prohivitively complex global problem of decoding could be factored–into
a chain of manageable subproblems. One might find it helpful to view local
configurations as minute subcodes, which are interconnected to form the larger,
global code [7]. Valid codewords in C must satisfy all parity check constraints.
The syndrome, z, of an N -bit vector, x̂, (not necessarily a codeword) is an m-
bit vector representing the error pattern that is most likely causing the failed
decoding [49]. Using the Parity-Check matrix, H , we have

z = Hx̂T , (6.2)

where z may be used to locate the bits in error. Recall that we are working
with column vectors (Ch. 2).

The all-zero syndrome indicates that a codeword is found, and–as we shall
see–the Sum-Product Algorithm often realises a very good approximation of
MLD (finding the codeword nearest, in Hamming distance dH, to the transmit-
ted x).

1On the assumption that few errors are more likely than many errors.
2Recall that this is shorthand notation for node degrees, γ and ρ, for bits and function,

respectively.

67

6.2 Distributed Decoding on Factor Graphs

Figure 6.1: The noisy channel symbol from the input bit is adjusted by the bias
of the local constraint nodes. Hence, the tentative decoding is contained in bit
nodes, and its protection is proportional to the size of its support, |n(v)|.

Returning to the discussion and the example in Ch. 2, we have that the
characteristic function, χC(x), conveniently splits into the logical conjunction
(or product) of the individual Parity Check constraints, c0, c1, . . . , cm−1, each
working only on a subset, Ai, of the N bits [22]

χC(v0, v1, . . . , vN−1) = c0(A0) ∧ c1(A1) ∧ · · · ∧ cm−1(Am−1). (6.3)

Since rate R = k/N = (N − m)/N ≤ 1, we have that m < N and, by ne-
cessity, these subsets Ai will overlap. In a tree graph, however, this overlap
is limited to any bit being part of a maximum of 2 parity check constraints.
In other words, there are no back-edges or cycles in the tree. This distributed
solving of interdependent subfunctions is generally referred to as “marginalized
product-of-functions” (MPF), which has been found to be essential in the oper-
ation of a wide variety of algorithms. The marginalization principle is essential
to the reliability of the final solution. Consider a received, noisy vector. The
conservative–and quite reasonable–view is that any given bit is in error; or,
at best, unreliable. As such, we wish to avoid bits “trusting” their current as-
sumptions on what is their correct value, and rather have them work exclusively
with the summary (product) of the information received from the other parts
of the system–see Fig. 6.1. This extrinsic principle (Ch. 2) serves as a variant
of majority logic, where individual bits conform to the influence of their local
neighbourhoods. The distributed structure of a (factor) graph is well suited to
store such input (and output) distributions of maginalized (extrinsic) messages
on the edges connecting any pair of nodes.

Gallager’s acyclic codes (i.e., tree structure) ensure that one can always find
some node whose parents are already processed. Hence, all required messages
to this node would be pending on the input edges, enabling this node to be
processed next. By starting the iteration from leaf nodes, one can unambigously
traverse the entire network in this step by step manner. After completing the
message passing in both directions, the results of the local computations can be
read off at the corresponding bit nodes. In the acyclic case, it can be shown
that the end results are identical to the output of the global problem.

6.2.2 Cyclic Factor Graphs

As established in Ch. 4, the design of good LDPC codes is a challenging task of
balancing girth against the assumption that tree codes have poor performance
(low rate, low minimum distance). In any event, one is forced to deal with a nat-

68

6.3 Sum-Product Algorithm

Construction 4 Gallager’s “Bit-Flipping” Algorithm [4].

For each bit node, vi, count the number of unsatisfied Parity Check nodes to
which it is connected, ei. If all checks are satisfied, end decoding. Otherwise, flip
the value of each bit that is part of more than some threshold, δ, of unsatisfied
checks; i.e., where ei > δ. Repeat the process.

ural presence of cycles in the associated graph. In terms of the MPF problem,
cycles represent undesirable dependencies among variables, making it impossi-
ble to marginalize “cleanly.” This feedback interferes with the MPF principle
of working with extrinsic information only. From the decoding perspective, this
means that an erroneous bit indirectly will influence the bias from its support
(via the cycle). However, the ’strength’ of this feedback does become ’watered
out,’ as the information is moderated (within bits) underway around the cycle.
This is one way of explaining why shorter cycles are more damaging than larger
cycles. However, although (acyclic) tree codes have optimum performance in
SPA (no feedback), the application of these codes is limitied due to the more
fundamental problem of their low minimum distance.

Regardless of feedback, experience has concluded that MPF performs sur-
prisingly well on typical, cyclic LDPC codes. In a cyclic graph (i.e., non-tree),
individual codebits are checked by > 2 different Parity Checks. Such dependen-
cies of variables (bits) were initially expected to have a corruptive effect on the
accuracy of the MPF algorithm. However, as experiments concluded, the pro-
cedure is extremely robust. By only avoiding the most severe feedback (cycles
of length ≤ 4), end results are found to converge to the correct value with quite
acceptable precision [4].

It should also be pointed out that in decoding, as opposed to, say, artificial
intelligence networks where MPF is used to perform belief propagation, one
is already working in a noisy environment, and is less sensitive to imprecision
in calculations. After soft, iterated decoding, a hard-decision (quantization to
binary bits) of the MPF output is required to produce the decoded data block.
Hence, a strong inclination (P (e) > 50%, entropy < 1) towards the correct value
is sufficient to decode a bit.

6.3 Sum-Product Algorithm

In [4], two strategies were introduced; one hard and one soft. The former has
been dubbed “Bit-Flipping” [17] (Constr. 4), while the latter is the now popular
Sum-Product Algorithm (SPA).3 By observing the duality of soft values and
probabilities, Gallager designed a “probabilistic decoder” which solves the MLD
problem using the MPF algorithm discussed above.

6.3.1 Iterative Decoding

Also in the cyclic case, one still uses exactly the same SPA description, with a
minor change in scheduling. Whereas ’regular’ MPF will terminate naturally

3Like Gallager codes, this algorithm was forgotten and rediscovered several times, within
various areas of research. See [23] for an excellent survey on SPA decoding of LDPC codes.

69

6.3 Sum-Product Algorithm

after two messages have been passed along each edge (one in each direction),
we here need to repeat the process, during which a tentative decoding, x̂(l), is
successively updated.

The maximum number of allowed iterations, T , is called the timeout of the
decoder. The aim is to converge to a fixed, stable state (within l < T iterations)

in which each tentative bit, x̂
(l)
i , resembles the corresponding original bit, xi,

with some confidence; p 6= 0.5. In this case, hard decisions on x̂ will produce the
correct output, x. If x̂(T) is not a valid codeword, a decoder error is declared.

An important observation is that iterated decoders do not necessarily benefit
from increased time, T . Soft values tend to converge to a stable (while not
necessarily valid) state after relatively few iterations.4 Only in some particular
cases will the entropy fail to drop, as a result of the decoder being stuck in a
repeated, oscillation between two distinct (invalid) states. In neither of these
cases will the decoder improve if given more time. Such measurements are
efficiently conducted using the technique of Density Evolution [31] mentioned
in Ch. 4.

6.3.2 Initialization: Demodulation

The task of SPA decoding is to maximise the a posteriori probabilities (APP’s)
of individual bits having value ’1’ (or, conversely, ’0’), given the channel out-
put, y. Recalling section 3.3.1, for our purposes, codebits are modulated to
BPSK5 and subject to AWGN noise before they are received at the decoder.
Conveniently, the noisy symbol yi can be viewed as a likelihood measure of the
corresponding original bit, vi, being ’1’ or ’0’.

AWGN noise has the effect of offsetting symbols to within a distance pro-
portional to the current noise-level, σ2. This follows a normal probability dis-
tribution (PDF ’bell curve’). As illustrated in Fig. 3.3, at high noise levels (i.e.,
low SNR) these offsets overlap, such that the crossover probability becomes
non-zero, and errors can occur.6

Given the channel SNR, we use (3.11) to calculate the variance, σ2, which, in
turn, determines the shape of the two PDF curves (3.10). The curves are then
offset according to the modulation (BPSK), hence the medians are µ = ±Es.
Now, the APP’s are simply ’read off’ the opposing curves; algebraically, this is

p
(1)
i = P (ci = 1) = P (xi = −1 | yi) = f(yi, µ = −1), such that (6.4)

p
(0)
i = 1 − p

(1)
i .

Note that p
(0)
i may also be calculated from the PDF by changing the median to

µ = +Es. This is an important fact when working with non-binary alphabets.
Finally, the probabilities are normalized by scaling each value by

1/(p
(0)
i + p

(1)
i), (6.5)

which also generalizes nicely to the non-binary case.

4As reported by MacKay [50], and confirmed by our results in Ch. 7.
5BPSK mapping is 1 → −1 and 0 → +1, assuming Es = 1.
6Obviously, one could move the code symbols further apart, thereby decreasing the chance

of overlap (increased tolerance to noise), but this comes at the cost of increased energy usage
per symbol, Es. See [17, 51, 52] for a discussion on Coded Modulation.

70

6.3 Sum-Product Algorithm

6.3.3 Messages

From a Factor Graph point of view, each bit node, v, is connected to a set of
check nodes, n(v), called the support of v. Nodes (bits and checks) compute an
extrinsic (SPA is MPF) outbound message for each edge, based on some local
transformation on the net incoming messages. The message from a bit node to
a check,

µv→c = (p(0)
v , p(1)

v). (6.6)

is the current local value (or, state) at v, conveying the ’assumption of v’ on its
parity. Similarily, the opposite message, µc→v, is a bias on the correctness of v,
as computed by c. The check node attempts to adjust the state of ’its bits,’ so
that it may be satisfied (XOR = 0).

In essence, messages are probability distributions. In this chapter (and the
rest of the thesis), we will only consider the case where all variables are binary.7

Although it is perhaps most intuitive to work directly with these probability
distributions (6.6), the Sum-Product Algorithm is typically implemented in a
more ’convenient’ mathematical domain. This has two beneficial effects; firstly,
memory usage is cut in half by compressing variables into a one-dimensional
likelihood ratio (LR),

λ(µu′→u) , p
(0)
u′ /p

(1)
u′ . (6.7)

Second–as we will look at in the following–more efficient (in terms of CPU-
usage and time) internal operations exist in other domains. However, in soft-
ware, obvious numerical concerns (buffer overflow, division-by-zero) arise when
dividing by values that might very well approach 0 (as p0 → 1). This weakness
is overcome by clipping extreme values, as suggested in [3] by 10±5–especially
immediately prior to division. Another popular approach is to work with log-
likelihood ratios (LLR’s),

Λ(λ) , ln(λ). (6.8)

In the logarithmic domain, extreme values are naturally scaled by the ln func-
tion.

Before decoding, all messages in the FG (except the input messages) are ini-
tialized to neutral values which, in terms of probabilities, is (0.5, 0.5). Similarily,
the neutral LR is 1, and the neutral LLR is 0.

6.3.4 Function Types

Although it is conventional to describe the Sum-Product algorithm in terms of
two separate update rules–one for check nodes, and one for bit nodes–we want
to stress the simplicity of the algorithm by describing one, generic rule without
reference to type. In the following, we will assume all variables to be binary,
yet, we point out that it is straight-forward to extend the rule to variables of
arbitrary dimension.

Consider a binary function, f : GF (2)i 7→ GF (2)o, performing some map-
ping from i input variables to o output variables; where the total number of

7When, for instance, implementing the SPA variant of Turbo (Viterbi) decoding, q-ary
auxiliary variables are required to link nodes containing trellis sections–see [22, 53].

71

6.3 Sum-Product Algorithm

Θ4

Input Output Output

v0 v1 v2 v3 τXOR
~φ4\{v3} · τXOR

0 0 0 0 1 0.3 · 0.9 · 0.2 ·0.5 ︷
︸
︸

︷

q
(0)
3

1 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 1 0.7 · 0.1 · 0.2 ·0.5
0 0 1 0 0 0
1 0 1 0 1 0.7 · 0.9 · 0.8 ·0.5
0 1 1 0 1 0.3 · 0.1 · 0.8 ·0.5
1 1 1 0 0 0
0 0 0 1 0 0 ︷

︸
︸

︷

q
(1)
3

1 0 0 1 1 0.7 · 0.9 · 0.2 ·0.5
0 1 0 1 1 0.3 · 0.1 · 0.2 ·0.5
1 1 0 1 0 0
0 0 1 1 1 0.3 · 0.9 · 0.8 ·0.5
1 0 1 1 0 0
0 1 1 1 0 0
1 1 1 1 1 0.7 · 0.1 · 0.8 ·0.5

Table 6.1: Θ4, p = 4, o = 1, truth table τXOR, and an example calculation of
µu→v3 . Observe the symmetric decomposition lines in the ’Input’ part of the
table showing how the XOR function may be partitioned.

variables is i + o = p. Define the matrix Θp as that consisting of all 2p binary
value-assignments across the variables; listed in lexicographical ordering. The
indicator function of f , If , is defined as a mapping from p variables (input and
output to f), to one Boolean value (typically, using {0, 1}) indicating the valid-
ity of the input/output combination; If : GF (2)p 7→ GF (2) [54]. By applying
If to each individual row of Θp, we get the length-2p vector, τf , whose non-zero
positions identify all valid assignments of variables–in the same ordering as Θp.

Where ~θj is row j of Θp, we have

τf (j) 6= 0 ⇔ If (~θj) 6= 0

⇔ f(θj,0, θj,1, . . . , θj,i−1) = (θj,i, θj,i+1, θj,i+o−1). (6.9)

While invalid assignments are always zero (6.9) for the most general type
of indicator function, mapping to the reals, the valid (non-zero) assignments do
not necessarily occur with uniform probabilities. Hence, in the general case, the
range of τf is the positive real numbers; where τf (j) can be thought of as the
probability of the corresponding input producing the corresponding output. As
the indicator vector is essentially a probability distribution in the codewords
set, the vector is normalized such that

∑

j τf (j) = 1.
Consider the XOR function on p = 4 variables, as shown in Table 6.1. By

augmenting Θ4 with the extra column τXOR, we get a look-up table describing
the XOR function.8 In the decoding setting, the code is partitioned into smaller
subcodes (around each Parity Check node), which are then decoded seperately.

8XOR is defined by 1 ⊕ 1 = 0.

72

6.3 Sum-Product Algorithm

As such, the input in Θ4 is the space of possible codewords, where τXOR indicates
those that are valid according to this subcode. As part of the definition of
linear codes, all codewords are equally likely to occur, which is seen by all non-
zero entries of If being identical. Moreover, as the indicator is a probability
distribution, If is also normalised by 1/8 (not shown).

Table 6.1 also shows an example calculation of the extrinsic output message
for v3; we will discuss this in the next subsection.

6.3.5 Generalized Update Rule

In this section, we will derive an update rule that does not depend on the local
function. By expressing the mappings as an indicator function, (6.9), we may
use the following rule to compute the output of any (linear) function.

Probability distributions are vectors of messages, so the input distribution
to node u is

~ru = (µv0→u, µv1→u, . . . , µv(p−1)→u), (6.10)

where vi is a neighbour of u. Regarding the above discussion on domain, we
will initially consider working directly with probability distributions, where each
message is a set of (binary) APP’s (6.4)

µv→u = (p(0)
v , p(1)

v).

~ru can be expanded into the vector ~φp, in which the input values (APP’s
or ratios) are combined to produce the compound probability of each possible

input/output assignment. ~φp is computed by taking the tensor product of the
elements of ~ru,

~φp =

p−1
⊗

i=0

ru,i = (µv0→u ⊗ µv1→u ⊗ · · · ⊗ µv(p−1)→u). (6.11)

When using (6.11) to produce the o output messages, we must ensure that
the important extrinsic principle of SPA is obeyed. Neutralizing the contribution
of a variable, vi, on its own output message, is a matter of replacing that input,
µvi→u, with the neutral message, which–in terms of APP’s–is (0.5, 0.5). Define
the general rule for any function, f ,

~φp\{vi} · τf = (µv0→u ⊗ · · · ⊗ µvi−1→u ⊗ (0.5, 0.5) ⊗ µvi+1→u ⊗ · · · ⊗ µv(p−1)→u).

(6.12)

Returning to the example in Table 6.1, we have the input distribution ~ru =
((0.3, 0.7), (0.9, 0.1), (0.2, 0.8), (0.6, 0.4)). The calculations for v3 according to

the XOR function are shown in the column labelled ’~φ4\{v3} · τXOR.’

The output for vi is computed by summing the products in ~φp\{vi}–hence
the name, Sum-Product Algorithm. Obviously, the return message to vi has
the same dimension as vi itself; that is, consisting of k = dim(vi) fields. The
output column in Θp identifies how to produce those fields, by summing certain

entries of ~φp\{vi} · τf (i.e., marginalizing on vi). This means that the values

73

6.3 Sum-Product Algorithm

in the output column, ~φp\{vi} · τf , are marginalised according to the indicator
vector, τf

q(k)
vi

=
∑

j : τj=k

φp\{vi}(j) , ∀ k = 0, . . . , dim(vi) − 1. (6.13)

In Table 6.1, field q
(1)
vi in the (in this case, binary) output message corresponds

to the sum of all output values for which the indicator column, τXOR equals 1.
Hence, the APP becomes

µu→vi
= (q(0)

vi
, q(1)

vi
, . . . , q(k−1)

vi
), k = dim(vi) (6.14)

As a final step, when working with APP’s, we must ensure that each output

message (6.16) is a probability distribution in its own right (i.e.,
∑

k q
(k)
vi = 1).

By scaling each message with a normalization factor,

δvi
= (

∑

k

q(k)
vi

)−1, k = dim(vi) (6.15)

we have the final output APP,

µu→vi
= (q(0)

vi
, q(1)

vi
, . . . , q(k−1)

vi
) δvi

, k = dim(vi) (6.16)

The total output distribution, ~qu, similar to (6.10),

~qu = (µu→v0 , µu→v1 , . . . , µu→v(p−1)
),

is produced by repeating the above process (6.12) - (6.16) for each output

variable. The local value (state) of the node, ω
(i)
u , is the normalized product of

all incoming messages,

ω(i)
u =

∏

v∈n(u)

q(i)
v , ∀ i = 0, . . . , dim(u) − 1. (6.17)

An example of the calculations for v3 is shown in Table 6.1. Table Φ4\{v3}

is not shown, but note how the summation (6.13) is done according to output
column 3. The normalized output message becomes µu→v3 = (0.298, 0.202) ·
2.000 = (0.596, 0.404). Also, the local value of u is ωu = (0.3 ·0.9 ·0.2 ·0.4 , 0.7 ·
0.1 ·0.8 ·0.6) = (0.0216 , 0.0336) ·18.12 = (0.391 , 0.609). If u is a bit node, the

tentative decoding of this bit, x̂
(l)
u , is updated by quantizing (hard decision) on

ωu.

For reference, the conventional SPA description [22] is

variable to local function:

µv→f =
∏

f ′∈n(v)\f

µf ′→v and, (6.18)

local function to variable:

µf→v =
∑

∼{v}

f(V)
∏

v′∈n(f)\{v}

µv′→f

 , (6.19)

74

6.3 Sum-Product Algorithm

where v is variable (bit), and f is a generic function node, as defined with V =
n(f) as input. The notation ∼ {v} refers to the summation (marginalization)
stage for output to v, (6.13). Note that the distinction between the two rules
is strictly unnecessary, as (6.18) is merely a simplification of the (generic) rule
(6.19); with “the unit function [22],” i.e. where f(V) = 1 (normalised).

6.3.6 Optimized SPA for Decoding

The generalized update rule should be thought of primarily as a confirmation
on the fact that SPA (or MPF in general) can be applied to a wide range of
detection and estimation problems. If u is a function node, then (6.12) is
exponential in the number of variables connected to u, and SPA is generally
not viable in this “basic form.” Consider, for instance, the delay introduced in
decoding a medium-sized factor graph with nodes of degree ∼ 20.

As implied earlier, various optimizations exist to simplify the calculations
(LR’s, LLR’s), however the vital trick is to avoid working with the entire O(2p)
space of value-assignments, φp.

Applying the generalised rule is simply a matter of inserting the desired
local function as a truth table. In addition to the XOR function already dis-
cussed, only one other function is required when SPA is used for LDPC decod-
ing; namely, the Equality Constraint (EQ). Keeping with the terminology of the
previous sections, we describe the simple function by its truth table. Assuming
p = 4 (binary) variables, the length 24 vector has only 2 non-zero entries,9

(τEQ)T = (1, 0, . . . , 0, 1), (6.20)

corresponding to value-assignments 00 . . . 0, and 11 . . . 1. Hence, O(2p) resources
are wasted in the process if the generalized update rule is used. The simple EQ
function of p variables can be reduced to

q(k)
vi

=
∏

p

p(k)
vi

, ∀ k = 0, . . . , dim(vi) − 1, (6.21)

followed by the normalization step of (6.16).

Similar observations lead to the optimization of the p-variable XOR function.
The structure of Θp (note gray decomposition lines in Table 6.1) is extremely
regular, and, as a result, highly decomposable. Consider extending Θp to Θp+1.
Since Θp already exhausts all possible assignments over the previous, p variables,
we simply append the first value of the new variable to the table, and repeat
the process (this time, on a copy of Θp) with the next value.

The simple logic of the XOR function applied to such structure gives an
obvious reduction in complexity. Rather than using O(2p) calculations to com-
pute XORp (recall the example previously, for p = 4), we may use O(2p−1)
resources to calculate XORp−1, and simply combine those subresults, using
near-constant-time XOR3 (with i = 2, o = 1). Continuing in this fashion, we
have an exponential increase in efficiency (drop in complexity), bottoming out
as a chain of p − 1 XOR3 operations; for a total complexity of O(p23) = O(p).
This chaining effect is illustrated in Fig. 6.2.

9This, again, is straight-forward to extend to non-binary variables.

75

6.3 Sum-Product Algorithm

Figure 6.2: Equivalent Factor Graph representations of the XOR4 function. The
double-circled node is an auxiliary ’state-node,’ containing only the end result
of the chaining.

Following [22], XOR3 essentially performs the following calculations,

XOR(µv→u, µv′→u) = (p(0)
v p

(0)
v′ + p(1)

v p
(1)
v′ , p(0)

v p
(1)
v′ + p(1)

v p
(0)
v′), (6.22)

which produce the output message µu→v′′ . This is exactly the calculation per-
formed by the generalized rule on p = 3 variables, with (τXOR)T = (1, 0, 0, 1, 0, 1, 1, 0).
This shows that the generalized update rule is still the ’main engine’ underlying
any optimized, “factorized” SPA implementation.

Fig. 6.2 shows how such optimizations can be coded into the structure of the
Factor Graph, such that one need not modify the generalized update rule. When
working with hardware realizations, this means one only needs the standard, 3-
input XOR logic gate to build any decoder. Although this certainly requires
a larger areal on the chip (which may have its own negative implications), the
chaining simultaneously alleviates congestion in highly connected areas.

In software, however, it is more efficient to implement the FG according to
the description of the original H-matrix, and rather perform ’virtual chaining,’
during the update-call on nodes.10 In example, the XORp (p > 3) update may
be processed sequentially, two variables at a time (resulting in a third, auxiliary
variable), using in-order ordering; starting with v0 and v1,

XORp = XOR3(vp−1, (XOR3(vp−2, . . . (XOR3(v1, v0)) . . .).

6.3.7 Likelihood Ratios

While the important optimization is already achieved, it is possible to gain
some further improvement by replacing probability distributions (APP mes-
sages) with one-dimensional (unary) likelihood ratios (LR’s) (6.7)

Considering only the unitary, ’chainable,’ two-input one-output update rules
(as discussed above), the LR rules become [22],

EQ(λ1, λ2) = λ1λ2 (6.23)

CHK(λ1, λ2) =
λ1λ2 + 1

λ1 + λ2
, (6.24)

for variable (bit) and function node, respectively.
Although it is possible to work directly with LR’s, potential numerical

vulnerabilities in software suggests avoiding this domain. Since ln(a · b) =

10In reality, a 16-bit look-up table (i.e., XOR16) would be more convenient.

76

6.3 Sum-Product Algorithm

ln(a) + ln(b), switching to the log-domain means multiplication operations are
replaced by addition, which is extremely suitable for software implementation.
The update rules for LLR’s (6.8) translate to

EQ(Λ1, Λ2) = Λ1 + Λ2 (6.25)

CHK(Λ1, Λ2) = ln(cosh((Λ1 + Λ2)/2)) − ln(cosh((Λ1 − Λ2)/2))

= 2 tanh−1(tanh(Λ1/2) tanh(Λ2/2)). (6.26)

Fortunately, the somewhat complex LLR CHK rule (6.26) can be approxi-
mated11 by the extremely efficient rule [22]

CHK′(Λ1, Λ2) ≈ |(Λ1 + Λ2)/2| − |(Λ1 − Λ2)/2|
= sgn(Λ1) sgn(Λ2)min(|Λ1|, |Λ2|). (6.27)

The reduction in precision is acceptable since, as discussed before, we are al-
ready working in a noisy environment. Interestingly, (6.27) is the update rule
of another MPF algorithm–the Min-Sum Algorithm [23, 55]–which is also used
for decoding. In our simulations, in Ch. 7, we compare the efficiency of the LR
and the LLR domains.

Switching from one domain to another requires only a few changes to the
SPA implementation. First, during initialization, we must convert probabilities
(APP’s) to ratios. Since this is the most likely source of error (buffer overflow,
division-by-zero), it is reassuring that this happens only once during decoding.
Hence, APP’s are converted to LLR’s (or LR’s) using (6.8) (or (6.7)). Also,
the neutral messages–originally (0.5, 0.5)–become 0 (or 1, for LR).

Second, the procedure for quantizing (hard decision) soft values depends on
domain, so we define the (one-way12) transformation Q : Rdim(u) 7→ GF (2),

Q(x) =

1 iff x ≥ 0.5 and x is (p1-part of) APP
1 iff x ≥ 1 and x is LR
1 iff x ≥ 0 and x is LLR
0 else

(6.28)

In the remaining, we will assume an optimized implementation, such that
all update calls are of constant-time complexity.

6.3.8 Scheduling

When cycles are present in the factor graph, the SPA becomes an iterated
algorithm. Working with the convergence of soft messages in a multiplicative
(or additive, for LLR’s) procedure does not require any particular schedule on
the order in which nodes are updated, and many different schemes have been
explored. The scheduling used defines the work done per iteration.

Most common is the flooding schedule, where one iteration consists of the
separate updating of each type of node. In the “conventional LDPC” case,

11Because, for x ≫ 1, ln(cosh(x)) ≈ |x| − ln(2).
12Obviously, information is lost during quantizing; this is the argument for the gain in soft

decoding. In SPA, we only quantize after decoding.

77

6.3 Sum-Product Algorithm

with bits and checks, one iteration corresponds to first updating all checks,
followed by the updating of all bits–or, vice verca. All nodes are fed fresh
information in every iteration, in a manner which is extremely well suited for
parallel implementation. However, since this schedule propagates messages at
maximum rate through the graph, it is very sensitive to feedback in the form
of (short) cycles. If the girth of the graph is g′, the independence of messages
is distorted after only g′/2 iterations. Using this scheduling, SPA executes
N + m constant-time update calls per iteration. As will be seen in Ch. 7, the
average number of required iterations is normally bounded by log N , so the total
complexity of decoding is O(N).

In this project, we explore some novel SPA decoder schedules. These are
described and tested in Ch. 7.

6.3.9 Stopping Criterion

As iterative decoding proceeds, one desires the BER to drop with each iteration.
However, this improvement simultaneously flattens out, ideally towards a stable
state–convergence. A cruicial feature of any iterative process is to know when
the gain in proceeding drops below what is worth the effort of doing so; in other
words, when to stop. This is a question which requires good insight into the
algorithm, and does not always have a definite answer. Some error patterns
send the decoder into continuous oscillation between two states, during which
the change in entropy does not drop (it mainly changes sign). The ’decoder
trajectory’ can be plotted as an Extrinisic Information Transfer (EXIT) chart
depicting the asymptotic behaviour of the decoder [17]. The numerical analysis
bears resemblance to Density Evolution, as discussed previously.

Conventionally, the two major iterated decoders–the Viterbi-like SOVA (or
SISO) Turbo decoders versus the Sum-Product algorithm–differ in the latter’s
ability to stop decoding early. By monitoring the state (tentative decoding) of
the decoder, the process is stopped as soon as certain conditions are satisfied.
This is a significant advantage of SPA, adding to the popularity of LDPC codes.

In SPA decoding, two main stopping criterions exist–one hard, and one soft
decision. Normally, after each iteration, the syndrome (6.2) of the tentative
decoding is computed, z = Hx̂T . The all-zero syndrome indicates–with good
confidence–that the Maximum-Likelihood (MLD) codeword is found. In our
distributed SPA implementation, it is necessary to perform this check locally,
within each check node, c. Since we do not correct errors in the quantized (hard
decision) domain, we do not need the actual error pattern, ~z; but only the net
result–”is z the all-zero (no-error) pattern?” By polling the hard-decision value
(6.28) of the state, Q(ωu), of bit nodes a decision is made on whether each
individual syndrome bit, zi, is satisfied; i.e., if the sum of incoming messages to
c has even parity. The final stopping decision is made as soon as all m checks
are satisfied; i.e., in terms of an indicator function

S =
∧

c

[Q(ωc) = 0] = 1 (6.29)

On the other hand, decoding may be stopped when the overall entropy,

H(x) , −∑v p
(1)
v log2(p

(1)
v), of the system drops to zero [56]. In this case, the

information has converged to a stable state, from which it might not proceed.

78

6.3 Sum-Product Algorithm

6.3.10 Comments

The Sum-Product Algorithm provides the required efficiency to decode very
long blocklength codes, such as LDPC codes. In this chapter, we have seen how
the complex overall problem of syndrome decoding is reducible into a network
(FG) of Parity Check and Equality Constraint (bit) nodes, where each local
neighbourhood is responsible for processing only a subcode. This distributed
approach may also be further refined, owing to the easily factorisable nature
of the XOR function, making LDPC decoders ideal for low-power, hardware
implementation (cellphones, handheld devices).

SPA is already used in areas other than decoding, and, although beyond
the scope of this thesis, we expect the possibility of solving other problems, in
a distributed manner, by iterating on an FG representing the factorized truth
table. An ambitious attempt would be to factorize (or even approximate the
factorization of) the Discrete Log function– see Appendix A.

79

Chapter 7

Simulations and Results

In this Chapter we will look at the specifics involved in the task of assessing
the BER performance of LDPC codes over a range of SNR, Eb/N0, levels. In
its most basic form, the system we wish to simulate is the transmitter-channel-
receiver environment most resembling an actual employment of the code. To
this aim, we require all the components previously discussed in this thesis to
be linked in such a manner that it is possible to repeatedly execute the system
(simulate), while monitoring several concurrent outputs.

Coding gain is defined as the reduction in SNR required to achieve a specific
error probability for a coded communication system compared to an uncoded
system [17]. In other words, how much more noise are we able to handle (at
the same BER), by using the coding scheme. In all coding schemes, there is
a coding threshold, beyond which there is nothing gained by further reducing
SNR. In fact, the code loses its effectiveness at SNR below the threshold, making
for a negative coding gain where the code performs worse than the uncoded
transmissions.

The following is a brief summary of the simulation components, with refer-
ence to the previous chapters of this project.

7.1 Components

The transmitter consists of the encoder discussed in Ch. 5, where the generator
matrix, G′, is used to calculate a codeword from a random, k-bit information
vector, x = vG′. In most cases, due to the O(N2) cost of encoding, and the
fact that the codes modelled are linear, we skip encoding by always simulating
the all-zero codeword.

7.1.1 Channel

As discussed in Ch. 3, the channels are modelled simply by adding random
noise to the transmission. The noisy output will be refered to as y = n ⊕ x,
where n depends on noise level (SNR).

80

7.2 Bit-Error Rate Simulations

7.1.2 Receiver

By allowing the SPA decoder to run until completion (i.e., either convergence, or
timeout), the number of bitwise discrepancies between x and the quantized (hard
decision) decoding, x̂, is returned. This requires a global “monitoring routine,”
which, unlike the decoder, ’knows’ the original, error-free vector. Although this
may seem as a step away from the distributed design that is used in this project,
it is important to point out that the simulation module is a diagnostics tool,
and should not be considered part of the decoder software.

In producing performance data, there are three scenarios in which the de-
coder may halt. Firstly, there is the situation where x̂ = x. This is either a
result of the decoder correcting all errors; or, that the codeword was unaffected
by noise. This situation contributes nothing to the BER plot, and should be ob-
served increasingly often as SNR increases. Secondly, the decoder may exhaust
all iterations, halting in an invalid state (syndrome z 6= 0), Such detected errors
are most frequent in the low end of the SNR range. Finally, the decoder may
halt with a valid codeword other than ~x. To the decoder, which does not know
~x, such undetected errors, or word errors, are impossible to avoid. These errors
are indications of poor LDPC codes, and should not be frequently encountered.
Nevertheless, to produce “fair” plots, they must still contribute to the BER
plot.

7.2 Bit-Error Rate Simulations

By linking these components into a simulations model, various data can be
produced describing the performance of the code. Such a system is called a Bit-
Error Rate Tester (BERT). The purpose of simulating on a code is to produce a
’profile’ of this particular code’s error-correcting capabilities–its performance–
over a range of channels. Recalling from Ch.3 that the AWGN channel can be
thought of as a soft-output BSC, we can think of each SNR value as a seperate
channel, with transition probability p.

Since the bit-errors are independent events, we may conduct this as a prob-
abilistic experiment [57]. The most essential data are the BER points, which
are calculated as

BEREb/N0
=

B

NS
, (7.1)

where B is the total number of errors observed over the blocklength, N . To
achieve reasonable confidence that the calculations are correct, we need to repeat
the experiment until we have sampled enough errors. For instance, 95% confi-
dence, which is quite standard, requires B = 100 samples [58]. The complexity
of producing the required information is relatively low. The O(N2) encoding
process can be avoided by always transmitting the all-zero vector which–in a
linear code–is always a codeword; ~0HT = ~0. After decoding, the statistics are
found by counting the remaining errors, so the entire simulation can be bounded
by the O(N + m) Sum-Product decoder.

Note that the SNR (signal quality, Eb/N0) is not a directly expressed in
(7.1), but affects the total number of bit-errors we sample. Hence, as the SNR
increases, we expect a significant drop in the occurence of errors. This is seen

81

7.2 Bit-Error Rate Simulations

 1e-04

 0.001

 0.01

 0.1

 0 1 2 3 4 5 6 7 8

B
E

R

Eb/N0 (dB)

Simulation Results over AWGN Channel, Testing Uncoded BER

Simulated
Theoretical

Figure 7.1: Comparison of simulated uncoded BER, and theoretical uncoded
BER according to (7.3). To gather sufficient data, we simulated 5× 103 trans-
missions over the interval [0, 4〉; 5 × 104 over [4, 7〉; and 106 over [7, 10〉.

from typical BER plots, where the range of the y-axis drops by orders of magni-
tude (which is why we always plot in the logarithmic scale). As errors become
less frequent, it becomes increasingly difficult to maintain confidence (100 er-
rors), and S must be allowed to grow quite large. This is a tradeoff between
simulation time and confidence, meaning that, beyond a certain upper SNR,
we may choose to simply stop, and truncate BER curves; or, we may accept a
rougher estimate, and proceed with reduced S. Hence, it is common to supply
plots with error-bars, indicating the confidence at each plot.1

7.2.1 Uncoded Transmissions

The BER performance of the uncoded (i.e., not decoded) transmissions is deter-
mined by modulation and SNR only, and can be approximated mathematically.
Using the BPSK modulation, the probability that a bit is in error is the cumu-
lative probability of it being demodulated (6.4) to the wrong bit. For instance,
the symbol s1 (3.1) is demodulated incorrectly if the received y < 0;

P (e|s1) =

∫ 0

−∞

p(y|s1) dy = Q

(√

2Es

N0

)

, (7.2)

where N0 is the noise density (3.3), and Q(x) expresses the area under the tail
(probability) of the Gaussian PDF (3.10) [29]. Since the symbols (in this case,
s1 and s2) are transmitted with equal frequency, they are equally likely at the

1Our simulations are truncated at the SNR where confidence dropped below 95% (due to
computer resources), hence we have not included error bars.

82

7.3 Characteristic Data

receiving end, and the average probability of (uncoded) error is

BERunc(SNR) =
1

2
P (e|s1) +

1

2
P (e|s2) =

1

2
erfc(

√
SNR), (7.3)

where SNR is the dimesionless ratio of signal to noise,2 and not given in dB. As
illustrated in Fig. 7.1, this is a very valid approximation.3

7.2.2 Word-Error Rate

In the coded transmissions, there is another error-event called a word (or frame)
error. According to the code, we may verify whether a received and decoded
N -bit vector is a valid codeword. If it is not, then we have sampled a (detected)
word error (this means that the decoder ’timed out’).

Also, there is a second, more worrisome word error event, which is unde-
tectable to the receiver. Consider the impact of channel errors is sufficient to
offset the input to the decoder to such an extent that the convergence is drawn
towards the gravity of a neighbouring codeword (in MLD terms). If we experi-
ence more than dmin bit-errors, the received vector (decoder input) may be more
similar to a different codeword than what was actually transmitted. In this case,
a significant fraction of the errors will be ’viewed’ as correct bits of this other
codeword, and result in a successful decoding–to the wrong codeword–that is
impossible to detect.4

The rate of undetected word errors is, arguably, the most important piece
of information produced by the simulation. Especially when working with long,
sparse codes (such as LDPC) for which it is difficult to calculate the minimum
distance, dmin. The WER points may be plotted on the same scale as the BER
plots, and are calculated as

WEREb/N0
= W/S, (7.4)

where W is the total number of word errors sampled. Three different WER plots
may be produced, depending on how we count W ; undetected WER, detected
WER, or, total WER (the sum of the two first). In a good code, we must
require wu ≈ 0 (undetected WER), so it is common to plot the detected (or
total) WER.

7.3 Characteristic Data

In producing the samples for the BER curves (7.1), there is a great deal of
valuable information that is simultaneously produced. In this section, we will
briefly look at the output of the simulation software of this project.

Sims is the number of transmissions simulated, S, each sending an N -bit
codeword. In order to achieve sufficient statistical confidence as errors become
less frequent, this number will increase with every SNR step.

2Conversion from dB to ratio as SNR = 10(Eb/N0)/10.
3Note that the discrepancy between the curves is mainly due to insufficient data at SNR

above 8dB, where errors are infrequent.
4At least, on the bit-level. If this word is part of a larger, overall message (text or picture),

then it is quite possible for a human to detect parts that are out of context.

83

7.3 Characteristic Data

T.o. counts the number of decoder failures; i.e., transmissions where the
decoder did not reach a valid state within the maximum number of iterations.
Output also includes the percentage of timeouts, out of the total transmissions
S. This value is expected to drop quite steeply as noise levels decrease.

Berr is the total count of bit-errors over all simulated codewords, B. This
column also outputs the percentage of bit-errors introduced by the decoder.
In normal SPA decoding, error-free bits may be corrupted due to unfortunate
information via their support. When testing novel decoder schemes, this is an
important value to monitor.

Werr is the count of word (or, frame) errors encountered; i.e., simulations
where the decoder reached a valid state, which was not the originally transmitted
codeword. Such undetected errors5 are very disruptive, and clear symptoms of
a bad code. Due to the large free distance (and dmin) of moderate-to-large
(N > 103 [37]) LDPC codes, this number should remain at 0 even at low SNR.

OK counts the number of successfully decoded transmissions. Note that, to
produce “fair” statistics relative to the uncoded curve, this count must also
include the error-free transmissions–even though these are in no way attribute
to neither code nor decoder. The percentage of such “direct throughput” is
indicated, and should always comprise only a negligable fraction of the total
transmissions yet with a slight increase towards higher SNR.

Av. Berr is the average number of bit-errors per N -bit transmission. Ob-
viously, this should be monotonically decreasing.

Av. It shows the average number of decoder iterations performed, and
should drop quite rapidly.

Av.DIt gives similar information, yet it disregards the error-free transmis-
sions, averaging more precisely the number of decoder iterations used. When
evaluating novel decoder schemes, such as those described in Ch. 6, this field
provides interesting information on the decoder’s ability to converge, which is a
good indicator on the effectiveness of the decoder. As a reference, note that SPA
with flooding scheduling rapidly drops to one iteration, regardless of max–see
Fig. 7.2.

7.3.1 Error Floors

Exhaustive BER curves of linear codes in general show an unmistakable ten-
dency towards separating into two distinct components. Good codes initially
show a swift gain (as opposed to other codes, and the uncoded transmissions)
within the first few decibels. As the signal quality increases towards higher
SNR, and the number of error events drop, it is expected that the code will per-
form significantly better. This is called the waterfall region, and it is the ability
of LDPC codes to push this gain extremely close to the theoretical (Shannon)
limit (see [12]) that has earned them the leading position among current coding
schemes.

At some point, however, this gain may suddenly break off; flattening out into
the error floor. Perhaps the most crucial data on the BER curve is the SNR
marking this drop in gain. The corresponding BER is then what is maximally

5In real life, the decoder obviously can not verify the validity of a valid state, making these
errors the most harmful kind.

84

7.3 Characteristic Data

 1

 10

 100

 1000

 0 1 2 3 4 5 6

Ite
r.

Eb/N0 (dB)

Average decoder iterations
Various codes and schedules

15x45, t=100
48x96, t=500
48x96, t=100

Figure 7.2: The average number of “decoder iterations” is independent of time-
out, and only weakly dependent on N [3].

achievable for this code. However, there is inagreement in whether LDPC codes
are affected by this phenomenon.

Conventionally, flooring effects are blamed on low-weight codewords, which
would imply poor dmin. In simulations, this means that there is a non-negligable
probability that the decoder will produce undetected (word) errors. These vec-
tors contribute an amount of bit-errors equal to the distance between the code-
words; dH (v′ ⊕ v) ≥ dmin. At high SNR, where P (e) is low, this gives an
unproportional bit-error count, which, at high Werr, will cause Berr to flatten
out.

In the case of LDPC codes, it it assumed that the sparsity of H would gen-
erally result in high dmin (proportional to N [4, 37]), due to the large number
of columns required in order to sum up to get zero (modulo 2) [59]6. As stated
on MacKay’s website, “well designed LDPC codes do not have an error floor. If
you write a bad decoder [...] then an error floor may appear” [3]. Even so, some
results indicate that LDPC codes do in fact show some flooring effect [61].

In designing the simulation software, it is important to be aware of “false
error floors,” which are caused by insufficient confidence (too low B) and not
poor distance measures of the code or numerical problems in the decoder. If
we do not allow sufficient experiments, S, we may generate insufficient data to
produce an accurate BER point. If this is not taken into consideration, the
plot will flatten out towards a fixed BER (flooring), which is not dependent on

6Determining the minimum distance of LDPC codes is recognized as a NP-hard problem
[60].

85

7.4 Simulations

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 6.5 7 7.5 8 8.5 9

B
E

R
Eb/N0 (dB)

Simulation Results over AWGN Channel, At Increased Precision
15x45, g=8, Standard Form LDPC Code

max=105

max=106

Uncoded

Figure 7.3: Increased precision (no flooring) as max is increased.

code/decoder characteristics, but rather on simulation precision;

lim
P (e)→0

Berr

N × transmissions
=

1

N × max
. (7.5)

Fig. 7.3 illustrates the increased precision as the size of the experiment is
increased. Note that this is not equal to increasing the decoder timeout.

7.4 Simulations

Using the above described software, we produced performance data of the type
displayed in Fig. 7.1 for various constructions. The main simulation param-
eter is the timeout, T ; the maximum number of iterations before declaring a
failed decoding. Counterintuitively, perhaps, the (minium) number of iterations
required to converge, is largely independent of blocklength, N [50]. At high
noise levels (low SNR), we typically observe that the decoder has a high time-
out percentage, i.e., it exhausts all T iterations with little success. As SNR
increases, the amount of error drops, and the decoder converges more and more
quickly. This can be seen by noting the logarithmic drop in average iterations
used. Even when disregarding error-free “throughput,” we should still observe
a distinct drop. Beyond an only moderate SNR, average iterations drops below
log N .

7.4.1 Flooding Schedule

Our simulations were performed on a standard desktop computer,7 which re-
stricted us to analysing the performance in the range 0 to approx. 10dB. How-
ever, it is a valuable observation that these simulations are easily parallelizable,
in that the SNR range can be partitioned among several processors, with no over-
head of intercommunications. To validate our software, we imported MacKay’s
48 × 96 code [41], and simulated BER performance in the range of 0 to 6dB,
using flooded scheduling with T = 500. Our results were plotted against the
BER data obtained along with the code, and–as Fig. 7.4 shows–the curves agree

7Intel Pentium-4, 2.26Ghz CPU, with 503.1MB Ram.

86

7.4 Simulations

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 2 3 4 5

B
E

R

Eb/N0 (dB)

Simulation Results over AWGN Channel, Scheduling: f
48x96, Code: 96.3.6.6.A, "MacKay 96.3.963 (N=96,K=48,M=48,R=0.5)"

Knudsen, t=500
MacKay

Uncoded

Figure 7.4: Our simulation software validated against the results of MacKay.

quite well. With the confidence that our system works,8 we may evaluate the
performance of codes generated in Ch. 4 using the flooded SPA decoder. Fur-
thermore, similarily to the ’uncoded curve,’ the flooding results will be used as
an additional benchmark against which to test our alternative decoder schemes
(see Ch. 6).

8We did not simulate the data for the ’MacKay’ plot. Hence, the figure is a unbiased
validation of our simulation system; the encoder, channel model, as well as the decoder.

87

Chapter 8

Experimental Decoding

With the proven MLD capacity, as well as the extreme simplicity, of the SPA
as an LDPC decoder, it may seem as if there is no pressing need for any further
developments in the area. As put by Tanner, “nowadays if you can’t get close
to Shannon capacity, what’s wrong with you? [62]” in a comment on LDPC
and Turbo codes.

Still, the most record-breaking results are always at the cost of impractically
large blocklengths, where the weaknesses in the codes (e.g., cycles) become
negligible. With the explosion in handheld, online devices, however, memory
and power conservative, high-throughput decoders are in demand. Considering
the distributed design of the previous chapter, this appears to be an important
application of LDPC codes and SPA decoders, where the new question is–how
can we improve the performance at the low-end?

Granted that the updating rules (Ch. 6) are seemingly optimal, we will have
a look at some modifications to the scheduling–the order–of such update calls,
and how this might counter some of the obstacles in decoding small to medium
sized LDPC codes.

8.1 Feedback, Short Cycles

Randomized LDPC codes across the entire range of sizes, all share the fact that
they are ridden with cycles of varying length. While the length of the shortest
cycle–the girth of the code, G(H)–can be maintained proportional to N , obser-
vations conclude that the girth ’profile’ is quite similar, regardless of blocklength.
As dmin grows with N , we expect the relatively poor performance of small LDPC
codes to be due to an increase in word (undetected) errors. Most likely, these
errors are caused by an overwhelming amount of self-sustaining weaknesses in
the soft information; in other words, feedback caused by short (length < 10)
cycles.

The girth of a node, gv, is defined as the length of the shortest cycle in G
passing through v [43]. As discussed in Sect. 4.6.3, this information can be col-
lected during the normal construction of the EBF algorithm.1 When the nodes

1Alternatively, the same information is accessible via a Depth-First Traversal of the graph
representing the code. This is convenient for dissecting codes not constructed by EBF.

88

8.2 Detecting Cycles

are updated in a strictly alternating backward/forward manner (i.e., flooding
scheduling), gv denotes the exact number of iterations before the ’independence’
of v is violated by feedback. In other words, after exactly gv/2 iterations, the
message sent by node v is returned. While it certainly has been diluted by the
influence (product) of other messages underway, in short cycles it should still
be considered significant.

By modifying the SPA schedule, it is possible to control the flow of infor-
mation, for instance, such that cycles are traversed less often, reducing the
feedback. Also, some ’dynamic’ schemes that change the graph during decoding
may introduce feedback on nodes that do not appear to be part of any explicit
loop of edges. As a result, the fixed, local values gv no longer apply.

8.2 Detecting Cycles

Before discussing various experimental applications of the Sum-Product Algo-
rithm (SPA), we suggest a diagnostical tool for monitoring the amount of feed-
back in the decoder. Define the effective girth of a node v, g̃v as 2 times the
average number of iterations before it is affected by feedback. An interesting
parameter of the decoding scheme is the effective girth of G, defined simply as
the minium of all g̃v.

8.2.1 Using the SPA

The extrinsic principle of SPA is meant to guarantee the integrity of input
messages to node v, in the sense that they should not be affected by the local
value at v. Restricting ourselves to SPA decoding, define a communications
setting as the desired combination of code and SPA scheduling (e.g., flooding; or
more sophisticated schedulings). By reconfiguring elements of the Factor Graph
corresponding to the code, we may run a ’SPA-like’ MPF algorithm which will
detect the presence of feedback in the original setting. Constr. 5 sketches the
outline of the scheme. The following update rule is adapted directly from SPA
(6.19), and should seem quite familiar. Note that, for brevity, we denote ID/age
tuples simply by ID, where ‘v’ is the ID of node v,

~µv→f =

⋃

f ′∈N (v)\{f}

~µf ′→v \ {v}

 [∪{v}], (8.1)

where the final argument (in brackets) indicates that whether or not local ID,
v, is appended to outgoing messages, is dependant on the SPA schedule being
tested. The summary part of (6.19) would translate to removing any duplicate
ID’s from outbound messages. Note that this is done implicitly by the union
operation (e.g., {a, b, b} ∪ {a, c, d} = {a, b, c, d}), and is not expressed in (8.1).

The converse rule is, again, a simplification of the generic rule (8.1);

~µf→v =
⋃

v′∈N (f)\{v}

~µv′→f . (8.2)

89

(a) Iteration 1.

(b) Iteration 2.

(c) Iteration 3: 4-cycles detected.

(d) Iteration 4: 6-cycles detected; all bits contaminated. Done.

Figure 8.1: Girth Monitor on a small LDPC code. Within 4 flooding iterations,
all bits have determined their effective girth (which, in this case, equals local
girth). Age fields of messages are not shown.

8.2 Detecting Cycles

Construction 5 Construction for monitoring effective girth using SPA.

Assign a unique ID to each bit node. Messages are defined as vectors of tuples,
(nodeID, age), where age counts the number of edges the message traverses.
Nodes (both bit and function) produce the extrinsic union (8.1) of input mes-
sages, and increment age counters. When there is overlap (i.e., duplicates of an
ID), only the ID with the lowest age is kept. Depending on the SPA schedule
that is tested, bits append their ID to outgoing messages (with age 1). Bit nodes
also perform a membership test with their local ID on the set of input vectors,
to determine feedback. Stopping criterion is when all bits have determined their
local girth.

8.2.2 Flooding Scheduling

The standard extrinsic principle of SPA is obeyed, so the bit nodes’ membership
test detect violations of this key principle, caused by cycles in G. As an example,
consider the flooding schedule on the small LDPC code of Fig. 8.1. The (known)
girth of this graph is 4, yet it contains larger cycles (of length 6). Messages
containing feedback are indicated with square arrows. In the flooded case, one
iteration consist of updating all bits, followed by all functions2, and bits append
their ID’s only to initialize messages in the first iteration. When bit v receives its
first ’contaminated’ message, the corresponding age-field will necessarily contain
the length (in edges) of the minimum cycle connected to v, such that gv = age/2.
Hence, this bit is ’done’, and will filter out the presence of its own ID from any
future outbound messages. This way, it may still aid other bits in determining
their local girth. The stopping criterion for flooding SPA is whether all bits
have determined their local girth.

8.2.3 Implicit Feedback

An important observation is that also ’dongles,’ i.e. bits of degree 1 (not count-
ing input edges) will–perhaps counterintuitively–experience feedback, despite
the fact that they are not part of any cycle. As long as the graph is not acyclic,
their independence will be compromised by the–perhaps distant–cycles in the
graph. This supports the ’Local Girth Detection’ of Sect. 4.6.3, which upper
bounds local girth by gmax Consider, for instance, dongles connected to either
end of the graph of Fig. 8.1. By termination, the ID of the ’left dongle’ would
have traversed the adjacent 4-cycle giving local girth 4 + 2 = 6, while, on a
similar argument, the girth of the ’right dongle’ would also be 6.

8.2.4 Practical Comments

Firstly, there is the concern of memory usage. The vectors of tuples (i.e., mes-
sages) will increase with ρ − 1 + γ − 1 = ρ + γ − 2 entries per iteration, where
ρ and γ are the degrees of, respectively, the function and bit nodes it passes
through. However, in the extreme case where all messages are stamped with
local ID, (8.1) shows that the union of such messages can never exceed the
number of unique ID’s in the graph, N ; regardless of schedule tested.

2Or, conversely, bits then functions.

91

8.3 Avoiding Cycles

v1 v2 v3v0

c0 c2 c3

2 2 10

cj

j

Figure 8.2: An example showing the iteration updating cj .

As mentioned, this is a diagnostics tool, which should be used to assess av-
erage performance of a communications setting (code/scheduling pair), and not
be part of an actual decoder implementation.

In the straight-forward case of flooded SPA, information flow is strictly de-
terministic (update all bits, followed by all functions), so the effective girth of
any bit will neccessarily equal the local girth of that bit. Hence, this information
should equal the results of preprocessing techniques of Sect. 4.6.3, or, simpler
still, a regular DFT (depth-first traversal) of the graph.

In the following, we will describe some experimental SPA schedules in which
the flow of information (on edges) is more complex–and, in some cases, even
non-deterministic. Being able to monitor girth, is a valid tool for assessing the
performance and stability of novel decoding schemes.

8.3 Avoiding Cycles

Perhaps the most intuitive way of increasing performance, is by simply avoiding
the cycles in the graph. By altering the way nodes are updated, control is gained
over the propagation of messages through the graph. From the perspective of
particular bits, independence fails at different times, and this information can be
used to dynamically (either deterministically, or probabilistically) decide which
bits to update in the next iteration. Xiao et. al [43] showed interesting results,
particularly in the high SNR areas where error floors were lowered, albeit at
some increase in complexity. Similarily, if we stop updating3 bit v after gv/2
iterations, we might counter some of the effect of feedback in the decoder.

8.3.1 Delaying 4-Cycles

Since a 4-cycle is only causing feedback if the nodes comprising it are updated,
we suggest a simple scheme for avoiding certain nodes that, if updated, would
cause feedback at this particular iteration.

Consider a scheme in which iteration j consists of updating one check node,
cj , followed by the updating of all this node’s adjacent bits vi ∈ n(cj). As these

3Note that ’stopped bits’ still contribute to the overall convergence, by forwarding their
current, “locally converged” states.

92

8.4 Dynamic Decoding

bits are updated, they forward their information towards the check nodes in
their support, n(v). The iteration ends with the selection of the check, cj+1, for
the next iteration.

Say cj+1 is in the support of two or more bits in n(cj), then updating cj+1

would mean feeding this information back towards the bits in n(cj), via the
4-cycle.

Consider placing a counter within each check node in G, which is reset to 0
at the beginning of each iteration. As each bit vi ∈ n(cj) produces an output
message onto the edge towards some check c′, it simultaneously increments the
counter in this check. As the next check, cj+1, is selected, we select randomly
among those with counter value less than 2, thereby effectively avoiding ’closing
cycles’ of length 4.

Obviously, in some subsequent iteration, j′ > j + 2, we may select one of
these checks (whose counters are now 1 or 0 due to some perhaps distant bit).
As we begin this iteration by updating cj′ , we will cause the independence of
this bit to be violated. However, the idea is that, by now, other updates may
have ’diluted’ the effect of this information.

8.4 Dynamic Decoding

As discussed in Ch. 4, a code based on a Parity Check matrix, H , uses only
one in a potentionally large ensemble of equivalent matrices for the same code.
Following the lead of [63], decoding performance is improved by increasing the
row-space of the Parity Check matrix, H ; thereby extending it to H⋆. With
N2 equations (rows), MLD was achieved for a Hamming code over the erasure
channel, at the cost of increased complexity.

Our suggestion is that a similar gain may be achieved at a lower cost by
dynamically changing the rowspace of H during decoding, in such a way that
maintains equivalence with the original code at all times. Most importantly,
this means that the dimension, m × N , and the null space remains the same–
otherwise, we would not be working with the original code, which makes no
sense from a decoding point of view. Interestingly, the operation of Pivot (see
Ch. 2) does just that; it takes us from one matrix to another–always within the
same ensemble. Just as in Gaussian Elimination (where pivot is used for the
simultaneous solving of a multi-variable equation set, defined by a matrix), the
solution (null) space remains invariant. At each iteration, H(i) consists of some
(perhaps arbitrary) selection of m check-equations (rows) of H⋆, in such a way
that we may ultimately pass through a large fraction of the rows in H⋆. These
new rows are linear combinations of the original m rows of H(0).

The (reversable) transformation from one matrix to another, is called a
rotation of H ′ to H ′′. By repeating the process, we enumerate a set of rotations,
which, since pivot is reversable, eventually closes back on itself. This finite, yet
potentionally extremely large, set of rotations is called the pivot-orbit of the
original matrix, H0, and is a subset of the entire ensemble of matrices from
which H0 is selected.

93

8.4 Dynamic Decoding

Figure 8.3: The simplified graph, G⋆, suitable for pivot.

8.4.1 Rotating H using Pivot

A pivot is defined as “the first non-zero value of each row of a matrix after
the matrix has been converted to row echelon form [64].” The operation of
pivoting on a matrix element (i, j) (an edge in the FG), means transforming
the matrix such that column j becomes the identity vector, ~ej, which is non-
zero only in position j. For our decoding purposes, a weight-1 column of H is
called a systematic bit, of which the standard form of H contains m. Although
these bits are very poorly protected (minimal support, |n(v)| = 1), they will not
disrupt the equivalence of the code (matrix).4

The conventional, ’Forney-style’ Factor Graphs used in SPA decoding con-
tain auxillary objects–the ’input nodes’–connected to each bit. These nodes
(and their edges) are not part of the FG, as defined by using the Parity-Check
matrix, H , as an adjacency matrix. As illustrated in Fig. 6.1, these ensure the
continuous input of the data that is to be decoded–namely, the channel symbols–
and must not be moved or reordered in any way during decoding. This presents
a challenge when we wish to rotate H (and, implicitly, G) via pivot. Define G⋆

as the simplified graph resulting from grouping each bit node and its adjacent
input node to one composite node, wi = {vi}∪{si}. Fig. 8.3 shows an example.
We may now pivot on any edge of G⋆, and construct the corresponding FG by
decomposing nodes wi.

The graph-based pivot operation of Fig. 2.1 serves our purpose in an efficient
manner. Also, it is is based solely on decisions local to the two nodes involved,
which agrees well with our overall distributed approach.

To gain confidence that pivot would, in fact, maintain equivalence, we ran a
test checking that the rowspace of H(i) did not change. The original m rows of
H(0) constitute a basis of the corresponding 2m rowspace, C⊥.5 By expanding
and storing this in memory, we verified that any rotated basis (due to pivot)
would still expand to the same rowspace. Within reasonable dimension m, we
checked that all m rows of any rotation H(i) were listed in C⊥; otherwise, it
would not be a basis for the same space. All observations were positive.

4Recall that pivot is used to reduce H to standard form, from which the generator matrix
of the same code is found.

5The rowspace of H is the set of codewords for the dual code, C⊥, for which H is a generator
matrix.

94

8.4 Dynamic Decoding

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100

de
ns

ity

Dynamic Iterations (1 pivot)

 200 300 400 500 600 700 800 900 1000

Dynamic Iterations (1 pivot)

Figure 8.4: Density of 48× 96 LDPC Code (MacKay) over 1000 random pivots.
The code is (3, 6)-regular, which gives ∆0 = 3/48 = 1/16.

8.4.2 Breaking Oscillation

In addition to expanding the support of the code, we expect pivoting to be able
to “shake loose” the decoder from points where its stuck in oscillating states
[53].

8.4.3 Consequences of Pivoting

Although we are now confident that pivoting does allow us to update the ba-
sis (rows) used for decoding (without redefining the code), there are certain
unfortunate side-effects to the procedure. As a general concern, LDPC code
design features such as girth; density; and, weight-distribution (or regularity),
are disrupted by pivoting. As discussed in Ch. 4, good LDPC codes are usually
carefully designed so as to optimize these (and other) features.

First there is the concern of girth. Consider a standard LDPC code, with
“no 4-cycles;” say, girth is g = 6. In terms of local neighbourhoods, it is easy
to see that this means that the overlap of edges (between n(u) and n(v)–see
Ch. 2) is OE

u,v = ∅, since these are precisely the edges that would otherwise
close 4-cycles. Hence, pivoting (on any edge of G⋆) means creating (2.6) E⋆ =
(|n(u)|)(|n(v)| − 1) edges which all close cycles of length 4 (in G⋆, and in G).
Conversely, if G does contain 4-cycles, pivoting will remove E† = OE

u,v of these
cycles, but, in a sparse graph, the number of edges created (2.6) is likely to
be larger than the number of edges removed (2.7). Unless the graph is highly
dense, the net result of pivoting will be an overall increase in both 4-cycles, and
density.

This leads us to the greatest concern; LDPC codes are defined as low-density
codes, and–obviously–this is corrupted (very quickly, in fact) by pivoting. Recall
that, in a (γ, ρ)-regular, bipartite graph (i.e., a typical LDPC construction), the
original number of edges is (4.3) |E0| = Nγ = mρ. Also, initially, |n(u)| = ρ

95

8.4 Dynamic Decoding

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100

de
ns

ity

Dynamic Iterations

 200 300 400 500 600 700 800 900 1000

Dynamic Iterations

∆H, no max
∆H+0.00, max=N

∆H+0.10, max=N*∆H
∆H+0.15, max=N*∆H

 500 1000 0

pi

vo
ts

Figure 8.5: By restricting the application of pivot, we are able to control the
increase in density, while still rotating the rowspace of H . The code is the same
as in Fig. 8.4, with density ∆0 ≃ 0.18.

and |n(v)| = γ, such that the ’original’ density’ is ∆0 = γ/m = ρ/N ≤ 1. Using
this information, we see that the first pivot will increase the number of edges
by E⋆ = ρ(γ − 1), which is an increase (in percent) of

E0(1 + x/100) = E0 + E⋆

⇓
x = (γ − 1)/ρ · 100

(8.3)

As seen from Fig. 8.4, the density of the code has a significant jump within
the first 100 pivots, after which the number of created and deleted edges neu-
tralize each other; E⋆ ≈ E†, for an average density of ∼ 0.5.

8.4.4 Maintaining Sparsity

As we have seen, random pivoting has a tendency to create a sharp increase in
density, beyond which the density stabilises around 0.5. However, it is possible
to control pivot such that we ensure that we maintain stable density.

The net effect of one pivot operation is inversely proportional to the connec-
tivity of the local neighbourhood (2.7). If the current density, ∆H , is low, we
want to allow a few pivot operations, such that we may still ’update’ the rows-
pace of H . As ∆H grows, we increase the usage of pivot–on certain edges–to
simultaneously reduce the overall density, while updating rowspace.

Consider some candidate edge, (u, v). In a distributed design, a node can
only see its immediate neighbours. A way for v to determine the consequence of
pivoting (on that edge), is given in Def. 6 The size of the overlap is E† (2.6),
the number of edges that will be removed, which reveals the effect this pivot
would have on density. The density of the local neighbourhood (the overlap,

96

8.4 Dynamic Decoding

Definition 6 Simple protocol for determining the overlap of two local neigh-
bourhoods.

1. Node v tells u to raise the flags of its local neighbourhood, n(u).

2. Node v asks each node in v′ ∈ n(v)\{u} for the total number of flags each
node v′ can ’see.’

3. The overlap equals the total of these sums returned to v.

E–see Ch. 2) is then

∆E = E†/(|n(u)|(|n(v)| − 1)). (8.4)

We then define the pivot-threshold, ε = ∆H , as the minimum density, ∆E ,
required for pivot. Note that this threshold is dependant on the current density
of H , which changes when we pivot; as discussed above.

This information can be used to determine where to pivot (and where not
to), such that we may ’rotate’ the rows of H without having the density grow
out of control. Fig. 8.5 shows the effects of various weightings of this scheme,
as compared to random pivoting (Fig. 8.4). Here, one iteration consists of
traversing all N bit nodes, in permuted order.6 Each node is allowed one pivot
operation to apply to one of its edges; if it finds a valid edge.

Initially, the sparse MacKay code is submit to one random pivot, which
creates densely connected neighbourhoods. Otherwise, our procedure would
have no edges for which pivot would reduce density. This can be thought of as
an initial ’shake’ to the matrix (or graph), such that we have some disorder to
try and fix. By pivoting on edges for which ∆E > ε = ∆H , we observe that the
density still fluctuates around 0.5, but at an increased amplitude (higher peaks
and dips). This is a consequence of one pivot operation trying to counteract the
results of the previous, causing the density to flip-flop.

This effect can be calmed significantly by further restricting the application
of pivot. Using the intuition of using fewer pivots when the density is low, and,
similarily, more pivots when density is high, we stabilise the density at a reduced
level. Within one iteration, we limit the number of pivots to N∆H . Also, we
try incrementing the pivot threshold slightly,

ε = ∆H + α, 0 < α < 1 (8.5)

we see a lower density, however, at the cost of fewer pivot operations. The lower
line in Fig. 8.5 performs approximately one pivot per iteration. Also, the figure
shows the change in density as a function of the iteration number.7

8.4.5 Protecting Soft Information

A cornerstone of the Sum-Product algorithm lies in storing extrinsic message-
distributions on edges. This way, nodes prepare specific output messages for

6Since pivot is a reversable transformation, this would otherwise cause the scheme to enter
a cyclic pattern of pivoting on a small set of edges repeatedly.

7Not to be confused with Density Evolution, described in Ch. 4, which tracks the density
of bit-error probability, as a function of iteration number [11].

97

8.4 Dynamic Decoding

each individual neighbour, so as to minimize feedback. When an edge is deleted–
during pivot–we risk losing soft information along with it. Also, as pivot creates
new edges, there is no information prepared for this new edge, resulting in its
initialization with the neutral message. This means that each pivot operation
causes loss of information in the decoder.

Our experience suggests that the convergence of the decoder is sensitive to
such information loss. There are two different countermeasures to overcome this.
The first idea is the more complex one, adding somewhat to the complexity of the
decoding schedule. Before removing an edge (u, v), we check whether it contains
a ’fresh’ message pending for either u or v. By this, we mean a message that the
intended node has not yet received and processed. This can be implemented by
adding a simple flag to each message, which is set to ’false’ by the receiving node
as it reads the message. Hence, we may check for ’true’ flags, and ensure that
such messages are not lost by updating the corresponding node, which thereby
must process that message. Consider we find that we must update v to evacuate
pending message (from u), µu→v. As we update v, we produce a return message
for the edge about to be disconnected. Note, however, that we do not need to
protect this message, as it is identical to the one already pending for u; µv→u.
The same is done for u, with the same reasoning. In sum, we can now safely
disconnect (and discard) the edge without losing any information.

Similarily, as we create a new edge, (u′, v′), we may populate this edge by
simply updating the nodes u′ and v′. At insertion, the new edge contains the
neutral message–in both directions. By updating u′, we produce an extrinsic
output message for each adjacent edge. Hence, the new edge will be populated
with the information corresponding to the contents of the messages pending for
u′–except the edge’s own value.8

On the other hand, we have the more unconvetional approach of storing
information in vertices, instead of edges. To validate this idea, consider the
situation immediately prior to decoding. The received vector, y, is then attached
to the graph, at the input-nodes. Within the first iteration, this information
is ’pulled’ onto the edges of the graph, from which it propagates–via edges–
from iteration to iteration. Then, after the final iteration, the decoder output
is produced by polling the vertices–not the edges–to produce the final decoder
state. This concept can readily be extended to apply to all iterations, by simply
considering each iteration as an independent (partial) decoding.

In other words, at some loss of extrinsic information, we may end each
decoder iteration (regardless of schedule) by producing the local value of each

bit node, ω
(i)
u (6.17). This is the (unquantized) state of bit node u after decoder

iteration i. Now, all information in the graph is stored safely in the vertices,
and we may freely disconnect and create by pivoting. The following decoder
iteration is initialised by each bit node returning its state onto its adjacent
edges.

The validity of this approach is self-evident, by realising that this is precisely
the situation at the beginning and end of a normal SPA decoding. However, the
drawback with this approach is the loss of extrinsic information in (6.17), which

8Since edges are initialised with the neutral message, the contribution of the new edge’s
message will not count (it is neutral), so the extrinsic principle is actually redundant (yet,
harmless) here.

98

8.5 Alternative Scheduling

is seen as a node initialises all its edges with the identical value (no distribution).

8.5 Alternative Scheduling

As discussed earlier in this thesis, the update calls of the iterated Sum-Product
Algorithm (SPA) decoder are independent operations. This allows experiment-
ing with alternative schedules, in attempt to improve bit-error-rate (BER) per-
formance.

Proposing that the flooding schedule may be redundant in updating all nodes
in every iteration, we try updating only an arbitrary subset of nodes per itera-
tion. Also, we attempt varying the amount (and type) of updates that are done
in one iteration. Perhaps some form of alternating scheme has positive effects
on the decoder’s ability to converge. As a further dimension, we suggest adding
randomness to the mix, such that the decoder becomes non-deterministic in
space and time (i.e., which nodes are updated at any given iteration).

8.5.1 Thresholding

In doing this, we desire a more wide-spread propagation of messages through
the graph, thereby effectively reducing the overall amount of feedback. Even
with the complete loss of control on the girth, as G changes, it takes a minimum
of 2 successive iterations to complete a cycle. Using the protocol of Def. 6
to maintain sparsity, we simultaneously minimise the inevitable increase in the
number of 4-cycles.

Consider the operation of pivot on the edge (u, v), as described in Ch. 2. The
edges involved–either disconnected or created–are all edges in cycles of length 4.
By definition, these edges are those interconnecting the local neighbourhoods
of u and v. We may step from n(u) to u (necessarily); from u to v (via the
pivot edge); and, from v to n(v) (necessarily). Hence, each edge from n(u) to
n(v) \ {u} closes a 4-cycle in G.

Conversely, the egdes disconnected in pivot, each correspond to the removal
of a 4-cycle. Hence, in determining the optimum location (edge) for pivoting,
we should consider the size of the overlap, OE

u,v, between the two local neigh-
bourhoods (2.6). If the ’local density’ between u and v is greater than 0.5,
then we know we will remove more 4-cycles by pivoting on this edge, than the
number we create.

With some probability, the subsequent pivot operation will delete one or
several of the edges comprising the cycle, such that the intrinsic information
is never fed back to the originating bit. The proposed decoding schedule is
described in Def. 7. Note that the pivot of step 3 may remove some of the
edge(s) that were updated in step 2, thereby wasting computations. Keeping
things simple, we acknowledge the room for optimization, yet do not adjust this
in this project. After pivot, the change in edges connected to c changes the
check equation into a different equation, in accordance with the ideas of [63].
Since we have propagated the information on these edges further into the graph
in step 2, we do not lose any information along with the deleted edges.

99

8.6 Hybrid Decoding

Definition 7 The Dynamic Decoding Schedule.

1. Perform k flooding iterations, where each iteration consists of updating all
check nodes of degree < Tf , followed by all bit nodes of degree < Tv.

2. Protect information by producing the state, ωu, of each bit node, u.

3. Perform l pivot iterations, where we pivot only if ∆H > ε (8.5).

4. Initialise next iteration by moving ωu back onto edges adjacent to bit u.

Several variations on the scheme are explored, where the first two differ
in the way the next check c′ is selected, in step 4. Firstly, the “Chained”
schedule attempts to propagate the updated information as a connected wave
through the graph, by always selecting c′ among the checks adjacent to one of
the bits updated in step 2. However, it is important to take into account the
edges removed in step 3–and this approach can get stuck in situations where no
suitable c′ exists after pivot. The second suggestion is the “Random” schedule,
in which c′ is selected randomly among VC \ c.

To minimize the variable updates per iteration, it is valuable to try to avoid
pivoting on edges resulting in graphs which are not low density. However, to
avoid preprocessing and comparing the ρ pivot-options in every iteration, we
observe the more convenient approach of simply escaping from such undesirable
graphs, by pivoting again. Hence, in step 4, simply choose one of the low-density
checks as c′, and the congested check(s) should be expected to be alleviated in
the subsequent pivot operations.

8.6 Hybrid Decoding

Finally, we have experimented with a ’hybrid’ scheme, in which regular flooding
iterations are intermixed with one (or several) pivot operations. It is shown [53]
that certain error patterns sends the SPA decoder into a oscillation between
two states, where neither is a valid codeword. With flooding scheduling, the
decoder can not escape this loop and will simply time out. Our hypothesis is
that it would be possible to dislodge the system when it’s stuck, by using pivot.
This can be viewed as a means of ’shaking’ the system to further disperse the
information. The success of such a scheme is expected to reveal itself as a
noticable reduction in the number of timed out decodings.

8.7 Comments

All schemes have been simulated for BER performance, and compared against
conventional flooding scheduling on the same code. Returning to the discus-
sion on distributed implementation, it is essential that the transformations
discussed–LC and Pivot–are local operations. Nodes may execute this using
only the information readily available in their local neighbourhood, without
any need for global assistance or any form of message passing.

The work described in Ch. 6 has been subject to thorough testing in order to
verify the effectiveness of the scheme. As a benchmark, we have used the flooding

100

8.7 Comments

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8

B
E

R
Eb/N0 (dB)

Simulation Results over AWGN Channel, Hybrid Dynamic Scheduling, t=100
60x90, g=6 LDPC Code

p=0.0
p=0.2
p=0.5
p=1.0

Flooded, t=100
Uncoded

Figure 8.6: Hybrid Scheduling, which consists of regular Flooding iterations,
interspersed with one pivot operation (with probability p).

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8

B
E

R

Eb/N0 (dB)

Simulation Results over AWGN Channel, Hybrid Dynamic Scheduling (Using ’avoid4’), t=100
60x90, g=6 LDPC Code

p=0.5
p=1.0

Flooded, t=100
Uncoded

Figure 8.7: Hybrid Scheduling, but with ’avoid4’ scheduling instead of Flooding.

schedule over the same code, with a fair timeout. One decoder (SPA) iteration
consists of c check-node updates, followed by b bit-node updates. Hence, the
information in the system is updated by an amount proportional to W = c + b,
per iteration. As such, one flooding iteration can be described as Wf = m +N ,
whereas one dynamic iteration is only Wd = 1+ρ. To compare fairly, we should
ensure that both schemes have equal influence; TWf = DWd. As an example,
given T = 100 flooding iterations, we need D = 100Wf/Wd ≈ 261 dynamic
iterations.

It is important to point out that this is a weighting of information prop-
agation only, and that we are not concerned with discrepancies in workload,
or decoder latency. For instance, we ignore the complexity of repeated O(γρ)
pivot operations since these are mainly design concerns. Also, pivoting on G
will change the set of edges, E . Hence, E must be reset in between decoder
applications. Confident that all graphs in the pivot orbit are equivalent, we
could simply initiate the next decoding with E in the final state of the previous.
This would be a quite elegant simplification, especially considering an imple-
mentation in hardware. However, since the density of E varies considerably, we
produce more fair statistics by always initiating the decoder according to H(0).
Again, in keeping with our distributed view, we do not require the separate
storing of H (or any rotation of it), but rather store the original adjacency list
within each bit node–as a reference.

101

8.7 Comments

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12

B
E

R
Eb/N0 (dB)

Simulation Results over AWGN Channel, Random Dynamic Scheduling, t=500
60x90, g=6 LDPC Code

Protected
Unprotected

Flooded, t=100
Uncoded

Figure 8.8: Dynamic decoding, using pivot.

8.7.1 Unfinished Results

Owing to limited time for this thesis, we did not have time to fully explore the
ideas suggested in this chapter. However, some preliminary plots are presented
here.

Fig. 8.8 show a simulation on the dynamic scheduling, where thresholds
are set such that regular flooded iterations are interspersed with one pivot-
operation on a random edge. Unfortunately, time did not permit experimenting
further with the thresholds. The ’unprotected’ curve shows the performance
when information is evacuated from egdes (not stored in vertices) before pivot-
ing. The ’unprotected’ curve shows the effect of not protecting information at
all. Apparently, although we can not completely rule out software errors, the
idea of protecting information is valid and important. Also, to gain confidence
in the pivot operation, we did confirm that the codespace does not change–that
we stay within the orbit, as discussed previously.

This curve also shows that the idea of dynamic decoding may have potential.
Although this plot does not show a significant gain (assuming, for now, that the
data is in fact valid), it does not show a worsening of the convergence. This is
an interesting result in itself (if it is correct), because it adds to the conviction
that it is possible to decode using SPA on a network that dynamically changes.
In other words, if pivots happen beyond out control (not as a decoder scheme),
we can still converge.

Also, we experienced an unexplained decoder gain at low SNR when ex-
perimenting with decoder schedules involving storing messages in vertices in
between regular flooding iterations (no pivoting)–Fig. 8.9(b). A similar gain
occurred while running regular flooding in the Log-Likelihood domain (LLR’s)–
Fig. 8.9(a). We again emphasize our lack of confidence in the results, due to
limited time.

102

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8

B
E

R

Eb/N0 (dB)

Simulation Results over AWGN Channel, Min-Sum Algorithm (using LLR’s), t=100
60x90, g=6 LDPC Code

Min-Sum (LLR)
Flooded, t=100

Uncoded

(a) Min-Sum (LLR)

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8

B
E

R

Eb/N0 (dB)

Simulation Results over AWGN Channel, Min-Sum Algorithm (storing in vertices), t=100
60x90, g=6 LDPC Code

Flooded, saving to vertices
Flooded, t=100

Uncoded

(b) Storing in vertices

Figure 8.9: An unexplained gain at low SNR.

Chapter 9

Concluding Remarks

In this thesis we have looked at the practical and theoretical issues involved in
working with Low-Density Parity Check codes. In particular, we have focused
on the construction and decoding problems. In both cases, we have selected
one particular algorithm (the Extended Bit-Filling, and the Sum-Product Algo-
rithm, respectively) as focus for our work. In addition, we have experimented
with various novel ideas and extensions to the algorithms. Using our simulations
software, we were able to test the validity of these ideas, to a certain extent

9.1 Open Problems

9.1.1 Ant Traversal Decoding

The problem of “ant patrolling” [65] on a graph is the exploration of a network
by a “decentralised group of simple memoryless robotic agents.” By using an
extremely simple local rule, these agents cover the edges of the graph in a most
uniform manner, such that each edge is visited equally frequently. This appears
to be ideal for use as a SPA schedule, where the desire is precisely to cover the
edges in a uniform manner, thereby avoiding (or, postponing) the traversal of
cycles for as long as possible.

9.1.2 Avoid Going Round Cycles

Use local girth to stop decoding bits when their independence fails.

9.1.3 Strong Subcodes

The technique of Fig. 4.2 may be used to identify strongly protected bits in
the code; note the dips in the plot. By viewing these positions as the bits of a
subcode embedded within the larger code, and decoding on the larger code, we
would expect very good bit-error performance (convergence) of these bits.

However, it remains to verify that this particular topology (for this particular
example) is significant for this code. In other words, we would like to test that
the strong bits do not vary according to the codeword transmitted (which, in this
example, is the all-zero codeword). Unfortunately, time-restrictions prevented
did not permit this experiment.

104

9.1 Open Problems

9.1.4 Graph-Based Encoding

Sparse Matrix operations are already the standard method for encoding LDPC
codes in linear time. In this respect, we would like to attempt devicing a simple
algorithm similar to the SPA decoder, which encodes using the Parity-Check
matrix.

Gaussian Reduction reveals the location of the k information bits, which
are likely to be distributed around H . By attaching the information to the
bit nodes corresponding to these rows, and filling the remaining positions with
neutral values, it might be possible to infer the remaining redundancy symbols
by using a SPA-like algorithm. This technique is quite similar to that of [11],
who describe an encoding method based on the decoding algorithm for the
Binary Erasure Channel (BEC).

Our very limited attempt at this seemed to face difficulties with the majority
(m = N − k > k, R < 1) of neutral symbols, and could not converge.

105

Appendix A

Approximated Discrete Log

The binary Discrete Logarithm problem, on 5 bits (i.e., p = 10 variables; i = 5
input, and o = 5 output) modulo 29 is characterized by the following look-
up table 6. The table is written in compact notation, showing only the valid
input/output combinations.

f(x) = log2(x)mod29.

Note that the domain of the function is naturally abridged to 25 − 3, due
to the modular constraint. This naturally follows for the range of the function,
which, due to the log function, is also undefined for input 0.

106

Input Output τDL

1–32 0 0 0 0 0 - - - -
33–64 0 0 0 0 1 0 0 0 0 0 33
65–96 0 0 0 1 0 0 0 0 0 1 66
97–128 0 0 0 1 1 0 0 1 0 1 102

129–160 0 0 1 0 0 0 0 0 1 0 131
161–192 0 0 1 0 1 1 0 1 1 0 183
193–224 0 0 1 1 0 0 0 1 1 0 199
225–256 0 0 1 1 1 0 1 1 0 0 237
257–288 0 1 0 0 0 0 0 0 1 1 260
289–320 0 1 0 0 1 0 1 0 1 0 299
321–352 0 1 0 1 0 1 0 1 1 1 344
353–384 0 1 0 1 1 1 1 0 0 1 378
385–416 0 1 1 0 0 0 1 0 0 1 394
417–448 0 1 1 0 1 1 0 0 1 0 437
449–480 0 1 1 1 0 0 1 1 0 1 462
481–512 0 1 1 1 1 1 1 0 1 1 508
513–544 1 0 0 0 0 0 0 1 0 0 517
545–576 1 0 0 0 1 1 0 1 0 1 566
577–608 1 0 0 1 0 0 1 0 1 1 588
609–640 1 0 0 1 1 0 1 0 0 1 618
641–672 1 0 1 0 0 1 1 0 0 0 665
673–704 1 0 1 0 1 1 0 0 0 1 690
705–736 1 0 1 1 0 1 1 0 1 0 731
737–768 1 0 1 1 1 1 0 1 0 0 757
769–800 1 1 0 0 0 0 1 0 0 0 777
801–832 1 1 0 0 1 1 0 0 0 0 817
833–864 1 1 0 1 0 1 0 0 1 1 852
865–896 1 1 0 1 1 0 1 1 1 1 880
897–928 1 1 1 0 0 0 1 1 1 0 911

Table A.1: Θ10 (abridged), p = 10, o = 5, truth table τDL.

Appendix B

Tools

All tools developed for this thesis share a common (text-based) user interface,
with a prompt-based menu system. The prompt for the setting ’show’ allows the
user to select the amount of printout generated to the screen during execution.
In normal use, the choice would be 0, for minimum output. From this, increasing
numbers 1 to 3 are defined, where 3 indicates debugging mode (full output). At
certain points, if show > 0, the program halts, and waits for the user to view
the output before proceeding (and clearing the screen). At such points, the
program is resumed by entering a small integer (e.g., 1).

Also, please note that the program will produce output which does not
’break’ neatly over several lines. Hence, for correct result, it is important to
maximise the window in which the program is running.

B.1 1: Augmented EBF

Our implementation of the Extended Bit-Filling Algorithm is described in detail
in Ch. 4. The use of the program is relatively straight-forward, and assisted by
understandable input-prompts.

First, one is asked for the main optimization parameter; girth or rank. The
former attempts to construct a code of specific dimensions N and m (assuming
full rank), such that the girth remains above a user-defined bound, g. The latter
is quite similar, in that it also attempts to maintain girth above the minimum
bound, but the process is aimed at maximising the number of columns added.
Note: g is a lower bound on girth, which means that the software attempts to
avoid cycles of length ≥ g.

The software is designed to take as input a column-weight sequence, defining
(in bits, not fractions) the weight of each column (or, bit). By declining the
prompt, the uniform column weight is set to γ = 3. Otherwise, one is asked
for this sequence, and the input is expected in groups; such that one specifies
the size of a successive group of bits and their common weight. This way, it is
possible to specify any irregular LDPC code.

As discussed, ’jumpBack’ is one of the extensions to the EBF algorithm
suggested in this thesis. By disabling this tool, the construction process restarts
from the beginning immediately after a failure. Otherwise, by accepting it,

108

B.2 2: Code Library

there are two thresholds to be set,1 the minimum required columns successfully
constructed to qualify as a ’basis’ for further constructions; the distance the
procedure jumps back before resuming (column i′); and, finally, the maximum
number of times the algorithm tries to jump back before restarting from the
beginning. Currently, the first two thresholds are both set to 50% of N , while
the number of resumes is set to 30% of N .

Next, the user is prompted for the maximum number of ’attempts,’ which
is the total (including resumes using jumpBack) number of times the algorithm
tries to construct the code. The final inputs are the lower and upper girth
bounds, g and ḡ, respectively, and the maximum (fixed) row-weight, ρmax.

2

Codefiles are stored in the incomplete directory by default, and must be
moved to the matrices directory before they are accessible in the Code Library
(se below). Also, by convention, the EBF algorithm is designed to optimise
on the design parameter, so it may produce more than one file. Each output
file is then named according to the naming scheme below, but with N = 0 (in
the filename), so that files of the same optimisation process can be determined.3

Recommended output level for code optimisation construction is 0.

B.1.1 Shortcuts

To demonstrate the software, the toolset comes with a set of construction ’short-
cuts,’ as given by design parameters in Table 4.2. These constructions do not
prompt the user for any design parameters, and is a quick way of viewing the
EBF process.

Recommended output level for code construction is also 0, but can be changed
to 1 to follow the details of the process.

B.1.2 No Optimisation

In the event that the user wishes to produce a code of specific dimensions
and girth, and do not want the software to attempt optimising further, the
workaround is, as suggested in [1], to set g = ḡ.

B.2 2: Code Library

Before proceeding to any other tools, it is important that a code is loaded
into memory, from the ’code library’ (the matrices directory). The program
supports the Alist format,4 and expects matrices (codes) to be stored in files
which have the following naming scheme;

N . γ . ρ . g .A

1These are specified within the code, not at the prompt.
2The construction of irregular codes is limited to the column-weight sequence, yet this

would not require a major change to the code to extend to include the row-weight sequence.
3This is well-defined for optimising on rank, where N is expected to vary, but perhaps less

intuitive for girth, where N is fixed. Time did not permit ajdusting this feature.
4http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

109

B.3 4: SPA Decoder

B.3 4: SPA Decoder

The SPA decoder begins with the desired infoword. Due to restrictions in time,
we have not completed the encoder, meaning that the program may only be used
with the all-zero codeword (assuming a linear code), or a user-defined codeword.

The various schedules explored in this thesis are available for testing, and
are selected according to the following system.

f for Flooding;

d for Dynamic (with further prompts for ’Random’; or ’Chained’);

h for Hybrid (flooding interspersed with pivots);

a for Avoid 4-cycles;

z for Storing messages in vertices;

g for Tresholding (also, storing messages in vertices);

Next, the user is prompted for decoder timeout (max number of iterations),
and SNR (in dB). Beyond this, the channel is modelled, adding noise to the code-
word, which is then decoded. Recommended output level for single-codeword
decoding is 1.

As a compile-time setting, the user can choose the ’message domain’ (LR or
LLR) by setting a parameter in the Graph class.

B.4 11: Channel Simulator

The simulation software will prompt for many of the same parameters described
in the SPA decoder above. Essentially, the user selects a codeword (usually,
the all-zero codeword), and sets the decoder settings (see above). Next, the
simulator attempts to generate BER points with 95% confidence (i.e., sampling
100 bit-error events) over the range of 0 to 10.5 dB, with increments of 0.5 dB.5

The simulator produces the output both on screen and to file (if desired).
These datafiles are placed in the curves directory, and follow the following
naming scheme, where filename is defined above

filename - schedule timeout - seed _ id .dat

’Schedule’ and ’timeout’ are defined above, while ’seed’ is set as

srand(static_cast<unsigned>(time(0)))

(which is denoted in the filename by 0). The seed can be changed at compile-
time, within the code. Finally, the ’id’ ensures that datafiles are never overwrit-
ten, in case of name-conflicts.

The final prompt, is whether to display the output from ps u -p [pid]

on-screen, during simulation. This can be interesting to follow, especially while
processing large codes which take long to decode. The data produced by the
simulations software (to screen, and file) is described in Ch. 7.

5The software has a maximum of 107 messages simulated, to avoid infinite looping.

110

B.5 21: Check Girth

B.5 21: Check Girth

Using a exhaustive Depth-First traversal of the graph, the minimum girth is
identified. For large codes, this may take a while to complete.

B.6 22: Draw Graph

Using the dot format, the software can produce a script-file for neato of the
GraphViz package. The output is forced into standard LDPC bipartite form,
but also a ’free’ script is produced, which allows neato to determine the location
of nodes. Both files are named by filename (see above), with the .dot suffix,
and are stored in the bitfill directory.

> neato -Tps file.dot -o file.ps

B.7 Etcetera

In addition to the above software, a small set of applications were written,
mainly to handle the codefiles.

B.7.1 Convert Maple - Alist

The alist format, defined by MacKay et al., is a compact notation for repre-
senting sparse matrices. Rather than storing the entire m×N matrix in binary,
only the non-zero entries are recorded. Also, for queries, the format contains
a header, with the characteristic parameters: blocklength, N ; redundancy, m;
row- and column-weight sequences, ρ(x) and γ(x), respectively.

In this thesis, we have implemented this format, in which all codes con-
structed are stored. This way, the software and code-library is more easily
accessible for further use. Also, obviously, our software may import codes from
the comprehensive Encyclopedia of Sparse Graph Codes [41].

Some matrix operations–such as invertion, and Gaussian Reduction–are bet-
ter left to professional software, such as Maple or Matlab, who do not support
the alist format. To bridge this gap, we wrote two small tools to convert
between alist and ’Maple matrix format.’6

A to Maple.pl and Maple to A.pl are both run via Perl, with the filename
as input. Both scripts are to be run from the main directory, and expect to
find the given file in the matrices or mapleMatrices directories, respectively.
Below, is an example which converts the alist file to Maple format (for pasting
into Maple),

> perl A_to_Maple.pl 816.3.6.6.A

6Matrices are represented as lists of lists, delimited by square brackets, and commas.

111

Bibliography

[1] J. Campello and D. Modha. Extended bit-filling and ldpc code design.
IEEE Trans. Inform. Theory, 1:985–989, 2001.

[2] J. Campello, D. S. Modha, and S. Rajagopalan. Designing ldpc codes
using bit-filling. Proc. Int. Conf. Communications (ICC), Helsinki,
Finland, 2001.

[3] D. C. J. MacKay. David MacKay’s Research group, Cavendish
Laboratory, 2003. http://beta.metafaq.com/action/answer?aref=
318654&id=MKCTHOUBRP5J1BOCB01PLI077I.

[4] R. G. Gallager. Low-Density Parity-Check Codes. Cambridge, MA: MIT
Press, 1963.

[5] C. E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:379–423, 623–656, 1948.

[6] C. Berroux, A. Glavieux, and P. Thitimajshima. Near shannon limit
error-correcting coding and decoding: Turbo codes. Proc. IEEE Intl.
Conf. Commun. (ICC 93), pages 1064–1070, 1993.

[7] R. M. Tanner. A recursive approach to low complexity codes. IEEE
Trans. Inform. Theory, 27:533–547, 1981.

[8] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse
matrices. Cryptography and Coding 5th IMA Conf., pages 100–111, 1995.

[9] M. Sipser and D. A. Spielman. Expander codes. IEEE Trans. Inform.
Theory, 42:1710–1722, 1996.

[10] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and
V. Stemann. Practical loss-resilient codes. Proc. 29th Symp. on Theory of
Computing, pages 150–159, 1997.

[11] T. J. Richardson and R. Urbanke. The capacity of low-density
parity-check codes under message-passing decoding. IEEE: Trans.
Inform. Theory, 47:599–618, 2001.

[12] S. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke. On the
design of low-density parity-check codes within 0.0045 db of the shannon
limit. IEEE Comm. Letters, 2:58–60, 2001.

112

BIBLIOGRAPHY

[13] T. Nozawa. Ldpc adopted for use in comms, broadcasting, hdds. Nikkei
Electonics Asia, 2005. http://neasia.nikkeibp.com/neasia/000828.

[14] B. Vasic and I. B. Djordjevic. Low-density parity check codes for
long-haul optical communications systems. IEEE Photonics Tech. Letters,
14:1208–1210, 2002.

[15] C. Neumann, V. Roca, A. Francillon, and D. Furodet. Impacts of packet
scheduling and packet loss distribution on fec performances: Observations
and recommendations, 2005.
http://www.inrialpes.fr/planete/people/roca/mcl/ldpc infos.html.

[16] Linear Algebra and its Applications. Addison-Wesley Publishing
Company, 2000.

[17] Shu Lin and Jr. Daniel J. Costello. Error Control Coding. Pearson,
Prentice Hall, 2004.

[18] M. G. Parker C. Riera. On pivot orbits of boolean functions. 2005.

[19] A. Bouchet. Isotropic systems. Eur. J. Comb., 8:231–244, 1987.

[20] L. E. Danielsen. On self-dual quantum codes, graphs, and boolean
functions. Master’s thesis, UiB, 2005.

[21] H. Loeliger. An introduction to factor graphs. IEEE Signal Proc.
Magazine, 21:28–41, 2004.

[22] F. R. Kschischang, B. J. Frey, and H. Loeliger. Factor graphs and the
sum-product algorithm. IEEE. Trans. Inform. Theory, 47:498–519, 2001.

[23] W. Ryan. An introduction to low-density parity-check codes. 2001.
http://www.csee.wvu.edu/wcrl/papers/ldpc.pdf.

[24] R. Hill. A First Course in Coding Theory. Oxford University Press, 1986.

[25] Channel (communications). From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Channel %28communications%29.

[26] Electromagnetic spectrum. From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Electromagnetic spectrum.

[27] B. J. Frey and D. J. C. MacKay. A revolution: Belief propagation in
graphs with cycles. NIPS, 10, 1998.
http://www.cs.toronto.edu/∼mackay/rev.ps.gz.

[28] Eric W. Weisstein. Gaussian function. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/GaussianFunction.html.

[29] J. G. Proakis. Digital Communications. McGraw-Hill, 2000.

[30] M. Potužńık and P. Hinow. Deterministic patterns in pseudorandom
point sets. 1997. http://math.vanderbilt.edu/∼hinopw/workshop 97.pdf.

[31] T. J. Richardson, A. Shokrollahi, and R. L. Urbanke. Design of
capacity-approaching irregular low-density parity-check codes. IEEE
Trans. Inform. Theory, 47:619–637, 2001.

113

BIBLIOGRAPHY

[32] D. J. C. MacKay. Good error-correcting codes based on very sparse
matrices. IEEE Trans. Inform. Theory, 45:399–431, 1999.

[33] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman.
Improved low-density parity-check codes using irregular graphs. IEEE
Trans. Inform. Theory, 47:585–598, 2001.

[34] J. Kim, U. N. Peled, I. Perepelitsa, V. Pless, and S. Friedland. Explicit
constructions of ldpc codes with girth at least six. IEEE Trans. Inform.
Theory, 50:2378–2388, 2004.

[35] V. Stolpman, C. Zhang, and N. Vanwaes. Irregular structured ldpc codes.
2004. http:www.ieee802.org/16/tge/contrib/C80216e-04 264.pdf.

[36] A. Prabhakar and K. Narayanan. Pseudo-random construction of
low-density parity check codes using linear congruential sequences. Web
page, 2002. http://www.ee.tamu.edu/∼krn/PAPERS/lcldpc.pdf.

[37] D. J. C. MacKay, S. T. Wilson, and M. C. Davey. Comparisons of
constructions of irregular gallager codes. IEEE Trans. on Commun.,
47:1449–1415, 1999.

[38] R. Urbanke. Lthc: Ldpcopt. Web application, 2005.
http://lthcwww.epfl.ch/research/ldpcopt/.

[39] S. Chung. Density evolution applet. Web application (appears offline),
2003. http://lids.mit.edu/∼sychung/de.html.

[40] Greedy algorithm. From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Greedy algorithm.

[41] D. C. J. MacKay. Encyclopedia of sparse graph codes, 2005.
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

[42] K. V. Rhein. Algorithms and complexity.
http://www-1g.cs.luc.edu/∼van/cs460/lecture8/.

[43] H. Xiao and A. Banihashemi. Graph-based message-passing schedules for
decoding ldpc codes. IEEE. Trans. on Commun., 52:2098–2105, 2004.

[44] S. Ikeda, T. Tanaka, and S. Amari. Information geometry of turbo and
low-density parity-check codes. IEEE Trans. Inform. Theory,
50:1097–1114, 2004.

[45] T. J. Richardson and R. Urbanke. Efficient encoding of low-density
parity-check codes. IEEE Trans. on Inform. Theory, 47:638–656, 2001.

[46] C. P. Shelton. Lecture Notes, 1999.
http://www.ece.cmu.edu/∼koopman/des s99/coding.

[47] V. Nagarajan. Lecture Notes.
http://ece-www.colorado.edu/∼milenkov/class.ppt.

[48] X. Wu, H. R. Sadjadpour, and Z. Tian. A new adaptive two-stage
maximum-likelihood decoding algorithm for linear block codes. IEEE.
Trans. on Commun., 53:909–913, 2005.

114

BIBLIOGRAPHY

[49] Decoding methods. From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Syndrome decoding.

[50] D. C. J. MacKay. David MacKay’s Research group, Cavendish
Laboratory, 2003. http://beta.metafaq.com/action/answer?aref=
318380&id=MKCTHOUBRP5J1BOCB01PLI077I.

[51] A. E. Pusane, M. Lentmaier, T. E. Fuja, K. S. Zigangirov, and D. J.
Costello. Multilevel coding/modulation using ldpc convolution codes.
Intl. Symp. on Inf. Theory and Its Appl., ISITA2004, 2004.

[52] H. S. Cronie. Signal constellations for multilevel coded modulation with
sparse graph codes.
http://www.sas.el.utwente.nl/publications/download/165.pdf.

[53] S. M. Moser. Investigation of algebraic codes of small block length using
factor graphs. Master’s thesis, ETH, 1999.

[54] Indicator function. From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Indicator function.

[55] P. Vontobel and R. Koetter. On the relationship between linear
programming decoding and min-sum lagorithm decoding, 2004.
http://citeseer.ist.psu.edu/vontobel104relationship.html.

[56] Information entropy. From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Information entropy.

[57] A. Baldman. Bit error ratio testing: How many bits are enough? Web
page, 2003. http://www.iol.unh.edu/training/ethernet/
BER-How Many Bits 18Mar2003.pdf.

[58] J. E. Gilley. Bit-error-rate simulation using matlab. Web page, 2003.
http://www.transcrypt.com/download?id=7550.

[59] T. Summers. Ldpc: Another key step towards shannon. Web page.
http://www.commsdesign.com/design corner/showArticle.jhtml?
articleID=49901136.

[60] X. Hu and M. P. C. Fossorier. On the computation of the minimum
distance of low-density parity-check codes. IEEE Intl. Conf. on Comm,
2004.

[61] Error floors of ldpc codes. Proc. 41st Allerton Conf. Comm., Contr. and
Comp., 2003.

[62] E. Guizzo. Closing in on the perfect code. IEEE Spectrum, 2004.

[63] J. H. Weber and K. A. S. Abdel-Ghaffar. Stopping set analysis for
hamming codes. IEEE Proc. of IEEEISOC ITW2005 on Coding and
Complexity, pages 244–247, 2005.

[64] Pivot. From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Pivot.

115

BIBLIOGRAPHY

[65] V. Yanovski, I. A. Wagner, and A. M. bruckstein. A distributed ant
algorithm for efficiently patrolling a network. Algorithmica, 37:165–186,
2003.

116

