
Department
of
APPLIED MATHEMATICS

LINEAR AND WEAKLY NONLINEAR PROPAGATION
OF A PULSEDSOUND BEAM

by

Kjell-Eivind Frøysa

Report No. 90 June 1991

UNIVERSITY OF BERGEN

Bergen, Norway





Department of Mathematics
University of Bergen

ISSN-0084-778x

5007 Bergen

LINEAR AND WEAKLY NONLINEAR PROPAGATION
OF A PULSED'SOUND BEAM

by

Kjell-Eivind Frøysa

Report No. 90 June 1991

ABSTRACT

The propagation of a pulsed sound beam generated by a real, plane or weakly curved
sound source is investigated. The physical effects of diffraction, dissipation and non
linearity are studied both separately and in combinations within the limitations of the
linearized and the weakly nonlinear (quasilinear) version of the Khokhlov-Zabolotskaya-
Kutznetsov nonlinear parabolic equation. By the presented model, calculations can be
made all the way from the generating sound source and into the dissipative and diffrac
tional farfields. Both numerical and analytical/asymptotical results are presented. Ear
lier and more simplified models for weakly nonlinear propagation of pulsed sound beams
are analyzed and compared to the present model. The validity of the parabolic ap
proximation for a pulsed sound beam is also studied by comparing the results from the
linearized model to the results from more accurate linearized models.
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Chapter 1

Introduction

In nature, all sound signals have finite duration. In order to say if such a signal is long or
short, wc have to define what wc mean by a long or a short signal. In most senses, wc can
find both long and short signals in nature. A signal which is long when considering one
specific application, can also be a short signal when wc consider other applications. In
many applications, the long signals are modelled like an infinite long signal. Especially, it
is usual to consider signals which just contain one frequency. Such signals are said to be
monochromatic signals. The assumption of monochromatic signals often simplifies the
mathematical model greatly. When the signal is so that the monochromatic signal does
not predict the sound propagation properly, wc have to consider more complex models.
In this work, wc will look at signals which cannot be described by monochromatic signals,
and also in some cases discuss when the monochromatic theory can be used and when it
cannot be used. The signals considered in this work will thus be pulsed signals or just
pulses. By a pulse, wc will mean a sound signal that either has a finite duration, or a
sound signal that decays to zero when the time approaches plus and minus infinity.

Sound propagation is a complex interaction between different physical effects which
tend to alter the signal in different ways. These effects are for instance diffraction,
energy dissipation, nonlinearity, relaxation and dispersion. The study of these effects for
a pulsed signal, can often be found from the knowledge of the sound propagation of a
monochromatic signal. By using the Fourier analysis, wc can find solutions for pulsed
signals in this way. This approach can often be a good way to describe a pulsed signal.
The approach also gives a physical interpretation of pulsed signals as a superposition
of monochromatic signals with different frequencies. If the pulse is very broadbanded,
this approach can be both unpractical and time-consuming. This is also the case when
strong nonlinearity has to be studied. The generation of different frequencies by the
nonlinearity is quite complicated to study in the frequency domain. By some adjustments
of the algorithms, it is, however, possible to study pulses by using the frequency domain
when strong nonlinearity is included. Despite this, there exist no consistent and simple
models for the general case where all the above-mentioned physical effects are included,
and both the geometry of the boundary and the medium where the sound propagates,
are general.

The motivation for studying such pulsed signals has already been briefly mentioned.
To supplement, wc can say that pulsed signals have to be studied in many different
applications. An area where there is a big activity at the moment, is the medical ap
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plication of destroying kidney stones. When a lithotripter destroys kidney stones, one
method is to use a short pulse generated by an electrical spark with high amplitude. It is
therefore important to be able to describe the combined effect of nonlinearity, diffraction
and dissipation on short sound signals. The geometry of the curved sound source that
is used in such litotripters is also very important. Other applications for pulsed signals
are for instance seismology, underwater communication and acoustic imaging.

Pulsed sound beams can in some cases be described by the Khokhlov-Zabolotskaya-
Kuznetsov (KZK) nonlinear, parabolic equation1 ' 2> 3 . This equation describes propaga
tion of sound beams in a homogeneous fluid. The sound beams have to be thin in the
sence that they mainly propagate away from the sound source in one direction. This
means that far from the sound source, wc can find the sound wave basically near the
axis indicating the main propagtion direction from the sound source. At propagation
directions that are making great angles from this main direction, there is basically no
sound present. The KZK-equation accounts consistently for difFraction, dissipation and
nonlinearity. It cannot be used everywhere in the space, and neither for all frequencies
nor for all geometries of the boundaries. The main approximation that causes these re
strictions, is the so-called parabolic approximation that is performed in the derivation of
the KZK-equation. For monochromatic and bifrequent sources, Naze Tjøtta and Tjøtta
have analysed the validity of the parabolic approximation, both within a linear model4
and also briefly within a weakly nonlinear model5 . Wc will come back to a discussion
of the validity of the KZK-equation in chapter 2 and in chapter 4. The KZK-equation
has been used in the discussion of many problems of nonlinear acoustics, and especially
when the sound generated by the sound source is monochromatic or bifrequent. In recent
years it has also been used to describe pulsed signals within a nonlinear model.

In this work, wc will study the linear and weakly nonlinear propagation of a pulsed
sound beam generated by a plane or a weakly curved sound source. Wc will use an
approximative version of the KZK-equation in this study. Diffraction, dissipation and
nonlinearity will be studied within this approximation. Wc want to study each of these
physical effects separately, and also to study the effects on the pulsed signal caused by
a combination of these physical effects. The mathematical model is described in more
detail in chapter 2.

When comparing the propagation of pulsed signals and of monochromatic signals,
wc will find that there will be some new effects in the case of pulsed signals compared
to monochromatic signals. The absorption due to dissipative effects will for instance act
in a different way on the different frequency components present in the pulse, because
they will be damped differently. Besides the damping of the amplitude, this leads to
a distortion of the pulse. In chapter 3, it is shown within a linear, one-dimensional
model that for pulses with a sinusoid which oscillates inside a slowly varying envelope
function, there are two different absorption distances which are important. The location
of the actual observation point compared to the absorption distances, decides the actual
behaviour of the pulsed signal. It is there shown that the pulsed signal at first behaves
much like a monochromatic signal. Beyond both absorption distances, it is shown that
the actual waveform is strictly dependent on the envelope function of the pulsed signal.

In chapter 4, the effect of difFraction is discussed within a linear, three-dimensional
model. Most of the work is done for plane sound sources and in the absence of dissipative
effects. The impulse response approach is discussed within the parabolic approximation
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and it is there shown how a general pulsed signal can be decomposed in terms which
can be interpreted by different geometrical effects. For instance, when wc consider a
uniform, circular piston, wc can decompose the solution on the symmetry axis into one
term which comes from the centre of the sound source, and one term which comes from
the edge of the source. The impulse response solution is compared to earlier results
by Stepanishen6 and by Naze Tjøtta and Tjøtta7 where no parabolic approximation is
performed. In this way, the validity of the parabolic approximation is briefly studied for
pulsed signals. Wc will see that some of the restrictions on the parabolic approximation
when using a monochromatic signal, are also valid in the pulsed case when wc interprete
the frequencies used in the correct way. Farfield results and beam patterns will also be
discussed when wc use a pulsed signal. It will then be shown how the sidelodes in the
beam pattern gradually disappear when wc consider gradually shorter pulses. Focusing
sources will then be discussed, and it will be shown how the results for plane sources are
directly applicable in a weakly focused model. For instance, wc find that the solution in
the focal plane when using the focused source, is the same as the farfield solution when
a similar unfocused sound source has been used. Finally, the combination of diffraction
and absorption is discussed. It will be shown how wc can combine the results when only
diffraction is considered with the results when only dissipation is considered in order to
get results when both effects are present.

The first correction to the linear theory due to nonlinear effects, is called the quasi
linear approximation. This is found by first solving the linearized problem. The solution
of this problem then has to be substituted into the nonlinear term of the KZK-equation,
and wc solve this new problem. In chapter 5, this nonlinear correction is studied. Previ
ous models8' 9f 10> llf 12 often treat the absorption in an ad hoc way. Also the diffraction,
especially in the linear solution, is treated similarly. This means that the solutions that
have been found are not uniform solutions of the KZK-equation. Wc will see that in
some senses, these solutions will be valid far away from the source, when the dissipa
tion has distorted the signal significantly. In this work, a Gaussian onsource amplitude
distribution has been chosen because of the simplifications in the computations in this
case. The model can be used all the way from the sound source, describes the combined
effect of diffraction and dissipation on this signal, and is still valid when the dissipation
has damped and distorted the signal. Both asymptotical and numerical results will be
shown, and it will be shown by numerical examples that the previous models break down
when the pulse is too short, when wc are too far from the sound source and when the
diffraction and the dissipation are not properly balanced.

Some of the results from this work have earlier been published in Refs. 13 and 14,
and some results have been reported in Ref. 15. Besides this, a few of the linear results
are direct generalisations of the results in Ref. 16.
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Chapter 2

Mathematical and Physical Model

2.1. The KZK-equation

Wc want to describe the sound propagation from a pulsed, real sound source radiating
into a homogenous, dissipative fluid. The amplitude of the sound will be so large that
nonlinear effects have to be considered. As a governing equation, wc start from the
Khokhlov-Zabolotskaya-Kutznetsov (KZK) nonlinear parabolic equation:

(2.1)

Here V^ = Jp- + /r is the transverse Laplacian, r = t — z/cq the retarded time, po>
po and Cq the ambient pressure, density and sound speed of the medium respectively,
and D the sound diffusivity of the medium. Further, f} = 1 + B/(2A) where B/A is
the nonlinearity parameter of the medium. In Eg. (2.1), it is assumed that the main
propagation direction is the positive z-direction and that the sound beam is narrow.
This means that utøa/cb 1 where ljq is a characteristic angular frequency of the sound
and a is a characteristic radius of the source. This is referred to as the high ka condition,
and means that a parabolic approximation is made. Within this restriction, Eg. (2.1)
consistently accounts for diffraction (first term), absorption (third term) and nonlinearity
(right hand side term). Eg. (2.1) was first derived by Khokhlov and Zabolotskaya1 in the
absence of absorption. Kutznetsov2 included absorption in the equation. The derivations
were based on slow variations of the shape of the wave both along and orthogonal to
the beam axis. Absorption was introduced by linearizing the absorptional terms in the
hydrodynamic equations. Naze Tjøtta and Tjøtta3 later rederived Eg. (2.1) by using
the method of multiple scales in the z-direction. They also required that diffraction,
absorption and nonlinearity were tåken into account in the same asymptotic order. The
KZK-equation then appeared as a condition to avoid secularities. Their analysis also
showed that the choice of scales made by Khokhlov and Zabolotskaya, was the only
possible when all the effects were to be tåken into account in the same order of magnitude.
It was also shown that the impedance relation for linear plane waves p = PqCqVz , where vz
is the z-component of the velocity of the fluid, can be used when linearizing this model.
The similar result in the weakly nonlinear case is discussed in chapter 5.

The KZK-equation is a consequence of the Navier-Stoke's equation, and has therefore
a damping due to dissipative effects, which is proportional to the square of the frequency.

/„- 2 d 2 D& \ 0 d 2 , N 2
\ -1- codrdz 4 dl J po4dT2
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This is a good model in fliiids. In other media, this absorption law is not acceptable, and
one has to adjust the absorption to behave as wanted. In sediments, for instance, there is
no general agreement of how the absorption law is, but it seems like a linear dependency
of frequency is more widely accepted than a square dependency. In biological tissue,
it is usual to model the absorption as proportional to ur where r varies from tissue to
tissue. The absorption law used in the KZK-equation måkes this equation not causal.
This effect has to be kept in mind when results are discussed later in this work. We
will discuss this non-causality later, when linear propagation is studied more in detail in
chapter 3 and 4.

We want to describe the propagation of a pulsed sound beam generated by a plane
or weakly curved source. As mentioned above, the linear plane wave impedance relation
is valid when our model is linearized. A consequence of this is that we then cannot
discriminate between piston sources (where the normal velocity on the source is given),
and membrane sources (where the pressure on the source is given). This is one of the
reasons why there is a layer close to the source, where the model is not valid. Besides
this, in the parabolic approximation, we have neglected a second derivative term with
respect to z in the equation. In this way, we have thrown away the regressive waves
and have to expect problems close to boundaries. Naze Tjøtta and Tjøtta4 showed in
the linear, monochromatic case, that when the sound is generated by a uniform, circular
piston, this layer has a thickness of Az « a^a/co)1/3 - We will discuss the validity of
the parabolic approximation further in chapter 4.

The KZK-equation has a parabolic nature. We see this by the absence of z -
derivatives of orders higher than one. We therefore just need one boundary condition.
This is the pressure at z = 0 where the plane source embedded in a baffle is located.
In the case of a weakly curved source, we assume that the source is located close to the
plane z = 0. Because of the parabolic approximation, we can approximate the curved
source by an equivalent plane source in the z = 0 plane. Sommerfeldt's radiation con
dition which ensures that no waves come back from infinity, is not needed in this case.
This condition is also already used in the derivation of the KZK-equation. The boundary
condition for the KZK-equation is then:

(2.2)

A derivation and a more complete discussion of this boundary condition for curved
sources is found in appendix A. Here, Vo is a characteristic value of the normal velocity
on the source, /(x) is the onsource amplitude distribution over the source, F(t) is the
time dependency on the source and g(x) is the surface where the source is located. When
considering a plane source, g(x) = 0. When the source is a focusing, spherical cap, we
can use g(x) = |j where d is the focal distance. By choosing d negative, we get a
defocusing, spherical cap, and by letting d —* 00, we get the plane source. In order to
verify the boundary condition for the focused or defocused source, we have to require
that \d\ is of the same asymptotical order as the Rayleigh distance u>oa2 /2co, or greater.

The boundary condition Eq. (2.2) is assumed separable, and is thus not the most
general one. We want, however, just to study separable boundary conditions. Many of
the results obtained later in this work, can be transferred directly to the more general
boundary condition where /(x)F(r + *J&) is replaced with /t(x,r +tø tø

p(z =0)= p0 + poCovof(x)F(T + Co



There is one limitation needed in Eg. (2.2). In the linear, non-dissipative case, this
condition can be shown from the equations of hydrodynamics. The 2-component of the
equation of motion (Euler's equation) with no external forces, is then

(2.3)

In our model, the impedance relation p = PoCqvz is valid because wc at the moment
consider a linear model. Wc now assume that the sound generates a motion in the
medium which starts from 0 and which dies out when t is increasing towards infinity. By
using the impedance relation and integrating the equation from —oo to oo with respect
to t, wc get

(2.4)

which means that

(2.5)

To find the function C(x), wc consider the behaviour of the pressure when z —> 00.
In this case, Sommerfeldt's radiation condition, which is used in the derivation of the
KZK-equation, says that p — 0. This means that C(x) = 0. Because Eg. (2.5) is valid
also when z = 0, wc have to require

(2.6)

Wc have thus shown that in order to be consistent with the parabolic approximation
in the linear, non-dissipative case, wc have to assume that the time dependency has
zero mean value. This result is similar to the result found by Bakhvalov, Zhileikin
and Zabolotskaya17 for a general, periodic onsource time dependency using the KZK
equation.

In the nonlinear case, this condition can be seen from the KZK-equation directly by
using a similar approach as the one indicated in Ref. 17. Wc first define the Fourier
transform with respect to r to be

(2.7)

Wc now Fourier transform the KZK-equation Eg. (2.1) and the boundary condition
Eg. (2.2) with respect to r:

(2.8)

Here p means the Fourier transform of p— p 0 and the asterisk denotes convolution with
respect to u:

dv2 dp
p0~dt ~ ~Tz

d r°°
— p(x,z,t)dt = O,OZ J—oo

r p{x,z,t)dt=c(x).J—oo

r F{r)dr = 0«/— oo

fM-vbjCw*-

p(z = 0) = /)OcoVo/(x)F(a;).

fOO
g(u) * h(u) = / ø(u;i)/i(u; - wi)dwi. (2.9)

7
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Eg.(2.8) should be valid for any u>. Wc now assume that the equation is not singular at
uj = 0, and look at this u;-value:

(2.10)

This means that when w = 0, p is a harmonic function with respect to x. When z = 0, p
is proportional to /(x). Because the source function /(x) does not have to be harmonic,
wc have to require F(0) = 0 in order to be consistent. This is equivalent to Eg. (2.6).
This result can also be derived from the time domain version of the KZK-equation. Wc
then integrate the equation and the boundary condition from —oo ot oo with respect to
t. When using that the signal and its derivatives is zero when r = ±00, wc can conclude
in the same way as above.

Wc can also explain this condition physically. The source which generates the sound
is vibrating, and after the vibration, it goes back to its original position. In the case of
a piston source, this means that the velocity vp of the piston has to satisfy

(2-11)

Wc have to require a no slip condition for the fluid at the sound source when absorption
is accounted for. In the absence of absorption, wc must similarly have continuity in
normal velocity. In both cases, this means that the normal velocity of the fluid at the
piston has zero mean value. In the linear case, this leads to Eg. (2.6). It thus seems
like wc are limited to consider time dependencies with zero mean value in order to be
consistent with the mathematical model and the physics.

Wc can, however, ask if this condition has to be fulfilled also when the parabolic
approximation not is used, and the boundary condition on the source is of the piston
type. For a plane source, this means that

(2.12)

Wc can then argue in the same way and require that the total displacement of the source
is zero. This will lead to the same result as above. Let us now for a moment assume

that Eg. (2.6) is not fulfilled. This means, as already mentioned, that the source has
another position after the generation of the pulse than it had before the pulse generation.
When wc calculate the change in position of the piston from before to after the pulse
generation, wc get, however, a very small value. Assume for instance that

(2.13)

where u>o is a characteristic angular frequency of the pulse. This is a realistic estimate
of the integral for many pulses. The change in position of the piston is then where
t = Vq/cq is the Mach number, and Å is the wavelength of a wave of the angular frequency
Ug. To see that this displacement can be very small, wc look at an example. Consider
a 2 MHz sound source in water generating a pulsed signal satisfying Eg. (2.13). If wc
assume the Mach number to be e = 10~4 , which in the monochromatic case means 227
dB relative l^xPa, the change in position will be 1.2-10~Bm. This displacement is so small

Vip = 0,
p(z = 0) = poCoVof(x)F(0).

fOO vp(r)dr =0.J—oo

vz (z =0) = vof(x)F(T)

f°° F(t)cLt = 1/wb,J—oo
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that it hardly can be observed. For instance, the wavelength of visible light is of the
order 10~7m. Wc are thus talking of displacements of an order less than the wavelength
of visible light. Therefore it seems difficult to require Eg. (2.6) when wc do not have a
parabolic approximation.

Wc have thus seen that Eg. (2.6) is a consequence of the approximations made in
the mathematical model, and not a physical assumption which always has to be fulfilled.
In many applications, it is, however, reasonable to expect that this integral is quite
small when the sound source is not moving appart from the vibration. The numerical
methods which will be used in this work, will still work if there is a zero frequency
component in the generated pulse. Wc can, however, not expect that such a component
can be properly described by the parabolic approximation. Wc will therefore, with one
exception, only use pulses where Eg. (2.6) is fulfilled. The exception is F(r) = 6(t) when
the impulse response is discussed in chapter 4. Wc will briefly comment this inconsistency
in section 4.1 where it appears for the first time.

2.2. Quasilinear Approximation

In this work, the nonlinearity is assumed weak. Wc therefore use the socalled quasi
linear approximation of the KZK-equation. This approximation is based on a straight
forward perturbation

By inserting this into the KZK-equation and the boundary condition and solving order
by order in c, wc get

(2.15a)

(2.15b)

and

(2.16a)

(2.16b)

in the two first orders of approximation. p\ is thus the linear part of the solution, and
p 2 is called the quasilinear part. This is the first correction to the linear solution due to
nonlinear effects. In this work, nonlinearity will be studied within the quasilinear model.
Wc have also used the boundary condition for spherical caps, and not for a general curved
source, because this is the only curved source which will be considered here.

2.3. Integral Solutions

Wc now want to find the solutions of Eqs. (2.15) and (2.16) as multiple integrals.
Of course, there are several ways of writing the solutions. In this section, wc just give
a general solution, and then wc can start from this, and get other representations later
when wc seek special properties or special cases.

P=Po + q>1 + e 2p2 + -.-. (2.14)

( 2 2d2 dæ\
VV± codrdz + 4dT*) Pl -^

Pi(^ = O) = +

n(z =0) = 0
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2.3.1. Linear Solution

We now want to solve the linear part, Eq. (2.15). We use the Fourier transform to
solve the equation, and the solution is

(2.17)
Eq. (2.17) will be the starting point for the analysis of the linear part of the solution.

2.3.2. Quasilinear Solution

It is also possible to obtain an exact solution of the quasilinear part, Eq. (2.16), as a
multiple integral. We then substitute Eq. (2.17) into the right hand side of Eq. (2.16),
and use the Fourier transform in x and r. After some calculations, we get

This solution is quite complex, and it is also very difficult to solve numerically. There are
other representations possible for the solution. For instance, it is possible to represent it
as a sixdouble integral where the on source amplitude distributions are present through
their (twodimensional) Fourier transforms. To simplify the numerical calculations, we
will, however, concentrate on one special amplitude distribution where it is possible
to simplify Eq. (2.18) considerably. This is the special case of a Gaussian amplitude
distribution

In this case, the integral is reduced to three dimensions, and the numerical problems can
be solved. The Gaussian source is just one special source, and cannot alone give total
information about the quasilinear solution. In spite of this, it can give much information
about the general mechanisms of weakly nonlinear sound propagation. The solution for
the Gaussian amplitude distribution is

øpocorr- r a)2s{u _ s)p{s)P(u _ s)e-^-^ x4tt JJ-oo Jo
exp (^^pV)

(2.20)

Ds(u-s)z'
ftnn AOO -i(jj(r Dw? Z r°° ~ ~ fz P

» = isfeL™ ** L - -*i -^ x

£/wn(--^»-»^
is(u>z(l -$) - s(z - z*))*? i(u - s)(uz(l -±)-(u>- s)(z - z'))*"2

2zz'cqu 2zz'cqu

»(*,-,)(*- W *r\ dx»dx,dz>dsdu. (2 . 18)ZZ'CoD J

/(x) = exp(-J). (2.19)

s(u - *)(*,(! - 3)(1 -i)- ife^Ja) - -§) + X

-w (,(„ - .)& + &(i - -j)) + £ffi - fl) 1exp : 77 m r-; —~—r- dz asduj.
[«(« - «)Mi - 3)(i -i) - ik^a) - -f) + )J
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Eg. (2.20) will be the starting point of most of the analysis of the quasilinear part of the
solution. Wc have thus formulated both the linear problem and the quasilinear problem
as a multiple integral. These integrals will be studied analytically and asymptotically in
the following chapters, and will also be the starting point for the numerical work.





Chåpter 3

Linear One-dimensional Solution

In the next two chapters, the solution of the linearized KZK-equation is discussed. Wc
thus consider the following equation:

(3.1a)

(3.1b)

This is the linearized, parabolic approximation. It is important to understand the effects
of absorption and diffraction within this frame in order to get a good understanding of
the same effects in the quasilinear case. In this chapter, wc consider the very simple case
where /(x) = 1 and d = 00, that is, the case of a one-dimensional motion. Absorption
will then be the only effect altering the shape of the pulse. In chapter 4, wc first consider
the case of non absorption in order to study the effect of diffraction isolated, and finally,
wc will combine the results with only diffraction and with only absorption into results
valid when both effects are present.

3.1 . General theory

In the one-dimensional case, the KZK-equation reduces to the Burgers' equation. In
this case, it is assumed that the wave propagation is in the direction of increasing z only.
In the linear case, Eg. (3.1) reduces to:

(3.2a)

which of course also is the linearized Burgers equation. This equation can be integrated
once with respect to r. When assuming that the pressure is zero at r = —co, wc obtain

(3.3a)

(3.3b)

/ 2 2 d 2 da3\

Pi(z = 0) = />o<£f(x)F(r +

[dr* D drdz) Pl "°'

Pi(z = 0) = po<ZF(t), (3.2b)

[w ~ ~dTz) Pl = 0>

Pi(z = 0) = p<4F(t).

13
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This assumption does not violate the lack of causality which was commented in chapter 2,
and which will be discussed more in detail here. The time dependency F(t) is assumed
to decay to zero when r —» — 00. This means that even with non-causality present in
the model, the solution approaches 0 when r decreases towards — 00. The non-causality
will in this case just give a contribution, which decays like a Gaussian function when
r — —00.

As earlier, this equation can be solved by Fourier transforms. We then get a solution
as an integral over the frequency domain:

(3.4)

It is also possible to write the solution as an integral over the time domain:

(3.5)

In Eq. (3.5) we clearly see the lack of causality in our model. As a special case of
this causality, we can demonstrate the appearance of a signal in the medium before the
generation of the same signal at the source. Consider for instance a pulseshape F(r)
that is zero when \t\ > T. The integration will then be from —T to T. However, for any
positive z-value this integral will be nonzero for all r-values (except possibly at isolated
r-points). This illustrates the parabolic nature of this problem.

By looking at Eq. (3.5), we can get a good first idea of how the absorption works in
this case. We see that for each r-value, the solution is a weighted average of the values
of F(t) in the neighbourhood of the actual r-value. The distance away from the source
(value of z) decides how long this averaging interval is. Often we have a pulse which
contains a rapid oscillation inside a slowly varying envelope function. In this case we can
expect three different behaviours of the solution depending on the value of z. When the
averaging interval is smaller than half a period of the rapid oscillation, we expect the
solution to be just slightly modified from the original pulseshape. When the averaging
interval is greater than a period but not as long as the whole pulse, we expect a different
behaviour. When the averaging interval is greater than the whole pulse, we expect still
another behaviour. This leads us to define two different absorption distances, one for
the rapid oscillating frequency, and one for the characteristic frequency of the envelope
function. This last characteristic distance is not present in a monochromatic theory,
while the first one will be the same absorption distance as defined in that theory. We
come back to this later.

Eqs. (3.4) and (3.5) are both the exact solution of Eq. (3.3). They are therefore a good
starting point when we want to find general properties of the influation of dissipative
effects on the pulse.

Before we consider the general time dependency F(t), we will study a special case.
This result is useful when we are going to test the validity of the forthcoming results.
Besides, it is instructive by itself.

Pl =-^ / F(u>)e du.

>"SÆ/>>-^-
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3.2. Gaussian pulse

Wc look at the special time dependency

(3.6)

In this case, both Eg. (3.4) and Eg. (3.5) can be evaluated analytically:

»--™^-*<r7^-;*7^rl<r^>j-
This expression can be used for a detailed analysis of the effect of absorption. Wc will
in this analysis assume that n 2/4 > 1. Wc then see that here are two characteristic

z-values. These values can be chosen as Lo = and La — jfor- is the usual
absorption distance for a monochromatic signal of the frequency utø, which here is the
carrier frequency of the pulsed signal generated at the source. La then is the absorption
distance for the angular frequency 2u>o/n which is a characteristic frequency for the

(2 2 \~"~rr*~)' e *^us ca^ e as^; aDSOrption distance or just the
absorption distance because it is related to the fast oscillations at a carrier frequency
inside an envelope function. La is similary called the slow absorption distance since it is
related to the slow characteristic frequency of the envelope function. For short pulses,
nis not too large, and La is not too much greater than Lo. For longer pulses, however,
these two distances are very well separated.

When z<C La , the pulse will keep its shape, and will decay like exp(—z/Lo), just
like a monochromatic signal will do. When z = O(La ), new phenomena occur. Wc
see that the exponential decay more and more will stop, and finally, when z La ,
this factor is just exp(—n2/4). This means that when n is not too large, the signal
can be propagated to much greater distances than a monochromatic signal. Wc also
see that the carrier frequency is iower than u>o when z = O(La ) and that the envelope
function is widening out. The lowering of the carrier frequency happens faster than the
widening of the envelope function. This means that finally, when z La , wc have a
pulse which contains only one oscillation. In order to observe this in an experimental
situation, however, wc must have a short pulse, so that exp(—n2 /4) is not too small. This
stretching of the pulse will also introduce a decay of the maximum amplitude. This decay
is like l/z1/2 when z>> La . In this region, wc also have a decay like l/z1 /2 from the first
factor of the solution. The total decay of the maximum amplitude is therefore l/z when
z>> La . The stretching of the pulse is easily explained physically by the fact that the
highest frequencies all the way are damped away when z is increasing. Because wc now
have a signal with just one oscillation, and it tends to be more and more lowfrequent, it
has to be both stretched out and damped down.

In the numerical examples throughout this work, these Gaussian pulses will be much
used. The parameter n is used to get shorter or longer pulses, and figure 3.1 shows the
pulses for a selection of n-values.

Now, wc will start looking in more details into the propagation of these Gaussian
pulses. In Figure 3.2, wc see the behaviour of this pulse when n = 6 and n = 12. Wc see
there clearly that at first, the only effect of the absorption is to reduce the amplitude

F(t) = e »»2 sin o;ot.0t.
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FIG. 3.1. Gaussian onsource time dependencies, n = 3 (a), 6 (b), 9 (c), 12 (d), 20 (e)
and 50 (f).(0
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FIG. 3.2. One-dimensional propagation of Gaussian pulses
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(a)

FIG. 3.3. Energy of Gaussian pulses at various distances. (a) and (b) is the same figure,
but with different scaling of the vertical axis.

of the pulse according to the monochromatic absorption law. Wc also see that the
demodulation of the pulse towards a signal containing only one oscillation, should be
possible to observe when n = 6, but when n = 12 the amplitude is so small that in a
practical situation it is very difficult to detect it. Else, wc note that L a is 4 times larger
when n = 12 than when n = 6. The widening of the envelope function and slowing of the
carrier frequency is observed earlier when n = 6 than when n = 12. This is consistent
with the fact that these effects occur when z = O(La ).

In Figure 3.3 the energy in the pulse is studied for different z-values and differ
ent pulse-lengths n. In the parabolic approximation, wc have assumed the plane wave
impedance relation within the linear approximation. Therefore acoustic energy per time
unit is proportional to p\. Define therefore

(3.8)

In the figure, wc plot 1010g 10 (E(z)/E(0)) for the different pulse-lengths. Wc thus get
the energy in decibels relative to the energy on the source. Wc see that at first the pulses
decay exponentially. When z > L, the decay is just 15dB when z is multiplied by 10.
Wc see also that the long pulses like n = 20 is damped by more than 800dB before they
reach this region. When n = 6, the 15dB damping is present when the energy is not
reduced by more than about 90dB. In this case, the pulse has just lost a little more than
120dB when z = IO 5 LQ . This shows that small pulses can be propagated far longer than
monochromatic signals or long pulses.

(l>)

monochromatic
n = 20
n = 12
n = 0

E(z)= f" p\(z,r)dr.J—oo

It is possible to evaluate E{z) analytically:
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A similar figure where 2010g10 (|pmax (2)|/|pmox(0)|) (the maximum absolute value
of the amplitude) was plotted, would give a 20dB decay and not 15dB decay when
z La . This shows that when wc consider pulsed signals, it is not the same to study
the maximum amplitude of the sound at different locations as to study the energy of the
sound at the same locations. In the monochromatic case, this difference is not present.
Wc can explain this difference of sdß by the stretching of the pulse. Even though the
amplitude decay indicates 20dB decrease, energy will be present on a larger interval on
the T-axis when z increases. Therefore the decay of energy is less than 20dB.

In the rest of this work, wc will often find that the cases z<C Lo and z Lo have
to be studied. Wc will call these cases the dissipative nearfield and farfield, respectively.
This is done because wc often will have to distinguish between these near- and farfield,
and the near- and farfields generated by the diffraction. When there is no way these
terms can be mixed, wc will just use the words near- and farfield. It will then be seen
from the context whether it is meant the dissipative or the diffractional farfield. The
diffractional farfield will be specified better in chaper 4.

3.3. Broadbanded signals

Wc saw in 3.2 that for a Gaussian pulse, there are two important absorption dis
tances. When wc consider phenomena on the scale of the fast absorption length, the
pulse behaves much like a monochromatic signal. The only effect of absorption is an
exponential damping similar to the monochromatic case. When considering effects on
the scale of the slow absorption length, new effects appear. The carrier frequency tends
to be slowed down, and the pulse tends to stretch out on the r-axis. The exponential
damping which was present earlier, is now replaced by a 15dB decay when moving from
z to 10z.

Wc now consider more general pulses of the type

(3.10)

where i*i(r) is a slowly varying envelope function compared to the rapid oscillations
from the carrier frequency u>0 . For such pulses, wc expect much of the same behaviour
as for the Gaussian pulses discussed above. There are, however, also new effects which
have to be discussed when considering a general pulse. These effects can be introduced
by looking at the Fourier transform of the actual pulses. The Fourier transform of the
Gaussian pulse is

(3.11)

In Figure 3.4 the Fourier transform of a Gaussian pulse (n = 12) and a pulse with a
rectangular envelope function is compared. The rectangular pulse is given by

(3.12)

where n is an integer which specifies the number of oscillations in the pulse. The factor
(— l)n is chosen so that the first oscillation of the pulse always starts with a positive

F(t) = Fi (r) sin uot,

F(u) = —=— e K 2-o '- e l 2«o M

FM _ J(-l)n >orl<n7T
*"T) -\0 ,|a;or|>nx,
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FIG. 3.4. Fourier transform of a Gaussian pulse (a) (n = 12) and a rectangular pulse (b)
(n = 6).

derivative. The Fourier transform of this pulse is

(3.13)

Wc see that the Fourier transforms of the two pulses are quite different. For the Gaussian
pulse, the Fourier transform is still Gaussian, and there is very little of the very low
frequencies. The Fourier transform of the Gaussian pulse with n - 6 is similar, but the
lobe is wider, and contains therefore also a little amount of the very low frequencies.
This is the reason for the result above where wc found that the n = 6 pulse is much
less damped than the n = 12 pulse. The Fourier transform of the rectangular pulse also
contains a main lobe similar to the Gaussian, but now there are also several sidelobes
which are so strong that they will influence the sound field. This måkes the rectangular
pulses much more broadbanded than the Gaussian puises. Of particular interest here,
are the sidelobes for very low frequencies. These will contribute to the solution at much
larger distances than the main lobe, according to Eg. (3.4), and will therefore dominate
the sound field when z > Lo . Wc can therefore expect broadbanded pulses to survive
much longer than more smallbanded pulses like the Gaussian. The conclusion is that
the behaviour of the Fourier transform close to u = 0 will decide how far the pulse can
be propagated.

In real life, the pulses used have finite duration. From the Fourier analysis it is known
that such functions often have Fourier transforms containing sidelobes. The size of the
sidelobes depends on the smoothness of the pulse in the start- and stopregion. The
rectangular pulse has a discontinuous first derivative, and will therefore contain strong
sidelobes compared to pulses which are several times continuously differentiable. The
pulses used in a realistic situation will be smoother than the rectangular. Wc therefore

-2u;o sin^
F(u) = —JL as_.

1 ; V^F*(w2 -o;g)
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introduce a smoothed version of the rectangular pulse

(3.14)
In this pulse, n is the number of oscillations in the steady state region, i. e. where
the envelope function is 1, and m is the number of half oscillations at each end of the
pulse, where the pressure builds up to the maximum amplitude, and where it decays
to zero after the pulse. The envelope function of this pulse is everywhere three times
continuously differentiable, and should be a more reasonable pulse for an experimental
situation. There is, however, no ringing after this pulse, which is often produced by real
sound sources. The Fourier transform of this pulse is

jrg sin + (-l)m sin -^ '—

_40320 /40a>a;o(^2 + a;02 )(q;4 + 6a;2a;02 + u&)
\ (w2 -u;2 )8

7r 2m2u;(3a;4 + lOa;2^2 + 3u;g)\
u>o(u2 -uIY )

(kiui) , . m 7r(n + m)oj\ 1
cos (-l)m cos -^—-—'— H . (3(3.15)

In Figures 3.5 and 3.6, the rectangular pulse Eg. (3.12) and the smoothed rectangular
pulse Eg. (3.14) are studied.

Wc see that in the rectangular pulse, there are some new effects. First, this pulse
behaves much like the Gaussian. It simply just has the same exponential decay as a
monochromatic wave of the same frequency as the carrier frequency of the pulse. When
z — 0(Z/o), however, wc see that new effects start growing from the start and stop
points of the pulse (r = ±n7r/u;o). The first and last half oscillation of the pulse now
does not decay as rapidly as the rest of the pulse, which still has the exponentional
decay of the monochromatic wave. When z Lo (z = 10Lo ), these edge effects are the
only thing left of the pulse. The rest of it is negligible compared to them. These half
oscillations now also start to become wider. When z = 0(L8 ) = O(n2Lo), they start to
overlap, and finally, when z >• L,, they form a total signal which just includes one single
oscillation. Simulations further out would have shown that the maximum amplitude
of this oscillation would decay as l/z. The pulse would also be widened out, just like
the Gaussian. However, the amplitude of the signal is now much greater than for the
Gaussian pulses. Wc thus conclude that the transition from the signal on the source to
the old age signal when z La is different and simpler for Gaussian pulses compared to
more broadbanded signals. The old age signal also has a much higher amplitude for the

'(-l)n ,o<a;oT<n7r

( —l)n (35 (wT-jn+m)*^ 4 , g^ fwoT-(n+m)ir\ 5 .

Fl(T) == i7O ("ot-("+™)*) 6 +20 (i£orzln±m}I\7\1 \7\

0 ,uoT > (n + m)7T
FiC-r) ,wor <0.

(3
this pulse, n is the number of oscillations in the steady state region, i. e. w]
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FIG. 3.5. One-dimensional propagation of rectangular pulses
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rectangular pulse than for the Gaussian pulse. This can be explai dby the sidelobes
of the Fourier transform, which give the very low frequencies around w = 0a significant
contribution in the sound signal.

When considering the smoothed rectangular pulse in Figure 3.6, wc see a similar
picture as for the rectangular pulse. This time the transition from z = O(Lo) to z La ,
however, is even more complicated. When m = 4, the half oscillation at each end which
decayed less than the rest of the pulse for the rectangular pulse, has become two or three
half oscillations. The steady state part of the pulse, where Fi(r) = ±1, still decays
exponentially. The end effects also start to widen out when z;> Zo > and wc end up
with one single oscillation when z La . The same thing happens when m= 8, but this
time even more oscillations survive in the start and stop region. This is not surprising
because the end effects now happen on a larger time scale. Other simulations keeping
the smoothness at the end (m) fixed, and varying the pulse- length (n), show similar
behaviours as above. The only difference is that La changes its value so that the final
transition to a signal with only one oscillation happens at different distances. When
comparing the two pulses in Figure 3.6 at z = IOOLo, wc see that the amplitude for
m = 8 is much less than the amplitude for m = 4. Wc have thus seen that the end
effects are at least as important as the pulse-length when discussing the pulse shape far
outside the fast absorption distance Lo -

In Figure 3.7 wc have compared the energy of several rectangular and smoothed
rectangular pulses. All pulses have a decay like l/z3/2 when z L 8 (15dB loss when
going from z to 10z). The total loss of energy of the pulses is critically dependent on
m, the smoothness of the pulse in the start and stop regions. A smoother function will
have less effect from the start and stop regions, and it is therefore not surprising that the
pulses with m = 8 have lost more energy when z > La than the pulses with m = 4. The
rectangular pulses m = 0 have lost still less energy, as expected. Common to all these
pulses is that they have lost far less energy than the Gaussian pulses studied above. Wc
also see that when z<C La , all pulses decay similarly. This decay is similar to the decay
of a monochromatic wave with angular frequency ug.

In real life, the difference in the Fourier transform between different pulses is critical.
The behaviour of the Fourier transform around w = 0 determines how far the pulse can
propagate. This behaviour is related to the sidelobes of the Fourier transform which in
turn are related to the behaviour of the pulse around the turn on and turn off times.
Therefore it is very easy to introduce artificial discontinuities when wc are going to study
a speciflc, physical situation by this approach. These discontinuities, which can be in
the onsource time dependency F(t), or in one of the time derivatives of it, can dominate
the solution in the dissipative farfleld.

3.4. Heuristic Asymptotic Results

In this section, wc will try to explain some of the effects of the broadbanded signal
from the integral solutions Eqs. (3.4) and (3.5). Wc will derive some asymptotic results
valid when z >> Lo. Here will be no stringent asymptotic treatment, but nevertheless,
the results indicate what happens.
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FIG. 3.6. One-dimensional propagation of smoothed rectangular pulses
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FIG. 3.7. Energy of rectangular and smoothed rectangular pulses at various distances.

3.4.1. General Results when z > La.

Wc first want to find the final shape of the pulse after all the absorption efFects have
been present. The analysis start with Eg. (3.4) which wc repeat here:

(3.16)

When z > L,, just a small interval around u = 0 will contribute in the integral. Wc
therefore expand F(u>) in a Taylor series around w = 0:

where wc have used that F(0) = 0 in this model. This is according to Eg. (2.6). By
introducing this, wc get

(3.18)

(3.19)

This shows that the final pulseshape for a general pulse is one single oscillation. It also
describes how this oscillation is widened out when z increases. The maximum absolute
value of the amplitude of Eg. (3.19) for a fixed z is given as

(3.20)

This value is obtained at the times r = ±J^r- For a general pulse, the decay in the

amplitude is thus l/z, just as wc found for the Gaussian pulse. Wc can also find the

tn = 8, n = 5
m = B,j» = I
ni = 4,?i = 5
m = A,n — 3
m = 0,7i = 10
m = 0,» = 5

Ond fOO ~ -Zzh-ivT

F(w) = F(0)+uF'(0) + O{lj2 )
= ljF'(O) + 0(w2 ), (3.17)

Po^f'(o) f°° -^-^j
F V^F J-oo

This integral can be evaluated, and gives

~, f d\ 3/2 dÅ

Pl ~ -po#F (0) (j^J re-*»-

\DzJ

"»-i~3il£^H&-*
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energy of the signal by considering

(3.21)

We find here

(3.22)

which explains the 15dB decay found for all pulses above.
When we consider the rectangular pulse in particular, we get

(3.23)

Inserting this in the results above, we get

(3.24)

for the final time signal. The maximum amplitude is

2 Dwsz '
|Plmox| ~ PoCoK (3.25)

and the energy can be written

(3.26)

This shows that the energy loss relative to the source energy is less for long rectangular
pulses than for short rectangular pulses. This is opposite to what is the case for Gaussian
pulses. The maximum amplitude for the pulse is also dependent on the pulse-length in
the sense that it is greater for a long pulse than for a short pulse. The fact that the
amplitude when z L8 is greater for a long pulse than for a short pulse, is again the
opposite of the case for a Gaussian pulse.

For the smoothed rectangular pulse, we get

(3.27)

When m is an even number, this expression reduces to

(3.28)

and when m is odd, it reduces to

(3.29)

E{z)= r p\z,r)dT.J—OO

*<•>- at (/>" >* )'»)'" 

f°° i-,/ x , 27rn

./—OO Wq

w-^Gf)""-

r» „, SJ 40320(1 -(-l)m )(40-37T2 m2 )
/ TiF(ri)rfri =  2 7 7

16807r2m(60 - w 2m2 )(n -f (-l)m (m + n))
O 77 •

UtøTTm7

[<*> _, .. 1680(60 - T 2m2 )(2n +m)
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This last expression is interesting because it shows that the amplitude of the pulse when
z La does not depend on the pulse- length n, but only on the edge effects m when ra is
an odd number. When m is even, however, the amplitude also depends on ra. Numerical
results not shown here confirm this result. This again shows how critically dependent
the solution is on the behaviour of the pulse in the start and stop region when z >> LB .

We concentrate on the case when m is even. In that case, we get the time signal as

the maximum amplitude as

(3.32)

All these formulas show that the pulse is more critically dependent on the end effects m
than on the pulse-length n. This is also what was shown in numerical examples above.

In Figure 3.8, we have compared the energy loss in dB and the time signal calculated
numerically with the asymptotic formulas derived above for the rectangular and the
smoothed rectangular pulses. We see that for the shortest pulse (ra = 5, m = 0), the
asymptotic formula is valid for smallest 2-values. This can be explained by LB , which is
larger when the pulse is longer. We see also that the asymptotic formulas describe the
energy loss very well when z Ls . The difference in L8 for the different pulses is also
illustrated in the plots of the pulse shape in the farfield. We see that for a rectangular
(ra = 5) and a smoothed rectangular (ra = 5, m = 4) pulse, the asymptotic formula
describes the pulse fairly well when z = 500Lo , but with the longer pulse ra =5,m = 8,
it is not equally well described before z = 2000Lq.

We conclude this section with two more general remarks. In the derivations above,
it is assumed that F(0) = 0 but that F'(0) 0. The result for instance in Eq. (3.19)
is strictly dependent on that. Instead of this, if we assume that F^(0) = 0 for j =
0, . . . , k- 1 and F^k\o) 0, Eq. (3.19) would have become

(3.33)

This equation is valid for any positive integer value of k. It is also valid for the case k = 0,
which is shown inconsistent with the parabolic approximation in the three dimensional
model.

and the energy as
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FIG. 3.8. Comparison between the asymptotic farfield formulas (• ••) and a numerical
solution (—), for energy (a) and wavefdrm (b) when using a rectangular and a smoothed
rectangular pulse.

cata
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Another interesting discussion is the discussion of different absorption laws. In the
model discussed here, the absorption lengths are inversly proportional to the frequency
squared. As mentioned earlier, this is a good model for sound waves in water. For waves
in other media, like sediments or biological tissue, the absorption law is different. Wc
therefore consider a generalisation of Eg. (3.4), where wc have a general frequency law
A(u) where A(—lj) = A(u>):

(3.34)

Wc now define cl(t, z) as the inverse Fourier transform of e A^z

(3.35)

The pressure can now be written as an integral over the time domain:

(3.36)

Wc can proceed like above, and get a generalisation of Eg. (3.33):

(3.37)

For many absorption laws, the function a(r, z) cannot be found analytically. There
is, however, one important case where it can be found analytically:

(3.38)

As stated earlier, this is a commonly used absorption law for sound waves in sediments.
Wc now get

In this case, Eg. (3.19) which describes the solution for z > LB , F(0) = 0 and 0
will be

The maximum amplitude of this expression decays like l/z2 , unlike Eg. (3.19) where the
decay is l/z. This shows that the solution in this region is also critically dependent on
the absorption law used.

3.4.2. Asymptotic Results for Rectangular Pulses.

Wc will now derive some more specific farfield asymptotic formulas for the rectangular
pulses. These formulas will have a larger region of validity than the formulas derived
above.

a(r,z) = -^L e-A^z- iurrdT.V27T

Pl = 1 )a(T-Ti ,z)dT1 .

Pl = 2)

A(uj) = aQ \oj\.

a(r,z)= *?* „. (3.39)V2Tr(a&z2 + r 2)

"-tår^C*™- (3 -40)
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When considering the Fourier transform of the rectangular pulse, wc see that close
to u> = 0 it behaves like a sinusoid. The idea is therefore to keep the sinus functions in
the Fourier transform and approximate the rest of the Fourier transform. In this way,
wc should get a solution valid in the farfield, and hopefully a more general solution than
the one obtained by linearizing all of F(lj). The Fourier transform of the rectangular
pulse is given by Eg. (3.13) which wc repeat here:

P(U\ = -2u*> siD^ (3.41)

Wc now approximate F(lj) by

(3.42)

By introducing this into Eg. (3.4), wc get

(3.43)

which can be evaluated analytically:

(3.44)

Wc see that this equation describes the haLf oscillation earlier referred to as start and
stop effects. Therefore this equation is expected to be valid when z Lo, i.e. when
the rapid oscillations following the monochromatic exponential decay, are damped away.
The energy loss can be found by squaring and integrating this solution:

(3.45)

In Figure 3.9, wc compare the asymptotic solution Eg. (3.44) with a numerical solu
tion. Wc see that both for n = 6 and n = 10, the solution is quite good when z = 10Lo
or greater. It describes the end effects in this region quite well, but does not include the
rapid oscillations still present when z = 5Lq.

These calculations can also be made in the case of a smoothed rectangular pulse.
The difference is that wc would have to expand the non-sinusoidal part of the Fourier
transform by a Taylor series around u = 0 and keep terms up to second order in order
to get a solution with the same validity as the solution derived above for the rectangular
pulse.

3.5. General Asymptotic results

In this section, wc will derive some approximative solutions of Eqs. (3.4) and (3.5)
by using asymptotic methods.

2sin^

Po4 f°° • frnru\ -^Jr-""1",
Pi ~—— / sin 1 e 2co du;,

9 Cq f (r4 So ) co (r-wn> co \
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FIG. 3.9. Comparison between the numerical solution (—) and the improved asymptotic
farfield formula (• • •) for the waveform when using a rectangular pulse.
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3.5.1. Farffield results

First, wc want to obtain a solution valid when z L,, and to compare it with the
solution found above. This process will be divided into two sub-cases.

One characteristic frequency:

First wc will consider the case when wc cannot separate out two different charac
teristic times. This means that the signal cannot be written as an envelope function
with a carrier frequency inside. The analysis starts from the frequency domain solution
Eg. (3.4). Let u 0 be the characteristic frequency of the source signal F(t). Wc now
introduce the following non-dimensional variables:

(3.46)

z is thus scaled to the fast absorption distance, and wc want a solution when z is large.
Now, wc have to scale the fraction T/J. It seems most physical to assume this fraction
bounded (and generally not zero) because wc know that the pulse stretches out in this
region. Wc therefore first use this scaling. Eg. (3.4) can then be written:

(3.47)

F is now a function that is varying on the scale (1) and the rest of the integrand is
a rapidly varying function when 1 —> 00. In order to find asymptotical expansions
when ~z —> 00, wc can use the method of steepest descent. The saddle point will be at
u> = —if/(2z). When assuming F analytical and håving proper conditions at infinity,
wc can deform the contour and obtain the asymptotic expansion:

(3.48)

In dimensional variables Eg. (3.48) will be

(3.49)

Wc see that all pulses will be damped like l/\/5 in this region. Besides this damping, wc
see that the Fourier transform may contain factors that together with the exponential
factor reduce the amplitude of the signal. By Taylor expanding the Fourier transform
term around 0, wc get the general solutions derived in section 3.4.1. Eg. (3.49) can
thus be seen as a generalisation of Eg. (3.19) to also cover pulses where F (0) = 0 or
alternatively as a generalisation of Eg. (3.33).

u> = cjqo;,

r = t/lj0 ,

F(«>) = T(57)/wb.

Pl ~*£ |-^F(-|)e-S + O((l/z)3») J
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Eg. (3.48) was derived under the assumption that t/z is finite when z —> 00. If wc
scale this fraction to approach zero instead, wc must take the factor e~ tu;T out of the
rapidly varying part of the integrand. By using the method of steepest descent in this
case, wc obtain Eg. (3.48) with f = 0. Thus wc see that the first scaling of T/~z leads to
a result that is more general. Finally, if wc let t/~z — oo when I->oowe get a solution
that is growing when ~z is growing, which is clearly unphysical. This is understandable
when wc see what this scaling means physically.

It is also possible to derive Eg. (3.49) by using the time domain solution Eg. (3.5).
Wc then use the same scalings as above and the theory in chapter 4.6 in Bleistein
and Handelsman18 about small parameter expansions of integrals. In order to obtain
Eg. (3.49) in this way, wc have to assume either that F(T) has finite support or that
F(t) — ø(exp(— |T|)) when |T| — 00. This is no great physical restriction since the
signals used in real situations always can be assumed to have finite support.

Two characteristic frequencies:

The other sub-case to be considered is the case where the source signal contains two
characteristic frequencies. Wc call the fast frequency w 0 and the slow frequency 7. Wc
also introduce the parameter n = Wo/7- A large n thus says that this is a long pulse
in the sense that it contains many oscillations inside a slowly varying envelope function,
and a small n similarly indicates a short pulse in the same sense. It is convenient to
write

F(t) = (3.50)

where Fi(t) is the slowly varying envelope function. Wc can get physically acceptable
results by taking real or imaginary part of this expression, and eventually require that
the mean value in time of the resulting pulse is zero. The Fourier transforms of these
functions are connected in the following way:

(3.51)

By introducing this into Eg. (3.4) and making the substitution u)' = u + u>o, wc get

(3.52)

The main contribution to Fi(uj') is now around uJ = 0 with a bandwith of ljq/u = 7.
To proceed, wc have to introduce new non-dimensional variables with the important
thing in mmd that now the frequency 7 is the important characteristic frequency in the
integral. Wc thus introduce the following variables:

(3.53)

F{u) = Fl (u + u 0).

v2tt J-oo
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In these variables, Eg. (3.52) can be written

(3.54)

Again wc assume that T\jz\ is bounded (of order one) as z\ —* 00. The argumentation
for this is the same as above, and the results with other scalings are similar to the results
obtained above. Wc therefore write Eg. (3.54) in this way:

(3.55)

Now, wc are looking for asymptotic expansions valid when Z\ — 00. With the above
mentioned scaling ofTi/^i, wc have an integrand where F\ is varying on the scale (1) and
the other factors are varying rapidly. Wc can thus use the method of steepest descent if
wc require F\ to be analytical and to decrease properly at infinity:

(3.56)

In dimensional variables, this is the same as Eg. (3.49) except that the error now is
O((£*j2 z )3/2 ). That means that z has to be chosen much greater than the slow absorption
distances La if wc want to justify the use of Eg. (3.49). It is also possible to derive this
result from the time domain solution Eg. (3.5) just like above.

Wc can now ask why wc had to consider this last sub-case at all. Why not just do
the first step and let that include both sub-cases? Then the solution should also have
a greater validity region in this last sub-case, than wc found above. The reason is that
when wc used the method of steepest descent in the first sub-case Eg. (3.47), wc assumed
that F is varying on the scale (1). When wc have two characteristic frequencies, this is
not correct any longer. The main contribution to F is still around ±1, but wc have a
bandwith of W = l/n which will be the fastest scale that F is varying according to. Wc
therefore have to scale u like above in order to use the method of steepest descent.

Wc now insert the Gaussian pulse Eg. (3.6) into Eg. (3.49):

(3.57)

This can also be obtained from the exact solution Eg. (3.7) by expanding the exponents
and denomonator in powers of l/z and keeping one or two terms in each case. A look
at the two formulas shows that this last formula is valid when z is large compared to
the slow absorption distance. This is precisely what could be expected from the analysis
above.

3.5.2. Nearfield results

Wc now want to obtain a solution valid within the slow absorption distance. Again wc
will start from the frequency domain solution. The non-dimensional variables Eg. (3.53)

V27T
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are chosen, and wc end up with Eg. (3.54). Here wc write that equation like

(3.58)

Wc now want an asymptotic expression valid for small Zi-values. Wc assume, however,
that riz\ remains finite. In order to get the situation 1>• ~z\ = 0(1 /n) that is suggested
here, wc have to assume n large, i.e. a long pulse. In physical variables, this means

2jffi z = 0(-££r). With this assumption, the last factor in the integrand of Eg. (3.58)
will be slowly varying, while the rest of the integrand will vary on the scale (1) and faster.
Wc can thus use the theory of expansion of integrals containing a small parameter again.
In this way, wc get:

(3.59)

This expression can be evaluated:

(3.60)

In order to justify Eg. (3.60), wc have to require that F\{u)\) has finite support or that
it decays faster than exponentially when |u>i| —> 00. In physically variables, Eg. (3.60)
will be

Wc now just note that Eg. (3.61) also can be derived by using the time domain formu
lation and the method of steepest descent.

By following the analysis above strictly, wc find that Eg. (3.61) is just valid between
the fast and the slow absorption distance. By inserting a Gaussian pulse in that equation,
wc get

Thus wc see that for a Gaussian pulse, the solution is valid all the way from the source
and until wc approach the slow absorption distance.

Now, how interesting is Eg. (3.61)? In order to use the method of steepest descent
in the time domain formulation, wc have to assume that the envelope function Fi(t)
is an entire function (or at least that it is analytical except at isolated poles and then
look at the contributions from the residues). It is difficult to avoid this assumption
because wc want to evaluate F\(t + tUQJD ) which has to be given a useful value. An
alternative way to compute this expression, is to go through the Fourier Transform.
This is what wc did when wc derived Eg. (3.61). However, it doesn't seem like this way
of computing F\(t -f- tu/QjD } gives so much, since the integral wc must solve when going
through the Fourier transform often will be divergent when applied to an F\ that is no+
analytical. An example of this is to let Fi be a stepfunction. This means that it can be
difficult to use the solution Eg. (3.61) for many pulseshapes, for instance when wc have
an envelope function with finite support. A method to avoid this difficulty, is to find

y2x J-oo

\/2x I J

Pl ~ po<% {e-^F^r, + 2m7I)c^> + O^)} .
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Pi ~ Po&^-ffie-^ sin (u,or(l - . (3.62)
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an entire function that it almost such a function for the interesting r-values. For the
stepfunction which is 1 when |r| < 1 and 0 elsewhere, wc can among other functions use
exp(—r2m ) where m is a positive integer which is chosen large enough. An alternative
to this, can be just to neglect the imaginary part of the argument of F. In this way, wc
have to expect that the expression breaks down a little bit before the expression above.
Wc see, however, that the expression obtained in this way has the exponential damping
that is expected in the nearfield.

Summing up, wc have derived two asymptotic formulas for one-dimensional, pulsed
sound propagation. Beyond the slow absorption distance wc got

(3.63)

The validity of this formula is ensured by requiring that F(t) has finite support or decays
more rapidly than exponentially as \t\ —> 00. It is also assumed that z/t remains finite
when z — 00. Within the slow absorption distance, wc got

(3.64)

when wc assumed that F(t) = Fi(r)etu*T . In order to use this formula, wc have to require
an entire (analytical everywhere) F(t) which decays fast at infinity. Alternatively, wc
can require that F(w) has finite support or decays more rapidly than exponentially as
\u>\ —* 00. The ratio z/t is then assumed to go to zero when z —* 0.

3.6. General Remarks

Wc have now discussed the one-dimensional propagation of a pulsed signal. One of the
conclusions was that when z is of the order of the slow absorption distance (z = O(La ))
or greater, the signal is strictly dependent on the actual pulse generated. The important
thing is the smoothness of the envelope function, or alternatively, the behaviour of F(u)
when lj w 0. In real life, the signals often must be expected to be narrowbanded in the
sense that it (almost) contains no such low frequencies. Then, in the farfield the signal
is damped by the exponential factor exp(—^dt~) where u>i is the smallest characteristic
frequency present in the signal. This is the case for instance for long Gaussian signals.
The 20dB decay of amplitude when z is increased by a factor of 10, then does not show
up until the whole signal is damped so much that it in practice totally has been damped
away.

It is now natural to ask why so much space is used on a sub-case which is perhaps
of no direct physical interest. One reason for this is that these results in some cases will
be directly applicable also in the linear, threedimensional case. It is therefore important
to understand the dissipative effects especially in the dissipative nearfield, and also in
the dissipative farfield. Besides this and the academical interest, wc will find that in
the quasilinear solution discussed in chapter 5, lowfrequent signals will be generated.
Also wc will see that in the dissipative farfield, wc often can assume that they propagate
linearly. Therefore, the analysis for z >• Lo above is applicable when wc want to explain
some phenomena in the quasilinear solution.

»~^/S*«-5M*-

Pl ~^e-^r +
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Chapter 4

Linear Three-dimensional Solution

In this chapter, wc will study the linear, three-dimensional sound propagation. In liter
ature, there are many works on this topic, and much is known about it. Wc will first
neglect the dissipative effects and study the diffraction isolated. The study is first for
a plane source. Focusing effects will then be built into the results. Afterwards, wc will
study the combination of diffraction and dissipation. Wc will then try to combine the
results from chapter 3 with the results obtained here.

In the study of the effects of diffraction in the pulsed sound propagation, there are
several ways to proceed. Wc have chosen first to use the impulse response approach. The
advantage of this is that wc can get a good qualitative understanding of the mechanisms
in this way. Wc are also able to discuss the validity of the parabolic approximation in
the pulsed case when wc use this approach.

4.1. Impulse Response

Consider now

(4.1)

where 6(t) is the Dirac delta function. The solution of this problem will be denoted ps .
Once wc have found j>s, wc can find the solution for a general time dependency F(t)
through the convolution

(4-2)

As stated in chapter 2, the time dependency used here is not consistent with the parabolic
approximation. Anyway, wc can do the calculations and get reasonable results from it.
Wc can also show that the waveform obtained when convolving the impulse response
with the actual onsource time dependency, is the correct solution of the parabolic equa
tion. Therefore wc will use the impulse response even if it actually corresponds to an
inconsistent situation.

\ x codrdz)
Pi(z = 0) = P0(%f(x)8(T),

Pi (x, z, r) = / ps (x, z, ti)F{t - TX )dTXJ—oo
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The impulse response ps can now be found from the general solution of the linear
parabolic equation Eg. (2.17) by inserting F(u) — l/y/^K:

(4.3)

It is now possible to evaluate the w-integral:

(4.4)

Eg. (4.4) is a good starting point for analysing the impulse response from a general,
plane source which radiates into a non-dissipative, homogeneous medium.

4.1 .1 . Axisymmetric Source

Wc now assume that the source is axisymmetric, i. e. /(x) = f\(x) where x = |x|.
This simplifies the integrals above. Wc will first look at the solution on the acoustical
axis, i.e. when x = 0. Eg. (4.4) then simplifies into

(4.5)

According to chapter Bin Jones19 , it is valid to make the substitution 5 = .We are
then able to evalute the integral, and finally we get

(4.6)

where U(t) is the Heaviside function which is 0 for negative r-values and 1 for positive
2-values. It is assumed that f\(x) is continuous except at the edge of the source (x = a).
A is the jump of the function fi(x) at this point. Wc can account for a source with more
than one discontinuity by just adding one term of this type for each discontinuity. The
result is therefore quite general.

The physical meaning of Eg. (4.6) is discussed by Naze Tjøtta and Tjøtta7 , and in
the case of a uniform source by Stepanishen6 . They considered the case where there
was no parabolic approximation. In order to see that physical interpretation, wc first
consider the uniform, circular source:

(4.7)

(4.8)

47T'*2 J-oo JJ—oo

-e£j>-is?»w*'

Ps = 3- / fi(x )S(t - -—)x dx .z or Jo 2zcq

PS =PA {<(r)/,(0) + U(T)fåf1(-/5&) + AS(t - 2^)}

fl^ = \O,x>a.

Then f[(x) — 0 and A = — 1. The impulse response is now

Ps = Po4 (S(r)-S(r- J£-)).



This result was also obtained and discussed by Daltveit20 by a more direct approach.
When we look at the arrival times, we see that the first term is the contribution from
the centre of the source. The arrival time of the second term indicates that it comes
from the edge of the source. Because of the parabolic approximation, this arrival time
is different from the physical one. This is discussed in more detail in section 4.2. By
convolving the impulse response with a real pulse F(r), we find that there is one signal
coming from the centre of the source, and one signal coming from the edge of the source.
We refer to the first pulse as the main contribution and to the second pulse as the replica
pulse. The main contribution is equal to the signal on the source and the replica pulse is
the negative of this signal. More generally, we see that there is one replica pulse for each
discontinuity in radial direction of the source f\(x). When f[(x) 0, there is also a wake
present in the signal. Both the wake and the replica pulse(s) move faster in z-direction
than the main contribution. However, the main contribution is always in front of them.
For a more detailed study of these effects, we refer to Naze Tjøtta and Tjøtta7 .

Consider now the solution when x > 0, that is, outside the acoustical axis. We then
start with Eq. (4.3) which now can be simplified further. We get

(4.9)

The u;-integral is basically the Fourier transform of the Bessel function Jo . This can
be found in Ref. 21. Finally we get

(4.10)

We will not discuss Eq. (4.10) in general, but instead study two specific axisymmetric
sources in more detail. These sources, the uniform source mentioned above, and the
Gaussian source, are kind of opposite sources. By this it is meant that the uniform
source has a discontinuity which generates a replica pulse on the acoustical axis. There
is no wake generated there. The Gaussian source is, on the other hand, very smooth.
There are no replica pulses present there, and the wake is generated by a very smooth
source. We thus have discussed two limiting cases when we have discussed these two
sources. Many axisymmetric sources used in a practical situation can be seen as a source
somewhere in between these two sources.

The impulse response from the uniform piston is found also outside the acoustical axis
by Stepanishen6 when there is no parabolic approximation. We introduce the uniform
piston in Eq. (4.10). The resulting integral can be evaluated, and we thus solve the
impulse response problem for a uniform source in the parabolic approximation.

where

(4.11b)

(4.12a)

Z7TZ OT J-oo JO ZCq
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When x < a, wc get:
P6= Po4(S(t) + *S), (4.11a)
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27rTV/8x2 zcoT-(2zCO T-a2+x2)2 ' 2*co 2zco
0 , elsewhere.

When x = a, wc get
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CQT/a
(b)(a)

cor/aco r/a
(d)(c)

FIG. 4.1. Impulse response from a uniform, circular
x = a (b), x = 2a (c) and x = 10a (d).

where

(4.12b)

(4.13a)

where

(4.13b)

Eqs. (4.11),(4.12) and (4.13) give a qualitatively good understanding of the pulsed sound
propagation. In Figure 4.1, the impulse response is plotted in the different cases. Wc
see that as long as the observation point is ahead of the piston (x < a), wc first will get
a pulse similar to the pulse on the source. This is the same as the main contribution
on the acoustical axis. The replica pulse which was present on the acoustical axis, is
now replaced by a wake. This wake is for a small x just a smeared version of the replica
pulse. However, the larger x is, the more dominant is this smearing. The delta function
representing the replica pulse on the acoustical axis, more and more splits up into two
negative peaks when x is increasing. This indicates that when x increases, wc get the
superposition of two smeared versions of the replica pulse.

The case x > a is often more interesting from an experimental point of view than
the x < a case. Now wc see that the main contribution is gone. This is not surprising
because wc no longer are just in front of the source. When wc look at the first and the

source, z = a, x = 0.5a (a),

f i / ~"zco o<r< —

\ 0 , elsewhere.

When x > a, wc get
PS = Po4®6,

$5 = J 2)rT V/Bi2zcoT-(2zcoT-a3+«2 )2 ' 2zc° 2zc°
I 0 , elsewhere.
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last arrival time of the signal, wc find that within the parabolic approximation, these
are the arrival times for the signal generated at t = 0 at the nearest and the furthest
point of the source respectively. Physically this seems very reasonable. Wc also see that
the impulse response now has a large positive peak at the earliest arrival point, and a
large negative peak at the latest arrival point. This indicates that for a general pulse,
the signal will consist of one smeared version of the original pulse located on the r-axis
at the arrival time from the nearest edge of the piston, and a similar pulse at the arrival
point from the furthest edge of the piston. This second pulse has opposite sign compared
to the first one. Whether these pulses overlap or not, is decided by the length of the two
pulses and the difference between the two arrival times.

Wc will also consider the impulse response from the Gaussian source. Wc then again
start with Eg. (4.10), and use the Gaussian source Eg. (2.19). After the substitution
u = v/ (a2 ), wc get the following integral:

(4.14)

This integral can be evaluated. Consider the integral representation of the modified
Bessel function Iq{z) (for example page 571 in Ref.22):

(4.15)

(4.16)

By using this result, wc find that the impulse response from a Gaussian source is

(4.17)

On the acoustical axis, this shows, in agreement with Eg. (4.6), that the signal consists
of the main contribution, and a wake generated by the non-uniformness of the Gaussian
source. Most of the wake contribution in the impulse response is when r < jj— . When wc
leave the acoustical axis, wc see from figure 4.2 that the wake changes its nature. Wc see
that the wake more and more dominates the main contribution. The main contribution
will now not come from the centre of the source, but from the point on the source closest
to the observation point. The arrival times of the most important parts of the wake, are
around the arrival time from the signal generated at the centre of the source. This is in
agreement with the physics where wc have to assume that most of the sound is generated
in the region of the source where x %, a. The actual shape of the wake will change when
wc go far outside the acoustical axis. Close to the source, wc see that it looks much like
the negative of a smeared version of the generated pulse. Later on, wc see that the wake
contribution in the impulse response will have one whole cycle. Therefore it will look
more like the negative of a smeared version of the time derivative of the generated pulse.
How dominant this smearing is, depends on the actual observation point.

PoCq _ ( x)2O \ _ 2MCQT r-^2— e udu I

I0(z) =- r ezcostdt.7T Jo

By the substitution u = —zæst, this integral will be

j (z\ _i r e~udu
7T .7-2 y/z?~—V?

2 _f£^ fe \ tt, \ d \ 2>cP r , ,2Xy/2zCQT .



42

Co rja co r/a
(c) (d)

FIG. 4.2. Impulse response from a Gaussian source, z
x — ba (c) and x = 10a (d).

4.1 J2. Sepa rable Source

Wc will now consider another type of sources where it is possible to reduce the general
integral representation to a single integral. These are separable sources where

and where x = (xi,x2). Among these sources, wc can mention the uniform, rectangular
sources. Wc now introduce the general separable source into Eg. (4.4):

Wc split the inner integral into an integral from —oo to x 2 and an integral from x 2 to
co. Wc can then, again according to Ref. 19, substitute x'2 = x2 ± y/2zcos where + is
for the integral from x 2 to oo and - for the other integral. Finally, wc get

(f2 {x2 - 2 ) + f2{x2 +VW - (x! - xi)2)) dxj. (4.20)

Eg. (4.20) provides a good starting point for a discussion of the impulse response from
a separable source. Wc can for instance mention that for a uniform, rectangular piston,
Eg. (4.20) can be evaluated analytically.

a, x = 0 (a), x = a (b),

/(x) = /i(z,)/,(*O, (4-18)

vs 2n\2zdr K) Jx^^n^ (xi -.«{)»
V 2*«*
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4.2. On the Validity of the Parabolic Approximation

It has already been briefly mentioned that the parabolic approximation is not uni
formly valid as a solution of the physical problem wc are considering. When deriving the
parabolic approximation, wc neglect a second derivative with respect to z. This means
that wc have to expect problems when this second derivative is large. This is the case
close to the sound source where wc thus have to expect problems. A consequence of
the parabolic approximation is that the beam almost behaves as a plane wave which
propagates in the positive z-direction. Regressive waves are discarded, and this means
again that wc have to expect problems close to boundaries. Because the beam almost is
a plane wave propagating in the positive z-direction, wc also have to expect problems at
large angles from the positive z-axis. Much is known about the validity of the parabolic
approximation when using a monochromatic signal. To summarize, the parabolic ap
proximation breaks down very close to the source, and in the farfield at large angles
from the acoustical axis. For the uniform piston, the critical value is z = O(a(ka) l lz )
or greater for the parabolic approximation to be valid in the nearfield4 . In the farfield,
the limitation on the angle from the acoustical axis is often tåken to be 9 < 20°. Wc
will now discuss briefly the validity of the linear, parabolic approximation when using a
pulsed signal and a non-dissipative medium. As a part of this discussion, wc will also
make comments on the critical values in the monochromatic solution. An exact model

(4.21b)

hm r — + co— =0,
r—°° \ ot or J

(4.21c)

rpi is bounded when r —»• oo (4.21d)

where r = y/x2 + z 2, z> 0 and Eqs. (4.21c) and (4.21d) are SommerfeWs radiation
condition. This problem is studied by Stepanishen6 for uniform sources, and with special
emphasis on uniform circular sources. Naze Tjøtta and Tjøtta7 discussed the problem
further, and also for non-uniform sources. Wc will now compare the results in these works
with the present results for the impulse response in the parabolic approximation. The
comparison will give some information about the validity of the parabolic approximation
in the pulsed case.

Wc first study the solution on the acoustical axis for an axisymmetric source. In the
parabolic approximation, Eg. (4.6) is the solution of that problem. For Eg. (4.21), wc
find the solution in Ref. 7:

(4.22)

for the impulse response is

with the boundary conditions

vltZ (z = 0) = vof{x)6(t),

W = Po4 (<(t)/i(O) + U(t) t + zco f>(j4ri + 2zcoT)
{ v 0» 7" 2 + <izc°T

+ A^r+ i.(I _^7|)jj.
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Wc see here that the main contributions are identical in the two solutions. The replica
pulse and the wake are a bit changed by the parabolic approximation. Wc first consider
the replica pulse.

In the wave equation, the arrival time of the replica pulse is exactly the travel time
from the discontinuity of the source which generates the replica pulse. This arrival time is
r = — — (1 —J\ + In the parabolic approximation, the arrival time is approximated

by r = jj— • Wc get this expression by expanding the square root in the exact expression
in powers of (a/z)2 and just keep the leading order. This means that wc have to expect
problems with the parabolic approximation very close to the sound source, i. e. when
z < a. Wc can, however, say more. Assume now that the largest, characteristic, angular
frequency of the pulse is ujq. Wc then know how fast the pulse oscillates. The maximum
acceptable misplacement of the replica pulse in the parabolic approximation has to be
specified. It is natural to specify it as a fraction of an oscillation with u>o as angular
frequency. The maximum misplacement is here required to be one fourth of a whole
cycle. The difference between the arrival time of the parabolic and the exact replica
pulse, therefore has to be less than 7r/(2u>0). Wc thus have:

(4.23)

Wc now expand the square root, and keep the leading order only. Then, wc get the
following restriction on z:

This means that z has to be of the order a h*&) or larger if wc want to use the
parabolic approximation. This result is similar to the result found by Naze Tjøtta and
Tjøtta4 for a monochromatic sound beam.

The validity of the parabolic approximation for the wake is more difficult to estimate
in details. In order to give a precise estimate, wc have to consider a specific sound source.
This will not be done here. Wc just observe that the wake in the impulse response of the
parabolic approximation is equal to the wake where there is no parabolic approximation
if z CqT. In some sense, this means that the parabolic approximation breaks down
close to the source.

For a Gaussian source, wc find the solution of Eg. (4.21) from the results by Naze
Tjøtta and Tjøtta in Ref. 7:

(4.25)

Wc see that in order to go from this solution to the solution where a parabolic approx
imation is performed, Eg. (4.17), wc have to assume that z cqt. This is the same
assumption that was made above for the wake on the acoustical axis for a general, ax
isymmetric source. The precise limitations on the parabolic approximation when using
a Gaussian source, will not be considered.

r-- T + _(i _•/! +_) <—.
2zcq \ Cq V z 2 ) 2a;0

z>a \W) æ) • (4 - 24)

ps = po& la) 'W + "Wj; e H—-——2 ) ) 
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From the results by Stepanishen6 , wc can find the impulse response for a uniform
piston.

where

(4.26b)

(4.27)

where $$ is defined as above. There are two differences between this solution and the
parabolic approximation. One difference is that z > CqT is assumed in the parabolic
approximation. This is the approximation that wc have found several places in this
section. The other difFerence is that the first and the last arrival time for $s are different
in the two cases. Wc will consider these arrival times closer and thereby find a largest
angle where the parabolic approximation is valid in the farfield. The idea used here is
the same as the one used in the discussion of the replica pulse on the acoustical axis.
Let now the first and the last arrival times in the exact model be denoted re\ and rC 2
respectively. The similar arrival times in the parabolic approximation are called rpi and
TP2. In the farfield, the impulse response has large spikes close to T\ and T2. Assume
now that the centre of generated signal F(t) is located at r = 0. This is the case for
all signals studied numerically in this work. The received signal will then contain a
smeared version of F(r) centred at the first arrival time r1? and a smeared version of
the negative of F(t) centred at the last arrival time r 2. The most important thing in
order to obtaining a physically correct solution when using the parabolic approximation,
is to consider the difference r^ — T\. If this difference is about the same in the parabolic
approximation as it is without, the parabolic approximation will predict quite well the
received signal. Therefore wc now study the expression

(4.28)

When Ar is small, the parabolic approximation is fairly good. By inserting the different
arrival times, and expanding the square roots in rci and re 2, wc find

x3a a tan3 6

Z3Cq CqAr ~ -22- (*» + «2) (4.29)5

co

where wc have assumed that x >aas will be the case outside the acoustical axis in
the farfield. In order to accept the parabolic approximation, wc will require that the
relative misplacement between the two pulses is less than a fourth of a wavelength of the

When x < a, wc get
P6= Po<Z(S(t) + $6), (4.26a)

*y/4x*(<%T*+2zcOT)-(<%T*+2zcO T-a*+x*)*

0 , elsewhere.

When x > a, wc get
P6= Po<%s6,

Ar = |r2e -ru - (r2p - rlp)
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fastest characteristic variation of the signal. As usual, wc call the angular frequency of
this variation ljq. Wc thus have to require that

(4.30)

By inserting the expression for Ar, wc get

(4.31)

where ko = wo/co is the wave number corresponding to the angular frequency ujq. Wc thus
see that the maximum angle from the acoustical axis where the parabolic approximation
is valid, depends on the highest characteristic fca-value. This is perhaps a bit surprising.
When wc consider a monochromatic signal, it is usual to assume that the maximum
angle where the parabolic approximation is acceptable is about 20° regardless of what
ka-vahie that is used. This estimate is, however, just a rough first estimate, and an
analysis equal to the one done here, will show that the maximum angle depends on ka
also in that case. Wc will briefly show this.

The directivity when using a monochromatic signal and a uniform piston is

(4.32)

when using the parabolic approximation, and

(4.33)

without the parabolic approximation. Wc can now for instance require that the mis
placement of the sidelobes in the parabolic approximation has to be less than a fourth of
a sidelobe. This leads to the following approximative equation for the maximum angle
that is accepted:

It is easily shown that when ka increases, the maximum angle decreases. For ka = 50,
this gives a maximum angle of 17.7°, while for ka = 100, the maximum angle is 14.0°.
These values are close to the values obtained from Eg. (4.31) for the maximum angle in
the pulsed case. In figure 4.3, wc compare the farfield directivity with and without the
parabolic approximation for the monochromatic case. Wc see there illustrated that the
parabolic approximation is valid for larger angles when ka is decreased. Wc also see that
the angle where it breaks down is reasonably well estimated by the analysis above.

4.3. Farfield Results

In this section, wc will consider the farfield solution of the pulsed, non-dissipative
sound propagation from a plane source. To some extent, this topic has already been
discussed in section 4.1. Here, wc will focus on this problem more in detail, and thereby
find both qualitative and quantitative results. Wc divide the discussion into two parts,
the solution on the acoustical axis, and the solution outside the acoustical axis.

2u>o

„ f ttco y/3 / x y/3
tan^< -^- =(01-) .\2o;oa/ \2koa/

2JI (fcqtanfl)
VAV) — —j—^~~2i— jka sint/

= 23I (kasmo)
ka sin 0

3
tanØ = sinØ + —- . (4.34)Aka
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FIG. 4.3. Comparison of the directivity with the parabolic approximation (• • •) and with
out the parabolic approximation (—) when using a uniform piston and a monochromatic
signal, ka = 50 (a), 100 (b).

4.3.1. Results on the Acoustical Axis

Wc can get the solution for a general source by convolving Eg. (4.4) with the desired
pulseshape F(t):

(4.35)

The solution on the acoustical axis is now

(4.36)

Assume that the characteristic radius of /(x) is a and the highest characteristic frequency

of F(t) is <*><>. A characteristic value for is then When is much larger than
this value, the contribution to the integral is negligible because of the factor f(*\). On
the other hand, the change of F'(t - £-) is negligible when the argument changes by

an amount much less than l/u>0. These considerations enable us to neglect in the

argument of F when z > = rO . Wc thus get

(4.37)

This means that the pulseshape on the acoustical axis in the farfield is the time derivative
of the time dependency on the source. Thus the pulse received in the farfield can be quite
different from the pulse generated on the source. This also introduces some restrictions
on the choice of F(t) in order to keep contact with the physics. Wc have to require that
the function F(t) is smooth. If wc for instance used some cycles of a sinus as F(t), the
solution in the farfield would have approached a discontinuous function. This would have
implied that diffraction could generate a kind of a shock wave, which of course is quite
unphysical. The smoothness condition required here, is also related to the fact that if a
sound pulse is too broadbanded, it can be impossible to generate it by a transducer.

Figure 4.4 shows that for Gaussian pulses and a uniform, circular piston, the farfield
formula can be used when z £2r0 . This is the case both for a relatively long Gaussian
pulse (n = 12) and for a very short pulse (n = 3).

MwHBE^W-fcg*)*-

Hi^-gHln^-å**-

p,(O, z, r) ~ JT /(x.Hx, , z >r0
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UqT
(b)

(a)

FIG. 4.4. Comparison between exact solution (—) and farfield solution (• ••) for Gaussian
pulses (n = 3 and n = 12) when the source is uniform circular and z = 2r0 and x= 0.

4.3.2. Results Outslde the Acoustical Axls

In the discussion of the impulse response, the actual shape of the signal outside the
acoustical axis in the farfield of a uniform, circular piston was briefly discussed. Here,
wc will consider the directivity of the pulsed beam, and discuss how it changes when the
pulse gets shorter. The directivity can be defined in two different ways. Either wc can
look at the maximum amplitude of the sound field different places on a circle with centre
at the origin in the x - z-plane, or wc can alternatively consider the energy in a similar
way. In the monochromatic case, these two approaches give the same result when wc
consider the directivity plot (beam pattern) in decibels. In Ref. 16, the directivity was
defined from the maximum amplitude. It was there shown, using the exponential pulse
described below in Eg. (4.42), that the main lobe tended to be narrower, and the side
lobes smaller when the pulse was shorter. Here, wc will discuss the directivity from the
energy of the signal. In all the plots, the energy on the acoustical axis is defined to be
Odß. Wc have thus plotted

(4.38)

as a function of 0.
The pulses used in the numerical calculations have Gaussian envelope functions. In

figure 4.5, wc have discussed how soon the respective farfield radiations of different pulses
are established. Wc see that both for a relatively short pulse (n = 6) and for a longer
pulse (n = 20), the farfield is almost established when r = 2r0 . In the dips between the
lobes, this is not true. Elsewhere, the farfield seems to be established. At r = 5r0 and
r = 20ro , wc see that the field is almost identical, and except between the lobes, also
equal to the field at r = 2r0 . The same conclusion is obtained when considering other
pulse-lengths.

In figure 4.6, the effect of different pulse-lengths in the farfield is discussed. Wc see
that when the pulse gets shorter, the sidelobes tend to be smaller, and finally, they tend
to disappear. Wc see also that the main lobe is almost equal for the different pulses except
the shortest one. These effects can be explained by considering the frequency domain.
The longest pulse has the most narrow frequency band around uj — u;0 . Therefore, it will
be most equal to the monochromatic signal. When the pulse is shorter, and thereby the

f°° p2(r sin 0, r cos 0, t)<lt
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0

FIG. 4.5. Beam pattern for Gaussian pulses n = 6 (a) and n = 20 (b) at various
distances. u>oa/co = 100.

FIG. 4.6. Beam pattern for various Gaussian pulses at the range r = 20ro. u;oa/co - 100

(b)
r = 20m
r = 5rn
r = 2r0
r = r 0



50

frequency band longer, the cancellation between the sidelobes in the beam pattern, which
is total in the monochromatic signal, is not as dominant any longer. This is because the
signal now increasingly consists of different frequencies. These different frequencies have
different beam patterns, with different zero points. The superposition of all these signals
then tends to remove the sidelobes. When n = 3, which is the smallest pulse considered,
the pulse is so small, and the frequency band so wide, that it is perhaps wiser to compare
it to the time derivative of the impulse response, and expect something not far from that.

4.3.3. A Special Case

We have now discussed the directivity of a pulsed sound beam. The actual shape of
the signal received in the farfield has, however, just been briefly considered. We will not
have a discussion of the shape of the signals. Instead, we will consider a special case
where it is possible to get analytical farfield solutions also outside the acoustical axis.
Then, when considering actual pulses, this can be an alternative to other methods, and
often this will be quite a fast way to obtain actual waveforms numerically. We consider
here a general, but bounded, axisymmetric source. That means that fi(x) = 0 when
x > a. This is just a mathematical restriction. In real situations, we of course always
have bounded sources. By convolving the actual time dependency with Eq. (4.9), we get

y/27CZ JO J-oo ZCq
(4.39)

We are now able to integrate the u;-integral for a class of pulses which will be described
below. Afterwards, we can evaluate the zMntegral within a farfield approximation.

We will now describe the class of pulses for which we can perform these calculations.
Consider first the class of functions F(t) where F(u) is a rational function in u> and
with all the poles outside the real u>-axis. We will mention some of the functions from
this class. A very simple one is F(t) = e"7 ' 7"'. We note first that this function is not
differentiable at r = 0. Two smooth functions from this class are F(t) = (1 H- tI7" l) e r '^'
and F(t) = 2e"7|T| -e"2^1" 1 . These functions do not satisfy Eq. (2.6), and therefore they
do not have a consistent time dependency within the parabolic approximation. We can,
however, multiply these functions by sinuoT and still be within the class. In this way
we get functions with zero mean value. It is possible to build a function with zero mean
value and with an envelope function which is differentiable arbitrarily many times in a
similar way. We can also build up other desired envelope functions, for instance envelope
functions which are almost equal to one for a long r-interval. This means that quite a
few realistic pulses can be modelled with functions from this class. To summarize, the
class of time dependencies we will work with, is the class of functions F(t) where F(u)
is a rational function in u; and with all the poles outside the real u-axis. Besides this,
the functions have to satisfy Eq. (2.6).

With F(t) in this class, we can integrate the w-integral by residue calculations from
the complex analysis for many of the interesting r-values. Let now uu denote the loca
tions where F has poles in the upper half plane of the complex plane, and let the poles
be of order nu respectively. We also define a>/ and n/ in the similar way for the lower half
plane. The residue calculation then gives
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For x > a and r < x~ a' or~~ iZCQ
for x < a and r < 0 :

(4.40b)

Wc see that there is an interval in r which is not covered by these formulas. For this
interval, it has not been possible to use the same calculations because of the more complex
behaviour of Jo at infinity. If wc split up this function in Hankel functions, wc can do the
calculations, but besides the contributions from the residues, wc get a contribution as
an integral along a branch cut. This integral contribution is just as difficult to evaluate
as the whole w-integral. Wc are thus led to numerical evaluations of the u;-integral in
this interval.

Eqs. (4.40) are exact expressions for the acoustic pressure within the parabolic ap
proximation. Now wc will make a farfield approximation of these equations. Wc argue
similarly as in the beginning of the section, and say that when z >> ro and x/z is bounded,
wc can neglect the term in the exponents of the expressions. When introducing theA
Hankel transform of order zero, /, of /:

wc can evaluate the The farfield expression valid when z r 0 and x/z is
bounded, is then:
For x > a and t < (* a^ or
for x < a and r < 0 :

(4.41a)

Wc will now look at an example of the use of Eg. (4.41). Wc consider the pulse

(4.42)

f ,fvr f 2«

flnu-1 f x 2+x l2 \ U3TT1 1 1

FM(U - U,r^-^(^-) dx'. (4.40a)

For r > Ug- wc get

Pi -^;^yo /(l)a: ?i(^T)T x

/(*) = f°° f(x)Jo(kx)xdx yJo

"-«éS(^{^[** -".»—-*A=)] }_
For T z *££ wc get

pi ~^r;a;?(^ij!\s?^r(w)(w - w') e 'WJw (4 -41b)

F(r) = e-7|T| sinu;oT.
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Wc note that this pulse is inside the above-mentioned class, and that it is continuously
differentiable once with respect to r. The Fourier transform of F(t) is given by

(4.43)

Wc get two values of u>u , namely u>u = ±lj0 + *7- nu is lin both cases. Similarly, we get
ui = ±w0—27 and n/ = 1. By inserting this into Eg. (4.41), wc get( \2
For x> a and r < V a' or
for x < a and r < 0 :

(4.44a)

For T * *å? wc set
(4.44b)

The results from this analysis are a good starting-point when considering pulsed farfield
solutions. The solution for many r-values does not contain any integral. Therefore, wc
can get numerical results very fast for these r-values.

Finally in this section, wc note that the two r-values which appear in the solution
above, are the same as the r-values appearing in the impulse response for a uniform
piston. The physical interpretation is also similar. Wc have to expect this, because the
envelope function contains functions of the type exp(—7|r|) which has a discontinuous
derivative in r = 0. This must be expected to leave a trace in the solution of the problem.

4.4. Focusing Effects

Wc now want to study the effects of focusing the source. The discussion will be
within the parabolic approximation. It will be shown that the results for a plane source
are directly applicable in the focused case through a transformation.

In order to discriminate between the unfocused and the focused solution, wc introduce
for the moment the notation pu for the unfocused solution and the notation pd for the
focused solution. Wc have from Eg. (4.35) that

(4.45)

is a general solution of the unfocused problem. The focused problem can be formulated
mathematically like

The focused source is here replaced by an equivalent plane source. As shown in ap
pendix A, this is consistent within the parabolic approximation only. Also, wc have

F(W) v55F((w + u>0) 2 + 72 )((<*> " "o)2 + 72 ) '

Z OT [ ZCq J

Z OT ( ZCq J

/ x POCO ff°° el XcV / (X-Xi)2 .
P» (X' 2 ' T) = 2^ 1.» /(XI)F (T - -2^-)dXI

2 ft2
(vi - -^V)Pd = oco drdz

Pi (z =0) = po<sf(x)F(T + £-). (4.46)



to assume that the focal distance d is of the same asymptotical order as the Rayleigh
distance defined from the largest characteristic frequency of the signal F[r). Compar
isons between experimental results for long pulses and this theory for monochromatic
signals have, however, verified that this model still works with focal distances within the
Rayleigh distance.

This problem can be solved in the same way as the unfocused problem:

(4.47)

X 2
Wc can interpret this as the introduction of a new retarded time r + 2^~- The physical
meaning of this time is quite clear. r = t — z/cq is a retarded time that is adjusting for
the distance z from the plane z = 0 to the observation point. The new retarded time
instead is adjusting for the distance from the curved surface where the source is located
to the observation point. In order to connect this solution to the solution when using a
plane source, pu , wc introduce the new variables

1 1 1

Y2 Y 2xd xTj "-" — f — ——
2zdCo 2zcq

Wc can now write the solution when using the focused source, pj, as

(4.49)

This is a rather significant result. It says that the sound pressure from a focused source
can be found when wc know the sound pressure from the similar plane source. All wc
then have to do is to transform the result according to Eqs. (4.48) and (4.49). Wc see
that Eg. (4.48) transforms the 2-value according to the lens formula of optics. The other
transformations are just to adjust the width of the pulsed beam and the arrival time in
order to fit the new geometry.

This result leads us to some general results concerning focusing. Wc can see that the
solution in the focal plane (z = d) will be like the farfield solution in the unfocused case.
On the axis, the solution in focus in this way is found as

Wc see here that the amplitude in focus depends on three factors: the generating source,
the generated pulse, and the focal distance. The gain of a focused source is defined as
the ratio between the maximum amplitude in focus and the maximum amplitude on the
source. When using a monochromatic signal, this gain is G = ro/d when //f^, f(x\ )dxi =
'Ka2 . A similar definition for the gain when using a pulsed signal now gives

/ x POCO ff°° r, mp, r  Xl (X ~ XI) 2 \J

zd z d J

= -, (4.48)
Zd Z

*(*, z, r) = /(XI )F (r, )dXI

= —Pu(Xd,Zd,Td).Z

M°' * r) = Sr(T) III f(xi)dxi - (4-50)

g*SupT (|F'(T)l)
2dcosupT (|F(t)|) l -01 '
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when wc again assume //^ f(xi)dxi =ira 2. Thus the new effect coming from the pulsed
signal is that if the time dependency on the source F(r) has rapid variations so that
F'(t) is large, the gain can be larger for a pulsed signal than for a similar monochromatic
signal. This can be the case for instance when F(t) increases more rapidly to a maximum
value than it decreases from this value to zero again.

When applying the transformation for z > d, wc get a problem. In this case z& < 0
and wc have to get the non-focused result at a negative 2-value. This is of course not
a physical solution for the non-focused problem. Therefore, in many results for the
plane source, it is assumed that z > 0 without saying this explicitly. When applying
the result to an integral solution, there usually are no problems. Many analytical and
asymptotical results, however, have to be modified in order to be used for negative z
values. An example of this, is the impulse response solution from an axisymmetric source
on the acoustical axis Eg. (4.6). The extended solution valid for z positive or negative,
is

(4.52)

where wc recall that U is the heaviside function. The impulse response solution on the
acoustical axis for a focused, axisymmetric source is then

(4.53)

This result shows how the solution is extended to be valid also after the focal point. Wc
see that the replica pulse arrives before the main contribution when z > d. The signs of
the two pulses are now reversed, so that the replica pulse is equal to the generated pulse
on the source, and the main contribution is the negative of this signal. In this sense,
the replica pulse and the main contribution have changed roles when z > d. Also, the
wake will arrive before the main contribution and not after as it did before focus and
in the unfocused case. The presence of the wake before the main contribution can give
an interesting effect. If the discontinuity A at the edge of the source is small, the signal
received beyond the focal distance, will essentially consist of the wake and the main
contribution. As mentioned above, the wake appears first, and can therefore in some
cases be a kind of precursor for the main contribution. Another interesting aspect of the
solution, is the lack of causality beyond the focal distance when håving an infinite source
like for instance the Gaussian source. This is a special case of non-causality coming
from geometry and not from the dissipative effects of the media. Dissipative effects are
neglected in this discussion. In fact, this non-causality is caused by the precursor, which
in this case is infinitely long on the r-axis. When looking at the focused boundary
condition, it is not surprising that wc get this effect. Strictly speaking wc have a non
causal boundary condition when the source is infinite, because the time delay is increasing
towards infinity when x is growing. This effect is just theoretical, because wc always have
a bounded source in a practical situation, and because it comes from the approximations
done when modelling a focused source, and not from the physics present. Finally, wc
note that when z —> oo wc get the unfocused solution at z = —d. When the focal point

P. = P<X% {«(t)/i(O) + U(rz)^fl(y/2^F) + AS{r - J ,
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is in the nearfield and the source is a uniform piston, this solution has the same structure
as the nearfield solution at z = d. The amplitude is now damped and the replica pulse
arrives first. This means that the replica pulse and the main contribution have changed
roles, as mentioned above.

4.5. Effects of Absorption

Wc have now discussed the effects of absorption and diffraction separately for the
linear sound field. In this section, wc want to combine some of the results, and thereby
get results for linear sound propagation including both diffraction and absorption.

The solution of this problem is generally given by Eg. (2.17):

(4.54)
If wc call the solution with no absorption pu and the solution including absorption pa ,
wc can rewrite Eg. (4.54):

(4.55)

Wc can thus get the solution with absorption by convolving the solution with no absorp
tion with a Gaussian function in time. This is an alternative way to the integration in
frequency domain to get the solution in the dissipative case. Eg. (4.55) will now be used
to find some general properties.

Wc will first consider the dissipative solution on the acoustical axis in the diffractional
farfield. The non-dissipative solution is given by Eg. (4.37):

(4.56)

By introducing this into Eg. (4.55), wc get a problem similar to the one-dimensional
problem discussed in chapter 3:

(4.57)

This can be analysed in the same way as the one-dimensional problem, and wc get
fast and slow absorption distances just like there. The only difference is that the final

waveform Eg. (3.33) will now be proportional to exp (— 55J) differentiated one more
time than in the one-dimensional solution Eg. (3.33). This is because wc are working
with F'(t) instead of with F(t). In addition to the decay in the solution caused by
dissipative effects and discussed in chapter 3, wc get a decay like z~x from the spherical
spreading, as expected.

The beam pattern in the diffractional farfield, is studied numerically. Figure 4.7
shows the beam pattern when using Gaussian pulses. Wc see that for the relative long
pulse (n = 20), the absorption does not alter the directivity significantly if the absorption
distance Lg is less than or approximately equal to the distance between the source and

p- = V2^iLp"(Ti)e 2C- dTi

p.(o, z, r) ~ /f° /(x^dx, ,z»r0 .ZTTZ JJ—oo

Pa = 9^7V 9W77 // /(xi)rfxi / F (Ti)e -^^drx .l/KZ V LTCIJZ JJ—oo J-oo
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FIG. 4.7. Beam pattern for Gaussian pulses, uniform source, uoa/co = 100, r = 20ro ,
n = 6 (a) and n = 20 (b) and for different absorption distances.

the observation point. When the absorption is stronger, wc see that the beam pattern is
widened out. This tendency will be stronger the stronger the absorption is. Numerical
calculations not shown here show the same phenomenon when the observation point is
r = 2r0 . When the pulse is shorter (n = 6), wc see the same tendency to a widening of the
beam pattern. The difference now is that the widening appears with larger absorption
distances (weaker absorption) than it did with the long pulse.

Qualitatively, the widening of the beam pattern is easily explained. When the ab
sorption is significant for the signal, it filters away the high frequencies. Wc therefore
end up with a more low-frequent signal than the original one. A more low-frequent signal
has a wider beam pattern. Therefore, the effect shown in figure 4.7 is in agreement with
physics.

Wc also found that the short pulse started widening with weaker absorption than the
long pulse. Wc can explain this in the same way. The short signal has a large bandwidth
in the frequency domain. The highest significant frequencies are therefore higher in the
short pulse than in the long pulse. This means that the filtering towards a low-frequent
signal starts closer to the source, and the beam pattern is widening more out.

Wc will finally mention another direct application of the theory of chapter 3. The
impulse response on the acoustical axis from a general axisymmetric source is given by
Eg. (4.6) in the non-dissipativ case:

(4.58)

As discussed earlier, this gives a main contribution, a wake and/or replica pulses. Wc
get the similar impulse response in the dissipative case by using Eg. (4.55):

(a)
Lo = r 0
Lo = 2»* o
Lo = 5r0
//o = 10r0
Lo = 2Oro
Lo = oo

Ps,* = P<4 {«(O/i(0) + U(r)^J[(^/2^) + A6(t - .
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—/i(v2zcbri)c 2u» dTI -j- Ae 2in v .2ti
+ r

Jo
(4.59)

Wc see that the delta functions indicating the main contribution and the replica pulse(s)
now are replaced by Gaussian functions. The wake contribution is now an integral. The
integral defining the wake, has the same structure as the one-dimensional problem. If
the integrand is finite in all the region of integration, wc therefore can use the same
methods as in chapter 3 to study the wake. When wc will consider one specific pulse,
wc convolve Eg. (4.59) with the desired waveform F(t). The main contribution and the
replica pulse will then become problems identical to the one-dimensional. In addition,
wc get the contribution to the wake. If the source is a uniform circular piston, there is
no wake contribution. Therefore the whole solution can be analysed by the methods of
chapter 3. Wc thus see that the ideas used there, and the conclusions found about the
dissipative sound propagation, in many cases are directly applicable to three-dimensional
problems.
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Chapter 5

Quasilinear Solution

In this chapter, wc will discuss the quasilinear problem Eg. (2.16). Wc approach the
problem by first looking at the one-dimensional solution. Afterwards, wc will consider
more realistie problems.

5.1. One-dimensional Solution

Wc now neglect the Laplacian in Eg. (2.16) in order to study the one-dimensional
problem:

(5.1a)

(5.1b)

where pj is the solution of the linear problem Eg. (3.2). This equation can be integrated
once with respect to r. When wc assume that the pressure perturbation p— p 0 is zero
when r = — 00, the resulting equation is

(5.2a)

(5.2b)

This assumption has already been used and commented other places in this work. Wc
will divide the one-dimensional discussion into two parts: the discussion of the non
dissipative problem, and the discussion of the dissipative problem.

5.1.1. Non-dissipative Problem

Wc now let D = 0 in Eg. (5.2). The linear solution pi is then just

(5.3)

and Eg. (5.2) reduces to

(5.4a)

(5.4b)

V codrdz* 4dT*) P2 ~ Po4dT* Pl '
ft(* = 0) = 0,

\dz 24dT*) P2= 2po4dT Pl '
P2 (z =0)= 0.

j>i(t,z) = po<%F(t),

dp2 PpqCq d 2( ,
ø7= ~2~Tr F (t) '

P2 (z =0)= 0,
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which gives

(5.5)

This equation describes the first correction due to nonlinearity when wc have removed
all efFects of diffraction and dissipation, and studied the nonlinearity isolated. Wc will
study Eg. (5.5) more closely because it contains some information which can be useful
when considering more complex models afterwards.

The complete solution for the weakly nonlinear sound propagation can be written

(5.6)

In the one-dimensional, non-dissipative case, this can be written as

(5.7)

Let now o>o be a the highest characteristic frequency of F(r), and define r = ljqT and
F(r) = F(t). Wc then get

(5.8)

where za = -j— is the shock formation distance for a plane wave with angular frequency
<jJq. Wc note here that the asymptotic expansion for p is secular in z. Therefore wc
cannot describe the generation of shock waves by direct use of Eg. (5.8).

If wc have a monochromatic model F(t) = sinu>OT,0T, Eg. (5.5) gives a contribution
to the second harmonics 2u>0 , as expected. Also, if F(t) consists of two frequencies,
Eg. (5.5) gives a contribution to the second harmonic of each frequency, and also a
contribution to the sum- and difference frequencies of the two frequencies. This is just a
very simple version of the mechanism in the parametric array. When wc have a general,
pulsed signal, wc can think of that as a superposition of many frequencies. Wc therefore
expect the quasilinear solution to contain a contribution to the second harmonics of each
frequency, and sum and difFerence frequencies between all frequencies present. Adding
all of these together, wc get Eg. (5.5). If wc look at the Fourier transform of Eg. (5.5),
wc find that this is exactly what happens. Wc now look more closely at the special
case where F(t) = Fi(r)sinwoT and where Fi(t) varies slowly with r compared to
the sinusoid. The Fourier transform will then be large close to w = ±u>o compared to
the value other places. By arguing in the frequency domain again, wc expect Eg. (5.5)
to contain some very low frequencies and some frequencies close to w — ±2u0 . When
inserting the described time dependency in Eg. (5.5), wc get

Thus wc see that the first term is the lowfrequency term due to difFerence frequencies.
It has the same structure as the whole time dependency of Eg. (5.5). The two last
terms are due to sum frequencies and second harmonics. Wc note that if the envelope
function is strictly band limited with Fi(u) = 0 when \lj\> C < u>o, the linear signal will

P2(r, 2) = V).

p=po + epi + €2p2 +

P = Po + Pocovo \F(t) + fIJ-:^) + •••)•

P = Po + Pocovo \F(t) + J-^-F\t) + • • J ,

P2(r,z) = (^/?(r) - (|r*?(r)) cos2u,0r + 2a,oFIJ(r)sin2u1J (r)sin2u,orj . (5.9)
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have no frequency components close to u> = 0. The quasilinear solution will, however,
have frequency components arbitrarily close to w = 0 if the envelope function has such
components. These low frequency components are of special interest when looking at
the dissipative solution. Wc will come back to that discussion later.

In the expressions above, the time derivative of the time dependency squared, -F 2 (r),
is present. This is a new indication of the fact that a waveform generated in a real
situation has to be sufficiently smooth. A waveform which includes a discontinuity will
for instance have delta functions in the quasilinear solution. So here again wc have to
remember that a waveform generated by a transducer cannot be too broadbanded, and
thus has to be a smooth function.

Wc can now ask if it is possible to measure the quasilinear pressure directly. It is
clear that the signal present is a sum of the linear and the quasilinear solution. In
order to measure the quasilinear solution directly, wc must have one of two: The linear
solution is so small compared to the quasilinear solution that all wc see is the quasilinear
solution. This happens for instance when the absorption has damped away the linear
solution while the quasilinear solution still is present. This is the case when wc consider
the dissipative farfield. Secondly, the linear solution can be so narrowbanded that the
linear and the quasilinear solutions are separated in the spectrum. Then wc can separate
out just the quasilinear solution. If none of these conditions are fullfilled, wc have to
use more indirect methods. Wc can for instance compute the linear plus the quasilinear
solution and compare the sum to the measured signal. Alternatively, wc can increase the
amplitude of the signal on the source, and see what differences there are in the measured
signal except an amplitude increament. From this information, it should be possible to
get some facts about the quasilinear solution. However, wc all the time have to be aware
of any higher order effects which can be present in the solution.

5.1.2. Dissipative Problem

Wc now consider the dissipative problem Eg. (5.2). The linear solution p\ is now
given by Eg. (3.4):

When introducing this into Eg. (5.2), wc can solve the equation by Fourier transformation
methods:

This equation cannot generally be solved analytically. Wc are therefore led to numerical
computations. But some comments can be made based on the present form of the
solution. The integration is over the u — s plane. When F(uj) is considerably different
from zero in the neighbourhood of a; = ±u 0only, the factor F(s)F(u> —s) is considerably
different from zero only close to (w, s) = (2u0,lo ,ljo ), (u>, s) = (—2u;0 , —u;0 ), (t*>,s) = (o,tt>o)
and (u;, s) = (0, —utø). The two first regions are contributions to the analog to the
second harmonic and sum frequency terms as defined above, and the two last ones are

Dw 2 x
contributions to the analog to the difference frequency. From the factor e 2co in the

ft (r, *) = JgL jT Fiuy^-™dw. (5.10)

P^T^ = (-^)e F{s)F{»-s) e— J^fc,. (5.11)47T1/ J-oo J-oo S\LJ — S)
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integrand, wc see that the low frequency contributions are much less attenuated by the
dissipative effects than the rest of the solution. Therefore, wc have to expect that in a
large z limit, these lowfrequent terms are the only ones surviving. From a physical point
of view, this seems reasonable. Wc come back to this phenomenon in the discussion of
the three-dimensional, dissipative farfield in section 5.4.

The quasi linear solution Eg. (5.11) can be related very closely to the linear solution.
Consider the solution of the linear, one-dimensional problem with the boundary condition
POc%F(t), Eg. (3.4). This solution is for the moment denoted L[F(t)]. When using the
fact the F(0) — 0, wc can split the integral in Eg. (5.11) into two converging integrals if
wc assume that F(lS) is differentiable at u = 0. Eg. (5.11) can now be rewritten to the
form

This means that in the one-dimensional case, wc can use the linear solution directly to
construct the quasilinear solution.

Wc also see from the integrand that when z increases, the region where s(u — s) is
positive contributes more and more to the solution compared to the region where s(u>— s)
is negative when looking at a fixed u. Wc thus have to expect different behaviours from
the parts of the solution coming from the different regions. For a bifrequent source, this
leads to different behaviour of the difference frequency compared to the sum frequency.
This is discussed in Ref. 23 where for instance difference in directivity is discussed for a
three-dimensional model using a Gaussian source.

Wc now mention briefly what differences that appear in the quasilinear solution if
wc use other absorption laws than the square dependency of frequency used implicitly
above. Wc change the absorption law in an ad hoc manner by changing —j- to A(u), just
like wc did in the linear case in section 3.4.1. The substitution has to take place both in
the linear solution substituted into the right hand side of the differential equation, and
in the expression accounting for the absorption in the quasilinear sound field directly.
As a result, wc get

This solution can have different properties from those of the solution using the square
frequency law. In particular, in the solution using the square frequency law, the sign of
s(lj —s) plays an important role. Now, it will be the sign of A(u) — A(s) — A(u —s)
that is important.

In the linear solution of the parabolic equation, the plane wave impedance relation
Pi = PoCoVi is consistently assumed where vis the velocity, and v=V\ + ev2 H . This
means that wc cannot discriminate between a piston source where the normal velocity
is given, and a membrane source where the pressure is given at z = 0. In the quasilinear
approximation, wc will get different quasilinear solutions if wc put v2 (z =0) = 0 instead
oip2 (z =0)= 0. v2 (z =0)= ois here the boundary condition for a piston problem, and
the elsewhere used p2 (z =0)=0 is a membrane problem. The difference between these
two solutions is discussed by Naze Tjøtta, TenCate and Tjøtta24 for bifrequent sources
in relation to the scattering of sound by sound. They show that within the parabolic

» - §1 (I[(/l Fwn -&*LFiT')dT'])2)  (5 - 12)

ÆonCn fOO •  % /•" ~ ~ e(.*(w)-i4(«)-it(u-»))* _ \

4X J-oo J-oo j4(u)) - j4(s) - j4(w —«)
(5.13)
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approximation, the relation between the normal velocity v 2 and the pressure p 2 is given
by

By introducing the linear solution of the one-dimensional, pulsed problem and setting
z = 0, wc get

Wc thus get the quasilinear problem for the piston source by solving the following prob
lem:

(5.16a)

(5.16b)

Let us for the moment denote the quasilinear solution of the membrane problem p2m and
the quasilinear solution for the piston problem p2p . The solution of the piston problem
is then

Wc thus see that the correction term is of the same type as the linear solution, but
with the time derivative of the time dependency on the source instead of just the time
dependency. If the highest characteristic frequency of F(t) is a;0 , the correction term
is of the order ao/ko times the order of the linear solution. a 0 is here the absorption
coeffisient and ko the wavenumber for the angular frequency log. In the derivation of the
KZK-equation, the factor ao/ko, which is proportional to the Stokes number, is assumed
to be of the same asymptotical order as the Mach number3 . Except close to the source,
wc can therefore expect the correction term to be small compared to p2pj just as in
Ref. 24.

5.2. Three-dimensional, Non-dissipative Solution

Wc now proceed to the discussion of pulsed, three-dimensional, quasilinear sound
propagation. In this section wc consider the non-dissipative case, and in the two following
sections wc discuss the dissipative case. The computation of the quasilinear field is
greatly simplified when wc consider a Gaussian source. For this reason, most of the work
in this chapter is based on this source. Wc now start with a discussion of the solution
for a Gaussian source. Afterwards wc give some considerations for general sources.

5.2.1. Gaussian Source

Wc now study the quasilinear sound field generated by a pulsed Gaussian source
which radiates into a lossless medium. The solution of that problem can be found by
letting D = 0 in Eg. (2.20):

„,__*_=_! r*^. (5. 14)PqCq Po J oz

/>oco 2cq ar

(d_ D_jP\ J_d_ 2
[dz 24dT*) P2 ~ 2Po4drPl '

*-«->¥&.

OnD fOO ~ -Énfe-iun
P2p=P2m + r (-uj)F{u)e du. (5.17)

P2= p£2Si rr r - s)f(S)f(lj - s )e-'w x4IK JJ-oo Jo
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The z'-integral can be evaluated, giving the exponential integral E\. Consider now the
solution on the acoustical axis (x = 0). In this case, the integration greatly simplifies,
and gives

(5.19)

where

(5.20)

and

(5.21)

From now on, wc consider the unfocused source (d = <x>). The solution then reduces to

(5.22)

where

(5.23)

and

(5.24)

Now, wc want to look at some general properties of Eg. (5.22). First, wc want to get an
approximate solution of Eg. (5.22) valid close to the source. If wc expand the integrand
in powers of z, and just keep the lowest order, it should be possible to obtain such a
solution. In this way, wc do not know, however, for which 2r-values wc can expect the
solution to be valid. This procedure leads to the very simple first approximation

(5.25)

for small 2:-values. In order to check this solution, wc can compare with numerical
solutions. In figure 5.1 wc compare the approximate solution with a numerical solution
of the problem. Wc comment here that the numerical solution was based on the integral

•(« - .)(*>(! - f )(i -i) - ik^) - *£*Mi -f)+ W X (5' 18)

exp ; jr—7\ T-, —z—r- dz dsduj.
U« - j)Mi - f)(i -7) - ;!k5:l2) - 1-f) + ) J

P2= ir J>s(u _ a)F(s)F(u - s)e"lW x47T JJ—oo

1 «(w - ,)(-«f(i -3)+ £) - Ml -3) + agpi) / '
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discussed in chapter 6, and not on numerical integration of Eg. (5.22) directly. The
pulses in this figure are normalized to the factor

(5.26)

This is also the case for all the remaining figures in this chapter. Wc see that for this
pulse, Eg. (5.25) is valid for 2^,o.2**^-, i.e. up to about 0.2 Rayleigh distances for
the carrier frequency of the pulse generated by the source. For larger z-values, the
asymptotic formula overestimates the amplitude and also gives the pulse a wrong shape.
The validity up to a fraction of the Rayleigh distance is not very surprising when wc
remember that diffraction is the only effect present besides the nonlinearity. Wc also
note that the approximate solution Eg. (5.25) is equal to the one-dimensional solution
Eg. (5.5). This is not surprising when wc remember that the linear solution of this
problem has no replica pulses, but just a wake which was not very notable close to the
source. Therefore, the solution of the linear problem close to the source is not very
different from the one-dimensional solution, and wc should expect a solution close to the
one-dimensional also for the quasilinear field. When wc approach the Rayleigh distance
of the carrier frequency, however, the diffraction has distorted the linear solution, and
therefore the quasilinear solution also tends to be distorted. This happens because the
generation of p 2 depends on the linear solution pi, and also because the diffraction will
have an effect on the quasilinear field directly.

Wc also discuss the farfield solution of Eg. (5.22). Now wc expand the integrand
in powers of l/z, and neglect contributions that are less than ln(z)/z and l/z. As an
intermediate result, wc get

P2~ r {-uSje-™ r -s(u - s)F(s)F(u - s) x
IQtTZCoJ-oo J-00

{ UCqZ . ( LJCqZ W
In —: — + 1 arctan — — > dsdu.

s(u — s)a* \s(l> — s)a* J )
(5.27)

At first look, it seems like wc have problems in this integral when s(lj — s) = 0 because
of the singularity in the logarithm. However, wc see that the integrand also contains a
s(u —5) -factor in the nominator. Besides, wc have that F(0) = 0. This means that the
integrand has no singularity when 5(0; — s) = 0. Wc now want to approximate further
the logarithm and the arctan functions. First wc specify the time dependency like

(5.28)

where F\ is an envelope function which varies slowly compared to the sinusoid. Wc
then expect the solution to have similar contributions as the one-dimensional problem
already discussed. This means that wc expect a contribution to the frequencies close to
the second harmonic of ug and a lowfrequency contribution due to difference frequencies
of the frequencies present in the signal. Assume now that the second harmonic term
dominates the lowfrequency term. The main contribution to the integral thus comes
from the region close to lj = ±2u>o and 5 = ±a;o where u and s must have the same sign.
Because the logarithm has a very small derivative when the argument is large, wc can
assume that u and s in the logaritmic term are equal to these constants when z is large.

= PpO<s (^Ofl/Co)2 •

F(t) = Fi(T)sinu>OT,0 T,
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FIG. 5.1. Non-dissipative, three-dimensional, quasilinear propagation of Gaussian pulses.
Comparison between a numerical solution (—) and the approximate nearfield solu
tion (• • •).

-7.5 -5 -2.5 0 2.5 5 7.5

S o.

z = 0.5r0

20 -10 0 10 20 30

OJqT

n = 20
n = 6



67

In the same regions in the w-s-plane, wc can approximate the arctan by fsgn( )
when z is large, sgn is here the signum function. Now wc are able to invert one of the
Fourier transforms:

tinda4 t°° t°° ~ ~
- t£t— / WlwT / k(w - s)\F(s)F{u - s)dsdu. (5.29)

Wc see that this farfield solution has two terms: one term in In z/z and one term in l/z.
The first term will dominate the solution for large z-values, but the second term is still
an important correction factor. Wc thus expect the solution in the farfield to look almost
like the time derivative of the square of the time derivative of the time dependency on
the source. Compared to the first term, the correction term becomes smaller and smaller
as z increases. In figure 5.2, the farfield solution is compared with a numerical solution.
Wc see that the farfield solution including both terms above is a good approximation
when z ?Z lOro. Wc see that the first term alone gives a good first idea of how the solution
is, but that both terms are needed in order to get a good approximation. Even as far as
at z = 500ro , wc see that the second term contributes to the solution.

Eg. (5.29) has both a term in l/z and one term in In z/z. This is somewhat surprising.
From the results of Ref. 25 and 26 it can be deduced that the quasilinear field can be
approximated by A(r)(B\nz/z -f C/z) where B and C are constants, when the source
is Gaussian and monochromatic. In the case discussed here, the constant C has to be
replaced by a function of r. Therefore it is possible to observe both the \nz/z term and
the l/z term experimentally. This is an effect specifically due to a pulsed signal. Such
effects are also found in the case of a monochromatic source when this is not Gaussian,
for instance with a uniform, circular piston. It is also found as the scattered sound in
the theory of scattering of sound by sound. Wc have thus shown that apart from the
geometrical effects of using two non-collinear sources, or the actual shape of the piston,
1/z-contributions to the solutions can be generated by the shape of the time dependency
generated by the source. Such l/z terms are often interpreted as nearfield effects which
contribute far into the farfield.

When wc compare the near- and farfield solutions of the quasilinear solutions with
the similar solutions in the linear case, there is one interesting thing to be noted. The
first (or zeroth) order solution in the linear nearfield has a time dependency like F{t). In
the farfield it is F'(t). Wc thus see that in order to go from the linear to the quasilinear
nearfield time dependency, wc square and differentiate once. To go from the linear to
the leading quasilinear farfield time dependency, wc do exactly the same operation.

If other types of time dependencies than Eg. (5.28) are considered, wc have to discuss
the logarithm-term in Eg. (5.27) again. If for instance

(5.30)

wc would have to split up the integrand into the different contributions (2u>i, 2u>2, &i -¥^2
and Ui —ijJt) and discuss each of them separately.

p2 (O, r, 2:) ~ — In ——
Szcq ro dr \ dr J

F(T) = FI(T) siDa" T + sina*T ,
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FIG. 5.2. Non-dissipative, three-dimensional, quasilinear propagation of Gaussian pulses.
Comparison between a numerical solution (—) and the approximate farfield solution with
one term (• ••) and with two terms ( ).

n = 20
n = 6
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5.2.2. General Sources

In section 5.2.1, wc obtained asymptotic expressions for the quasilinear nearfield and
farfield when the sound is generated by a Gaussian source. Wc will now generalize these
expressions to other types of sources by a perturbation method. First, wc look at the
nearfield solution. Wc now introduce non-dimensional variables:

UgO2

2cq

(5.31)

where ljq and a are defined as usual. Introducing this into Eg. (2.16) and neglecting the
absorption, gives

2
where k 0 = uiq/cq and V± is the Laplacian with respect to f. Wc now want to find
a solution valid for small cr-values, and therefore expand the linear and the quasilinear
pressure:

(5.33)

(5.34)

By assuming ar small, wc can introduce these expansions into Eg. (5.32) and solve the
equation order by order in a. The first order equation in a is now

(5.35)

which is easily solved to get

(5.36)

Pi can be found by a similar approach which gives pj = f(a^)F(r/u;o). Wc know from
the linear analysis that this is a reasonable result when no replica pulses or strong wakes
are present. This is the case for the Gaussian source. Going back to physical variables, wc
get in that case that Eg. (5.36) is identical to the nearfield solution already obtained for
Gaussian sources Eg. (5.25). For sources which generate replica pulses or strong wakes,
wc cannot assume pp = f(a£)F(T/u>0 ), but have to include these effects in the zeroth
order linear solution. For the uniform piston, a good first try for py on the acoustical
axis, should be p[' = F{t/ujq) — F((T — l/a)/u0). Wc thus have to expect a solution
where wc get squaring and time differentiation of the linear zeroth order solution, but
wc have to include replica pulses in this zeroth order solution.

x = af,

<t = roer,

r = t/u>0 ,

Pi = Po<%Pi, i = 1,2,

(v^ - 4aS?) ?2 " -"(*»•)'J?& (5 - 32)

Pi = 22 aVi ;
n=o

oo
— V^ n—(n)

n=l

-4^ = -/3(*oaf|L(p<<»)*,

m _ ft(fcoa)2 d ,-J0),2
Pi ~ —4— frlPi >
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Wc also want to derive the leading order farfield solution for p- The approach used
here, is based on Ref. 27, where Hamilton, Naze Tjøtta and Tjøtta among other things
found the approximative equations describing the farfield, and did a deep analysis for
the case of a monochromatic source.

The analysis starts with introducing the non-dimensional variables Eg. (5.32). Fur
ther, wc introduce

(5.37)

where the variables are adjusted in order to fit a spherical, diverging wave. In these
variables, the KZK-equation is approximated with a spherical Burgers' equation:

(5.38)

where ap = * jP a is the shock formation distance measured in Rayleigh distances. This
equation is asymptotical consistent to the zeroth order in l/ø", and with cr^ In a finite.
Wc now perform a straight ahead perturbation of T^:

(5.39)

T 2 is now related to the quasilinear approximation, and it satisfies the following equa
tion:

£-££<*•)  «"»»
This equation can be integrated to give

(5.41)

&M is here a matching distance where wc have to match the asymptotical farfield solution
to a solution valid closer to the source. Unfortunately, wc cannot use the nearfield
solution discussed above in this matching. These two solutions have no region of overlap.
Several ways of doing this matching is discussed in Ref. 27. Wc can for instance use the
output of a computer program computing the quasilinear solution. This is a purely
numerical approach. Alternatively, wc can assume the nonlinearitv so weak that wc use
the linear solution at the matching distance. This means that 7j =oat a = <tm. In
this approach the generation of the quasilinear field in the nearfield has to be negligible.
Wc will not discuss the different matching conditions any further, but proceed to the
discussion of the solution in the pulsed case. The linear field 7\ can then be found by

p-po
p " Po& '
T = <rp,
u = £/<r,

_ e
T, - T - —,

«^ = _1_A fT(o)V
da 2aD<rdTp v ' '

T(o) = T(o) + J_T(o) +0"D

&-j:M éw,<wY«+#i"")-
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a similar approach, or by using the results in chapter 4. Anyhow, wc find that at the
acoustical axis,

where A= ±> ff?m f(x!)dx! and F(tp) = F(Ttp). By introducing this, wc get

rf» = - ln^) + 7fV = »») (5.43)

In physical variables, this gives

In the case of a Gaussian source, A — 1 and the hi z/2-part of the solution is equal to
the similar part of Eg. (5.29) when wc assume F(t) = Fi(T)sinu>OT.0 T. Wc see that the
1/z-dependent part of the solution depends on the matching distance chosen, and can
therefore not be compared directly with the similar part of Eg. (5.29). Eg. (5.44) also
shows that the l/2-dependent terms are to be expected for all types of sources, not only
the Gaussian source.

The perturbation analysis in this section is done in the absence of absorption. It
would also been possible to perform a similar analysis in the dissipative nearfield. The
results would then have been a bit more complex in the farfield case, but they would
nevertheless have confirmed the results which will be derived in the discussion of the
dissipative nearfield in section 5.3.

5.2.3. A Special Case

Wc will now consider a special case of the quasilinear, non-dissipative, pulsed sound
propagation where it is possible to derive an analytical solution not only for the near
or farfield, but uniform i z. This solution is possible when considering some special
pulses. These pulses are the same as the ones described in section 4.3.3. The Fourier
transforms of these pulses are rational functions in w, and with no poles on the real
w-axis. When considering a Gaussian source and the solution on the acoustical axis, wc
can find approximations to the solution which are uniform in z.

Wc start the discussion with Eg. (5.18) where wc put d = 00 to get a plane source
and x = 0 in order to get the solution on the acoustical axis:

(5.45)

This equation describes the quasilinear solution on the acoustical axis from a plane,
Gaussian source which radiates into a three-dimensional, non-dissipative medium. In
the analysis above, wc proceeded by integrating with respect to z' . Now, wc will specify
F as the Fourier transform of a function from the class of functions described above, and
then integrate with respect to s. As an example of this, wc consider the time dependency

(5.46)

T<°> = A£rT(rr), (5.42)

/3poCoa4 A2 d fdF(r)\ 2 (. ( z\ . (zM\\ . /x . x ,

_ PqCqP VOO fz u2s(u - s)F(s)F(u - s)e- iuTdztdsdu
ft = 4tt JJ-oo Jo s(lj - s)(iu - %(z - z')) - +

F(r) = e-7|T| sin u;or.
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This is the same example as in section 4.3.3, and we will call this pulse an exponential
pulse. Now, we Fourier transform this pulse, and insert it into Eq. (5.45). The s-integral
can then be written

r°° s(u - s)FI (s)Fi(u - s)ds
J-oo (s—si)(s — s2 )

-872<^o f°° 32 (u; - s)2
7T J-oo (S +U0 + h)(s +U0 - ii)(8 -U0 + i"f)(s -U0 - 17)(5 - Sj)(s - 32 )

ds

(5.47)

where the residue is tåken at the points s = ±u>0 + ry, a= u> ± u>o +17 and 5 = si. Si
and 52 are here defined by

(5.48)

where Si is defined to be the root where arg( )a G [o,x). After some algebra we get

The last term in Eq (5.49) is completely different from the other four terms. Numerical
calculations show that this term is negligible when we consider relative long pulses. More
specifically, this means pulses where u0 47. That means that for pulses that are not
extremely short, it is a good approximation to neglect this term. We thus put Eq. (5.49)
with the last term neglected, into Eq. (5.45) :

(5.50)

where [•] means that parenthesis in Eq. (5.49). We see that the z'- integral still can
be evaluated analytically, so within this approximation we have reduced the numerical
work to a single integral. Before we evaluate the zMntegral, however, we will take a

(s —u —ug— i'7)(s — u — u>o + ii){s —uj + ljq — i"f)(s — u +w0 + 27)

q 2 2
=~ 7 U°2*i Res(The Integrand),7T

n 2jri Jo J-cc w + - z') lJ

27CJ0 (a;0 + «7)(w -wb - »7)
u (a; — 2ry)(u> — 2a;0)(a; — 2lj0 — 2i'y)(s1 —u0— i*f)(s2 —u0 — 17)

(u;0 - h)(u +wo - h)2
(a; - 217) (a; + 2uo)(u + 2u>0 - 217) (51 + lj0 - i'y)(s2 + a;0 - I*7)

(w0 + h)(w +wo + *7)2
(5.49)

(a; + 2i'7)(u; + 2wo)(w + 2a;0 + 2t'7)(3i + a;0 + nO(52 + + 17)
(wo — t7)(w — ug + »7)2

(u + 2ry)(u; - 2u>0 )(u> - 2u>0 + 2i7)(sx - U7O + «7)(52 - + «7)

16i72a;252 52

((«1 + "o) 2 + 72)((^i " "o)2 + 72)((^2 + a,0) 2 + 72 )((^2 - 0) 2 + 72 )(*i ~ s 3 )'
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look at the u;-integral. The first thing to say here, is that it seems at first sight as
if this integrand is a multiple-valued function (from $1 and s 2). When looking at the
terms in the parenthesis as one thing, wc will nevertheless see that the roots in Sj and s 2
are cancelled through quadration. Therefore the integrand as a function of the complex
variable u> has no branch points and is an analytical function apart from poles at isolated
points. Wc can therefore once again use the residue-theorem, this time to evaluate the
w-integral. First wc note that the singularities on the real axis are removable when wc
look at all the integrand as one function. These singularities will therefore not contribute
to the integral.

Wc see that the integrand has singularities at some fixed points (u> = ±2u>o ± 227).
Besides these, there are some singularities which are functions of z and z'. These sin
gularities are also moving from the upper to the lower halfplane, and it is difficult to
calculate the contribution to the integral from these poles. These terms correspond to
very short transients in the linear case. They are negligible everywhere except close to
r = 0. A necessary condition for this to be fullfilled is that the absolute value of the
imaginary part of the singularity is large compared to 27. This has at least to be fullfilled
where the main contribution to the from this singularity will be.

Wc assume now that this is the case here, and expect our solution not to be valid
close to r = 0. Wc have to separate the two cases r < 0 and r > 0. When r < 0, wc
get:

(5.51)

where the residue is tåken at the points u> = db2uo + 227 and u = 2i~f. After some algebra
this reduces to:

Now wc evaluate the easily:

p2 w poC<flUo fZ 2irißes(The Integrand)^',2tti Jo

2 V Jo 7(^ +7J) + ((2 _ 2,H2 +(ø + h2) + if^2

+ \poCooe*"

Re I e-2iw»Ti(u;o + »7)3 f — r-ry 1 . (5.52)

2 PoCoPi [u0 +7 jc in
P2» 7-3 2f—

+ -poco/3e Be<

ln^ *? +*? + «(arctan — - arctan -^—) |, (5.53)
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where $1 and \&i are defined by

Wc note here that the singularity in z in the first term of Eg. (5.53) is removable so that
it does not make any complications for the results. Eg. (5.53) is thus an approximative
solution of the quasilinear problem Eg. (2.16) valid on the acoustical axis. The solution is
valid when using a plane, Gaussian source which radiates into a non-dissipative medium,
and where the time dependency is an exponential pulse. The solution is uniform in
2, and valid for long pulses in the sense wo^47. Eg. (5.53) is the solution valid for
negative r-values. Unfortunately, it is not valid very close to r = 0. When r is positive,
the approach is similar and the result is:

In order to obtain these approximative solutions, wc have to evaluate the zMntegral as a
Cauchy principal value integral. This seems consistent because the Fourier integrals that
wc have interchanged with the must be considered as Cauchy principal value
integrals from the theory of Fourier analysis. Numerical results show that the solution
Eqs. (5.53) and (5.54) is very good when the pulse is not too short and when \r\
as expected.

When 7 = 0, wc get a monochromatic onsource signal. Then Eqs. (5.53) and (5.54)
both reduce to

(5.55)

This is the same result as can be deduced from Ref. 28 to be the exact solution. It is
thus a demonstration of the validity of Eqs. (5.53) and (5.54) when the pulses are long.

{(*o + ,-7)H^(u>o^7)\

1 (wo + i7)-^ J

P 22co / 1 2\ 4zca 1

1 ,-2^ [ te-*"°T (a>o-i7)3
J I - il) ~ -P

\ Sf+«l + *(axctan — - arctan -^—) |, (5.54)

*2 = Im ((^i2)l±iS%i2)LI Wo-i7)-^# I

P2= 7/>o/k>ofl2Re st,z  ln \ —r 1 + l arctan — r
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In Eqs. (5.53) and (5.54), there are two basic restrictions. First, when wc evaluated
the s-integral, wc did an approximation which led to a long-pulse approximation. Next,
when the w-integral was evaluated, a new approximation made the solution not valid
very close to r = 0. Wc therefore have to find the solution close to r = 0 in another way.
One approach is then to do as elsewhere in this work. Wc then have to solve a double or
triple integral numerically. Alternatively, wc can still use the long-pulse-approximation
obtained after the s-integration above. Then the z'-integral could have been evaluated
before the w-integral. Then wc finally end up with only the u;-integral. This integral can
be solved numerically. Thus, within the long-pulse-approximation, wc can reduce the
numerical work to a single integral close to r = 0, and elsewhere wc have an analytical
expression.

When considering the exponential pulse chosen as the time dependency, it is perhaps
not so strange, that the analytical approximation breaks down close to r = 0. At r = 0,
the exponential pulse is just continuously differentiable once. When keeping in mmd
that the farfield formula Eg. (5.29) contains a second derivative of the time dependency
F(r), wc have to expect problems when F(t) is not that smooth. Else wc comment that
when making nearfield approximation of Eqs. (5.53) and (5.54), wc get the same result
as when the exponential pulse is substituted into the general nearfield expression. The
In z/z term of the general farfield solution can also be obtained in a similar way when
wc use the long pulse approximation u>0 7. Unfortunately, this approach cannot be
generalized to find the oif-axis solution, or to a dissipative media. It can, however, be
generalized to focused Gaussian sources. The calculations will then be similar to the
ones above. It is also possible to use other, and smoother functions from the class of
functions discussed above. Whether the solution then will be valid also close to r = 0,
is an open question.

5.3. Three-dimensional, Dissipative Nearfield

Now, wc will include dissipation in the discussion of the quasilinear solution. Here,
wc will just consider pulses of the type

(5.56)

where F\(t) as usual is varying slowly compared to the sinusoid. In chapter 3 and 4, wc
have seen that at first, when z < Lg, wc have to expect much of the same behaviour as
in the non-dissipative case, except for an amplitude correction similar to the one used
in the monochromatic theory. When z > Lo , wc have seen that completely different
behaviours are expected, and that the behaviour of the pulse is closely related to the
bandwidth of the generated pul^e. Wc will now look at the same effects in the quasilinear
case. In this section, wc consid the dissipative nearfield, z < Lo, and wc postpone the
discussion of the dissipative fanield, z > Lo, to the next section. In both these sections,
wc will use pulses with Gaussian envelope functions in the numerical examples. These
pulses are chosen because they are narrowbanded, and therefore realistic pulses to use in
physical experiments. Besides this, they are easier to treat numerically than most other
realistic pulses.

In this section, wc will demonstrate how Eqs. (5.25) and (5.29) can be applied in
the dissipative nearfield after a minor adjustment. Most of the frequencies contributing

F(t) = Fi (r) sin u;ot,
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to the signal are close to w = ±2u>o. Wc therefore try to adj ust the amplitudes of the
asymptotical expressions by multiplying by a factor exp(—Az/Lo). The factor 4 comes
from the fact that the absorption distance related to the frequency 2w0 is Lo/4. Wc thus
get the following nearfield formula:

(5.57)

In the same way, the farfield formula will be

(5.58)

Wc now want to examine how large z can be compared to Lo if these expressions still
are to be valid.

In figure 5.3 wc have put Lo = 0.1r0. The observation points chosen are z = 0.005r0 ,
z — 0.01ro and z = 0.02ro . At these distances, Eg. (5.25) is valid in the non-dissipative
case. Wc see that at z = 0.005r0 and partly also at z = O.Olro, the modified nearfield
formula Eg. (5.57) predicts very well the numerically calculated signal. At z = 0.02r0,
the nearfield formula tends to underestimate the signal. The signal now also tends to
oscillate more slowly than closer to the source. This is the same tendency as was found in
the linear solution. Because the non-dissipative nearfield formula is valid at observation
points up to z w 0.2r0, the deviation at z = 0.02ro is caused by the absorption alone.
z — 0.02r0 means here also z = 0.2L0- When wc remember that the absorption distance
for the second harmonic 2lj0 is Lo/4, wc see that the observation point is now almost at
the absorption distance of the second harmonic. It is therefore not surprising that such
a simplified modelling of the absorption breaks down. Wc also see from figure 5.3 that
different pulse-lengths seem to give the same conclusion in this case. Thus wc conclude
that the simplified modelling of the absorption is valid up to z&O.ILq.

The farfield approximative solution Eg. (5.58) is examined in figure 5.4. The absorp
tion distance is here chosen to be Lo = lOOro- The conclusion is almost the same here
as in the nearfield case. At z = 20ro = 0.2L0, wc see a small tendency of stretching in
the numerical solution compared to the approximative solution. The amplitude is well
described by the approximative solution. When z = 50ro = Q.SLo, Eg. (5.58) underes
timates the signal. Besides this, the stretching of the signal is significant, especially for
the shorter pulse. This effect is not described by the approximative solution. Wc there
fore have to expect that Eg. (5.58) is valid when 10ro &z & 0.3L0 . The first restriction
here comes from the farfield (diffraction) formula and the second restriction from the
nearfield (absorption) formula. Wc see in the figure that at 5r0 it is not so good because
of the diffraction, and at 50ro = 0.5L0, the absorption has started the changing of the
waveform.

5.4. Three-dimensional, Dissipative Farfield

Wc now proceed to the dissipative farfield, z > Lo. In this region, there are several
earlier models. Most of these models simplify the discussion by assuming a collimated,

ft(O,T,,)~£f*e-*£**(r), *<rO .

P2(o,r,z)-e In r— —57 I Szcq uoa2 dr \ dr J

oZZCq J— oo J— oo /
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FIG. 5.3. Dissipative, three-dimensional, quasilinear propagation of Gaussian pulses
when Lo = 0.1 rO . Comparison between a numerical solution (—) and the approximate
nearfield solution (•••)•

n = 20n = 6
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FIG. 5.4. Dissipative, three-dimensional, quasilinear propagation of Gaussian pulses
when Lo = 100ro . Comparison between a numerical solution (—) and the approximate
solution valid when r0 <z < LOi with one term (• ••) and with two terms ( ).

n = 6 n = 20
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linear nearfield. We start this section by a brief introduction of some of them. After
wards, we proceed to a discussion of the dissipative farfield within the present model.

5.4.1. Earlier Models

The discussion of the quasilinear, dissipative farfield of a pulsed signal dates back to
Berktay8 in 1965. Two years after Westervelfs famous paper on parametric, acoustic
arrays29 , Berktay used those ideas to find a solution in this region. The model assumed
a plane collimated linear solution

(5.59)

The absorption in the linear solution is treated by an exponential factor, and the diffrac
tion is neglected. The approximation done in the modelling of the absorption can here
perhaps be used because most of the quasilinear sound is generated from the linear sound
field in the dissipative nearfield. We have earlier seen that the absorption behaves ap
proximately like this there. The diffraction in the linear solution is neglected in Berktay 's
model. We therefore have to expect the ratio ro/Lo to play an important role. The idea
further is now that the quasilinear field is split up in a term with frequencies close to
the second harmonic, and a lowfrequency term, just like in Eq. (5.9). In the dissipative
farfield, the highfrequency term is damped away by the absorption. The solution will
therefore just consist of a lowfrequency term. Finally, Berktay found that

(5.60)

where a minor correction of the formula according to MofFett and coworkers30 is included.
In order to do the decoupling between the high- and the lowfrequency band, it has to
be assumed that the pulse in some sense is quite long. In the formula above, a uniform
source with general shape was assumed. S is then defined to be the crossectional area
of the collimated beam from this source. Thus for instance for a circular piston, we
get S= ira2 . In the present work, we have used Gaussian sources in the numerical
examples. From the definition of 5, we could be led to believe that for a non-uniform
source, S = // f(x)dx. In order to get numerical agreement between Berktay's solution
and a numerical solution later, it is, however, necessary to define S= ff f(x)2dx and
thereby look at S more as an energy than an area.

Eq. (5.60) has later been verified experimentally by Moffett and coworkers9' 30' 31 .
The solution far away from the acoustical axis, and when the absorption is very weak,
was also discussed in these works. They found that in both these cases, the signal looked
like the first- and not like the second derivative of the envelope function squared. The
off-axis result was first mentioned by Westervelt in Ref. 32. Several others, like Pace and
Ceen10 and Grinberg and coworkers11 , have worked more on these problems, and have
among other things rederived these results. Stepanishen and Koenigs12 later derived a
formula which describes the transition from the second derivative to the first derivative
of the envelope function squared when the observation point moves from the acoustical
axis to a point far outside the acoustical axis.

Common to all these works is the collimated linear nearfield. Different authors have
assumed the linear field in different ways, but generally, both diffraction and absorption

Pi =/>ocJs/(x)Fi (r) sin u>ore

pPoSLo d2 F?(T)
P2 ~ 16ttz dr2 '
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of the linear field are treated in an ad hoc manner. The treatment of these efFects in the
quasilinear field is also partly just ad hoc. Because none of these models have a consis
tent treatment of absorption and diffraction, the different models cannot confirm each
other. From experiments wc can see that they describe the reality in some cases. The
limitations of these models, however, have not been discussed in the above-mentioned
works. Questions left open from these works are

How short can a pulse be before Berktay's formula breaks down?

How does the diffraction (through the fraction ro/Lo) affect the result?

For what ranges of z, except that z > Lo , is Berktay's formula valid?

When does the solution off axis look like the first derivative of the envelope function
squared?

The model in this work includes diffraction and absorption in a consistent way. It can
therefore be used to analyse these questions. Wc will try to answer them by looking at
numerical results where no approximations are made except the choice of the quasilinear
approximation of the KZK-equation as the mathematical model.

5.4.2. Results on the Acoustical Axis

Wc now want to analyse the dissipative farfield mostly by using numerical results.
The solution on the acoustical axis will be discussed in this section, and the off-axis
results are postponed to the next section.

As mentioned above, the pulses used will be Gaussian, and therefore relatively nar
rowbanded:

Wc will use the four values n = 6, 20, 50 and 100 in order to discuss the dependency of the
pulse-length on the solution. First, wc will study the effect of increasing z. In figure 5.5,
wc see a long pulse (n = 50) at four different different distances. The absorption is
here relatively strong, with Lo = 0.1ro . Berktay's solution is therefore expected to
be valid since the diffraction is not a too dominating effect in the generation of the
quasilinear pulse. Wc see that when z — 5L0 , the rapid oscillations from the second
harmonic-related part of the solution have not been completely damped away. Except
for these small ripples, Berktay's solution predicts very well the waveform received. At
z = 10Lo, the small ripples are damped away, and Berktay's formula provides almost
perfect agreement. When zis increased more, to 100Lo and to 1000Lo , this picture
changes. Wc see now that with increasing z, the pulse tends to be stretched out and
more damped compared with Berktay's solution. With z increased more, this effect is
even more dominating. The explanation of this is that wc now get z = O(La ), where La
is the slow absorption distance defined from the characteristic frequency of the envelope
function of the pulse. For the Gaussian pulses discussed here, a good estimate for La is
LB = (n/2)2 Lo- When wc approach this distance, the absorption starts to damp away
the highest of the low frequency components of the signal. Therefore wc get a similar
stretching of the signal as wc got in the linear case. This effect can also be given a slightly
different explanation. When z > Lo, the linear part of the signal is damped away,

F(r) = e-(^)2 sinu;oT. (5.61)
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u>Q r

(c) (d)

FIG. 5.5. Comparison between a numerical solution (—) and Berktay's solution (• ••)
when zis increasing. n = 50, Lo = 0.1ro , z = 5L0 (a), z = 10Lo (b), z — 100Lo (c) anc^
z = IOOOLo (d)

°C o.ooooi

* 0.00000



82

FIG. 5.6. Comparison between a numerical solution (—) and Berktay's solution (• ••)
when zis increasing. n = 20, Lo = 0.1ro , z = 5IO (a), * = 10Lo (b), z = 100Lo (c) and
z = IOOOLo (d)
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FIG. 5.7. Comparison between a numerical solution (—) and Berktay's solution (•••)
when zis increasing. n = 100, Lo = 0.1r0 , z = 10Lo (a), z = IQOL0 (b) and
z = 1000Lo (c)

since the Gaussian pulse is relatively smallbanded. The generation of the quasilinear
field is therefore ended, and the quasilinear signal propagates like a linear signal. A
low-frequent linear signal affected by the absorption tends to stretch out, according to
chapter 3. Therefore Berktay's formula cannot predict the correct waveform any longer.
Summing up, wc can say that Berktay's formula is an intermediate formula valid when
Lo < z < L 9.

In figure 5.6, wc see the same as in figure 5.5 except that the pulse is shorter. The
conclusion is the same except that the widening of the pulse and the overestimation
by Berktay's formula starts much earlier. This is because L, now is smaller than in
figure 5.5. Therefore, it confirms the conclusion that Berktay's formula is valid when
Lo < z < L,. Note here that the pulse in fact starts to stretch out already at z = 10Lo .
At z = 5L0 , it has not completely lost the ripples from the high frequencies. Wc therefore
see that the pulse is now so short that Berktay's solution only predicts the signal well
at the distances where the lowfrequent part dominates the signal for the first time.

Figure 5.7 is the same as figure 5.5 and figure 5.6, except that the pulse now is
longer. Wc then see that Berktay's solution is valid for higher z-values than above, but
that it finally starts failing. Figure 5.8 describes for a short pulse the transition from
a highfrequent signal satisfying Eg. (5.57) to a lowfrequent signal which stretches out.
Wc see here that Berktay's solution never predicts the correct signal. The explanation
of this is that the pulse now is so short that the situation Lo <C z <C L, is impossible.
Therefore Berktay's solution cannot give the correct answer.

Wc have now analysed the validity of Berktay's solution for increasing z-value and
for different pulse- lengths. Now wc will.consider the efFect of different absorption relative
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(c)

FIG. 5.8. The evolution of a short Gaussian pulse (n = 6) for increasing z-values (—).
The dotted curve is Berktay's solution. Lo = 0.1ro , z = 0.1Lo (a), z = 0.5Io (b),
z= Lo (c), z = 2L0 (d), z = 5L0 (e) and z = 10Lo (f).
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to the diffraction. Wc thus want to study the influence on Berktay's formula of the ratio
Lg/tg. In figure 5.9, the intermediate pulse is chosen. The distance z = IOLo has been
chosen because Berktay's solution then was approximately valid above. Wc see that
when the absorption is getting weaker so that the diffraction plays a more important
role, the signal is not the second derivative of the envelope function squared any longer.
It looks like it starts to approach the first derivative of the envelope function squared
instead. This was the effect described above, and suggested by Moffett and coworkers.
What is perhaps more surprising, is that Berktay's solution breaks down also when the
absorption is too strong (Lo = 0.01r0). It then seems like the signal undergoes the same
change as when the absorption gets very weak (Lo = 100r0). This is more difficult to
explain. One would believe that the plane collimated model underlying in Berktay's
formula should be very good when the absorption is so strong that the signal hardly
feels the diffraction. This does not turn out to be the case here. It is perhaps easier to
understand that the amplitude of the signal cannot be predicted by Berktay's solution
when the absorption is very strong than to understand that the shape of the signal
cannot be estimated. This is because the generation of the quasilinear solution by the
linear solution does not last that long. Therefore the quasilinear solution in the farfield
should have lower amplitude when Lo -C r 0 than when Lo = O(r0). Anyway, wc conclude
that Berktay's formula again seems to be an intermediate formula. This time it is valid
when the absorption distance is not too small or too great compared with the Rayleigh
distance.

The effect of diffraction is also shown in figure 5.10. This time, a longer pulse has
been chosen, and also even weaker absorption than in figure 5.9 is considered. Here, the
observation point is z = 20Lo- It is just at this point the solution starts the damping
and stretching effect not described by Berktay's solution. Wc know from above that
Berktay's solution is approximately valid when Lg = 0.1ro . Wc see in this figure that
when the absorption is too strong (Lo = O.Olro), Berktay's solution is not so good any
longer. Wc see, however, that for this long pulse, Berktay's solution is more robuste for
changes in ro/Lg than the shorter pulse (n = 20). When the absorption gets very weak
(Lo >> r 0), wc see that the signal looks more like the first- than the second derivative
of the envelope function squared. This confirms the prediction made by Moffett and
coworkers.

Now, how do these results fit in with the experimental results obtained by Moffett
and coworkers30' 31f 9 ? The easiest results to compare with, are the results in Refs. 30
and 31 where the pulses propagate in carbon tetrachloride. Dissipative effects are much
more dominating in carbon tertachloride than in water. This means that it is possible to
get the situation z >• Lo when using a relatively small tank in the experiment. In these
actual experiments, Lg = 1.92cm and the largest 2-value used in the experiment was
42cm. The Rayleigh distance was ro = 136cm. This means that Lg = 0.014ro , which is
quite strong absorption. There are two different pulses used. In Ref. 30, measurements
are shown for the longer pulse. This pulse contains a little more than 40 oscillations
and is therefore longer than all the pulses considered here. Wc therefore have to expect
that Berktay's formula is approximately valid. This is because the pulses were not so
much affected by the ratio ro/Lo when they were quite long. Besides, the largest z
distance where it was measured was about z = 21.8L0- At this distance wc still have
Lg <C z<C LB . Therefore the stretching of the pulse was not observed. Therefore, it was
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FIG. 5.9. Comparison between a numerical solution (—) and Berktay's solution (• ••) for
different values of Lg/tg. n = 20, z = IQLq.
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FIG. 5.10. Comparison between a numerical solution (—) and Berktay's solution (•••)
for different values of LO /r0 . n - 50, z - 20Lo, Lo = 0.01ro (a), Lo = 0.1ro (b),

Lo =r0 (c), Lo = lOOro (d), Lo = 104ro (e) and Lo = 106ro (f).

wo r



88

not surprising that Moffet et. al. found that Berktay's formula predicted their measured
results quite well. In Ref. 31, they used a shorter pulse with about 20 oscillations.
This pulse therefore is roughly as long as the Gaussian pulse with n = 50. The other
parameters in the experiment are the same as the ones referred above. Again, MofFett et.
al. found that the results are quite well predicted by Berktay's formula. However, if wc
look carefully at figure 5 in Ref. 31, wc see that at the end of the signal, it is a little bit
stretched and damped compared with Berktay's formula. It is perhaps difficult to say if
this effect is real or if it is caused by experimental errors. However, this is the same result
as wc found for the long pulse (n = 50) when Lo = 0.01ro in figure 5.10. Therefore, this
experimental result can perhaps confirm that when the dissipative effects are too strong
compared to the diffraction, Berktay's solution does not predict the received signal so
well any longer.

Experimental results related to this topic were also recently published by Cervenka
and Alais33 . Their experiment was performed in water, and they got Lo = 1.36r0 . The
measured signals were received at z = 2.7Lo and then lowpass-filtered in order to throw
away the rapid oscillations both in the linear and in the quasilinear solution. Therefore,
that case is a bit different from the case studied in this work. It is therefore difficult to say
if the results obtained here still are valid. They used two different pulses, one Gaussian
and one with an envelope function like a chirp. The Gaussian pulse would correspond to
an n-value somewhere between 150 and 200. Wc will therefore expect Berktay's formula
to be valid when z Lg. They find an agreement with Berktay's solution that is not
quite as good as éxpected from the analysis in this work. This can perhaps be explained
by the fact that they did not measure in the region where z Lo but instead they
lowpass-filtered their signal in order to study the self-demodulation. Wc know from the
analysis of the dissipative nearfield that if a similar approach was used there, they would
not find Berktay's formula, but instead a signal proportional to —^^ since wc then also
have z-C rO . Wc can therefore not expect Berktay's solution to predict the lowfrequent
part of the signal perfectly until in the dissipative farfield (z > Lo). The other pulse
used in their experiment was a pulse with an envelope function like a chirp. This means
that it in fact is a series of different pulses where the next pulse is generated just after
the previous one. The first pulse contains many oscillations, and the following pulses are
shorter and shorter. The last pulses are so short that it is difficult to distinguish between
the different pulses. They find that Berktay's formula predicts quite well what happens
for the first pulses, but that it gradually starts failing when the pulses get shorter. They
call this a saturation effect, but cannot explain it. From the work done here, wc can
say that Berktay's formula breaks down because the pulses are too short. Then wc
have found that Berktay's solution highly overestimates the signal. Therefore it is not
surprising that they observe this saturation.

5.4.3. Results outside the Acoustical Axis

As mentioned above, several persons have predicted that the signal will look like
the first derivative of the envelope function squared when the observation point is far
outside the acoustical axis. These models assume that Berktay's solution is valid on the
acoustical axis. In figure 5.11, wc see the change in the waveform when wc leave the
acoustical axis. When x = 0, Berktay's solution is approximatively valid. Wc see here
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FIG. 5.11. Comparison between a numerical solution (—) and Stepanishen and Koenigs'
solution (• ••) for increasing x. n = 50, z = 20Lo , LQ = 0.1ro, x= 0 (a), x = 16a (b),
x = 50a (c) and x - 100a(d).

how the waveform approaches the first derivative of the envelope function squared when
x increases. Stepanishen and Koenigs' solution is plotted in the same figure. Before
plotting, wc made an approximation similar to the approximations in the waveforms
performed by the parabolic approximation. This is consistent with their model because
they started with Westervelfs equation for the pressure, and then made a quasilinear
approximation of this equation. Naze Tjøtta and Tjøtta3 showed that this equation has
the same validity as the parabolic approximation and thus the KZK-equation. Wc see
that the numerical solution and Stepanishen and Koenig's solution describe the shape of
the solution in about the same way. The arrival times of the two solutions are slightly
different. Most discrepancy is there, however, in the prediction of the amplitude, where
the solution of Stepanishen and Koenigs clearly overestimates the numerical solution.
This is perhaps not very surprising. The solution of Stepanishen and Koenigs does not
include different directivity functions due to different sound sources. Their predictions
were made for uniform sources. It is therefore not surprising to find a difference in
directivity when using a non-uniform source like the Gaussian.

Figure 5.12 shows a similar change from on-axis to off-axis observation point as
figure 5.11. The difference is now that Lo = 100ro . This means that at the acoustical
axis, Berktay's solution is not valid. Despite this, the signal looks like the first derivative
of the envelope function squared when the observation point is far outside the acoustical
axis. It thus seems like the signal will look like the first derivative of the envelope
function squared when the observation point is far outside the acoustical axis. Both
when Berktay's solution is valid on the acoustical axis, and when it is not valid, this



90

FIG. 5.12. Off-axis solution for increasing x. n = 50, z = 20Lo , LQ = 100ro , x= 0 (a),
x = 2000a(b), x = 4000a(c) and x = 8000a(d).

seems to be the case.

5.5. General Remarks

Wc have now discussed the quasilinear, pulsed sound propagation with special em
phasis on the sound generated by a Gaussian source. The method presented måkes it
possible to calculate the quasilinear sound pressure both in the absence of dissipative ef
fects, in the dissipative nearfield and in the dissipative farfield. Asymptotical expressions
are presented for the case of no absorption, both for Gaussian and more general sources.
The transition from the dissipative nearfield to the dissipative farfield is discussed, and
earlier models for the sound propagation in the dissipative farfield are analyzed. The
analysis is made for Gaussian sources. Therefore probably some of the results about the
interaction between diffraction and dissipation have to be modified when using other
types of sources. There is, however, no reason to expect qualitatively different results
in the dissipative farfield when using for instance a uniform circular piston instead of a
Gaussian source.

The time dependency in the analysis above has been

where Fi(r) is a slowly varying envelope function compared with the sinusoid. Both the
numerical and the asymptotical discussion could also have been done for other types of
time dependencies. Wc can for instance use a time dependency like

(5.63)

jp(r) = Fl (r)sinwor, (5.62)

F{T) = Fi(r) »inwlr + .in^r |
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where the two frequencies u?i and u>2 are relative high, but quite close to each other. Wc
then get a pulsed version of the parametric array, where frequencies close to the sum and
difference frequencies u2± u>i are generated together with the frequencies close to each
second harmonic, and the very low frequencies. This leads to various regions where the
pulse changes form depending on what frequencies are still present in the signal and what
frequencies which are damped away. This means that the asymptotical and numerical
models can be used for quite general time dependencies.
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Chapter 6

Numerical Solution of Integrals

Now, wc will describe how the integrals present in this work have been solved numeri
cally. Many of the integrals presented above are Fourier integrals, at least in one of the
integration variables. One of these integrals will be discussed in detail. This is Eg. (2.20)
which describes the quasilinear sound field from a pulsed Gaussian source which radiates
into a dissipative fluid. The source can be plane or weakly curved. This integral has been
chosen because it was the most difficult one, and because many of the other integrals in
the present work can numerically be treated as special cases.

6.1. Integral on Non-dimensional Form

Wc thus want to consider the numerical calculation of the integral

First, wc have to introduce non-dimensional variables, coordinates and parameters in
this integral. Wc first introduce a charateristic angular frequency u>o, which in the case
of several characteristic frequency scales, should be chosen as the highest characteristic
frequency present. Wc then define Rayleigh distance and absorption distance in the
usual way:

(6.2)

(6.3)

Next, wc define the non-dimensional variables, coordinates and parameters which are
used in the numerical work:

4tt JJ—oo Jo

exp (^f^z1)
«(« - «)mi - D(i - i) - *4^) - - s) +^) x ((U)

-i«x» (,(h> - ,)(^ + jfc(l - «f)) + »(^ - «f )) 1 jexp : ir—7T —: r- dz dsduj..
v [s(u - 5)Mi - 3)(i -i)- *^) - -i) +

U = LJqUJ,
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S = UqS,

(6.4)

where

as usual. This means that Li is the Rayleigh distance measured in absorption distances.
This quantity is 0 if there is no absorption. Similarly, di is the Rayleigh distance measured
in focal distances, which means that a plane source has d, = 0. z and z' are now scaled
to the Rayleigh distance, and the transverse coordinate x is scaled to the source radius a.
The frequency variables and the time coordinate are all scaled to the fast characteristic
frequency Ug. Wc now introduce the above-mentioned quantities in the integral Eg. (6.1).
For simplicity, wc neglect the overlining in the non-dimensional quantities:

(6.6)

To reduce the numerical work, it is important to make use of any symmetries in the
integrand. In this case, the integrand G(u, s, z') has two important symmetries when wc
assume that F is the Fourier transform of a real function. These symmetries are

where * means the complex conjugate. This means that wc can rewrite the integral
Eg. (6.6) as

2tt Vcq J Jo Ju/2Jo l

r -i^is^-s^+i^did-zd^H^a-^di)) i dzijs Æ. \
exP L*(fa/-«)(w(i-^»)(i-«^«-)-a('-»<))-*^Mi-*^)+")J I (a q\

s{u - 8)(iw(l - zdi){\ - z'di) - 2(z - z')) - z'u(lj{l - zdi) + zi) J ' K' )

This integral can be solved numerically in several ways. Here wc will describe two ways
of doing it. The first approach uses an integration routine called DCUHRE (formally
called ADMINT)34 . This was the way most of the results presented in chapter 5 have
been computed. This routine is, however, not very good on the integration domain
present in the integral above. When the work on this dissertation was almost finished, a
new integration routine (DCUTET) had been developed35 . This routine was better on
the present problem, and therefore wc also give a short introduetion to the use of this
routine.

F{u) = F(57),
r = t/u>0 ,

z = roz,
z' = r<s ,
x = ax,

Li = ro/Lg,

di = ro/d,

i = bel (6.5)

pj = øpo4 fuony rr r*s{u _ s)F(s)F{w _ x
8?r \Co / JJ-oo Jo

f -tW2 (<(u;-a)(2+tW,(l-zd< ))4-u;z> (t-u;dé)) ] , / , t
eXP [s(u;-<)(tu;(l-zdi )(l-z<^)-2(z-z/))-yu;(u/(l-zJ,)-i-z0J "^ UJ>tAW

a(w - a)(iw(l - t)(l - zV.) - 2(z - 2/)) - - zd{) + art) *

G(-w,-s,z') = G(u,s,z'); (6.7)
G(w, w -a, z') = G(u>, s, z'), (6.8)
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FIG. 6.1. Integration domain and the different integration sections projected into the
a;-s-plane.

6.2. Numerical solution, first approach

As mentioned above, the integral in Eg. (6.9) was solved by using DCUHRE. This
is an adaptive integration routine for solving multiple integrals (up to 15 dimensions)
of vector functions over a finite hyperrectangle. Wc see at once that Eg. (6.9) does not
have this structure for two reasons. First, the integration domain is infinite, and then
the projection of the integration domain into the u -s -plane is an (infinite) triangle and
not a rectangle as required by DCUHRE. The perhaps simplest way to overcome this,
is to extend the integrand to the region u; > 0, s > 0 by defining it as zero outside the
integration domain. Then wc can use DCUHRE on the integral when wc truncate the
integration domain at some large values of u and s. This is not a good way of doing it,
because wc in this way introduce a discontinuity in the integrand. The adaptive routine
will then evaluate very carefully around the discontinuity in order to obtain the desired
error estimate. This will be very timeconsuming.

An alternative to this process is to introduce the transformation s = us\ and integrate
with respect to u and s\. This will transform the integration domain over to an infinite
hyperrectangle. Wc can then proceed by truncating this infinite domain so that wc get
a finite hyperrectangle. There are, however, some reasons for not using this method.
Wc know from the definition of F(u>) that this function often has maximums somewhere
close to uj = ±1. This means that two regions in the integration domain will be specially
important. This is the region around u = 2, s = 1 and the region around w — 0,
5 = 1. The first region gives the contribution to the terms similar to second harmonics
and sum frequency, while the last one gives the contributions similar to the difference
frequency of a parametric array, as described in chapter 5. This latter contribution is
the one important for instance when discussing Berktay's solution. The transformation
indicated above sends the area around w = 0, s = 1 to infinity. It is therefore inconvenient
to use that transformation when the low frequencies corresponding to Berktay's solution
are discussed.

A solution of this problem is shown in figure 6.1, where wc introduce a borderline
at u = 1. Wc then use the transformation on the region u> > 1 (region 1). The other
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FIG. 6.2. Integration section 3 divided into 3 sub-sections.

region will be divided into two regions: s > 1 (region 2) and s < 1 (region 3). Wc
have thus infinite hyperrectangles in section 1 and 2, while section 3 still is a triangular
region in the w, s -plane. The main contribution to the integrand will come from either
section 1 or section 2 (or both), while section 3 just will be a small correction. The
idea is now to compute section 3 after the main contribution to the integral has been
found. As shown in figure 6.2, section 3 is divided into 3 new sections: lj < 0.5 and
s > 0.25 (3a), u > 0.5 (3b), u> < 0.5 and s < 0.25 (3c). Section (3a) is a hyperrectangle
and can therefore be calculated. Sections 3b and 3c are extended to hyperrectanguler
sections by letting the integrand be 0 outside the actual region. These two sections can
be calculated with a larger errorbound than the main contribution because wc here are
just calculating a small correction to that main contribution. Therefore, this algorithm
will not be as time-consuming as the one mentioned first in this section.

The algorithm thus starts with finding out if the main contribution to the integral
comes from section 1 or section 2. This is determined by the ratio z/Lo. If this ratio
is less than one, most of the rapid oscillations with frequencies around u> = 2 still are
present and will dominate the solution. It is therefore natural to look for the main
contribution in section 1. If z/L0 > 1, most of the rapid oscillations are damped away,
and the solution will be dominated by the low frequencies. The main contribution is
therefore expected to be in section 2. Section 1 is now truncated at a reasonable high
s-value, and section 2 at reasonable high s\ and a>-values. The truncation values used
in most of the computations are u = 3 and s = s\ — 1.5. Further, section 2 is divided
into section 2a which contains the region of section 2 where u < 1/2, and section 2b
which contains the rest of section 2. When section 2 contains the main contribution, wc
will look for that in section 2a which contains the lowest frequencies. These regions are
illustrated in figure 6.3, where s on the vertical axis is for the region u < 1 and $i for
the region u> > 1. The algorithm can thus be described

Read the desired parameters, and the relative errorbound required in the integra-
tion.

Decide the truncation values used in u;, s and S\

Determine whether the main contribution comes from section 1 or section 2a.
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FIG. 6.3. All integration sections in the computation

Calculate the main contribution with the desired relative errorbound.

Calculate section 2b and either section 2a or 1 (the one which not contains the
main contribution). The relative errorbound is the required one, and the absolute
errorbound is the prescribed errorbound multiplied with the absolute value of the
value of the integral of the regions already calculated.

Calculate section 3a, 3b and 3c with the same type of errorbound as in the calcu
lation of section 2b.

By using the absolute error bound in this way, wc do not calculate small corrections
to the integral with a greater accuracy than necessary. If wc for instance require three
significant numbers in the answer, it is not necessary to calculate a contribution which
will just be a correction to the last significant number, with 3 significant numbers. Now,
wc have hopefully got a good estimate of the integral. However, there can be significant
contributions to the integral in the regions which are not discussed above. Therefore wc
will calculate the integral also in some correction regions Cl, C2, . . . which are illustrated
in figure 6.3. The algorithm of the computation of these corrections is as follows:

Calculate the sections Cl-a,b and c. The relative errorbound is the required one,
and the absolute errorbound is the prescribed errorbound multiplied with the ab
solute value of the value of the integral of the regions already calculated.

If the correction computed does not make a significant change in the computed in
tegral, then quit. Else, compute new corrections (C2, C3, . . . ) until the corrections
are not significant.
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When the Gaussian pulses were used, an Alliant fx/8 using one processor used typ
ically 20 minutes of CPU time to calculate one curve with 150 points when using this
algorithm. This problem is very good for parallel processors. This means that for in
stance 8 processors will reduce the computer time with a factor between 7 and 8. Besides
this, the code can be optimized further than done in the version described above, by us
ing the fact that most of the integrand can be calculated once for all the r-values that
are desired.

6.3. Numerical solution, second approach

Wc will now shortly mention the differences in the algorithm by using the integration
routine DCUTET instead of DCUHRE. DCUTET is an adaptive integration routine
which computes triple integrals over a collection of general tetrahedrons. The error
estimate is for all the tetrahedrons together. This means that the triangular region in
the lj — 5-plane does not constitute any problems. Wc can cover all the contributions
for s < so for some $0 with tetrahedrons. Wc call this the main contribution to the
integral. This main contribution can now be calculated by just one call of DCUTET.
Afterwards, corrections are calculated in a similar way as with DCUHRE. This means
that the problem with the triangular region in the DCUHRE integration is gone. In this
way, time can be saved, and a safer errorbound can be obtained.
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Chapter 7

Summary, Conclusions and General
Remarks

In this work, wc have discussed the pulsed sound propagation within the parabolic ap
proximation. The discussion has included both linear and weakly nonlinear results. The
efFects of absorption and diiFraction have been studied, both separately and together.

In chapter 3, wc found that in the linear case, the solution in the dissipative farfield
is strictly dependent on the actual pulse shape, and especially on the bandwidth of the
generated pulse. If the pulse is a sinusoid oscillating inside a slowly varying envelope
function, there are two characteristic absorption distances present. The fast absorption
distance was defined from the high frequency of the sinusoid, and is thus similar to
the absorption distance in the monochromatic case. Besides this, wc had to introduce
a slow absorption distance related to the bandwidth of the actual pulse, and thus also
related to the characteristic frequency of the envelope function. It was shown that before
the fast absorption distance, the signal will be damped much like a monochromatic
signal. When the observation point is larger, the behaviour is strictly dependent on the
actual bandwidth of the envelope function. Far beyond the slow absorption distance,
the exponential damping of the pulse is replaced by z~l for the maximum amplitude,
and by z~3 '2 for the energy of the signal when wc are using a one-dimensional model.
The actual amplitude of the signal was shown to depend on the content of the very low
frequencies in the generated signal, as expected.

The linear, non-dissipative three-dimensional case was discussed in chapter 4. It was
shown that the parabolic approximation is valid in the pulsed case as long as the ob
servation point is not too far from the acoustical axis or too close to the plane sound
source. The actual critical values depend both on the generating source and on the
generated pulse. For a uniform, circular piston, wc can generally say that similar re
strictions are imposed in order to guarantee the validity of the parabolic approximation,
as the ones imposed when using a monochromatic signal. Close to the source, wc found
that when z = O(a(cjoa/co) 1^3 ) or larger, the parabolic approximation is valid. Wc also
found similar validity conditions as in the monochromatic theory when wc discussed the
validity outside the acoustical axis in the farfield. Next, wc discussed the farfield more
in detail when using a pulsed signal. It was shown that the signal ahead of the plane
source looks like the time derivative of the signal generated by the source. It was also
shown how this signal outside the acoustical axis splits up into two contributions. Wc
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then get a smeared version of the generated pulse which comes from the nearest point
on the edge of the sound source, and the negative of another smeared version of the
generated pulse which comes from the furthest point on the edge of the source. Wc also
showed how the directivity changes when the pulse-length was varied. When the pulse
gets shorter, the sidelobes in the beam pattern gradually disappear. Focusing efFects
were then built into the results, and it was shown how the results for a plane source
are directly applicable in the focused case. For instance, it was shown that in the focal
plane, the sound field looks like the sound field in the unfocused, non-dissipative farfield.
The results with only absorption and with only diffraction were then put together. It
was among other things shown how the one-dimensional results were directly applicable
in some three-dimensional cases.

The first correction to the linear solution due to nonlinear efFects was discussed in
chapter 5. It was here presented a way to calculate the sound pressure both in the
dissipative nearfield and in the dissipative farfield. In this calculation, it was assumed
that the generating source had a Gaussian onsource amplitude distribution. Besides
the nonlinearity, the model accounted consistently both for diffraction and dissipation.
Asymptotical results were presented for the case of no absorption and for the dissipa
tive nearfield. These results gave short formulas which could be used to estimate the
quasilinear solution in the diffractional nearfield (2 < ro) and in the diffractional farfield
(z >• r 0). In the dissipative farfield, earlier models were discussed and compared to this
new model. It was shown that the earlier models were valid in some parameter regions:
The observation point had to be between the fast and the slow absorption distance, the
pulse had to be quite long, and the Rayleigh distance ro and the fast absorption distance
Lg had to be of about the same order of magnitude.

To conclude, wc have presented a model which describes the linear and weakly non
linear sound propagation from a pulsed sound source. As stated above, the model is
applicable when the nonlinearity is not too strong. In addition, wc have neglected efFects
like dispersion and inhomogeneity, and have got a non-causal model in the dissipative
case. This non-causality is related to the parabolic approximation which is underlying
in this work. The parabolic approximation imposes new restrictions on the model with
respect to observation points and parameter regions. In order to discuss pulsed signals
in a model where the parabolic approximation is not present, and where the absorption,
diffraction and nonlinearity are consistently accounted for, wc would have to use the same
general model as in Refs. 36, 37, 5 and 38, except that dissipative efFects also would have
to be included. This model would then have to be used for the pulsed problem. This
is a very complex model, and the numerical calculations would have been very difficult
and time consuming.

In this work, wc have just considered the weakly nonlinear propagation of a pulsed
sound beam, and the work is done within the parabolic approximation. A natural next
step in this work, is to consider the effect that stronger nonlinearity causes on a pulsed
sound signal. This means that wc cannot use the quasilinear approximation of the KZK
equation, but instead have to solve the complete KZK-equation. There are different ways
to do this. One possible algorithm is to solve the KZK-equation by a finite difFerence
method. For a monochromatic onsource time dependency, this was first done by Aanon
sen and presented in Ref. 39. His algorithm was later on improved in several ways, and
generalized to the case of a bifrequent source and to weakly focusing sources. Contri
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butions to this work were made by several authors, and more details and references will
be found for instance in Ref. 40. This algorithm has also been used for multifrequent
onsource time dependencies in order to study a pulsed sound signal. This is reported
for instance by Neighbors and Bjørnø41 and by Baker and Humphrey42 . Later on, also
Berntsen, Frøysa, Naze Tjøtta and Tjøtta43 will publish on this topic. Hamilton and
Lee44 have used a different difference algorithm to solve the same problem. They solve
the problem in the time domain instead of in the frequency domain.

Common for these two approaches of solving the complete KZK-equation for a pulsed
signal, are the problems in describing the diffractional nearfield in a proper way. If replica
pulses or strong wakes are present, Refs. 43 and 44 both show that the algorithm will
not describe satisfactorily the solution on the acoustical axis when z < 0.3r0. The
reason for this is that the difference algorithm propagates the solution with finite steps
in the z-direction. Besides, the Laplacian has also been discretized. Therefore wc need
some propagation distance in order to bring the information of what happens at the
discontinuous edge of a piston to the acoustical axis. When using a Gaussian source,
wc can expect this problem to be much smaller because there then are no replica pulses
or very strong wakes present in the solution. Suggestions have been made about what
should be done to overcome this problem, but until now, nothing has been done to try
these ideas. A possible solution could be to use a wide angle version of the parabolic
approximation close to the source. In the linear case, such equations are derived for
instance by Vefring and Mjølsnes45 . These equations have a wider range of validity
than the parabolic approximation used in this work. Therefore there is a hope that by
solving this equation close to the source, wc can improve the solution in the nearfield.
Unfortunately, consistent wide angle equations are not known in the nonlinear case. Wc
therefore have to solve the linear wide angle equation up to a certain range, and then
switch to the KZK-equation. Alternatively, wc can replace the linear part of the KZK
equation by the wide angle approximation and solve the nonlinear equation that then
appears. However, this has not been proved to be a consistent equation which accounts
for diffraction, dissipation and nonlinearity.

It is also possible to find solutions in the case of strong nonlinearity in another way.
In Ref. 46, Coulouvrat showed how it is possible to find uniform solutions of the KZK
equation when knowing the quasilinear approximation. This was done by the method of
renormalization, and the solution described both the generation of shock waves and the
decay of these waves. His analysis was done for a Gaussian onsource amplitude distri
bution and a monochromatic onsource time dependency. He also neglected dissipative
effects. Coulouvrat and the present author have just started an attempt to generalize
this method to also include pulsed sound beams. The linear and the quasilinear solutions
obtained in this dissertation will be one of the starting points for this analysis. Later on,
the results can be generalized so that they are valid also for other onsource amplitude
distributions.
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Appendix A

Boundary Conditions for Weakly
Curved Sources

We will now derive the consistent boundary conditions for curved sources in the parabolic
approximation. It will be based on Ref. 47 where the results in Ref. 48, 49 and 50 are
discussed further and generalized to pulsed sources.

The curved source is located at the surface S : z = g(x). When we assume that the
boundary condition is separable, we get

(A.l)

where t is the physical time and P(x, z,t) = p(x, z,t) is the physical pressure. The
governing equation is

(A.2)

and the boundary condition formulated for pi(x, z, t) will be

(A.3)

Now we wish to formulate an equivalent boundary condition in the plane z = 0, because
we then can solve the problem in the same ways as we solve the plane problem. If we
assume that ø(x) is not too large, we may expand Eq. (A.3) around z = 0, and get:

(A.4)

When g(x) is not "too large", we thus get the approximate boundary condition at z = 0:

(A.5)

This means that we assume that the propagation from the plane z = 0 to the surface
z = g(x) is a plane wave propagation. This assumption is not strange when we remember
that the parabolic approximation assumes that the propagation is almost a plane wave

P(x,g(x),t) = po + pQcoV0f(x)F(t),

(„* 2 d 2 D&\ P d 2 ,  

p(x,ø(x),r) = po + pocovof(x)F(T + ).co

p(x,ø(x),T) = p(x,O,r) + ø(x) f—p(x,ø(x),r)j +

p(x, 0, r) = po + />o<W(x)F(r + co
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in the 2-direction. The variations in the pressure in the 2-direction apart from the plane
wave motion is assumed to be on the scale of Rayleigh distances. This means, however,
that wc cannot choose the curved surface g(x) quite general. Wc can also look at this as
introduction of a "curved" retarded time rc = t - (z - g(x))/co instead of the "plane"
retarded time r = t — z/co. The physical meaning of this new retarded time is quite
intuitive and is also commented in section 4.4. Wc will now discuss the validity of the
equivalent plane source boundary condition in more details.

The neglected term in Eg. (A.4) is of relative order S/ru,min where 6is the maximum
depth of the source, and rU)min is the Rayleigh distance of the lowest characteristic fre
quency, u>m;n , actually present in the signal on the source. Thus, the approximation is
justified whenever

- « SfeSS. (A.6)a 2cq
Remember now that "min<l is assumed large in the derivation of the KZK-equation, or
equivalent in the parabolic approximation. This means that the condition is not very
restrictive. Among others, wc can have 8 = O(a).

Consider now the case of a spherical cap located in a plane and infinitely compliant
baffle, in more details. In this case, g(x) can be written

(A.7)

The curvature radius is here <f, and wc define the aperature angle of the source to be 2a.
This means that 6 = d - y/d2 -a2 =2d sin2 (a/2). This means that Eq. (A.6) now will
be

-^L-tan£<l. (A.B)wmtna 2
If the source is weakly focused in the sense that a < 1, wc can approximate

(A.9)

The conditions for the validity of this approximative boundary condition are

d > a and d > — (A.10)
wmin

These conditions are not very restrictive either. When using the parabolic approxima
tion, wc have a priori supposed that the transverse variation close to the source is on the
scale a. Thus wc have to require that d = O(r0) or greater. This is a condition similar to
the other similarity conditions stating that for instance LQ = 0(r0 ) which is supposed in
the derivation of the parabolic approximation3 . Wc know from that analysis that even if
r 0 and Lo asymptotically are of the same order, the ratio ro/Lo can have a relative large
numerically value, and the model will still give reasonable output. Similar, numerical
calculations where d is quite a bit smaller than r 0 give reasonable results. Therefore,
it is natural to believe that the focal distance d asymptotically have to be of the same
order as the Rayleigh distance. This is a measure of the balance between the two effects
of focusing and spherical spreading. They are tåken into account in the same order of
approximation. Numerically, d can still be quite a bit smaller than rO . Naze Tjøtta,

g(x) =d — Yd? —x2 ,x<a.

fl(x) =å - V#=* « Yd -
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Tjøtta and Vefring51 have also performed an analysis of the validity of the boundary
condition of a focused sound source. We refer to that work for more exact limitations of
this model.

Finally, we will see why we cannot use the similar approach if we do not assume
a parabolic approximation. If we then tried to get an equivalent plane source by the
similar approach, we would have got this expansion:

(A.11)

The first term on the right hand side is known, but now we cannot say much about
the rernaining terms. We find some information by taking the transverse gradient of
Eq. (A.l):

Now, since both Vj.P and dP/dz are unknown on the surface 5, we need more infor
mation, i.e., we need to know the normal derivative of P on S. However, we cannot give
both P and its normal derivative on S. We are thus back to the same problem as we
meet when we are trying to use the Kirchhoff-Helmholtz equation for a curved boundary.
We are able to bypass this problem when we make the parabolic approximation because
dP/dz a priori is negligible compared to Vj_P.

P(x,O,t) = P(x,<7(x),<) - 9(x) (<£.(x,z,t)) +\ oz / *=,(x)

(v±P + iS(x)) = po<*F(t)Vxg(x). (A.12)
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