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Abstract

An algorithm for internal merging of two disjoint
linearly ordered subsets into one set is given and analysed.
The two subsets are supposed to be given in one array with
interlacing elements. The algorithm is based on an inter-

changing of elements and requires therefore only a fixed

amount of extra storage.
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Introduction

Given a 2-ordered array al[l:n], that is
(1) afil s alis2] . 3 = 101 nes,

see Knuth 3] p.86.
The array consists of two disjoint linearly ordered subsets.
Now the problem is to rearrange the elements in all:n] such

that the resulting array a'l[l:n] is l-ordered.
(2) NI A R e Adesy i PR Rt

This obviously is a merging problem and can be solved in
different ways with and without extra storage. In this paper
we wWill only consider methods which work without using a
working area. For the purpose of analysis we will assume
that ali] # al[j] , vi # § . Furthermore the possible
permutations of the elements indexes in a' relative to a ,

n *
([n/Z]) » are supposed to be equiprobable.

Sifting or straight insertion is one wellknown algorithm
which can be used. This algorithm is a sorting algorithm,
that is, it does not take into account the special form, (1),
of the array in question. On the other hand this algorithm is
€asy to program and analysis in Espelid [2} and [3], shows that

the number of comparisons in’ average will be

CS (n) =~ ,1566643 nVA + n

*
[x] ([x]) means the greatest (smallest) integer not
greater (smaller) than x
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Merging algorithms which make use of a working area will need
maximum n-1 comparisons to merge the subsets in al[l:nl].

The sifting algorithm therefore makes a lot of superfluous
comparisons. It is reasonable however that a method which makes
use of a minimum of extra storage has to pay for it in longer
running time, compared to usual merging algorithms. Batcher's
(parallel) method, see [1] , is a sorting algorithm which is
based on merging the subsets of 2-ordered arrays taking into
account that the arrays really are 2-ordered,and thus reducing
the number of comparisons in average compared to sifting.

We find that using the main idea in Batcher's method the

number of comparisons (independent of a) will be

i il
CB (n) =~ > I flogzn] il il

The number of comparisons is reduced compared to sifting but
unfortunately the amount of bookkeeping needed to control the
sequence of comparisons is rather large. Which of the two
methods one should choose is not obvious and needs a more
thorough analysis. The main power of Batcher's method lies

in the possibility of parallel processing.

Still another method on a related problem is given by
Kronrod [4]. Kronrod's algorithm seems complicated but he

succeeds in forcing the number of comparisons down to
Cac S0 mL Ofnd. |,

The number of comparisons when using sifting will at minimum

be n-1 and at maximum be 0(n2) . We get the maximum when
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all]l 1is greater than the element with largest even index,
al2|n/2]1. The number of exchanges in average will be of the
same magnitude as the number of comparisons for all three

methods.

We now consider a new method which uses at
maximum n-1 comparisons to do the merging. The number of
exchanges however turn out to be only slightly better

than in sifting.

A merge exchange algorithm

To clarify the idea we will consider an example.

Suppose that al[l:9] is given by

ot | SRR BRI

[ [

The sifting algorithm will need 17 comparisons and 10 exchanges
to sort this array. By comparing al[l] +to alfdly & 5 2.4.6.8
only 4 comparisons are needed. Now the problem is how to
exchange elements without using more than one intermediate
record, say w, such that at least one element comes to its

final position in each step. We start with
W < af[l]

then the sequence
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af1) « al2x1] ; al2] &« al2x2] ; alu) - a[2xy4] ;

Now a[8] is free to use and we move elements in the opposite

direction
0 1
af[8) « al8-2"1 ; al7] <« al7-2"1 ; al5) « w ;

. 2
The last move had to be made because the original a[5-2°]1 has

been moved to w at the beginning. Now the array is changed to

where an arrow shows the direction in which an element has been

moved, connecting the positions involved. We have to finish with

w <« af3] ; al3] « al2x3] ; al6) « w ;

This completes the merging in 8 moves, neglecting the moves

from a to w .

One could now extend the problem putting all0] = 8 .
5 comparisons are needed to state that af8] < afl] < al[10] .

The same procedure now gives in the first step
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We know that the elements a"[1:5] are correctly sorted and are
less than the other elements. By two comparisons we find that
a"[6] and a"{7] both are less than a"{10} (= a[10)}) such

that the first 7 elements have found the final position.
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The sorting problem left is not exactly of the original form.
We still have two subsets but the interlacing character starts
with the second element. We therefore need to generalize the

problem slightly. Let us now leave the example.

Given an array all:n] where the b first elements have
found their final position, the elements SR L. saln)
represent the merging problem remaining. These elements consist
of two disjoint linearly-ordered subsets. The first % elements,
152 <n-b, all belong to one of the subsets, element £+1
belongs to the other subset and from this point the array is

2-ordered, that is

ALEA1] % alb+2] o ... < alb+2] < al[b+2+2] < alb+2+4] < ...
(6)

afb+2+1] < alb+2+3] <

The following flowchart gives the main points in the

algorithm:
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W <—a[b+1]’
|
{ yes b « b+l
Qsa[bﬂulj —>—— % <« if %=1 then 1
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no
( g
yes
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\\\\?
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We have removed from the flowchart the details in connection
with moving the elements around successively. When one starts
to move elements around,it is clear that exactly t of the
elements from the other subset are less than a[b+l]. The

actual indexes relative to b are

TN ...zz+22+u...

where all the circled indexes belong +to the same subset. After

the move of elements phase, we shall have (relative to b)

new indexf Lo0AR Jas y BER Lt ¥2 t+l t+2+41 t+2+2...042¢t-1

|
old index ' 2+1 2+3 eelt=1 1 IR 2+2 Rl . . R42t-2

This gives the following connection between the new index,

b+new, and the old OinE S B HolIlG

1l < new

IA

i . 0ld < 242new-1 ;
R ew < B N el e if new < t+% then new-t

else 2(new-t)-2 ;

Here b+new 1is supposed to be the index of an element in all:in]
which is free to use. The problem is therefore to compute the
index (0ld) of the element which shall be moved to al[b+new]
and so on in a cyclic manner. To start the process one moves
alb+l] to w and then defines i < 1. Some additional
administration of the moves to and from w 1is also needed. The

details are found in the algol program at the end of this paper,

where this problem is solved in a self-explanatory manner.
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Analysis of the merge exchange algorithm

We will now concentrate on the analysis of the merging

problem given in (6). As in the flowchart we define r

1]

1gi= o)
that is the number of elements left to merge. Let s be the
number of elements in the subset which contains alb+2+1] ,

s = [(r+1-2)/2) . This means that we are going to compare
alb+l] successively with from 1 up to s elements before the
final position of alb+l] is found. Now we have supposed that
all the possible different final permutations, (g) gt Ehis
merging problem are equiprobable. This means that we can give
the probability for each possible number of comparisons or

equivalent for each possible number of exchanges (or moves).

Define
[Py = Prob {alb+1l] < alb+2+1]}
5 = Prob {al[b+2+2j-3] < alb+l] < al[b+2+23-11} ,
(7)
g R W
| Pg41 ® Prob {alb+2+2s-1] < alb+1]}
We find by our assumption that
- %,
Pq ¥ > = (r-s)/r
g
(8)
TN
s=3 D ! :
R S i s R e 5 ] = L
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Now let ¢ and €, g Mmean the average number of
-]

nEsy

comparisons and exchanges (or moves) needed to merge

alb+l:n] by the algorithm. Note that B Baa T 0

We find the following recurrence relations

(9) Cpr,2 ° Pl(cr—l,max(l,l—l) o 5 e

1(1)r-1

+
e~

e e U
[(r+2-1)/2]

1]

and ‘s

(10) e + p8+1-(£+28—l)

r,8 - Pl‘er-l,max(l,z-l)

+ 40 o S SRR

s
1=

Pj{er-g,045-2

]

and s = |[(r+2-1)/2]

We note that the comparisons in our algorithm behave just
like an ordinary merge algorithm on two disjoint linearly

ordered subsets. This means that B is given by
2

Ldd) Cp.g = 8(r=s)/(s+l) + s(r-s)/(r-s+1) 5

Ssee for example [3].

This gives
(12) o e (l/(l+[r/2j) + 1/(1+[r/2]))-[r/2J'fr/2] .

To solve (10) seems considerably more difficult. Using (10) we

have computed the first values of €, g s
2

2 = 1(1)r-1 in table 1.
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2 1.0000

3 1.3333 1.6667

4 2+3333 1.J78680  2.2500

5 2,8000 3.3000 2.2000 2.8000

6 3.8500 L4.4667 4.2667 2.6667 3.3333

7 4.4000 5.0286 4.2381 65,2381 3.1u428 3.8571

vog 2 = 1(1)r-1

Tabillellt,

We are new interested in finding an approximate expression for

Therefore we tabulate, ueing (10), e for r = 27 A

TS gl il

J = 1(1)8 in table 2.

= by -

2 1.00000 00000
i 2.38033 “'33333
8 5.50000 00000
16 13.04607 61461
82 31.21811 86596
64 To. 730237 956¢3

128 187.05514 13464

256 471.62559 05589

Table 2.

Using the results in [2,3] we make the guess that

i ol -
(13) g, s‘er,l/r = ar? + B + yr 2 + ép g Wl
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S &

Using extrapolations on the values in table 2 and taking into,

account the form (13) we get the results in table 3 defining
B, ® (g, = gg)tVis 1)1V

This extrapolation furns out to be rather successful and gives
o~ 07833215

Using the same method to estimate B and Yy one finds

B~ .6250

Y s -,607

Note that
2¢ & 1566643
which seems to be exactly the same constant as given in {2} for

the sifting algorithm used on the same problem. Knuth shows

in his analysis [3] that this constant is
200 & Y1/128

It is remarkable however that the numerical procedure used

in [2] comes out with 7 significant digits.
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Conclusions

We have found that

Cy(n) = C 1/(|n/2J+1) + 1/([n/271+1))[n/2]|n/2| m n - 2

and

372

E,(n) ~ .078332 n * 6250 m - . BOT B2

for this new merge exchange algorithm. This makes the algorithm
considerably better than sifting when only comparisons and
moves are taken into account. Asymptotically we will have
CM(n) # EM(n) ~ 1/u(c3(n) + Es(n))= In table 4 these expressions

are compared for

n CS(n) * Es(n) Cy(n) + Ey(n)

16 315 27 o

32 88 61 {58

Y 224 L8i8 017

128 it 1 Sl .54

256 1539 26 L4471
Table 4

smaller values of n,

Unfortunately the amount of book~keeping in this new method,
just as for Batcher's parallel method, is rather large. One way
to improve the method might be to increase the working area.

The author has not studied how this might influence the book=-
keeping problem, and the question how much this would reduce the

amount of work therefore remains open.
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The Algol program

The algol program given has been written only to show
how this merge exchange algorithm works. As is seen by a first
glance, the program is not optimal. One has tried to use the
same notation in this program as in the text. Introducing too
many new helpvariables has been avoided although this would
have speeded up the program. The author hopes that this fact
combined with reading the text makes the program selfexplanatory

without too many comments.

procedure Merge_exchange PR,

value n; integer n; integer array a;

comment This procedure transforms the 2-ordered array
all:n] +to a l-ordered array all:n] with small

extra storage requirements;

integer by, 1% 8, Poitng-w,” newy old, count, windex;
b «0; £ «1; comment b: basis pointer,
2: see text;
start : P <= n-bj comment r: number of elements left;
AL W2 v Ehen’ 50" %0 “rin
W < al[b+l]; j «b++1;
if w < alj] then
begin b «b+l; 2 < if %=1 then 1 else #-1;

80 to start; end w has found its final

Place;
e

for j «3j+2 while 3 £n @

af < al[jl then g0 to move else t <« t+l;
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move

right

left

continue

10!

count < 03 windex < b+l; new < b+l;
comment We shall move £+2t-1 elements.

Contyrol :  couhty

old’ <« Z2xnew*b4+ Q-1 3 count <@ @it
alnew] <« alold]l; new < 0ld;

if new < b+t then g0 Lo  pighiy

0ld <« if new < b+2+t then new-t else 2x(new-t)

ol e+ §-
comment Now there is the chance that old is equal
to windex. In this case a cycle is finished and we
have to check if there is more work to be done
if old=windex then
begin alnewl <w; count <-count+l;
if count=82+2xt-1 then go to continues
for new «windex+l step 1 kil Ay
D+2+2 step 2 until b+2xt-1 do begin

if alnew] > w then begin w < alnew];

windex < new; g0 1o pight end;.endj
end The case old=windex is finished;
alnew] < alold]; new <« o0ld; count < count+l
go if new<b+t then right else left;
b «-bit=12 2 i go to start

end Merge—exchange;
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