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ABSTRACT. In this paper wc present and analyse certain discrete approximations of solutions to scalar, doubly non
linear degenerate, parabolic problems of the form

under the very general structural condition A(±oo) = ±00. To mention only a few examples: the heat equation,
the porous medium equation, the two-phase fiow equation, hyperbolic conservation laws and equations arising from
the theory of non-Newtonian fiuids are all special cases of (P). Since the diffusion terms a(s) and b(s) are allowed to
degenerate on intervals, shock waves will in general appear in the solutions of (P). Furthermore, weak solutions are
not uniquely determined by their data. For these reasons wc work within the framework of weak solutions that are
of bounded variation (in space and time) and, in addition, satisfy an entropy condition. The well-posedness of the
Cauchy problem (P) in this class of so-called BY entropy weak solutions follows from a work of Vin [18]. The discrete
approximations are shown to converge to the unique BY entropy weak solution of (P).
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§1. Introduction.
In this paper wc present and analyse certain finite difference schemes for a class of scalar, doubly nonlinear

degenerate, parabolic equations in one spatial dimension. Nonlinear parabolic evolution equations arise in a
variety of applications, ranging from models of turbulence, via traffic flow, fmanical modelling and fiow in porous
media, to models for various sedimentation processes. The problem wc study here is of the form

(1)

where
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r
(P) dt u + dx f(u) = dx A{b(u)dxv), u(x,O) = uo (x), A(s)= a(£)dt, a{s) >0, b(s) >0,

Jo

(dt v + dx f(u) =dx A{b(u)dx v), {x,t)£QT =Mx (O,T),

|w(æ,O) = u o (x), iGffi,

A(s) = / a{i)d£, a(s)>o, b{s) > 0Jo
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Wc assume that a(s), b(s), f(s) and u o (x) are appropiately smooth functions. The functions a(s) and b(s) are
allowed to have infinite number of degenerate intervals in R. Difficulties arise because of this double degeneracy
as well as the double nonlineamty represented by the nonlinear functions a and 6. By defining B as

6(0 # 

wc may write (1) as

(2)

Examples of such equations include the heat equation, the porous medium equation and, more generally,
convection-diffusion equations of the form

(3)

Included are also hyperbolic conservation laws

(4)

as well as certain equations arising from the theory of non-Newtonian fluids,

(5)

Kalashnikov [10] has established the existence of continuous solutions of the Cauchy problem for (2) when
/ = 0 under some smoothness and boundedness conditions on the initial data ug and some structural conditions
on a(s) and b(s). In particular, these conditions imply that a(s) and b(s) may have degeneracy at and only at
the origin s = 0. Wc also refer to some recent work by Lv [14] for results concerning the regularity of solutions
when the equations are degenerate at points at which u and dx v vanish.

The more interesting cases are those in which a(s) and b(s) may have infinite or uncountable points of
degeneracy. A striking feature of such nonlinear strongly degenerate parabolic equations is that the solution
will generally develop discontinuities in finite time, even with smooth initial data. This feature can reflect the
physical phenomenon of breaking of waves and the development of shock waves. Consequently, due to the loss of
regularity, one needs to work with weak solutions. However, for the class of equations under consideration, weak
solutions are in general not uniquely determined by their data. Therefore an additional condition, the so-called
entropy condition (see (b) below), is needed to single out the physically relevant weak solution. Hence attention
focuses on finding a physically reasonable framework which incorporates discontinuous solutions and at the
same time guarantees uniqueness. The concept of a (weak) solution, which wc adopt to the Cauchy problem
(1) in this paper, is that of BY entropy weak solutions as formulated by Vin [18] for the initial-boundary value
problem. Wc shall say that u(x,t) is a BY entropy weak solution (see §2 for precise statements) if

(a) u(x,t) is in BV(Qt) and B(u) is uniformly Holder continuous on Qt-

Letting k —* ±oo in (b), wc see that (1) holds in the usual weak sense. Vin [18] has shown well-posedness of
the initial-boundary value problem assuming only the (very general) structural condition

(6)

The well-posedness for the Cauchy problem (1) in the class of functions satisfying the conditions (a) and (b)
follows by a similar analysis, see §2. Here wc should also note, as pointed out by Vin, that the assumption (6)
on A is needed only for the existence result. Under the additional assumption that B(s) is stnctly increasing,
which permits b(s) to become zero in some set of measure zero, BY solutions are continuous. Esteban and
Vazquez [7] studied the occurrence of finite velocity of propagation for the solutions of the special case (5). In
particular, they showed that the interface of the equation is nondecreasing and Lipschitz continuous. Wang and
Vin [16] have investigated the properties of the interface of the solution for the general problem (2) when / = 0.

Since the diffusion term dx A(b(u)dx v) can degenerate both in a and 6, different kinds of interactions between
nonlinear convection and nonlinear diffusion will take place. The (lack of) smoothness of the solution is a result

B(u) = fJo

dtu + dx f{u) = dxA{dxß{u))

dt u + dx f{u) = d;B(u).

dt u + dx f(u) =Q,

dtu = dx (dx um \dx um \ n ~ 1 ), n>l,m>l,

which corresponds to the case A(v) = v\v\ n x and B(u) =um

(b) dt\u-c\ + dx [sign(u-c){f{u)-f(c)-A(dx ß{u)))} <0 (weakly).

A(+oo) = +00 and A{—oo) = —00
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of the (lack of) balance between the convective and diffusive fiuxes. In the following wc will briefiy discuss some
simple numerical examples whose purpose is to demonstrate the effect of the degeneracy in a and b on intervals.
As long as the diffusion term is nondegenerate (a, 6 > 0), there is a perfect balance between the convective and
diffusive fiuxes and the equation then has a classical smooth solution. The degeneracy which may occur in a
or/and 6, implies that there is a loss of regularity in the solution.

First wc discuss the effect of degeneracy in a. For this purpose, let us consider the equation (1) when b{u) = 1.
Wc then have equations of the form

dx A{dx v).(7)

for s G (— oo, —5),
for s G [-5,-1),
for s G [-I,l],
for s G (+l,+s],
for s G (+5,+00).

intervals [—5, —1] and [1,5]. In Figure 1 (left) wc have plotted
acy introduces only a 'mild' loss of regularity in the solution due
fiuxes will be in balance for large gradients. Hence no jumps willto the fact that the convective and diffusive

arise in the solution.
Next wc consider the general problem (1). When b(s) is zero on an interval, jumps will in general occur in

the solution. Let / be the Burgers flux function as before, while A is the function given by (8) and b is the
continuous function given by

for s G [0.6, 1].

In Figure 1 wc have plotted the solution of this degenerate parabolic problem (right) at time T = 0.15. It is
instructive to compare this solution with the solution of the corresponding conservation law (4), see Figure 1
(middle). In particular, wc observe that
despite the fact that / is convex. In th
structure than the solution of the consei
while the speed of the jump of the con
condition), the speeds of the jumps in i.
A(dx B(u)), see §2 for precise statements

the solution of the degenerate problem has a 'new' increasing jump,
that sense the solution of the degenerate problem has a more complex

conservation law (4), as well as the solution of the problem (7). Moreover,
conservation law solution is determined solely by / (Rankine-Hugoniot

the solution of the degenerate problem are determined by both / and
of the jump conditions

-1 -0.8 -0.6 -O.< -02 0 02 0.4 0.6 08 1  1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0 4 -0.2 0 0.2 0 4 0 6 0.8 1

Figure 1. Left: The solution of Burgers' equation with a diffusion term A which degenerates on intervals. Middle: The solution
of the inviscid Burgers' equation. Right: The solution of Burgers' equation with diffusion terms A and B which degenerate on
intervals.

Convergence of explicit monotone finite difference schemes has been established recently [8] for the special case
A(s) = s. To the best of our knowledge, for the general case no convergence results for discrete approximations
are available. The analysis presented here follows along the lines of [B]. Both works were inspired by the theory
developed by Crandall and Majda [4]. However, due to the double degeneracy as well as the double nonlinearity,
the analysis in the present case is significantly more involved than in [4,8].

dt u + dx f{u)

Let /be the Burgers flux f(s) —s 2 and A the continuous function

'8 + 4,

-1,

(8) A(s) = < s,
+1,

. 8-4,

Hence A satisfies (6) and degenerates on the two intei
the solution at time T = 0.15. The degeneracy intrc
to the fact that the convective and diffusive fluxes w

( 0, for s G [0,0.5),

b(s)= I 2.55-1.25, for s G [0.5,0.6),

[ 0.25, for s G [0.6,1].
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In what follows, wc restrict our attention to implicit three-point difference schemes. That is, wc consider
discretizations of (2) of the following form (see §3 for more details )

0)

where h denotes a monotone and consistent numerical flux function, Ax,At are the mesh sizes and D+ ,D^
are the usual forward and backward difference operators respectively. Extension to general p-point monotone
schemes follows easily. Note here that wc choose to discretize the diffusion term written on its conservative
form. In [8] wc observed that this seems to be essential in order to ensure that the scheme is consistent with
the entropy condition. In this paper wc show that (9) satisfies a cell entropy inequality consistent with the
entropy inequality (b). In addition wc establish several regularity estimates for the approximate solutions which
are sumcient to guarantee convergence (of a subsequence) to a limit. The main difficulty here is to show that
the discrete diffusion term possesses the regularity properties which ensure that the approximate solutions are
in BV(Qt)- This is obtained by deriving and carefully analysing a linear difference equation satisfied by the
numerical flux of the difference scheme (9). In addition it turns out that due to the double nonlinearity the
interpolants must be chosen carefully when constructing the approximate solutions. As a by-product of our
analysis, wc also establish the existence and regularity properties of solutions of the Cauchy problem (1), and
in that respect complement the work of Vin [18] on the intial-boundary value problem.

Wc should emphasise that this paper and the companion papers [8,9] (on strongly degenerate convection
diffusion equations) are intended as preliminary theoretical thrusts at the numerical approximation of non
classical solutions of degenerate parabolic equations, and they utilise discrete approximations which could be
somewhat 'too crude' for practical applications. Håving said this, wc are currently looking into the issue of
devising higher order difference schemes for degenerate parabolic equations. Another important issue that is
under investigation is the problem of deriving rigorous error estimates for our schemes. Wc also mention that
our interest in degenerate parabolic equations is partially motivated by the recent efforts made in developing
mathematical models for the settling and consolidation of a flocculated suspensions in solid-liquid separation
vessels (so-called thickeners). Wc refer to Biirger and Wendland [1] and Concha and Biirger [2] for an overview
of the activity centring around these sedimentation models, whose main ingredients are degenerate parabolic
equations.

Figure 2. The solution of the inviscid Burgers' equation with a bounded diffusion term A and 6(s) = 1

Before ending this introduction, wc should make some comments concerning the structural condition (6) on A.
Let us for a moment return to equation (7). Such equations have been studied more recently by Kurganov, Levy,
Rosenau [13,12] under the condition that A is bounded. In particular, they observe by numerical experiments
and analysis how the solutions develop infinite spatial derivatives in finite time from smooth initial conditions.
For an example of this phenomenon, see Figure 2 where wc have plotted the solution of the problem (7), but
now with A bounded. Intuitively it is obvious what happens. In this case the equation imposes an upper
bound on the amount of the diffusive flux while the convective flux may be as large as desired. When the fluxes
are no longer in balance, smooth upstream-downstream transit becomes impossible and a subshock is formed.
The importance of (6) used in this paper, is that under this condition it is possible to obtain an estimate
\dx ß(u(x,t))\ < Const from the estimate \A(dx ß(u(x ,t))\ < Const. This is obviously not true if A is bounded.

The rest of this paper is organised as follows: In §2 wc give a brief summary of the theory of doubly
nonlinear degenerate parabolic equations. Wc also recall some classical results needed from the Crandall and
Liggett theory [3]. In §3 wc present and discuss the discrete approximations. In section §4 wc derive a number
of regularity estimates satisfied by the discrete approximations. In §5 wc exploit these estimates to prove the
convergence (compactness) of the approximate solutions to the unique solution of (1).

Uj At Uj +D- (h(U?+\Ufå) - A(D+ B(U? +1 ))) =0,
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§2. Mathematical Preliminaries.
In this section wc recall the known mathematical theory of double nonlinear degenerate parabolic equations.

To this end, let Qbe an open subset of M d (d > 1). The space BV(Q) of functions of bounded variation consists

of all Lloc (£l) functions u(y) whose first order partial derivatives J^-, . . . , J^ are represented by (locally) finite
Borel measures. The total variation \u\ BV^ is by definition the sum of the total masses of these Borel
measures. Moreover, BV(Q) is a Banach space when equipped with the norm ||w||BV(n) = IMU 1 (n)+ \ u \BV(fi)-
It is well known that the mclusion BV(Q) C L d^ d-^(Q) holds for d > 1 and that BV{Q) C L°°(fi) for d = 1.
Furthermore, BV(Q) is compactly imbedded into the space L q (Q) for 1 < q < d/(d- 1). Finally, wc will also
need the Holder space C l '^{Qt) consisting of bounded functions z(x,t) on M x [O,T] which satisfies

In what follows, wc shall always assume, if not otherwise stated, that the structural condition (6) holds. Due
to possibly strong degeneracy, wc seek solutions of the Cauchy problem (1) in the following sense.

Definition 2.1. A bounded measurable function u(x,t) is said to be a BY entropy weak solution of (1) provided
the following two requirements hold:

1. u e BV(Qt) and B{u) G Cl '* (Qt)-

2. For all test functions <j) > 0 with support in M x [0, T) and any c £i

(10)

Definition 2.1 is similar to the one used by Vin [18] who studied the initial-boundary value problem. The
uniqueness proof for the Cauchy problem follows from the analysis of the corresponding initial boundary value
problem. In fact, the Cauchy problem is simpler since the BY solutions of the boundary value problem must
satisfy some extra conditions on the boundary. The following characterization of the set of discontinuity points
(jumps) of u can be proved along the lines of Vin [18].

Theorem 2.2 [Vin]. Let Tv be the set of jumps of u; v — {yx^t) the unit normal to Tv ; u (x o ,to) and
u+ (x 0 ,t 0 ) the approximate limits of u at (x o ,t o ) G Tv from the sides of the half-planes (t — to)vt +(z — xq)vx < 0
and (t - t o )ut +(x - xq)vx > 0 respectwely; u l (x,t) and ur (x,t) denote the left and right approximate limits of
u(-,t) respeciively. Let int(a,(3) denote the closed interval bounded by a and (3. Furthermore, define

Finally, let H\ be the one-dimensional Hausdorff measure. Then Hi - almost everywhere on Tv

(11)

(12)

|«+ - c\ut +sign(i/+ - c)[f{u+) - f(c) - (A(dx B(u))r sign+ vx - A{8x ß{u)) 1 sign" vx )]vx

< \u~ -c\vt + sign(w~ -c)[f(u~) - f(c) - (A(dx B(u)) 1 sign+ vx - A{dx ß{u)) r sign" vx )\vx .
(13)

By explicitly making use of the above jump conditions, the following stability result, from which uniqueness
follows, can be obtained along the lines of Vin [18].

Theorem 2.3 [Vin]. Let u\ and U 2be BY entropy weak solutions of fl) with initial functions uo t i and t/0,2
respectwely. Then for any t > 0,

\ui(x,t) - u 2 (x,t)\ dx < \u Oi i(x) - u Oi 2(x)\ dx.
ir IR.

Finally, wc note that the jump conditions in Theorem 2.2 can be more instructively stated as follows.

z(y,r)-z(x,t)\ < L(\y-x\ + \r-t\?), V x,t,y,r

for some constant L > 0 (not depending on x,y,t,r).

I (\u - c\dt <t> + sign(w - c)(f{u) - f"(c) - A{dx B(u)j)dx <j>) dt dx + / \u Q -c\dx> 0.
Qt K

+, . fl, »/*>o; . _ JO, */ s >O;sieir (s) = < sign (s) = <
10, ifs<Q, W I -1, z/s <0.

b(u) —O,Vu £ mt(u ,u+ ) and vx /0,

(u+ - u~)ut + (f(u+) - /(OK - (A(dx B(u)) r - A(dx B(u)) l )\ux \ =0,
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Corollary 2.4. Assume that b(u) = 0 for u G [u*,u*] for some u*,u* et. Let u be a piecewise smooth solution
of (1) and let Yu be a smooth discontmuity curve of u. A jump between two values u 1 and u r of the solution
u, which wc refer to as a shock, can occur only for u l ,u r G [w*, w*]- This shock musi satisfy the followmg two
conditions:

1. The shock speed s is given by

(14)

2. For all c G int(u\ur ), the followmg entropy condition holds

(15)

Proof. For u G L°°(Qt) H BV(Qt) it can be shown that the following relation between u + ,u ,ur and u l holds
Hi almost everywhere on F* = {(x, t) GTu :vx 0}

(16)

These identities are non-trivial and wc refer to [17] for a proof. Since \vx \ - (sign+ vx + sign vx )uXi (12) can
be written as

(17)
(u+ - u~)ut + (f(u+ ) - f(u-)) vx - « sign+ ux - wlu sign~ vx ) vx + (w lv sign+ vx - wru sign vx ) vx =0,

where w ru = A(dx ß{u)) r and w'u = A(dx ß{u)) 1 . For c G 'mi{u~ ,u+ ) = mt{u l ,ur ) (by (16)) wc have the relation
sign(w+ -c) = - sign(w~ - c). In light of this and (17), wc now use (13) and perform the following calculation.

Hence

or

(18)

Similarly, wc can show that

(19)

[/«) - A(dx ß(u)Y] - [/(t/') - A(dx B(u)) 1 }
ur —u l

[f{ur )-A(dx ß(u)Y]-f(c) < [f(u l )-A(dx ß(u)y}-f(c)ur - c ~~ ~ u1 - c

u+ (x,t) = ur (x,t)sign+ vx - u'(æ,t)sign vx

u (x,t) — w'(x,i)sign+ vx - wr (x,t)sign+ vx .

sign(w+ -c) [(u+ - c)ut + (/(w+ ) - /(c)) vx - « sign+ i/æ - w'u sign i/x ) i/x ]

< - sign(u+ -c) [(u - c)ut + (f{u ) - f(c)) vx - (iu lv sign+ vx - wru sign vx ) vx)

= -sign(w + - c)[(u~ - u + )ut + (/(ti ) - f{u+ )) Vx + {u>ru sign+ i/j. - sign vx) vx

- (wlv sign+ vx - wru sign vx ) ux ]

- sign(u+ -c) [(u+ - c)ut + (f(u+ ) - /(c)) ux - (wru sign+ vx - w lu sign z/^) vx

+ (i^y sign+ i/x - wru sign" i/j.) i/j. - (iwj, sign+ z/x - w;^ sign" z/r ]

-sign(w+ - c)[(m+ - c)i/< + {f(u+ ) - f(c)) vx - (wru sign+ vx - w lu sign i/e ) i/j.].

sign(u+ -c) [0+ - c)ut + (f(u+ ) - f(c)) vx - {yfu sign + vx - w lu sign vx) ux ] <0.

Dividing by \u+ —c\ yields

, jf{u+ ) - f(c)) -(< sign+ vx - w lu sign ux )
u+ — c

[f(u+ ) - (wru sign+ vx - w !u sign vx )] - f(c)— — Vx <~ Ut .u + — c

\f(u ) - {w'u sign+ ux - wru sign ux )] - f(c)
—Ut < Vx-u — c
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Combinmg (18) and (19) wc have for c G int(« , u r ) that

(20)

Invoking (16) it is not difficult to see that (12) can be written on the form

Let s— — then (14) follows. Finally. in view of (16). wc see that (20) is equivalent to (15). Hence the proof

is completed. D

The jump conditions (14) and (15) represent a generalization of the Rankine-Hugomot condition and Olemik's
entropy condition for conservation laws. The geometnc mterpretation of (14) and (15) is as follows:

Corollary 2.5. Let (ul ,ur ) be a jump which satisfies the jump condition (1-1)- Then the entropy condition \ 15)
hol ds if and on ly if

(i) in case u r < u ;

The graph of y — f(u) over [t; r , i/'] Hes below or equals the chord connecting the point
{ur ,f(ur )) to (u l ,f{u 1 )-A(dx B(u)) 1 );

(ii) in case u < u r :

The graph of y — /(«) over [V, ur] lies above or equals the chord connecting the point
(«'./(«O) to(ur ,f{ur )-A(dxß{u))r ).

Wc close this section by briefly recalling a few key results from the Crandall and Ligget t theory. smce it
will be used later in the discussion of properties of the difference schemes. If X is a Banach space. a duahty
mapping J : X —* A'* has the properties that for all x 6 X, \\J{x)\\x* — \\ x \\x and J(x)(x) = j|-r||\-. A possibly
multi-valued operator A, defined on some subset D(A) of A', is said to be accretive if for every pair of elements
(x,A(x)) and (y,A(y)) in the graph of A, and for every duality mapping J on X,

J(x-y)(A(x)-A(y))>0.

Let (Q,dfi) be a measure space. Then recall that, since the dual of L l^) is L°°(Q), any duality mapping J
in L X (Q) is of the form J(u)(v) = /n J(u)(x)v(x) d/i, where

where a(x) is any measurable function with |a(x)| < 1 for almost every x E fi- Later wc shall reiv heavily on
the following well-known results (see [3,5,15]) about m-accretive operators on X — L 1^):

Theorem 2.6. Let (Q,df.i) be a measure space. Suppose that the nonlinear and possibly multi-valued operator
A : L 1(Q) — L 1(Q) is m-accretive. Then for any X > 0 and any u £ L l (Q) the equation

has a unique solution T(u). Furthermore, suppose that A satisfies f^A(u)d/j = 0 and commutes with transla
tions. Then T : LX (Q) —* L l (Q) possesses the following properties:

f/(u + ) -(< sign + ux - n'u sign i/r )l - /(c) [/(ti )-(«;(, sign+ j/x - wj; sigD i/r )] - /(c)i ux < -Vi < vxu + — c u — c

(u r - U l )ut + (/K)- /(«')) *« -K - Wu) V* =°-

If, in addition, for all positive Å, J + KA is a surjection, then A is m-accrective.

r 1, ifu(z) > 0
J(u)(z) = ||u||£1(nJ -1, ifn(x)<o

[ a{x), ifu(x) = 0

T{u) + XA{T{u)) = u,

(1) fQ T{u)dp = fa udp,
(2) ||T(ti)-T(i»)||L i (n)<||«-«||Li(o),
(3) ||T(ti)||Bv(n) < ||u||i,v(o),
(4) u < v a.e. implies ihat T(u) < T(v) a.e.,
(5) ||T(u)||£oo C n) < ||ti|JL«(n)-
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§3. The Discrete Approximations.
Selecting mesh sizes Ax >O,At > 0, the value of our difference approximation at (xj,tn ) = (jAx,nAt) will

be denoted by 17". Capital letters U, V etc. will denote functions on the lattice A = {jAx : j G Z}. The value
of Uat (xj,t n ) will be written Uf . Thus U n is a function on A with values Uf . The following notations will
be used on occasions:

For later use, wc introduce the following two constants:

To approximate (1) wc consider three-point implicit difference schemes of the form

(21)

Wc assume that the numerical flux h(u,v) satisfies the consistency condition

h(u, u) /(«)(22)

and the monotonicity conditions

(23)

Wc will see later that (23) ensures that the solution operator of (21) is monotone. An example of a scheme
which satisfies these conditions is provided by a variant of the Engquist-Osher scheme where the numerical flux
h(u, v) is given by

where

For another example, assume that f3, j are strictly increasing and nondecreasing respectively, and consider
the numerical flux h given by

This corresponds to a central (space) differencing of

where £ is chosen as |^-. Notice that this scheme is monotone provided that ±Xf'(u) + /3'(v)Y(u) > 0 for all
it, v. When the problem is nondegenerate (a, 6 > 0) wc can use the numerical flux given by

which corresponds to central (space) differencing of (1). In this case the monotonicity assumptions are given
by the weaker assumptions (compared to (23))

(24)

where r l ,r 2 ,r3 , r 4 are arbitrary numbers in M. It follows that (24) is satisfied provided Ax\f'\ > 2a Oo b

_ At _A*_
A ~A?

A.Uj =Uj -Uj - 1 , D_ = A+ Uj = Uj+l -Uj, D+ = +

aoo = sup \a(o\ < °°> = sup |6(^)| < 00.
minuo<(<maxtio min u o <f <max u 0

mmate (1) wc consider tnree-pomt lmpncit amerence scnemes 01 me lorin

~ U" +D_ {h(U?+1 , Ufå) - A(D+ B(U? +1 ))) =0, (j,n)eZx{o,,..,N- 1}

U? = uQ {x)dx, jeZ.
J Ax JjAx

du h(u,v) > 0, dv h(u,v) < 0.

h(u,v) = f+(u) + f-(v)

/+(u) = /(0)+ f max(f'(s),O)ds, /"(«)= / min (/'(s),o) ds.Jo ./o

h^ V) = 2 A^ )  

dtu + dx f(u) = dx A(dx ß{u)) + edx f3{dxl{u))

 , f(n) + f(v)h(u,v) =

—a{r4 )b{r3 ) + du h(u,v)\ (ritr2) >0, —a(r4)b(r3) - dv h(u, t>)|(n,r3 ) > 0
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§4. Regularity Estimates.
In this section wc establish the regularity estimates which will be needed later for showmg convergence of the

discrete approximations. In the following wc treat the case where u 0 has compact support and /, A, B are locally
C l . Then at the end of section §5 wc briefly discuss the general case where iio is not necessarily compactly
supported and f,A,B are locally Lipschitz continuous. If not otherwise stated, wc will always assume, without
loss of generality, that /(0) = 0. The function space that contains u 0 will be tåken as

(25)

Convergence in L\oc of a subsequence of the family va of approximate solutions generated from (21) is obtained
by establishing three estimates for {UJ1 }:

(a) a uniform L°° bound,
(b) a uniform total variation bound,
(c) L 1 Lipschitz continuity in the time variable,

and two estimates for the discrete total flux term h(U"+I ,Uffi) - A {D+ B(U" + 1 )):
(d) a uniform L°° bound,
(e) a uniform total variation bound.

The estimates (d) and (e) play a main role in that wc utilize estimate (e) to obtain estimate (c), while (d) is
used to obtain the Holder continuity in time and space of the discrete diffusion term B(U").

For later use, recall that the L°°(Z) norm, the L X (JL) norm and the BV(Z) semi-norm of a lattice function
U is defined respectively as

If not specified, i,j will always denote integers from Z\ m, n, I integers from {0, . . . , N}; x, y, c real numbers from
IR and t,r real numbers from [O,T]. Throughout this paper C will denote a positive constant, not necessarily
the same at different occurrences, which is independent of the discretization parameters involved.

The following lemma deals with the question of existence, uniqueness and properties of the solution of the
(nonlinear) system (21).

Lemma 4.1. // (23) is satisfied, then for any U there is a unique U* satisfy ing the following equation

(26)

Furthermore, the solution U* of (26) possesses the following properties:

(a) Uj < Vj Vi G Z implies that Uj < V* Vj G Z,

(b) \\U*\\ Lao(z) <\\U\\ Loo{Z y

( C) ||^-^ILx(Z)^ll^-^ILx(Z)'

( d ) I^*lbv(z)^ I^lbvcz)-

Proof. As an aid in the analysis wc shall view the equation (21) in terms of an m-accretive operator and
an associated contraction solution operator, i.e., wc shall use the Crandall and Liggett theory [3]. A similar
treatment of implicit difference schemes for conservation laws has been given earlier by Lucier [15] and for
strongly degenerate convection-diffusion equations in [9].

For a fixed n, let us now rewrite the difference equation (21) as (supressing the Ax dependence)

(27)

Wc first show that the operator A is accretive. To this end, it is sufficient to establish that for any U, V with
u -v e L l (Z),

sign{Uj - Vj )(A(U;j) - A(V;j)) > 0.
jez

B(f, A,B) = {ze L\M) n BV(R) : \f(z) - A(dr B(z)\ BV(m) < co}

\U Loo(s) = sup^,

l-l-Kp- +D. {h(U*,U*+1 ) - A(D+ B(U*))) =0, j€ Z

u? +1 + AtA(un+l ;j) = u?, jez

where the operator A : L 1 (Z) —> L I (7L) is defined by

A(U;j) = D-(h(Uj ,Uj+i)-A(D+B(Uj )))
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As a first step to achieve this goal, wc perform the following calculation

sign(Uj -Vj ){A(U;j)-A(V;j))
;GS

(28)

(29)

Next, wc observe that

(30)

where atj,&j,Pj G int(Uj,Vj) and ?j G mt(D+ B(t/j),D+ 5(T^)). Inserting this into inequality (28) yields the
desired result:

sign(UJ -Vj )(A(U;j)-A(V;j))
j&z

due to the monotonicity conditions (23) and the choice of c given by (29). From (30) wc observe that the
operator A is Lipschitz continuous,

where L(h) = max|/i u | + max|/iv | and L(A, B) = o^oo • This implies that Ais not only accretive but also
m-accretive, see [6]. Wc can now invoke Theorem 2.4 to conclude the existence of a unique monotone solution
operator S associated with (21) such that

which proves the first part of the lemma. Since ;^-g A{U \ j) = 0 and A commutes with translations, the
second part of the lemma also follows from Theorem 2.4.  

As a direct consequence of Lemma 4.1 the following lemma is established.

= - Vj) (A(U;j) - A(V\j) - c(Uj - V})) + cJJUj - V,

>-Y,\ cWi-(A(u '>i)- A(v '>j))\+ c VI\ wj\>

where Wj denotes Uj — Vj and c = c(Ax) > 0 is a number chosen so that

1/ \ 2
c > max5u /i(u, i>) — min dv h(u, v) + ——-a^b

Ax \ (u,v) (u,v) ) Ax z

A(U;j)-A(V;j)

= -^(hu (aj ,Uj+1 )Wj + hv (Vj,aj+l)Wj+l - hv (aj -. 1 ,Uj )Wj - 1 - h^Vj-uå^Wj)

-^(a(7i)(K/WW+i-K&W^

+ [^(7irø+i)-^(^>j+i)]%i
>«EI^I-E[^(ai-i'W +^^-i )6^- i )]l wi- i l

A(U) - A(V)\\ L1(%) < (j^L(h) + B)) \\U - V\\ Ll(zy

u; = s(u-,j),
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Lemma 4.2. Wc have

(31)

Xext wc establish a regularity property for the total flux h[C~: + 1 .1'"^) - A [D+B(Uf+1 )). As mentioned.
this regularity property is of fundamental importance when proving convergence of the scheme (21). Let us first
indicate how this regularity estimate can be derived at the continuous level in the case of classical solutions. To
t his end. consider the uniformly parabolic equation

(32)

and recall that this equation has a unique classical solution u. By differentiating (32) with respect to i and
subsequently integratmg with respect to x, wc find that the quantity

satisfies the linear, variable coefficients, uniformly parabolic cequation

(33)

From the maximum principle for this equation it follows that

From (32) and the definition of v wc see that v — -f{u) + A{dT B{u)). which implies that

where C = 2max|/| + \\A(dT B(u{-,Q)))\\ Lx ,~ y This is merely formalism since the solution of (1) m general
only exists in a weak sense. However. these calculations clearly motivate the next lemma whose content is a

uniform L°° bound as well as a BY bound for the discrete total flux h{l'" +1 , Uffi) - A(D+ B(U?+1 )).

Lemma 4.3. Wc have

(34)

(35)

Proof. To prove these regularity properties for the approximate solutions. wc introduce two auxiliary sequences

{W?} and {Vp} given by

Using the finite difference scheme (21) wc observe

(36)

Summing over all k = — 00, ... , j and håving in ramd that U± = 0 for sufTiciently large k and h(Q. 0) = /(0) = 0.

wc get

(37)

From this relation it is clear that it is sufficient to establish L x and BY estimates for Vn . As a first step toward

that end, wc derive an equation for the auxiliary sequence {Vjn }. For this purpose. consider the difference
equation given by (21) and subtract the corresponding equation at time t n . Then wc obtain

pn + 11l < tjO\\ Tjn+l < r-0
L IIl~(Z)- L IIl~(Z  L BV(Z)-\ L B\-(ZY

dt u + dx f{u) = dx A{dx B(u)) . A',B' >0.

v(x,t) = f dtu(Z,t)dtJ—oc

dtv + f'(u)dxv = a(dxB(u))dx (b(u)dxv).

lk(--O|ll=c (Z) < UfolLoc^).

\\AldT B(u(-,t)))\\ Lx(Z) <C.

W7+1 . UJ+^ ~ A ( D+ B ( L 7 + 1 ))\\l- { Z) - \\ h{U °' L 'j +l) ~ A ( D+ B{l 'i ))]t\L~^Y

HU^+\^)-A{D+B{U^1 ))\^w <\h{lJf t U}+l)--A{D+B(U}))\BVW.

r/n+l _ r/n .'
jit»+i =zl 1L 5 rn+l =Ar V ir" +1 .

fc=—oc

W£+lAx1 Ax = -A-(h(UZ+I ,U2£) - A(D+B(U£+1 ))).

?+1 = -(h{U?+ItU?#)-A(1 t U?#)-A(D+ B(U?+1 )))

W?+lAx = W?Ax-A-(h(UZ+\Ug})-h(U? y U?+i))
+ A_{A(D+ B(r); + l ))-A{D+ B(Uir))).





S. EVJE, K. H. KARLSEN12

solution

(38)

(39)

Then wc have

(40)

where

(42)

where

(43)

From (38), (40) and (42) wc obtain the following linear difference equation for {V™}

(44)

This equation can be written as

(45)

where

(46)

Thanks to (46), the linear system (45) is strictly diagonal dominant. Consequently, there exists a unique
Vn+l . Furthermore, this solution satisfies a maximum principle:

Again wc sum over all k — — :x j, yielding

vn+i =yn _ (h(U?+1 , Ufå) - h(U? , U?+1 )) + (A(D+ B{ i 'J 1 + 1 ) ) - A{ D+ B( r]1 ) ))

Wc now rewrite the two last terms. To this end. wc first wc observe that

A*^+it ty =Axwy =A« X] n " Aa: EwT =

h(U? +ItU?£)-h(U?,U1 t U?£)-h(U?,U?+1 )
= (h(U?+\U£11)-h(U?+\U?+1 )) + (h(U?+\U?+1)-h(U»,U?+1 ))

— At ( h nJrl n i/n+1 _l /in+1 n i r?l + M

(4i) h»,y = dv h(u?+\a;+n> Ky = du h(a;+ \up+1), «;+*,«;+* eint{u?,u?+ly

Similary, wc rewrite the last term of (38).

A{D+B{U?+l ))-A{D+B{U?))

= a(-r;^)D+ (b(^)[Up+1 -Up])

= At-a( 1 i;^)D+ (b(3^")D^ + l

= At-a r; + 1 D+ (b] + ID_\J1 D_\J + 1 ).

6y +1 = 60flf+ *) 1 /^ + } eint(C7,C7+1 ).

T/n + 1 _ yn
_J_ 3_ , /Ln+l n t -Ti + 1 i /," +! n r" +l\ _ n " +ln I h n +l D 1"»+ 1 \

n+ 1 T/n+l , m+ h rn+l , n+lT/n+l _ t -ti

c;+I =-[A/icj1 + K+l6"+1]-

By the monotonicity assumption (23), wc have

c» + i + d'l +1 +e] +1= 1, c^ + I.^1 .^ + I<o,1 <0, d] +l > 0

n + liyn+li , m + l|T/n+li , n + liT,m + l <iyn i yn+l <rllVn H
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In view of (37) wc can now conclude that (34) is satisfied. Next wc prove that the solution of (44) has bounded
variation on 7L. Introduce the quantity Z" =Vf - VJn_ 1 and observe that

Similarly to (45), wc can write this equation as

(47)

where

Again, due to the monotonicity assumption, wc see that

(48)

Therefore, from (47), it follows that

which immediately implies (35). This concludes the proof of the lemma.  

An immediate consequence of (35), and (21) is that the discrete approximations (21) are L 1 Lipschitz con
tinuous in time, and thus contained in BV(Qt)-

Lemma 4.4. Wc have

(49)

Proof. Suppose that m > n. Using (21), wc readily calculate that

where the BY estimate (35) has been used. This concludes the proof of the lemma.  

Lemma 4.5. // (23) is satisfied, then the following cell entropy inequality holds

(50)

Proof. The arguments are as follows. First, observe that

These two inequalities follow from the monotonicity of h. Due to the similarity, wc only show the first inequality
(51). The proof is based upon examining several cases depending on whether Ujl^ is larger or smaller than
U"+l . If c mt(l/" +1 , U^), then the left hand side of (51) is equal to the right hand side.

s^__sl +D_ (hnuyz»+1 + KfZ»#) = D_ (aJ"+1 iP+ (6J"+l^+1 ))

-n +Iyn + 1 , m+ 1 r-?n + l , -n +Iyn + l _ yn

cr^-K^.+K-il^-!I ]-

<??+> =[i + a (h-vy - ftj+i.) + +1 (a;-+; + a;? +1 )]

g»+i = _ \^^tl - \K,f\

c»+i + d] +1 + e^+l =1, c]+I ,e] +1 <0, d^ 1 >0.

U m -Un \\ LHZ) < \KU?,U}+1 ) - A (D+ B(U°)) \ BV{%)^\m -n\

m-1
Y^\UP - U?\ <At £ £ |D_(M^+1 - (D+ B(^+1 )))

< \HU°, U?+1 ) - A (D+ B(Uf)) \ BVw£(m - n),

U? +1 -c\- \Uj -c\ + AtD_ (/i (t/; +1 Ve, t/j^1 Ve)-ft (C^+1 Ac, JTJ^1 A c))

- AtD- (sign([/;n+l - c)A (L>+ s(t/Jn+1 ))) <0.

(51) h(U?+l Ve, U»# Ve)- h(U? +l Ac, C^1 Ac) < sign(t/; +1 -c) (M^1 , Ufå) - c)) ,

(52) - (h{Uff Ve, U? +1 Ve) - hiU^1 Ac, U? +1 A c)) < sign(t/; +1 - c)(h(c, c) - h(U?±? , U^ +l )) .
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where

and

Due to the monotonicity assumption (23) and the fact that c < U"^ , wc conclude that Q]+l < 0 and the
desired inequality is obtained. Similary, wc can show that this inequality holds when U" +1 > UJl^ .

For the discrete diffusion term wc have the following inequality.

(53)

where

and

Now wc observe that /?" +1 = 0 unless cis between t^"/ and U^+l . If cis in this interval, it is easy to check
that R" + 1 is nonpositive. Invoking (51), (52), (53) and (21) wc obtain

Hence the proof is complete.  

Remark. The estimates of Lemmas 4-3 and 4-4 have been obtained without making use of the structural
assumption (6) on A. From these estimates it is not difficult to show that there is a subsequence of the approxi
mate solutions which converges to a limit fun eti on u. However, wc do not have estimates on the diffusion term
which ensures that A(D+B{U?)) converges in some appropiate sense to the diffusion term A(dx B(u)).

In the following wc will discuss continuity properties of the discrete diffusion term {B(U™)}. From (34) and
the assumption that ug is contained in B(f,A, B) it follows that

(54)

where C is a constant independent of A. An immediate consequence of (54) and the assumption (6) is the
following lemma.

Next, assume that c £ mt(U?+I ,Uffi) and Uf+l < Ufå . Then

h(U? +1 Ve, U^ Ve)- h(U? +1A c, D7V+ 1 Ac)
= /z(c,[/;++11 )-M^;+I ,c)
= fe( Cj c) - h(u?+I ,ufå) + [Mc, l/;^1 ) - Mc, c)] + [Mty+1 . cy+i1 ) - Ku?+1 > c)]
= sign(t/;+1 - c)(h(u?+\u?£) - h(c, c)) + q; +1

Q] +1 = [h(c, Ufå) - h(c, c)} + [h(U? +1 , U&1 ) - h(U? +I,cj\1 ,cj\

h n + 1 — Fl hir rvn +1 \ h n + 1 — f) h(TIn + l iy n +l \ rv n + 1 rvn + 1 (= intCr U n +1 )

sign^1 - c)A (D+ B(U^)) < sign([/; +1 - c)A (D+B(U?±?))

In order to see this, consider the relation

signC^i1 - c)A (D+B(U?±}j) = sign([/; +1 - c)A (D+ B(U^)) + R^ +1

RJ +1 = (sign^1 -c) - sign(f/; +1 - c)) vi (D+^l^1 ))
= (signl^1 -c) - sign(^; +1 - c)) (U? +1 - U 1̂ ) a^iK^l)

an +l =f' a{ZD+ B{U^l))dZ >0, &(#*+£) >0, o?+i G mt{U^,Uf+1 ).J 2 J02  '2

l^/n+i _ \c + AiD_ (/z( n̂+l Ve, t/J1.* 1 Ve) - h{Uf+l Ac, C^i1 A c))

- A^_ (sign([/; +1 - c)A(D+ s(^;+1 )))

< \U? +1 -c\ + Asign([/; +1 - c)(h(U?+\U?#) - h(c, c))

+ Asign^ 1 -c) (h(c,c) - h(U?*,U?+1 ))

- Asign(t/; +1 - c)A (D+ B(U? +1 j) + \sign(U? +1 - c)A {D+B(U?±}))

= sign([/; +1 - c)([/; +1 -c + AtD_(h(U?+l ,U?£) - A{D+ B{U^ 1 ))))

= sign(!7;+1 - C)(t/;- C)
<\U?-c\.

A(D+ B{U?)) LOO(E) <C,
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Lemma 4.6. Wc have

(55)

Remark. The assumption (6) cannot be removed in establishing convergence to the BY entropy weak solution
in the sense of Definition 2.1. In other words, the problem may not have BY entropy weak solutions if (6)
is not assumed. Recall the example with A unbounded from section 1 (Figure 2). Here B(s) = s, hut clearly
D+ B(U n ) = D+ Un is not uniformly bounded because of the appearance of a discontinuity. Hence this problem
cannot have a solution in the dass given by Definition 2.1.

Knowing that the discrete diffusion term {B(U-1 )} is Lipschitz continuous in the space variable, the question
arises how to obtain information about the regularity in the time variable. One strategy would be to continue
working with the linear equation for v = f{u) - A (dx B(u)) and try to derive a result concerning the continuity
of v with respect to the time variable from the known modulus of continuity in space. This technique, introduced
by Kruzkov [11], was used for the simple degenerate case [B], i.e. when A(s) = s. To illustrate some of the added
difficulties introduced by the double nonlinearity, let us see why this technique does not work in the general
case. To this end, let <f>(x) be a test function on M and multiply (33) by <f> and integrate over R. Then wc have

(56)

where f'(x,t), a(x,t), b(x,t) denote f'(u(x,t)), a(dx B(u(x,t))), b(u(x,t)) respectively. The first term on the right
hand side of (56) is bounded since v is of bounded variation. For the case when A{s) = s, that is a(x,t) = 1,
the second term is bounded since one derivative can be moved over to the test function (p. However, in the
general case a(x,t) — a(dx B(u(x,t))) is not constant and therefore it is not possible to bound this term. Hence
wc have to choose another approach to this problem. Wc will employ a discrete version of a technique used by
Vin [18] which combines the scheme (21) and the estimate (34). For this purpose, define vAu A as the interpolant
of the discrete values {U™} given by

(57)

Here Tfn denotes the triangle with vertices (xj,tn),(xj + i,tn ) and (xj+l ,tn+l ) while Tfn denotes the triangle
with vertices (xji tn ),(xj t tn+l ) and {xj + 1 ,tn+l ). Let

and note that Rn —T^ U Tfn . Later wc will use the notation RTt in order to denote a rectangle /2", not
necessarily unique, which contains the point (x,t). In particular, wc note that u& is continuous everywhere and
differentiable almost everywhere in Qt  

Lemma 4.7. Wc have

(58)

Clearly I 2 = O (|x t- — Xj\) by using (55). Now wc focus on how to estimate I\ . Consider the interval [x,-, Xi + a],
where q will be specified later. Then for some x* £ [æ,-, x t + a] (that also will be specified later) wc have
(59)

< \B(uA {xi,tm )) - B(uA (x\tm ))\ + \B(u A (x* ,tm )) - B(u A (x*,t n ))\ + \B(uA (x*J n )) - B(uA (xi,tn ))

< 2C(\xi - x*\ + Ax) + \B(u A (x*,tm )) - B(u±{x* ,t n ))\

D+B(U?) l^< C -

f f f
- <f>(x)dt v dx =- I f'{x,t)dxv-<j>(x)dx+ / a(x,t)dx (b(x,t)dx v)  <p(x) dx,J J J
MK E

, . fty + - *,-) + +1lf;+1 (* - 1"), (x,*)e2jnJ
Uj + Ai V X At v' lJ> *-/ *= J j,ti'

E>n _ r _l y Un f«+ 11

B{UD - B(U?)\ < C(\xi - Xj\ + y/\tm -tn \ + Ax)

Proof. Wc have that

\B(UP) - B(U?)\ < \B(Ur) - B(UP)\ + \B{UP) - B(U?)\ =: h + 12.I2 .

h =\B(uA (xi,tm))-B(uA (xi,tn ))\

< 2C (a + Ax) + \B(uA (x\tm )) - B{u A (x\t n ))\,
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where the estimate of the first and third term of the second line follow from the monotonicity of B{s). Next wc
describe how \B(uA (x* ,tn )) - B{u A {x* ,t m ))| can be estimated. For this purpose, wc introduce the quantity

Since vAu A is continuous, Q(x) is differentiable everywhere. Hence, there is a number x* in [xj,Xj +a] such that

Wc then have the following relation

Since vAu A is differentiable in time almost everywhere on Qt wc have

where j is the integer such that 0 < (xi + a) - Xj < Ax. Now, in view of (59), (60) and (61) wc want to show
that |Ji|, |J2 | <a 2 and then choose a equal to - n\At. Wc have

x 3 r t m

Using the fmite difference scheme (21) and estimate (34) of Lemma 4.3, wc obtain the following estimate

where

(62)

and wTe have set a equal to 7" "" n \At. Repeating the arguments for J 2 wc also deduce that |J2 | < 2Coa 2
From (60) and (61) wc now conclude that

\B{u A {x\tn )) - B{u A (x\tm ))\ < 4C0 a

and hence, from (59), wc obtain

h = \B(uA(xi,im )) - B(uA (xi,tn ))\ = O(a + Ax) = 0(y/\m- n\At + Ax).

Now the proof of (58) is completed.  

Q(x)= I {uA (ttm )-UA({J n ))dt.

Q'(x*)a = Q(x r +q) - Q(xi) = / («A (^,f7J ) - vA(u A (Un ))

B(uA {x\tn )) - B(uA (x* ,tm))\ < boolu^x* ,tn ) - u A (x\tm )

= &oo|QV)l =—  r ° MZ,tm )-u±{Z,t n ))dt.a Jx,

fX ' a (uA(t,tm )-uA (Z,tn ))dt

= / dtu&dtdx — i i dtu&dtdx + / / dt UA dt dx =: Ji + J 2,
JXI Jt n Jxi Jt n Jxj Jt n

fXJ fJ\ — I i dtu^, dt dxJx, Jt n
i-lm-l . .

= J2J2{ dtUA dtdx + <^'A dt dx)k=i l—n rpU

"2 *^^V At + At /'

i-lm-1 rrl+l ttl rr'+l _ rrl .

<4 • \At\m -n\ \\h(Uf, U?+1 ) - A {D+ B(U?)) || Loo(a)
= 2Co |m - n\At = 2C0 a 2

Co=\\h(U} t U?+1)-A(D+ B(U?))\\ ,
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§5. Convergence Results.
Now wc will employ the regularity properties established for {UJ1 } and {B(Up)} in §5 to prove that the

approximate solutions generated by (21) in fact converges to the solution of (1) in the sense of Definition 2.1.
Wc start by showing that a subsequence of the family of approximate solutions converges to a function u and
that this limit inherits the properties of the approximate solutions (see Lemma 5.2). Finally, using the cell
entropy inequality of Lemma 4.5 and the properties of the interpolant wc show that this limit satisfies the
entropy inequality of Definition 2.1. The arguments needed to prove this turn out to be rather involved due to
the double nonlinearity of the problem. In particular, wc will see that it is important how the linear interpolant
is defined.

Recall that vAu A denotes the interpolant of the discrete values {U™} given by (57). Similary wc define w A as
the interpolant of the discrete values {B^J1 )} given by

(63)

For later use, observe that the following important relations hold

(64)

on the parallelogram P? with vertices (æ^t"" 1 ), (xj,tn ), (xj + 1 ,t n ) and (xj+l ,tn+l ), i.e., P/1 = T n̂ _ 1 UTJLJl
Similary,

(65)

on the parallelogram Q^ with vertices (xj-i,tn),(xj,tn ), (xj,tn+l ) and (xj+l , tn+l ), i.e., Qj = TJL_ ljl U T?n
Note also that for (x,t) GRJ neither wA nor B(uA ) will introduce new minima or maxima, that is

This follows from the definition of vA,u A , wA and the fact that B(s) is monotone. The next technical lemma deals
with the interpolation error associated with the linear interpolant (63) of Holder continuous functions.

Lemma 5.1. Assume that G(x,t) £ C li2 (Qt) o-nd let H A G(x,t) denote the interpolant given by

Then the following error estimat e holds

Proof. To see this, let (x,t) be an arbitrary point in Qt  Then (x, t) is contained in some rectangle B? and wc
have

(67)

For the first term on the right hand side of (67) wc have

in n *\-rt #«u < / l Gtø+1 '*") " G^n)\ + |G(*i+i,*B+1 ) -G(xj+l ,tn )\, (x,t)eTf;n ,
1 A (x ' } ' {Xj ' )l - 1 |G(«i+l ,t»+i) - G(xj,t»+i)\ + |G(xil *»+1 ) - G(Xj ,r)\, (x,t) e T?tn .

Therefore, since G(x,i) € C l 'i(Qt), it follows that the first and the second term on the right hand side of (67)
is of order Ax + y/At.  

Now wc show that the following compactness and convergence results hold.

' 1 B(U?)+ °WW-Jvr\x _ Xj) + Bwrw;^ _ fl)| {xJ)eTUn .

dx uA = D+U;\ dx w A = D+B{U?)

jrn+l _ O n

(66) mm(B([/;),5([/;+1 ),B(t/;l+1 ),s(t/;++11 )) < wA ,B(uA ) < max(s(^;), JB([/;+1 ),B(^; +1 ),5(^++11 ))

f G(x- t n ) + G < x iv> tn) - G ( x i< tn>>( x -x-)+ G <.*>+ 1 '* n+l )- G(W''")(f -fM (x t) <FTL

HaG - G\\ Lx{Qt) < C(Ax + VAt)

U A G(x,t)-G(x,t)\ < \U A G{x ) t)-G{xj) t n )\ + \G(xj,tn )-G(x,t)
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Lemma 5.2

(68)

Proof. The functions u A (x,t) and iua(<M) satisfy the following estimates:

|wa|bv(Qt) < C,(69)

and

(70)

II«a||l~(qt ) <C,

The first estimate of (69) follows immediately from the definition of the linear interpolant «a and Lemma 4.2.
The second estimate of (69) is a consequence of the following two estimates:

Here wc have used (64) and Lemma 4.2. Similary, by using (65) and Lemma 4.4 wc obtain the estimate

where Co — \h(Uj , Uj +1 ) — A(D+B(U®))\bv{l)- The estimate (70) requires argument. Let (x,t) and (y,s) be
some arbitrary given points and choose two rectangles Rxt and Ry<s such that (x,t) G Rx ,t and (y,s) G Ry jS
(they may coinside). Moreover, let (xi,tm ) and (xj,t n ) denote vertices of Rx>t and RViS respectively, such that

Then, wc have

Clearly, by (58)

Now estimate (70) follows since wc have, in view of (66), that

By virtue of estimates (69), {u A } is bounded in W 1>l (IC) C BV(fC) for each compact set fC. Using that BV{K)
is compactly imbedded in L l (/C) it is not difficult to show that {uA }, passing if necessary to a subsequence,
converges in L)OC {Qt) and pointwise almost everywhere in Qt to a function u,

ueL°°{QT)r\BV(QT).

Next wc discuss convergence properties of the sequence {^a}- By estimate (70) wc can repeat the proof of the
Ascoli-Arzela theorem to conclude that there is a subsequence of {wA } and a limit w,

such that

There exists a function u G L°°(QT) n BV{QT ), with B(u) G C 1 '? (QT ). ««c/i //ia/

 (a) uaOM) -*m(* ) O) in LIqÅQt) an(i pointwise a.e. in QT  

(b) W/\(x,t) —* B(u(x,t)), uniformly on compact sets in Qt  

(c) dx w A -dx B(u), mL%c (QT).

. (d) A(dx iu A )-A(dx B(u)), mL%c (QT ).

wa(v,s) - w A (x,t)\ < C(\x -y\ + \f\t- s\ + Ax+ VKt), Vx,y,s,t.

[f \dx u A \dtdx =Y^ ff \dx u A \dtdx= AxAt ]T I D+U? \ <T\u o \ BY .

c c c c |t/ n+l — un
// \dt uA \dtdx= J 2 \dtuA \dtdx = AxAtY^-J—T — <CO -T,

Xj -Xi\+ \/\tn -tm \ <\x- y\ + V\t~s\

\wA (y,s) - wA (x,t)\ < \wA (y,s) - wA (xi,tm )\ + \wA ( Xi ,tm ) - wA (xj,tn )\ + \wA(xj,tn ) - wA (x,t)\
— : E\ -f En + Es

E 2= \B{U?) - B{Uf)\ < C(\ Xi -xj\ + \/\ m ~ n \ At + x )
< C(\x-y\ + y/\t-s\ + Ax).

Ei,E3 < C(Ax + VAt).

wcCl >?(QT )

w& —> w, uniformly on compact sets and pointwise in Qt
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By the continuity of w and the pointwise convergence, wc conclude that w = B(u). To see this, let (x,t) be an
arbitrary point such that uA (x,t) — u(x.t), i.e. B(uA (x,t)) — B(u{xJ)). Wc have

Since wA(x,t) —* w(x,t), wc only have to check that \B(uA (x,t)) - wA (x,t)\ must tend to zero. For this
purpose, assume that (x,t) is contained in a rectangle Rx< t- Then, in view of (66) wc have

where (xj,t n ) and (xi,tm ) are appropiate chosen vertices of the rectangle Rx j. Hence w — B(u) almost
everywhere in Qt- By the continuity of w, this must hold for all points in Qt-

Now wc continue showing the convergence result (c) of (68). From (55) and (64) it follows that

Since

it is obvious that W = dx ß(u) and (c) follows. Finally wc show why (d) is satisfied. Due to the fact that

(see (54)) wc know there is a function A(x,t) in L co (Qt) such that, again passing if necessary to a subsequence,

Wc now show that A = A(dx B(u)) by using a discrete version of the arguments used by Vin [18]. Let HA B(u)
be the interpolant of the discrete values B(u(xj ,tn )) defined as in Lemma 5.1. For the moment, assume that K
is a compact subset of Qt of the form K, = Uj^PJ1 where (j, n) E { J\ , •• • , J2} x {Ni, . . . , N2}. Wc then have

(71) A(dx wA )(dx n A B{u) - dx ß{u)) dtdx

First, wc estimate E\ as follows (recall (64)).

\B(u(x,t)) - w(xJ)\ < \B(u(x,t)) - B(uA (x,t))\ + \B(uA (x,t)) - wA (x,t)\ + \wA (x,t) - w(x,t)\.

\B(uA (x,t))-wA(x,t)\< \B(u A ( Xj ,t n )) - wA (x t) t m )\ = \B(U? ) - B(UP)\ < C{Ax + ,

||o*«>a||l-(qt ) <c-

Hence there is a limit function W such that ||W|| LOo(q ) < C and, passing if necessary to a subsequence

d£ wA -W, in L^iQT).

I f w A dr <pdtdx-+ II B[u)dx <j>dtdx, <?eC^(QT ),
Qt Qt

||A(o,u;A )||Loo(Qr) < C,

A{dx wA ) JL A, in L°°(QT ).

ff A(dx w A ) {dr wA - dx ß{u)) dt dx
K.

= / f A(dx w A ){dx wA - dx nA B(u)) dtdx+ f

£i + £2 -

E1= ff A(dx w A )(dx w A - dx U A B(u)) dt dx
K.

= If A(dx wA )(dxwA - dx U A B{u)) dtdx
3

= AxAt^2A(D+ B{U^))[D+ B{U^) - D+ B{u{xj,t n ))}
i."

= -AxAtJ2D-A(D+B(U?))[B(U?) - B(u(Xj ,tn ))]

+ AxA^(A(I)+ s(^J)[s(^2 )- JB(u(x j2 ,r))]-.4(D+ 5( î ))[s(^1 )-5(^(^1^ n ))])n

= -AxAtJ2(^-^— + D-h(Up,U^I ))[w^xjX)-B(u(xj ,tn ))}

+ AxAtY, {A(D+ B(U]2 )) [B(UD - B{u(x J:n t n ))} - A(D+ B(U^)) [B(U^ ) - B(u( XJI ,t n ))]) ,
n
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where wc have used the finite difference scheme (21) for the last equality. Hence. by Lemmas 4.2. 4.4 and (54)

In order to estimate E 2 let us(x) denote a standard mollifier in the x variable with support m [—6,5], Let
A6 {-,t) = u) 6 {-) * A(dx wA (-,t)). For E 2 wc then have

Clearly, in view of Lemma 5.1,

due to the Holder continuity of B(u) and the fact that

l^ <5 (-,t)| B i/(E) < \A(dxwA (',t))\Bv(M) = \A(D+B(U?))\bvw < C (for some appropiate n),

which is true because of (35). Moreover, wc have

(74) \E2 , 2 \ < \\dx H A B(u) - dx ß(u)\\Lao{JC)  \\A6 {x,t) - A(dx w(xJ))\\ Ll(fC] = 0(6),

since \\dx ß(u)\\ Lx(QT) < C. From (71), (72), (68)b, (73) and (74) it follows that

(75)

Note that for a general compact set K, wc can split K into two sets Kp and A/C such that

Hence

A(dx wA )(dx wA — dx B(u)) dt dx
k~

In light of the analysis above, the first term tends to zero. Because the integrand of the last integral is uniformly
bounded, it follows that this term is of order Ax + At and thus tends to zero. Hence (75) holds for all compact
K C Qt- On the other hand, since A(dx B(u)) is in L°°(QT ) wc have by (68) c

(76)

From (75) and (76) it follows that

(72) |£i| < (CoT + T(max|au /»| + max|^/i|)|«o|Bv)  ||u>a - B{u)\\ Lx(fC) + CA/.

ff
E2 = A(dx wA ) (dx UA B(u) - dx ß{u)) dtdx

=ff AB {x,i){dx TLAB{u)-dxß{u)) didx+ ff (A(dx wA (x,t)) - As {x,t)) (dx 1IAB(u) - dxB(u)) dtdx
kl k:

- - ff dx A 5 (xJ,)(Il±B(u) - B(ii)) dtdx+ ff {A(dx wA {x,t)) - A6 {x,t)) {dx HA B(u) - dx B(u)) dtdx

= : i?2,l + -^2, 2-

(73) |£2,i|< / \As {;t)\BV(m)dt-\\llA B(u)-B(u)\\Loo{z) = O(Ax + VAi),Jo

ff
lim / / A(dxw&){dxw& — dx B(u)) dt dx — 0.A — 0J J

K, =Kp U A/C, K-p = Uj>nPp, meas(A/C) = C?(Aa: + A/).

ff ff
= A(dx wA )(dx w A - dx B(u)) di dx +/ / A(dT w±)(dT w A - dx B(u)) di dx.

lim // .4 {dT B(u)) {dT wA - dx ß{u)) di dx =0.iA — 0J JK

r r ff
(77) lim / / aA (dx wA - dx ß{u)) 2 dt dx =Km / / {A{dr w A ) - A(dx B(u))) {dT wA - dx ß{uj) dt dx =0.

K. K.
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where

(78)

Using (78) and Holder 's inequality wc now deduce

 \/flA {pxw& — dx B(u)) dt dx

i i

aA (dxwA - c)x ß{u)) 2 dt dxa a dt dx

suppo

This concludes the proof of (d) and thus the lemma.  

The next two technical lemmas will be used in the sequel.

Lemma 5.3. Let QcM 2 and gj(x) —> g(x) a.e. in Q. Then there exists a set F. which is at most countable,
such that for any c £ M\F ,

sign(gj(x) - c) — sign(ø(a:) - c), a.e. in Q.

The proof is elementary and is omitted.

Lemma 5.4. Let «a be a piecewise constant interpolant of the discrete data points {U"} defined such that

pn = U n . Then, passing if necessary to a subsequence, vAuA —» u pointwise a.e. m Qt • where u denotes the

limit function obtained in Lemma 5.2.

Proof. Clearly wc have

vAu A —uA Idt dx

Qt

va — u A \dt dx
j,n JJp;

T L

For S\ wc have

from which the lemma follows.  

Wc continue by showing that the limit u satisfies the integral inequality (10).

«* = aA (*, t) =£ a ((fc,A +(1 - fl&B(,)) dg = _  

ff {A(dx w A ) - A(dT B(u)))o dt dx\ < \\<p\\ Lx[QT) ff V^lQt suppø

< II^IL»(QT ) {jf «Asuppø

Since a^ < a^ < oo it follows that

lim ff(A(dx wA ) - A(dx B(u)))ø di dx =0, <p G C^(QT ).
Qt

UA— U A \dt dx =YJ / / I ""A —UA I rf i' +/>

Si + S,

r r
S\ — y / / |«a — U A I dt dx

= E//Tt, K+l -^)(^i) + (t';-c;- I )(4r! - 1)l*^j,n j,n-i
< ±AxAi £ (|I7+ i - U?\ + \U? ~ U?- l \) < |(I«o|bvA* + CoAt)

where Co is given by (62). Similary, wc have 52 < \T(\uo \bvAx -f CO At). Hence

ff

Qt
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Lemma 5.4. Let (f) be a nonnegative test function luith compact support on M x [O,T) and c £ IR. Then the
limit fun eti on u(x,t) of Lemma 5.2 satisfies the integral inequality (10).

Proof. Let ø be a suitable test function and put </>" = <j)(jAx,nAt). Multiplying the cell entropy inequality
(50) by (fiJAx, summing over all j and n and applying summation by parts, wc get

(79)

For the first term wc have

Using Lemma 4.2 and the fact that h is consistent with /, wc can obviously write

Hence wc have for the second term of (79)

AxA*

For the discrete diffusion term of (79) wc now have

N-l

AxAt

N-l

Hence, wc can replace (79) by

Using (68) and Lemma s.3 and 5.4 wc conclude that u satisfies (10) for almost all c£M. To complete the proof,
note that A{dx B(u)) — 0 a.e. in Ec — {{x,t) £QT : u(x,t) =c} for any constant c. Therefore, by using an
approximate procedure the result holds for all c.  

This completes our discussion when u 0 has compact support and /, A, B are locally C l . For u 0 £ B(f, A, B)
not necessarily compactly supported and f,A,B merely locally Lipschitz continuous, wc approximate ug by a
compactly supported function up0 and /, a,b by a smoother function fp ,ap ,bP, compute the difference approxi
mation of the resulting problem and then let p — oo and At, Ax —* 0.

Wc are now ready to state our main result:

AxAt ]T Ysi^r 1 - c \ [*" At **] + (M^;+1 v c, ufå ve)- Mt/; +1 a c, u?+* a c))D+^yn = 0 jgE

- sign(t/; +1 - c)A(D+ B(U? +1 ))D+^) +Ax£ |^ - c|^° >0.j

AxAtJ2 J2\ U? +1 ~ 1^ L] =// I^ A -c\dt<^dtdx + O(Ax + At).

Ax £ (h(U? +1 Ve, U?£ Ve) - 4- 1 Ac, L^1 A c)) D+^y

= Ax^sign([/; +1 - c)(/(t/; +1 ) - f{c))D+^ + O(Ax).

AT-1
E E(M^;+1 Ve, Ufå Ve)- h(U?+1 Ac, Ufå A c))D+4>?
n-o j£%

ff
= sign({i A -c) (/(sa) - /(c)) <^c/> ctø dx + C(Ax + At),J J

Qt

£ s>gn([/; +1 - c)A{D+ B{U^ l ))D+^
n-o je%

VY / / sign(u A - c)A(dx wA )dx (p dt dx + O(Ax + At)

ff
/ / sign(u A - c)A(dx wA )dx (f) dt dx + O(Ax + At).J J

Qt

ff
/ / \ua - c\dt <p + sign(uA -c) (/(%) - /(c)) dx <f) - sign(uA - c)A(dx wA ) dx <f) dt dx

Qt

4- / \u o -c\<j){x,o)dx>-C(Ax + At)./to.
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Theorem 5.5. Suppose ug G 8(f,A,8) and the fluxes f,A,B are locally Lipschitz continuous. Assume also
that A satisfies the structural conditwn

Then the entire sequence {^a} defined by (21) and (57)
BY entropy weak solution u of the initial valne problem

converges in L\oc {Qt) an d pointwise a.e. in Qt to a

where

Remark. From Lemma 5.2 it is clear that the following results hold with out assuming (6): There is a function
u{x,t) e L°°(QT ) C\BV(Qt) and a function A(x,t) G L l {QT ) such that

u&(x,t) —> u(x,t), in L]qc (Qt) and pointwise a.e. in Qt,

A(dx wA)^A(x,t), inL°°{QT ).

Furthermore, in view of Lemma 5.4 it follows that the following integral inequality is satisfied

(80)

Wc let C(0, T\ L^M)) denote the usual Bochner space consisting of all continuous functions u : [0, T] —* L l {R)
for which the norm ||«||c(o,T;L 1 (E)) = suP<e[o T] ll ti (^)lli 1 (iK) is finite. A closer inspection of the arguments leading
to Theorem 5.5 will reveal that {U&.(t)} converges in C(O,T;L 1 (M)) to the unique BY entropy weak solution
u(t), with w(0) = iio, of the initial value problem (1). A reexamination of the proofs leading to Theorem 5.5
also shows that wc have proved the following result on existence and properties of solutions of (1):

Corollary 5.6. Let f and A, B be locally Lipschitz continuous. Then for any initial function ug G B(f, A, B)
there exists a BY entropy weak solution u G C(O,T;X1 (M)) of the initial value problem (1). Denoting this
solution by StUo, wc have the following properties:

Acknowledgment. Wc thank Nils Henrik Risebro for his reading and criticism of the manuscript.
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