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Contemporary Mathematics

A Streamline Front Tracking Method for Two- and
Three-Phase Flow Including Capillary Forces

Inga Berre, Helge K. Dahle, Kenneth H. Karlsen, and Hans F. Nordhaug

1. Introduction/Outline

Currently, there seems to be a trend within the petroleum industry to use fast
and accurate methods to simulate reduced sets of equations. Typically streamline
and/or front tracking methods are used to solve the hyperbolic Buckley-Leverett
equation for two-phase flow [B, 12, 14]. This allows for estimates of reservoir
performance on more complete geological data, possibly without using upscaling.
However, important physical phenomena are neglected which may greatly influence
the overall fluid distribution.

In this work we consider models of multi-phase flow which do include capillary
forces. We also allow for three phases. In particular we shall investigate a streamline
front tracking method (SFTM) [l]. This method is based on calculating streamlines
locally around grid points. The hyperbolic part of the problem is then calculated
using front tracking. Since the front tracking method requires a Riemann solver,
we do currently only consider a triangular model for three phase flow, i.e., the
advective flux of the gas phase does only depend on gas-saturation and not on the
other saturations. To account for capillary effects we use operator splitting [6],
The hyperbolic part of the solution is projected onto a regular grid, and a complete
solution in each time step is obtained by solving a parabolic equation.

The paper is organized as follows: In Section 2 we State a standard model
for two- and three-phase flow. In Section 3 the streamline front tracking method
(SFTM) [l] is developed. A modified method of characteristics (MMOC) [s] is
also briefly discussed and we we give an outline of a fast marching method (FMM)
[7]. These methods are used in the two-phase case as comparisons with the SFTM
method proposed here. In Section 4 we discuss a possible extension of the SFTM
method to three phase flow. This extension is based on a triangular approximation
of the fully coupled three-phase problem, and the so-called H-set method is used
to solve associated Riemann problems. Some consequences of the triangular ap
proximation are also discussed. Finally, in Section 5 we present some numerical
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experiments for two- and three-phase flow to demonstrate the methodology, and a
summary and conclusions are given in Section 6.

2. Governing equations

The basic equations describing multi-phase immiscible flow in a porous medium,
say water {w), gas (g ) and oil (o), is given by mass balance equations and Darcy’s
law. Assuming that the flow is incompressible, and that gravity can be neglected,
the equations can be written in a global pressure/total velocity formulation, see
[3. 4], as follows;

Here (p and K are the porosity and absolute permeability of the porous medium;
SQ , vQ , kra and pa are, respectively, the reduced saturation, Darcy velocity, rel
ative permeability, and viscosity of phase a\ p is a global pressure derived from
the phase pressures and the capillary pressures, see [4]; A Q = kra /pa denote the
mobility ratio, At z2 a A Q is the total mobility, and Fa = A Q /At is the fractional
flow of phase a; v = )T Q vQ is the total velocity; Da is a simplified capillary diffu
sion/dispersion term and e Q is (typically) a small parameter which gives the relative
importance of advective and capillary/dispersive forces; finally q, qa account for in
jection and production wells. An additional constraint is given by Sa = 1, and
we note that Fa 1. To dose the above system we need constitutive rela
tionships for the capillary pressures and relative permeabilities. We shall assume
that the concentration of gas in oil phase is constant (no phase transfer), which
means that do not have to calculate phase pressures. Thus, it suffices to specify Da
directly rather than capillary pressures. In the experiments reported below we shall
use Da (x, Sa ) =K. For the relative permeabilities use quadratic forms kra =
combined with Stone models for the relative permeability of oil in the three-phase
case, see Section 5. In the numerical experiments, we consider a quarter-of-a-five
spot problem. Thus, no-flow conditions are imposed on the boundaries.

3. Solution Strategy

To decouple the Pressure/Velocity equations (1), (2), from the saturation equa
tions (3), we use sequential time stepping. Thus, for a given saturation-field, say
at time tn , we calculate a new velocity field. The saturation field is then advanced
to a new time-step fn+l by solving (3), using the most recent velocity field. This is
continued sequentially up to a predetermined time t = T. To recover conservative
and accurate fluxes we have used a control volume finite element method [s]. From
these fluxes wre obtain a velocity field in the lowest order Raviart-Thomas space
RTq, on a regular Cartesian grid.

To solve the parabolic saturation Equation (3) with a given velocity field, we
again use operator splitting. First the purely hyperbolic part of Equation (3) is
solved to advect the solution up to a new time level, then diffusion/dispersion
is accounted for by solving a heat type equation on a regular grid, see [6] and
references therein.

(1) V-v = g(x,t),

(2) v = XT {x. sq )K(x) • Vp

<9S
(3) 1+ V - [FO v - e Q V  Da {x. SQ )VSQ ] = q„(x.t)
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In previous work a Modified-Method-of-Characteristics (MMOC) has been used
to solve the two-phase flow problem based on the ideas outlined above, see [s]. This
method works excellent when the wave structure of the solution is known a priori.
For an established front it has been shown that when the front is resolved this
method gives the correct front-width of O{D/b), where D and b is respectively an
estimate of the diffusion and the residual of the linearized fractional flow function.
Below we present two alternative methods to the MMOC method, which both
preserve the shape of self-sharpening fronts and are more flexible than the MMOC
method in the sense that no a priori knowledge of the wave structure is required.
However, the fast marching method presented below is based on the restriction
that the initial data are monotone and that level sets propagate outwards from
their source.

3.1. A streamline front tracking method (SFTM). For simplicity we
assume that the computational domain is discretized by a regular Cartesian grid
such that the velocity v = v(x) £ RT0 is given. Furthermore, assume that approx
imate saturation values Sn is known at the cell centers at time-level tn . Saturation
values refer to water-saturation Sw in case of two-phase flow, and water- and gas
saturation Sw , Sg in case of three-phase flow. To obtain saturation values sn+l5 n+1 at
time-level tn+l , we split Equation (3) into a hyperbolic part:

(5) St = eV • {DVS)

In a standard operator-splitting fashion, equation (3) is solved in two steps: First,
Equation (4) is solved with Sn as initial condition to obtain a first approximation,
say Sn+l at the next time-level. Then, saturation values at the next time-level are
obtained by solving (5), with Sn+l as initial condition. Now, consider the solution
of Equation (4): Observe that on streamlines r = r(£) such that

Equation (4) becomes one-dimensional:

We exploit this to obtain new saturation-values at cell centers x/, in the following
way: First, trace streamlines (6) analytically for r(0) =x/ and -£max <£ < £max-
Here £max = l^max|(£n+l - tn ) with Amax being an estimate of the maximum wave
speed of the system, such that the streamline cover the domain of dependence
for (x/,tn+l ). The streamline is only traced in the upstream direction if all the
wave speeds are positive. The piecewise constant cell values of the saturations
are then projected onto these local streamlines, thus defining piecewise constant
initial conditions for Equation (7). This conveniently arrange for Equation (7)
to be solved by the front tracking method: For a two-phase (scalar) problem the
flux function F, is simply replaced by a piecewise linear approximation F 5. We
then solve the Riemann problem associated with each of the initial discontinuities.
Since F 5 is piecewise linear, the rarefaction part of the solution is approximated by
discontinuities. Thus, the Solutions will always consist of a set of fronts traveling
with distinct speeds. We then have to keep track of the position of each such

(4) St + v • VF(S) = 0,
and a parabolic heat type equation

(6)

(7) S,+F( (S)=O.
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front, and solve new Riemann problems whenever fronts collide, thereby obtaining
a global solution S for any time t > tn on the streamline. In particular we will
obtain approximate saturation values Sn+l at the cell centers. We refer to [ll ] for
more details about the front tracking method.

The main advantages of the front tracking method, is that the method is super
fast [ll], and preserves the frontal structure of the Solutions extremely well. On
the other hand, since the method heavily depends on solving Riemann problems, it
is not easy to extend the method to three-phase flow. In Section 4, we will discuss
a solution strategy for so-called triangular Systems which may be a step towards
this end. Equation (5) may be solved by hnite element or finite difference type of
methods. In this work Ave have for used a standard explicit Central
finite difference scheme. Note that a local time step, Atdiff < tn+l - tn , is required
to satisfy the stability constraint inherent in the explicit finite difference method.

3.2. A fast marching method (FMM). An alternative to the front-tracking
approach is the fast marching method for reservoir simulation developed in [7], This
methodology has shown to give very fast and accurate results for Buckley-Leverett
type problems. Here Ave extend the Avork in [7] by including diffusion/dispersion
effects using operator splitting as described aboAæ. To outline this procedure we
consider the hyperbolic part of the transport equation (3):

We will assume that the initial function Sq is monotone, and that the velocity held
is so that the level-sets of the saturation function neArer pass a point twice. This
is not a restrictive assumption for the reservoir problem, since the flow will be
directed from injection Avells tOAvards production wells. Following [7], we consider
a level set S{x,t ) k of the saturation function. Let the front be defined by
Ek{t) = {x : S{x,t) = k). According to the classical method of characteristics, the
front will move with a characteristic speed given by V(x) = = v{x)F'(k). Let
T,i,, (x) be the time crosses the point x. The arm-al time satisfies the Eikonal
equation

The evolution problem for the propagating front is hence reformulated in an Euler
ian framework.

The equation (8) can be solved rapidly by means of the fast marching method
(see, e.g., [l7, 16]). Since the flow is directed from injection towards production
wells, information will Aoav in one direction, that is, from regions with smaller to
regions with larger arrival times. Hence, the arrival time at a grid point can only
depend on points with smaller values. This fact motivates an upwind discretiza
tion for the Eikonal equation. For the comparison results presented later we have
applied a first order 9-point scheme based on linear approximation of streamlines
locally through each grid point. When the Eikonal equation is solved to a prescribed
final time, fronts corresponding to larger values of S may have crossed fronts cor
responding to smaller values of S. This corresponds to the development of shocks.
HoAvever, since the level sets have been transported according to the characteristic
speed, an approximation to the correct entropy weak solution can be obtained from
the multivalued solution by means of the collapse transform, i.e., a proper Arertical

r\ q
+ v • VFW (SW ) = 0, s(x, 0) = 50 (x)

(8) VT4 ' V(X) =fW
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averaging of the multivalued solution, see [2], s(x) = (0x) ( —l)*s'i(x). Here the
multivalued solution Sj is obtained by considering the positions of the level sets.
The resulting method is not subject to CFL-conditions. The method described in
this section will be described in detail in a forthcoming paper.

4. Triangular systems

A possible extension of the SFTM approach to three-phase flow, is to use an
approximate Riemann solver to generate front speeds. However, to our knowledge,
the construction of accurate and reliable Riemann solvers for fully coupled three
phase flow is not a trivial task, and we have chosen a different approach here;
Observe that the viscosity of the gas phase is usually at least an order less than
the viscosities of the liquid phases. Motivated by this fact it seems reasonable to
assume that the fractional flow of the gas-phase can be approximated by a flux
function which only depends on the saturation of the gas phase. Thus, we may
consider the following 2x2-triangular hyperbolic system, as an approximation to
the hyperbolic part of the fully coupled system (3):

(m = °-

Systems of this type has been investigated in [9, 10, 13], and existence and unique
ness of the solution to the Riemann problem is shown under general conditions.

4.1. A Riemann solver for triangular systems. The numerical construc
tion of a solution for a Riemann problem associated with equations (T1)-(T2) was
developed by Gimse [9], and is rather involved. The idea is to solve (TI) first using
the front tracking method. Thus, the approximate solution to (TI) consists of a
set of constant states, say Sg = Sxg < S'2g < ... < S^+1 = separated by jump
discontinuities traveling with the Rankine-Hugoniot shock speed;

(9)

Within each wedge of the solution fan, the fractional flow of the water phase depends
only on the water saturation and is given as;

Thus, we may easily solve for the water saturation within each wedge once we know
the left- and right-hand State of the water saturation within the wedge. Obviously,
successive left- and right-hand states over the discontinuities in the gas-phase must
also satisfy the jump condition:

(10)

There are infinitely many states S which satisfy conditions (10), leading to the
definition of the so-called H-sets:

F/pm : The set of in region Sg, that can be reached from with
speed a < s\.

f)
(T2) + ~Fw {Sg ,Sw ) = 0.

Si= wnzmi,Si ’ ’ ’

K(S«,)=/ Fw (S‘s ,Sw ), JV + 1

Ftm-KlSt)

C*+l _Ci ’ ’ ’ ’ ’
w
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Hi,in'. The set of in region Slg , i = 2,3,... N, that can be reached
from H^out with speed a such that s z _i <a < s*.

Hi+i,out • The set of in region *, i 1,2,... iV +l, that can
be reached from Huin by a shock with speed st .

The solution can now be assembled from these sets by connecting Sj to by
tracking through admissible waves given by the FL- sets. This procedure is described
schematically in the following diagram:

Hn-\-\,out Hn in y

Note that a jump from one set to the next always happens at the first possible
value in the current H-set.

Gimse has shown [9] that the above construction gives a unique solution of
equation (T2) if the following conditions hold;

Conditions (A) and (B ) are always satisfied if the transport equations are properly
scaled. Conditions (D) and (F ) are usually satisfied if gravity is neglected. Con
dition {E) guarantees that successive do not cross each other. This eventually
simplifies the construction of the H-sets. However, it has been shown that condition
{E) is not necessary for the existence and uniqueness of the solution , and can ther
fore be removed as a necessary condition. Finally, condition (C) guarantees that
the endpoints of successive are connected by correct slopes given by the shock
speeds s l . Endpoints are here defined as points where oil is at residual saturation
S 0 =o,or Sg -f Sw =l. Note that this condition is always satisfied for genuinely
triangular systems (i.e, Fg - Fg {Sg )), since F 0 = oat residual oil-saturation SQ = 0.

4.2. Can physical three-phase transport equations be approximated
by a triangular system? Since the fractional-flow of the gas-phase is nearly
independent of the water saturation it seems natural to decouple the gas-phase
from the other phases by simply plug in a value for the water-saturation, 5® , in
the gas fractional-flow:

Possibly, we can choose 5° so that the decoupled fractional-flow function is as dose
as possible to the complete function in some norm over the admissible section of
State space. However, 5° is chosen more or less arbitrary to be = 0 in the
following experiments. In Figures 3 and 4 we compare the solution of the trian
gular system, with the solution of the full system in two different one dimensional
cases. In Case 1 we get excellent agreement between the two Solutions. In Case 2
the full solution for the gas-phase consists of two rarefaction waves connected by an
intermediate shock wave. This wave structure cannot be captured by the triangular
system with a simplified fractional-flow function as given by (11). A possible solu
tion to this problem can be to let 5° be defined locally for each Riemann problem
to be solved, which will allow for some feedback. This can be combined with the
fact that the total mobility At act as an approximate invariant for the transport.

~> H2 ,out —> -Hl,in ~> sjj',

(A) Fg ( 0) =O, (B) Fs ( 1) =l, (C)f.(Ss ,l-S,) = l-fs (S,)

(D) ie>o. (-E) <O, (F)F'(s9 )> 0,

(11) Fg (Sw ,Sg ) « F3 (S°,59 ) =f F 9(
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Thus Xt{Sw , Sg ) wAT may be used to eliminate Sw from Fg in a more
accurate way. However, we will not pursue the idea further here.

Another, difficulty that arises from the approximation (11), is that condition
(C) is violated since

If condition [C) is not satisfied the construction of the solution may fail in two
ways close to values where S 0 = 0: Either the construction of appropriate H-sets
will fail, or the tracking of admissible waves becomes impossible. Since S 0 ~ 0 =>
Sw »1 - Sg , we may circumvent the problem by replacing 5° with 1- Sg in (11)
when the oil phase is close to residual. Again this require a local definition of 5°
which has not been implemented in our codes yet. For the robustness of the method
this needs to be done.

5. Numerical experiments

5.1. Two-phase flow: To obtain a comparison between the different methods
we first ran a series of experiments with a two-phase flow problem for a quarter-of
a-five-spot problem with noflow conditions at the boundaries. The implementation
has been done in two space dimensions. The permeability field in these experiments
was generated from a (log-normal?) distribution and is plotted in Figure 1, together
with typical flow directions. The permeability contrast in this figure is a factor of
10. To avoid difficulties at the corners the initial saturation is given by:

where r denote the radial distance from the lower left corner and ~\/2 is the shock
saturation of the Buckley-Leverett profile. In Figure 2, saturation contours are
plotted after four time steps for one of the experiments performed. Observe that
the results are in excellent agreement. Also note that the three methods allow for
very long time steps.

The complexity of the MMOC method is comparable with the SFTM approach,
whereas the FMM method gives a much faster advection solver. In Table 1, we have
attempted to compare the efficiency of these methods. To do so we fixed a velocity
field and did a pure advection of the saturation front up to four time steps. The
results in the table indicates that when the number of nodes is increased by a factor
4, the run time increases by a factor 4 for the fast marching method and a factor
of 6.5 for the front tracking method. Thus, the fast marching method is optimal
in this sense, whereas the front tracking method becomes sub optimal because the
number of fronts increase on each local streamline, in addition to the increase of
local streamlines.

5.2. Three-phase flow: In figures 3 and 4 we have compared Solutions of
triangular approximations with the Solutions of corresponding full three phase flow
problems in one space dimension. Below follows mobilities, fractional flows for the
triangular approximations and initial conditions:

Fw {\ - Sg ,Sg )=1 - Fg (l - £1 - F9 (S°,S5 ).

(12) S„(r) = ( 1 ( r/°-3K I r < 0-3,[ U, r > 0.3,

Case 1:

xg (sg ) = s2g , Xw (Sw ) = Sl/ 10, Xo {S0 ) = Sg/10.
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,c 0 f 0.3 if x < 0.4.and S” = < _ „
u [O.i if x > 0.4,

and co = / 0.75 if x < 0.4,
w \ 0.0 if x > 0.4.

A standard upwind difference scheme is used to generate the reference Solutions
for the fully coupled system. In Case 1 the triangular flow functions are carefully
constructed to satisfy the conditions (A-F), see [ls] for further details. In Case
2, only the flow functions for gas is changed and as a result condition (C) is not
satisfied. We are generally not guaranteed that a solution exists, but for the cho
sen initial valne problem it did. We note that the shape of these functions differ
significantly from the full three-phase model, especially for Case 1. From these one
dimensional examples we conclude that the triangular model may and may not give
a good approximation to a fully coupled three-phase flow problem.

To investigate the robustness of the SFTM method we have constructed a two
dimensional test example. To make sure that the conditions (A-F) are satisfied the
fractional-flows of Case 1 have been used, and we use the same permeability held
and boundary conditions as for the two-phase problem of Section 5.1. Initially the
saturation for the water is given by Equation (12), and the remaining volume at
any point is partitioned into 10% gas and 90% oil. The result is shown in Figure 5
and appears to be much more diffused than the Solutions of the two-phase problem.
However, as seen from Figure 3, the shape of the solution is really due to the shape
of the fractional flows. Again we note long and stable time steps are used.

6. Summary/conclusions

We have presented a front tracking streamline method (SFTM) for multi-phase
flow in porous media. The main advantage of this method is to handle the advective
part of nonlinear transport using streamline information, and still be able to solve
for diffusive/dispersive effects on a regular grid. The method has been compared
with a Modified Method of Characteristics (MMOC) and a Fast Marching (FMM)
approach for two-phase flow problems. The Solutions obtained seems to be equally
accurate. The SFTM and the MMOC are comparable in computational efficiency,
whereas the FMM has a much faster advection solver. However, compared to the
MMOC and the FMM, the SFTM is more flexible and has less restrictions with
respect to the complexity of the problems that may be solved.

Using the H-set method the SFTM approach has been extended to solve three
phase flow problems which are triangular. A 2x2 system is triangular if one of the
fractional-flows only depend on one of the saturations, whereas the other depends
on both saturations. Since most three-phase flow problems are fully coupled in
both saturations, triangular systems can only be approximate. However, because

TT fQ \ [ H J 7 f Q Q \ ( 1 Sg ,0) w ')
9[ 9) ~ Atot (55 ,0)’ w[ 9 ' w) ~ Xu*{Sg .l-Sg )'\^t {S w ,oy

qO f 0.6 if x < 0.4,
~ \ 0.2 if x > 0.4,

Case 2:

Xg{Sg) =5OSg, X W {SW ) = S*, X0 {So ) = 3.14S0 (1 - Su,) 2 (l - Sg ) 2 .

zp l c \ 9 (Sg) TT ( Q Q \ )
Atot (5s ,o)’ u' ( 95 u,) ~ Xtot {Sg ,Sw y

co _ f 0-25 if x < 0.4,
9 ~\ 0.1 if x > 0.4,
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Table 1. Comparison of run times for the advection solver using
the FMM and the SFTM, with At = 0.5 and T = 2.0.

the viscosity of the gas is much smaller than the viscosities of the liquid phases
the gas-phase is often nearly decoupled from the other phases. We have shown
that a naive triangular approximation of a fully coupled system may and may not
reproduce good approximations to the Solutions of the complete system. We have
also suggested ways to improve the triangular approximation when this gives poor
comparisons with a full three-phase flow system.
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FIGURE 2. Comparisons between the MMOC (upper), the FMM
(middle) and the SFTM (lower) on 129 x 129 grid. At = 0.5,
e = 10" 2 and T = 2.0.



I. BERRE, H.K. DAHLE, K.H. KARLSEN, AND H.F. NORDHAUG12

Figure 3. Case 1: Comparison between the Solutions (gas- and
water saturations) of the fully coupled system and the corre
sponding triangular system. At = 0.25, T 0.5 and e = 0.01.
Ai = 0.0005 for the difference scheme (FULL).

FIGURE 4. Case 2: Comparison between the Solutions (only gas
saturations) of the fully coupled system and the corresponding tri
angular system, saturation, Sw . At = 0.25, T = 0.5, 1.0 and
e = 0.01. Ax = 0.0005 for the difference schemes (FULL).
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0.50.5 0
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FIGURE 5. Solution of a quarter of a five spot problem for a trian
gular system, gas saturation (upper) and water saturation (lower)
on 129 x 129 grid. At = 0.5, e = 10~ 2 and T = 2.0.

[l7] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. lEEE Transactions on
Automatic Control, 40(9):1528-1538, 1995.
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