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Abstract

A general technique based on space decomposition and subspace cor-
rection is used to solve nonlinear convex minimization problems. The dif-
ferential of the minimization functional is required to satisfy some growth
conditions that are weaker than Lipschitz continuity and strong mono-
tonicity. Optimal rate of convergence is proved. If the differential is
Lipschitz continuous and strongly monotone, then the algorithms have
uniform rate of convergence. The algorithms can be used for domain
decomposition and multigrid type of techniques. Applications to linear
elliptic and some nonlinear degenerated partial differential equation are
considered.

1 Introduction

Domain decomposition and multigrid methods have been intensively studied
for linear partial differential equations. Recent research, see for example [31],
reveals that domain decomposition and multigrid methods can be analysed using
a same framework, see also [3], [13], [23], [17]. The present work uses this
framework to analyse the convergence of two algorithms for convex optimization
problems. However, our emphasis is on nonlinear problems instead of linear
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problems. The algorithms reduce to the standard additive and multiplicative
Schwarz methods when used for linear partial differential equations.

Researches for domain decomposition and multigrid methods have been
mostly concentrating on linear elliptic and parabolic partial differential equa-
tions. Extension to more difficult problems have been considered by some recent
works. In this work, a general nonlinear convex minimization problems is con-
sidered. The proposed algorithms can be used for nonlinear partial differential
equations, optimal control problems related to partial differential equations and
eigenvalue problems [8] [22]. The space decomposition can be a domain decom-
position method, a multigrid method or some other decomposition techniques.

Domain decomposition methods and multigrid methods have been studied
for nonlinear partial differential equations by some earlier works, see [1], [2], [4],
(5], [12], [15], [18], [20], [29], [24], [25], [26], [27], [28], [32], [33], etc. In compari-
son with the existing works, our approach has several features. For example, the
proposed algorithms can be used for certain degenerated or singular nonlinear
diffusion problems, i.e the nonlinear diffusion coefficient can be zero or infin-
ity and our approach do not need extra assumption on the smoothness of the
solutions. The methods work for natural domain decomposition and multigrid
meshes. Moreover, only small size nonlinear problems need to be solved on the
decomposed subspaces. We also emphasis that our approach is valid for general
space decomposition techniques. So the applications is not restricted to domain
decomposition and multigrid methods. Other space decomposition techniques
can also be considered, see [10], [23, p.169-184], [34].

The two algorithms given in this work were first proposed in [24], see also
[25], [27], [28] and [29], where the qualitative convergence of the algorithms was
proved, but the uniform rate of convergence was not given there.

2 Optimization problems and subspace correc-
tion methods

Consider the nonlinear optimization problem

min F(v) . (1)
Here V is a reflexive Banach space and F : V — R is a convex functional. This
problem has different applications, see §6
We shall use a space decomposition method to solve (1). A space decompo-
sition method refers to a method that decomposes the space V into a sum of
subspaces, i.e. there are subspaces Vi, ¢ =1,2,---,m, such that

e S S (2)

This means that for any v, there exists v; € V; such that v = 3_7" | v;. Following
the framework of [31] for linear problems, we consider two types of subspace



correction methods based on (2), namely the parallel subspace correction (PSC)
method and the successive subspace correction (SSC) method.

Algorithm 2.1 [A parallel subspace correction method).

1. Choose initial value u°® € V and relazation parameters o; > 0 such that
e <L

2. Forn > 0, if u™ € V is defined, then find e € V; in parallel for i =
1,2,---,m such that

Fu"+e)<Fu"+v), VyueV,. (3)

3. Set -
Wt ="+ Z ael (4)

i=1

and go to the next iteration.

Algorithm 2.2 [A successive subspace correction method).

1. Choose initial values u? =u® € V.

2. Forn > 0, if u™ € V is defined, find u™t/™ = y"+0=1/m 4 e yith
el € V; sequentially fori =1,2,---,m such that

F (un+(i—l)/m + e?) <F (un+(1—1)/m + Ui) , Yv, eV, . (5)

3. Go to the next iteration.

3 Global convergence of the algorithms

3.1 Assumptions on F'

In the following, the notation (-, -) is used to denote the duality pairing between
V and V', here V' is the dual space of V. The functional F' is assumed to be
Gateaux differentiable (see [7]) and there are constants K, L > 0, p > g > 1
such that

(F'(w) = F'(v),w —v) 2 Kllw-ol},, VwveV,

IF'(w) - F@)lv <Liw=-v5", vwveV, (6)

and from which it is easy to deduce that

Klw=vlf}, < (F'(w) = F'(v),w —v) < L|lw —2|l}, ,Vw,veV . (7)



Under assumption (6), problem (1) and subproblems (3) and (5) have unique
solutions, see [14, p. 35]. For some nonlinear problems, the constants K and L
depend on v and w. However, just under the condition that F' is strictly convex,
it has been proved in [24] and [28] that the iterative solutions of Algorithm 2.1
and Algorithm 2.2 converge to the true solution. Thus, one can assume that
the computed solutions are in a neighbourhood of the true solution and so the
constants A~ and L can be assumed to be independent of v and w. In case that
the functional F' is only locally convex in a neighbourhood of the true solution,
by choosing the initial value close enough to the true solution, it can be proved
that the computed solutions stay always inside the neighbourhood that the
functional F is convex (the essential techniques of the proof is contained in the
proof of Lemma 4.2 and 4.3 of [19]), and so the results given in this work are
also applicable to this kind of problems.
For simplicity, we define
p '

G=E——————, @ = P which satisfy

1
g ; +— =1
B=aar 1 g—1 o

Q|

Note that o < p and by Hélder inequality

i

o

gmilq—llbil < (g]ai|p>u’_‘—l <§[bi|”> . ®

The following lemma can be proved in a similar way as [14, p. 25], and the
proof can be found in [24].

Lemma 3.1 If the condition (7) is valid, then

-

K
F(w)—F(v)Z(F'(U),w—v)%—;llw—vll"’,, Yo,w eV, (9)
L
F(w) = F(v) < (F'(v),w —v) + Ellw -l , Yv,weV. (10)
We shall use u to denote the unique solution of (1) which satisfies
(F'(u),v) =0, YveV. (11)
It is an easy consequence of Lemma 3.1 that
K L
—IIv—UIli’/SF(v)—F(U)SQIIU—UH‘{/, Vwev. (12)
p
Therefore, in the following, we shall use
d, = F(u") — F(u), Vn >0, (13)

as a measure of the error between u™ and the true solution .




3.2 Assumptions on the space decomposition

For the decomposed spaces, we assume that there exits a constant C; > 0 such
that for any v € V, we can find v; € V; to satisfy:

=3 v, and (anra) < Gy - (14)
7—1 =il

Moreover, assume that there is a Cy > 0 such that there holds

m m

;; (wis + i) = F'(wi;),v;)
(Znun”) (Zuv]nv) , (15)

VwijEV,uiEWandvjE‘/}.

Domain decomposition methods, multilevel methods and multigrid methods can
be viewed as different ways of decomposing finite element spaces into sums of
subspaces. See §4 and §5 for some examples of some decompositions of a finite
element space and the corresponding estimates for constants C; and Cy. If F is
strictly convex, then the iterative solutions of the algorithms converges to the
true solution, i.e they are in a neighbourhood of the true solution. Therefore, we
just need to estimate (15) for w;; from a neighbourhood of the true solution. For
linear problems, estimate (15) is a consequence of the well-known strengthened
Cauchy-Schwartz inequality, see Xu [31].

3.3 The convergence of the parallel subspace correction
method

Before we state our first main result, we state the following elementary result.

Lemma 3.2 Given r > 1 andn > 0. If a € (0,a0] and b > 0 satisfy the
imequality
b+ b < a. (16)

Then there ezists a constant & = &y(ao,n,7) € [0,1], depending only on ag,n
and T, such that
1
b< (n(r-1)é+a7)7 <a. (17)

We postpone the proof of the above lemma in the appendix. With the help
of the above lemma, We can prove the rate of convergence for Algorithm 2.1 as
in the following:



Theorem 3.3 Assume that the space decomposition satisfies (14), (15) and the
functional F satisfies (6). Setr = Z—ES—__—H. Then for Algorithm 2.1 and d,, given
by (18), we have:

1. If r =1 (namely p = q),

C*
dn < —dn; = .
S e vn >1 (18)

Here C* > 0 depending on p,q, K,L,Cy and Co, see (27).

2. If r > 1, then there exists an & = €o(do, C*,7) € [0, 1] such that

1—r

dn+l S (

Proof. Using (4), the convexity of F' and (9), we get

v Il
™
:
FQ’J/\
2 2
: =
:
+
2 +
2
—
/—\
Ms
o M
\_/ Q
\l/
\_/
B

%

K m
= Zm(F'(u" +el)el) + = aillerll
=il 2 =1l
K m
= => allefll}
p 1=1

For notational simplicity, we introduce for a given ¢

j+i—1
e Z arer , VjE[l,m—-i+1];
— k
w_;l_ : J—m+i—1

u” +Zakek+ Z arey, ViE€[m—i+2,m].

1 = _
TC* £0+dn1_r> < (TC* (n+1)§0+d(1)_r> ., Vn>1.



It is clear that w? is depending on ¢. Moreover, we see that

n __ T
wy = g ar @HE 5

n n n n
Wy = U + ae; +aiy1€,4,,

m
W = =F E Qe
k=1

It is easy to see that

(u +ZQJ J) (u™ + g€} :i (w;l_l)) . (21)

=2

From the property (14) of the space decomposition, there exists v; € V; such

that .
_u=)"v and (Z HviH‘{,) < Crllu™tt —ully . (22)
7=l =1

We shall use (11), (20), (21) and (6) to estimate:
(F'(u™h) = F'(u), v —u)

- 1, n+1 n+ = n+l "
(F'(u™*1),u §<F (u L1>

— Z <F’(u"+1) — F'(u™ + e?),vi> (23)
=1

= ;<F'<u"+;aj€?) —F'(u"+ef),v1>

= i<F’(u"+ia1~e;‘) - F'(u +alez),1)1>

=i
= ZZ<F’(w )—F'(w;l_l),vi>+Z<F'(u”+alel) F'(u™ +€l) >
=il g=% =1
< G Y llese ll”) (ann;):+CQZ<1—a>ne”n‘1 Heddly
=1 =il

IN

(
Cz(iafue“n*’) " (gumnaf

=



C m a1 m 1

2 n P e\

+ =T (el (Swtr) (24)
= g=ll

mina; "
=
(r=1)(4=1) b L
< Colmaxad| 7 | D aillelll} CCh ™ = ullv
=1
q=1
_ m »
+Ca| min ;|7 (Z aillemm) - Cy ™t = ully (25)
=il
(r=1)(g=1) _g=1 uzl
< GG <amau + i ) [£ (F") = F@)] ™ - u™*! = ullv .

In the above, amaz and ami, are used to denote

@maz — INAX O, Qmin = min ;.
I<i<m 1<icm

By assumption (6) and relation (12), we have

(F'(u™*!) — F'(w),u™*! —u)
luntt —ully

u
> Ku*! —ulf 2 K [T(F@™) -F@)] " . (26)
Defining
@=1)(a=1) _ et T
CIC2 (amazl' +am”11’ > P L 7
07 = Z (=
K K <Q> ’ (27)
one gets from (25) and (26) that
(dn+1)T < C*(dn - dn+l) g (28)
Thus Yo7 ((dn41)” < C*dg and this implies
dny1 — 0asn— 0o (29)

If r = 1, then from (28), we deduce that

C*
dpy1 = ———d,, .
=140

Next, we consider the case that r > 1. If d, = 0 for an n > 1, then (28) tells
that d,,, = 0,¥m > n. In this case, Theorem 3.3 is correct. Now, let us assume
that d, > 0, ¥n > 1. Relation (28) is equivalent to

1

dn+1 + E;(dn-f-l)T S dn .




An application of Lemma 3.2 assures that there is an §, = §(dy, C*,r) € [0, 1]

such that .

= 1
C*

dn+l S (T 60 P di_r>

By induction, it follows that

1

r—1 I N
(o)

—1
(CC—,*—(n—% 1)&o +d(1)_r>

IN

dn+1

<

1

r—1

This proves Theorem 3.3. O
The analysis implies that when 7 = 1, the convergence is uniform. In case

il

that » > 1, the convergence can be slow, i.e. d,, = O ((rn) =t > Especially,

when 7 is very big, ﬁ ~ 0 and the convergence can be very slow. However, in
Theorem 7.1 in the appendix, we shall show that estimate (19) is really sharp.
Using that fact that o < p, we see that it is impossible to have r < 1. In order
to have 7 = 1, we must require p = g. The analysis given in [29] and [1] was
done for p =¢q = 2.

Remark 3.1 If there is no extra condition on the decomposed spaces, the con-
dition Y ", a; < 1 is sufficient and also necessary for the convergence of Algo-
rithm 2.1. In Remark 4.1 of [28, p. 146], an example is given which shows that
if 37, a; > 1, then Algorithm 2.1 can be divergent. For overlapping domain
decomposition with a suitable coloring, condition .~ @; < 1 is nearly opti-
mal. However, for multigrid method as we shall discuss later, the upper bound
of 3 a; with which the algorithm is convergent can be much larger than 1.
The upper bound depends on matrix £ = (e;;), where ¢;; satisfies

(F'(wij +wi) = F'(wij),v;) < egjllual|& Hlvslly ,Vaws; € V,Vu; € V;, Yo, €V .

If the decomposed spaces are orthogonal, it is easy to determine the upper bound
of ZZ’;I a;. In computations for general decomposed spaces, a line search to
find the value of ¢ such that the following functional:

g(t)=F (u" +tie?>
U=l

is attaining its minimum value would be appropriate. To find such a t, we do
not need to solve any system of equations and it only needs to evaluate the
functional values, which is not computationally expensive.



3.4 The convergence of the successive subspace correction
method
The convergence of Algorithm 2.2 is similar to Algorithm 2.1.

Theorem 3.4 Let the space decomposition satisfies (14), (15) and the func-
tional F satisfies (6). Define

_pp=1) = Chioh]| p (LY’ (30)
q(g—1) | K K\q)
1. If r =1, we have
ntl K ———dn, Vn2>1.
d +1 > 1 -+—C* n 1 (31)

2. Ifr > 1, then there exists an & = &(do, C*, 1) € [0,1] such that

1

1
— 1 T — 1| -
dny1 < (Tc* §o+dn1‘*) < (Tc* (n+ 1)£o+dé“’> , Vn>1.
(32)
Proof. Notice
F(un) n+1 Z[ n+1/m _F(un+(i—1)/m)] ) (33)
2 =il
As ™" is the minimizer of (3), we get by (9)
n4(1— m n+1/m K n
Fumt(=Dim) _ pyrtiim) > 5 el (34)
Thus, estimates (33) and (34) together tell that
F(u™) > F(u™h), (35)
and
n n A’ — n
F(u") - F(u"*!) > —p—z leZ 115, - (36)
=

Similarly to the proofs for (24)-(26), there holds for any v; € V;, which satisfies
S, v = u™! — u, the relation

(F'(u"™1) = F'(u), 0" — u)

Ms

<F1(un+1) _ Fl(un+(i—1)/m +8?),U1'>

1

1

_ ii <F’(u"+]/m _ F’(u"+(]_1)/m),v1> (37)
=h o
< (Z:] "n") (Z“MW)

10



Let v; be given as in (22) and using estimates (36) and (37) to obtain

(F'(w*1) = F'(w), ™ — )

e [(gne?n@) L_} (gnwuz) i

<

< clca(Zue?n@) Tt =y (38)
/e n n+1 w n+1

< GBI - F@)) T - uly

The rest of the proof is the same as for Theorem 3.3. O

4 Overlapping domain decomposition for W!?(Q)

In this section, we show that how we can use overlapping domain decomposition
to decompose a finite element space and to guarantee that the constants C; and
C, do not depend on the mesh parameters.

Let {Q,}M, be a shape-regular finite element division, or a coarse mesh, of
Q) and ; has diameter of order H. For each §;, we further divide it into smaller
simplices with diameter of order h. In case that  has a curved boundary, we
shall also fill the area between 9Q and 8Qy, here Qg = UM Q;, with finite
elements with diameters of order h. We assume that the resulting elements
form a shape regular finite element subdivision of 2, see Ciarlet [9]. We call
this the fine mesh or the h-level subdivision of  with mesh parameter h. We
denote Q, = U{7 € 7} as the fine mesh subdivision. Let S{ c W7 (Qpy)
and S} C W,?(Qx) be the continuous, piecewise r'* order polynomial finite
element spaces, with zero trace on 00y and 99y, over the H-level and h-level
subdivisions of €2 respectively. More specifically,

st = {vewg(@u)| vla, € Pr(0),Vi},

Sh = {v € WiP()| vlr € P(T),¥T € Th} :

For each (2;, we consider an enlarged subdomain Q¢ = {7 € 7, dist(7,9) <
6}. The union of Q% covers ), with overlaps of size 6. Let us denote the
piecewise r** order polynomial finite element space with zero traces on the
boundaries 9Q¢ as S5 (92¢). Then one can show that

Sg =S5+ 56(08) . (39)

For the overlapping subdomains, assume that there exist m colors such that
each subdomain Q¢ can be marked with one color, and the subdomains with

11




the same color will not intersect with each other. For suitable overlaps, one can

always choose m =2 if d=1;m <4 if d =2;m < 8 if d = 3, see Figure 1. Let

th

2. be the union of the subdomains with the i** color, and

Vi={ve St wv@)=0 z¢Q}.

By denoting subspaces Vi = S{f, V = S, we find that decomposition (39)
means .
V=Vy+ Y Vi (40)
a=1
and so the two level method is a way to decompose the finite element space.
Similar as in [30], let {#;}™, be a partition of unity with respect to {Q;}I%,,
e 6, € CE(NNQN), 0, >0and Y .-, 6; =1. It can be chosen so that

1 if distance (z,99.) > 6 and z € Q,

| < : = s
Vel < C/é - 8i{a) {0 on M.

Let I, be an interpolation operator which uses the function values at the h-level
nodes. For any v € V, let vy € V; be the solution of (v, o) = (v, 0H),Véu €
Vo, and v; = I,(6:(v — vo)). They satisfy v =3~ v;, and

Lemma 4.1 For any s > 1,

(|svo||i,,,+2||vini,p> < Clm +1)? <1+<;) )uvnl,p. (41)
t=

Proof of Lemma 4.1. Let us denote w = v —vp, ['; 5 the union of all the finite
elements 7 of Q0 on which 6; is not constant, and by 6; the average of 6; on a
given finite element. By construction, we have on any given 7

W = B—iw + Ih((0, - 9—1')’11)),

/ |V |Pdady < 2?'1/ |V(€_iw)]”dxdy+2”‘l/ IVIL((6; — 6;)w)|Pdzdy .
a5 T T

(42)
The last term is zero if 7 does not belong to I'; 5. It is easy to show that
[vn(e =), , < gt
Therefore, by summing over all elements 7 of 2}, we get
—1 c
|V, |Pdedy < 2P |Vw|Pdzdy + — |w|Pdz . (43)
Q Y OV

12



The global fine mesh Color 0: the coarse mesh Color 1 subdomains

| R 1 ApA
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2 0.2%
7
0 0 0t
0 0.5 1 0 0.5 1 0
Color 2 subdomains Color 3 subdomains
1 ﬂ%y : 1
0.8 2 0.8 5 il
G ;‘,}:‘(;
0.6 0.6 ] 4
0.4 0.4 i
02 0.2 e
0 0 ]/
0 0 0.5 1

Figure 1: The coloring of the subdomains and the coarse mesh grid

But I'; 5 is a subdomain of €, whose width is at most 6. For simplicity, we
assume that Q) = [0, H] x [0, H] and T'; s = [0, H] x [0,6]. The modifications
necessary for the case of arbitrary shaped subdomains and higher dimensional
problems are routine. Writing

Y ow

w(z,y) = w(z,0) +
0 9y

——dy (44)

Using Cauchy Schwartz inequality, we have therefore,

H/ w(z,0)|Pdz < 2P~! / / |w|Pdzdy + 2P~ 1H”/ / |[Vw|Pdzdy.

This shows that
/ lw|Pds < czp—IH—l/ |w1pdzdy+czp-1HP—‘/ |Vw[Pdzdy . (45)
Q! Q! /

Considering the integral over I'; 5 and using (44), we obtain

/ |w|Pdzdy < 2”_15”/ |Vw|Pdzdy + 2””16/ |w|Pds. (46)
B Q a9

13



Combining (43), (45) and (46), we see that

i Hes o
Bl Z P -
/Q |Vo,|Pdzdy < C (1 + 5 )/Q, |[Vw|Pdzdy + gt /Q, |lw|Pdzdy (47)

Taking into account that w = v — vg, we get from (47) that

/ |V, |Pdzdy < C (1 + > / |Vw|Pdzdy. (48)
It is true that
/|Vv0|”d$dy < C/ |Vv|Pdzdy. (49)
Q Q
Therefore, relations (48) and (49) imply that

0=
ool < Clollgs iy <€ (14 522) hollaye (50)

Lemma 4.1 follows from (50) and the inequality
(1+2P" )% <14z, Y2>0, p>1.

0
Using the Cauchy-Schwarz inequality, it is easy to prove:

Lemma 4.2 Under condition (6), we have for any s > 1:

SN (F(wis + w) = F(wy), ZZLIIUz‘H'{/_l“Uz‘|IV

=il y=il
q=1

(L nvinsv) m# (Znuw) (51)
=il
Yu; € Vi, wij €V andv; €Vj .

Estimates (41) and (51) show that for overlapping domain decomposition, the
constants in (14) and (15) are

C, = C(m) (1 £ <%) '

By requiring 6 = coH, where cg is a given constant, we have that C, and C, are
independent of the mesh parameters h and H, the number of subdomains, and
estimate (41), (51) are also valid for 3D problems. So if the proposed algorithms
are used, their error reductions per step are independent of these parameters.

) . Co=C(m).

14



5 Multilevel decomposition for W1?(Q)

In this section, we discuss the application of our theory to multigrid methods.
From the space decomposition point of view, a multigrid algorithm is built upon
the subspaces that are defined on a nested sequence of finite element partitions.

We assume that the finite element partition 7 is constructed by a successive
refinement process. More precisely, 7 = 7; for some J > 1, and 7, for j < J
are a nested sequence of quasi-uniform finite element partitions, i.e. 7; consist
of finite elements 7; = {7}} of size h; such that Q = U;7; for which the quasi-
uniformity constants are independent of j (cf. [9]) and le_l is a union of elements
of {r}}. We further assume that there is a constant y < 1, independent of j,
such that h; is proportional to ¥?7.

As an example, in the two dimensional case, a finer grid is obtained by
connecting the midpoints of the edges of the triangles of the coarser grid, with
7, being the given coarsest initial triangulation, which is quasi-uniform. In this
example, v = 1/+/2.

Corresponding to each finite element partition 7;, a finite element space M
can be defined by

M; ={veWH?(Q):v|, e Py(1), YTeT})

Each finite element space M; is associated with a nodal basis, denoted by
{¢3}:2; satisfying

o5 (zh) = bur
where {z}};2, is the set of all nodes of the elements of 7;. Associated with each
such a nodal basis function, we define a one dimensional subspace as follows

M; = span ((1);).

On each level, the nodes can be colored so that the neighboring nodes are
always of different colors. The number of colors needed for a regular mesh is
always a bounded constant; call it m.. Let ij, k=1,2,---m. be the sum of

the subspaces M; associated with nodes of the k** color on level j. Letting
V = M, we have the following trivial space decomposition:

Mc

v=>y Nv (52)

j=1k=1

Each subspace Vj’c contains some orthogonal one dimensional subspaces M’ and
so the minimization problems (3) and (5) for each ij can be done in parallel
over the one dimensional subspaces M;

15



5.1 Estimation of the constant C

For any j < J, let Q; be the L? project operator to the finite element space
M, at level j. For any v € V, define v; = (@; — Qj-1)v € M;. A further
decomposition of v; is given by

By
Wy = ZVJ’ with v} = v;(z})¢5.
1=1

Let vf, k=1,2,---,m. be the sum of 1/} associated with the nodes of the kt*
color on level j. It is easy to see that

r ]
— § k _ E 1
'UJ = U]- = V_j'
k=1 o=l

Denote Qf the union of the support sets of the basis functions associated with
the k** color nodes on level j. We estimate

a(d=p)

SR, =3 mEriak, ) son Y (X wer)
k=1

k=1 “z:eqk k=1 ‘gieqk
In the above, we have assumed that Q C R%,d = 1,2, 3, ---. Using the inequality

St < () (me) 7,

k=1 k=1

we get that

a(d—

e ) . L] .
Z‘vﬂl)p <Ch; ” (mc)1“7<2|vj($})
= =1

Here, we have used the fact that, in the finite element space, an LP norm is
equivalent to some discrete LP norm, namely

P v -
) < Ch? ..

L)

;5 5 = hES o)

a—1

As a consequence,

J J
ST IkIE, <€D RNl ,

h=1%k=1 J=1

J
<CY hy’
g=1

m,

JJf

(Qj = Qj—l)'UH:‘p < Czh}”

J=1

o (1-a )],
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J
<C> h7e
7=1

< Cy 2T |lly, -

(1-@)ol <O mae, i, (53)

which proves that . 1

Cy = J* = |loghl?.
In proving the inequality (53), we have used the stability in L? of the L2-
projection [11] and the error estimate for L2-projections, see [9].

5.2 Estimation of the constant C,
From condition (9), we see that
(F'(wij + us) = F'(wiz),v5) < Lllugll$7 Joslv- (54)

However, in order to estimate the constant Cy, we need to use a finer estimate
than (54). For any w,u,v € V, we need the functional F' to satisfy

-1
<F,(’UJ + ’LL) - Fl(w)-, 17) S L||u“(l],p,supp(u)l"lsupp(v) HUHI,p,supp(u)."lsupp(v)- (55)

In the above and also later, supp denotes the support set of a function. For any
uw€ M; and v € M¥, j < I, we note that the size of supp(u) N supp(v) is at
most the size of supp(v). Thus since u is piecewise linear

2d .
Hunl,p,supp(u)ﬁsupp(v) S C')’ r la ””ulllypa Yu € M;,V’U € Mf (’56)

Let w € V,u € V} and v € V*. We decompose u and v as

ng ny
U = Zuou ucx:u(‘r?)d)?a U:Z’Uﬂ, ’Uﬁ:’U(I?)QﬁF,
a=1 B=il

i.e. functions u and v are decomposed into functions from the one dimensional
subspaces of the same colors. We shall assume that the following inequality is
valid for the above decomposition:

(Flw+Y ua) = F'(w),> vs) <O ) (F(w+us) — F'(w),vs).  (57)
« g

The above inequality is often a consequence of the orthogonality of the one
dimensional subspaces of the same color and the fact that u is zero at the nodes
that do have the color of u.

From (57), (55), (56) and the orthogonality of the one dimensional subspaces
of the same color, it is easy to see that

2d(g=1) ¢y _ - _
(F'(w+u)— F'(w),0) Cv 7 LIS fualli; lvsll
a g

2d(q

= Oy T Ll ol YuE VY, ve VE, G <
’7 ! ”u”l,p v 1,P’ UG g v 1 s ] S 0.
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For j > [, we shall have

(F'(w +u) — F'(w),v) < cﬁﬁ—”Luung;}nvnl,p, Vue Vv, ve V.

2d _ a
» max(9=L1) e get from the above two estimates

Denoting v = v
(F'(w+u) = F'(w),v) < Cy?Llul{ vl p, Yue V!, veVEr  (58)
To estimate the constant Cy we need the next lemma, which extends a result

of [23, p.184]:

Lemma 5.1 Let A = {A;;0:;} be an ny x ny matriz. Then

1

1 2
eler < max (3161 ) " max (141 ) el
2 J
Proof of Lemma 5.1. The Cauchy-Schwarz inequality gives

lAzlig =D | > Aiibiz;
J

1

= Z; <Z lAij|”’> 7 (Z |9u|”|$j|g>

J)

< (T 1aul”) " T (S arierr)
J A

o () epe () S

which proves the lemma. O
As a consequence of the above Lemma, we easily get the following corollary
which generalizes a well-known result from linear algebra, see [21, p.3-38].

[eg

Corollary 5.1 Let A = {A;;} be a symmetric matriz; then

fAler < ( max 141 el
J

Proof of Corollary 5.1. It is easy to see that
It 1
|Aij| = lAzjl"' ‘Aij|"~

The Corollary is an easy consequence of Lemma 5.1 by setting A;; := |A,J|?1"
and 31‘]’ = 1A1J|% a
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For a given u} € Vji and v} € V¥, an application of Corollary 8 gives

2 I s ’”“(ZWH )J_ (;iliv{“lm)%
=1

1=1 k=1

Using the above inequality and Corollary 5.1, we get that

Jf J me
2. DR [ il 8

=il (=il k=1

N = :
smed 3w ‘(ZIWH ) " (i, (59)
1=11=1 k:tl;l

Smc<mja><i - ‘)( J m Ile,) " -(iinmm)a

(=IeE=1

- (imz 15,

=1 k=1

iy

<

From (15), (58) and (59), we conclude that the constant C; is independent of
the mesh size h and the number of levels J for decomposition (52).

Remark 5.1 In case that p = q, the estimations we have derived for the con-
stants C, and Co are also valid for decomposition

J ny
v=> Y M, (60)
7=13i=1

i.e. the coloring is not necessary for implementing the algorithms.

6 Some Applications

In this section we illustrate some problems that our algorithms are applicable
without going into the details of analyses.

6.1 Linear problems

The algorithms can be used for linear second order equation

-V -(aVu)= fin Q C R,
uw=0on 9N ,
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and linear fourth order equation

—A(aAu) = fin Q C R?,
=0, g—E:O, on 0f) .

If we use Algorithm 2.2 for a general symmetric positive define linear problem
a(u,v) = (f,v), WVveV
then the implementation can be divided into the following steps:

Algorithm 6.1 (Application to linear problems)

1. Choose wnitial values u® € V and compute the initial residual r° such that
(r° v) = (f,v) — a(u,v),Yv € V.

. . =1
2. Fori=1,2,---,m, if ™™= 1is known, compute eI € V; such that

(a=1)

a(ef,vi) = (" vi) , Ve €V;. (62)

3. Update the residual r™* 5 such that

(r™ta ) = (r"+("7-“_ll,v) —a(el,v), YveV. (63)

e =yt el (64)
and go to the next iteration.

The implementation for Algorithm 2.1 is similar. If the subspaces V; are
associated with the overlapping domain decomposition, then equation (62) is
the solving of the subdomain problems. Equations (63) and (64) are just the
simple updatings of the residual and the solution in the subdomains. If the
subspaces V; are associated with the multigrid method, then equation (62) is to
compute the correction value for the nodal bases at different levels. Equations
(63) and (64) are the updatings for the residual and solution corresponding to
the nodal bases.

For such a kind of symmetrical linear problem, we have p = ¢ = 2, and so
the decomposition (60) can be used. We can also do V-cycle and W-cycle types
of iteration if we just repeat some of the nodal bases in the decomposition of
V in (60). It is preferable to use a V-cycle decomposition and then use the
conjugate gradient method as an out-iteration to accelerate the convergence.
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6.2 Nonlinear elliptic equations
Consider

— V- (|Vu|*"2Vu)= fin QC R? (1 < s < o0) , 65
u =0 on JdN . 55

For equation (65), we assume f € W15 (Q), 1+ % =1. By standard

( -
techniques, it can be shown, see [14], that (65) possesses a unique solution

which is the minimizer of

min F/ |Vv]$—(f,v)} .
vEW,(Q) LS Ja

Even with very smooth data, the solution u may not be in the space W(f‘s, see
Ciarlet [9, p. 324]. When s is close to 1 or is very big (s > 2), it is difficult
to solve this problem numerically. Conditions (6) are fulfilled by equation (65),
see p. 319 and p. 325 of Ciarlet [9]. More precisely, we have for

V=W,(Q), F)= /Q(§|vv|s — fv)dz

the following estimates:

(F'(v) = F'(w),v —w) > lv—wllj,, ifs>2. (66)

a2
(F'(v) = F'(w),v —w) > a o~ wllv,s

, ifl1<s<2. 67
2 s ATl Tr<ss (67)

IF'(v) = F'(w)llve < Blvllrs + llwlla, o) 7?llo —wlly« if s > 2. (68)

|F'(v) = F'(w)lly: < Bllv —w|ljtif 1 <s <2 (69)

In the above, a and 3 are independent of v and w and are strictly positive. The
proof of (66) and (68) is given in p. 319 of Ciarlet [9]. The proof of (67) and
(69) can be found in Glowinski and Marrocco [16]. Corresponding to condition
(6), these estimates imply that

p=s, qg=2 ifs>2;

p=2, g=s ifl<s<2.

As we explained in §3.1, it is assumed that v and w are in a neighborhood of
the true solution. The full potential equation considered in [6] is of a similar
type to equation (65).
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For more general problem

= _
min / —a(|Vo?) + f(v) , (70)
veW,(2) Ja 2

we assume that a is strictly convex and f is convex and both are differentiable.
If we use Algorithm 2.2 for (70), then we obtain

Algorithm 6.2 (Application to nonlinear problems)

1. Choose initial values u° € V.

2. Fori=1,2,---,m, if um T s known, compute e* € V; such that
I n+—('—” ny|(2 n+“—1) n
d (V"5 +e)| )V +el) - Vo,
Q
+f’(u"+“v:” + el |dz =0 ,Vv, € V; . (71)
3. Update the solution as
: (i=1)
utte = gt rEf . (72)

and go to the next iteration.

If V; are the domain decomposition subspaces, then problem (71) is a non-
linear problem in each subdomain, which has a smaller size than the original
problem. For some minimization methods, the convergence and the computing
time depend on the size of the problem. Thus by first reducing the problem into
smaller size problems and then minimize, we may gain efficiency. If V; are the
multigrid nodal basis subspaces, then (71) is equivalent to some one dimensional
nonlinear problems and we can use efficient minimization routines to solve the
one dimensional problems.

6.3 Eigenvalue problems

Consider the minimization of the following functional to obtain the smallest
eigenvalue and the corresponding eigenvector for a symmetric positive definite

matrix A:
(Av,v)

Iolly,

This functional is not convex globally, but is convex in the neighbourhood of
the true minimizer. See [8] and [22] for some detailed analysis and numerical
simulations.

F(v) =

Acknowledgement: The authors would like to thank Steinar Evje for valu-
able discussions related to the proofs of Lemma 3.2 and Professor M. Espedal
for some earlier participation in this work.
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7 Appendix

Proof of Lemma 3.2. For the given a > 0,7 > 0,7 > 1, let y = y(t) be the
solution of the ordinary differential equation

dy  _ r
o =-ny, t>0,
{ Yy =l ath =08 e

It is easy to calculate that its solution is

11 (yl T al—'r) = —7 t , (74)

Next, we show that there exists a £ > 0 such that

BiE=wle) Hnlyle)) —a > 0%

The Taylor expansion formula asserts that there exists an £ € [0, &] such that

E(€) =y(§) +n(y() —a
y(0) + ' (§)€ +n(y(€))" —a (75)

y'(6)€+n(y(€)" .

It is clear that y is a non-increasing function of ¢, i.e. y(§) < y(0) = a. Equation
(73) indicates that n(y(t))” = —y'(t), Vt. So (75) implies

E(£)

I

—n(y(€))"§ +n(y(€))"
—na"€ +n(y(€))" (76)
Saias o

v

Using (73) we see that

L ey () = €)1y (€) = wPr(y(€) " .

y'(&) = £

Again, by (73) and using Taylor expansion for y'(£) in (76), we know that there
exists an & € [0, €] such that

E@€) > -y'(0)—y"()§—na"¢ B}
- (€ e

It is true that y(€) < y(0) = a. Thus (77) and the fact that a < ag infer that
E(§) > ma” —n’ra* "€ —na"¢

nar _ n?,,.arag—lg _ nar{

na’(1—nrag~ € — €) .

v
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Thus, let

1
= ——— there holds E(&) >0. (78)

B nrag™t +1’
Clearly, & € [0,1] does not depends on a and b. The inequality of (78) shows

that
y(&) +n(y(&))" = a . (79)

A combination of (16) and (79) tells that
b+nb" < y(&) +n(y(6))” ,

and from which we see that
b<y(&) -
This proves the lemma.

Next, we show that the estimates of Theorems 3.3 and 3.4 are really sharp.
Theorem 7.1 Under the conditions of Theorem 8.3, assume that T > 1 and
(dnt1)" = C7(dn — dn41) 5 (80)

i.e. dny1 is reaching the mazimum possible error at each iteration. Then there
holds

=l
-7

r—1 1—r = r—1 e
dnt1 2 +dn = (n+1) +d , ¥Yn>1. (81)
C* @
Proof of Theorem 7.1. We define, for n > 1, 8,, > 0 to be the unique number
which satisfies .
dopr = (=L g} (82)
n+1 — C* n .

In addition, let y = y,(t) be the solution of the ordinary differential equation
(73) with n = &=, ie.

ya(t) _ (TC_'*lt+al_T>lT' . (83)

From definition (82), it is true that d,+1 = gs, (1). Using Taylor expansion, we
know that there exists £ € [0, 1] such that

dnt1 =Ys,(1) = ¥6,(0) + y5, (§) = 6 — =¥s,(€)

et 84
=6, = = (T )™ o

From which it follows

" =
Cx(én_dn)zc*(dn+1—dn)+ <TC* £+(S.}1—T> .
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From relation (80), this implies

C* (b — dp)
-~ + ()T -
= (40T + (FHe+ o)
>0.
Therefore, we get
bn > d, . (86)

From (83), it is easy to check that y, is an increasing function with respect to
a. So from (82) and (86), one concludes

1
P o=l 1=

dnt1 2 < I +d711_r> : (87)

An induction of (87) proves (81).
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