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1 Introduction

The dynamics of two-phase immiscible flow in a porous media strongly depends on
the balance between capillary forces (diffusion) and convection. In commonly occuring
cases the capillary forces are of importance only in small regions where the saturation
gradients are large, i.e in areas where physical shocks are located, and the physics is
essentially dominated by convection. This is reflected in an almost hyperboiic nature
of the equations modeling such problems.

Equations of this kind are very difficult to treat by standard numerical methods.
Normally one has to use time steps and a grid size determined by local behaviour in the
shock region to accomplish a stable and accurate method. However, such methods are
inefficient or worthless in terms of computer time. Usually one therefore deterrnines
the time steps and grid size from global behaviour of the problem and then introduces
enough numerical diffusion to gain a stable solution. This is of course on the cost
of accuracy, and even if mass balance is retained, the numerical solution might be
smoothed far from the physical solution.

The goal of this report is to describe and analyze a numerical method developed
to simulate the transport of a sharp saturation-front in one and two space dimensions,
using a large time step and a spatial grid adapted to the local behaviour in the shock
region. Thus, effects due to boundary conditions, inhomogeneities and nonestablished
shocks are as far as possible neglected in the formulation of the problem.

In section 2 we give the governing equations for two-phase immiscible flow and
specify the nonlinear fractional flow function and diffusion coefflcient.

Section 3 develops the numerical schemes to be used in the one-dimensional case,
see [l,2]; In section 3.1 we split the fractional flow function into a term describing the
unique physical velocity for an established shock and another term which balances the
diffusion at the shock.

An appropriate time step and length scale for the transport process is introduced,
and we discretize the convective part of the equation in time by integrating backwards
along the approximate characteristics, known as the modified method of characteristics,
[3,4,5].

The sharp variation at the interface between oil and water requires a much finer
grid than what is necessary to describe the transport phenomena. In section 3.2 we
introduce local grid-refinement of the shock region.

Section 3.3 discusses the numerical modelling and discretization of the diffusion
phenomena with an asymmetric transport term. We work out a Petrov-Galerkin for
mulation for this problem. Appropriate upstream weights of the test functions are
obtained from a symmetrization technique introduced by Barrett and Morton [6], giv
ing optimal approximation properties. Such test functions have been analyzed and
used several places [7,8,9], and produce a stable numerical scheme around the shock.

Section 4 deals with error-estimates for the one dimensional case. We first develop
an estimate in the supremum-norm, adequate for the purely hyperboiic part of the
problem. Secondly, an error-estimate in the Hl -norm is developed for the inner prob
lem. This estimate reduces to the one given by Douglas and Russel [4] in the symmetric
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case. We may also refer to [10,11,12,13], for estimates on reiated problems.
Section 5 extends the numerical methods to two space dimensions [l]. We discuss

composite trial and test functions and introduce a composite grid operator.
Recently efficient preconditioners have been developed for elliptic problems, based

on domain decomposition techniques, [14,15]. Following these ideas, we construct a
preconditioner for the composite operator in section 5.4.

In section 6, the practical implementation of the numerical code is documented,
and some aspects of the operator-splitting technique are discussed in more detail.

Computational results and conclusions are presented in sections 7 and 8.

This report is my thesis for the partial requirement of the Dr. Scient. degree in
applied mathematics. I wish to thank Professor Magne S. Espedal for all help and
support during the work on this thesis. Without his optirnism and encouragements,
I would never have managed to finish it. I will also thank Tor Barkve and Øystein
Pettersen for many helpful discussions and for making the reservoir group a pleasant
place to work. In particular I have benefited from the computational work on the
two dimensional part accomplished by Ove Sævareid. I want to express gratitude to
members at the Institute of Scientific Computation, University of Wyoming, leaded
by Professor Richard. E. Ewing, for many helpful suggestions and for reading through
parts of the manuscript. I also want to thank members of the staff at the Institute of
Mathematics, University of Bergen, for social stimulating inputs.

Finally, I will express my thanks to Gunvor for doing more than her part of the
house work during the last months (at least).
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2 Problem Definition

2.1 General Equations

We are studying two-phase immiscible flow in a two-dimensional square region 17,
representing a homogeneous oil field of constant thickness. We shall assume that the
flow is incompressible, and we will neglect gravity forces. A suitable formulation of the
dynamical equations for the total Darcy velocity v, the total fluid pressure p, and the
water saturation u G [o,l] is derived by Chavent [l6], and will be used in the following
nondimensional form:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

and i = 1,2,3, are zero away from the wells. K is the absolute permeability,
A,’, i w,o , denotes the water and oil mobilities respectively, and pc is the capillary
pressure.

The objective of this report is to discuss a numerical scheme that efflciently resolves
the dynamic saturation front defined by the transition zone between oil and water. We
may note that the pressure equation in smooth cases is only weakly coupled to the
saturation equation, giving an almost steady state velocity field with a 1/r dependency
in the well regions where r is the distance from the well. Further, since v is the total
fluid velocity it does not possess any shock behaviour in the transition zone between
oil and water.

We have chosen to use an IMPES method in the numerical formulation of the
equations, which means that we IMplicitly advance the Pressure in time and then
Explicitly update the Saturation values in each time step. The pressure equation is
solved to optimal order by a a mixed finite element code [l7]. Thus, we may assume that

v• v = gf!(x,i), xen, t e J = [O, T],

v = —A(u)  Vp

v• n = ø 2 (x, t), x e 50, te J,

du
—+ V • (/0)v) -eV • (D(u) • Vu) =O, e < 1,

w(x, 0) = u 0 (x), x e Q

(eD •Vu - f{u)v) •n = g3(x, t), x G dfl, tG J,

where

A(u) = K(A„, + A 0),

/(u) = lår,*

p. / \ T r dpc
DW = KA^4



v
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the velocity field v, appearing in the saturation equations (4)-(6), is known explicitly
for any given time t.

A typical shape of the fractional flow function f(u) is depicted in Figure 1 (a). To
obtain the S-shape shown in this figure, we may choose the water and oil mobilities to
be given respectively by:

X w =up and A 0 =(1 - u)p , p= 2,3,... (10)

Hence, for computational purposes we may use an analytical form of the fractional
flow function defined by:

(11)

(Note that the mobility ratio has been set to one.)
Further, for simplicity, we shall replace the absolute permeability tensor K by the

identity matrix. Consequently, the components of the diffusion tensor D are given by:

Generally, the diffusion coefficient has the properties:

(13)

A typical shape of the components of the diffusion tensor is depicted in Figure 1 (b).
For simplicity we may use a computational form of the coefficients that qualitatively
resembles Figure 1 (b), given by:

(14)

We once more emphasize that the purpose of this work is to simulate the transport
of a sharp saturation front in an adequate manner. Therefor we have chosen to rep
resent the initial profile u 0 (x) by an established shock, located somewhat away from
the injection well, thus avoiding the singularity at the well. We shall also assume the
monotonicity conditions:

(15)

Since the handling of general boundary conditions is outside the scope of this report,
we may assume the wells to be given by:

(16)

and

(17)

u p

f{u) = —, p = 2,3,
7 up +(1 - u)p y

T\ ( \ dpcD{U)= ( 12)
where

D(u) = D(w)ii + D(u)jj.

£>(«)> 0, D(0) = D(l) =O,

D(u) = 4u{l w).

<O, < 0.
ox oy

u(xo) = 1

Vm(xi) • n = 0,
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Figure 1: (a) The fractional flow function / as function of u. (b) Typical form of the
diffusion coefficient D as function of u.

where Xq and Xi denotes the injection and production well respectively. Since D(l) = 0,
it follows that g2 {x,t) and g3 {x,t) have to satisfy the compability conditions:

and

These boundary conditions are essentially no flow conditions. Since condition (17)
does not define an appropriate outflow condition, we have to terminate the process
when a nonzero saturation value is transported into the production well at time t = T.

2.2 One-dimensional Equations

For the one-dimensional, incompressible case, the total fluid velocity is constant and
the pressure equation decouples from the saturation equation. Hence, the general
equations (l)-(6) reduces to the simpler problem for the water saturation u{x,t):

(18)

(19)

03(x0 ,*) = -^2 (x0,0

03(xi,*) = -f{u)g2 {xu t).

+ dx^ ~ e dx^ =°’ e x [o,r], e<l,

and

u(x,o) u o [x), x G 0

«(*O,O = 1, =0
r X=X\
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where (æq, C Rl , and the dimensionless saturation satisfies o<u < 1.

The fractional flow function f{u ) is defined by (8) or (11), and the diffusion coeffi
cient a(w), equals D{u) defined by (12) or (14).

Once more the boundary conditions are chosen such that they have minimal impact
on the transport of a shock front. Initially we start out with a well established shock
profile with the shock located away from the wells. Xhis shock is then moved
until the zero boundary is reached at time T and the process is terminated.





3 Outline of Methods, One-dimensional Case

3.1 Operator-Splitting

The nature of equation (18) is almost hyperbolic because of the small e-parameter
implying the dominating convective part:

A common procedure for solving such problems, which reflects its hyperbolic nature,
is to use time stepping along the characteristics defined by equation (20), which allows
large time steps, together with a finite element or finite difference technique to correct
for diffusion. We shall use a similar procedure in this report, but notice at once that
due to the shape of the fractional flow function defined by (11), the hyperbolic equation
(20) may develop a nonunique solution. Hence, the method of characteristics may not
be applicable to this equation. We shall resolve this problem by an operator-splitting
technique introduced by Espedal and Ewing [l].

For an established shock we split the fractional flow function into two parts defined
by:

(21)

(22)

The Buckley-Leverett shock saturation übl is defined by equation (20) together with
an appropriate entropy condition, and is given by the concave envelope of f[u) as
shown in section 7.1. For a growing shock, a dynamical definition of f{u) may be
necessary, we shall discuss this in more detail in section 6.3.

We define the characteristic direction r(u) in terms of the nonlinear operator:

(23)

From the definition of f it follows that the characteristic direction is uniquely de
termined by (23), since a fully developed shock consists of a rarefaction wave and a
contact discontinuity as given by f. Further, we note that the equation:

S

du df(u)
at + ~aiT =°- (2°)

f(u) = f{u) + b{u)u,

where

f f(uBL) n /
f(.A _ J o < W < übl,J\ U ) \ ÜBL

[ /(w), u Bl <U< 1,

and

h(u) = 0, übl < u < 1.

9 _J_ (‘L.pt >9\
dr(u) </>(“) \<9< U 9x )

where

H u ) =v 1 + fiu ) 2 -

/ du
= °,
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transports a shock with the same physical velocity as equation (20) together with an
appropriate entropy condition.

Using the above definitions, equation (18) can be written in the equivalent form;

K\ du . /L/ \ \ d . du. n
+ d^{b{u)u) ~ ( 24 )

The characteristic derivative is now discretized in terms of the characteristic direction
defined by (23); Let At =tn - tn~\ At >O, and let x and u n ~ l be the solution of the
nonlinear equations:

(25)

Hence:

du n u(x,tn ) u(x,tn ~ l )w % i— i
dr At (26)

We note that the characteristic curves defined by (23) are straight lines in the
plane. Thus, if equation (25) is solved exactly, the only change in the solution along
the characteristics is due to diffusion. For later reference, we shall refer to u(x,t ) as
the characteristic solution of equation (18).

By substitution of the approximate characteristic derivative (26) into (24) we get
the following elliptic equation to solve in each time step

(27)

3.2 Substructuring

There are two obvious spatial scales associated with our problem. Except for a thin
shock layer, the gradients are small, and the following relations are certainly valid:

In a neighborhood of an established shock the gradients are large and the reduced
convective term 6(u), balances the diffusion term in equation (27). A small space scale
is appropriate in this region and the following inequalities are valid (see [1]):

(29)

The appearance of these two space scales motivate the use of a substructuring method
to solve the elliptic equation (27).

A composite grid is constructed in the following manner; A uniform coarse grid
is defined which is independent of time and adequate for the slow variation outside a
shock layer. The position of a shock is then located on the coarse grid in each time
step, and the elements containing the shock front are refined. We shall return to the

x= x f'{un 1 )At,

u n ~ l u(x , t n-1 ).

+ O>»)- e = 0.

du
= o{e/h0 ), h 0 = 0(1). (28)

du 1 du du u
Tr~h, h{u)U ~ • T k' « h
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question of how to identify shock regions later; one should, however expect the shock
front to be contained within at most two connected coarse grid elements for small e.

With the composite grid defined in each time step, a solution procedure for equation
(27) is developed as follows; On the coarse grid we neglect the diffusive terms, and the
coarse grid solution at time tn is given by the characteristic solution at each node

defined by (26) and (28) to order e. On the refined grid, we shall solve equation (27)
by a Petrov-Galerkin method using the coarse grid values as boundary terms.

Let be the refined elements on $7 and let hbe a parameter defining the fine grid
size, such that the number of fine grid nodes equals 1/h. The boundary value problem
we shall solve on 17; in each time step is then given by:

(30)

If consists of several coarse grid elements, we will compute the solution separately
on each element, although will.be treated as a single element in the following.

The parameter h introduces a coordinate stretching into equation (30). A consistent
slngular perturbation expansion of this equation around the shock-layer show that the
shock-width ht = O(e), and further that the convective term balances the diffusion
term to order e :

(32)

For a thorough discussion of Burgers’ equation, see [18,19]. Here we conclude that we
have to choose h = O(e), to completely resolve the shock.

If the shock is well resolved it follows from (29) that

(33)

where 6 = e. If we are not able to resolve the shock front properly, i.e. in the limit
e — 0, the convective term dominates the diffusion term. In such cases standard

numerical methods give rise to unstable Solutions. To guarantee a stable solution,
enough artificial diffusion has to be added to balance the convective term, such that
equation (32) is retained to correct order. In the next section we show how this may be
done by solving (30) with a Petrov-Galerkin method rather than a Galerkin method.

The importance of balancing the convective term is further recognized in the treat
ment of the nonlinear coefficients a{u) and b[u). If balance between diffusion and
convection is achieved, as from the Petrov-Galerkin method outlined in the next sec

tion, we may assume (33) to be valid since (32) is satisfied, even if the shock is not
well resolved. Then, by a Taylor expansion of the coefficients around the characteristic
solution, we get:

(34)

U + At—(b{u)u) - eAi--(a(u)-) =u, x G

and

U=w, x e dQt . j (3i)

Yx{h{u)u - ea(u)£ } = 0(e) -

u = u -f O{SAt),

b(u) = b(u) + O(SAt)
a(u) = a{u) -f O(SAt),





11

where 8 = max(e, h) depending on whether the shock is resolved or not. By (28) this
expansion is uniformly valid for all iGil, We use this expansion to rewrite equation
(30) in a linear form consistent with the discretization of the characteristic derivative
to leading order:

(35)

where a a{u) and b = b{u). Similarly, for completeness, we repiace a(u n ) and b(un )
with respectively dn ~ l {x) and &n-1 (:c) to linearize equation (27).

From (29) it follows that to leading order, the dynamics of the shock layer is
governed by the diffusion-convection problem:

(36)

If the shock is well resolved the correction terms to this equation are of order e, if
the shock is not resolved the correction is of order h. Although we are going to
solve the complete equation (35), we shall use this information when we determine
an appropriate test space for the Petrov-Galerkin method and precisely construct the
test functions in terms of problem (36). We also note that the effect of solving the
diffusion convection problem is to get the correct shock-width, or if the shock is not
well resolved, to keep the numerical diffusion within the resolution given by h. This
may be further connected to the concepts of ”TVD-schemes” and ”flux-limiters”, see
[20,21,22,23].

To summarize, the solution at time t n consists of a characteristic part on the coarse
grid and a diffusion-convection part on the refined grid giving the correct shock-width,
rather than the solution of (27) by a Petrov-Galerkin method on the composite grid.

We might judge the solution constructed in this manner as a simple preconditioner
for an iterative method solving equation (27) on the composite grid. Numerical exper
iments performed show, however, that the solution obtained is well-behaved after the
first-step of such an iteration, and it does not seem necessary to elaborate the solution
any further. Obviously this is true because the characteristic solution is dose to the
real solution for small e, and because the problem is in one space dimension. We note
that without any iterations the fine grid solution is passed to the coarse grid only via
the characteristic solution.

3,3 Petrov-Galerkin Method

As in the previous section, we let lb denote the shock region, which for simplicity is
normalized to be the interval [o,l]. In the following we shall develop a Petrov-Galerkin
discretization for the diffusion correction problem defined on Q t .

du
We first assume that 0 < u < Uf, where übl < u b < 1, and that - < oin thedx

shock layer. It follows that (35) is singular for u = 0, i.e. ahead of the shock front,
since a(0) = 0, whereas the other zero of a(u) is excluded by the assumptions.

Let H m be the usual Sobolev space of functions with derivatives of
order < m. We shall define the following subsets of H l :

u -f - eA = u ,dx dx dx

/1 / \ \ d , / v. du
{b{x)u) _ = 0.



r-
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V {v G | v = u on dfi,},

Hq = {v £ H | v = 0 on <9l7 t }.

The weak formulation of equation (35) is then: Find u 6 V such that

(37)

With a(;r) G C,o (f2 tj and 6(æ) G JET 1 (Qi) the bilinear forms A(-, •) and £?(•,•) are con
tinuous on x iLg- Unfortunately they might not be coercive, because

However, by (32), it is reasonable to assume that the convective term 6(u) is dominated
by the other terms, such that:

(39)

which implies that A(-,-) is coercive. Existence and uniqueness of u satisfying (37) is
then guaranteed by the Lax-Milgram theorem.

We shall use a conforming finite element technique to solve equation (37). Let
{(£*; i = 0,1,. .., N] be a uniform discretization of 0, such that 0= x 0 <X\<• • • <
X N 1 and Xi æ,_ i =h. We define the trial space Sh and the test space Th to be
discrete subspaces of H l of dimension iV + 1, spanned by 0t and ?/>,-, the trial and test
functions respectively. Further we define the discrete subsets:

Sq =ShH Hl T0h =Thn Hl and =Shn V.

It may be noted that we always can expand functions satisfying the boundary con
ditions in terms of basis functions in S h in the one-dimensional case, implying that
S h Gl V is not the empty space. In higher dimensions this is not generally true.

The Petrov-Galerkin finite element formulation of equation (37) is then:
Find U e Sy such that

(40)

We choose our basis functions to be the usual chåpeau basis defined by;

A(u,v) = (u,v) Vv E Hq,

where

A(u, v) = ( u , v) +At B{u , v)

and

B(u , v) = ((6u)', v) + (eau', v'). (38)

«H» = < o,

since

~< 0, # > 0 and V =dx du du dx

At{b'v, v) < 2 {(u, v) -f eAt{av', v')}

A(U,A) = {u,i>i) VV>i € To'1 .
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(41)

and Morton [6], will be used to find
dose to optimal test functions for problem (40).

As already noted, the usual Galerkin method, where the test and basis spaces are
equal, fails to work if the mesh Pédet number 0 bh/eå, is large in absolute value
(P < 0 since b < 0). As shown by Morton [24], the mesh Pédet number enters the error
estimate in the energy norm, giving a poor bound for large negative (3. Computations
show that the solution exhibits wild oscillations when this occurs.

The appearance of these osdllations may easily be demonstrated for the simple
diffusion convection problem (see [24]): Find U 6 Sysuch that

(42)

where /?(-,  ) is defined by (38), a and b being constant, and = is spanned by
(41). The Galerkin system for this problem, reduces to the difference equations:

where

and AO Ui = -([/,-+1 - Ui-1).

The solution to these equations is easily obtained and without loss of generality we
choose boundary values U 0 = 1 and Un = 0 which gives the solution:

If po is negative, i.e f 3 < —2, this solution exhibits osdllations, which is of a purely
numerical nature since the solution to the associated continuous problem is monotone.
Hence, for large and negative Pédet numbers bf ea, we have to choose h correspondingly
small to obtain monotonicity.

In our framework, one should expect (3 to be small since the grid refinement tech
nique is supposed to resolve the front. However, as already noted, this may not be the
case in the limit e —» 0. When e is very small we only want to resolve the front to some
ftmim without rcally resolving it. Hence, we need test functions which gives a stable
solution even when a front is not well resolved, i.e. when the mesh Pédet number is
large in absolute value.

Another motivation for choosing a test space different from the trial space, is the
singularity at the bottom of the shock front. We will later show that one effect of
choosing a test space different from the trial space is to produce Galerkin equations
which appear to be well behaved even at the singularity.

In the previous section we noticed that the dominating and troublesome part of our
problem was the diffusion convection equation defined by equation (36), or in the weak

f 0 x < Xi_ 1,

ø.l 0 ~ “ ®i-i) Xi- 1 <ar < x,,
+ l +l *®t) «Et 1 5

. 0 æ l+l <æ.

A symmetrization technique introduced by Barrett
dose to optimal test functions for problem f4O b

B{U,ipi) = o Vi/., e

Pu, - /3AO Ui=O, 0, 1, ...,

Vi = U(xi), S 2 U, = - 2U, +

rT __ fLo~ i ~ 1 _2 +/J

' fig 1 _ 2-/3'
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formulation, the part defined by the bilinear form .£?(•, •). We shall therefor choose our
test space in terms of this problem.

Following Barrett and Morton [6], we define a symmetric form

where the coefficient ao[x) > 0 should be of the same order as the physical diffusion
given by eu, or the numerical diffusion introduced from not properly resolving the
shock-front. An obvious choice which satisfies these prescriptions is given by;

a 0 = a bh/e. (44)

We note that is a continuous and coercive bilinear form on H] x Hq and
therefor define an inner product on H]. Thus, from the Riesz representation theorem
there exists a unique continuous representation Rm :H] -> H], such that given u e

since B(n ,•)is a continuous linear functional on Hq. If we choose our test-space Tq
to be spanned by the test functions ip*, such that:

span{Rm i>*} = span{Ot ] = S£, (45)

we obtain the optimal approximation property:

for the problem defining the shape of a shock: Find U m G V such that

where || • \\gm is the energy norm defined by J5 m (-, •). Motivated by this we choose the
test-functions to be given by the relation:

This problem reduces to the solution of the set of first order differential equations:

(47)

It follows that the representation i?TO , which relates our bilinear forms, is defined by
the expression:

(48)

where C has to be chosen such that Rm ip G Hq.
Although a general form of Rm is known, it is difficult to find the inverse operator 1

Rm 1 which solves equation (47) and explicitly defines the optimal test functions. As
a first approach we therefor confine ourselves to the case of constant coefficients, since
this simplification will enable us to construct explicit test functions which are usable
for practical purposes.

In this case we easily obtain the solution of (47) to be:

though the notation Rm 1 for the inverse representer may be confusing, it will be used here
and in all the subsequent sections.

Bm {u,v) = {eaou', v') Vu,v 6 #q, (43)

B{u,v)= Bm {u,Rm v) Vv&Hl

\\ U Um \\ Bm ||w (46)

B(Um ,->p) = o, w-eTO\

= Bm (u,et ), Mue Hl

-f f = ea o o/ + C i = 1,..., N- 1.Jo

Rm :V> -> i?ra t/> = r —{esV' +f‘ - ,Jo ea0 Jo



rø
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® = yJo «- (t/e#)(x- ,)».-'W* - f (—w) i' (49)
These test functions are nonlocal, and we need a procedure to obtain test functions

local support that span the same test space as the global test functions. In

general this is not possible, however, from solving the local problems ((3 = bh/eå):

where ?/>,- by definition has local support on (ar,_x, ar t+x), such that

1) = 0 and i/)l (x i ) = 1,

we get local test functions [6

(51)

Operating

where /? aO (3/a. Since Ø*(ar) is a linear function with knots ar,_x, ar,- and ar,+l we con
clude that the optimal approximation property associated with the symmetric bilinear
form, span{Rm is satisfied.

Similarly, it obviously follows that this relation is true if ipt is constructed from the
local problem (50) without assuming constant coefficients. We use this observation
to obtain approximate local test functions for the original problem. Assume that the
coefficients are slowly varying such that they can be replaced with averages on each
element of the refmed grid, consistent with the expansions already performed, then the
solution of equation (50) is seen to be:

(52)

At this point we may notice that ?/>,- as defined by (51) or (52), and 6*, as a con
sequence of the choice of ao (ar), is bounded in the limit \/3\ —> 00. The boundedness
of ipi implies that the method is well defined even at the singularity of the diffusion
coefficient a(u).

The exponentials appearing in the test functions above may be difficult to handle
in numerical computations. Several upwind schemes have been proposed producing

v>, " + /?*' =O, i = 1, ... ,N —l, (50)

0 ar < X{_i
I (1 - e-«-i-l/*)/(l - e-0 < x < *.•

V' | {e~K*-*Vh - e-«)/(l - <x < æ ,-+I
.0 æ > xi+ i

iting on ipi with Rm we obtain

-fa x < ar t-_!
c»m / _ fai(x )/( 1— e (3x Xi-1 <x< Xi

(Se~ ,3 0i{x)/{ 1 e _/3 ) /?(! - ar) ar t <ar < ar l+l
/?(! ar) ar > ar l+l

r Æ = and /å. Since 6t(x) is a linear function with knots ar.-  >. ar.-

, (1 - i _ < x < x ,
‘ (e-«'-'.)/‘- e-ft)/(]- e-A) < z < *. +,

0 X{ < x

where (3t denote the average on element [æ,-, x t+l |.
At this point we may notice that ?/> t- as defined by (51) oi
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simpler test functions, which resembles the optimal test functions given by (51) and
(52). Here, we shall derive simpler test functions introduced by Heinrich et al. [7].

We assume that the test functions approximating the optimal test functions (51),
have the form:

0 X < £,_!

lp. < 0* + CL (Tt <X< Xi
01 + CROi Xi <x < Xi+i
0 X{ < x

where cr and cr is to be determined in terms of the

second order polynomial given by:

G , _f(x - £i-i)(æ - Xi)/h2 Xi-i <x< Xi
\—(x - Xi)(x - Xi+i)/h 2 Xi <x < xi+ i

(53)

where cL and cR is to be determined in terms of the mesh Péclet number and ai is the

(54)

The procedure we intend to use to determine the coefficients is described in general as
follows; We choose polynomial test functions au ..., ot k ) where the a's are to be
determined, and integrate analytically the elements of the stiffness matrixes given by:

where and \j){ are respectively the optimal and approximate optimal test functions.
The simplest way of determining the cPs is to compare the entries of the stiffness
matrixes element for element. However, in general this will lead to over- or underde
termined systems of equations.

In case of an underdetermmed system, more equations can be supphed by compar
ing the right hand sides of the Galerkin equations, using polynomial source functions.
If the system is overdetermined we have to remove equations, for instance we may only
compare the diagonals of the matrixes.

We note that this procedure depends upon our ability to integrate the Galerkin
equations analytically. With the optimal test functions given by (51), this is easily
accomplished and the problem of determining and cR reduces to solving the linear
system:

This system of equations has a unique solution given by:

(55)

Thus, the test functions defined by (53) and (55) give the same stiffness matrix as the
optimal test functions given by (51), the only difference is how the source function is
sampled. On the other hand, we may easily verify that the area bounded by the optimal
test functions is conserved by the approximate test functions, implying that constant
source functions gives identical Galerkin equations for both sets of test functions. In
analogy with what we did with the optimal test functions (51), we shall replace the
Péclet number entering (55) with averages on each element. Hence, the test functions
to be used in practical computations are given by:

dij = B{OJ1 ipt ) and atJ =

I o\ /\ /Kf - c°th(f) \

-i i = coth(f)-i
\ 0 5 /  |(| -coth(f) J

c=f cL —cR 3(— - coth(-)).



“



17

Figure 2: Typical test functions in one space dimension as function of the satura

tion u. (a) One-dimensional saturation profile. (b) u{x t ) > u Bl => c* =O. (b)
u { xj) = 1/2 uql => cJ =l. (c) w(arjb) =0 => =3.

(56)

The typical variation of these test functions through the shock region is depicted in
Figure 2.

Returning to the motivating example defined by equation (42), we rnay now write
out the Galerkin system with the asymmetric test functions given by (53) and (55). In
this case the problem reduces to the difference equations

0 X < X,_!

r Ot -f c z _iCTj- a?,-—! < x < Xi
ri j f\ i

Vi + CjCTj Xi < X < X{+ 1
0 X{ < x

where

c, = 3( - coth( —)).

-(1 - /?-) S 2 U, +MoU, = 0, i = 1,..,JV-l.



.
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We notice the extra diffusion added because of the asymmetric form of the test furie
tions. With U 0 = 1 and Un = 0 the solution to the difference equations is ae-ain-to the difference equations is again:

but with fio slightly different

which is unconditionally satisfied by (55). Thus, we conclude that in case of constant
coefficients, the Petrov-Galerkin method as defined above, gives a monotone solution,
and we may expect this property to be conserved in the nonconstant case.

To anticipate the next section, we state a theorem due to Barrett and Morton,
giving the loss of optimality from approximating the optimal test space defined by
(45). A similar result will be derived in our case where the error-estimate obtained by
assuming an exaet transformation between i?(-, •) and P? m (*, •), is modified by assuming
computational test funetions as defined above.

Theorem 1 (Barrett and Morton) Let Tq denote the approximate test space, and
assume that the closeness with which Rm TQ is approximating the trial space Sq is given
by Am (h) such that:

Then, if Am G [0,1), there exist a unique
Find U 6 Sy such that:

solution to the problem:

Furthermore, the error in the solution satisfy

For a proof of this theorem see [6].
In the simple case of constant coefficients, the parameter A m has been calculated by

Scotney [2s] for several choices of upwind schemes. These calculations show that for the
test funetions introduced by Heinrich et al., (1 A^)” 1 / 2 is bounded by approximately
1.3 for large mesh Péclet numbers. Thus, we may conclude that there is little loss of
optimality by using the approximate test funetions defined above. It is also reasonable
to believe that this is true in the non-constant case.

We may finally remark that optimality should have been defined in terms of the
complete operator A(-, •), and an associated symmetric form Am . Such test funetions

u - 1

 rf -1 ’

2-(f + l )fi
2-(|-1)/J'

Hence, the criterion for stability is given by

c 1 2
3 >l +

||V - Rm W\\ Bm< Am ||V|| Bm VV 6

B{U, Vt) = (/, W>,- G Tq

“ - V\\ B„ <(l - Am)"' /2 < inf ||u - V\\ B„V (z Sy
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are discussed by Demkowicz and Oden for a symmetric operator, i.e. b(u) = 0, see
[26,27]. However, symmetrization with respect to both the X'2 - term and the asymmetric
term seems to suggest a much more complicated problem for determining appropriate
optimal and approximate optimal test functions, and it is not obvious how to choose
the appropriate symmetric form Am .
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4 Error-estimate

In the subsequent sections error-estimates for the numerical solution of (18) and (19)
based on the operator-splitting technique will be derived.

First we derive an error-estimate for the characteristic solution in the maximum

norm, which denionstrates that diffusion correction is only necessary in the regions of
17 where the gradients are large. Secondly, an error bound in the JW-norm is obtained
for the complete convection-diffusion procedure, in the shock region.

Consequently, in each time-step, we divide fl into two parts such that

We let fl 0 denote the outer region, where the solution is completely determined by the
hyperbolic behaviour, and let fl, denote the shock layer.

Since the shock front is stable on the time scale we are dealing with, i.e. few of the
characteristics diffuse out of the shock layer before the shock reaches the out-end, we
may assume that the area of fl 0 (t) and fl,(t) is constant in time:

T/At (57)

We shall assume that fl,- is transported with the shock velocity between successive
time steps, This implies that the shock region can be transformed onto a domain in
phase-space with time independent boundaries, by a simple change of coordinates.

We notice that this transport necessarily conflicts with a fixed coarse grid, since
coarse grid nodes eventually become internal nodes in the shock layer. In the analysis
which follows we will assume a procedure which adjusts coarse grid nodes such that
the shock layer fl, can be taken to be one coarse grid block, with the front placed
approximately in the middle of the block.

In the computations performed, no procedure of this kind has been used, and the
coarse grid defined is uniform and fixed. The appearance of internal coarse grid nodes
does not seem to create much distortion on the numerical solution either, However, for
practical reasons such as robustness, a procedure that removes internal nodes in the
shock layer and adjusts the surrounding coarse grid nodes should be considered built
into the code.

4.1 Some Definitions and Notation

The usual Jf 2 -norm on fl will be written

(58)

and we deflne the maximum norm to be

(59)

We shall norm Hq with the seminorm:

n = fi» u fi?, fi" n si" = ø

meas(s}Q *) = meas{sl™)

meas{s}™~ 1 ) = meas^l 7-)

IHlo ja =(Jv*dX) ' ,

IHL.fi = ess sup|u(z)|.rgfi
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Hl lfl =(Ja vldx) ' . (60)

We note that if c < ea0 (x ) <Con 0, where c and Cis positive constants, the if 1 -norm
is equivalent to the energy-norm defined by Bm {-, •), giving:

Further we will need to norm the solution space defined on [O, T] x Let H
be a normed linear space on then, if w(x,t) is defined on [O, T] x we say that
w LpdO, T], H), if is in H for all t E [O,T] and 6 Lp ([o,T]). This space
is normed with:

(62)

v{t) (t)

In the L - case this norm reduces to the simple integral expression

(63)

We shall denote the exact analytic solution by u(x,t), (x,t) E Q x [O,T] and the
numerical solution by Uh{x, t). By definition we have:

(64)

where x is defined by (25). Finally we define the differences:

(65)

where the elliptic projection is to be defined in section 4.3.3, and we note that K
denotes a positive generic constant.

4.2 Error-estimate for the Characteristic Solution

We shall develop an error-estimate in the maximum norm for the characteristic solution
defined by equation (25). The estimate obtained will then show that the characteristic
solution gives a good approximation to the solution of equation (18) on fi 0 .

Let be the discrete solution to the characteristic problem (25) in each time step.
For simplicity we assume that u% is piecewise linear on a uniform grid with
mesh size h Q , although the analysis is completely valid also on adaptive grids.

We further assume that the characteristic equation may be solved exactly in each
time step and let vn be the solution obtained by integrating backwards along the
characteristics from t= t n to t = tn ~ l such that:

(66)

c IMI?,fi < IMlb™ < CIHIJ n (61)

\\ W \\lp ([O,T],H) - IKOIIIp ([O,T]) >

where

-T .

H u’llL([o,r],z,2(n)) = ll u’llL(six[o,T)) =JQ w 2 dxdt.

u nh {x) = u h{x,tn ), U nh = ul \x),

7] =u - wh , £ = u h - wh , C- u - u h .

vn {x) = u nh l .
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Hence, by definition unh {x) is the linear interpolant of v(x) at the nodes x,-.

If u JJ *(x) is monotone and decreasing and / represents a fully established shock,
v(x) is uniquely determined in each time step, since one part of the solution represents
a rarefaction and the second part is transported along parallel characteristics. If a
more general f is used, e.g. representing a growing shock, the following condition is
needed:

(67)

where additional conditions are required at the points where f is not sufficiently differ
entiable, We shall discuss such conditions later, Here, however, we shall assume that
(6 t ) represents sufficient conditions to assure uniqueness on the characteristic solution
in each time step.

By the triangle inequality the error is bounded by:

We shall show that the last term on the right hand side of this inequality, i.e. the
interpolation error, is bounded by:

(69)

Let X{ denote the shifted nodes defined by:

*i = x i + (70)

which is equivalent with forward stepping along the characteristics from a known point.
Since u £ 1 by definition is piecewise linear with nodes x,, i 0,1,..., N, the deriva
tives of cn (x) on each of the shifted intervals (x t-, x t+ i) are given by:

We note that f"{u ) is discontinuous for u = In the following we shall assume
that f is sufficiently differentiable to assure that x(x) is two times continuously differ
entiable on il, except for the point corresponding to u = übl • This point can easily be
treated in the analysis that follows and we may also allow for a finite number of such

points. However, to simplify the analysis somewhat we shall assume that x (x) G C’ 2 (0),
implying that v (x) <E C2 (x,, x i+ i ), i = 0,1,..., N - 1.

Without loss of generality we will show (69) for the case x t <x < x,- < xt+l , see
Figure 3. For convenience we drop sub- and superscript on v n {x) and u%{x) and let:

(71)

where /' 1(x,)). We note that the following relations are satisfied:

(72)

A<< l-

IK - <IL,!I <K ~ «n IL,n +IK - <IL,n • (68)

IK ~ <IL,n < KhoAt.

(Pv duP 1(P x
— 7 12

dxJ dx dx.P J ,Z ’

c def fifl fi

®«+i/2 - 2 ’

fl def fi 4-1 +
Ji+ 1/2 ~ 9

flfl //+l/2 +
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1

Figure 3: Shift of nodal values along characteristics between successive time steps.

(73)

(74)

and

(75)

duT~l d 2 f
where 6 = max | |. Using the smoothness of v (x) between shifted nodes, leads
to the expansion:

where X{ < £ < x and higher order terms are neglected. Using the smoothness of v
once more, respectively on the intervals (x t _i,x t ) and (f,-, :r t+l ), leads further to the
expansions:

(77)

If X{ æ,+i, the last expansion reduces to v[xi) v(x{+ \) and the analysis is somewhat
simplified. Since

We observe that inequality (67) can equivalently be written 6At < 1 which gives:

fi ~ fI+l/2 ~ &i+ l/2 5

X{ Æj_i h 0 -)- 2Si_i/ 2 At

2|^,-+i/21 < 6h 0 ,

v{x) - v(xi) = Ykh) v} x ' '\x _ x .) + + Æi_, - 2£)(æ - Xi), (76)i zc i —j dcc

dv
V (,Tj _i ) V ( X j ) -)- -j—(X,'j

dv
v(x t ) = u(z t- +1 ) + (x t+l )(x, - rri+l )

Z.--1 - x i = At// - /i 0 ,

— h-o,

it follows from (72), (73) and (77) that:

nv nv
v{x,) - v(Æ,-_i) = v(x i+l ) - v(x t ) +( (x i+l ) - -T-(xi))(fl+1/2 At - h 0)

dx dx ( 78 )
+(— +
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w
rt0 n 0 (79)Xi Xi- 1

Further, the discrete solution on the interval can be written:

(80)

Then, since u interpolates v at the nodes, we may combine (76), (78), (79) and (80)
to get the interpolation error to leading order:

(81)

The desired result is now obtained from equation (81), inequality (75), and the bounds:

(82)

For completeness we note that the case x = xx is trivially satisfied, further, the cases
Xi < x < X{+i and x x > X{+l may be treated similarly without changing the outcome.
We also note that the coefficients K\ , A2, Tv 3, and K 4 are large on the inner region
where the derivatives by assumption are large.

Finally we may remark that S/h O , Tv 2, and K 3 can be interpreted as second order
derivative terms, hence the interpolation error can be viewed as numerical diffusion.
We observe that if the characteristics are parallel lines, i.e. 8 = 0, and the T t ’s coincide
with the nodes, then the numerical diffusion is exactly zero. This is only possible if
the fractional flow function is linear.

The first term on the right hand side of (68), is bounded as follows:

(83)

Using the coordinate transformation defined by the characteristic equation (25) and
the fact that u(xo,t) = Uh(xo ,t) is known at the boundary, the second term on the
right hand side of this inequality reduces to:

.x ( x u{xi+i) ~ u{xi) x
“(®) -u i =—— - &,•) n 0

v(x) - u{x)= [-2K|—A( + K2{f!+l/2At - h 0) +

+Ki(ii + i;_i - 2£)](x - + At

where

K = - v(x i) = dul
h 0 dx ’

h Q dx 2
Tr dv dv
Xs ~ 7h^Xi+i) + d^ (x,) '
jr d2 VKi =

\x x t \ < min{/'At, h o ],

h 0 \ < h O ,

| S'i + 5,-1 - 2£| < h D .

Il“ n - "locri < «"-fi"- 1 + rl -^'I I oo,W oo,W



r~~~-
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Figure 4: Approximate characteristics between successive time steps

(84)

To obtain a bound for |b/ n u n ~ l II 0• I H00,52
the characteristic curves, see [4]. Let r(r)

we shall use an integral representation along
= [x(t ), t[r )] denote the characteristic curve

through the points (r, tn ) and (r,^' 1 ) as shown by Figure 4, and integrate along this
curve to obtain:

(85)

The line integral in this formula may equivalently be expressed as:

We have implicitly assumed that if the characteristic curve crosses the boundary, then
x— x 0 and u n ~ 1 , t n~ l and r n ~ l are consistently adjusted with the boundary values.

Since the characteristics are straight lines between successive time steps as shown
in Figure 4, we get:

(86)

(85) and (86) we obtain the estimate;

We finally combine (68), (69), (83), (84) and (87) to get the inequality:

We may use this inequality recursively together with the inequality n < T/At and the
initial condition u°(x) u°h (x), to obtain an upper error bound associated with the
purely characteristic solution. The result is summarized in the following theorem:

x i- 1 x = x /-At

u n ~ l - u nh ~ l < u n ~ l - ur1n oo,n - h oo,Q

du n ri x ’ tn ) / f)2 7/
u n - u n ~ l =At i/> / J(x(t) - x) 2 + (t(r) - tn- l ) 2 —-dr.

ot J{x,tn-1) v ' ' dr 2

r( x ,t ) j f)2 u rr n fP"u

J(x{t) - x)2 + (t( T ) - = f (r - r 7l - I )—dr.
-'(x,*"- 1 ) OT 2 Jrn - 1 <7T 2

r" (r _ r«-Ær <A4»w* p.dT 2 “ 11100

where ||ø|L = IWL,nx[o,T]- Hence, from

- “""IL A< + Af2 \W2  (87)
oo,Q co,Q x [i n ~ 1 ,<"]

\ u un 1~ u h 1 +KhoAt+
oo,M

At +AtJ MIL

oo,Q oo,Q x [i n_l ,< n ]
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Theorem 2 Let u be the solution to the parabolic problem (18), and let u% be the
hnear intevpolant of the chavacteTistic solution defined by (25). We assume that u,
und qt2 G x [O,T]), that inequality (67) is satisfied and that is piecewise
two times continuously differentiable. Then:

We note that the first term on the right hand side of this inequality may be in
terpreted as numerical diffusion, the second term is the physical diffusion, which is of
order e by equation (29), and the last term is the time truncation error. If e is small,
the right hand side is small away from regions with large gradients, implying that the
characteristic solution is dose to the continuous solution in the outer region. In the
inner region, some of the terms may become large even if h 0 is small, which justifies a
diffusion correction step in the solution procedure.

We finally remark that this estimate should be extendible to higher spatial dimen
sions.

4.3 H l-estimate for the Shock Region
4.3.1 Formulation of the Inner Problem

Before we proceed with a formulation of the problem defining the inner solution, we
notice that the boundary values associated with this problem are not exact. However,
since the characteristic solution given on the coarse grid can be assumed to be fairly
accurate, we shall carry out the error analysis under the assumption of exact boundary
values.

The complete inner equations are given by:

(89)

(90)
(x,t) G dQi(t) x [O, T

where u 0 (x) 0 on and the nonzero boundary is taken care of by the right
hand side of the equation.

Since the inner region is transported with the shock velocity between successive
time steps, a natural shift of coordinates are given by:

(91)

The inner region is then transformed from the parallelogram 6l l (t) x [O,T] in (x,t)~
space, to the rectangular region fl t (0) x [O,T] in {x*,t)- space. Further, the derivatives
transform as:

o<J“t ll“" “ u*lUn <Kh0 + max+ Ai||V>|| (88 )
T oo,n °T oo,Qx[o,T]

Ou , Tn \&u &/w x x 9 ~ du .
dl + 1 (,<) & + & (6( '<)u) “ e & (fl(u) ad = " e

and

u(x,o) = u0(x), x G Oi(t)
u{x, t) = 0, (x, t) e d^i

X* = X - VBLt,

t* t.
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d_ _ d d
dt ~ df ~ VBL frr’
d d (92)

dx dx*

To avoid technical difficulties we shall confine ourselves to the somewhat simpler
problem obtained by replacing the nonlinear coefhcients with:

(93)

Thus, rather than to update the coefhcients in each time step by the characteristic solu
tion, we follow the approximate characteristics given by the shock velocity, backwards
to the initial prohle. By doing this we will lose a bound on the time step caused by the
linearization dehned by (34), the basic ideas involved in developing an error-estimate
should however still remain.

Substitution of (91),(92) and (93) into (89) and (90) then give the inner problem:

(95)(x,t) e dn t x [o, T]

where u 0 (x) = 0 on dVi{. For convenience we have dropped asterisks on the independent
variables.

We note that by dehnition, a(uo[x*)) is zero on the part of the inner region fl,-
where u 0 = 0. Contrary to this, we may argue that a{u) is strictly positive in the
boundary layer dehning the shock region; Ahead of the shock, where u 0, the solu
tion is completely determined by convection, since diffusion processes are zero when
u = 0. Hence, the right boundary of fl,(t), should be dehned in terms of a curve
dividing fl X [O,T] into a zero and a nonzero part. This curve is of course almost par
abel to the characteristics dehned by the shock velocity, but it may not coincide with
any characteristic. The importance of this observation, however, is that the diffusion
coefhcient should be nonzero inside the shock region.

The rest of this section is organized as follows: First we obtain the variational
formulation of the inner problem and the associated discrete equations. The sym
metrization technique given by Barrett and Morton [6] is used and we state some
properties needed on the Riesz-representation. The error-estimate is then developed
following similar lines as Douglas and Russell [4]. We end this section with a discussion
of approximate symrnetrization leading to a similar result as given in Theorem 1.

b{u) b{uo {x - vbl*)) Kx*),

a(n) <— a(uo {x - vBLt)) = a{x*).

+ (/'(“) - + ~ = g ( x ’ *)> * 6 n” ( 94)

and

u(x,o) = uo(x), x G
t) = o, (x, t) e
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4.3.2 Discrete Equations

We shall require the following standard regularity assumptions on the solution
of (94):

Proceeding as before, we define the characteristic direction t{u) in terms of the
operator:

Hence, the characteristics between successive time steps are given by

(97)

We note that inequality (67) is needed to assure uniqueness on the characteristic solu
tion. The characteristic derivative will be replaced by the expression:

(98)

Since the characteristic equation (97) is homogeneous in space, the error in this ap
proximation is due to the continuous change in saturation along the characteristics
caused by diffusion, as was shown in the previous section.

By using the characteristic derivative we may write equation (94) and (95) in the
equivalent form:

(99)

where

We let S h define our discrete trial space, Sh C H 1 (), spanned by {o,}, and we shall
assume that:

(a) u € £„((),
du

(b) (96)
&^U

(c) e i,(o, T; £*(110),

where q > 2.

9 _ 1 ! 9 ~ Bl .9
dT(u) dt +( f {u) VBl) dx

where

Hu) =yj1 + if'{u) - Vbl ) 2

x= x ~ At(—(u n l ) - vBL ),

u n ~ l = u n ~ l [x).

.du u(x, tn ) uix , t n 1 )é Ri :
dr At

du
(ip-, v )~\-B(u, v ) = (g,v), \/veHi, t e (0, T],

B(ii-iio,u) =O, W e H], t = 0,

B(u,v) = (( bu)', v ) + e{an\ v').

\/u> 6H*: m|h {||«, - -Y||0A + || w - A'|| lA } < ||^lL,n> .



'
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where s < q.

Since B{u, v) is a linear continuous form in both its arguments, we may also assume
existence and uniqueness of the Riesz-representation Rm given by:

B(u,v) = Bm (u,lTv), (100)

where = e{aou\v'), a 0 = a bh/e, defines an inner product on Hq(Q{).
Using the symmetrization technique introduced by Barrett and Morton [6], we

choose our test space Tj, spanned by {ipt ] such that:

We note that for computational purposes, any linearly independent set of functions
spanning T(f gives an equivalent linear system to solve, whereas for theoretical use, we
shall need that the Riesz-mapping is onto , i.e,:

VØ GSI £Tq: ip = Rm ~ 1 9. (101)
By (100) and (101), the discrete Galerkin equations may then be written: Find

u\ G Sq, n— 1, 2,... N, such that

( Uh ff ,Rm ~ 1 e) + Bm (u h ,O) = (g , vø e s£,

Bm {u°h -uo,e) = o, vø e sli.
(102)

We shall also require that the inverse representation satisfy:

I. G Sq : {e,Rm ~ l Ø) > 0,
(103)

11. MO G Sq : ( Rm ~ 1 0 , Rm < Rm ~ l 9),

where Mt is a positive constant that may depend on e, h and the coefficients a[x) and
b(x).

We do not intend to prove I and II in the general case, which seems to be quite
difficult. However, it is reasonable to assume that I and II is satisfied for small /?, since
Rm ~ 1 9 —> 9 when (3 0. In the case of constant coefhcients, we have worked out the
following result in the opposite limit;

Lemma 1 Let 9 = ICfli 1 and be the optimal test functions associated with 9t
and defined by (f 7). Then, for sufficiently small e, (9, Rm ~ l 9) is strictly positive and
we get the following estimate on Mt in (103):

A proof of this lemma is given in the appendix. We expect a similar result to be
valid in general cases, with weak conditions on the coefficients a(x) and b[x). Further,
the somewhat artificial condition 11, seems intuitively to be superfluous in the error
estimate, although it is required in the analysis leading to the estimate. The fact that
Rrn 1 9 and the energy norm U-|| flm is well defined in the limit e—> 0, (a 0 is strictly
positive), therefor suggests that the error analysis is possible to carry out even if a{x)
is singular and condition II not satisfied. We shall discuss this point in more detail
after the estimate is obtained.

Existence and uniqueness of the solution of the discrete system (102), now follows
from property I and the fact that B m defines an inner product on

span{Rm 'i^l ] = span{9t }.

M, ~ M = |/j|. (104)ea 7



,—— .——
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4.3.3 Error-estimate on Inner Region

We define the elliptic projection wh of the solution u by the equation:

Bm {u - W h , 6) =O, \/0e o<t < T. (105)

Standard results from elliptic theory then show that for p = 2 or oo and 1 < s < q:

IMILp(O,T;//i(ft,)) < hh S 1 ||M|| Lp (o >T ; Ha(n .)), (106)

where r] is defined by equation (65). Since J5 m (-, •) is linear and independent of time,
|? i s also a solution of (105). Combining this with the regularity condition (96)(b) and
the estimate above, gives for q > 2 and 1 < s < q:

Writing (99) in a similar form as (102), using the Riesz-representation, and sub
tracting these equations gives:

From the definition of the elliptic projection Wk and the definitions (65), this equation
may further be written;

(108)

To continue we will need the inequality:

1 S

(“.«) <  + 5 ll t’llo,n i . (109)

which is derived from the Cauchy-Schwartz inequality and the inequality:

, 1 2 S h2ob < ~a -f -6 .

It follows from (109) that the first term on the right hand side of (108) is bounded by:

We will estimate the error in the approximation of the characteristic derivative from
the integral representation given by (85). Since the characteristics are straight lines
between successive time steps as shown in Figure 4, we may use the Cauchy-Schwartz
inequality to get:

(110)

dr] du

di - Kh di • ( 10? )
L2 (O,T;L2 (Q,)) L2 {O,T-,H*-HU,))

—^,r-1 fl) + S"K-»”,«) =o, \/ses£

(-— , Rm ~ l 6) -f £m (£n , 6) =
At \Jf\ f- qh

, du n u n u n ~ 1 . r) n fj n ~ l 1 °’

(v’a 7 “— + (-7^—’ R ff )

du n ?/ n v n ~ A 1 rht n ?/ n 7/ n 1 2 X

<**- - < - - —-| + ivr-'B. *-*).

[LsT - T'~'^dT)





31

By combining (85) and (86) we obtain the estimate:

The last integral has to be measured in a standard norm. We therefor define the
transformation:

S  (x, t){Z,t)= ~x + = +(1 - t). (111)

Since the inner region is transported with the shock velocity, characteristics may diffuse
out of the left boundary. Hence, 5 maps fi x [tn~\tn] onto a smaller or equal region,
say W C fl x [tn~\tn]. The Jacobian of 5 is given by:

and the determinant of the Jacobian matnx is further given by:

det DS = 1 + o{At),

It follows that the map S is invertible for sufficiently small time steps At and that the
integral on the right hand side of (87) is bounded by:

(112)

The first term on the right hand side of (108) may therefor be estimated as follows:

(113)

Using inequality (109) once more implies that the last term on the right hand side
of (108) is bounded by:

, dun u n u n ~ l 2
w —— <

dt At 0.0 ~

A *2||,/,||4 f f 1" d2u(tn -t_ \ 2
A ar + dtdx

DS.[' Tj->'
l 0 ly

integral on the right hand side of (87) is bounded by:

r ftn d2 u 2 r d2 u 2
Jq Jtn-i 3r2 dtdx ~Jw + -
r f tn d2 u 2 f)2 oi 2

iLa^(M) + o(a<)=
L2(hx[<"-h<"])

Thus, the error due to the time discretization is bounded by:

du n u n - u n ~ l 2 d2 u 2
TT < KAt

ot At „ ~ dr 2
o,n L2 (Qx[< n -i,r'])

Ir, A d2 u 2 S
oS KAt 7w~2 +-{Rm -'O,Rm -'8)

n n _ 1 1 „n _ fjn-1 2 c
~~l— +l(Rm -'e,Rm -'S)

ZAt o.fii

By the triangle inequality we get:
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1 TJ n Tj n 1 j-j 71 _ jj n ~ 1 2 YjTi- 1 —1 2< +2 At At Ato,n. 0,Q O.Oi

From the integral representation:

1 dr]n-\ diin ~ l , 2
~ 7-7-7;—{x-x) < K —- = K rj n ~ l ,

O,Q. At O,Q, o,n, I,Q’

where the inequality follows from \x -x\ < KAt by (97). Thus, the last term on the
right hand side is bounded by:

(114)

We note that this bound is nonoptimal in the sense that a small ”derivative” along the
characteristics have been represented with derivatives along the coordinate-axes where
the gradients by assumption are large.

To derive a bound on the solution of (102), we choose the test function:

(115)

where (" 1 G is the interpolation of
element of the trial space S h .

We note that £ n 1 in general is not an

A simple calculation show that:

eAf 1 ) < [sm(r,n -

To obtain the desired estimate, we shall replace £n_l with (f71-1 . This introduces an
interpolation error which may be difhcult to give an exact expression for in general
cases. However, if the characteristics are parallel lines, which is mainly the case in the
shock region, and the functions in S h are piecewise linear, lemma 2 in the appendix
shows that:

(116)

the Cauchy-Shwartz inequality and (63) we obtain:

=_l/ fr dt)\x<
At o>n . At2 Ju t \Jtn- 1 <9t y

- ri (%] 2 dXdt=i-jA \dt)At

Further, Taylor expansion of r) n ~ l f] n ~ l gives:

fl 1 ___ ry-j fl* 1

At .

1(K dr] 2 \ S 1

iUa +K, n + 2 (ir
V Ul i,2([,n -l i( „]iL2(s!t))  '*/

e _ e - é*- 1At
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where 0 < k < 1, k Oorlif the shifted nodes coincide with the regular grid. The
last term of equation (116) may be interpreted as a numerical diffusion term. In the
general case we shall assume that:

where D is an upper bound on the numerical diffusion caused by the interpolation.
We may also assume that higher order interpolation reduces the effect of numerical
diffusion. From the change of coordinates (97), we obtain:

< (it/iAt)Bm (^n- 1 ,^n- 1 ), (117)

where we have allowed for divergent characteristics.
The first term on the left hand side of (108) can be written:

However, the interpolation error introduced on the left hand side of this equation can
be neglected compared with the interpolation error in the previous term.

Thus, the left hand side of (108) is bounded below by the expression:

(118)

(119)

Combining inequality (113), (114) and (118) with (108), multiplying with At and
choosing:

(120)

gives the recursion relation:

(121)

We note that the sharpness of this estimate depends on the number Mc .
To continue we need the following discrete version of Gronwalhs lemma:

Lemma 2 (Discrete Gronwall) Assume that ||£°|| = 0 and that for all n <n, yen
satisfies the inequality

1) < (i + i<k{ i - + k( i - k)h2D\

Fnf n f71 — 1 pn 1 Cn—\
( ,Rm ~ 1 9) = {o }Rm ~ 1 0) + (i

(e,Rm ~ l 9) + [B™(r,D - Bm(C~\C

- Hl - k)~D\

where Kx = 0(1 + h/At). We typically have that At = 0(h 0 ), hence:

h
t-«!.At

(fl,

(Rm-1 0, Rm ~ 1 0)'

2 d2 u 2 dii 2

+ lAt + A ~Qt +
L2 ([^-l,^];L2 (Q)) UL L2 ([tn- M"];L2 (n.))

+KAt\\r]n ~ l \\lQt 4- k{ 1 - k)h2 D2 .
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rii<BV r 1
i—1

where A and B are positive constants. Then it follows:

For a proof of this lemma, see the appendix

From (102) and (105) it follows that ||£°|| Bm =O, thus, summing the recursion
formula (121) in time, taking the square root and using the Gronwall lemma implies:

(122)

We note that the growth rate in the Gronwall lemma is small by the definition of K\
and equation (119). Finally we get from (61) and (65):

hence, (106), (107) and (122) imply the following theorem:

Theorem 3 Let u(x,t) be the solution to the parabolic problem (99) and let u% be
the numerical approximation defined by equation (102). Assuming that u(x,t) satisfy
the regularity conditions (96), that the time step satisfy inequality (67) and that thethat the time step satisfy inequality (67) and that the

We note that q 2 if Sh is a linear interpolation space. We may further remark
that if we had chosen

e __ e- r 1
At ’

as a test function, we would obtain a similar expression as (118) without the numerical
diffusion term, but with a 1/e factor in front of the negative i? m -term since the negative
£? m -term this time would appear from the This would again lead to an
inconvenient exp(l/e) factor in the discrete Gronwall lemma. The reason for this
would of course once more be that a small ”derivative” along the characteristics is

max ||£n || < Aexp(N •B)Kn<N 11 11 J

mS ||r||B.< JfAf g g +L2 (O,T;L2 ) Ul L2 (O,T;L2 )

where we have used that

i n - ll 7?llL oo (O,T;//i(fi,)) '1 = 1

l<nn<Ar - 'f~CK (i<n<N W Un IMIloo(0,T;//l(«.))) ’

me reguianty conauions [vb), mat me time steg satisjy mequauty (b/J and that the
inverse Riesz-representation satisfy the conditions (103) 1 and 11, then the error in the
approximate solution is bounded hy:

Du
imaxN ||un -^|| Bra < K IHlzwo.jvw,)) + aT

L L2 (O,T;//9-l(fi.))J ( 193)

EliUT L2 (o,r;L2 (Q.))
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replaced by derivatives along the coordinate-axes where the gradients by assumption
are large.

We also emphasize that the sharpness of the estimate in its present form depends
on the number Mt through the constants K. This number enters the estimate in a
nonoptimal manner, when the 12-termI 2 -term (0, Æm-1 0) on the left hand side of equation
(108), is balanced against ( Rm ~ 1 6 , i?m-1 0) terms on the right hand side. We note that
when inequality (109) is used to bound terms like (0, Rm ~ l 9) on the right hand side of
equation (108), the original order of these terms is lost since (Rm ~ 1 0 , Rm ~ l 0) terms are
introduced. However, we have not been able to get a more accurate bound on the right
hand side terms, such that this problem can be avoided, and is therefor dependent
upon condition (103) II to obtain the estimate. We suspect that this condition is not
necessary, and that the error estimate may not depend on the number Mt in general.

We finally note that no arguments used to obtain the error estimate is limited
to the one-dimensional case. By simple arguments, this estimate may be generalized
to higher dimensions, although coupling to the pressure equations will give a more
complex analysis in the general case, see [lo,ll].

4.3.4 Approximate Symmetrization

We end this section with a discussion of approximate test functions related to the
theorem by Barrett and Morton stated previously.

We let Tq denote the approximate test space, and assume that the closeness with
which Rm TQ is approximating the trial space Sq is given by A m (h) such that:

(124)

We shall further assume that an infimum, denoted ipe, exists for all 9 G Sl and that
these test function satisfy similar conditions as required by the inverse representation:

where Mt is a positive constants similar to Mt
Using the approximate optimal test functions, the Petrov-Galerkin equations are

written: Find GSI n = 1,2,... N, such that

(125)

Since equation (125) is linear and fmite-dimensional, it suffices to show uniqueness
to prove existence of a solution of the discrete equations. We shall therefor show that
if 9q G Sq is such that

(126)

then Sq 0. To show this we note that (126) is satisfied for ip = \J)qq • Choosing this as
test function leads to

mf \\e - Rm xj,\\ Bm < A» \\6\\ Bm V$ 6 S h0 .'iP^.Tq

I. Vfle S& : (M«)>o
11. \/0 e : Oø, tj)e) < Mt (6, ipe )

i- h Af h -,*!>) + B(u h ,il>) = (g,*l>),
#o° - w O , V») =O, Vi/j E TJ.

(øO ,V’) + m,t/’) = o, vv>6 tj,
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0 {f)o ,i^eo ) + B{00 ,^o0 ) =

From the Cauchy-Schwartz inequality and the assumption (124) on ipe0 we obtain:

B™{Bo ,eo - 7?™*.) < IN| Bm ||9o - <Am ||É>o|||„ .

and we deduce uniqueness and existence of a solution of (125) if A m G [0,1) and
condition I is satisfied.

An error-estimate is derived following identical lines as in the previous section. As
in equation (108) we may write:

(127)

This relation can be treated exactly as before except for the last term on the right
hand side. Using (124), this term is bounded by:

S « min{Me \ {9,ipe)/ \\o\\ 2B m],

as before, adding in time and using the discrete Gronwall lemma implies that:

II"” “ <(1 - KA 2J 1/2 {R.S.} . (128)

where {R.S.] denotes the right hand side of inequality (123). We note that the constant
in front of A m is proportional to the constant from the Gronwall lemma multiplied by
s- 1 .

= (00, V>«„) + Bm (0o , RmM > Bo) - Bm (90 ,00 - iJm V>90 ).

Combining these results implies:

(Øo, ipe0 ) +(1 A m ) ||^o ||^ m <O.

Cn _ tn- 1 n _ -„_ l
(—-,« + sie,«) = (~--,«+

/M At v/9 G 9^
du 71 un - u n ~ l ’ °’

+ ( «W + fl - </>»)

where we have used that:

B(c,4>e) = Bm(C,e) - - Rm 4’e).

Bm (C,O - Rm 4<e) < —llrllfim + -  

Then, by choosing

ø _ e - e- 1At
and
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5 Solution Procedure, Two-dimensional Case

In the following section we shall extend the one-dimensional solution procedure to
higher space dimensions. For simplicity we restricts ourselves to the two-dimensional

case, partly because the computations performed are two-dimensional, yet we empha
size that the procedure described may as well be used in three space dimensions.

The methods to be outlined are mostly trivial extensions of the one-dimensional

case, however, the exposition given is aimed to be fairly complete, and some arguments
given previously will therefor be repeated.

5.1 Modified Method of Characteristics

The dominating part of the saturation equation (4), is the hyperbolic equation

du „ r/ x
+V-/(u)v = 0. (129)

Since the flow is incompressible, the divergence term may be written:

It follows that the characteristic curves associated with equation (129) is given by:

(130)

We shall use the characteristic curves defined above, to reflect the hyperbolic nature
of the saturation equation in the time discretization of this equation.

For simplicity we divide [O, T] into N equal parts At , such that T = N -At. Further,
we shall assume that the total fluid velocity v(x), may be locally approximated in space
by a constant vector. Hence, the solution of (130) between succesive time steps is given
by the characteristic problem:

(131)

We shall refer to u n las the characteristic solution of problem (4)-(6).
The usual procedure of time stepping backwards along the characteristics, is given

by the following discretization of the convective derivative:

du u n —u n 1
(132)dr At

V • f(u)\r = /'(m)vVu.

du
= u t + / (w)v • Vw = 0,

dt

r, ( \

x = x At • /'(i/ n-1 )v,

u n 1 = u(x, tn 1).



—
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where u n lis the characteristic solution defined above.

This scheme has been thoroughly analyzed several places [1,3,10,11] and it has been
demonstrated that a time truncation error of order €.At is obtamed. Obviously, in the
limit e —> 0, the characteristic solution coincides with the exact solution of problem
(4).

However, with the given initial data and a fractional flow function defined by (11),
equation (129) develops a nonunique solution. This may be seen directly from (131),
since a sufficient condition for uniqueness of this equation is given by:

max f"(u n I )Vun 1• v •At< 1. (133)

If no diffusion is added to the hyperbolic part of the saturation equation, |Vnn-1 |
becomes infinitely large, and we have to choose At arbitrarily small to obtain a unique
solution. Even in the presence of a small diffusion, which gives uniqueness to the
complete saturation equation (4), inequality (133) gives a serious constraint on the
time step, since iVn 71" 1 ! = 0(l/e) in the shock region for a well resolved shock. Thus,
the given time discretization is not applicable in the presence of a shock solution.

To resolve this problem without losing the nice properties of the method of char
acteristics, we shall use the operator-splitting technique introduced by Espedal and
Ewing [l]. From classical shock theory we know that in the limit e —> 0, and for a
monotonically decreasing initial profile with maximum saturation u = 1 and minimum
saturation u 0, equation (129) develops a shock with top saturation u = übl and
bottom saturation u = 0. Here übl may be determined geometrically from Figure 21
(a) as the concave envelope of the fractional flow function, or from the equation:

Further, the physical speed of this shock is given by:

where

By definition, a shock solution with top
tion u = 0 is a fully established shock, and
represents a fully established shock.

saturation u = übl and bottom satura
we assume that the initial profile w 0 (x),

To avoid the constraint given by inequality (133), we will divide the fractional flow
function into two parts, see [l], such that:

(134)

(135)

fiu ßL) £, ( N= J [ubl)-
ÜBL

VfiL = VBL\(x),

VBL = fiUbl )•

f(u) = f{li) + b(u)u

where

f(u \ _ / /(w ) übluu blu < 1
\ VBL  U 0< U < Übl ,

and



-
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(136)

The convective derivative may then be rewritten in terms of f{u) rather than f(u):

The associated characteristic problem is given by:

(137)

By these definitions, we shall once more define the time discretization in terms of
equation (132).

We notice that the characteristic solution defined by (137) coincides with the so
lution of equation (4) in the limit e —> 0 for an initial profile representing a fully
established shock. Furthermore, the condition given by inequality (133), is not longer
necessary since the characteristic solution consists of a rarefaction wave and a part
transported along parallel characteristics.

We may object that this construction does not handle the time period when a
shock is gradually building up, or more complicated cases when several local shocks

are involved. Further, we have treated the velocity held as a constant vector locally
in space in the analysis above, which of course is a reasonable assumption when the
velocity held is slowly varying in time. However, for long time steps it may be only a
crude approximation dose to wells and corners where the velocity field changes rapidly.

5.2 Substructuring

By the definitions given in the previous section, we can write equation (4) in the
following form:

(138)

Further, by using the time discretization along the approximate characteristics, defined
by (132) and (137), we may approximate (138) in each time step by the elliptic equation:

(139)

where the approximation of the nonlinear term u n , is yet to be decided. As will be
shown later, u n = u n ~ 1 represents a good initial approximation.

Because of the small e-term, we associate two space scales with this problem. Except
for a thin shock layer, the gradients are small, and the solution is almost completely
determined by the characteristic solution. In this outer region we have:

0 Ü BLU < 1
Ku ) = f(u)

Vbl 0< U < ÜbL'u ~

d d .

- = Wt+}[u)v.V.

x = x At • // (nn ~ 1 )v,

u n 1 = u(x, tn 1 ).

du
~rT + V • (b(?i, x)w - eD(u) • Vu) = 0,

where

b(u,x) = fe(i/)v(x).

u n +V  (b(ft n ,x)un - eD(u”) • Vun) = un~\
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= 0(e)/hl (140)

where h 0 is the typical length scale of the slow spatial variation in the outer region.
An inner shock region is determined by the presence of large gradients. This region

is characterized by balance between the transport term b(a,x) and diffusive forces.
We may state this balance formally in terms of the inequality, (see [1]):

(141)

where ht is the typical length scale of the shock region
By assumption we have:

(142)

which motivates the use of a substructuring method to solve equation (139). A com
posite grid is defined as follows; An outer uniform grid is defined with a mesh size
compatible with h Q . We let this coarse grid be independent of time and it is assumed
to resolve the slow spatial variation in the outer regions.

We shall further cover the coarse grid blocks containing the shock region with a
uniform fine grid with mesh size compatible with h t . The location of the fine grid will
of course change from time step to time step. Later, we discuss how to locate the shock
regions; here we may note that most of the information needed comes explicitly from
the characteristic solution.

A typical composite grid is depicted in Figure 5. We denote the outer region by
00 , the inner region fl, and the interface between fl 0 and fi, by Hence, fl is
decomposed into three none-overlapping parts such that:

In the following we let h 0 and h t denote the mesh size of the grids covering 0 0 and fl,
respectively.

We notice that since h Q = 0(1), it follows from (140) that the outer solution of
equation (139) to lowest order is given by:

(143)

To obtain a lowest order approximation in the inner region, we observe that h t may
be regarded as a stretching parameter introduced into equation (138). A consistent
perturbation expansion of the shock region shows that the shock width is of order e,
and moreover, that the transport term, b(u,x), balances diffusion to the same order:

(144)

du 1
q- < max |b(u,x) - eD(«) • Vm| ,

h;

h Q

n = nD ufy u dQ b

and

O 0 nQ t n dQ h = 0.

u” = + o(isA<),

where 8 = e.

V • (b(li, x) —eD  Vu) = 0(e).



I
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Figure 5: Example of composite grid, splitting fl into three parts; An outer region 00 ,
an inner region 0, and the interface dflb, between the outer and inner region.

Thus, to completely resolve the shock, h t has to be chosen of order e, and expansion
(143) is then valid also in the inner region.

If we are not able to resolve the shock region properly, which is the case when e —> 0,
the transport term dominates the diffusion term and standard discretization schemes

produces unstable numerical Solutions. To avoid unstable Solutions, we have to add
artificial diffusion such that balance between the convection and diffusion term is re

tained on the given mesh discretization. A numerical scheme that adds the appropriate
amount of artificial diffusion will be used in the next section.

Here, we emphasize that the solution of equation (138) in the shock region, is
determined to leading order by:

Thus, our numerical scheme should be constructed to first approximation in terms of
the operator given by this equation.

Furthermore, the effect of balancing the transport term and the diffusion term is
to minimize numerical diffusion without losing stability properties. If this is achieved,
the solution in the shock region is given to lowest order by

V • (b(u,x)u - eD(w) • Vu) = 0, (145)
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u n —u n 1-f 0(8At). (146)

where 8 max(e, hi). Consequently, we may expand the nonlinear coefhcients around
the characteristic solution to obtain:

(147)

In the following sections, we shall use the linear form of the equations defined
by this expansion, to develop a numerical procedure to solve the diffusion correction

equation. Therefor, we shall replace u n with u n ~ l in equation (139), giving an explicit
time stepping, although the final step of our procedure should be to solve a completely
implicit problem defined by u n = u n . We may also note that u n = u n~\ may represent
the first step in an iteration procedure to achieve a completely implicit scheme.

5.3 Variational Formulation

Let H denote the usual Sobolev space of continuous functions with T2 -integrable
first derivatives over 0. We define and V to be subsets of given by:

where Xq is the location of the point source representing the injection well.
To obtain a weak formulation of the saturation equations, we multiply equation

(138) with v 6 Hl and integrate by parts to obtain:

(148)

The right hand side of this integral equation is determined by using the boundary
conditions (3), (6), (16) and (17). Away from the wells, ø 2 (x, t) and ø3 (x, t) is zero and
the line integral obviously vanishes except for the wells. The well regions are approxi
mated by point sinks and sources represented by Dirac delta functions. However, the
line integral also vanishes at these points since Vw(xi,t) •n= 0 by (17) and a(x0 ) = 0
by definition of

Thus, equation (138) can equivalently be written:

(149)

and

b(u,x) = b(«,x) -f O(6At),

B(u) = D{u) + O(SAt).

Hl = {uG H = 0, x = xq} ,

V = i l’ = 1, X = Xq} ,

, du . r
(~, v) -f B{u, v) = / eD(w) •Vu • nc?7,Ot Jan

where

B{u,v)=(V • (b(u, x)u), v)+ e(D(ti) •

and

{u,v) =f [ uvdu).Jq

du
+ B{u,v) = 0 \fv€ H'0 , te [O, T]
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m(x, 0) = M 0 (x).

Similarly, we obtain the weak formulation of equation (139):
Find un Gf,n = 1,2r ..,iV, such that

(150)
where

and x is defined by equation (137).
Consistent with equation (147) we define

(151)

With un = w”" 1 , b(x) G [^(ft),# and the components of D(x) in C°(S7), B{u,v)
defines a bilinear continuous form on H] x H]. Unfortunatly, the sign of B{v,v) is
indefinite due to the asymmetric transport term. However, relation (144) implies that:

which means that the complete bilinear form defined by (150):

(152)

is coercive on Hence, we may deduce existence and uniqueness of u n ,
n = 1,2,. .., A, satisfying the weak formulation (150), from the Lax-Milgram theorem.

A Petrov-Galerkin formulation will be used to obtain a discrete approximation of
the weak formulation (150) in each time step. Let {x,j} be the nodes generating the
rectangular mesh covermg 0 as shown in Figure 5. We define a trial space S h and a
test space Th to be discrete subspaces of 77 1 spanned by 0l] (x) and i/>,j(x), the trial
and test functions respectively. Further, we shall need the subsets:

and

The Petrov-Galerkin finite element formulation of equation (150) is then;
Find u% e Sy, n = 1,..., N, such that

(153)

and

(154)

(u n ,u) + Atß{u n ,v) = (u n l ,v) Vu G Hq,

U n 1= u n *(x), w°(x) = tz o (x),

b(x) =f b (u n I ,x),

D(x) = D(Sn-I ,x).

|A*(V • (bv),v)| < {(v,u) -f u)},

A{u, v) -- (u,v) -f Atß(u, v),

50ft = Sh T0'*

Sy = sh n

A(ul,t!,) = (ul~\xA) Vt/> 6 To*

U h 1= K ! (x), u°h (x) = u o{x).
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It is well known that using Th = Sh (as in the usual Galerkin formulation) is
a bad choice of test space when e —> 0 and the transport term b(x) dominates the
diffusion term. This appears as unphysical oscillations in the numerical solution in the

presence of a shock. It may also be dernonstrated that this problem is caused by the
dominating, asymmetric transport term in the discretized bilinear form B[u,v), i.e.,
the leading part of A{u, v) in the shock region.

To handle such problems, Barrett and Morten [6], have developed a symmetriza
tion technique to obtain optimal approximation properties in selected norms. From a

practical pomt of view, this technique may be regarded as a method to add the appro
priate amount of artificial diffusion or upstream weighting, to stabilize the numerical
solution.

The symmetnzation technique used in one space dimension is in principle easily
extendible to higher dimensions, but the extension may be technically involved and
produces test functions that is difhcult to use in practical computations. A procedure
that resolves this problem has been developed by Demkowicz and Oden, who introduce
the concept of ”numerical optimal” test functions [26,27].

Here, however, we shall use a straight forward extension of the test functions al

ready developed; We choose bilinear elements spanned by the trial functions Øtj (x) =
oi{ x )oj[y) where #*•(•) is defined by equation (41). Consistent with this we choose the
test functions

= [di(x) + c{(Ti{x)] • [Oj(y) + cfaiy)], (155)

where <7, (•) is given by equation (54) and c[, A; = 1,2 is determined from the compo
nents of b = [6,, 62] and D Z?nii + -O22Jj such that:

(156)

where () ! denotes some sort of average over element I.

We observe that these test functions may be severely skewed in the shock region.
The skewedness depends of course on the direction of the flow held through the compo
nents of b = 6(u)v(x). Away from the shock, b(x) = 0, and the trial and test functions
coincide. We emphasize that the test functions (155), are constructed to stabilize the
solution around sharp shocks, where the solution is mainly determined by B(u,v).
Away from the shock region, where the asymmetric transport term is zero, it may be
necessary to construct optimal test functions wdth respect to the complete symmetric
bilinear form A(u,v), given by equation (152). Demkowicz and Oden [26,27], have
constructed optimal test functions for such problems. Although we will not pursue the
problem further here, we note that their test functions may be convenient to use away
from the shock region,

With the test functions (155) defined, we have to construct a composite discrete
operator from the bilinear form on il = D 0 U 0, U We decompose the
discrete solution into three parts, = (w£, u bh , u\)T , such that u°h represents the outer
solution defined on DO , u bh the solution on the interface dQb and u\ represents the
solution defined on the inner region 0,.
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Figure 6 Support of basis and test functions associated with coarse grid nodes on <9l7^

Our problem now is to patch the inner and outer Solutions together at the interface
d$l h . To perform this, we first determine the nodal values at the fine grid nodes on dVth
by linear interpolation between successive coarse grid nodes on d£l b . Thus, these nodes
are regarded as ”slave” nodes. Second, we decompose the trial functions into three sets
Wj(x )}> {sp(x)} an d associated with the outer region, interface, and inner
region respectively. The outer and inner trial functions are defined straight forward as
products of the one-dimensional trial functions with support on adjacent mesh cells.
The coarse grid trial functions with vertices on , definmg th.e set ij J, are
similarly defined, but with a support confined to at most one fine grid cell into 17;, as
shown in Figure 6.

In analogy with this, we split the test functions into three sets such that {</>?(x)|
are test functions defined on 17 0 , {?/A(x)} are coarse grid test functions with vertices
on <9l7 b and are defined on 17,.

Hence, we may write the composite discrete operator in matrix form:

(157)

where d T is the right hand side of equation (150).
We observe that by definition of 0btJ and the coupling between the inner and

outer solution is restricted to a narrow strip along dft b . This is of course reasonable
since the test functions involve the local parameter c[ and are defined relative the local
behaviour in the shock region. Further, this imply that the inner coarse grid nodes are
indistinguishable from the fine grid nodes. However, in the solution procedure these
nodes may be of special importance.

( Aao Aob 0\ / u°h \
Abo Abb Abt u bh = d T ,

\ 0 Atb A» j \ u lh j
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5.4 Preconditioning Technique

Recently, several algorithms have been developed which efficiently solve linear systems
of the form (15 /). These methods have been adapted to our specific problem by
Espedal and Ewing [l], and will be used here in a modified form to solve (157). We
note that their algorithm is strongly indebted to a preconditioning technique developed
by Bramble et. al. [l4], for elliptic problems defined on conforming grids.

An extension of this preconditioning technique to problems defining localized phe
nomena that needs local refinement is found m Bramble, Ewing, Pasciak and Schatz
[ls]. This last method may also be viewed within the FAC framework, although FAC
is a solution procedure and not a preconditioning technique, (see McCormick and
Thomas [2B]). A comparison of these methods is presented in [29]. We may also note
that multi-grid methods have been used to solve diffusion convection problems, see
Schmidt and Jacobs [3o].

Two strategies may be employed to solve equation (157). If the characteristic solu
tion by inequality (140) is assumed to determine the outer solution within acceptable
accuracy, then problem (15/) reduces to determine A- 1 . In this case we may use the
preconditioner defined by Bramble et. al. [l4]. If we have to perform diffusion cor
rection on the complete domain 0, then we should use a scheme similar to the one
developed by Bramble, Ewing, Pasciak and Schatz [ls]. In both cases the main diffi
culty is to compute the inner solution, i.e. to determine the inverse of Alt .

We will construct a solution within a conjugate gradient iteration scheme. A pre
conditioner R(-, •), will be constructed in terms of the bilinear form A(-, •), based on
the results from [1,14,15]. (The preconditioner i?(-, •), should not be confused with the
bilinear form defined by (148)).

For simplicity we shall follow the first strategy and let the outer solution uj, be
completely determined by the characteristic solution. It is then sufficient to solve the
restriction of boundary value problem (153), to the inner region 0,: Find u-1 G s^(o, )
such that

(158)

Since the bilinear form A{u, v ) is not syrnmetric and Tq (fi,-), the construc
tion of a preconditioner does not follow directly from the algorithm given by Bramble
et. al. [l4]. However, Espedal and Ewing [l] have shown that if 7^(0,) is an optimal
test space with respect to a coercive, syrnmetric and bilinear form A*(-, •), then the
techniques given in [l4] are applicable to our problem. Here we shall assume that the
test space Tq is spanned by optimal or approximate optimal test functions with respect
to a given A*(-, •), and proceed by constructing the preconditioner directly in terms of

Th {Qi) and A(-, •).
A subdomain decomposition of fl, is obviously defined by the internal coarse grid

nodes on H,, which divide 0,- into K separate square blocks, say (see Figure 7):

A(uliP) = VV

where

= {u h G Sh (£li)\u h =u , x g



,
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Figure 7: Example of subdomain decomposition of the inner region denotes
subdomain k , F tJ denotes an internal boundary segment and V{ is an internal coarse
grid node.

We shall denote the internal coarse grid nodes or the vertices of each subdomain 0-%
by the set {vj}.

Define Ak{u,v) to be the restriction of A{u,v) to o*. and decompose functions in
Sh {£l l ) into two parts:

(159)

where Up G 5/)(1 1 ]} 0•-  0 Sl‘{ Qf' ) and satisfies

(160)

It follows that Uh coincide with Uh on dft 1 - and therefor satisfies homogeneous Dirichlet
problems on each subdomain:

(161)

a = u a--*=i

U h = U„+ ,

Åk (UP ,tl>) = Åk (Uh ,t), VV» e T0A (fi*), k = l

Åk(U„,4’)= 0, Vj/> £ T0k (nf), k =
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Figuie 8. Support of the basis and test functions {Oy } and {ipy}, associated with
internal coarse grid nodes.

We notice that Up may be found independently on each subdomain Of, thus, the
preconditioner should be an approximate solver for Uh-, which is easily computed.

Before we proceed some additional definitions are required: Let Lp denote the
boundary segment between vertices vt and Vj of a subdomain Of. It is then natural
to decompose basis functions spanning into three sets, {6>p}, {Op], and {9V ]
respectively, such that Op G Op G f>o(Fp), and {Oy] are basis functions with
nodes at the vertices of each subdomain. is a subspace of functions in sq(oj)
with nodes on Fp, i.e., functions which vanishes on the interior and at the vertices of
each Of.

We let Op and Op be straight forward extensions of the one-dimensional basis func

tions (41), on Op whereas Oy is a ”coarse grid” basis function with support localized
to the internal boundary segments Fp and with nodes at the vertices [vj]. It follows
that Oy vanishes at the interior of each Of, as shown on Figure 8.

In analogy with this we define the test functions p }, and {t/v} where ij)p
and 'ijjp is straight forward defined by equation (155). However, it is not obvious how
to choose i\)y associated with Oy , one possible implementation is given in section 6.2.
We note that

To determine Up we decompose Up further into two parts such that

(162)

Sim = span{0P ][j span{0E span{Ov },

whereas in general

To(tti) / = span{rl'P ] [J span{^E ] [J span{ipv ]

Uh = Ue + Uy
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Uv is the solution of (161) with respect to functions in 5*(Q.) that is linear on each
mi and ecluals Uh at the vertices {«,•}. It follows that UE should satisfy (161) with
respect to functions in 5/l (0t ) that is zero at the vertices.

The preconditioner is now constructed in terms of UE and Uy. Following Bramble
et. al. [l4], we define a one-dimensional operator J9ptj (-, •) and a coarse grid operator
Bc(-). We shall approximate the restriction of UE and Uy to dOf, k = 1
by solving problems defined by these operators, i.e., we shall approximately determine
the restrictions of UE and Uy to the subspaces of spanned by {OE } and {OV }
respectively.

UH is then determined by the extension of UE and Uy to the interior of each Of,
defined by solving the independent boundary value problems: Find Up G s{^(of ) such
that

By the definitions given above, we shall formally write the preconditioner associated
with A(Uh ,iJ>):

For a given </, e.g. the residual obtained in each step of the iteration scheme, the
preconditioned solution defined by

is determined by the following algorithm, (see [14,15])

1. Find a particular solution Up GFq (Of), on each subdomain Of by solving:

Åk (Up, VJp) = fø, V’p), W>P GTq (Of ). (165)

2. Find the restriction UE G such that

(166)

3. Determine Uy on the vertices { Vj } by finding the restriction Uy G span{oy} that
satisfies

(167)

4. Extend UE and Uy to the interior of each subdomain by solving equation (163),
i.e., determine Up.

5. The preconditioned solution is then given by:

We note that the solution of Up on each subdomain may be computed in parallel.
Similarly, step 2 and step 4 may be highly parallelized.

Åk {UH ,4’) =O, Vt/> e Tsfå), k = 1,...,K, (163)
where

= {Uh e Sh(^)\UH =UE + Uv , x e dQf].

K

B(Uh , tp) = MUp, ipp) -f By%] {Ue , ipp) + Bc {Uy , (164)
*=i r.j

B(Uh , ip) = \A/> E f£{Qi),

= (g^E ) - Åk {UP J,E ), VV>£ 6 T*(r

= (g, tpv) - Åk(Up,il>v ), Wv

Uh =U„+ Up
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6 Implementation of the Numerical Methods

In this section we will give an overview of the practical implementation of the present
one and two dimensional numerical codes written in FORTRAN 77. The codes have

been implemented on an HP-9000/318 work station and an Alliant FX/8 parallel rna
chine.

6.1 One-dimensional Code

6.1.1 Overview, Data-structure

The one-dimensional code consists of three main parts following naturally from the
methods outlined previously, i.e. a set of routines solving the characteristic part, a set
of routines to identify the shock regions, and finally a set of routines to perform the
diffusion correction.

The structure of the code is shown on the flow charts Figure 9-11, and may shortly
be described as follows; Input parameters are read from the file data.dat and the

initial profile is computed by linear interpolation between the points given in the input
file iprofile.dat. The mesh parameters are initialized by the routine setpar and
an initial time step is chosen by the routine setdt as follows; A time step ( cfldt ),
equivalent to travelling one coarse grid block with the largest physical velocity, i.e. the
shock velocity, is computed. The user then gives a fraction of cfldt to determine the
time step used in the code by the formula:

(168)

This time step may of course be changed during a simulation by giving a new fraction
of cfldt. We may also note that frac may easily be given such that the numerical
diffusion due to interpolation is negligible in the shock region, i.e. k ~ 0 or k ~ 1 m
the estimate (123).

The main part of the code is the time loop governed by the routine mocdif. This
routine builds a solution in each time step, beginning with the solution on the coarse
grid. The coarse grid solution is taken to be the characteristic solution determined by
the routines cgrid and the solver of the characteristic equation mthmoc. We note that
the only input required by the characteristic solver is the coordinate of the node which
is to be updated and the saturation profile from the previous time step.

The coarse grid solution is passed to the routine fpos, and coarse grid blocks
which have to be refined are identified. The refinement is performed by the routine
fgirid which determines the characteristic solution on the refined nodes by calling
the characteristic solver mthmoc. Using the coarse grid nodes as boundary values,
the final solution in the current time step is obtained by adding diffusion to the fine
grid characteristic solution. The elliptic solver performing the diffusion correction is
governed by the routine dlesol.

Each time step is concluded by calling the routine count which stores the computed
saturation profile and updates the time loop. This routine also checks for an output
time and computes the mass balance.

dt = frac  cfldt.





51

One of the important features of the method is the simplicity of the adaptive space
discretization. We have chosen a fixed, uniform grid to represent the slow variation
away from the front region. This grid is refined in each time step, by adding uni
form subgrids on selected coarse grid blocks, which should resolve the sharp variations
around the shock front.

A natural way to organize the variables, which allows one to easily generate the
subgrids, is a ”nested” data structure. The storage required are three long arrays de
noted x(o:nnmax), s(o:nnmax), and next(o:nnmax) containing respectively the coordinate
values of the nodes, the solution at the nodes and a pointer to the index of the next
node on the grid, ordered by increasing coordinate values.

Thus, assume that the present number of nodes equal nn, and that the indices ix
and i 2 represent adjacent nodes such that:

Then, if a new node has to be added between ii and i 2, the following algorithm is used
to update the data structure:

Note that the index of the new node is nn since the arrays are counted from 0 to nn 1,
nn being the number of nodes before i 3 is added.

In addition to the arrays described above, an array containing indices of the left
nodes of refined coarse grid blocks, named index, are required by the code to easily
identify these blocks.

Since the information computed will be needed in the next time step we have used
two additional arrays, ss and sx, to store s and x respectively. These arrays are updated
at the end of each time iteration by the routine save, and ordered with increasing
coordinate values. Thus, the storage required consists basicaily of five equally long
arrays.

We note that the static memory allocation used by FORTRAN 77 is very incon
venient for dynamical problems solved by adaptive methods, since we do not know in
advance the length of the arrays required in each time step. A new FORTRAN version
with dynamical memory allocation will therefor allow for a much more efficient code
for such problems.

6.1.2 Characteristic Solver

The solution of the nonlinear characteristic equation at time t t n :

(169)

x(ij) < x(i2 ) and
next(i l ) = i 2.

i 3 = nn;

x(is ) = 'coordinate of the new node';
next(ij) = next(ij);
next(ij) = i 3;
nn = nn -f 1 ;

x—x— At  f'{un 1 )
u n ~ l = u n ~ l {x ),
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is determined by the routine mthinoc(x,cs), where cs is the saturation value computed
at the node x by the routine. The computational procedure is based on two basic
assumptions:

(i). The solution is monotone and decreasing in space for all t G [O,T].

(ii). The derivative of the modified fractional flow function is divided into two parts:

/'(«) = u BL <u< 1,

/'W = vBLi 0 < U < Ü BL ,

such that the upper part üBBu BB <u< 1, represents a rarefaction wave, and the
lower part 0< u < üBL,u BL , represents a pure transport of the saturation profiie
along parallel characteristics..

Since the characteristic solution by (i) and (ii) consists of a rarefaction part and a
part transported along parallel characteristics, the solution to (169) is uniquely defined
in each time step.

We have used the assumptions given above to split the solution procedure into
three separate cases depending on whether the characteristic curve is entirely behind
the front region, crosses the front region or is entirely ahead of the front region. The
front region in this context refers to the position of üBBu BB in the previous time step.

If the node to be updated is given by the coordinate aq, the solution procedure in
the different cases is given as follows;

Case I: If u n ~ l (x ,•) > üBB,u BB , the characteristic curve through xt is entirely behind the
shock front and is a part of the rarefaction wave. The characteristic equation is solved
by functional iteration using the following algorithm:

u o 1 = u 'n H^);
for j = 1,2,... :

continue;

We note that this recursion shortly can be written:

(170)

Thus if

then the general convergence condition for the recursion may be stated by the Lipschitz
condition:

x\ = x z - At • firt-zl)]
u n ~ l = u n-1

if l^- 1 < TOL then:
un~ l {x i) = tfj" 1 ;
return;

endif;

u]~' = « n-'(Æ(fiJ"_-11 )), i = 1,2,

u n \ua ) d= u n ! (:r(n a )) and x(u a ) =1 x-At • /'(«„),



f '
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Vu„, u b 6 L, 3 k< 1 : \un'(«„) -un < - uj|, (171)

If we assume that un 1 and f'(u) are continuously differentiable functions of x and
u respectively, it follows from the mean valne theorem that

e [u6,w a ] :un 1 {ua ) -un I {ub )

implying that

Hence, we obtain the convergence criterion:

(172)

Although the characteristics are uniquely defined in the rarefaction part of the so
lution, this criterion may be compared with the sufficient condition for uniqueness of
the characteristic solution given by inequality (67).

Case II: We define xBl by the relation:

If u n l (x{) < übl and u n ~ l {xB i) > u BLi the characteristic curve crosses the front
region. In this case numerical experience has shown that a robust method is necessary
to obtain a dose approximation to the solution of the characteristic equation.

Let the solution of the characteristic equation aq, be given by the zero of the function
F(x), defined by:

(173)

Since f\u) < vBL when u > üBLu BL by assumption (ii), F(x) changes sign in the interval
xbl < x < x

thus, as we expect, the zero of F(x) is located to this interval. Exploiting the sign
change, a robust method to determine the zero of F(x) is the method of bisection,
leading to the following algorithm:

where L = [u ßL ,l].

A4 dun I <Pf
Idx du2 _(u « u ‘)>u~u

, du n 1 d2fk = max At
ue[ußL , i] dx du

du n 1 d2 f .
max - < 1/At.

u6[ubl, i] dx du 2.

•EBL T' t Åt ‘ VBL•

F(x) =x,- At  f'{u n 1 (x)) -x.

pt-} _f~A* • VBL <0 if X— X x
\ A* • {vbl - }'{y> n ~ l {xB L )) > o if z =

«0 XBL':
h 0 = x t ;
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for i = 1, 2,

endif;
continue;

The method of bisection always converges as long as F{x ) is continuous and changes
sign on the initial interval. However, it is well known that the rate of convergence
of this method is very slow. The usual way of increasing the convergence rate, i.e.
by letting the method of bisection produce a good initial approximation for a more
sophisticated method, has not yet been implemented.

CaseilL If u n l (xBL ) < üBL,u BL , the characteristic curve through xt is entierly ahead
of the front region. Since f'{u ) is constant in this region the solution is simply given
by:

which is exactly the transport of the profile with the shock velocity ahead of the front
region.

To perform the computations in the three cases described above, mthmoc has been
supplied with the two external routines dfflow and find. These routines computes
respectively the derivative of the fractional flow function and u n ~ x for a given a>value.
In the present code, all the external function routines are given by explicit analytic
expressions, which is also the case when computing the derivative of the modified
fractional flow function.

To compute u n ~ x for an arbitrary Æ-value, we use linear interpolation in the arrays
sx and ss. Since these arrays are ordered by increasing coordinate value, we may
efflciently identify the nodes to interpolate between by use of the bisection method;
Starting with the entire domain as initial interval we recursively half each interval
bounded by a pair of nodes and containing the Æ-value until we find the smallest
interval containing x. This interval eventuaily defines the adjacent nodes to interpolate
between to give the desired saturation value u n ~ l {x).

6.1.3 Adaptive Grid

The space discretization of the equation is made adaptive by locating front regions
with sharp variations and then adding denser subgrids to these regions, to hopefully
resolve the sharp variations.

mi |(ai-1 + 6»-i);
F(mt ) =æ,- A* • f'{un- l {m % )) - mt ;

(«.,6,) = / if < 0
\ («t-i, mt ) if F(rrii) > 0

/w = w n~ 1 (at );
rt/ = t/ n-1 (6j);
if |ri/ —lu | < TOL then :

un ~ l {xi) = i(/w + ru);
return;

u n 1 (ar I-) un 1 (xbl ),
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The main problem involved in a refinement procedure is to locate the shock regions,
since it is a simple task to add new nodes once the location of the nodes are known, as
shown before. In the present code the shock regions are identified by the routine fpos.

Two approaches to this problem have been implemented, although only one is used
currently. The first approach, is to use local a priori error estimates constructed from

the associated elliptic operator [1,26,27]. Such estimates enables one to compute local
error estimates on each coarse grid block from the characteristic solution. If the error

exceeds a given tolerance the block has to be refined, else the characteristic coarse grid
solution is assumed to approximate the actual solution.

Our experience with this approach is that the shock region is identified, but the
computations necessary to obtain the error estimates are time consuming and quite
involved, and the robustness of the procedure may be discussed.

Lately, local a posteriori estimates have been developed that have been shown to
be very useful for computational purposes. Such error estimates are developed several
places (see [31,32,33]) and may be adapted to our problem.

Due to the hyperbolic nature of the given problem, however, it seems wasteful to
drive the local refinement from elliptic error estimators (see [34]). Therefor, in its
present form, the numerical code uses the characteristic solution and the following
simple assumption to identify the shock region:

(iii). One established shock exists, located to a few coarse grid blocks, with top satu-
ration equal to übl, and bottom saturation equal to zero.

Assume that the coarse grid blocks are numbered from 1 to n and the nodes are

numbered from oto n, further, let equal the characteristic solution computed at
node V. By assumption (iii), we are then lead to the following algorithm which defines
the shock region:

for i = 1,2,,. ~ n :

end loop;
endif;

continue;

for j = i ,..., n 1 :
if Uj < TOL then

return;
Else :

refine block 'j'\
endif;

continue;

if un > TOL then
the front has reached the out
terminate the execution;

end,

endif;

if u,-_i >uBL and u t < üBLu BL then
refine block V;
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To summarize this quasi FORTRAN code; The first loop identifies the block containing
the shock saturation and refines this block, the subsequent loop searches further for the

block containing the bottom, saturation and refines this block and the blocks between,
which defines the shock width relative the coarse grid. By the definition of the bottom
saturation, TOL should be set to zero, however, for computational purposes, TOL
equals a small number greater than zero. The last ’if ’ statement is necessary if we wish
to terminate the computations before the front has reached the out end boundary.

We note that the algorithm only needs the knowledge of the top and bottom sat
uration of a shock. Since these numbers should be defined by the splitting of the
fractional flow function, the algorithm may easily be extended to more general cases.
A more general strategy would be to use the gradient of the coarse grid characteristic
solution as a criterion to determine the shock region, since we expect large gradients
to coincide, at least to some extent, with the location of the shock region.

6.1.4 Diffusion Correction

A standard algorithm for constructing discrete finite element equations, is given by
Axelsson and Barker [3s], and has been used to implement the given Petrov-Galerkin
method. In what follows we give a short description of the routines found in the flow
chart Figure 11 and we refer to the standard algorithm given in [3s], for details not
specific for our implementation.

The main routine dlesol contains the call sequence to the routines needed Fegin
ning with the initialization routine dlinit. This routine computes averages of the
nonlinear coefficients which is used when the element equations are computed. The
handling of the nonlinear coefficients is based on the following two assumptions:

(iv). The nonlinearities may be removed by substitution of the characteristic solution.

(v). The grid refinement allows us to treat the coefficients as constants on each ele
ment.

The first assumption follows from the expansion given by equation (34), which of
course implies a constraint on the time step. However, if the diffusive time scale is slow
compared to the characteristic time scale, i.e. a convection dominated process, this
is not a serious constraint. Further, assumption (iv) can be replaced by an iteration
procedure, solving a fully implicit set of equations, and using the characteristic solution
as initial approximation. However, the numerical experiments performed show that
very good results are obtained without iteration, as long as the characteristic solution
is not to far from the real solution.

The second assumption, (v), is made to simplify the integration of the element
equations and involves an averaging procedure over each element to give the weight of
the coefficients. There are several ways to perform this averaging process. Here, we
have chosen to use the mean value of the characteristic solution as a point to define
the average values of the coefficients. These values are stored in the arrays a(l:nel)
and b(l:nel), containing the diffusion and convection coefficients respectively, ordered
from one to the number of elements nei.
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A technical note should be given on the diffusion coefficients; Ahead of the front
small oscillations may occur and give negative saturation values. If these values aliow

the nonlinear diffusion coefficient to become negative, the oscillations may grow un
stable. We have therefor chosen to replace the diffusion coefficient with its absolute
value to avoid such instabilities.

The entries of the linear system are computed by the routines dlpstm and dlpstv,
which compute the stiffness matrix and the right hand side of the system respectively.
These routines update the entries of the system, element for element, using the local
stiffness matrices and right hand sides, computed successively by the routines dlelsm
and dl el sv. The tridiagonal structure of the stiffness matrix allows us to store the

entries in three arrays named smkc, smka, and smkg containing the subdiagonal, di
agonal and superdiagonal of the matrix respectively, while the right hand side of the
system is stored in the array smvb.

Because of the simplicity of the trial and test spaces and by assumption (v), we have
chosen to use analytic expressions for the entries of the linear system. The approximate
optimal test functions associated with the linear trial space involves the computations
of the parameters:

(174)

where (3t b{h/al is the local mesh Péclet number, and n, and bx is averages of the dif
fusion and convection coefficients over each element, defined above. These parameters
is computed by the external function routine cfunc.

To avoid computing exponentials for large arguments, we use the asymptotic ex
pansions:

Similarly we avoid the removable singularity of c, at fi 0 by using the limit of c,
when (3 —> 0 for small (3. Thus, the computational form of c x is defined to be

where ct {(3) is the analytic expression given by (174).
Typical test functions have been drawn in Figure 2 for negative mesh Péclet num

bers. As noted before, these test functions gives the appropriate upstream weighting
for our problem, although we should point out that the test functions are downstream
relative the characteristic flow described by the problem. However, the upstream
weighting is determined relative to the convective term 6(n), which represents a flow
in the opposite direction of the characteristic flow.

A last assumption should be stated, which implicitly has been taken for granted:

c* = 3(— - coth( —)), i = 1,2,..., ne/,

\ 3 when (3 —> —oo,
| —3 whcn (3 —+ 00.

irly we avoid the removable singu
(3 —> 0 for small (3. Thus, the com]

' 3

c t {(3) -3 < (3 < -0.001,
Ci = 0 -0.001 <(3 < 0.001,

Ci(P) 0.001 < (3 < 3,
. 3 -3 <3 < (3,
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(vi). The nonlinear mixed boundary conditions associated with the physical bound
aries of the model problem considered, does not affect the characteristic solution.
The inner boundaries defining a shock region may be taken to be the character
istic coarse grid solution at the surrounding coarse grid nodes.

Consequently, we are computing the transport of an established shock front, located
somewhat away from the outer boundaries of the region defined by the problem. Thus,
we do not have to consider the complicated mixed and nonlinear boundary conditions
associated with the outer boundaries. The inner Dirichlet boundary conditions defined
by the characteristic solution are eliminated by the routine dldbdr.

The elimination of the complete system is performed by the LINPACK routine
sgtsl, which solves linear systems involving general (not symmetric) tridiagonal ma
trices. The calling routine, initializing the LINPACK routine, is named dllsol. For

further details on the LINPACK routine, we refer to the LINPACK Users’ Guide [36].
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(a) Opens data and output files.

(b) Reads input parameters.

(c) Reads the initial profile.

(d) Initializes parameters/variables and determines an initial time step
(e) Makes header information for the output files.

Figure 9: Main routines and input routines.
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(a) Determines the characteristics through a given point.
(b) Determines the front position and and the elements to be refined.

(c) Determines diffusion correction on the refined elements.

(d) Checks if the equation solvers have converged.

(e) Saves the saturation profile for the next time step.

(f) Writes the solution to output files for a given output time.

(g) Changes next output time and the time step (if necessary).

Figure 10: Equation solvers.
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(a) Computes the mean value of the coefficients over each element.

(b) Computes the stiffness matrix.

(c) Computes the stiffness matrix associated with each element.

(d) Computes the right hand side of the element equations.

(e) Computes the local right hand side associated with each element

(f) Adjusts for boundary conditions.

(g) Determines the solution of the linear system.
(h) Linear solver- Linpack routine.

Figure 11: Elliptic solver
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6.2 Two-dimensional Code

Implementation of the two-dimensional code is in large parts straightforward extensions
of the one-dimensional code. Since much work still remains before a satisfactory code
is obtained, the coding will only be briefly discussed here.

The pressure equation is solved by a mixed finite element code, developed at the
Institute for Scientific Computation, University of Wyoming. This code is based on
principles given in [l7].

The characteristic solver is based on the assumption of a smooth velocity field
which may be approximated by a constant locally in space. Hence, to compute the
characteristic solution at a given point x we shall use that

v(x) « const.

By this assumption each of the components of x may be found independently in each
time step by similar procedures as in one space dimension.

To locate the shock region in each time step, we compute the maximum and mini
mum values of the coarse grid characteristic solution over each element. Since we use
bilinear interpolation, these values are obtained from the nodal values of the character

istic solution. The elements that should be refined are then determined by comparing
the maximum and minimum values of the characteristic solution with the top and
bottom shock saturation values, as in one space dimension.

We note that a posteriori error estimators apply to two-dimensional problems
([31,32,33]). However, the given procedure seems to give an efficient and simple way
of determining the shock region without costly computations.

To construct the element equations associated with the diffusion correction step,
we have once more used the standard algorithms given in [3s]. The main difference
between the one and two-dimensional codes is therefor the construction of the precon
ditioner for the two-dimensional problem.

Although, the preconditioner is mainly determined by the algorithm given in section
5.4, step two and three of this algorithm gives room for different choices.

In the present code, step two is computed in terms of given as follows:

where ipEk is the one-dimensional restriction oi \^E to the boundary segment FtJ , k =
1 or 2 depending on whether T tJ is parallel to the x- or y-axis and prime denotes
derivation along F,j. The right hand side of equation (166), is straightforward obtained
in terms of the two-dimensional test functions ?/>#, with support on a strip of width
2hi along TtJ .

Step three of the algorithm is simply computed by extending the coarse grid opera
tor into fl,. Hence, the left hand side of equation (167) is computed as if no refinement
of fl, is performed. We note that this differs from the definition of Sy and ipy given
in section 5.4. In a next version of the code, a more sophisticated coarse grid operator
will be used to determine Uy, based on the defmitions of Sy and xf)y given in section
5.4.

= [UE + {{hUE )\tpEk) + e{DkkU'E ,il)'Ek )



,
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Xlie preconditioned iteration implemented so far converges to a correct result, but
the convergency rate is still fairly slow. However, it seeins to bø only minor modifica
tions left before a good preconditioner is implemented.

6.3 Modifications of the Characteristic Solver

The characteristic solver used in the present codes limits the dass of problems that is
possible to solve. We shall give extensions of the characteristic solver in two directions,
which may be implemented later. The extensions will be discussed in a two-dimensional
framework, but apply as well to one or higher space dimensions.

6.3.1 Curved Characteristics

Although a constant v is a good local approximation in most of fl, this is not at all
the case dose to the wells and the corners. We know that the velocity held has al jv
dependency dose to the wells, where r is the distance from the well. However, this does
not cause much trouble since u{t,x) by assumption is slowly varying in this region.

A more severe problem is that the velocity held is strongly curved dose to the
corners, as shown on Figure 21 (a). Using the constant velocity approximation in
these regions, obviously gives a poor approximation to the characteristics, and may as
well results in characteristics out of fl. To handle this problem, we have so far simply
projected the characteristics out of 0 onto the boundary <9fl.

Since the velocity held in general may not be expected to behave as smoothly as
shown on Figure 21 (a), these problems suggest a more closely approximation of the
characteristics.

Consider the hyperbolic problem:

where the x-dependency of g allows for a heterogeneous reservoir. The characteristics

between successive time steps associated with this problem are given by the integral
expression:

To improve on the straight line approximation of the characteristics, we divide
[ t n 1 ? t n ] into m. equal parts such that At =tn tn_l =m  St, then x may be approxi
mated by the scheme:

In this scheme we have treated u n las a known value. To obtain a complete solution to
the characteristic problem, the scheme has to be combined with the algorithms given
in section 6.1.2.

ut + g(x, u) v(x) • Vm = 0.

x= x - Jtn gMr),un ! (x)) v(x(r ))dr,
x = x{t n 1 ), x = x(tn )

x 0 =x;
for i = 1,2,.. ~ m :

x t =x,-_i - flr(x i _ l ,w n - 1 )ft; (175)
continue;
X = Xk  





64

6.3.2 Growing Shock Solutions

Another objection that may be raised against the operator-splitting in its present form,
is its limitation to the transport of a well established shock. This problem relates to the
definition of the modified fractional flow function. An appropriate dynamical definition
of the modified fractional flow function should give the physical transport and further
give a correct balance between diffusion and transport in the shock region, as stated
by inequality (141).

An algorithm which directly determines the form of the modified fractional flow

function when a shock is building up, has been presented by Espedal and Ewing [l].
However, this algorithm assumes that the shock is building up from a zero saturation
value. Here we wants to give a more general approach to the problem.

For simplicity we assume an S-shaped fractional flow function as shown on Figure
1 and we shall assume that the shock is building up on a time scale which is fastest

along the main diagonal between the wells. Our intention is to use inequality (133)
along the diagonal to decide whether the fractional flow function has to be modified

or not. If Vu n ~ 1 is large in a given region the time step can be severely limited by
(133). Hence, if Vun-1 is larger than a prescribed value for u", we replace
f(u) with /n (u), defined as foliows:

We note that this expression implicitly defines bn (x, u ).
If u™ = übl and u£ = 0, we may continue as already described. If the shock is

not fully established, inequality (133) gives a sufflcient condition for uniqueness when
u G [o,n£) and u G (u",l], say Afj. However, since u G is moved with the
shock velocity given by:

n _ f(K) - f(u b)
V

Ut ~Uk

nonuniqueness may develop on each side of the shock.
Let Au be the possible change in the shock saturations in each time step. Further,

let Ax t be the positive distance between the saturation values u™ -f Au and u”, and
let Axf, similarly be the positive distance between and u% Au. We compute the
time steps:

To determine the characteristic solution u n 1 , we shall use the time step given by;

with /n (w), defined as follows:

/(«) K<u< i,
7„ / X f(u?) f(u b)f ( U ) = \ —— • U Ul <U <

U? -U% b - - t,
f(u ) 0 < u < u^.

Xt

f'(u ™ -j- Au) vn

and

__ Xt
vn f'{u£ Au)
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At = At 2 , At3 ).

Then, for u? +Au < u"' 1 < 1 and 0 < u-> <„f - Au, the solution is uniquely
etermined along the characteristics defined by f{u). For u% < tZ 71-1 < the solution

is transported along parallel characteristics given by the shock velocity vn . The gaps
m the solution, i.e. -Au < u n ~ l <u£ and u n < u n ~ l <u? -f- Au, can then be
uniquely given by linear interpolation. We finally update the shock saturations and
check for a fully established shock.
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7 Numerical Experiments

We shall present numerical results from three different diffusion-convection problems.
First we consider a problem resembling a core-plug simulation in one space dimension,
next we compute the solution to Burgers equation, then we conclude with a two
dimensional extension of the first problem.

Typical values are chosen for the parameter e scaling the diffusion term, for the
mesh spacing h Q and h{ associated with the outer and inner regions respectively, and
for the time step At. We note that the solution obtained on a composite grid is only
corrected for diffusion on the inner region ot-.0 t-.

In addition to the adaptive grid option, (opi), the one-dimensional code also allows
for a uniform grid solution, (op2), with mesh spacing given by h.

In all the computations presented the mass balance is good, with an error within
a few percent. We may also note that when adaptive grids are used in one space
dimension, the inner region covers at most two coarse grid blocks.

7.1 Core-plug Simulation

We consider the one-dimensional example defined by equations (11) and (14), see also
[2], hence:

(176)

(177)

We note that a{u) satisfies the requirements (13).
An established shock is given by the concave envelope of /, shown in Figure

12, which again defines the top shock saturation übl and the shock velocity vbl
f(uBL)/vBL • Thus, f and b(u) are given by:

(178)

(179)

In Figures 14-20, we have computed the numerical solution of the problem stated
above for p = 3, and for an initial profile given by the established shock:

Figures 14 (a)-(d) demonstrates the effect of different diffusion levels. The first
computations, Figure 14 (a), show the pure characteristic solution and the Solutions
obtained by setting e= 0 and e = 10~ 5 . As we expected, the Solutions are completely
identical. We note the stability of the diffusion correction step for very small e, and

/(“) = ~y~7T w P = 2 ’ 3 -UP + ( 1 U)P

a(u) 4w(l u).

'j —/ f( U )l Ü BL < U 1
\ VBL ’u, 0< u < ÜBL

b(u) =i °’ < 1
(> \ f(u)/u-vBL,O

„ , r] = i V-l)* + l o<x<l/2
' jo



;
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Figure 12: The concaveenvelope of the fractional flow function f{u) = u 3 /[u 3 -f(l u)3]

also that a very long time step is used, in fact, the successive profiles plotted refer to
successive time steps.

Some more structure appears in Figure 14 (b). However, we also recognize the
numerical diffusion introduced by not resolving the shock properly.

Figure 14 (c) shows the results obtained for a fairly large e. We clearly observe
the effect of the diffusion on the upper part of the shock, whereas the lower part is
almost unaffected due to the singularity of the diffusion coefhcient. By solving the
same problem on a uniform grid with h = h,, we obtain identical saturation profiles,
but at a much higher computational cost. In the table below, we have compared the
computations needed in each time step on the composite grid with the computations
needed on the uniform grid. The shock front is assumed to be located within one
coarse grid block.

Number of nodes updated by Linear system inverted to
method of characteristics obtain diffusion correction

opi 50 40x40
400x400op2 400

As further illustrated by Figure 14, the solution computed on a uniform grid with
h = h 0 gives a very poor result.

Figure 14 (d) shows a computation of a process where the diffusion starts to dom
inate. Even in this case a fairly accurate result is obtained on an adaptive grid,
compared with the uniform grid solution.

The profiles shown in Figures 14 (b) and (d) may be compared to the examples
depicted in Figure 15. In this figure we have replaced the diffusion coefhcient (177),
with a(u) = 1. The effect of changing the functional form of the diffusion coefhcient,
becomes evident from Figure 15 (b), where we clearly see that the lower part of the
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shock is affected by diffusion.

As we should expect, the solution easily becomes unstable if the upstream weighting
is removed, i.e c{ = 0, as shown in Figure 16 (a). Similarly, the solution may become
unstable if the shock is not properly resolved, which is illustrated by Figure 16 (b).

The next examples demonstrate the effect of omitting the convective term b(u).
Figure 17 (a) shows that the solution is significantly smeared when b{u ) —O, compared
to the solution obtained from keeping this term. We also observe that instabilities

appear since no upstream weighting is added to the test functions. Figure 17 (b) is the
same example computed on a uniform grid. Since the uniform grid solution is almost
identical with the composite grid solution, it follows that the form of the composite
grid solution in this case is not caused by local refinement.

Even though the long time step feature is lost, as expected, the given splitting also
applies to a shock that is gradually building up as shown by Figure 18 (a), However,
even with a small time step and good resolution, the numerical solution is very sensitive
to the parameter e, as illustrated by Figure 18 (b). We could probably obtain an better
solution in this case by treating the nonlinear coefficients in an implicit manner.

7.2 Burgers Equation

We next compute the solution to Burgers equation, defined by the initial value problem:

(180)

The build up of a shock for this problem has been computed by Russel [s], using the
method of characteristics combined with a straight forward Galerkin element method
to perform the diffusion correction. The characteristic operator used in [s] is defined
by :

Using inequality (67), we get the following constraint on the time step, (see [s]):

max u” 1 At < 1 (181)

Thus, when a shock like solution has developed, the time step is strongly inhibited by
this condition.

Returning to our procedure, we note that the fractional fiow function associated
with Burgers equation may be written:

The concave envelope of this function, defining an established shock, is shown in Figure
13. We get übl 1 and vbl = 1/2, consequently:

(182)

U t + UU X euxx , xeR, t G [O, T],
u(x,o) = w 0 (x), xGR.

d_ d d
dr di Udx

fiu ) = T^U 2 ,

f(u) = \u
, 0 < u < 1.

6(u) = -(w - 1)
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1

concave envelope of the fractional flow function f(u ) = 1/2u 2 .Figure 13

The characteristic curves defined by /, is straight lines in the x,t-plane with slope
and no constraints on the time step, similar to (181), is required by the characteristic
solver.

To compare our results with the results given in [s], we have chosen an initial profile
to be given by the continuous function:

Due to the limitations on the time step given by (181), the computations presented in
[s] are only carried out to time t = 1 when a shock like solution develops and strongly
reduces the time step. For t > 1 an asymptotic solution of the problem may be found
in [5,18], and is given by:

(183)

This quasi-steady state solution is compared with the numerical experiments performed
for t > 1.

We first compute the solution for a fairly large time step At. As shown by Figure 19
(a), the numerical solution immediately sets up unphysical oscillations, which clearly
demonstrates that the linearization of the convective term h(u ) given by (34), intro
duces a severe constraint on the time step when the solution is rapidly changing along
the approximate characteristics. Thus, to compute the first time period correctly, i.e.
t < 1, we reduced the time step with a factor of five, whereas the steady state period
t > 1, was computed without changing the time step. The result depicted in Figure
19 (b), show a monotone and physical solution for all t.

If we compare these results with the results obtained by Russel [s], we observe that
inequality (181) does not restrict the time step seriously before a shock like solution

The

'1 x < 0

uo[x ) = < 1— 2x 0< æ < -
.0 * >

u(x, t) =i - tanh ( x—( - -f -t] .
V ; 2 2 V4e L V 4 2 J\J
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has developed, allowing Russel to use a much larger time step initially, whereas the
steady state part of the solution was not possible to compute due to (181).

Of course, the splitting defined by (182) initially gives a poor approximation of the
physical characteristics associated with equation (180). The example therefor suggests
a dynamical definition of /n , to guarantee the long time step feature for all t\ Let
tm =l, then by the discussion above a natural choice of fn is:

_ / /(“)
1 1/2 u n> m

We easily see that the definition of fn is a consequence of inequality (133) and knowl
edge of u n ~ 1 , as suggested in section 6.3.2.

The last two examples, Figures 19 (c) and (d), demonstrate that a good result can
be obtained with a much less computational effort. The first four profiles in Figure
19 (c), computed up to time i 1, are identical with the ones computed in the
previous example, whereas the quasi-steady state part of the solution is computed on
a composite grid, applying diffusion correction only to the inner region.

By a similar procedure, we have computed the solution for a smaller e. The result
which is presented in Figure 19 (d), reveals that a smaller mesh size and time step is
needed to obtain a stable solution this time.

7.3 Two-dimensional Example

We consider a two-dimensional extension of the example computed in section 7.1,
given as follows; Let X w , A O , f{u ) and D(u) be defined by equations (10), (11) and (14)
(p = 2), and let the permeability tensor K be equal to the identity matrix such that:

We further assume that the initial profile is given by:

where r is the radial distance from the injection well and R is a distance locating the
initial shock somewhat away from the well.

The splitting of f given by (178) and (179) directly apply to this problem, and we
assume that the velocity held is constant locally to obtain the approximate character
istics.

In the numerical examples given by Figures 20-21 (a)-(d), the distances between
successive saturation contours correspond to a change of 0.1 in the saturation. The
time step is typically chosen such that the front is moved approximately one coarse
grid block in each time step. As in one space dimension, the validity of using long time
steps is clearly demonstrated since the shape of the front is very stable.

The computations presented show the effect of the variation of the small parameter
e, which scales the effect of capillary forces. It also demonstrates the effect of different
local refinements of the coarse grid.

D(u) = { Di' v! 0
V 0 )  

Uo(x) = | i(ußi - 1)r + 1 °^ r^R ,
[OR< r
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Some of the runs presented are compared with equivalent computations on a glob
ally refined grid. There are no noticeable differences in the results. However, the
computational work is increased, typically by a factor of three, to obtain the uniform
grid solution.

In addition to the computational gain from using a composite grid that locally
resolves the shock region, the code runs nicely in parallel on the Alliant FX/8, but so
far we have not tried to exploit the parallelism in an optimal manner.

Figure 20 (a) shows a well resolved front for e = 5 x 10~3 with 20 x2O nodes on the

refined grids. A refinement of 10 X 10 gives a small numerical diffusion as in Figure 20
(c). Figures 20 (a)-(c) show the time evolution of the front. The last run in this series
shows the start of a channeling into the production well.

Figure 21 (a) and (b) show that the reduction of the refinement of the coarse grid
from 10 xloto 5 x 5 nodes still gives a well resolved front for e = 10~ 2 . We have also
plotted a typical velocity field in Figure 21 (a).

The ability of the code to handle very sharp fronts, is demonstrated by Figure 21
(c). To obtain this result we have chosen e = 10~3 .

Figure 21 (d) gives the saturation along the diagonal for different e. It clearly show
the effect of the diffusion term for different diffusion levels.

The computational results clearly demonstrates the feasibility of the method. So
far, we have not optimized important parts of the code, e.g. the preconditioned conju
gate gradient iteration, However, fairly large problems run very fast on an HP-9000/318
work station.
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x

X X

(a) e = 0, e = 10 5 or (b) e = 0.002, At = 0.07;
h Q = 0.1, h{ = 0.001(solid lines);
h 0 = 0.1, hi = 0.01 (dotted lines).

pure characteristic solution;
At = 0.07, h 0 = 0.1, h x = 0.001

(c) e = 0.01, At = 0.07; (d) e = 0.1, At = 0.07;
h 0 = 0.1, hi = 0.0025 (solid lines);
h = 0.1 (dotted lines).

h 0 = 0.2, hi = 0.01 (solid lines);
h = 0.01 (dotted lines).

Figure 14: Core-plug simulations, effect of different diffusion levels
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Figure 16: Unstable Solutions; (a) No upstream weight added; (b) The shock is not
properly resolved.

(a) e = 0.002, At = 0.07; (b) e = 0.002, At = 0.07;
h 0 = 0.1, hi = 0.001 (solid lines); h Q 0.2, hi = 0.02 (solid lines);
h Q = 0.1, hi 0.001 (dotted lines), h 0 = 0.1, h t 0.001 (dotted lines).
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Figure 17: Core-plug simulations, effect of ornitting convective term, b(u) 0.

Figure 18: Growing shock Solutions.

(a) € = 0.002, At = 0.07;
h„ = 0.1, hi = 0.0025.

(b) e = 0.002, = 0.07;
h = 0.0025.

(a) e = 0.01, At = 0.005, h = 0.004. (b) e = 0.001, At = 0.003, h = 0.002.
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Figure 19: Computed Solutions to Burgers equation. the dotted profiles represent the
asymptotic solution.

(a) e = 0.01, At = 1/10, h = 1/80. (b) e = 0.01, At = 1/40, h = 1/80;
At 1/10 {three last profiles).

(c) e = 0.01, At = 1/40, h = 1/80; (d) € = 0.001, At = 1/100, h = 1/80;
At = 2/5, h„ = 1/5, hi = 1/80 At = 1/200, h„ = 1/5, hi = 1/250
(three last profiles). (three last profiles).
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SRTURRTION CONTOURS SRTURRTION CONTOURS

SRTURRTION CONTOURS SRTURRTION CONTOURS

Figure 20: Saturation contours from two-dimensional computations.

~ ' ' i ULIKz:p -.- p T- T

IH|||

(a) e = 0.005, At = 0.04, t = 0.245; (b) £ = 0.005, At = 0.04, t = 0.165
K=1/10, h, = 1/200. h 0 = 1/10, K = 1/100,

(c) £ = 0.005, At = 0.04, t = 0.245;
K = 1/10, hi = 1/100.

(d) e = 0.005, At = 0.04, t = 0.405;
h„ = 1/10, hi = 1/100.
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SRTURRTION CONTOLIRS SRTURRTION CONTOURS

245;

Figure 21; Saturation contours from two-dimensional computations.

(a) e = 0.01, At = 0.04, t = 0. (b) e = 0.01, At = 0.04, t = 0.245;
h 0 = 1/10, hi= 1/50.K = 1/10, = 1/100.

SfITURfITION CONTOURS

u

 bl |

\ \l  1 11 i l
\ \ i ø 1

(c) e = 0.001, At = 0.04, t 0.245; (d) Cross sections; e = 0.005 (solid lines);

SHTURRTION CONTOURS

K = 1/10, h, = 1/200. e = 0.01 (dotted lines); At = 0.04;
h 0 = 1/10, hi = 1/100,
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8 Conclusion

We have analyzed and implemented a new operator splitting-technique, based on the
modified method of characteristics. The method applies to convection dominated
diffusion-convection problems which may develop shock Solutions. From the theo

retical and computational results presented in this report, the following conclusions
may be drawn:

1. Both theory and numerical results demonstrate that very long time steps can be
used even in the presence of shock fronts, without significant loss of accuracy.
The long time step feature also greatly reduces the effect of numerical diffusion.

2. The splitting makes it possible to closely model the physical convection by the
approximate characteristics, which further allows for a simple and accurate treat
ment of the nonlinear coefficients.

3. The method may easily exploit the multiple space scales introduced by shock
Solutions. Substructuring algorithms combined with preconditioning techniques
gives an efficient and accurate way of modelling shock fronts. The combined
substructuring and preconditioning techniques are further well suited for parallel
machine architectures.

4. The use of a Petrov-Galerkin formulation of the diffusion problem with transport
terms, gives a stable numerical scheme, even when the coefficient in front of
the diffusion term becomes singular or very small. If the shock is not properly
resolved, the Petrov-Galerkin method spreads the front over a few fine grid blocks,
and does not cause oscillations like standard Galerkin methods.

5. An error estimate is obtained for the asymmetric diffusion-convection problem,
based on the symmetrization technique given in [6]. In the symmetric case the
estimate reduces to the result obtained by Douglas and Russel [4], However, the
estimate presented in this report gives a better result for small e than previous
results [4], since a growth rate of 1/e is removed from the Gronwall lemma.

A numerical code is implemented in one and two space dimensions, which includes
the important aspects of the operator splitting-technique listed above. We have pre
sented computations for homogeneous, zero Dirichlet, two well reservoir problems.
The success of these computations in both one and two space dimensions illustrates
the numerical potential of the method.

The model will be extended to include heterogeneities and growing shocks. Another
area of further study is the parallelism inherent in the algorithms. Especially the
preconditioner needs to be further developed. Also, as noted earlier, it may be possible
to make the error-estimate sharper.
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Appendix

In the following appendix, we will give proofs for the leramas used in the main text.
We first obtain a result on the inverse Riesz-representation:

Lemma 1 Let 9 YliLo ci@i> co —cn —O, and let ipi he the optimal test functions
associated with Oi and defined by (47). Then, for sufficiently small e, (9, Rm ~ 1 9) is
strictly positive and {Rm ~ 1 9, Rm ~ 1 9)/{9, Rm ~ 1 9) < Mt where Mt is estimated by:

Proof: Let 8—f e b/ta , then, since b<o, it follows that <5 < 1 since \b\/ea >l. We
integrate (47) to obtain:

(185)

consequently, Rm l 9 to leading order be written:

(186)

By linearity of Rm

hence, to leading order

N

(Rm -'O, Rm ~'o) ~ hV{ci - a^f. (187)

To obtain an estimate on ($, Rm l 9), we observe that:

= W- (184)

' (1 - 6x ){2SXi ~ x - 6x '-i~x - 6x'+i~x )-, x < Xi- 1,

+ SX )(2SX, ~X - Sx'+ l-®)
,_ .. _ i a: t _l <X < X{.

= | -(* - 1
«o 1 - <5 -f- (6 - Sx ){28x'~x - 8X'-'~X )

. „ s „ ; x; < x < xv+i,
_(1 _ ’ ,+l ’

( S - 6X )(2SX, ~X - - 6x'+'~x y xi+i <x.

By definition of aO , (3 and 6it foilows that:

lim ~(3{S - 1) = 1,e-o a 0

quently, K vt may to leadmg order

0 x < X{- 1,

, n. r —1 Xi_i <x < X;,

1 X{ <X < +

0 < æ.

xearity of it*771-1 we have;

ir-'9 = '£<*/>?,i=o

t=l

= °>
»=0 »=0
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thus, higher order terms are required to get an positive estimate. Using the exact form
(185) of leads to:

We observe that the first sum is strictly positive except for c, = c,_!, in which case
the second term is positive. Hence, for sufficiently small e > 0 the given expression is
strictly positive which proves the first part of the lemma. The second part obviously
follows from (187) and (188) which conclude the proof. H

We shall next prove a lemma which gives the interpolation error from linear inter
polation, introduced when the solution is transported along parallel characteristics.

Lemma 2 Let u(x) be piecewise linear with nodes {x,} i^1 , and v(x) be piecewise
linear with nodes Assume that u(x) interpolate v{x ) on i.e. U{ =
and that:

(189)

(190)

(191)

Proof: By definitions (189) and (191), the difference between u and v
i = 1,2,..., AT -f 1:

IS given by,

Hence, the left hand side of equation (190) can be written:

(7T-'O, fl) = g £(« -*_,)’+ (—f) 2 h E(4 - fw+cLOHO^Kiss)

X{ —X{ = kh, 1 -X{ =(1 k)h, * = 1,2..., iV,

where 0 < k < 1. Then:

£N+ ' u'2dx = £"+1 v'2dx- fc(l - fc)/, 2 £ ,

where

v', = -h v{i- l \ i = 2,3... ,N,
iu(Æi) -«i , vN+ i ~

V 1 = kh VN+l= (1 -k)h~

f(1 - k){v'i+l ~ v’i){x - X{), Xi <x < Xi,
u[x) v{x) i

[ -k{v'i+ l - i/i+1 )(a; - xt+l ), Xi < x < xi+i .

jT+1 u*dx =
h {C^ 7 * +(1 &)(Vt+i v'i)) 2 k-\-

+o'«+i - k(v’ i+ l - u' t )) 2 (l - k)] = hJ2iLi(kv'i +(1 - k)v'i+\ ) 2 =

= {&V- + 2k{\ - k)v'iv't+ i +(1 - fc)V-+i} =

= {kv'2x +(1 - k)v ,2i+l -k{ 1 - k)(v' i+ l - r',) 2 }

We may then rearrange terms and use the identity:
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NfxN+l |9 , , 9
/ vdx = khv\ -f- hJXi

to obtain the desired result.  

For completeness, we shall also give a proof of the discrete Gronwall lemma which
is a consequence of the following elementary lemma:

Lemma 3 Let A and B be positive constants and let a sequence of numhers
that satisfy:

(192)

(193)

Proof: Let rjn satisfy the difference equations:

Vn —(1 + B)r]n _ i -f A, n 1,2,

do = 0.

(194)

(195)

The inequaiity is obviously satisfied if n
n k 1, then:

0 because of (192) If (195) is true for

Therefor by induction, inequaiity (195) is true for ali n < N. The lemma now follows
from inequalities (194) and (195).  

zx.2 +(i - k)hv '2N+1,i=i

yo = o

and

\lJn\ |?/n—ll < Js|yn_i| -f A, n< N.

Then:

\yn \ < ~ (exp(nÆ) - 1), n< N.

The solution to these equations is:

+ sr--

Since exp(n:r) > (1 + x)n for all x >O, we get the bound:

A
rin < (exp(n£) - 1).

We shall show that for all n < N:

\yn \ < r/n-

r/k —(1 + B)i]k-\ -f A>(l -f Js)|y*;_i| +A,

hence, by (193):

Vk > \Vk\-
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Lemma 4 (Discrete Gronwall) Let A and B he positive constants and let {en }^_o
be a sequence of numbers that satisfy:

eo 0 (196)

and

(197)

Then

Proof: Define yn to be the sum:

(198)

hence:

By (196) and (197), the sequence {yn ]n-o satisfy the conditions given in the previous
lemma:

Hence, we may deduce from the previous lemma that:

Combining this inequality with the inequalities (197) and (198) proves the discrete
form of the Gronwall lemma. B

n—l
e n | < B \ ei\ +A,n < N.

i=o

en+ i| < Aexp(nß), n<N 1.

n

yn = \ eil
i=o

Dn Vn— 1 -^|cn j.

yo = o

and

\yn \ ~ \yn-i\ < B\yn-i\ -f AB, n< N.

\yn \ < A{exp(nß) - 1), n< N
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