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A STUDY OF THE MODELLING ERROR IN TWO OPERATOR
SPLITTING ALGORITHMS FOR POROUS MEDIA FLOW

K. BRUSDAL, H. K. DAHLE, K. HVISTENDAHL KARLSEN, T. MANNSETH

Abstract. Operator splitting methods are often used to solve convection-diffusion prob
lems of convection dominated nature. However, it is well known that such methods can
produce significant (splitting) errors in regions containing seif sharpening fronts. To amend
this shortcoming, corrected operator splitting methods have been developed. These ap
proaches use the wave structure from the convection step to identify the splitting error.
This error is then compensated for in the diffusion step. The main purpose of the present
work is to illustrate the importance of the correction step in the context of an inverse
problem. The inverse problem will consist of estimating the fractional flow function in a
one-dimensional saturation equation.

1. Introduction

Wc are here interested in the initial-boundary value problem associated with nonlinear
convection-diffusion equations of the form

{x,t)e{a,b)x{o,T),(1)

where u = u{x, t) denotes the unknown, / = f{u) is the flux function, d = d{u) is the
diffusion function and e > 0 is a scaling parameter. Convection-diffusion equations arise
in a variety of applications. Wc here consider two-phase, immiscible and incompressible
flow of oil and water in porous media. In this context, u is the water saturation, f{u) is
the fractional flow function and d{u) is the capillary diffusion function.

Due to the nonlinear nature of the differential equation (1), there will in general be no
analytical expression for u{x, t). Hence wc must rely on numerically techniques to obtain
the solution. When (1) is convection dominated, that is, when e is small compared with
other scales in (1), conventional methods usually exhibit some combination of difficulties,
ranging from non-physical oscillations to severe numerical diffusion at the trailing end of
moving fronts. To overcome such difficulties wc make use of operator splitting. In the
present context, operator splitting means to split the convection-diffusion equation (1)
into a hyperbolic equation and a parabolic equation, each of which is solved separately in
an alternate fashion. Furthermore, each step of such an algorithm is fully discretized by

Key words and phrases. Operator splitting, two-phase flow, saturation equation, modelling error, inverse
problem.
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accurate and efficient numerical schemes developed especially for hyperbolic conservation
laws and parabolic heat type equations, respectively. The operator splitting approach has
been tåken by many authors, [2, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17] (see the references cited
therein for a more complete list of relevant papers).

In the case where d(u) = 1, the physical front widths should be of order o{s). However,
it is easy to see that diffusive splitting errors will lead to front widths of size 0(y/eAt)
when the splitting time step, At, is large (> s). This type of splitting error comes from
the fact that the entropy condition forces the hyperbolic solver to throw away certain "in
formation" that controls the structure of the self-sharpening fronts. It is however possible
to compensate for this loss of information, which manifests itself in the form of residual
flux terms. For example, assume that the solution of (1) is a moving front. If the time
step is large enough, the convection step will generate a shock with left and right limits,
say, ui and ur , respectively. We can then identify a residual flux term associated with this
discontinuity; /res (u) = f(u) - fc {u), where fc (u) denotes the correct envelope (dictated
by the entropy condition) of f{u) on the interval bounded by U\ and ur . There are sev
eral ways to take the residual flux term fTes (u) into account. Wc can perform a separate
correction step after the diffusion step. Correction is then calculated by solving the "resid
ual" conservation law vt + fres(v)x = 0 over a time interval (o,r], where r > ois some
parameter that has to be chosen (see [16] for details). Another approach is to include the
residual term in the equation modelling diffusion, that is, instead of solving the equation
wt - s{d{w)wx) x =0, wc solve wt + (/«.(w) - £d{w)wx )x =0. This equation contains the
necessary information needed to produce the correct structure of the front. Wc will here
rely on the latter approach, which wc shall refer to as corrected operator splitting (COS).
Operator splitting methods which do not account for residual flux terms will be denoted
by OS.

The idea of using a residual flux term in the diffusion step was introduced in [10] (and
further developed in [4, 6, 7, 8]) in the context of two-phase flow with an established
front as initial data. In this setting the residual term can be determined a priori, which
means that the convection step is to solve vt + fc (v) x = 0 (where fe is linear in the front
region). This fact was exploited in [4, 6, 7, 8, 10], in the sense that the modified method
of characteristics was used for the convection step. For general initial data this approach
may put severe restrictions on the time step. However, in [15, 16] it was observed that
by using front tracking [14] to solve the nonlinear conservation law vt + f{v) x =0, it is
possible to dynamically construct residual flux terms so that the COS approach makes
sense in general. The calculation of these residual terms is a direct consequence of the
fact that front tracking is based on solving Riemann problems. Instead of front tracking a
second order Godunov method will be used in the convection step to illustrate that other
techniques can be utilised in the construction of residual flux terms, see also [15].

In what follows, differences in the Godunov based OS and COS methods will be illus
trated in the context of an inverse problem. The inverse problem will consist of recovering
the flux function using COS and OS as forward models in the inversion procedure. Note
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that in general it is not possible to define the residual flux term a priori in the inversion pro
cedure since the representation of the flux function is changing throughout the procedure.
This motivates the use of COS where the residual flux terms are constructed dynamically.
The main purpose of the present work is to study the influence that the modelling errors
in the OS and COS forwards models have on the recovery of the flux function.

The paper is organised as follows. In section 2 we give a description of the forward
problem and the operator splitting techniques used to solve it. In section 3 we discuss the
setup of the inverse problem. Furthermore, we present and discuss numerical experiments.
Finally, in section 4 we make some concluding remarks.

2. The forward problem

2.1. Numerical algorithms. In this section we describe in some detail the operator
splitting methods that are used to solve the forward equation (1). This equation must be
equipped with appropriate initial and boundary conditions conditions

where we assume that u0 is a piecewise smooth function. Let un {x) « u{x,tn ) denote the
piecewise linear numerical solution of (1) at time level tn , where 0= t0 <ti < • -tN = T
is a time discretization of [O,T]. Here the function un = un {x) is piecewise linear with
respect to a uniform grid with grid cell size Ax >0. We determine un+l from un via the
following OS algorithm.

Convection: Let v{x,Atn ), Atn = tn+l -tn >0, denote the (entropy weak) solution of
the hyperbolic conservation law

The second order Godunov (slope limiter) method described in [13] is used to calculate
this solution. The Godunov method uses a uniform (local) grid with grid cell size Axc and
a time step 0 < Atc < Atn chosen according to the CFL condition, i.e., Atc is chosen so
that max |/'|£^ = 1.

Diffusion: Let w {x, Atn) be the solution of the parabolic heat type problem

with the Dirichlet boundary data imposed at x = a, b. Numerically this solution is found
using the Galerkin method on a uniform grid with grid cell Axd = Ax and the usual
(piecewise linear) "hat" basis functions. The time discretization is done by the backward
Euler method with a single time step of length Atn . Finally, we set

In the constant diffusion case, d{u) = 1, convergence of the OS algorithm is proved in [17].
Convergence results in the case where d(u) is nonlinear and possibly strongly degenerate are
obtained in [11]. Although this algorithm converges as various discretization parameters
tend to zero, it is not difficult to construct an explicit example (see [16]) which shows that

u\ t=o = uo {x), u\ x=a = ua eß u\ x=b = übeß,u b eR,

(2) i + éf{v) =°' v(x,o) = un(x).

(3) £_«£(«.)£) -0, „(*,O) = »(x,A,„)

un+l =w{x,Atn).
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OS is too diffusive in regions containing self-sharpening fronts, at least when the time step
is large (> s). This potential shortcoming has motivated the corrected operator splitting
(COS) algorithm, which differs from OS in the way that the diffusion step is carried out.

FIGURE 1 . The left plot shows an exact solution (solid line) from the con
vection step, which contains four discontinuities (left and right shock states
are shown by circles). The thick solid lines indicate where the corresponding
residual flux terms are defined when used in the diffusion step. The right
plots show the residual flux terms (solid line) associated with the four dis
continuities (the upper left plot corresponds to the first discontinuity, the
upper right plot to the second and so on). The flux function is shown as the
thick dashed line and the envelope function as dotted.

Diffusion revisited (residual flux terms): To obtain correct structure of fronts, a residual
flux term has to be constructed. To this end, wc introduce the envelope function

{the lower convex envelope of / between Vi and yrvr if vt < yr,vr ,the upper concave envelope of / between yrvr and vt if vi > yr.vr .

Let v = v{x,Atn ) be the true solution of (2) at time t = Atn , which is known to be
piecewise smooth. Let fø} denote the discontinuity points of v. For a fixed i, let v{ and
ylvl+ i denote the left and right limits of vat x = yi: respectively. Choose positions x% and
xi+l such that yx is located somewhere in the interval (xi,xi+i). Then define the residual
flux function associated with this (zth) discontinuity by (see Figure 1)

{ . jf{v) - fc{v;vi,vi+l ), for v G fø,£i+i],
/res(ir' n) " |o, forv^^^+i].
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For convenience, introduce the globally defined residual flux term fres {x, v; tn ) = Pres {v; tn ),
x e [xi,Xi+r) for some i. Let now w{x, Atn ) be the weak solution of the following parabolic
equation

with the Dirichlet boundary data imposed at x = a, b. Numerically this solution is found
by a Petrov-Galerkin method with quadratic test functions, see e.g. [4, 6, 7, 10, 15] for
details.

To find a residual flux term, we need to locate the associated discontinuities (shocks)
based on the approximate solution generated by the Godunov method. This is done by
introducing a suitable parameter p > 0 and identify a shock whenever the distance between
two subsequent saturation values in the Godunov solution is greater than p, see [15] for
details.

2.2. Numerical experiments. For two phase flow in porous media [3] the advective flux
function in (1) is given by

where X t — — , is the mobility of phase i, i = w,o. Here, kri , denotes the relative
permeability and Ui the viscosity. The relative permeabilities are represented by third
order normalised B-spline expansions [19] in which the coefficient vectors are given by
cw = (0.0,0.1,0.52,1.0) and c0 = (1.0,0.25,0.02,0.0). The knot vector for the B-spline
basis is y = (0.0,0.0,0.0,0.5,1.0,1.0,1.0). Furthermore, we set d{u) = 1, p = 0.05 and
£ = 0.01.

The saturation profiles are simulated using a flux function, f*(u), which corresponds to
the B-spline expansion given above (see Figure 2a)). The initial saturation (see Figure
2b)) is

The Dirichlet boundary data are u = 1 at x = 0 and u = 0 at x = 1. In the numerical
experiments the size of the grid blocks is given by Ax = and Axc = The grids are
fixed since we here want to study the effect of varying the time step. Only one shock front is
present in the solution, therefore we let the corresponding residual flux term be defined on
the whole interval [o, l]. In the COS simulation we have used 1 time step to reach T = 0.2
since with the COS method the correct width of the front is obtained independently of
the time step. In the OS simulations the number of time steps is 1 and 10. We refer to
these simulations as COS(l), OS(l) and OS(10), respectively. In Figure 3 the COS and
OS solutions are shown together with the reference solution, which is generated by a finite

ff + £(/«(*. «i*») -««(w)i-:)«0. w(x,o) = v(x,Atn),

(5) n> ~ A.W + A.W

( 1.0 -x, 0.0 < x < 0.3,
uo{x)={ 0.7 -70 -(x -0.3), 0.3 < x < 0.31

( 0.0, 0.31 < x < 1.0
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FiGURE 2. The flux function, f*(u), in plot a) and the initial saturation,
Uq(x) in plot b).

difference scheme with very fine space and time discretization {At = -^^ and Ax = ).
To measure the relative errors in the (C)OS saturation profiles wc define

Pref-
(6)

Wc have rCos(i) = 0.016, r0s(i) = 0.051 and r0s(io) = 0.0136. Thus the relative errors
measured in the L2-norm are about equally large for the COS(l) and OS(10) solutions.
From Figure 3 and the relative errors it is seen that COS is the most efficient and accurate
algorithm for the problem under consideration. Wc refer to [15, 16] for a more detailed
comparison of COS and OS for the forward problem.

One may ask whether the relative merits of OS and COS will be similar also when the
models are applied to solve an associated inverse problem. The importance of neglecting
some specific physics may be different for the inverse problem than for the forward problem.

3. The inverse problem

3.1. Problem formulation. Wc will attempt to recover the flux function, f{u), from
discrete values of u, which are denoted by u0bs - The forward model is given by equation
(1) (recall that d{u) = 1) with an appropriate solution algorithm for u{x,t). The OS(10)
and COS(l) solution algorithms are selected since these gave similar accuracy when applied
to the forward problem.

The discrete observed values will be sampled from the fine-grid solution of the forward
problem at time T = 0.2. The flux function used when calculating the fine-grid solution is
f*{u) (see section 2.2).

Objective functions, which measure the least squares distance between observed and
corresponding calculated values of u, are formed; J(c)os(/) = ||^obS -^(C)os(/)|l2- Recovery
of f*{u) is carried out through minimisation of the objective functions. Representing the

r(C)os -z 2
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Figure 3. The reference solution and COS(l) and OS(l) solutions of the
forward problem in plot a). The reference solution and OS(10) solution in
plot b).

flux function by a B-spline expansion leads to a finite dimensional parameter estimation
problem for the coefficients in the expansion. This is solved by a Levenberg-Marquardt
algorithm [18].

3.2. Solution criteria. Different parametrisations of the flux function lead to different pa
rameter estimation problems with solutions corresponding to different functional spaces for
the estimated flux function. Hence, håving solved the parameter estimation problem does
not necessarily mean that one has solved the underlying inverse problem. Furthermore,
inverse problems are known to be inherently ill-posed, such that solution non-existence,
solution non-uniqueness and instability of the solution with respect to data may occur.
This shows the need for solution criteria to decide whether a solution to the parameter
estimation problem is also a solution to the original inverse problem.

Often, inverse problems where the modelling errors are negligible compared to the error
in the observed data are considered. When the noise in the observed data is a result of
additive independent random errors (e.g., resulting from independent measurements) , it
is possible to apply statistically based solution criteria [1, 20] to test if the solution to
a parameter estimation problem can be accepted as a solution to the underlying inverse
problem. These criteria concern the value of the objective function and the randomness
of the elements in the residual vector at solution. Furthermore, if a solution to this kind
of inverse problem has been found, it is possible to give approximate error bounds for the
solution.

The inverse problem studied here is quite different. We consider a problem where the
modelling error dominates the error in the observed data. In fact, the whole purpose is
to study the effect of two different modelling errors on the recovery of the flux function.
Contrary to measurement errors, modelling errors can not be expected to be additive
independent random errors. Hence, neither the above solution criteria nor the error bounds
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can be applied. Presently, wc do not know enough about the nature of the modelling error
to put forth any alternative solution criteria covering this case. Therefore, the estimated
flux functions presented later will be solutions to specific parameter estimation problems,
while wc can not claim that any inverse problem has actually been solved. However, it
is still of interest to study the influence of the modelling errors in OS and COS when
attempting to recover the flux function.

Wc will use the same parametrisations of the flux function when running the OS (10)
model as when running the COS(l) model, thereby ensuring that corresponding OS and
COS estimates belong to the same functional space.

3.3. Numerical experiments. The observed data are generated at T = 0.2 by a finite
difference scheme using the flux function, f*{u), and the fine grid given in section 2.2. From
the resulting saturation profile 101 equally spaced data are sampled. This constitutes the
observation data used in the parameter estimation. The size of the grid cells used in OS(10)
and COS(l) is fixed; Ax =

For a given order, ra, of the B-spline basis functions and a given number of internal
knots, k, in the knot vector, the number of coefficients in each relative permeability curve
is m + k. The number of elements in the knot vector is 2m -I- k. Here the order, ra, is
fixed; ra = 3. The first and last coefficients in the B-spline expansions of each relative
permeability curve are also fixed, clw = c™+k = 0.0 and c™+k =cJ = 1.0, so that the total
number of parameters to be estimated is 2(ra + k) — 4 = 2{k + 1).

In the numerical experiments 1, 2, 3, and 4, the flexibility of the estimated fractional
flow function is systematically increased by adding knots in the knot vector (increasing k).
The number of knots is k = 1, k = 2, k = 3, and k = 7, respectively. Increased flexibility in
the flux function allows the flux function to compensate for modelling errors in the OS and
COS models. Hence, wc expect the minimum value of the objective function, J(qos(/)t
to decrease with increased flexibility in the flux function while the relative errors in the
estimated flux functions may increase. The COS and OS estimated flux functions and the
corresponding minimum values of J(c)os(/) wiU °e compared at each level of flexibility.

The knot vector, initial guess on the unknown parameters, and the estimated parameters
from the experiments can be found in Table 1, 2, 3, and 4, respectively. The minimum
values of the objective function, </(c)os(/)? and the relative errors in the estimated flux
functions are given in Table 5.

In Figure 4b) the observed saturations and (C)OS simulated saturations corresponding
to the minimum value of J(qos are given for experiment 1. Wc omit plotting the saturation
profiles for experiment 2, 3, and 4, since they are visually identical to the plot in Figure 4b).
In Figure 5 and 6 the true flux function, f*{u), and the estimated flux functions, f(c)os{u),
are plotted.

The minimum values of the objective function, J(qos(/)> are decreasing with increased
flexibility of the fractional flow function, whereas in most cases the relative error of the
flux function is increasing. Wc also have Jcos(i) < and that the relative error in
the flux function is greater with OS(10) than COS(l) at each level of flexibility.
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Table 1

Experiment no. 1
Knot vector y = (0.0, 0.0, 0.0, 0.5, 1.0, 1.0,1.0)

Initial parameters cw = (0.0,0.3,0.82,1.0)
c0 = (1.0,0.45,0.02,0.0)

Estimated parameters
COS(l)

cw = (0.0,0.098,0.399,1.0)
c0 = (1.0,0.166,0.027,0.0)

Estimated parameters
OS(10)

cw = (0.0,0.0,0.725,1.0)
c0 = (1.0,0.326,0.019,0.0)

Experiment no. 2

Knot vector y = (0.0, 0.0,0.0,0.3,0.5, 1.0, 1.0, 1.0)
Initial parameters cw = (0.0,0.18,0.456,0.82,1.0)

c0 = (1.0,0.67,0.321,0.02,0.0)
Estimated parameters

COS(l)
cw = (0.0,0.0,0.350,0.79,1.0)
c0 = (1.0, 0.562, 0.258, 0.0192, 0.0)

Estimated parameters
OS(10)

cw = (0.0, 0.0, 0.209, 0.671, 1.0)
c0 = (1.0, 1.0, 0.220, 0.02, 0.0)

Table 3

Ixperiment no.
Knot vector y = (0.0, 0.0, 0.0, 0.3, 0.5, 0.7, 1.0, 1.0, 1.0)

Initial parameters cw = (0.0,0.18,0.456,0.664,0.892,1.0)
c0 = (1.0,0.67,0.321,0.149,0.012,0.0)

Estimated parameters
COS(l)

cw = (0.0,0.0,0.215,0.315,0.520,1.0)
c0 = (1.0, 0.338, 0.152, 0.063, 0.014, 0.0)

Estimated parameters
OS(IO)

cw = (0.0,0.0,0.002,0.255,0.587,1.0)
c0 = (1.0, 1.0, 0.066, 0.064, 0.014,0.0)

Table 4

Experiment no. 4
Knot vector y = (0.0, 0.0, 0.0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 1.0, 1.0, 1.0)

Initial parameters cw = (0.0, 0.03, 0.089, 0.177, 0.290, 0.456, 0.612, 0.710, 0.892, 1.0)
c0 = (1.0, 0.945, 0.842, 0.697, 0.530, 0.321, 0.192, 0.122, 0.012, 0.0)

Estimated parameters cw = (0.0, 0.0, 0.0, 0.034, 0.189, 0.189, 0.269, 0.319, 0.477, 1.0)
c0 = (1.0, 1.0, 1.0, 0.711, 0.400, 0.128, 0.08, 0.047, 0.0139, 0.0)COS(l)

Estimated parameters
OS(10)

cw = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.296, 0.352, 0.587, 1.0)
c0 = (1.0, 1.0, 1.0, 1.0, 0.114, 0.114, 0.094, 0.058, 0.0134, 0.0)
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«•ftj

FIGURE 4. The true flux function, f*{u), and the initial guess on the flux
function in plot a). In plot b) the observed saturation, u 0 \>s , and simulated
saturations, in experiment 1.
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Figure 5. The true flux function, f*{u), and estimated flux functions,
f(C)os(u), m experiment 1 (plot a)) and experiment 2 (plot b)).

Wc interpret these results as follows: In the convection step the speed of a point u
on a saturation curve, u{x), is given by f'{u). The OS(10) solution contains numerical
diffusion such that low-saturation points on the front travel too fast. To compensate for
this the inversion algorithm seeks to decrease the speed of these points by deforming the
estimated flux function in the lower saturation region, cf. Figure 5 and 6. The ability to
do so, without affecting the higher saturation regions too much, increases with increased
flexibility in the functional representation of the flux function. Observe that not even the
deformed flux function in Figure 6b) did bring the minimum value of Jos(io) below that
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FIGURE 6. The true flux function, f*{u), and estimated flux functions,
f(C)os{u ) in experiment 3 (plot a)) and experiment 4 (plot b)).

Table 5

°f in experiment 1. Thus, the modelling errors in OS(10) are clearly more serious
than those of COS(l), as far as the current inverse problem is concerned.

In an attempt to remove numerical diffusion in the OS simulations, the number of time
steps is increased to 20. With 20 time steps the width of the front in the OS solution is of
the order of the physical front, e. We repeat the numerical experiments 1, 2, 3, and 4, using
OS(20). The minimum values of the objective function, Jos(/), and the relative errors of
the estimated flux functions have decreased compared with the OS (10) results (see Table
5 and Figure 7b)). Figure 7a) shows the true flux function, f* in), and the OS(10) and
OS(20) estimated flux functions in experiment 3. The OS(20) estimated flux function is
considerably better than the one achieved with OS(10). This supports our view that the
deformation in the OS (10) estimated flux functions is due to numerical diffusion.

Experimental results
Objective functions, J( os(/)

Experiment no.
COS(l) 0.00096 0.00034 0.00027 0.000231
OS(10) 0.00251 0.00245 0.00223 0.00219
OS(20) 0.0012 0.00090 0.00082 0.0008

Relative error in /( osW
Experiment no.

COS(l) 0.01889 0.0252 0.0286 0.03094
OS(10) 0.0449 0.0728 0.1853 0.15644
OS(20) 0.0365 0.030 0.0349 0.0545
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Figure 7. The true flux function, }*{u), and OS(10) and OS(20) estimated
flux functions in plot a). The minimum values of the objective function,
J(C)os(f)> versus the relative errors in the estimated flux function, /(c)os(u)i
in plot b).

4. Conclusion

Wc have compared COS and OS models with respect to efficiency and accuracy in the
context of solving the one-dimensional saturation equation of porous media flow. In line
with previous work, the numerical experiments indicate that the COS method is much
more efficient than the OS method. For the problem considered here the OS approach
needed 10 time steps to achieve the same accuracy in the L2-norm as COS did with 1 time
step.

Wc have also studied the COS and OS models in context of an inverse problem where wc
recover the flux function in the one-dimensional saturation equation from discrete satura
tion data. The numerical experiments indicate that even though the COS(l) and OS(10)
models solve the forward problem with similar accuracy, and thus in that sense contain
modelling errors of equal size, the modelling error in OS(10) is the most serious one for
this inverse problem.

References

[1] Y. Bard. Nonlinear Parameter Estimation. John Wiley and Sons, New York City, 1981.
[2] J. T. Beale and A. Majda. Rates of convergence for viscous splitting of the Navier-Stokes equations.

Math. Comp., 37(156):243-259, 1981.
[3] G. Chavent and J. Jaffre. Mathematical models and finite elements for reservoir simulation, volume 17

of Studies in mathematics and it's applications. North Holland, Amsterdam, 1986.
[4] H. K. Dahle. Adaptive characteristic operator splitting techniques for convection- dominated diffusion

problems in one and two space dimensions. PhD thesis, Department of Mathematics, University of
Bergen, 1988.

[5] H. K. Dahle. ELLAM-based operator splitting for nonlinear advection diffusion equations. Technical
Report 98, Department of Mathematics, University of Bergen, 1995.

*



OPERATOR SPLITTING AND CORRECTED OPERATOR SPLITTING 13

[6] H. K. Dahle, M. S. Espedal, R. E. Ewing, and O. Sævareid. Characteristic adaptive subdomain
methods for reservoir flow problems. Numerical Methods for Partial Differential Equations, 6:279
-309, 1990.

[7] H. K. Dahle, M. S. Espedal, and O. Sævareid. Characteristic, local grid refinement techniques for
reservoir flow problems. International Journal for Numerical Methods in Engineering, 34:1051-1069,
1992.

[8] H. K. Dahle, R. E. Ewing, and T. F. Russell. Eulerian-Lagrangian localized adjoint methods for a
nonlinear advection-diffusion equation. Computer Methods in Applied Mechanics and Engineering,
122:223-250, 1995.

[9] C. N. Dawson. Godunov-mixed methods for advective flow problems in one space dimension. SIAM
J. Num. Anal, 28(5):1282-1309, Oet. 1991.

[10] M. S. Espedal and R. E. Ewing. Characteristic Petrov-Galerkin subdomain methods for two-phase
immiscible flow. Computer Methods in Applied Mechanics and Engineering, 64:113-135, 1987.

[11] S. Evje and K. H. Karlsen. A note on viscous splitting of degenerate convection-diffusion
equations. Preprint, IMA, University of Minnesota, Minneapolis, 1997. Available at the URL
http : //www . math . ntnu . no/conservat ion/.

[12] R. E. Ewing. Operator splitting and Eulerian-Lagrangian localized adjoint methods for multiphase
flow. In Whiteman, editor, The Mathematics of Finite Elements and Applications VII MAFELAP,
pages 215-232. Academic press, San Diego, CA, 1991.

[13] J. B. Goodman and R. J. LeVeque. A geometric approach to high resolution tvd schemes. SIAM J.
Num. Anal., 25:268-284, 1988.

[14] H. Holden, L. Holden, and R. Høegh-Krohn. A numerical method for first order nonlinear scalar
conservation laws in one-dimension. Comput. Math. Applic, 15(6-8) :595-602, 1988.

[15] K. H. Karlsen, K. Brusdal, H. K. Dahle, S. Evje, and K.-A. Lie. The corrected operator splitting
approach applied to a nonlinear advection-diffusion problem. Preprint, University of Bergen, Norway,
1996.

[16] K. H. Karlsen and N. H. Risebro. Corrected operator splitting for nonlinear para
bolic equations. Preprint, University of Bergen, Norway, 1997. Available at the URL
http : //www .math . ntnu . no/conservat ion/.

[17] K. H. Karlsen and N. H. Risebro. An operator splitting method for nonlinear convection-diffusion
equations. Numer. Math., 77(3):365-382, 1997.

[18] D. . W. Marquardt. An algorithm for least squares estimation of nonlinear parameters. SIAM J. Appl.
Math., 11:431-441, 1963.

[19] L. L. Schumaker. Spline Functions: Basic Theory. John Wiley and Sons, New York, 1981.
[20] S. Weisberg. Applied Linear Regression. John Wiley and Sons, New York, 1985.

(Kari Brusdal) Department of Mathematics, University of Bergen, Johs. Brunsgt. 12
N-5008 Bergen, Norway

E-mail address: kari.brusdalfimi.uib.no

(Helge K. Dahle) Department of Mathematics, University of Bergen, Johs. Brunsgt. 12,
N-5008 Bergen, Norway

E-mail address: helge . daleQmi . uib . no

(Kenneth Hvistendahl Karlsen) DEPARTMENT
Brunsgt. 12, N-5008 Bergen, Norway

of Mathematics, University of Bergen, Johs.

E-mail address: kenneth.karlsenQmi.uib.no

(Trond Mannseth) RF Rogaland Research
E-mail address: trond.miinnsethQrf.no

Thormøhlensgt. 55, N-5008 Bergen, Norway





Depotbiblioteket

78sd 20 273




