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CORRECTED OPERATOR SPLITTING FOR NONLINEAR PARABOLIC EQUATIONS

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro

AbstrACT. We present a corrected operator splitting (COS) technique for nonlinear parabolic equations of convection
diffusion type. The main feature of this method is the ability to correctly resolve steep fronts for large time steps,
as opposed to standard operator splitting (OS) which fails do so. COS is based on solving a conservation law for
modeling convection, a heat equation for modeling diffusion, and finally a certain "residual" conservation law for
necessary correction. The residual equation, which is ignored in OS, has an anti-diffusive effect whose purpose is to
counter-balance some of the diffusion introduced by the heat equation. It is shown that COS generates a compact
sequence of approximate solutions which converges to the solution of the problem. The method of Dafermos constitutes
an important part of our solution strategy. Finally, some numerical examples are presented.

0. Introduction. In this paper we introduce a novel operator splitting method for constructing approximate
solutions to nonlinear parabolic convection-difFusion problems of the form

(1)

where uo(x), v(u), and f(u) are given, sufficiently smooth functions, and e > 0 is a small scaling parameter.
Partial differential equations from mathematical physics sometimes appear in the non-conservative form

(2)

where we can assume that d(u) is a strictly positive function, so that (2) is parabolic and admits classical
solutions. The mixed hyperbolic/parabolic case (d(u) > 0) will be considered elsewhere. In the parabolic
context we can obviously write (2) in conservative form (1), so that any solution strategy presented for (1)
applies equally well to (2). Consequently, we choose to work with (1) in this paper. Existence and uniqueness of
a classical solution to (1) is well known, see for example [18,21]. Furthermore, the notion of a classical solution
coincides with the notion of a weak solution for parabolic equations such as (1), see [21].

Equations such as (1) arise in a variety of applications, ranging from models of turbulence [4], via traffic now
[20] and financial modeling [3], to two phase fiow in porous media [22]. Equation (1) can also be viewed as a
model problem for a system of convection-difFusion equations, such as three phase now in porous media [26], or
the Navier-Stokes equations. Of particular importance is the case where convection dominates diffusion, i.e., £
is small compared with other scales in (1). This is often the case in models of two phase fiow in oil reservoirs.
Accurate numerical simulation of such models are consequently often complicated by both unphysical oscillations
and numerical diffusion. The operator splitting approach presented here is particularly well suited to the case
where £<1.

If £ <C 1, then (1) is "almost hyperbolic", and it is natural to exploit this when constructing numerical
methods. A widely used strategy is viscous operator splitting (OS henceforth), that is, splitting (1) into a
hyperbolic conservation law and a parabolic heat equation, each of which is solved by some proper numerical
scheme. This approach, or at least certain variations on this approach, has indeed been tåken by several authors,
we only mention Beale and Majda [2], Douglas and Russell [9], [24], [12], Espedal and Ewing [10], [11], Dawson
[B], and more recently Karlsen and Risebro [14]. In [24], a characteristic element method is used to solve the
hyperbolic part of (1). In [9], error estimates are obtained for a linear version of (1), and in [14] it is shown
that that the viscous splitting method converges to the solution of (1) in the case of linear diffusion, sufficiently
smooth flux functions, and any (discontinuous) initial function of bounded variation.

However, numerical experiments [14] suggest that OS can be severely diffusive near steep shock fronts, at
least when the time step is large. Let us elaborate on this feature by studying an application of OS to Burgers'
equation [4], i.e., f(u) — \u2 and v{u) =u, with Riemann initial data uo(x) — Xto.oo)^)- The true solution is
a single (self-sharpening) shock front moving with positive velocity. In particular, the size of the shock layer is
o{£) (see e.g. [25]), which contrasts the the well-known 0(^/1) - layers seen in linear equations.

Key woris and phrases. nonlinear parabolic equations, operator splitting, front tracking, initial value problem.
The first author has been supported by VISTA, a research cooperation between the Norwegian Academy of Science and Letters
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Let S? (t) denote the entropy satisfying solution operator associated with the nonlinear conservation law

(3)

and let ?i(t) denote the solution operator associated with the (linear) heat equation

(4)

Then the operator splitting (OS) approximation takes the form

(5)

Let us calculate the first step in (5) for Burgers' equation. The entropy weak solution to the convex conservation
law (3) is v(x, At) = X[At/2,oo)(x). Using v(x, At) as (discontinuous) initial data for the heat equation (4), we
obtain the following explicit formula for the OS approximation

(6)

It is not difficult to deduce from this expression that the shock layer has size O(V£At). Consequently, we do
not expect that the layer is properly resolved unless a small time step (Ar = G{£)) is used, a claim that is in
fact supported by numerical evidence [14,15].

An interesting observation is the following. Let fc (u) denote the upper concave envelope of f(u) = |u2 in
the interval [o, l]. Applying OS to the linear equation u t + fc (u)x = £uxx still yields the solution (6). In fact,
applying OS to ut -f g(u)x = £uxx , for any convex flux function g(u) that lies below or equals fc (u), will give
the approximation (6). The OS solution of Burgers' equation does not take into account the convex shape of
the flux function, that is, the self-sharpening naiure of the front. However, the part of the flux function that is
neglected can be identified as a residual flux term of the form /res =f — fc -

Now the idea is to take a third correction step to reduce the superfluous diffusion introduced by the heat
equation (4), i.e., instead of (5) we use an approximation formula of the form

(7)

where C(r) is the solution operator associated with the "residual" conservation law vt + fres(v)x =0 at time
r. Due to the special form of /res , convex with /res(o) = /res(l) =0, we see that C(r) possesses the desired
anti-diffusive (sharpening) property when applied to (6). Of course, we should not take r too large, typically
not larger than At, because the diffusive front (6) then will be sharpened into a discontinuity. When choosing
r we should have in mind the that the OS layer and the true layer have sizes 0(y/£~At) and 0(£), respectively.
In addition, we should take into account the fact that "particles" upon action of C(r) move a distance not
exceeding rJK/res)'!^ (finite speed of propagation).

As we have seen, for a single Riemann problem it is possible to derive å priori the explicit expression for the
residual flux term /reB - This was first observed by Espedal and Ewing [EspEw] (see also Dahle [7]) who suggested
a splitting method based on the linear conservation law vt + fc (v)x = 0 and the nonlinear diffusion equation
u>t + fres(u))x = £wxx , instead of (3) and (4). This two-step method, which can be viewed as an alternative to
our three-step method (7), has the advantage of giving the correct size of the shock layer and making it possible
extend the characteristic methods [9,24] to nonlinear problems without severe time step restrictions.

Of course, an å priori construction of the residual flux /res is not possible for general problems. The main
purpose of the present paper is to demonstrate that it is possible to dynamically construct a residual flux term
/res(z, •) for general problems when using front tracking, as defined by Dafermos [6] (see also [13]), to solve the
nonlinear conservation law (3). Consequently, the three-step corrected operator splitting approach (7) makes
sense in general. Our construction relies heavily upon the fact that Dafermos' method is based on solving
Riemann problems. We also prove that (7) converges to the solution of (1) as various discretization parameters
tend to zero.

The rest of this paper is organized as follows: In section 1 we present some useful information about parabolic
equations and the front tracking method. In section 2 we explain in detail the semi-discrete corrected operator
splitting scheme (7) and the construction of the residual flux term. In section 3 we obtain compactness of
the sequence of approximate solutions generated by the corrected splitting scheme. In section 4 we present an
application of a fully discrete scheme in which (4) is solved by the Galerkin finite element method.

vt + f(v)x =0,

Wt = £WXX .

«(ar, nAt) « [H(At) oSf (At)] n u 0 (x)

fOO 1 [—(r — v) 2 '
u(x,At)K[H(At)S'(At)]u0(x)= -7r=T7 exP \ fA , dy.JAt/2 V47T£:At L 4£At .

«(ar, nAt) « [C{r) oTi(At) oSf (At)] n u0 (x), r> 0,
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1. Preliminaries. Wc shall always assume that f(u) and u(u) are continuously differentiable (/, v £ C 1), and
that uo(x) is a function of bounded variation (u 0 € BY). Under these assumptions it is well known that there
exists a unique classical solution to (1), with the initial data assumed in the weak sense, i.e.,

as*^o+, for all <j) e Cc .

At all points of continuity, the data is assumed in the usual pointwise sense. Moreover, the solution u(x,t) is
bounded and all the derivatives appearing in the equation are continuous. Wc call u(x,t) a weak solution if

For parabolic equations of the form (1), it is known that the notion of weak and classical solutions coincide.
Consequently, in order to show that the limit of a converging sequence is the unique classical solution to (1),
it is sufßcient to demonstrate that the limit satisfles (8). Wc refer to [18,21] for a survey of the mathematical
theory of nonlinear parabolic equations such as (1) and (2).

For later use, let us collect some of the properties that the solution of (1) possesses

Lemma 1.1 (Parabolic equations). For Ug GBV and f,v£ Cl , let u(x,t) be the unique classical solution
to

ut + f{u)x = £v(u)xx , u(x,o) = uQ (x), (x,t) €M x (O,T]

Then the following two å priori bounds hold

(9) IK-,Olloo<||«o||oo, TV(u(;t))<TV(u0), te(O,T)

For gG C 1 and Vg € BY , let v(x,t) be the unique classical solutinn to

vt +g(v)x = eu(u)xx , v(x,o) = v0 (x), (ar, t) €R x (0, 7] .

Then the following stability (comparison) result holds

(10) \\u(;t)-v(;t)\\i<\Wo-vo\\i+t\\f-g\\Lip mm(TV(u0),TV(vo)), t € (O,T\

Proof. The first property is well known and follows from the maximum principle. Let us therefore concentrate
on proving the two remaining claims. The difFerence e(x,t) — u(x,t) — v(x,t) satisfles the error equation

where the coefflcients a(x,t) and b(x,t) are given by

Here wc assume that both e and ex tend to zero as \x\ —*• 00, and let T(x,t) denote the truncation error, i.e.,

where <f)(x) is smooth and |ø| tends to zero as |x| -^ 00. It is well known that the (classical) solution satisfles
the maximum principle

(13) HIK-,t)lloo<|tø t < T.

I<t>(x){u(x,t)-uQ (x))-+$,

(8) ff (u4>t + f(u)<f>x -f ev(u)<j>xx ) dtdx+ f uo (x)<f>(x, 0) dx =0, for all <f> € C0°° (M x (0, 7]) .

(11) et + (a(x, t)e(x, t))x - e (b(x, t)e)xx = T(x, t)

a(x,t)= f f'(Sv(x,t) + (l-(;)u(x,t))dZ,Jo

b(x,t)= f v'(tv(x,t) + (l-Ou(x,t))d£.Jo

T(x, t) =vt + f (v) x - £u(v)xx .

Let il>(x,t) be the solution of the backward problem

(12) V-t + a(x,t)il>x +eb(x,t)il>xx =0, I>(x,T) = <f>(x), (x,t) GKx[O,T),
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By integrating the error equation (11) against if> over IR x (0, T), and noting that (12) is just the adjoint problem
of the error equation, we obtain

(14)

Let us first show the stability with respect to the initial function, that is, let g = /. In this case T — 0, and
by choosing <f> = sign(e), we obtain

(15)

An important consequence of this stability result is that solutions of (1) have total variation that is bounded
by the initial variation. Recall that for a function h = h(x), the total variation can be defined as

Thanks to translation invariance and estimate (15), we readily calculate that

We now use this estimate and (13) to establish stability with respect to the flux function,

ff T(x,t)tp(x,t)dtdx

Choosing <f> = sign(e) in (14) and using symmetry, we derive the desired result (10).  

Since the front tracking method will be important, we give a brief description. Let f{u) be a Lipschitz
continuous, piecewise linear function with breakpoints located at {u,}. Consider the nonlinear conservation law

(16)

where we assume that Uq is piecewise constant, taking a finite number of values, say, {wo,*} C {«»}• Consider
first the Riemann problem with ul — w* and ur = Uj for some k and j. Let fc (u; ul, ur) be given by

{the lower convex envelope of / between ul and ur, if ul < ur,the upper concave envelope of / between ur and «£, if ul > ur.

and such that fc is linear on each interval [«,-, w,+i], *= 0, - . . ,M— 1. The solution of the Riemann problem
with left state ul and right state ur is then given by

(17)

I e(x,T)<f>(x)dx= f e{x, 0)^(x,0) dx+ ff T(x,t)ip(x,t)dtdx

\\u(;T) -vi-^W^Wuo-voWi

2V(A) = limsupi f \h{x) - h(x - 8)\ dx
5-0 8 J

TV(u(-,T))

= lim sup- / \u(x,T) — u(x — 8, T)\ dx
6->0 8 J

< lim sup 7 / \uo(x) — uo(x — 8)\ dx6-0 8 J

= TV(u0 ).

= jj {f(v)-g(v)) x iP{x,t)dtdx

<jj 11/' - «/IL M*,*)lW«, t)\dtdx<T 11/' - ffW^ TV (v0) ll^Hoo.

ut + /(«)« = 0, u(x, 0) = u0 (*), (x, 0 € R x (O, T] ,

Since /is piecewise linear, then so is fe . Let {it,}, i = 1, . . . ,M, be such that

Uq-Ul, UM = UR, {uq,... ,UM ] C {Ujfc,... ,«/},

ul, for x < sot,

w(x,<)=< ti,-, Sit <x < Si+\t, i = 0, . . . ,M —2,
ur, x > SM-\t,
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where

and fi = fe (Ui; ul,ur). The solution of the more general problem (16) is constructed as follows. Observe that
each jump in the initial data ug defines a Riemann problem. The solution of these problems leads to a series of
discontinuities propagating in the (x,t) plane. By "gluing" together the solutions of the Riemann problems wc
have the global solution until, at some point, two or more of these discontinuities interact, and wc have what
is called a shock collision. When two or more neighboring discontinuities collide, they define a new Riemann
problem with left and right states given by the values immediately to the left and to the right of the collision.
This Riemann problem is then solved, and wc have the solution until the next shock collision occurs. This
collision is of course handled in the same way, similarly for subsequent collisions. The front tracking method
for constructing the exact solution to (16) may briefly be summarized as follows:

(1) Solve the Riemann problems defined by the piecewise constant initial data.
(2) Keep track of shock collisions and solve Riemann problems arising at the collision points.

For various implementation aspects of the front tracking method wc refer to [23] and [19].

Remark. The front tracking method for general conservation laws (arbitrary / and uo) consists in replacing /
with a piecewise linear approximation and uo with a piecewise constant approximation, and then to solve the
resulting perturbed problem exactly according to the procedure described above. For a more detailed treatment
of the front tracking method wc refer to [13].

Next, let us introduce a dynamic grid {zj1 } on which the approximate solutions will be defined. Let the grid
cells be of the form z" = [x",x"+1 ), and introduce the projection operator ir = 7r({z"}) as

(18)

Here ir is to be considered as an operator from the space of functions of bounded variation to functions that
are constant on each grid cell z" . The grid cells z" can be of varying size, but the grid is assumed to be regular
in the sense that

(19)

This means that wc can adjust the grid (see section 4) to follow the dynamics of the solution in order to enable
optimal resolution. However, the adjustment must be done so that the mesh regularity condition (19) is not
violated. The projection operator will be used to generate piecewise constant data for the front tracking method.
Wc shall later need the following three properties

(20)

which are easily seen to hold for any function g(x) of bounded variation.
Finally, let ft(u) denote a piecewise linear and continuous approximation to f(u), chosen so that

(21)

2. The semi-discrete method. In this section wc describe the semi-discrete corrected operator splitting
method (COS henceforth). The COS strategy is first presented within an abstract framework, and then wc give
an explicit realization of the strategy using the residual flux function briefly introduced in the first section. Fix
T > 0 and an integer N > 1 , and choose At such that NAt — T. Wc demand that the timestep At and the
space discretization Ax are related as follows

(22)

Note that in contrast to finite difference methods, (22) allows for large time steps. Let now un denote the
piecewise constant approximate solution to (1) at time t = nAt, for some fixed n = 0, . . . ,N —1. For notational
convenience wc have suppressed the dependency on Ax, At, and Bin un . Next, wc describe how to inductively
construct the piecewise constant function un+l from un .

Ji+l Ji  r\ hæ i
Si = — , i = 0,...,M — l,

Ui+l - u{

7r9{x ) = T^T\ 9(x)dx, forse*".
\ zj I Jzf

Ax
Axmin < \z"\ < Axmax = Ax, < Const

INlloo < ML > TV M < TV (g) , ||*ø - ød! < TV (g) Ax,

WftWup < Wfhip, 11/ - fsWoo = 0(82 ), 11/ - h\\ Lip = 0{8), as 8- 0.

Ax Ax
—  0, —- < Const., as Ax, At —* 0.At At ~
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Step 1 (convection step): Let v(x,t) be the entropy weak solution (in the sense of Kruzkov [17]) of the
hyperbolic conservation law

(23)

Recall that v(x,t) coincides with the solution generated by the front tracking method. Let S^6 (t) denote the
solution operator associated with the conservation law vt + f6(v)x =0 at time t. We then define an intermediate
solution

Step 2 (diffusion step): Let w(x,t) be the solution of the nonlinear heat equation

(24)

Let 7iv {i) denote the solution operator associated with wt = sv{w)xx at time t, and TC^x (t) =ir o 1i l/ {t) its
projection onto the grid {z?}. Wc define the second intermediate solution by

Step 3 (correction step): Let r be a positive parameter (referred to as the correction time) chosen so that
r = cAt for some constant c > 0. For each fixed r > 0, let C(t) : BV — BV be a given operator referred to as
the correction operator. We assume that C(t) satisfles the following four regularity estimates:

C{t)u2I3 \ <Mi,(Cl)

(C2)

(C3)

TV (C(r)u2/3) <M 2

(C4)

where 7>o is a strictly positive number, and M\, . . . ,M4are constants independent of Ax, At, 8, and r. The
four conditions (C1)-(C4) are imposed in order to ensure convergence to the solution of (1). The idea is that
C(t) should have an anti-diffusive effect (the amount depending on the size of r) to counter-balance some of the
diffusion introduced in step 2, so that correct balance between nonlinear convection and diffusion is achieved
even for large At. With the current notation in hand, we finally define the corrected operator splitting solution
by

The COS solution {un }n=o is constructed inductively by applying the above three-step procedure to construct
u"+1 fromu",

(25)

where the induction is initiated by setting u° — kuq. The rest of this section is devoted to suggesting an explicit
construction of the operator C(r). The essential part of this construction is the residual flux term /res . The
motivation for considering the residual flux term is found in the introduction.

Observe that the front tracking solution is a step function whose discontinuities always are entropy satisfying
shocks. Consequently, it is possible to construct a residual flux term with respect to each shock in this solution.
Then, to obtain a global correction operator, we should connect these local terms properly. Below we propose
a "connection strategy" that is computer efflcient and easy to implement. But it is not difficult construct other
methods for connecting the local terms that will yield (slightly) different COS schemes than the one presented
here. However, when deriving realizations of the correction operator we must have in mind the conditions
(C1)-(C4), which imply that the resulting COS schemes converge to the exact solution of (1).

Suppose that the function un+l ' 3 (x) is piecewise constant with its discontinuities located at the points {y,}.
Let Ui+i denote the value of un+l l3 in the interval [yt,2/»+i), and let /res ( w ) denote the zth local residual flux
term constructed with respect to the left and right shock values Ui and u,-+i located at x = yt. More precisely,
we define /res (w) in terms of the formula

(26)

vt+fs(v)x =0, v(x,o) = un (x), (x,t)eßx{o,At].

un+l/3 = S^(At)un .

wt = ev(w)„, w(x,o) = un+l/3(x), (x,t)€Rx (o,At}.

un+2/3 = <w^ (A<)u»+l/3

C(t)u2/3 - u2/3 < M3At,i ~

/ {c{t)u2'3 {x) - u2l3 {x)) <f>(x) <M 4(At) I+y , for all <f> e C™ ,

Un+ 1 = C(T)un+2'3 .

un+l = [C(T)on%x (At)oSf6 (At)]un , r>o,

ri t \ f /«(w) ~Ac ( u ; "«» fi*+i) ' wnen w e ["*' "»+i] for some «i
/res( U ) — 1(. 0, otherwise.



CORRECTED OPERATOR SPLITTING 7

After ignoring the terms that are zero, wc obtain a (finite) sequence of non-zero local residual terms /res (u )>
i = 1,...,Nn , ordered with respect to increasing (location) t/,- - values. Let x,-, i = 0,... ,Nn+i, be spatial
positions (degrees of freedom) chosen such that yt- is located somewhere in the interval (x,-,x,+i). Then wc
define the global residual flux term (suppressing the 8 and n - dependency) by

(27)

The function fTes {x, u) may be discontinuous as a function of x for fixed u, but observe that /res {x, un+l l3(x)) —
0 for all x. Furthermore, for fixed x wc see that fres (x, u) is a piecewise linear function of u.

Let Vi(x,t) denote the entropy weak solution (in the sense of Bardos et al. [1]) to the nonlinear conservation
law

with initial data and boundary data (whenever necessary) imposed as follows

(29)

Observe that Vi(x,t) coincides with the solution generated by the front tracking method. Introduce the globally
defined function

(30)

and let C(t) denote the correction operator that takes un+2l 3 to the function v(x, r), i.e.,

Consequently, our correction operator is realized by solving initial-boundary value problems for nonlinear
conservation laws with carefully chosen flux functions.

Remark. According to (27), a local residual term f*es is constructed with respect to each discontinuity in the
piecewise constant front tracking solution. In particular, a large number of these local flux terms will be so
small that they have no significant influence on the solution. Consequently, when doing numerical calculations
a local term /*es is not tåken into account if |u»+i — «»| < ctr , where ctr is some small (problem dependent)
threshold parameter. This means that computational effort in terms of correction is only spent in the regions
where significant shock fronts are located.

From a computational point of view, wc ought to be more specific about the choice of the interval (x,, x,-+i),
which is used explicitly in (28) and (29). Let therefore x,-, i = 1, . . . , Nn , be the midpoint of each interval where
un+l /3 (x) is constant, i.e., x,- = | (j/,--i + y%) , and define xo = t/o —1, n +i = VNn +1- Wc now let the ith
interval (xi,xt+ i) be given by

where A > 0 is a small parameter that can depend on i. When choosing A, one should have in mmd that the
correction effect on (x,-,Xi+i) is "maximized" when

In the computational study presented in section 4, wc have typically tåken the parameter A to be of the same
size as the polygonal approximation parameter 8. This strategy seems to work well for the numerical examples
presented here, but still, as mentioned above, other strategies for choosing {x,} should be explored in the future.
Furthermore, one should also investigate alternatives to (30) for connecting the local residual flux terms.

Wc now show that the conditions (C1)-(C4) ensuring convergence are satisfied. By construction wc know
that that the operator C(t) does not introduce new minima or maximaand thus (Cl) holds. Let vf(x,t) denote
the entropy weak solution to the conservation law

, , v f /res( w )> when x £ [*«i **'+l) for some 1 = 0,... ,Nn ,
/res (x, U) = < .

1^ 0, otnerwise.

(28) vt +fL(v)x =0, OM) G (x,-,x,+1 ) x (o,r]

v(x,o) = un+2< 3 (x), xe(xi,xi+l ),

v{xif t) = un+2/3(x,+), *G<o,r],

v(xi+l ,t) = un+2/3 (xi+l -), *G(o,r]

v(x,t) = i (x,t)x[x itXi+l) (x), (x,t)GMx (o,r],
t'=o

C(r)un+2/3 (x) = v(x, r), t> 0.

(xi,xi+ i) = {xi -A, xi+ i + A) ,

A. («n+2/3(*.+)) « o, A. («»+2/3(*,-+1 -)) « o.

»* + &.(»)* =0, (x,t)€Rx(o,r],
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with extended initial data given by

Then observe that «fl. .= v< and that TV (vf (•,<)) <TV (vf ), see Lemma3.2. This gives Tl/ («, ( ,<)) <I ij*i + 1 /
TV (vi(-, 0)), from which it obviously follows that

Hence, (C2) holds. Since the shocks in Vi(x,i) propagate at finite speed and since the variation is finite (C2),
we obtain

(31)

where we have assumed that r = cAt for some non-zero constant c. Thus, (C3) holds. By assuming a slightly
stronger relation, namely, r = c(At) 7asAt — 0 , where 7>ois an arbitrary small number, (C4) follows
from (C3). This condition has no practical consequences from a computational point of view, but note that
in "worst case" scenarios the operator 7i^x (At) can destroy significant structures of un+l l3 (e.g. monotonicity
properties and local extrema), so that C{t) possesses no correction effect when applied to un+2' 3 . Consequently,
the condition r = c(At) becomes necessary in order to ensure convergence to the true solution.

However, in more typical applications where 7^X (A/) conserves the structures of un+l l3 , this estimate can
certainly be improved upon. To this end, we will therefore apply the correction operator only if the following
two conditions are fulfilled. First, we assume that

(32)

Note that (32) is necessary for the conservation law (28) to actually possess a correction effect on un+2 13.l 3 .
Consequently, on intervals (x,-, x,+ i) where (32) is violated, the correction operator operator is not applied since
it would not have the "right" correction effect there. Secondly, we assume, the relation

(33)

where C is some finite constant independent of the discretization parameters and the position x,-, but dependent
on the initial function and the flux function. This condition is, however, merely a technical assumption associated
with the subsequent convergence analysis. The assumptions (32) and (33) imply that

(34)

where v(x,t) is given by (30) and t £ (0, r]. Now let Vi(x,t) denote the solution of (28) and (29), and let

where u>h (x) is a standard C%° - mollifier with smoothing radius h. Then we have that the smooth function
v^(x,t) satisfles the equation

' un+2'3(xi+), for x < Xi,

v(x,o) = ) un+2 l3 {x), for x E (xi,xi+l ),

k Un+2 < 3 {xi+l -), fOTX>Xi+l .

TV {C{r)un+2'3) <TV (un+2'3)

f (c(r)un+2/ 3 (x) - un+2 '3 (x)) dx

v"> fX '+1-22 I ' u^x ' r) " v,'^ x ' °)' dxi j*i
<Co„st..YjTK(«"«/3 | (iil|+i))r
< Const. • TV (un+2/3) r < M3At

(fLY («n+2/3(^)) >0, (fLY (u»+2' 3 (xi+1 )) <0, i = 0, . . . ,Nn

un+2' 3 (xi) - un+^3(xi)\ < Cy/Al, i = 0,..., Nn+l ,

\v (xi,t) - ui\ = O {yjApj , i = 0, . . . , Nn+l

v?(x,t) = (ujh *vi(-,t)){x,t), (x,t)e{xi + h,xi+l -h) x (o,r],

tølt + tø], =0. 9i(x ,t) = (uh*gi(vi(;t)))(x,t), 9i (v) = pres (v).
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Integrating [v*]. + [g*] = 0 against a test function <f> £ Cq° over (x,- +h, Xi+\ —h) x (0, r), and using the fact
that /res (x, un+l /3(x)) = 0 for all x, wc can calculate as follows

Here BT^1 denotes the boundary terms arising from integration by parts, i.e.,

Håving (34) and gi (Hi) = 0 in mmd, wc can estimate /,- (x,) (and similarly for /,- (x,+i)) as

so that \BTi\ < Const. • H^H^ rAx. Consequently, by summing over all i = 0, ... , iVn , wc get

where wc also have used Lemma 3.4, the second part of (22), and that r = cAt. Thus wc have obtained that
the correction operator, whenever applied, satisfles (C4) with 7=l/2 when r = cAt.

/ (vi(x,T)-Vi(x,Q))(f>(x) dx
Jsi

= lim r+l (^(x,r)-t;f(x,o))^(x)Lxh ~*° Jx,+h

= lim // ' [g?(x,t)] <p(x)dxdth -+° Jo Jx t +h

< lim f/ ' g?{z,t)[<Kx)]x dxdt + }im|s3?|ft —° Jo Jx,+ft ft->0

< ll^lioo fr ' 9Mx,t))- 9i fun+l / 3 (x))\dxdt+]\m\BTth \J 0 ** X i

< \\M~f f* \9i(v(x,t))- 9i (u"+2/3(x))| dxdt

+ H^lloo |T /*' '|* (un+2/3(x)) ~ <7« (un+l/3(*)) Idxdt + lim |B7?|

< Const. • ll^ll^ / / i;,(x,t)-u"+2/3(x) dxdtJO Jx,

+ Const. -ItørlL ff' wn+2/3(x) - un+l ' 3 (x) dxdt+)im\BT?
JO Jx, A_>o

BT? = f (<7?(*,+i - h,t)<f>(xi+l -h)- g?(xi -{- h,t)<f>{xi +h) dt.Jo

Wc estimate the boundary terms BTi = lim/i_>o BT- 1 as follows

BTi\= f (gi(vi{xi+I ,t))4>(x i+l )-gi{vi(xi,t))<f>(xi))dtJo

<IWIoo/ \9iM*i+iÆ<H + \\<l>\\oo f \9i(vi{xi,t))\dtJo Jo
= Ii(xi+l ) + li(Xi).

li (*l) = IMI. / I* («*(*<.')) - * («»)l *Jo

< Const. • ItøH^ / h(*i,<) - tt<| dt < Const.  |tø|| TO ry/At,Jo

/ (c(r)un+2/3 (x) - txn+2/3 (x)) <f>{x)dx

< Const. • ll^H^ (ff \v(x,t) - wn+2/3(x)| + |un+2/3(x) - un+l/3(x)| dxdt) + Const. • HØj^ tVa!

= O ((A<)3/2 )
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Remark. Note that the correction time r is a parameter which has to be chosen properly in order to decrease
the temporal splitting error. Observe therefore that it is possible to define the COS algorithm alternatively as
follows: We let step 1 remain as before, whereas steps 2 and 3 are replaced by a new step 2'. The new step
consists of solving the parabolic problem

(35)

in the weak sense, thereby yielding a splitting formula of the form

Here V*res (t) is the solution operator associated with the parabolic equation in (35). This alternative way of
viewing COS is important for practical applications of the method, since the undetermined parameter r now
is eliminated. By construction, equation (35) contains the necessary information for ensuring correct balance
between convection and diffusion. In fact, when the solution of (1) is simply a moving shock front, it is possible
to show that (35) will generate shock layers of the correct size 0(e). Consequently, one should have this equation
in mind when choosing the correction time r.

Furthermore, note that the function C{At) o 7iAx (At)un+l^3 can be viewed as an approximation to the
solution of (35) at time t — At. In practical applications one might introduce local time stepping in order to
circumvent the problem of determining r. Choose At and h such that nAt = At and use the approximation

(36)

instead of (35), or alternatively the Strang-type splitting

The reason for doing this is to better capture the nonlinearity inherent in (35), i.e., to obtain the correct balance
between nonlinear convection and diffusion.

Finally, let us mention that an implementation based on the alternative COS algorithm (step 1 and 2') is
presented and thoroughly tested in the companion paper [15]. Here, the solution of the parabolic equation (35)
is approximated by a Petrov-Galerkin type finite element method. The main observation is that a substantial
decrease in the temporal splitting error is obtained by solving (35) instead of merely the heat equation.

3. Convergence analysis. In this section we justify the term "approximate solution" by showing that a
sequence of COS approximations is compact in Ll°c , and that the limit of a convergent subsequence is a
solution to (1). Convergence of (25) is obtained for any correction operator C(t) that satisfles the four regularity
conditions (C1)-(C4). The compactness argument is standard in the context of conservation laws, and consists
in establishing å priori bounds on the amplitude and the derivatives of the approximate solutions independent
of the discretization parameters Ax, At, and 6.

We need to consider functions defined in the interval (O,T], and not merely on the time-strips t = nAt. To
accomplish this, define the sequence {t^} >0 by

(37)

where n = (Ax,At,6), un+l^3 = Sf'(At)un , and u"+ 2/3 = 7i^x (At) un+l /3 . This method of extending
{un }n=o to a function defined for all t > 0 was first used by Crandall and Majda [s], see also [14].

Lemma 3.1. The following maximum principle holds

(38)

Proof By the construction based on solution of Riemann problems, we know that that the operator S*6 (t) do
not introduce new minima or maxima, and neither does the projection operator it nor the diffusion operator
Hu (t). According to assumption (Cl), ||C(r)u" +2/'3 || < M\. Thus, Lemma 3.1 follows by induction on n.  

wt + [/«,(*, w) - eu(w)x]x =0, w(x, 0) = un+l /3 (x), (x, t) eR x (0, Ai]

un+l _ fp/re.(At)o^(At)l Un .

{c(At)oH"Ax (At)] n un+l /3 (x)

C (A*)o«^(f)]" u»«/3.

' St* (2 (t - nAt)) un (x), t E (nAt, (n + §) At),

uv (x,t)=l Hu (2(t- (n+±)At))un+V3 (x), te[(n+±)At,(n+l)At),
k C(r)un+2/3 (x), t = (n+l)At,

lk(-,Olloo< Mi> te{o,T\.
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Lemma 3.2. Wc have the following bound on the total variation

(39)

Proof. Again by construction (see [13]) wc have that TV (S^6 (t)un ) <TV (un ). From general theory of para
bolic equations wc know that the same is true for the operator Hv (t). According to (20), TV (irg) < TV (g).
From assumption (C2) wc have that TV (C(r)) < M 2. The lemma now follows by induction on n. O

Lemma 3.3. Let there be finite constants Ci and C 2such that the function u :R x (O,T] —+ IR satisfles

Assume that u(x,t) is weakly Lipschitz continuous in the time variable in the sense that

(40)

for all <f> GCq and o<t\ < t 2 <T. Then there is a constant C, depending in particular on Ci and C 2, such
that the following interpolation result is valid

(41)

Proof. Let coh(x) be a standard C^-mollifier with smoothing radius h. Let d(x) = u(x,t 2 ) — u(x,ti), and define
/3(x) = sign(d(x)) for \x\ <r — h and f3(x) = 0 for |x| >r- h, where r > h. Moreover, define /3h = w/, * (3,
and note that (Jh 6 C°° with support in [—r, r]. By choosing <f> = (Jh in (40) and recalling several elementary
properties of the mollifier function (see e.g. [17, Lemma 1]), it follows that

Here wc mention that Ci depends on C 2 and C 2depends on Ci. Choosing h = y/t 2 —ti and letting r — 00,
wc obtain (41).  

Lemma 3.4. There is finite constant M, independent ofr], such that

(42)

Proof. According to the previous lemma it is enough, thanks to the d priori bounds (38) and (39), to establish
weak Lipschitz continuity in time of the splitting solutions. Without loss of generality, assume that ti = kAt and
t 2 = lAt for some integers k and / with k< l. Integrating the differential equation for w(x,t) = Ti" (t)un+l ' 3 (x)
against <f>(x) over Mx (t,t + At), gives

TV(un (.,t))<M2 , te(O,T).

M;t)\\oo<Cu forallte(Q,T]
TV(u(-,t))<C2 , forallte(o,T]

/ <j)(x)(u(x,t 2 ) - u(x,ti)) dx < Const.  (t 2 - ti) (HØHoo + \\<f>x \\oo)

\\u(x,t 2 ) - u(x,ti)||i < Cy/h -tu o<ti<t2 <T.

/ \u(x,t 2 ) - u(x,ti)\ dx

< I f \\d(x)\ - /3h {x)d(x)\ dx\+\f \ph (x)d(x)\ dx\J—r \J —r
<Cih + C 2(t 2 -ti)/h.

IX (;t2 ) -Un ( <!)!!, < My/h^U, o<h<t2 <T.

/ <j>{x)(nv {t + At)un+l ' 3(x) - Hv {t)un + l l3 {x)) dx

/t+At f
/ <j)(x)eu(w(x,i))xx dx di

/t+At /•/ <f>(x)xev(w(x,Z))x dxdi

/t+At *I \w(x,Ox\dxd(

< Const. • lI^HooTV (un+l/3) At.
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Due to finite speed of propagation, we have a stronger estimate for the solution operator Sts (t), namely

By assumption (C3), a similar estimate holds for the operator C(r). Using the recently obtained continuity
estimates, the last part of (20), and Lemma 3.4, we readily compute that

where we also have tåken into account the second part of (22) and that r = cAt. The proof is now closed by
appealing to Lemma 3.3. D

Lemma 3.5. Let {n} be any sequence tending to zero. Then there exists a subsequence {nj} and a function u
such that the corresponding subsequence {unj } converges to uin C ([O,T] ;Ll°c (R)).

Proof Let us fix t G (O,T], and let {—r, r) be a bounded open set in R. From Lemma 3.3 and 3.4, we know
that {uv (-,t)} is bounded in Li ((—r, r)) fl BV((—r, r)). Using the compactness of the imbedding

Li({-r, r)) fl BV((-r, r)) - L x {{-r, r)),

we know that there must exist a subsequence {w^(-, t)} converging strongly in Li({—r, r)). Thus, from standard
diagonal arguments one deduces the existence of a further subsequence, still denoted by {«Vi (-, i)}, and a
function u(-,t) € Ll°c such that

Now let {tm } be a dense countable sequence in [O,T]. Applying the previous argument to each tm and doing
another diagonalization, wc find a subsequence, also denoted by {u^(-,<)}, and a function u such that

Using continuity in time of unj , i.e., Lemma 3.4, it is follows that {uVj (-,t)} is a Cauchy sequence in Z 0̂0 for
all t G [O,T]. Thus uVj (-,t) —> u(-,t) in Lx°c for all these f-values. A closer inspection will show that this
convergence is, in fact, uniform in t for t G [O,T]. This concludes the proof of the lemma.  

Next, we justify the term "approximate solution" by showing:

Theorem 3.6 (Convergence). Suppose that uo(x) is of bounded variation and that f(u) and v(u) are (locally)
continuously differentiable. Let {n} be any sequence of real numbers tending to zero. Then the corresponding
sequence of COS solutions, {ur,(x,t)}, converges to the solution of the initial value problem

Proof From Lemma 3.5 we know that there exists a subsequence, for notational convenience denoted by {u^},
which converges to a function u. We will continue along the lines of [14], by showing that the limit function u
is a weak solution in the sense (8). For <j> G Cq°(lß x (O,T]), define the functional

f (St»(t + At)un(x)-St'(t)un(x)) dx < Const. -TV(un )At.

/ <p(x)(uv {x,t2 ) - Urj(x,ti)) dx

'-1 I r
< y I / (j)(x)(uv (x, (n -f l)At) - uv (x, nAt)) dx

n=k '
I-l , A \

< £ Const - • At ( IHloo + ll^lloo + IHloo"^ + IWU^jn=k '
< Const. • (t2 - ti) (IMIoo + Halloe)

uVj (-,t) -«(.,*) in Lioc .

uVj (-,tm ) -f u(-,tm ) in Ll^ for all m.

ut + f{u)x - eu(u)xx , u(x,o) = uo{x), (x,t)eßx {O,T].

C(u, f,<i>)= If (ufo + fs(u)<j)x + ev(u)<j>xx ) dtdx+ / uo (x)<f>(x, 0) dx.
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Wc shall prove that C<f>(u) = 0 for all proper test functions <j>. Let vn (t) = S^s (t)un , t £ (0, At]
new test function 4> by 4>(x,t) = <f)(x,t/2). Then the following equality holds

and define a

(44)

— - Ur, (x, nAt) <f> (x, nAt) dx,

where wc have used the substitution £ = 2(t — nAt). Similarly

(45)

N — 1, wc obtain

\C(ut,Js

where

and w" ' (x) denotes W (At) un+l l3(x). Let us first consider E 2, which wc rewrite as E2= E2 + E2>2 where

Since <f> € Cs°(R x (O,Tj), wc may write <f> xx (x,t) = <j>xx (x,nAt) + G(t - nAt) for t > nAt. With the aid of
this, it is easy to see that l-E2.1l = O(At). The Ll -continuity in time (42) implies that

ff(n+l)At fl \
// ( -^u^t + fs(ur) ) <t> x \ dtdx

i » pAt
=2 11 (Mx,oi(x^ + s (vn {x,o)H^^ + 2nAt)x ) d£dx

=-I un (x, ( n +- J At) <f> ( x, (n +- J At) dx

r r(n + l)At /j \
/ / o Vitt + u (ur))4>xx ) dt dx

JJ(n + \)At V2/

= - I Ur, {x, (n-r l)At~) <f> (x, (n + l)At) dx

- 2 f un (*» (« +2) At ) ( æ > (n+ 2) AW dx -

Adding (44) and (45), and summing over n = 0,

4
*)l<£M*l't=i

"zt f f /•("+ 1 )A1/•(»+£)** \
El= 22\ h(ur] )<j>x dt-2 I f 6( Uri )<f>x dt] dx,

n_o J \JnAt JnAt J

N~ l r f f(n+l)At r(n+l)At \
E2 — £V] / / v(ur,)<j>xx dt-2 v(ur,)<pxx dt I dx,

n=0 J \Jn** J(n+i)*t ]
N-l

E3 =J2 (™-+2/3 (*) ~ un_+2/3(x)^j <f>(x,(n+ l)At) dx,n=o t
N-l

E4 =Y (c(T)un+2'3 (x) - wn+2/3 (x)) 4> (x, (n + l)At) dx,n=o t

N ~ l r / r{n+l)At r{n+l)At \

#2,1 = g /! /( / <f)xx(x,t)dt — 2 / <f)xx (x,t)dt )i/(w^(x,nAi))dx
./ \./nAt 7(n+ I)Al /

£2,2 = £ V, /( / (z/(u r7 (x,i))-i/(uf7 (x,nA<)))^xa; (x,f)d<
n=0 7 V-ZnAt

r(n+l)A< x
- 2 / (^K(*, 0) ~ *(« ?(*> nAt))) <f>xx (x,t) dt dx.

J(n + ±)At J

N-l ,(n+ l)At /•
|#2,2| < Const.  elMloo >J / \uTl (x,t)-Ur,(x,nAt)\dxdt = o(VAi)

n=0 JnAt J V '
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Consequently, \E2 \ = 0(y/At). Similarly, one can deduce that |£i| = O (y/At).
Next, the error due to the projection operator can be bounded as follows

\E3

where we have used (18), (20), Lemma 3.3, and the first part of (22).

It remains to estimate E4 . Using assumption (C4), we obtain that | JE7^| = O (y/At + (At)1 ). Thus we have

Håving the second part of (21) in mind, we easily calculate

In view of Lebesgue's dominated convergence theorem, we conclude that

where u — lim^_*o wr?- Since the solution of (1) is unique, the whole sequence {uv } converges. This concludes
the proof of the theorem.  

4. A discrete method. In this section consider an application of the corrected operator splitting algorithm
in the case of a linear diffusion coefficient. To obtain a fully discrete version of

we must choose a proper numerical scheme for integrating the linear heat equation (4). From a computationally
point of view we ought to impose some kind of boundary conditions on the parabolic equation (1). For ease of
presentation, consider therefore the parabolic equation

(46) (x,t)e(a,b)x{o,T],

with initial and boundary data imposed as follows

u(x,o) — uq(x) x E (a,b)

te(o,T]

te{o,T]

(47)

where (a,b) CR, and ua and uj are constants. We assume that the initial and boundary data are such that
the convection solution (23) remains consistent with the boundary data for all time t £ {O,T\.

EE / (™-+2/3 (*) - ul+2/3(x)) <j> (x], (n + l)At) dxn=o j J*?
N-l .

+E E / (™n-+V3 - "-+2/3(^)) (<f> (x, (n + l)At) - <f> (x], (n + l)At)) dxn=o j Jzj
N-l .

EE / {™-+2/3 (x ) - U-+2/3 (x)) (<t> (*, (" + l)At) - <j> (x], (n + l)At)) dxn=o j J*j
N-l ,

< ll^HooAx EE / ™-+2/3(*) " U-+2/3(x ) dxn=o j Jz7

<TV (^+2/3) ll^Hoo^Ax)2 = O (Ax) ,

arrived at

|£(«1./«.*)l = o (Ax + VÅI -r (A*)7 )

= o (ax + VÅI + (Aty^j +1 / / (/K)-/«(«,)^.) ««rf*

= O (Ax + y/At + (A<)7 ) + Const. • ||/ - f6 \\æ

= O (Ax -rVAt-r(Aty + 62) .

C(u, f, <f>) = lim C(uv ,f,<l>) = 0,

Mn+l = [C(r)onAx (At)oSf6 (At)]un , n = 0,... ,N-l, NAt =T,

ut + f(u)x =euxx ,

u(a,t) = va,u a ,

u(b,t) = vi,
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Wc use a finite element method for the solution of the linear heat equation (35), with "elements" determined
by the discontinuities in the front tracking solution S*6 (t)vo(x). In order to ensure convergence of our method,
wc add nodes whenever the spacing between two discontinuities becomes larger than Ax. Let TC Ax (t) denote
the operator which takes an initial function

to the (projected) approximate solution of (35) obtained by the element method using basis functions <Pj(x),
j = 1, . . ., M. Wc assume that these basis functions are associated with Ax such that M — oo as Ax —+ 0.
The approximate solution is then written as

where £j(t) is the solution of the following system of ordinary differential equations

(48)

Here /(•, •) denotes the usual bilinear form associated with the right-hand side of (35). For a description of finite
element methods for problems such as (35), see [16].

Now let Urj(x,t) denote the fully discrete analog of (37). By mimicking the proofs in section 3, it is not
dimcult to prove the following lemma.

Lemma 4.1. Wc have that the fully discrete uv (x,t) satisfles the following three å priori estimates

where K is some number independent of the discretization parameters n, and h(t) is a uniformly continuous
function with h(0) = 0.

Consequently, wc obtain compactness of the sequence {uv }. Furthermore, it is not difficult to demonstrate
that the limit of a converging subsequence is a weak solution to (46), and then that the following convergence
theorem is valid.

Theorem 4.2. Assume that Uq(x) is of bounded variation and that f(u) is continuously differentiable. Then
u(x,t) = lim^-^o uv (x,t) is the solution of the initial-boundary value problem (46) and (47).

Wc close this paper by presenting some numerical experiments with the fully discrete COS method applied
to the Burgers equation [4] and the Buckley-Leverett equation [22]. To clearly demonstrate the effect of the
correction operator, COS is compared with the standard splitting OS. Its implementation coincides with the
one obtained by setting the correction time to zero in COS.

In the computations presented below wc have set the distance between the interpolation points in the flux
function to 6 = 0.05. The spatial domain is discretized using 64 nodes, and wc are consequently using one time
step to reach final computing time t = T. The diffusion coefhcient e is kept fixed at 0.005 and the correction
threshold parameter ctr at 0.1. The integration of (48) is done by Euler's backward method. Furthermore, the
finite element method uses piecewise linear basis functions of the type

where the numbers {x"} are the grid nodes that coincide with the discontinuities in the front tracking solution.
According to (25) the COS solution at final computing time t = T is piecewise constant. In applications

one should replace this solution by a proper piecewise linear function so that second order accuracy in space is
obtained. However, for clarity of presentation, wc have chosen to visualize the OS solutions as piecewise linear
functions and the COS solutions as step functions. For comparison, we have generated "exact" solutions using
OS with very fine discretization parameters.

M

n^{t)wo{x) = *l£tj(tMx)\

M M
£W)(w,w) + eEW(w,«) =0, *= 1 Af.j=i j=i

IK(->*)lloo<#> TV(un (;t))<K, ||«l| (. > t 2)-uI,( ar > t l )|| I <A'A(|* 2 -*!!),

'0, ifx<x7_!,

<fj(x)= <1, if x = x?,

kO, ifx>x?+1 ,
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Example 1 (The Burgers equation). We first consider the Burgers equation

(x,t)e(o,l)x(o,T],

with initial and boundary data; u(x,o) = X<o,i)-[0.2,0.6](z) and u|j;=o = u\x= i =0. We compute solutions up
to time T = 0.3 using one time step (Af = 0.3). In Figure 4.1 we show the results of COS using correction
times r = 0.2 • At (middle plot) and r = 0.37 • At (right plot). The residual flux term generated by the COS
algorithm is shown in the leftmost plot. The true solution is non-monotone and contains a strong shock front
located around 0.75. Our only interest is to see if COS can resolve the shock layer using one time step. For the
problems under consideration we know that the size of the shock layer should be 0(e) [25]. We see that the
layer produced by OS is (several) orders of magnitude too wide. A slight improvement is seen for COS with
correction time r = 0.2 • At. However, by increasing the correction parameter to r = 0.37 • At, COS obtains
the correct size of the shock layer. To sum up, for this example we see that the correction operator has the
promised properties; that is, it manages to correct most of the errors introduced by the heat equation, at least
when then correction time is properly chosen

Rradual mk lem aong on [0i6.0 .92] COS vs OS; corrtcton kra o.37'dt
0-S]

0.4

0.3

0.2

7
0.1

0

-i.l

-021

Figure 4.1. Example 1. The computations are done with 64 grid cells, 20 linear interpolation points, and 1 time step. Left:

Residual flux function. Middle: COS with correction time 0.06. Right: COS with correction time 0.111. For a proper choice of the

correction time we clearly see (right) that the error introduced by the heat equation is corrected so that (almost) the right size of
the shock layer is obtained.

Example 2 (The Buckley-Leverett equation). Next we consider the two phase flow equation

(49) OM) €(0,L5) x (0, T],

with initial data

and boundary data; u\x=o = 1 and uj*si.s =0. We now compute solutions up to time T = 0.6 using one time
step (At — 0.6). The true solution still contains a strong shock front. The results are presented in Figure 4.2.
Also this time wc see that OS is far too diffusive in the shock front region. Furthermore, COS manages to
resolve the shock front when the correction time is r = 0.18 • At, see the rightmost picture.

Finally, let us consider (49) with non-monotone data; u(x,o) = X(0,i.5)-[0.2,0.6](^) and u\x=o = u\x= i_ 5 —0,
which results in the generation of two residual flux terms, see Figure 4.3 (left and middle). Solutions are
computed up to final time T = 0.4 in one step (At = 0.4) and they are depicted in Figure 4.3 (right plot). Here
we have only shown COS with an "optimal" correction time; r = 0.2 • At, in which case the desired correction
effect in the shock regions is as evident as in the previous computations. Observe that there is a slight loss of
amplitude that comes from the diffusion step and that this loss is a consequence of the large time step. This
type of error cannot be corrected by adjusting the parameter r. Instead a smaller time step, or alternatively
the splitting formula (36), should be employed. The "local time stepping" formula (36) is designed so that
significant loss of amplitude cannot occur during the diffusion step.

5. Concluding remarks. The standard two-step viscous splitting method has a tendency to be too diffusive
when applied to convection dominated parabolic equations. In the present paper we have shown that it is

«*+ f -zU 2 ) =£UXX ,

COS vs OS: correction Urne o.2'rjt

f u 2 \
Ut+ \ o , n To ) =£UXX ,

W + (l-u)2 J x

/ s f1- Zx, for o<x < |,
uq(x) = < ,

10, for § < x < 1.5,
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COS vs OS, corracttxi tm 0 .05' n

U

0.6

04,

0.2

0!

-02;

-0.41

Figure 4.2. Example 2 (monotone data). The computations are done with 64 grid cells, 20 linear interpolation points, and 1
time step. Left: Residual flux function. Middle: COS with correction time 0.03. Right: COS with correction time 0.108.

Resdual flux term teting on [0.54.0.62] Residual «is term actng on [0.94. 1 .41 1 COS vs OS; correction Hm OTd

0.9j

01

0.7

0.6

Soi|

0.4

0.3

0.21

0.1

oi

Figure 4.3. Example 2 (non-monotone data). The computations are done with 64 grid cells, 20 linear interpolation points, and

1 time step. Left and Middle: Residual flux function. Right: COS with correction time 0.08. Also in this non-monotone case

(with several anti-diffusive flux terms) we see that COS resolves the shock front notably better than OS. Note that there is a loss

of amplitude due to a large time step (see the text for a partial discussion) .

possible to construct a residual flux term which can be employed in a third step to correct smearing errors
introduced in the diffusion step. Alternatively, as pointed out in section 2, this residual term can also be
included in the diffusion step, yielding a more complicated equation modeling diffusion. However, this equation
contains the necessary information to ensure the correct balance between convection and diffusion, see [15] for
numerical examples verifying this claim. The numerical examples given in the present paper indicate that the
correction (anti-diffusive) effect is significant in the shock layer regions when the residual flux term is used in
an explicit correction operator (25). The front tracking method plays a central role in the construction of the
residual flux term.

Finally, we would like to mention that we plan to extend this approach to degenerate (mixed hyper
bolic/parabolic) equations [27] and equations with explicit spatially dependent coefficients, so that our tech
niques can be applied to the equations arising in the modeling of two phase flow in a porous medium [22].
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discussions.
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