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Global Convergence of Subspace
Correction Methods for Convex

Optimization Problems
Jinchao Ku*Xue-Cheng Tai*

March 4, 1998

Abstract

A general technique based on space decomposition and subspace cor
rection is used to solve nonlinear convex minimization problems. The dif
ferential of the minimization functional is required to satisfy some growth
conditions that are weaker than Lipschitz continuity and strong mono
tonicity. Optimal rate of convergence is proved. If the differential is
Lipschitz continuous and strongly monotone, then the algorithms have
uniform rate of convergence. The algorithms can be used for domain
decomposition and multigrid type of techniques. Applications to linear
elliptic and some nonlinear degenerated partial differential equation are
considered.

1 Introduction

Domain decomposition and multigrid methods have been intensively studied
for linear partial differential equations. Recent research, see for example [31],
reveals that domain decomposition and multigrid methods can be analysed using
a same framework, see also [3], [13], [23], [17]. The present work uses this
framework to analyse the convergence of two algorithms for convex optimization
problems. However, our emphasis is on nonlinear problems instead of linear
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problems. The algorithms reduce to the standard additive and multiplicative
Schwarz methods when used for linear partial differential equations.

Researches for domain decomposition and multigrid methods have been
mostly concentrating on linear elliptic and parabolic partial differential equa
tions. Extension to more difficult problems have been considered by some recent
works. In this work, a general nonlinear convex minimization problems is con
sidered. The proposed algorithms can be used for nonlinear partial differential
equations, optimal control problems related to partial differential equations and
eigenvalue problems [8] [22]. The space decomposition can be a domain decom
position method, a multigrid method or some other decomposition techniques.

Domain decomposition methods and multigrid methods have been studied
for nonlinear partial differential equations by some earlier works, see [I], [2], [4],
[s], [12], [15], [18], [20], [29], [24], [25], [26], [27], [28], [32], [33], etc. In compari
son with the existing works, our approach has several features. For example, the
proposed algorithms can be used for certain degenerated or singular nonlinear
diffusion problems, i.e the nonlinear diffusion coefficient can be zero or infin
ity and our approach do not need extra assumption on the smoothness of the
solutions. The methods work for natural domain decomposition and multigrid
meshes. Moreover, only small size nonlinear problems need to be solved on the
decomposed subspaces. We also emphasis that our approach is valid for general
space decomposition techniques. So the applications is not restricted to domain
decomposition and multigrid methods. Other space decomposition techniques
can also be considered, see [10], [23, p. 169-184], [34].

The two algorithms given in this work were first proposed in [24], see also
[25], [27], [28] and [29], where the qualitative convergence of the algorithms was
proved, but the uniform rate of convergence was not given there.

2 Optimization problems and subspace correc
tion methods

Consider the nonlinear optimization problem

(1)

Here V is a reflexive Banach space and F : V —» R is a convex functional. This
problem has different applications, see §6

We shall use a space decomposition method to solve (1). A space decompo
sition method refers to a method that decomposes the space V into a sum of
subspaces, i.e. there are subspaces Vi, i = 1,2, • • • ,m, such that

(2)

This means that for any v, there exists Vi €V. such that v = YlT=i vi- Following
the framework of [31] for linear problems, we consider two types of subspace

minF(i;) .vev

V = Vi+V2 + --- +Vm .
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correction methods based on (2), namely the parallel subspace correction (PSC)
method and the successive subspace correction (SSC) method.

Algorithm 2.1 [A parallel subspace correction method].

1. Choose initial value u° G V and relaxation parameters ai > 0 such that
££i<*<i.

2. For n > 0, if un € V is defined, then find e™ € V. in parallel for i
1,2, • • • ,m such that

(3)

3. Set

(4)

and go to the next iteration.

Algorithm 2.2 [A successive subspace correction method].

2. For n > 0, if un € V is defined, find un+i/m = u»+(*-i)/™ +e™ mth
e™ €Vi sequentially for i = 1, 2, •• • , m such that

3. Go to the next iteration.

3 Global convergence of the algorithms

3.1 Assumptions on F

In the following, the notation (•, •) is used to denote the duality pairing between
V and V, here V is the dual space of V. The functional F is assumed to be
Gateaux differentiable (see [7]) and there are constants K, L > 0, p > q > l
such that

(6)

and from which it is easy to deduce that

F{un + e?)<F{un + Vi) , VvitVi

m
un+i = un +22^e ?i=i

1. Choose initial values u® =u° EV.

F (>+(*-D/™ + e?) < F (un+(i-V/™ + v .^ f Vy . 6v. (5)

(F'(w)-F'{v),w-v) >K\\w-vfv , Ww,ve V ,
\\F'{w) - F'(v)\\v> < L\\w - v\\ qv-\ Vw,v<EV

K\\w - v\\ pv < {F'{w) - F'{v),w -v) < L\\w - v\\ qv ,Vw,veV . (7)
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Under assumption (6), problem (1) and subproblems (3) and (5) have unique
solutions, see [14, p. 35]. For some nonlinear problems, the constants K and L
depend on v and w. However, just under the condition that F is strictly convex,
it has been proved in [24] and [28] that the iterative solutions of Algorithm 2.1
and Algorithm 2.2 converge to the true solution. Thus, one can assume that
the computed solutions are in a neighbourhood of the true solution and so the
constants K and L can be assumed to be independent of v and w. In case that
the functional F is only locally convex in a neighbourhood of the true solution,
by choosing the initial value close enough to the true solution, it can be proved
that the computed solutions stay always inside the neighbourhood that the
functional F is convex (the essential techniques of the proof is contained in the
proof of Lemma 4.2 and 4.3 of [19]), and so the results given in this work are
also applicable to this kind of problems.

For simplicity, we define

(8)

The following lemma can be proved in a similar way as [14, p. 25]
proof can be found in [24] .

and the

(9)

(10)

We shall use _ to denote the unique solution of (1) which satisfies

(11)

It is an easy consequence of Lemma 3.1 that

(12)

Therefore, in the following, we shall use

(13)

as a measure of the error between un and the true solution _.

P p 11
a = , a' = , which satisfy —I—- = 1

p — q + l q — 1 crcr'

Note that a < p and by Holder inequality

m , m v 3—- / m v -i-

-I=l .=1 ' .=1 '

Lemma 3.1 If the condition (7) is valid, then

F(w) - F{v) > {F' (v), w-v) + —\\w- v\\ pv , Vv,weV

F{w) - F(_) < (F' {v), w-v) + -||tt. - v\\ qv , yv, we V

(F'(u),v) =o, yve v

-\\v - u\\ pv < F(v) - F(u) < -||- - u\\ qv , yv cv .P Q

dn = F(un ) - F(u), Vn >0 ,
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3.2 Assumptions on the space decomposition

For the decomposed spaces, wc assume that there exits a constant Ci > 0 such
that for any v G V, wc can find vi G V. to satisfy:

(14)

Moreover, assume that there is a C2> 0 such that there holds

(15)

V u^ G V, __ G Vi and Vj G V} .

Domain decomposition methods, multilevel methods and multigrid methods can
be viewed as different ways of decomposing finite element spaces into sums of
subspaces. See §4 and §5 for some examples of some decompositions of a finite
element space and the corresponding estimates for constants Ci and C2 If F is
strictly convex, then the iterative solutions of the algorithms converges to the
true solution, i.e they are in a neighbourhood of the true solution. Therefore, wc
just need to estimate (15) for Wij from a neighbourhood of the true solution. For
linear problems, estimate (15) is a consequence of the well-known strengthened
Cauchy-Schwartz inequality, see Ku [31].

3.3 The convergence of the parallel subspace correction
method

Before wc state our first main result, wc state the following elementary result.

Lemma 3.2 Given r > 1 and tj > 0. If a & (o,ao] and b > 0 satisfy the
inequality

Then there exists a constant £0 = £0(^0, 77, r) G [o,l], depending only on ao,7]
and r, such that

Wc postpone the proof of the above lemma in the appendix. With the help
of the above lemma, Wc can prove the rate of convergence for Algorithm 2.1 as
in the following:

xm/m \ a
i; = s>, and Mr>;||£ <Ci IMI vi=i \i=i /

m m

-=1 j=l

(m v 2—- / m x iElNIv) * (ElMlv) .
I=l ' '

b + r)bT <a. (16)

b< (^(r-l^o+a1 - 7- ) 1 -' <a . (17)
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Theorem 3.3 Assume that the space decomposition satisfies (14) > (15) and the
functional F satisfies (6). Set r = p p~-( . Then for Algorithm 2.1 and dn given
by (13), wc have:

(18)

Uere C* > 0 depending on p,q,K,L,Ci and C_, see (27).

2. If r > 1, -7ien ./.ere e__is£s on £o = £o(cfo,C'*,r) £ [fj, 1] such that

Vn> 1

(19)

Proof. Using (4), the convexity of F and (9), wc get

(20)

For notational

"J

1. If r = 1 (namely p = q),

dn+i <: , 77zdn, Vn > 11 + G*

1 1

dn+ l <(^G> + rfn 1 "7") l " ' < feri* + l)-0 + 4"r) "

m

F{un ) - F{un+l ) = F(un ) -F(un +J2a^)I=l

= F(un-F(jrai(un + e?)+U-j^at)un)i=i »=i ' '
m m

> F(Wn)-^a.F(_n + ef)-(l-X. aOF(un)i=l i=l

= jrai(F(un)-F(un + e?)\i=i '

> -^al (F'(_" + er),er) + -^al ||eni PKi=l i=l
K m

y i-i

il simplicity, wc introduce for a given .

f j+i-l

un + Yl ake k ' Vj G [l,m -.+ 1] ;
) fc=i
\ m j—m+i—l

uU + E a* e * + E ake k • Vj G[m-i+ 2, m]
k /_ = ! fe= l
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It is clear that w™ is depending on .. Moreover, wc see that

It is easy to see that

(21)

From the property (14) of the space decomposition, there exists vi G Vi such
that

(23)

< =un + a-e?,
71 Tl i 71 i 71

w 2 =u +al et +ai+ iei+l ,

m

fc=i

771 771
F'(un + Y^l) ~ F'(un + aie?) =22 (F1 (w?) - *>?-i))i-l j-2

1771 / TTI \ a
un+l -u = J2^ and EWJ <Ci||itn+l -«||v. (22)I=l \i=l /

Wc shall use (11), (20), (21) and (6) to estimate:

(F'(un+l )-F'(u),un+l -u)
771

(F'(un+l ),un+l -u) = 22(F'(un+l ),vl )i=l
771
22(F'(un+1 )-F'(un + e^),vl )i=i

771 771
E (F> (un + E aJ e?) - F'^n + <)' v*)I=l j=i

771 771
E (F'(wn + E a^ ei) - F/ (un + *«?).*<)i=i j=i

771
+22 (^V1 + o<e?)-_FVl + e?).**)i=l771 771 771
EE(F'K)- F'K-i)'^) + E(F'^n+Q n̂)- F'(wn+er)'^)i=l ]=2 t=l

(771 x / TTI s i 771
3 = 1 ' M=l ' I=l

(771 v 2^± , m vi-E°i Kliv) " (EMv)
j=l ' I=l '
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+-%3-(E £"ii<iiv) (ElNiv) •mine./' *=i *=i

(T7l \J.E a<ll c"llv) -CiWu^-uWv

(m \ vE^llv) -^ IK+1 -^llv

(24)

(25)

In the above, amax and c-mtn are used to denote

By assumption (6) and relation (12), wc have

(26)

Defining

(27)

one gets from (25) and (26) that

(28)

(29)

Next, wc consider the case that r > 1. If dn = 0 for an n > 1, then (28) tells
that dm = O,Vm >n. In this case, Theorem 3.3 is correct. Now, let us assume
that dn >0, Vn >1. Relation (28) is equivalent to

< CiC2 (aZT~ ~ + aJt) [| (F(un) - F(u«+1 ))} V • \\un+l - u\\v

ocmax = max a., amin = min a-.l<t<77l I<l<T7l

(F'(un+l ) - F'(u),un+l -u)
||un+l -u\\ v

r/i -i l^
> K\\un+l -ufy 1 >K f(F(un+l )-F(_)) *-_j

/ (;.-!)(.-!) 7-1 \ -j 7^T
CiC2 ( amax" + amin j fLY

(dn+i) r < C*(dn — dn+ i)

Thus £~=o (dn+i)r < C*d0 and this implies

dn+i -* 0 as n — oo

If r = 1, then from (28), wc deduce that

A C * ri
«n+l - Y+~C* '

dn+i + -^z(dn+i) r <dn .
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An application of Lemma 3.2 assures that there is an fo = €o(do,C*,r) G [o, l]
such that

By induction, it follows that

This proves Theorem 3.3. D
The analysis implies that when r = 1, the convergence is uniform. In case

that r > 1, the convergence can be slow, i.e. dn = O nrn) -;r:rT ). Especially,

when r is very big, y^ ~ 0 and the convergence can be very slow. However, in
Theorem 7.1 in the appendix, wc shall show that estimate (19) is really sharp.
Using that fact that a < p, we see that it is impossible to have r < 1. In order
to have r = 1, we must require p = q. The analysis given in [29] and [1] was
done for p = q = 2.

Remark 3.1 If there is no extra condition on the decomposed spaces, the con
dition YLULi oti <\'\s sufficient and also necessary for the convergence of Algo
rithm 2.1. In Remark 4.1 of [28, p. 146], an example is given which shows that
if J2iLi «i > 1, then Algorithm 2.1 can be divergent. For overlapping domain
decomposition with a suitable coloring, condition VaLi at < 1 is nearly opti
mal. However, for multigrid method as wc shall discuss later, the upper bound
of £i-_-i at with which the algorithm is convergent can be much larger than 1.
The upper bound depends on matrix £ = {eij), where e^ satisfies

If the decomposed spaces are orthogonal, it is easy to determine the upper bound
of X. Hi a*- ln computations for general decomposed spaces, a line search to
find the value of t such that the following functional:

is attaining its minimum value would be appropriate. To find such a t, wc do
not need to solve any system of equations and it only needs to evaluate the
functional values, which is not computationally expensive.

(r — 1 \ Tr7'
dn+l< f-^r^o+4~r )

dn+ i < (^r^ +
< • ••

- ( L&r(n + I >Z° + <%-r)

{F'{wij +m) - F'(wtJ ),v3 ) < €i3 \\ui\\qy l \\vi\\v ,Vt_y G V, Vu, G Vu \/v3 GV3

s(*)=FUn +tf>n
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3.4 The convergence of the successive subspace correction
method

The convergence of Algorithm 2.2 is similar to Algorithm 2.1.

Theorem 3.4 Let the space decomposition satisfies (14), (15) and the func
tional F satisfies (6). Define

(30)

1. If r = 1, wc have

(31)

(32)

(33)

(34)

Thus, estimates (33) and (34) together tell that

(35)

and

Similarly to the proofs for (24)-(26), there holds for any Vi G V., which satisfies
EHi vi - uU+l ~ w ' the kation

(37)

= P(P-1) c* = \CiC2 y£* p (LY
r q(q-iy "[ K \ K\q)

C1 *

dn+i < 1 + c * dn ' Vn > 1 .

2. If r > 1, then there exists an £o = £o(^o, C*,r) G [o,l] such that
1 1

dn+i < (^^o + dj-^ ' " < f + 1)& + 4~r) "" ,Vn > 1

Proof. Notice
771

F(un ) - F{un+l ) = Y \F{un+l/rn ) - F(un+(l- 1)/m )li=l

As un+ '» is the minimizer of (3), wc get by (9)

F(un+(i_1>/m) -F{un+l'm ) > —\\e?\\ v .tr

F{un ) > F(un+l ),

F(u")-F(^+1 )>-Ell^ll Pv ( 36 )y I=l

(F'(_n+l )-F'(u),_n+l -u)
771

= 22 (F'(un+l ) - F'{un+^-^lm + e?), Vi\I=l
m Tri
Y22(F'(un+j/m) - F'(un+u~1)/m )> vi)t=l j>i

(m v !i—i. , m v 1Eiw) (EiNiv)j=i ' m=i '
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Let vz be given as in (22) and using estimates (36) and (37) to obtain

(38)

The rest of the proof is the same as for Theorem 3.3. D

4 Overlapping domain decomposition for W I,P(Q)

In this section, wc show that how wc can use overlapping domain decomposition
to decompose a finite element space and to guarantee that the constants Ci and
C 2do not depend on the mesh parameters.

Let {Q,i}*Li be a shape-regular finite element division, or a coarse mesh, of
f2and f., has diameter of order H. For each fii, wc further divide it into smaller
simplices with diameter of order h. In case that fi, has a curved boundary, wc
shall also fill the area between dfi, and dSln, here f_H = U^f-i, with finite
elements with diameters of order h. Wc assume that the resulting elements
form a shape regular finite element subdivision of _7, see Ciarlet [9]. Wc call
this the fine mesh or the /i-level subdivision of f. with mesh parameter h. Wc
denote Q n = U{T G Th} as the fine mesh subdivision. Let Stf C Wq ,p (£lh)
and Sø C W 0'p (Qh) be the continuous, piecewise rth order polynomial finite
element spaces, with zero trace on dVtn and dQhi over the H-leve\ and /i-level
subdivisions of fi. respectively. More specifically,

For each fii, wc consider an enlarged subdomain 0- = {T 6 Tn ,dist(T, f.,) <
£}. The union of ftf covers fU with overlaps of size 6. Let us denote the
piecewise rth order polynomial finite element space with zero traces on the
boundaries <9f.f as Sq (f-f ). Then one can show that

(39)

For the overlapping subdomains, assume that there exist m colors such that
each subdomain f-f can be marked with one color, and the subdomains with

(F'(un+l )-F'(u),un+l -u)
- / 771 v '-i --, , 771 vi

< c2 (s>x) ' Eiw)
- I=l ' i t=i '

(771 \ i^—Eu^J ' -ikn+l -^ik
i=i '

< CiC2^[F(un-F(un+l )]j ' .\\un+l -u\\ v

S» = {veWt>p (fiH )\ i>|n. €Pr(fti),V«},

S5= {vewi*(fih )\ v\ T ePr(T),VTeTh ]

So=S(? + E 5o(fii)



12

the same color will not intersect with each other. For suitable overlaps, one can
always choose m = 2 if d = 1; m < 4 if d = 2; m < 8 if d = 3, see Figure 1. Let
f.; be the union of the subdomains with the r" color, and

By denoting subspaces V 0 = Sq , V - Sq, wc find that decomposition (39)
means

and so the two level method is a way to decompose the finite element space.
Similar as in [30], let {Bi}^ be a partition of unity with respect to {f.^}^,
i.e. Oi G C£°(ft- n fl), 0. > 0 and £™ x 0t = 1. It can be chosen so that

i™ i nit a( \ S l if distance (*' dft 'i)>°~ and x G ft'.,

Let /^ be an interpolation operator which uses the function values at the /i-level
nodes. For any v € V, let u 0 G V0be the solution of (uo ,ø#) = (v,ø#),Vøh G
Vb, and Vj = h(oi(v -v 0)). They satisfy tj = £™ 0 v», and

Lemma 4.1 For any s > 1,

Proof of Lemma 4.1. Let us denote w = v-vo, T^ the union of all the finite
elements T of ft'. on which Oi is not constant, and by 0~t the average of Oi on a
given finite element. By construction, wc have on any given T

The last term is zero if T does not belong to T^s  It is easy to show that

Therefore, by summing over all elements T of ftj, wc get

(43)

Vi = {veS&\ v(x) =0, xsfi'i}.

771
v=vO +22 Vi ' ( 4°)I=l

(\\vo\\lP + E \MIp) £ c(™ +D-f1 + (f) * ) Ml**- <41 )

Vi = ØiW + Ih ((Øi - Øi)w),

/ |V7Ji| p „xdy < 2P" 1 / \V(Øiw)\p dxdy + 2p- 1 / \VIh ((Øi - Øi)w)\pdxdy .

(42)

V/-((ft-*>)[, T <£lMlS,,,r

/ \Vvl \ pdxdy<2p~ l f \Vw\ p dxdy +— / \w\ pdxJQ' Jn't ° JTi.*
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The global fine mesh Color 0: the coarse mesh Color 1 subdomains

Figure 1: The coloring of the subdomains and the coarse mesh grid

But Ti f s is a subdomain of f};, whose width is at most 6. For simplicity, wc
assume that ftj = [O,H] x [Q,H] and Ti>6 = [O,H] x [0,6]. The modifications
necessary for the case of arbitrary shaped subdomains and higher dimensional
problems are routine. Writing

(44)

Using Cauchy Schwartz inequality, wc have therefore,

Considering the integral over T^s and using (44), wc obtain

fy dw
w(x,y) =w(x,o)+ ~^-dyJo °v

h[ \w{x,o)\ pdx<2p- 1 f f \w\ pdxdy + 2p- l Hp f f \Vw\pdxdy.Jo Jo Jo Jo Jo
This shows that

/ \w\ pds<C2p ~ 1 H- 1 f \w\ p dxdy + C2p- 1 Hp~ 1 f \Vw\ p dxdy . (45)Jdn>. Jnr Jnr

/ \w\ pdxdy < 2P~ 1 8P f \Vw\pdxdy + 2P~ 1 6 f \w\ pds. (46)
JTi.t Jnr Janr
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Combining (43), (45) and (46), wc see that

(48)

It is true that

(49)

Therefore, relations (48) and (49) imply that

(50)

Lemma 4.1 follows from (50) and the inequality

Using the Cauchy-Schwarz inequality, it is easy to prove:

Lemma 4.2 Under condition (6), wc have for any s > 1:

L\\ut \\ v I\\1 \\vi \\v

(51)

Estimates (41) and (51) show that for overlapping domain decomposition, the
constants in (14) and (15) are

By requiring S = cqH, where co is a given constant, wc have that Ci and C 2are
independent of the mesh parameters h and H, the number of subdomains, and
estimate (41), (51) are also valid for 3D problems. So if the proposed algorithms
are used, their error reductions per step are independent of these parameters.

f \Vvx \ p dxdy <c(l + I \Vw\p dxdy +j^ J \w\pdxdy (47)

Taking into account that w = v — Vq, we get from (47) that

f \Vvi\pdxdy <C(1 4- Tpr ) / \^Mpdxdy.

/ \Vv0 \ pdxdy <C f \Vv\p dxdy.Jn Jn

«tolli* < C-JbHi.p, IbiHi.p <C (1 + |^-) " |M|i,p

(1 + xP- 1 )* < I+iV, Vx>o, p>\.

771 771 771 771
££(F>tJ +u.) -f'^),.,,) < 22Yi=l 3= 1 i=l 3= 1

(rn vi , m v 2—-EWvl^-fEwiv) 'I=l ' i=i '
Vut G Vi , Wij G V and Vj GVj

Ci=C(m)(l+(j) 'j, C2 =C(m).
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5 Multilevel decomposition for Wl 'p (£l)

In this section, wc discuss the application of our theory to multigrid methods.
From the space decomposition point of view, a multigrid algorithm is built upon
the subspaces that are defined on a nested sequence of finite element partitions.

Wc assume that the finite element partition T is constructed by a successive
refinement process. More precisely, T — Tj for some J > 1, and 7} for j < J
are a nested sequence of quasi-uniform finite element partitions, i.e. Tj consist
of finite elements Tj = {rj} of size hj such that f. = UiTJ for which the quasi
uniformity constants are independent of j (cf. [9]) and t13 _ x is a union of elements
of {tj}. Wc further assume that there is a constant 7 < 1, independent of j,
such that hj is proportional to 72j .

As an example, in the two dimensional case, a finer grid is obtained by
connecting the midpoints of the edges of the triangles of the coarser grid, with
7i being the given coarsest initial triangulation, which is quasi-uniform. In this
example, 7 = l/\/2.

Corresponding to each finite element partition Tj, a finite element space Mj
can be defined by

Each finite element space Mj is associated with a nodal basis, denoted by
WjTtLi satisfying

where {a^}£ii is the set of all nodes of the elements of Tj. Associated with each
such a nodal basis function, wc define a one dimensional subspace as follows

On each level, the nodes can be colored so that the neighboring nodes are
always of different colors. The number of colors needed for a regular mesh is
always a bounded constant; call it mc . Let VK k — 1,2, • • -mc be the sum of
the subspaces M 3associated with nodes of the kth color on level j. Letting
V = Mj, wc have the following trivial space decomposition:

J m c

(52)

Each subspace Vf contains some orthogonal one dimensional subspaces A4* and
so the minimization problems (3) and (5) for each Vj can be done in parallel
over the one dimensional subspaces A.*.

Mj = {ve W^p {fi) : v\ T GPi (r), Yr G Tj}

tfå) = Sik

M) = span tø}).

vk3 'v =
3=l k=l
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5.1 Estimation of the constant Ci

For any j < J, let Qj be the I? project operator to the finite element space
M3 at level j. For any v G V, define Vj = (Qj - Qj-\)v G Mj. A further
decomposition of Vj is given by

n.

v\ withv
l —

Let Vj, k = 1,2, •• • ,mc be the sum of v
color on level j. It is easy to see that

associated with the nodes of the kth

771 ri,

».V
") 

Denote fij the union of the support sets of the basis functions associated with
the kth color nodes on level j. We estimate

In the above, we have assumed that fi C Rd ,d= 1,2,3,- • •. Using the inequality

we get that

Here, we have used the fact that, in the finite element space, an Lp norm is
equivalent to some discrete Lv norm, namely

As a consequence,

u}^ Vj (x))4>)

k=

ek,=e( e \«M)\p miY ± chf^T:( e mw)*
fc=i fc=i x x «€fi£ fc=i x*€^

77l c y 77l r v. — I—2-

Ei^r^(Eia*ip ) W "
fc=i *

EKir.p^ " N^Ew^r <^7HK-iis,p-fc=i ' x i=i /

iKiiS)P = i=l

J 77l c J
EE-«X* cE ft7'iwi..,3= 1 k=l j=l

*cE fc7" 1 («i - *-0"l[ p- c E ft7' I«. (' - Oi-0"L7 = 1 ' 3—l
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In proving the inequality (53), wc have used the stability in Lp of the L2
projection [11] and the error estimate for _L 2 -projections, see [9].

5.2 Estimation of the constant Ci

From condition (9), wc see that

However, in order to estimate the constant C 2, wc need to use a finer estimate
than (54). For any w,u,v G V , wc need the functional F to satisfy

In the above and also later, supp denotes the support set of a function. For any
u G Mlj and v G Mf, j < l, wc note that the size of supp(u) D supp(v) is at
most the size of supp(v). Thus since u is piecewise linear

\\u\\i,P,supP(u)nsupp(v) <C7f ,J ''Hli.p, VuG Mlj,Vv G Mf. (56)

Let w € V, u € VJ and v € Vf . Wc decompose u and v as

i.e. functions u and v are decomposed into functions from the one dimensional
subspaces of the same colors. Wc shall assume that the following inequality is
valid for the above decomposition:

The above inequality is often a consequence of the orthogonality of the one
dimensional subspaces of the same color and the fact that u is zero at the nodes
that do have the color of u.

From (57), (55), (56) and the orthogonality of the one dimensional subspaces
of the same color, it is easy to see that

J J
c Evi(7 -^-iHo ft7ffftJ-iIHi,P3=l ' P 3 = 1

<c 7
which proves that

CS J±K|logfc|±

(F'(wij+Ui) - F'(wij),Vj) < L\\ux \\ q - 1 \\Vj\\v. (54)

(F' (w +u) - F' (w), v) < L\\u\\\JsuMu)nsupp(v) ||-||i,Pl _,_pp( I_)n«_pp(_-).1 _)n«_pp(_-). (55)

Tii nl

u = 22 u°" uQ =u(a:")ø", v = 22 voi vø = v(xf)<pf ,
Q = l o=l

(^ + 0)-FHEv^EE^ + tta)^H^). (57)a f 3

{F> {w +u) . F> {w) , v) < Ci 2Æ3^^12221 ikii^imii*a 0
= C7M^(/-j' )L||w||?^lb||i,p, Vu 6 Vj, v € Vf, j < l.



18

For j > l, wc shall have

{F' (w + u)- F' (w), v) < C7^(i_0 i:||w||?- I||i;|1 ||i;|| I,p,1 ,p, Vu G VJ, vG Vf

Denoting 70 =y v max^q~ fl\ wc ge^ from the above two estimates

To estimate the constant C 2wc need the next lemma, which extends a result
of [23, p.184]:

Proof of Lemma 5.1. The Cauchy-Schwarz inequality gives
a

C(Ei^ri^r)

which proves the lemma. D
As a consequence of the above Lemma, wc easily get the following corollary

which generalizes a well-known result from linear algebra, see [21, p.3-38].

Proof of Corollary 5.1. It is easy to see that

The Corollary is an easy consequence of Lemma 5.1 by setting Axj := \Aij\«'
and Øij := \Aij\« . D

**r

{F'(w +u) - F'(w),v) < C^-^LWuWl^WvWi^, V_eV/, veVf. (58)

Lemma 5.1 Let A = {AijØij} be an ni xn2 matrix. Then

— —

\\Ax\\t, < max fe \9iå A ' max fe \A%3 \A ' \\x\\ t«.
t J

Il^ll." — 2^t 7 jAjjOjjXj
i j

ff )i 3 3

223 3

< max fe \ØijA max fe |^ I*') *22* 3 3

Corollary 5.1 Let A = {Aij} be a symmetric matrix; then

\Ax\\e° < f max^|-4ij|J||x||/.

\Aij\ — \Aij\"' \Aij\"
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For a given u l. GV- and v\ G Vtk , an application of Corollary 8 gives

Using the above inequality and Corollary 5.1, wc get that

J J m c m c

(59)

From (15), (58) and (59), wc conclude that the constant C 2 is independent of
the mesh size h and the number of levels J for decomposition (52).

Remark 5.1 In case that p = q, the estimations wc have derived for the con
stants Ci and C 2 are also valid for decomposition

J ri]

(60)M),

i.e. the coloring is not necessary for implementing the algorithms.

6 Some Applications
In this section wc illustrate some problems that our algorithms are applicable
without going into the details of analyses.

6.1 Linear problems

The algorithms can be used for linear second order equation

(61)

771, 771, / 771,.. v '-i / 77l r \ —
EEiKiir/ii^iii.p^^feiKiir,, " (e>,xji=i fc=i i=i * k=i *

EEEE^""iKiir; utfii.,
j=i I=l i=i _=i

J J / rn c v ,mc  i

<^EE^"(EiKiir,) " (Eiitfiir,)
j=\ I=l I=l ' \-k=i '

(J \/ J m,: v2— / J Tii, v amyxE^JIEEKiU ' •(EEiitfiir,)I=l ' S'=i«=i Vk .=ife=i /
f J mc \ 2 / J rh c v a

(EE utflir,)
' U X3= 1 i=l ' M=l k=l '

v =
3=l i=l

f -V • (aVu) = finficRd ,
\ u=o on <9f_ ,
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and linear fourth order equation

If wc use Algorithm 2.2 for a general symmetric positive define linear problem

then the implementation can be divided into the following steps:

Algorithm 6.1 (Application to linear problems)

1 . Choose initial values u° G V and compute the initial residual r° such that
(r°,v) = (f,v)-a(u°,v),VveV

(62)

(63)

./. Update the solution as

(64)

and go to the next iteration.

The implementation for Algorithm 2.1 is similar. If the subspaces Vi are
associated with the overlapping domain decomposition, then equation (62) is
the solving of the subdomain problems. Equations (63) and (64) are just the
simple updatings of the residual and the solution in the subdomains. If the
subspaces Vi are associated with the multigrid method, then equation (62) is to
compute the correction value for the nodal bases at different levels. Equations
(63) and (64) are the updatings for the residual and solution corresponding to
the nodal bases.

For such a kind of symmetrical linear problem, wc have p = q = 2, and so
the decomposition (60) can be used. Wc can also do V-cycle and W-cycle types
of iteration if wc just repeat some of the nodal bases in the decomposition of
V in (60). It is preferable to use a V-cycle decomposition and then use the
conjugate gradient method as an out-iteration to accelerate the convergence.

f -A(aAu) =/mf. C Rd ,
{ u=o,fe=o, on an .

a(u,v) = (f,v), VveV.

2. For i = 1,2,-  • ,m, if rn+ »• is known, compute e" GV. suc/i .Via.

a(e?,vl ) = (rn+i^I ,Vi) , Vv{ GV.

3. Update the residual rn+ »< such that

(rn+^,v) = {rn+i^,v) - a(e?,v), Vy e V

un+ t: = un+i^-r-e?
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6.2 Nonlinear elliptic equations
Consider

(65)

For equation (65), we assume / G W~ I,s (f.), 7+pr = 1. By standard
techniques, it can be shown, see [14], that (65) possesses a unique solution
which is the minimizer of

min - f \Vv\ s -(f,v)

Even with very smooth data, the solution u may not be in the space W0 ,s , see
Ciarlet [9, p. 324]. When s is close to 1 or is very big (5 » 2), it is difficult
to solve this problem numerically. Conditions (6) are fulfilled by equation (65),
see p. 319 and p. 325 of Ciarlet [9]. More precisely, we have for

(66)

In the above, a and /3 are independent of v and w and are strictly positive. The
proof of (66) and (68) is given in p. 319 of Ciarlet [9]. The proof of (67) and
(69) can be found in Glowinski and Marrocco [16]. Corresponding to condition
(6), these estimates imply that

As we explained in §3.1, it is assumed that v and w are in a neighborhood of
the true solution. The full potential equation considered in [6] is of a similar
type to equation (65).

f - V • (|Vu| s " 2 Vu) =f in fiC Rd {Ks< oo)
\ u=o on <9f. .

V = Wq1 '8^), F(v) = f (-\Vv\ s - fv)dx
Jn s

the following estimates:

(F' (v) - F' (w), v-w)>\\v- w\\l s , if s> 2

liv - uHI 2

{rM - F'M' v - w) * a (Ml+\\X,r-'' ifl<s - 2 ' (67)

||F'(.) - F'(w)\\v < jB(||-||i.. + ||t.||,,.)-j ||- - «-111,, if s> 2. (68)

||F'(_) - F'(w)\\v> < o\\v - wWI' 1 if 1< s< 2. (69)

p= s, q= 2 if 5> 2;

p=2, q= s ifl<s<2.
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For more general problem

(70)

wc assume that a is strictly convex and / is convex and both are differentiable.
If wc use Algorithm 2.2 for (70), then wc obtain

Algorithm 6.2 (Application to nonlinear problems)

1. Choose initial values u° G V.

(71)

3. Update the solution as

(72)

ane. oo io ./.e nea;- iteration.

If Vi are the domain decomposition subspaces, then problem (71) is a non
linear problem in each subdomain, which has a smaller size than the original
problem. For some minimization methods, the convergence and the computing
time depend on the size of the problem. Thus by first reducing the problem into
smaller size problems and then minimize, wc may gain efficiency. If Vi are the
multigrid nodal basis subspaces, then (71) is equivalent to some one dimensional
nonlinear problems and wc can use efficient minimization routines to solve the
one dimensional problems.

6.3 Eigenvalue problems

Consider the minimization of the following functional to obtain the smallest
eigenvalue and the corresponding eigenvector for a symmetric positive definite
matrix A:

This functional is not convex globally, but is convex in the neighbourhood of
the true minimizer. See [8] and [22] for some detailed analysis and numerical
simulations.

Acknowledgement: The authors would like to thank Steinar Evje for valu
able discussions related to the proofs of Lemma 3.2 and Professor M. Espedal
for some earlier participation in this work.

min f \a(\Vv\ 2 ) + f(v),vew()- yn)Jn 2

2. For i = 1, 2, •••,m, if un+ '» is known, compute e™ GVt such that

f fa'(|V(uTl+i^1 + cD| 2 )V(un+i^ii + e?)  VvtJn .

+f'(un+il^ + e?)vi dx = 0 , Vui G V.

i i i (i-l)

F(v) = (±!i£)
( ' Nl 2v "
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7 Appendix
Proof of Lemma 3.2. For the given a > 0, 77 > o,r >1, let y = y(t) be the
solution of the ordinary differential equation

(73)

The Taylor expansion formula asserts that there exists an £ G [0, f] such that

It is clear that y is a non-increasing function of t, i.e. y(£) < y(0) = a. Equation
(73) indicates that r){y{t)) r = -y'(t), Vi. So (75) implies

Again, by (73) and using Taylor expansion for y'(£) in (76), we know that there
exists an £ G [0, £] such that

(77)

It is true that y(£) < y(0) =a. Thus (77) and the fact that a< a0 infer that

\ 2/ =a at .= 0 .

It is easy to calculate that its solution is

p = -tidt ,
_L_ (yl-r _ al-r) = v_ t ) (?4)

y(t) = {r)(r - l)t + al -')^ .

Next, we show that there exists a £ > 0 such that

E(0 = y(0 + v(y(0)r -a>o.

E(0 = y(0 + v(y(0)r -a
= y(0) + v'(Z)Z + v(y(Z)) r -a (75)
= y'(dt + v(y(Z)Y  

E(o= -v(y(On + v(y(0) r
> -var Z + v(y(OY (76)
= -vaT Z - y'(o  

Using (73) wc see that

y"(0= r (0) = -nr(»(0)r-V(0 = vMviO)21" 1dK

E(o> -y'(0)-y"(OZ-var Z
= i?or -t72r(y(o)2r"^-».ar e

E{o > vaT ~ V2 ra2r- 1 (, - narZ
> nar — n2 raraTQ~ l i — r)ar £
= nar (l-rirarQ- IZ-0-
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Thus, let

(78)

Clearly, £o £ [o,l] does not depends on a and b. The inequality of (78) shows
that

and from which wc see that
b<y(£o).

This proves the lemma.

Next, wc show that the estimates of Theorems 3.3 and 3.4 are really sharp.

Theorem 7.1 Under the conditions of Theorem 3.3, assume that r > 1 and

i.e. dn+i is reaching the maximum possible error at each iteration. Then there
holds

Proof of Theorem 7.1. Wc define, for n > 1, 6n >oto be the unique number
which satisfies

In addition, let y = ya (t) be the solution of the ordinary differential equation
(73) with n = £77, i.e.

(83)

From definition (82), it is true that dn+i = <?_;_, (1). Using Taylor expansion, wc
know that there exists £ G [o, l] such that

(84)

c*(6n - dn ) = c*(dn+l - dn ) + (^t + sirA l '

£o = —i , there holds F(£0 ) >0 .
nra0 + 1

y(Zo) + v(y(to)Y>a- (79)

A combination of (16) and (79) tells that

b + rjbr <y((o)+v(y(Zo)Y

(dn+i)r = C*(dn -dn+ i) , (80)

I 1

d«+i> (L^r + d- 1 ~ r) lr * (^(^ +1) + 4"r) 1 " r > Vn>l. (81)

1

dn+i=(^+Cr) "" • (82)

1

dn+ i = ySn (1) = y6n (0) + y'Sn (£) =6n - r6n (£)

= + er ) llr •

From which it follows
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From relation (80), this implies

(85)

Therefore, wc get
Sn >dn . (86)

From (83), it is easy to check that ya is an increasing function with respect to
a. So from (82) and (86), one concludes

(87)

An induction of (87) proves (81).

References

[1] A. Axelsson and W. Layton. A two-level method for the discretization of
nonlinear boundary value problems. SIAM J. Numer. Anal, 33:2359-2374,
1996.

[2] R. Bank. Analysis of a multilevel iterative method for nonlinear finite
element equations. Math. Comp., . 39:453-465, 1982.

[3] J. H. Bramble, J. E. Pasciak, J. Wang, and J. Ku. Convergence estimates
for product iterative methods with applications to domain decomposition.
Math. Comp., 57:1-21, 1991.

[4] A. Brandt. Multilevel adaptive solutions to boundary value problems
Math. Comp., 31:333-309, 1977.

[5] X.-C. Cai and M. Dryja. Domain decomposition methods for monotone
nonlinear elliptic problems. In D. E. Keyes and Ku, editors, Proceeding of
the seventh international conference on domain decomposition methods in
Science and scientific computing (Penn. state Univ.), pages 21-28. AMS,
Providence, 1994.

[6] X.-C. Cai, W. D. Groop, D. E. Keyes, and M. D. Tidriri. Parallel implicit
methods for aerodynamics. In D. E. Keyes and Ku, editors, Proceeding of
the seventh international conference on domain decomposition methods in
Science and scientific computing (Penn. state Univ.), pages 465-470. AMS,
Providence, 1994.

C*(6n -dn )
= -(dn+1 y + (&Z-r6n-r)^

>0 .

1

+l>(^+4-r) 1 "



26

[7] J. Cea. Optimisation - thérie et algorithmes. Dunod, 1971.

[8] T. F. Chan and I. Sharapov. Subspace correction multilevel methods for
elliptic eigenvalue problems. In P. Bjørstad, M. Espedal, and D. Keyes,
editors, Proceedings of the 9th international domain decomposition methods.
John Wiley and Sons, To appear.

[9] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-
Holland, Amsterdam, 1978.

[10] W. Dahmén. Wavelet and multiscale methods for operator equations. Acta
Numerica, 6, 1997.

[11] J. Douglas, T. Dupont, and L. Wahlbin. The stability in l g of the 12-projectionl2
projection into finite element function spaces. Numer. Math., 23:193-197,
1975.

[12] M. Dryja and W. Hackbusch. On the nonlinear domain decomposition
method. BIT, 37:296-311, 1997.

[13] M. Dryja and O. B. Widlund. Towards a unified theory of domain de
composition algorithms for elliptic problems. In T. Chan, R. Glowinski,
J. Periaux, and O. B. Widlund, editors, Third international symposium on
domain decomposition methods for partial differential equations, Philadel
phia, PA, 1990. SIAM.

[14] I. Ekeland and R. Temam. Convex analysis and variational problems.
North-Holland, Amsterdam, 1976.

[15] R. C. Ferguson and I. G. Graham. Multilevel adaptive methods for semi
linear equations with applications to device modelling. In P. Bjøstard,
M. Espedal, and D. Keyes, editors, Proceedings of the 9th international
domain decomposition conference, Norway. John Wiley and Sons, 1997.

[16] R. Glowinski and A. Marrocco. Sur I'approximation paréléments fi
nis d'ordre un, et lan résolution par pénalisation-dualité, d'une classe de
problémes de Dirichlet non linéaires. Rev. Fr. Autom. Inf. Rech. Oper.
Anal. Numér. R-2, pages 41-76, 1975.

[17] M. Griebel and P. Oswald. On the abstract theory of additive and multi
plicative schwartz algorithms. Numer. Math., 70:163-180, 1995.

[18] W. Hackbusch and A. Reusken. Analysis of a damped nonlinear multilevel
method. Numer. Math., 55:225-246, 1989.

[19] K. Kunisch and X.-C. Tai. Sequential and parallel splitting methods for
bilinear control problems in Hilbert spaces. SIAM J. Numer. Anal, 34:91
-118, 1997.



27

[20] R. Rannacher. On the convergence of the newton-raphson method for
strongly nonlinear finite element equations. In P. Wriggers and W. Wagner,
editors, Nonlinear computational mechanics. Springer-Verlag, 1991.

[21] H. Schneider, editor. Recent advances in matrix theory. The University of
Wisconsin press, 1964.

[22] I. Sharapov. Multilevel subspace correction for large scale optimization
problems. Technical Report cam-97-31, University of California at Los
Angeles, 1997.

[23] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain decomposi
tion: Parallel multilevel algorithms for elliptic partial differential equations.
Cambridge Univ. Press, Cambridge, 1996.

[24] X.-C. Tai. Parallel function decomposition and space decomposition meth
ods with applications to optimisation, splitting and domain decomposi
tion. Preprint No. 231-1992, Institut fur Mathematik, TechnischeUniver
sitåt Graz, 1992. http://www.mi.uib.no/~tai.

[25] X.-C. Tai. Parallel function and space decomposition methods. In P. Neit
taanmåki, editor, Finite element methods, fifty years of the Courant ele
ment, Lecture notes in pure and applied mathematics, volume 164, pages
421-432. Marcel Dekker inc, 1994. http://www.mi.uib.no/~tai.

[26] X.-C. Tai. Domain decomposition for linear and nonlinear elliptic problems
via function or space decomposition. In D. Keyes and J. Ku, editors, Do
main decomposition methods in scientific and engineering computing (Proe.
of the Ith international conference on domain decomposition, Penn. State
University, 1993), pages 355-360. American Mathematical Society, 1995.

[27] X.-C. Tai. Parallel function and space decomposition methods - part I.
function decomposition. Beijing Mathematics, 1, part 2:104-134, 1995.
http://www.mi.uib.no/~tai.

[28] X.-C. Tai. Parallel function decomposition and space decomposition meth
ods: Part 11. Space decomposition. Beijing Mathematics, 1, part 2:135-152,
1995. http://www.mi.uib.no/~tai.

[29] X.-C. Tai and M. Espedal. Rate of convergence of some space decomposition
method for linear and nonlinear elliptic problems. SIAM J. Numer. Anal,
To appear, 1998. http://www.mi.uib.no/~tai.

[30] O. Widlund. Some Schwarz methods for symmetric and nonsymmetric
elliptic problems. In Proceedings of the fifth international sympsium on
domain decomposition methods for partial differential equations, Norfolk,
May, 1991, Philadelphia, 1992. SIAM.



28

[31] J. Ku. Iteration methods by space decomposition and subspace correction.
SIAM Rev., 34:581-613, 1992.

[32] J. Ku. A novel two-grid method for semilinear elliptic equations. SIAM J.
Sei. Comp., . 15:231-237, 1994.

[33] J. Ku. Two-grid discretization techniques for linear and nonlinear pde.
SIAM J. Numer. Anal, 27:1759-1777, 1996.

[34] J. Ku and J. Zou. Non-overlapping domain decomposition methods. SIAM
Review (to appear).





Depotbiblioteket

78sd 20 271




