
Department
of
APPLIED MATHEMATICS

UNIVERSITY OF BERGEN
Bergen, Norway

A Note on Portfolio oprimization in a levy Market
with local Substitution and habit formation

by

Fred Espen Benth, Kenneth Hvistendahl Karlsen
and Kristin Reikvam

Report no. 142 May 2000





Department of Mathematics
University of Bergen

ISSN 0084-778x

5008 Bergen
Norway

A Note on Portfolio oprimization in a levy Market
with local Substitution and habit formation

by

Fred Espen Benth, Kenneth Hvistendahl Karisen
and Kristin Reikvam

Report no. 142 May 2000





A NOTE ON PORTFOLIO OPTIMIZATION IN A LEVY MARKET
WITH LOCAL SUBSTITUTION AND HABIT FORMATION

FRED ESPEN BENTH, KENNETH HVISTENDAHL KARLSEN, AND KRISTIN REIKVAM

Abstract. We have in previous papers [2, 3] studied an optimal portfolio-consumption
model which takes into account the notion of local substitution and allow the stock price
to be governed by a general Lévy (jump-diffusion) process. In this note, we discuss a
generalization of this model which includes the effect of habit formation. The resulting
portfolio-consumption model is discussed within the framework of dynamic programming
and the theory of viscosity Solutions. The associated Hamilton-Jacobi-Bellman equation
is a second order degenerate elliptic integro-differential variational inequality. We also
review various economical interpretations as well as results given by Hindy, Huang, and
Zhu [l3, 14] for the portfolio-consumption model in the geometric Brownian case.

1. Introduction

In this paper we will present and discuss an optimal portfolio-consumption problem
in a Lévy (jump-diffusion) market. A feature of this portfolio-consumption problem is
the inclusion of local substitution and habit formation. More specifically, the utility of
the investor will not be derived from present consumption directly but from averages
over past consumption. The stochastic optimization problem is a generalization of the
problem studied in Benth, Karlsen, and Reikvam [2], which does not take into account
the effect of habit formation. In [2], we characterized the value function of the portfolio
consumption model as the unique constrained viscosity solution of the associated Hamilton-
Jacobi-Bellman equation in the case of a pure-jump market. In the companion paper [3],
we calculated explicit consumption and portfolio selection plans for power utility functions
when the risky asset follows a geometric Lévy process (see also [s] for numerical examples
in real markets). Although we will not discuss it here, a related portfolio-consumption
model which also takes into account proportional transaction costs is analyzed in [4].

In this paper, we remark that the viscosity solution characterization of the value function
proved in [2] is valid also if we include the effect of habit formation in our model. Although
we state and discuss the results leading up to this characterization, the proofs are only
sketched since the details will appear elsewhere in connection with numerical studies. In
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programming, integro-differential variational inequality, viscosity solution.
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2 BENTH, KARLSEN, AND REIKVAM

addition to a viscosity solution treatment of the portfolio-consumption model, we discuss
varions economical interpretations as well as reviewing the results given by Hindy, Huang,
and Zhu [l3, 14] for this model in the case of geometric Brownian motion. For an overview
of papers dealing with control problems related to the one that we study herein, we refer
to the discussions and citations in [2, 3, 4], see also the review paper by Zariphopoulou
[l9]. The reader is also encouraged to consult these papers for references to relevant papers
dealing with the theory of viscosity Solutions.

One of the main motivation for analyzing our portfolio-consumption model within the
framework of viscosity Solutions is that such analysis provides the first step in a numerical
treatment of the model. When the notion of habit formation is included, it is hard (if
possible?) to find explicit consumption and investment plans. If the risky asset follows
a geometric Brownian motion, Hindy, Huang, and Zhu [l3, 14] conclude from numerical
Solutions that, for instance, the optimal portfolio selection plan behaves quite differently
from the case with no habit formation. It is of interest to generalize their analysis to assets
that follow geometric Lévy processes, opening up for a much more realistic modeling of
the stock price dynamics. Since we cannot expect to find Solutions by analytical means,
a natural approach is to attack the problem with a so-called Markov chain approximation
method, as was done by Hindy, Huang, and Zhu [l3, 14] in the geometric Brownian case.
We refer to Kushner and Dupuis [l6] for a general introduction to the Markov chain
approximation method. The construction and analysis of numerical methods is outside
the scope of this paper and will instead be the topic of future work. In fact, we will
in future work present a Markov chain approximation method for computing the value
function as well as the optimal policies (see [B] for preliminary work in this direction). As
is well known by now, the viscosity solution theory provides a very flexible and powerful
framework for proving convergence of numerical methods. However, to take advantage
of this framework, the analytical results found in the present paper are necessary. In
particular, the characterization of the value function as the unique constrained viscosity
solution of an integro-differential variational inequality is of fundamental importance for
the convergence analysis of a large dass of (monotone, stable, and consistent) numerical
methods for the portfolio-consumption model studied herein.

An outline of the paper is as follows; In Section 2, we formulate the portfolio-consumption
problem and State the basic assumptions. In Section 3, we discuss the economical interpre
tations of the model, while in Section 4 we study the portfolio selection problem within a
viscosity solution framework. The results of Hindy, Huang, and Zhu [l3, 14] for geometric
Brownian motion are briefly presented and discussed in Section 5.

2. The stochastic control problem

Let (fl, TA W) be a probability space and {Tt ) a given filtration satisfying the usual
hypotheses. Consider an investor operating in a financial market consisting of a risky asset
(e.g., a stock) and a bond. The value of the risky asset is assumed to follow the stochastic
process

(2.1) St = S 0eLi ,
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In (2.1), Lt is a Lévy process with Lévy-Khintchine decomposition

a N(ds , da) )

where /i, <7 are constants and My is a standard Brownian motion. Furthermore, N{dt,da)
is a Poisson random measure on lp x R with intensity dt x n[da), n(d<a) is a cr-finite Borel
measure on R\{o} called the Lévy measure, and N{dt, da) = N{dt , da) - dt x n{da) is the
compensated Poisson random measure. We assume that Wt and N(dt, da) are independent
stochastic processes. From now on we shall use the unique cådlåg version of Lt , which is
also denoted by Lt .

We recall that the Lévy measure has the property

min(l, a 2) n{da) < 00.(2.2)
R\{o}

Under the following additional integrability condition on the Lévy measure

(2.3) ea 1 n{da) < 00,
|q|>l

we can write the differential of the stock price dynamics as (using Ito’s formula for Lévy
processes, see, e.g., [ls])

(2.4) dSt = fiSt dt + aS, dWt + (eQ l) N{dt , da).
R\{o}

with r > 0 being the interest rate. We make the basic assumption that r < /L Hence, the
expected rate of return from an investment in the risky asset is greater than the return of
the bond, giving potential investors a risk premium p. r.

The investor wants to allocate her wealth in the asset and the bond and consume so as
to maximize her utility. Let 7Tt 6 [o,l] be the fraction of wealth invested in the asset at
time t. If we denote the cumulative consumption up to time t by C*, we have the wealth
process Xp'C given as

where x is the investoFs initial wealth. The ruarket is supposed to be free of any transaction
costs (see [4] for the case of transaction costs).

Lf = fit -f- aWt + f f aN{ds l da)+ f f
JO J |a|<l Jo J |q|>l

Here we have introduced the short-hand notation

(2.5) fjJ = fi+-a2 + f (eQ -1 - al|aj<i )n{da).
* JE\{o}

The bond dynamics is
dBt rBt dt ,

X(’c =x—Ct+ I {r + (fi-r)ns )X*’c ds + [ ctts X”'c dWsJo Jo

-f f f (e Q —l) N{ds : da),
Jo Jr\{o}
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The investor derives utility from the two processes

(2.6) 71

where y : z > 0 and /?, A are positive weighting factors. The integrals with respect to Ct
are interpreted pathwise in a Lebesgue-Stieltjes sense. When there is no risk of confusion,
we shall frequently write Xu Yt , Zt instead of X^ ,c , Y*,c , ZJ'C , respectively. Note that the
differential forms of Yt and Zt are

The economical background for these two processes are discussed in the next section.
Denote by Ax , y , z the set of all admissible Controls and let

We say that a pair of Controls is admissible for (x , y, z) G V and write tt, C E Ax ,y , z if;
(c.l) Ct is an adapted process that is right continuous with left-hand limits (cådlåg),

nondecreasing, with initial valne Co- = 0 (to allow an initial jump when Co > 0),
and satisfies E[Cd < oo for all t > 0.

(c.2) 7Tt is an adapted cådlåg process with values in [o, l].

Condition (c.3) is a state-space constraint, restricting the set of admissible consumption
patterns to those avoiding negative wealth.

The objective of the investor is to hnd an allocation process tt* and a consumption pattern7T* C* 7T* C*
C* which optimizes the expected discounted utility derived from Yt ' and Zt ’ over
an infinite investment horizon. The value function is defined as

where å > 0 is the discount factor. The utility function U : [o,oo) 2 [O, oo) is assumed
to have the following properties:

(u.l) U is nondecreasing, concave, and continuous in each variable.

Y?’° = ye- 01 + [ é3s dCs ,J\(Ul

Zf'c = ze~xt + Xe~ xt [ e Xs dCs ,
Jm

dYt = -PYt dt + pdCt
dZt —XZt dt + X dCt

V = | [x,y,z) Gl3 : x > 0, y > 0, z > o|.

(c.3) > 0 almost surely for every t > 0.

r r°° i
(2.7) V{x,y,z)=sup E /,y ,2 0

(u.2) There exist constants K> 0 and 7 G (0,1) such that 6 > k{7) and

U[y, z) <K{l + y + z) 1 ,
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A Taylor expansion shows that the integral term in k{7) is finite since (2.2) and (2.3) hold.
We next recall a fundamental property of the valne function that goes back to Bellman.

Namely, we will assume throughout this paper that the dynamic programming principle
holds, that is, for any stopping time r and t > 0,

where a A b = min (a, 6). The infinitesimal version of the dynamic programming principle
(2.9) is the Hamilton-Jacobi-Bellman equation. In the our context, this equation is a
nonlinear second order degenerate elliptic integro-differential equation subject to a gradient
constraint (i.e., an integro-differential variational inequality). If we let A denote the second
order degenerate elliptic integro-differential operator dehned as

the Hamilton-Jacobi-Bellman equation takes the form

(2.10)

Note that we have x-f 7ra:(ea -1) > 0 for all x > 0 and a€ R. If vis C 2 and sublinearly
growing, it can be proven that (2.10) is well-defined (see, e.g., [2]). Moreover, if the
value function V dehned in (2.7) satishes these conditions, then, by using the dynamic
programming principle (2.9) and It6’s formuia, one can easily prove that V solves (2.10).
However, since it is hard in general to prove that V is sufficiently regular, we shall in
Section 4 interpret (2.10) in the sense of viscosity Solutions. More precisely, due to the
state-space constraint (c.3), we shall consider constrained viscosity Solutions of (2.10).

3. Economical interpretations

In this section we discuss economical interpretations of the optimal portfolio-consumption
problem described in Section 2. Contrary to most non-time-additive utility maximization
problems, the investor does not derive her utility directly from present consumption but
from averages over past consumption (through the processes Yt and Zt dehned in (2.6)).
This structure has many desirable interpretations from an economical point of view. Hindy,
Huang, and Zhu [l4] suggest three possible interpretations of the two processes Yt and Zt .
In the hrst, they describe the notions of local substitution and habit formation. Secondly,

for all nonnegative y, z, where
2

(2.8) k{7) = max 7(r -f (/i r)?r) 7(1 7) —7r2
7re[o,i] L 2

+ f ((l + n{ea l)) 7 —1 77r(ea 1)1 n{da) .
2r\{o} ' ' J

rtAt ..

(2.9) V(x,y,z)= sup E / , ,2få7T ,y ,2 «/ 0

Av {x , y , z) = -(3yvy - Xzvz + max (r + (/i - r)n)xvx + \o2 x1 xI vxxttG[o,l] i- 2

+ / (u(a: + 7T5;(e Q - l),y,z) - v{x,y 7 z) - nxvx {x,y : z)(ea - 1)) n{da)
JR\{o} v ' j

maxl/3vy + \vz vx ] U{y, z) —Sv + Av | =oin V.
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they model the service flow from a durable good, and in the final interpretation, Yt and
Zt describe the utility derived from a composite commodity. We next discuss the three
interpretations in more detail.

The notion that consumption at one date reduces marginal utility at nearby dates and
consumption at adjacent dates are complementary is called local suhstitution. If we have
lunch at noon, the marginal utility of eating again shortly after will be lower since we are
not hungry (provided we had a satisfactory lunch, of course). At dinner time we are again
hungry (provided the lunch was not too satisfactory), so the marginal utility to eat then
is complementary to lunch. If the mathematical model is able to catch the notion of local
substitution, it should be optimal to consume (i.e., to eat in our example) periodically,
or in gulps. Hindy and Huang [lo] show that investors deriving utility from Yt instead
of Ct directly will consume in gulps (see discussion below). The process Z* models the
notion of habit formation. Agents develop habits from earlier consumption and a high
standard of living increases the appetite for present consumption. If you are used to a
delicious Botswana beef for supper, you will probably be very disappointed being offered a
Norwegian beef as a substitute. When changing your old Mercedes car, you will probably
want to buy a new and perhaps better Mercedes to keep up with your expectations of what
a car should be like. DeTemple and Zapatero [7] suggest to model the mechanism of habit
formation by dZt = pdCt A Zt dt 1 . The constants A and p describe the relative importance
of consumption history to inherited standard of living. Furthermore, p is the intensity of
consumption habitats, while A is the persistence of past consumption. A low A means a
high persistence, while increasing p places more emphasis on the history of consumption.
We choose to follow Hindy, Huang, and Zhu [l3, 14] and let p = A. Investigating this
control problem is important in order to improve the understanding of the mechanisms
driving security returns.

In the second interpretation of the model, Ct is the total purchase of a durable good up
to time t. The durable good may be clothing, computers, cars, and even holidays. The
process Yt describes the service flow from the durable good. For instance, buying a car will
provide the agent with a mean of transport. However, as long as you use the car, it will
deteriorate, and after a while the service flow will start to decrease as long as you do not
buy a new one. The standard of living of the agent is reflected through past consumption,
and modeled by Zt . Also Zt will decrease as long as new goods are not purchased, however,
at a slower rate. A natural condition from an economic point of view is to assume /3 > A.
Good quality and fashionable clothes will for instance provide you with a high standard
of living (that is, high Zt ), while the service of the clothes will be to keep you warm and
dry (one may of course argue that fashion changes faster than deterioration of clothes, so
perhaps (3 < X instead).

The final interpretation mentioned by Hindy, Huang, and Zhu [l4] is composite com
rnodities. Many commodities may give the agent two (or more) Utilities. The new portable
computers from Macintosh provide you with a high quality computer, but at the same
time with style (at least they try to advertise it like that). A bicycle gives you exercise

x They use in fact absolute continuous consumption plans dCt = ct dt.
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(increasing your health) as well as being a mean of transport. Food, for instance, provide
you with vitamins and energy, both important for your well being. The utility derived
from such dual purpose commodities are modeled through Yt and Zt . A natural condition
of the utility function would be d2 U/dydz > 0, meaning that marginal utility of transport
is increased at a higher level of health, if you think of bicycles. Of course we may think of
commodities with more than two purposes. We will not include that generality here, since
it is a straightforward extension rnathematically.

4. VISCOSITY SOLUTIONS

Our analysis of the portfolio-consumption model described in Section 2 is based on the
dynamic programming method and the newly developed theory of viscosity Solutions of
Hamilton-Jacobi-Bellman equations. For a general overview of the viscosity solution theory,
we refer to the survey paper by Crandall, Ishii, and Lions [6] and the book by Fleming
and Soner [9]. For an overview of the use of viscosity Solutions in the area of portfolio
management and derivative pricing, we refer to the review paper by Zariphopoulou [l9].

As it turns out, the Hamilton-Jacobi-Bellman equation is a direct consequence of the
dynamic programming principle and one expects the value function to satisfy this equation.
However, due to degeneracy as well as market imperfections such as trading constraints (see
(c.3)) and transaction costs, to mention only a few, the value function might not satisfy
the Hamilton-Jacobi-Bellman equation in the classical sense, that is, the value function
might not possess all the continuous derivatives occurring in the Hamilton-Jacobi-Bellman
equation and thus not satisfy this equation pointwise everywhere. It therefore becomes
important to relax the notion of classical solution of Hamilton-Jacobi-Bellman equations
so as to allow functions that are not necessarily smooth as (generalized) Solutions. This has
been achieved successfully by the introduction of the notion of viscosity Solutions, which
allows merely continuous functions to be Solutions of fully nonlinear first and second order
partial differential equations.

As already mentioned in (2.10), the Hamilton-Jacobi-Bellman equation associated with
our singular control problem is a second order integro-differential variational inequality
which contains a non-local (integral) operator with a highly singular Lévy measure n{da). If
we insist on interpreting (2.10) in the classical sense, we have to consider twice continuously
differentiable functions because of the second order differential operator part of (2.10) as
well as the (singular) Lévy measure n{da). We point out that it is not easy to show
directly that the value function (2.7) is twice continuously differentiable, although we can
prove quite easily that it is continuous and sublinearly growing (see below). However, if
we interpret (2.10) in the viscosity sense, it is sufficient to consider continuous functions,
and one can indeed show that the value function (2.7) is a viscosity solution of (2.10) (see
below). Moreover, one can prove that there exists only one viscosity solution (the value
function!) of the integro-differential variational inequality (2.10) which is continuous and
sublinearly growing (see below).

The (constrained) viscosity solution framework presented below is a straightforward
adaption of the framework developed in [2, 3, 4] for first and second order integro-differential
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variational inequalities. Due to strong similarities with [2, 3, 4], we are very brief in this
section and refer to [2, 3, 4] for details not found herein. Also, we refer to [2, 3, 4] for an
overview of the literature dealing with viscosity Solutions of integro-differential equations.

As already indicated, the ultimate goal of this section is to characterize the value func
tion (2.7) as the unique constrained viscosity solution of the associated Hamilton-Jacobi-
Bellman equation (2.10). To this end, we first verify as in [2, 3, 4] that the value function
V is well defined, non-negative, non-decreasing, and concave. The arguments needed to
establish these properties are standard (see, e.g., Zariphopoulou [lB, 19]).

Next, one can show V is uniformly continuous on V by following the arguments used
in the proof of Theorem 3.1 in [2] (see also [l, 3, 4]). In fact, one can even show that
V is Holder continuous if U is Holder continuous and some extra conditions on /c(y) are
fulfilled. This was first observed by Alvarez [l] in the Brownian case and later generalized
to the Lévy case in [2] (see also [3]). In addition, the value function has sublinear growth
of the same order as the utility function, see [l, 2, 3, 4] different proofs of this fact. More
precisely, there exists a positive constant K such that

V e C7 (D).

Later we prove that the characterization of V as a constrained viscosity solution is unique
at least within the dass of continuous and sublinearily (7 < 1) growing Solutions.

Before we introduce the notion of (constrained) viscosity Solutions, let us introduce the
following short-hand notations: X = (x, y, z) G E 3, Dxv is the gradient of v with respect to
X, D\v is the Hessian of v with respect to A, and G{Dx v) = (3vy + Xvz vx . Furthermore,
introduce the non-local operator

and the operator

(4.2)

A constrained viscosity solution of (4.2) is defined as follows:

(4.1) V{x, y, z) < K{l + x + y 4- z) 1 \/x,y,zeV

In view of (4.1) and for later use, we introduce the set

CC (V) = [4> 6 C[V): sup (1 °°}’ f- °-

In particular, we have

B7T (X,v)= / (v {x + 7Tx{ea - 1), y, z) - v{X) - 7rxvx (X){ea - 1)] n{da)
JR\{o} ' 7

F{X,v,Dxv,D2xv,B*{X,v))
I -

= U{y , z) - fo; - (3yvy - Azu, + max (r + (/x - r)n)xvx + -cj2 tt2x2vxx + v) .ttG[o,l] L Z

We can now write (2.10) as

F{X, v, Dxv, D2xv, {X : v))'j =oin V
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Definition 4.1. (i) Let O C V. Any v G C(V) is a viscosity subsolution (supersolution)
of (4.2) in O if and only if we have, for every X G O and f) G C2 [V) n C\{V) such that X
is a global maximum (minimum) relative to O of v f,

(ii) Any v G C{D) is a constrained viscosity solution of (4.2) if and only if v is a viscosity
subsolution of (4.2) in V and v is a viscosity supersolution of (4.2) in V.

Following closely the proof of Theorem 4.1 in [2], we can show that the constrained
viscosity property of the value function holds.

Theorem 4.1 (Existence). The value function V{x,y,z) defined in (2.7) is a constrained
viscosity solution of the integro-differential variational inequality (2.10).

To prove this result, we first show that V is a viscosity supersolution directly by using
the dynamic programming principle (2.9) and Ito’s formula for Lévy processes. To prove
the viscosity subsolution property, we argue by contradiction. Introducing stopping times
such that we can control the jumps coming from the Lévy process and consumption, we
are able to construct estimates on the value function V which contradict the dynamical
programming principle. We refer to [2] for details.

To guarantee that the characterization in Theorem 4.1 is unique, a comparison result
is needed. In a numerical treatment of the control problem, one approximates the state
variables by Markov chains and consider instead the related discrete-time optimization
problem. To ensure convergence of the discretized problem to the correct continuous-time
problem, we need also in this context a comparison principle for (4.2) (see, e.g., [l9] for
this type of application).

We have the following theorem:

Theorem 4.2 (Uniqueness). Let y' > 0 he such that 6 > kfy'). Assume y G Cy{V) is a
subsolution of (2.10) in V and v G Cy{V) is a supersolution of (2.10) in V. Then y<v
in V. Consequently, in the dass of subhnearly growing Solutions, the Hamilton-Jacobi-
Bellman equation (2.10) admits at most one constrained viscosity solution.

Theorem 4.2 can be proven in the same spirit as the comparison principles in [2, 3, 4]. The
proof uses the classical ”doubling of variables” device together with the maximum principle
for semicontinuous functions (see Crandall, Ishii, and Lions [6]). Since our problem contains
a second order differential operator, the proof requires that we use the maximum principle
for semicontinuous functions and hence we need an alternative formulation of viscosity
Solutions based on the notion of sub- and superjets. We will not go into details about this
formulation, but refer the reader instead to [3, 4]. We refer to [2] for the comparison proof
in the case of a first order differential operator (pure-jump market), which does not require
the jet formulation and the maximum principle for semicontinuous functions.

We mention that the treatment of the singular non-local operator 871B 71 is rather involved.
Among other things, we need to distinguish the singularities at zero and infinity in the
integral operator, which is thus split into two parts B* ,K and Bf. For any k G (0,1), we

max(G(I3A-«!.);F(X. {) ,DA>,£)|</.,8'r (A'.0))) > 0(< 0).
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It can be shown (see, e.g., [2]) that Bir,K {X, v , Dxv) is well defined for for v G C l {V)nCi{V)
while B%{X,v) is well defined for v G C2 {V). The splitting of the integral operator Bn is
taken into account in the jet formulation of viscosity Solutions and is essential for carrying
out the comparison proof when the Lévy measure n{da) is singular (see [3, 4] for details).

Our problem involves a gradient constraint as well as a state constraint boundary con
dition. To treat the gradient constraint, we construct strict supersolutions that are ciose
to the supersolution being compared. Following closely the proof of Lemma 4.3 in [2], by
choosing K> 0 and 7 G (0,1) properly it is easily seen that

is a strict supersolution of (2.10). When applying the maximum principle for semicontin
uous functions, we choose a test function so that the minimum associated with the super
solution cannot be on the boundary (in the spirit of Soner [l7]), we are able to handle the
state constraint boundary condition. Similar treatments of gradient and State constraints
have been given in [lB, 19] (see also [l3]) for a related portfolio-consumption model in a
geometric Brownian market. Finally, let us mention that the strict supersolutions are also
used to ”localize” the proof of the comparison principle to a bounded domain (which is
convenient). We refer to [2, 3, 4] for further details about the comparison principle.

5. Discussion of the geometric Brownian motion case

We will in this section recall the conclusions made by Hindy, Huang, and Zhu [l4], which
were based on a numerical treatment of portfolio-consumption model in the geometric
Brownian motion case. Their results indicate the type of results that we may expect from
a study of the Lévy case.

From the portfolio-consumption problem with utility of HARA (Hyperbolic Absolute
Risk Aversion) type and local substitution (or durability) but without habit formation2 ,
the investor optimally keeps a constant fraction of wealth in the stock. Consumption takes
place only when the wealth reaches a certain barrier, leading to a periodic consumption
pattern (or in more popular terms ” consumption in gulps”). Reaching the optimal con
sumption barrier, the investor consumes a small amount only enough to prevent the state
variables from leaving the barrier (i.e., increase Yt while decreasing wealth Xt through
consumption in a ”local-time” fashion). Optimal consumption takes place only when the
ratio between wealth and Yt is equal to a constant k*. Hence the optimal consumption
boundary is linear in Yt) as was proven by Hindy and Huang [lo] when the stock price
follows a Brownian motion. In [3], their conclusions were generalized to a Lévy market.

2 The investor derives utility only from Yt .

define

£T ,K (Ar , v , Z) = [ (v{x + 7rx{ea - 1), y, z) - v{X) - 7rxvx (X)(ea ~ l)') n{da)
J |q|>k

X,v) = f (v{x + 7:x{ea -~l),y : z)~v{X)—7rxvx {X){ea l)'\n{da).
J |a|<K V '

w = K + x 7, x{X) (l + x +
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Note the resemblence with the classical Merton problem, where the investor also keeps a
constant fraction of the wealth in the risky asset.

For the stochastic control problem with both local substitution and habit formation,
Hindy, Huang, and Zhu [l4] compute the optimal consumption boundary X*{y,z) using
the Markov chain approximation method for a utility function on the form

If the current wealth is less than the barrier, the investor refrains from consumption,
waiting until the State variables hits the consumption barrier. During a period of no
consumption, the standard of living and service flow from the goodwill decrease. When
the current wealth is bigger than X'*(y,z), the investor instantly consumes such that the
wealth is reduced and y, z are increased to bring the State variabels to the boundary. This
consumption pattern is in accordance with the model in [lo], where the investor consumes
in gulps, thereby introducing local substitution. However, the special feature of the current
problem is that the optimal consumption barrier is cyclic as a function of y and z. For
a fixed standard of living y, X*{y,z) will increase as a function of z, then decrease and
then increase again. A similar property holds for X*{y , z) for fixed standard of living and
varying z. Another striking feature is the suboptimality of keeping a constant fraction of
wealth in the stock. The optimal investment policy tt will be a cyclic function of wealth,
standard of living, and service flow, i.e., ti* = n*{x,y,z). The partial derivatives with
respect to y and z will change sign periodically as y and z change, respectively.

The cyclic pattern in both consumption and investment is explained by Hindy, Huang,
and Zhu [l4] as coming from an interaction between durability and habit formation. An
additional purchase of the durable good reduces the agenfs appetite. This satiation effect
is in conflict with the indirect stimulation of increasing the agenfs appetite for a higher
standard of living. When satiation dominates, the agent will tolerate high losses, thus
investing a higher fraction of her wealth in the stock. When stimulation is dominating,
the agent is more risk averse and protects her standard of living by reducing the fraction
invested in the risky asset.

When generalizing to a more realistic Lévy market model, we expect the same quali
tive conclusions to hold. However, the optimal consumption and investment policies will
quantitativly look different. We remark that this is in accordance with the case of local
substitution with no habit formation, where the optimal policies where qualitativly the
same for the geometric model and the Lévy market (see [3]).

References

[l] O. Alvarez, A singular stochastic control problem in an unboimded domain, Comm. Partial Differen
tial Equations 19 (1994), no. 11-12, 2075-2089.

[2] F. E. Benth, K. H. Karlsen, and K. Reikvam, Optimal portfolio selection with consumption and non
linear integro-differential equations with gradient constraint: A viscosity solution approach, Finance
and Stochastics. To appear.

[3] F. E. Benth, K. H. Karlsen, and K. Reikvam, Optimal portfolio management rules in a non-Gaussian
market with durability and intertemporal substitution, Preprint, Department of Mathematics, Uni
versity of Bergen, 2000.

U{y,z) = yll z12 , 71? 72 E (0,1).





12 BENTH, KARLSEN, AND REIKVAM

[4] F. E. Benth, K. H. Karlsen, and K. Reikvam, Portfolio management in a Lévy market with intertem
poral substitution and proportional transaction costs. Preprint, MaPhySto, University of Aarhus,
2000.

[s] F. E. Benth, K. H. Karlsen, and K. Reikvam, A note on portfolio management under non-Gaussian
logreturns, Preprint, Department of Mathematics, University of Bergen, 2000.

[6] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity Solutions of second order partial
differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1-67.

[7] J. B. DeTemple and F. Zapatero, Asset prices in an exchange economy with habit formation. Econo
metrica 59(6) (1991), 1633-1657.

[B] S. Elganjoui, Diploma thesis , Department of Mathematics, University of Bergen, Norway, 2000.
[9] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Applications

of Mathematics 25, New York: Springer Verlag, (1993).
[lo] A. Hindy and C. Huang, Optimal consumption and portfolio rules with durability and local substitu

tion, Econometrica 61 (1993), 85-122.
[ll] A. Hindy, C. Huang, and D. Kreps, On intertemporal preferences in continuous time: the case of

certainty, J. Math. Econom. 21 (1992), no. 5, 401-440.
[l2] A. Hindy and C. Huang, Intertemporal preferences for uncertain consumption: a continuous time

approach, Econometrica 60 (1992), no. 4, 781-801.
[l3] A. Hindy, C. Huang and H. Zhu, Numerical analysis of a free-boundary singular control problem in

financial economics, J. Economic Dynamics and Control 21 (1997), 297-327.
[l4] A. Hindy, C. Huang and H. Zhu, Optimal consumption and portfolio rules with durability and habit

formation, J. Economic Dynamics and Control 21 (1997), 525-550.
[ls] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd Edition ,

North-Holland/Kodansha, (1989).
[l6] H. J. Kushner and P. G Dupuis, Numerical methods for stochastic problems in continuous time,

Springer-Verlag (1992).
[l7] H. M. Soner, Optimal control with state-space constraint. I, SIAM J. Control Optim. 24 (1986), no. 3,

552-561.

[lB] T. Zariphopoulou, Investment-consumption models with transaction fees and Markov-chain parame
ters, SIAM J. Control Optim. 30 (1992), no. 3, 613-636.

[l9] T. Zariphopoulou, Transaction costs in portfolio management and derivative pricing, in Introduction
to Mathematical Finance , 101-163, Proc. Sympos. Appl. Math., 57, Amer. Math. Soc., Providence,
RI, 1999.





ON AN OPTIMAL PORTFOLIO-CONSUMPTION MODEL 13

(Fred Espen Benth)
Department of Mathematics
University of Oslo
P.O. Box 1053, Blindern
N-0316 Oslo, Norway
AND
MaPhySto - Centre for Mathematical Physics and Stochastics
University of Aarhus
Ny Munkegade
DK-8000 Århus, Denmark

E-mail address: fredb@math.uio.no
URL: http://www.math.uio.no/~fredb/

(Kenneth Hvistendahl Karlsen)
Department of Mathematics
University of Bergen
Johs. Brunsgt. 12
N-5008 Bergen, Norway

E-mail address : kenneth.karlsen@mi.uib.no
URL: http://www.mi.uib.no/~kennethk/

(Kristin Reikvam)
Department of Mathematics
University of Oslo
P.O. Box 1053, Blindern
N-0316 Oslo, Norway

E-mail address: kre@math.uio.no
URL: http: //www. math. uio. no/~kre/







.m
mm

D'epo Ibilbl ioteke t

ØØsd1W



 
 

, i


