
Department
of
APPLIED MATHEMATICS

An algorithm for internal

morging of two subsets with

small extra storage requirements.

by

Terje 0. Espelid

Report No. 50 September 1974

UNIVERSITY OF BERGEN

Bergen, Norway

0084-778X

An algorithm for internal

merging of two subsets with

small extra storage requiremenfs.

by

Terje 0. Espelid

Report No. 50 September 1974

Abstract

An algorithm for internal merging of two disjoint

linearly ordered subsets into one set is given and analysed.

The two subsets are supposed to be given in one array with

interlacing elements. The algorithm is based on an inter

changing of elements and requires therefore only a fixed

amount of extra storage.

1

Introduction

Given a 2-ordered array a[l:n], that is

(1)

see Knuth'(3] p.86

The array consists of two disjoint linearly ordered subsets.

Now the problem is to rearrange the elements in a[l:n] such

that the resulting array a’[l:n] is 1-ordered.

(2)

This obviously is a merging problem and can be solved in

different ways with and without extra storage. In this paper

we will only consider methods which work without using a

working area. For the purpose of analysis we will assume

that a [i] * a[j] ,Vit j . Furthermore the possible

permutations of the elements indexes in a' relative to a
/ n \ * “5

L n / 2 J j , are supposed to be equiprobable.

Sifting or straight insertion is one well-known algorithm

which can be used. This algorithm is a sorting algorithm,

that is, it does not take into account the special form, (1),

of the array in question. On the other hand this algorithm is

easy to program and analysis in Espelid [2] and [3], shows that

the number of comparisons will be

Cg (n) r* , 156 664 3 n\ZiT + n

UJ (fxl) means the greatest (smallest) integer not
greater (smaller) than x .

a[i] < a[i+2] , i = l(l)n-2,

a’ [i] < a ? [i +1] , i = l(l)n-l.

2

Merging algorithms which make use of a working area will need

maximum n-1 comparisons to merge the subsets in a[l:n].

The sifting algorithm therefore makes a lot of superfluous

comparisons. It is reasonable however that a method which makes

use of a minimum of extra storage has to pay for it in longer

running time, compared to usual merging algorithms, Batcher’s

(parallel) method, see [1] , is a sorting algorithm which is

based on merging the subsets of 2-ordered arrays taking into

account that the arrays really are 2-ordered,and thus reducing

the number of comparisons in average compared to sifting.

We find that using the main idea in Batcher's method the

number of comparisons (independent of a) will be

The number of comparisons is reduced compared to sifting but

unfortunately the amount of bookkeeping needed to control the

sequence of comparisons is rather large. Which of the two

methods one should choose is not obvious and needs a j.ove

thorough analysis. The main power of Batcher 1 s method lies

in the possibility of parallel processing.

Still another method on a related problem is given by

Kronrod [U]. Kronrod's algorithm seems complicated but he

succeeds in forcing the number of comparisons down to

C K (n) 0 (n)

Tue number of comparisons when using sifting will at minimum

be n-1 and at maximum be .We get the maximum whenWe get the maximum when

c b (n) w7 n riog2 ni ~I n

3

a[l] is greater than the element with largest even Index,

a[2[n/2jj. The number of exchanges in average will be of the

same magnitude as the number of comparisons for all three

methods.

We now consider a new method which uses at

maximum n-1 comparisons to do the merging. The number of

exchanges however turn out to be onlv sliVhtlw ho-M-or.turn out to be only slightly better

than in sifting.

A merge exchange algorithm

io clarify the idea we will consider an example.

Suppose that a[l:9] is given by

The sifting algorithm will need 17 comparisons and 10 exchanges

to sort this array. By comparing a[l] to a[i], i = 2,4,6,8

only 4 comparisons are needed. Now the problem is how to

exchange elements without using more than one interraediate

record, say w, such that at least one element comes to its

final position in each step. we start withWe start with

w <- a[1]

then the sequence

I* -

a[I] <— a[2*1] *, a[2) a [2*23 ; a[4] a[2xU] ;

Now a[8] is free to use and we move elements in the opposite

direction

The last move had to be made because the original a[5-2"3 has

been moved to w at the beginning. Now the array is changed to

where an arrow shows the direction in which an element has been

moved, connecting the positions involved. We have to finish with

w a[3] ; a[3] <- a[2x3] ; a[6] w ;

This completes the merging in 8 moves, neglecting the moves

from a to w ,

One could now extend the problem putting a[10] s 8 .

5 comparisons are needed to State that a[8 3 < a[l3 < a[10]

The same procedure now gives in the first step

We know that the elements a”[l:5] are correctly sorted and are

less than the other elements. By two comparisons we find that

a”[6] and a 1f [7] both are less than a"[10] (a al 10]) such

that the first 7 elements have found the final position.

at 8] <- a[8-2°] ;a[7] <- 3E7-2 1] ; a[5] w

u

..J

l - i; - i. *

5

J

The sorting problem left is not exactly of the original form.

We still have two subsets but the interlacing character starts

wilh the second element. We therefore need to generalize the

problem slightly. Let us now leave the exaraple.

Given an array a[l:n] where the b first elements have

found their final position, the elements a[b+l], ... ,a[n]

represent the merging problem remaining. These elements consist

° f tW° dls 3 olnt linearly-ordered subsets. The first £ elements

belongs to the other subset and from this point the array is
2-ordered, that is

(6)

Tne following flowchart gives the main points in the
algorithm:

1 £j<n b , all belong to one of the subsets, element £+ 1

a[b + l] < a[b +2] < ... < a[b + *] < atb+Jt +2] £ a[b+J, +1+] <. _

a[b+£+l] < a[b+£+3]

... : i . r

6

7

We have removed from the flowchart the details in connection

with moving the elements around successively. When one starts

to move elements around,it is clear that exactly t of the

elements from the other subset are less than a[b+l]. The

actual indexes relative to b are

where all the circled indexes belong to the same subset. After

the move of elements phase, we shall have (relative to b)

This gives the following connection between the new index,

b+new, and the old one, b+old,

else 2(new-t)-£ ;

Here b+new is supposed to be the index of an element in a[l;n]

which is free to use. The problem is therefore to compute the

index (old) Qf the element which shall be moved to a[b+new]

and so on in a cyclic manner. To start the process one moves

a[b+l] to w and then defines i <s~ 1. Some additional

admimstration of the moves to and from w is also needed. The

details are found in the algol program at the end of this paper,

where thio problem is solved in a self-explanatory manner.

1 2 3 ... £ £+ 2 £+ 4 . . . U+^-l)

I
new indexj 1 2 ... t t+1 t+2 t+£t + £ + l t+£+2... £+2t-l

old Index |£+1 £ + 3 £ + 2t-l 1 2 ... 9. £+ 2 £+ t+ ...£+2t-2

j 1 new S t : old £+2new-l ;

1—"* — new £ + 2t-l : old <— if new <t + & then new-t

8

Analysis of the merge exchange algorithm

We will now concentrate on the analysis of the merging

problem given in (6). As in the flowchart we define r s n-b ,

that is the number of elements left to merge. Let s be the

number of elements in the subset which contains a[b+£+l] ,

s s [(r+l-£)/2j . This means that we are going to compare

a[b+l] successively with from 1up to s elements before the

final position of a[b+l] is found. Now we have supposed that

all the possible different final permutations 5 (r) , of this

merging problem are equiprobable. This means that we can give

the probability for each possible number of comparisons or

equivalent for each possible number of exchanges (or moves).

Define

(7)

We f ind

(8)

P-j_ = Prob {a[b+l] < a[b+£+l]}

Pj = Prob {a[b+£+2j-3] < a[b+l] < a[b+£+2j-l]} ,

j = 2 (1) s

Up s+1 s Prob (a[b+£+2s-l] < a[b+13}

.nd by our assumption that

p = ——— = (r-s)/r

P-i+l = —^— = p i (s-j+l)/(r-j) ,j = l(l)s
Jr) Js

9

1

Now let c and mean the average number of

comparisons and exchanges (or rnoves) needed to merge

aEb + 1:n3 by the algorithm. Note that c = e - n
r,r r,r " u

We find the following recurrence relations

(9)

(10)

We note that the comparisons in our algorithm behave just

like an ordinary merge algorithm on two disjoint linearly

(11)

see for example [3],

This gives

(12)

To solve (10) seems considerably more difficult. Using (10) we

have computed the first values of er>£ ,* = l(l) r-l in table

Cr,l = p l (cr-l ,max(1, J.-X) + + P s+1 ' s

s

+ j *D j Gr-j ,£ + j -2 + - l(l)r-l

and s = [(r+£-l)/2 J

e r,Jl = pl ter-l,max(l,A-l) + ps+l* U+2s-1)

s

+ P j (er-j ,i+j-2 +i+2 i‘ 3) . f- = Kl)r-l

and s = [(r+£-l)/2J

ordered subsets. This means that c is given byX j o

cr,£ = s(r-s)/(s+l) + s(r-s)/(r-s+1) ,

°r,l = (l/(l + Lr/2J) + l/'(l + fr/2l)j.[r / 2 J.f r /2]

10

Table 1.

We are now interested in finding an approximate expression for

e r,l * Th erefore we tabulate, using (10), e p for r = ,
j = 1(1)8 in table 2.

r e^,l
2 1.00000 00000

4 2.33333 33333

8 5.50000 00000

16

32

64

128

256

Table 2.

Using the results in [2,3] we make the guess that

(13)

e r,Jl ’ 1 = KDr-l

13,04607 61461

31.21811 86596

75.73013 95663

187.05511+ 131+6U

*+71.62559 05589

g r 3 e r,l /r = + B + yr~* + «r' 1 +

r

2 1.0000

3 1.3333 1.6667

4 2.3333 1.7500 2.2500

5 2,8000 3.3000 2.2000 2.8000

6 3.8500 4.4667 4.2667 2.6667 3.3333

7 4.4000 5.0286 4.2381 5.2381 3.1428 3.8571

11

Us ing extrapolations on the values in table 2 and taking into.

account the form (13) we get the results in table 3 defining

h r K (g 2r "S r + D/\fF

This extrapolation turns out to be rather successful and gives

a w .07833215

Using the same method to estimate 3 and y one finds

fø « .6250

« -.607

Note that

2g „156GBU3

which seems to be exactly the same constant as given in [23 for

the sxftmg algorithm used on the same problem. Knuth shows

in his analysis [3] that this constant is

2a « \RJ~i2 8' .

xt is reraarkable however that the numerical procedure used

in [2] comes out with 7 significant digits.

12

Table 3

r

h
r

2-extra-

2vT-extra-

4-extra-

4v^P-extra-

8-extra-

8’/?-extra-

polation

polation

polation

polation

polation

polation

2

.5

.14225890

•

4

.58333333

.12574029

.10922168

.08345379

8

.6875

.10915220

09256411

.07954090

.07835994

.07831123

16

.81537976

.09568107

08420995

.07855143

.G7832151

.07833127

.07833413

.07833215

32

.97556621

.08854887

08051656

.07841003

.07832956

.07833219

.07833233

BU

1.18328343

.08391953

07919019

.07835130

.07833173

128

1.45136829

.08128371

07864789

256

1.84228746

The computations

have been done

with 10

decimals and

the numbers

in this table

aregiven

correctly

rounded to8decimals.

rri •'-*'1

"'•' :

u -.

L.i.

fi. {jj
l-f J

o

,., '.' '••. <-.[

vO >; ••

:-'•'' V- :

' j

. ---V

> -<>V l.-:
Gc1

13

Conclusions

We have found that

and

for this new merge exchange algorithm. This makes the algorithm

considerably better than sifting when only comparisons and

moves are taken into account. Asymptotically we will have

C M (n) + ~ 1/4(Cg(n) + Eg(n)), In table 4 these expressions

are compared for

32 88 61 .69

64 224 138 . 62

128 581 313 . 5i+

256 1539 726 .471

Table 4

smaller values of n.

Unfortunately the amount of book-keeping in this new method,

just as for Batcher's parallel method, is rather large. One way

to improve the method might be to increase the working area.

The author has not studied how this might influence the book

keeping problem, and the question how much this would reduce the

amount of work therefore remains open.

CM (n) = (1/([n/2 J+ l) + l/([n/2l + l))fn/2lLn/2j « n - 2

EM (n) « .078332 n 3/2 + .6250 n -.607 n 1/2

n C s (n) + E s (n) CM (n) + EM (n)

16 35 27 .77

å . v. "-:i r O-.;.-:

14

The Algol program

The algol program given has been written only bo show

how this merge exchange algorithm works. As is seen by a first

glance, the program is not optimal. One has tried to use the

same notation in this program as in the text. Introducing too

many new helpvariables has been avoided although this would

have speeded up the program. The author hopes that this fact

combined with reading the text makes the program selfexplanatory

without too many comments.

procedure Merge_exchange (a,n);

comment
This procedure transforms the 2~ordered array

a[l:n] to a 1-ordered array a[l:n] with small

extra storage requirements;

integer j , £ 5 r, t } w, new, old, count, windex;

o <- 0; £ -«-i; comment b: basis pointer,

see text;

start

b «"b +1; £ <— if £= 1 then 1 else £-1;

go_ to start; end w has found its final

place;

value n; integer n; integer array a;

r <r~ n ~k > comment r: number of elements left;

~ > r then go to fin;

w <-a[b + l]; j <-b +£+ l;

if w < a[j] then

t <-l;

Qr' j j+2 while j< n do

i£ w 1 a tj3 then go to move else t <-t+l;

... ' i'-

) i- * ' •'

V _ ,

J

.. j

15

mo ve count <- 0 ; windex <-b+l; new b+1;

comment We shall move £+2t-l elements.

Control : count;

right

lef t

comment Now there is the chance that old is equal

to windex. In this case a cycle is finished and we

have to check if there is more work to be done;

if old=windex then

begin a[new] <~w; count <—count+l;

i_f count = £+2xt-l then go to continue;

for new «-windex+l step 1 until b+ £,

b+£+2 step 2 until b+2xt~l do begin

a[new] > w then begin w <-a[new] ;

windex «-new; go to right end;-end;

a[new] <-a[old]; new «-old; count <-count+ 1

££ if new<b+t then right else left;

b <-b+t-l; £ go to start
continue

fin : en d Merge—exchange;

old <- 2xnew-b+£-l; count «-count+1;

a [new] new eold;

if new < b+t then go to right;

°ld new £b + A+t then new-t else 2x(new-t)

-U;

- e - The case old = windex is finished;

References

[1] Batcher, K.E.: "Sorting networks and their application"

Proc. AFIPS Spring Joint Comp. Conf. 32(1968) 307-314.

[2] Espelid, T.O.: "Analysis of a Shellsort Algorithm"

BIT 13,4 (1973) 394-400.

[3] Knuth, D.E.: "The Art of Computer Programming", Vol. 3,

Addison Wesley, Reading, Mass. 1973.

[4] Kronrod, M.A.: "Optimal ordering algorithm without

operational field"

Soviet Math. Dokl. 10 (1969) 744-746 (Russian).

v

1

I

i

 «

s

/
1

/

